

รายงานวิจัยฉบับสมบูรณ์

โครงการทุนพัฒนาศักยภาพการวิจัยเชิงสถาบันของ ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล

โดยรองศาสตราจารย์ ดร.ปราณี ภิญโญชีพและคณะ

สิงหาคม 2563

รายงานวิจัยฉบับสมบูรณ์

โครงการทุนพัฒนาศักยภาพการวิจัยเชิงสถาบันของ ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล

คณะผู้วิจัย รองศาสตราจารย์ ดร.ปราณี ภิญโญชีพ และคณาจารย์ภาควิชาเคมี

สังกัด ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล

สนับสนุนโดยสำนักงานคณะกรรมการการอุดมศึกษา และสำนักงานกองทุนสนับสนุนการวิจัย

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกอ. และ สกว. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

Executive Summary

ภาควิชาเคมีอันเป็นภาควิชาที่เก่าแก่ที่สุดของคณะวิทยาศาสตร์ เป็นกำลังหลักสำคัญหนึ่งของคณะ วิทยาศาสตร์ และของมหาวิทยาลัยมหิดล ในการผลิตผลงานวิจัยที่มีมาตรฐานระดับโลกมาอย่างต่อเนื่องจน ปัจจุบัน มีคณาจารย์ประจำ 42 คน งานวิจัยมีความหลากหลายและโดดเด่นในหลายด้าน และมีผลงานเป็นที่ ยอมรับในระดับประเทศ ได้รับรางวัลต่างๆ เช่น นักวิทยาศาสตร์รุ่นใหม่ ทุนวิจัยลอรีอัล "เพื่อสตรีในงาน วิทยาศาสตร์" Polymer Rising star เป็นต้น แม้ว่าคณาจารย์ของภาควิชาเคมีโดยรวมจะมีผลงานตีพิมพ์เป็น จำนวนมาก แต่งานวิจัยเหล่านี้เป็นงานวิจัยเฉพาะเรื่อง เฉพาะด้านตามความรู้ความชำนาญเฉพาะตัวของ คณาจารย์แต่ละท่าน จึงมีผลกระทบไม่สูงมากนัก

ภาควิชาฯ ได้ใช้ทุนพัฒนาศักยภาพเชิงสถาบันที่ได้รับในการส่งเสริมให้เกิดงานวิจัย หรือผลงานที่มี ผลกระทบสูง และสามารถนำไปใช้ประโยชน์ได้ ดังคำสอนของพระราชบิดา "True success is not in the learning, but in its applications to the benefit of mankind" และเป็นไปตามปณิธานของ มหาวิทยาลัยมหิดลในการเป็น "ปัญญาแห่งแผ่นดิน" โดยการพิจารณาศักยภาพของคณาจารย์ และความ เชี่ยวชาญเฉพาะ แล้วกำหนดแนวทาง หรือกรอบวิจัย 2 กรอบวิจัย คือ การวิจัยเพื่อพัฒนาสารออกฤทธิ์ทาง ชีวภาพจากผลิตภัณฑ์ธรรมชาติเพื่อสุขภาพ และ การพัฒนาและออกแบบวัสดุที่มีสมบัติพิเศษและ/หรือเป็น มิตรกับสิ่งแวดล้อม เพื่อช่วยแก้ปัญหาด้านสุขภาพและสิ่งแวดล้อมที่ทวีความรุนแรงขึ้นเรื่อยๆ ทั้งใน ระดับประเทศ และระดับสากล

ภาควิชาฯ ตระหนักดีในภาระงานที่ค่อนข้างหนักอยู่แล้วของคณาจารย์ในภาควิชา การสนับสนุนทุน รายบุคคลเพื่อให้ได้จำนวนผลงานตีพิมพ์เพิ่มขึ้น หรือให้เกิดผลงานที่มีผลกระทบสูงเกิดขึ้นได้ยาก จึงได้ กำหนดแนวทางในการสนับสนุนให้เกิดการทำงานร่วมกันทั้งภายในภาควิชาเอง และการสร้างเครือข่ายกับ หน่วยงานอื่นๆ ทั้งในประเทศ และต่างประเทศ เพื่อให้เกิดผลงานวิจัยที่มีผลกระทบสูง และเป็นที่ประจักษ์ใน เวทีสากล และภาควิชาฯ ยังตระหนักดีว่า ผู้ที่ช่วยสร้างผลงานวิจัย คือ นักศึกษาที่มีศักยภาพสูง ดังนั้น จึงได้ จัดกิจกรรมต่างๆ ที่จะส่งเสริมให้บรรลุเป้าหมายที่ต้องการ ได้แก่ การให้สนับสนุนผู้ช่วยวิจัย เพื่อให้นักศึกษา สามารถผลิตผลงานเพิ่มจากที่กำหนดในเงื่อนไขการจบการศึกษาตามระเบียบปกติ การสนับสนุนทุนวิจัย เพิ่มเติมสำหรับอาจารย์ การสนับสนุนทุนในการจัดประชุมสร้างเครือข่ายวิจัย การให้ทุนสมทบเพื่อนำเสนอ ผลงานวิจัยในที่ประชุมวิชาการนานาชาติทั้งในและต่างประเทศ และการจัดกิจกรรมพัฒนาศักยภาพนักศึกษา โดยเฉพาะการเพิ่มทักษะด้านการวิจัย

ผลการดำเนินกิจกรรมต่างๆ ข้างต้น สามารถสรุปได้ดังนี้ สนับสนุนการจัด และการเข้าร่วมกิจกรรม ระดับนานาชาติ 4 รายการ คือ เคมีโอลิมปิกวิชาการ PACCON2019 Flow Analysis XIV 2018 และ PCT-8 ให้ทุนสนับสนุนผู้ช่วยวิจัยในการเขียนผลงานตีพิมพ์ในวารสารจำนวน 26 ทุน และได้ผลงานเพิ่มขึ้น 15 เรื่อง ในกรอบเวลาที่ได้รับทุนพัฒนาศักยภาพนี้ อย่างไรก็ตาม ผลลัพธ์จากทุนนี้ อาจเกิดขึ้นมากกว่ากรอบ เวลาของการรับทุนได้ เนื่องจากธรรมชาติของการวิจัยที่ต้องใช้เวลากว่าที่ผลงานจะเกิดขึ้นอย่างเป็นรูปธรรม

สรุปผลการดำเนินงาน

หลักการและเหตุผล

ภาควิชาเคมีอันเป็นภาควิชาที่เก่าแก่ที่สุดของคณะวิทยาศาสตร์ เป็นกำลังหลักสำคัญหนึ่งของ คณะวิทยาศาสตร์ และของมหาวิทยาลัยมหิดล ในการผลิตผลงานวิจัยที่มีมาตรฐานระดับโลกมาอย่างต่อเนื่อง จนปัจจุบัน มีคณาจารย์ประจำ 42 คน งานวิจัยมีความหลากหลายและโดดเด่นในหลายด้าน และมีผลงาน เป็นที่ยอมรับในระดับประเทศ ได้รับรางวัลต่างๆ เช่น นักวิทยาศาสตร์รุ่นใหม่ ทุนวิจัยลอรีอัล "เพื่อสตรีใน งานวิทยาศาสตร์" Polymer Rising star เป็นต้น งานวิจัยของคณาจารย์ในภาควิชาครอบคลุมตั้งแต่งานวิจัย พื้นฐานระดับโมเลกุล สารขนาดเล็ก เช่น สารอินทรีย์ ไปจนถึงโมเลกุลขนาดใหญ่ เช่น แป้ง โปรตีน และพอลิ เมอร์ (พลาสติก เส้นใย และยาง) รวมถึงงานวิจัยด้านเคมีคำนวณ คณาจารย์ในภาควิชาทำงานวิจัยร่วม ระหว่างสาขาความเชี่ยวชาญมากขึ้น มีการดำเนินงานวิจัยทั้งแบบโครงการเดี่ยว และโครงการวิจัยแบบเป็น หน่วยวิจัยระดับคณะได้แก่ หน่วยวิจัยพลังงานยั่งยืนและวัสดุสีเขียว หน่วยวิจัยด้านวิทยาศาสตร์และวิศวกรรม พื้นผิว และหน่วยวิจัยการเร่งปฏิกิริยา คณาจารย์ของภาควิชาได้รับทุนวิจัยจากหน่วยงานต่างๆ ทั้ง ภายในประเทศ และหน่วยงานต่างประเทศ เช่น สกว. สถาบันพัฒนาอุตสาหกรรมสิ่งทอ Office of Naval Research Global รวมทั้งบริษัทต่างๆ เช่น PTTGC ปูนชิเมนต์ไทย IRPC และ บริษัทต่างประเทศ เช่น Toyo Tire & Rubber, Yokohama Rubber, Bridgestone

แม้ว่าคณาจารย์ของภาควิชาเคมีโดยรวมจะมีผลงานตีพิมพ์เป็นจำนวนมาก แต่งานวิจัยเหล่านี้ เป็นงานวิจัยเฉพาะเรื่อง เฉพาะด้านตามความรู้ความชำนาญเฉพาะตัวของคณาจารย์แต่ละท่าน จึงมีผลกระทบ ไม่สูงมากนัก การที่จะทำให้เกิดงานวิจัย หรือผลงานที่มีผลกระทบสูง และสามารถนำไปใช้ประโยชน์ได้ ดังคำ สอนของพระราชบิดา "True success is not in the learning, but in its applications to the benefit of mankind" และเป็นไปตามปณิธานของมหาวิทยาลัยมหิดลในการเป็น "ปัญญาแห่งแผ่นดิน" นั้น จำเป็น จะต้องใช้ความรู้ความชำนาญเฉพาะตัวของคณาจารย์มาร่วมกันแก้ปัญหาทั้งที่เป็นปัญหาระดับประเทศ และ ปัญหาสากล โดยอาศัยกลไกส่งเสริมที่นอกเหนือจากการได้รับทุนวิจัยปกติ ซึ่งในที่นี้หมายถึง "ทุนพัฒนา ศักยภาพเชิงสถาบัน" ที่ได้รับการสนับสนุนจากสำนักงานกองทุนสนับสนุนการวิจัย (สกว) และคณะ วิทยาศาสตร์ มหาวิทยาลัยมหิดล

ในปัจจุบันปัญหาด้านสุขภาพและสิ่งแวดล้อมทวีความรุนแรงขึ้นเรื่อยๆ ทั้งในระดับประเทศ และ ระดับสากล จึงมีความสำคัญและจำเป็นเร่งด่วนที่จะต้องได้รับการแก้ไข ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดลในฐานะที่เป็นแหล่งรวมของนักวิชาการที่มีความรู้ความสามารถ จึงถือเป็นหน้าที่และความ รับผิดชอบที่จะต้องมีส่วนร่วมในการช่วยแก้ปัญหาดังกล่าว ภาควิชาฯ ได้ระดมสมอง วิเคราะห์สถานะความ ชำนาญด้านงานวิจัยของบุคลากร ตลอดจนโอกาส และความได้เปรียบต่างๆ ภายใต้ปณิธานของ มหาวิทยาลัยมหิดล ซึ่งได้รับการยอมรับว่าเป็นมหาวิทยาลัยอันดับ 1 สาขาวิทยาศาสตร์สุขภาพ และได้ข้อ สรุปว่าภาควิชาฯ มีพื้นฐาน องค์ความรู้ และเริ่มงานวิจัยด้านวิทยาศาสตร์สุขภาพและวิทยาศาสตร์สิ่งแวดล้อม มาระยะหนึ่งแล้ว ภาควิชาฯ จึงมีเป้าประสงค์จะดำเนินการวิจัยให้เป็นรูปธรรมโดยเน้นเพิ่มการผลิตผลงานวิจัย

ด้านเคมี เพื่อการยกระดับคุณภาพชีวิตและสิ่งแวดล้อม (Chemistry for Better Health and Environment) โดยใช้การทำงานร่วมกันของบุคคลากรที่มีความรู้ความชำนาญในสาขาของตนมาพัฒนาศักยภาพเพื่อยกระดับ งานวิจัยด้านนี้ให้ถึงระดับ World class เพื่อส่งเสริมให้ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล เป็นที่ยอมรับในระดับนานาชาติ

ในการผลักดันภาควิชาฯสู่ระดับโลกนั้น ภาควิชาฯได้กำหนดแนวทาง หรือกรอบวิจัย 2 กรอบ วิจัย คือ

1) การวิจัยเพื่อพัฒนาสารออกฤทธิ์ทางชีวภาพจากผลิตภัณฑ์ธรรมชาติเพื่อสุขภาพ และ 2) การพัฒนาและออกแบบวัสดุที่มีสมบัติพิเศษและ/หรือเป็นมิตรกับสิ่งแวดล้อม

กรอบวิจัยแรก มีวัตถุประสงค์เพื่อตอบโจทย์ทางด้านความมั่นคงทางระบบสาธารณสุขของประเทศ โดยตรง และสร้างผลประโยชน์ทางเศรษฐกิจผ่านการสร้างงานในอุตสาหกรรม และการส่งออกเคมี เภสัชภัณฑ์ไปยังต่างประเทศ โดยการพัฒนาเทคโนโลยีในการแยกและการวิเคราะห์สารจากผลิตภัณฑ์ ธรรมชาติ การพิสูจน์ทราบโครงสร้างของสาร และการทดสอบฤทธิ์ทางชีวภาพ การพัฒนาเทคโนโลยีทางการ สังเคราะห์ เช่น การพัฒนาวิธีการสังเคราะห์ชนิดใหม่ที่เป็นมิตรต่อสิ่งแวดล้อม การสังเคราะห์เลียนแบบสาร ผลิตภัณฑ์ธรรมชาติ และ การพัฒนาตัวเร่งปฏิกิริยา การวิจัยทางเคมีคำนวณ การศึกษาและทดสอบด้านความ ปลอดภัยในการนำมาใช้ ซึ่งการดำเนินการวิจัยในปัจจุบันได้มุ่งพัฒนาการสังเคราะห์และค้นคว้าสารที่มีฤทธิ์ ทางชีวภาพโดยใช้เทคนิคขั้นสูง รวมถึงการประยุกต์ความรู้ทางเคมีชีวภาพเพื่อให้ได้สารต้นแบบที่สามารถนำมา พัฒนาเป็นเภสัชภัณฑ์ หรือผลิตภัณฑ์ที่ใช้ในการตรวจสอบวิเคราะห์ที่มีศักยภาพต่อไป

สำหรับกรอบวิจัยที่ 2 นั้น ครอบคลุมถึง การออกแบบโมเลกุล คิดค้นวิธีใหม่ๆ ในการสังเคราะห์สาร ใหม่ๆ ที่มีสมบัติพิเศษจำเพาะเจาะจงต่อการใช้งาน เช่น สารเรื่องแสง วัสดุสำหรับเซลแสงอาทิตย์ วัสดุกักเก็บ แก๊ส หรือเก็บประจุ หรือกักเก็บพลังงานรูปแบบต่างๆ การใช้และพัฒนาวัสดุจากธรรมชาติ เช่น ยางธรรมชาติ การพัฒนาพลาสติกย่อยสลายได้ทางชีวภาพ การพัฒนาวัสดุคอมพอสิตที่มีผลต่อการยับยั้งการเติบโตของ แบคทีเรีย การใช้และพัฒนาวัสดุทดแทนจากธรรมชาติ โดยเฉพาะจากผลิตผลหรือของเสียทางการเกษตร เช่น เส้นใยจากใบสัปปะรด ตลอดจนการพัฒนาวิธีการสังเคราะห์และการใช้ตัวเร่งปฏิกิริยาทั้งแบบเอกพันธ์และวิวิธ พันธ์เพื่อการบำบัดอากาศ และน้ำเสีย การสร้างมูลค่าเพิ่มให้กับสารอินทรีย์บางกลุ่ม กระบวนการผลิตพอลิ เมอร์ สารกึ่งตัวนำ และเซรามิก โดยเน้นความเป็นมิตรต่อสิ่งแวดล้อมและใช้ได้จริง การศึกษากลไกการ เกิดปฏิกิริยาทั้งจากวิธีเคมีคำนวณ และการใช้เครื่องมือต่างๆ เพื่อนำไปสู่การใช้งานจริง รวมทั้งการพัฒนาวัสดุ ที่มีความจำเพาะต่อการตรวจสอบการปนเปื้อนผลิตภัณฑ์อาหารส่งออก การพัฒนาวิธีการวัดแบบ on-line ใน อุตสาหกรรมและการตรวจคุณภาพสิ่งแวดล้อม

วัตถุประสงค์

- 1. เพื่อส่งเสริมให้เกิดการทำงานวิจัยร่วมกันของอาจารย์ในภาควิชาในหัวข้อเฉพาะด้าน ที่มีผลกระทบสูง และสามารถนำไปใช้ประโยชน์ได้จริง
 - 2. เพื่อเพิ่มจำนวนผลงานตีพิมพ์ของภาควิชาในวารสารวิชาการซึ่งอยู่ใน Q1 และ Q2
- เพื่อพัฒนาภาควิชาให้มีชื่อเสียงในระดับสากล และมีผลการจัดอันดับหน่วยงานอยู่ในระดับที่ดีขึ้น
 (อันดับ 200-250 ตามการจัดอันดับของ QS)

วิธีดำเนินการ

โครงการ "เคมีเพื่อการยกระดับคุณภาพชีวิตและสิ่งแวดล้อม" "Chemistry for Better Health and Environment" ประกอบด้วย 2 โครงการย่อย ซึ่งแต่ละโครงการมีระเบียบการวิจัยดังนี้ โครงการย่อยที่ 1 การวิจัยเพื่อพัฒนาสารออกฤทธิ์ทางชีวภาพจากผลิตภัณฑ์ธรรมชาติเพื่อสุขภาพ

- ทำการวิจัยด้านเคมีอินทรีย์และด้านผลิตภัณฑ์ธรรมชาติ สังเคราะห์สารออกฤทธิ์ทางชีวภาพ พัฒนา ปรับปรุงโครงสร้างของสาร
- ทำการวิจัยด้านเคมีชีวภาพและทางด้านเคมีเชิงคำนวณ ร่วมกันออกแบบโครงสร้างสาร เพื่อเพิ่ม ประสิทธิภาพและความจำเพาะเจาะจงกับการฆ่าแบคทีเรียเพื่อนำไปสู่การพัฒนาสารปฏิชีวนะใหม่ได้

โครงการย่อยที่ 2 การพัฒนาและออกแบบวัสดุที่มีสมบัติพิเศษและ/หรือเป็นมิตรกับสิ่งแวดล้อม

- ทำการวิจัยด้านพัฒนาตัวเร่งปฏิกิริยาและใช้เทคนิคเคมีคำนวณร่วมออกแบบโครงสร้าง
 - ตัวเร่งปฏิกิริยาออกซิเดชันที่ใช้ออกซิเจนในอากาศในการบำบัดน้ำและอากาศ โดยเฉพาะในตัว อาคาร (ที่ทำงาน บ้านเรือน โรงพยาบาล โรงงาน)
 - ตัวเร่งปฏิกิริยาออกซิเดชันที่ใช้ออกซิเจนในอากาศ เพื่อเปลี่ยนหมู่ฟังก์ชันของสารอินทรีย์โมเลกุล เล็กให้มีมูลค่าทางเศรษฐกิจเพิ่มขึ้น เช่น แอลกอฮอล์ แอลดีไฮด์ คีโตน อิพอกไซด์ และกรดอินทรีย์ ซึ่งสารเหล่านี้เป็นองค์ประกอบสำคัญในยารักษาโรค เครื่องสำอาง ตัวทำละลายที่ใช้ใน ห้องปฏิบัติการและโรงงานอุตสาหกรรม
- ทำการวิจัยด้านเคมีวิเคราะห์การพัฒนาระบบวิเคราะห์ และตรวจวัดสารปนเปื้อนในอากาศ

ผลการดำเนินงาน

ผลงานวิจัยที่เกี่ยวข้องกับโครงการข้างต้น สามารถสรุปได้ดังนี้

โครงการย่อยที่ 1 การวิจัยเพื่อพัฒนาสารออกฤทธิ์ทางชีวภาพจากผลิตภัณฑ์ธรรมชาติเพื่อสุขภาพ

กลุ่มผู้วิจัยในภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล ได้ดำเนินการวิจัยพื้นฐานเพื่อนำไปสู่ การพัฒนายาปฏิชีวนะเพื่อใช้ในการรักษาอาการติดเชื้อจากแบคทีเรียที่แพร่ระบาดในชุมชนและใน สถานพยาบาล โดยกลุ่มเชื้อที่ใช้ในการทดสอบและออกแบบโครงสร้างสารคือ เชื้อสตาฟฟิโลคอคคัส ออเรียส (Staphylococcus aureus) ที่มักพบการดื้อต่อยาปฏิชีวินะกลุ่มเบต้าแลคแทม หรือเป็นที่รู้จักในชื่อ Methicillin-resistant Staphylococcus aureus หรือ MRSA เชื้อเอสเชอริเชีย โคไล (Escherichia coli) ที่ทำให้เกิดโรคติดเชื้อในระบบทางเดินปัสสาวะและทางเดินอาหารอย่างรุนแรง และ เชื้อซูโดโมแนส แอรูจิโน ซา (Pseudomonas aeruginosa) ทำให้เกิดโรคติดเชื้อหลายระบบของร่างกาย เช่น โรคปอดบวม ติดเชื้อใน กระแสเลือด โดยได้ดำเนินการวิจัยและมีผลงานดังนี้

1. การประยุกต์ใช้ความรู้ทางเคมีและเคมีเชิงชีววิทยาในการพัฒนาสารปฏิชีวนะที่ใช้อยู่ในปัจจุบัน ให้มีประสิทธิภาพมากยิ่งขึ้น โดยมีเป้าหมายแรกในการพัฒนายากลุ่ม Trimethoprim ซึ่งสารนี้ถูกใช้เป็นยา ปฏิชีวนะมาเป็นเวลานาน สามารถยับยั้งการเจริญของแบคทีเรียผ่านการ inhibit การทำงานของเอนไซม์ Dihydrofolate reductase (DHFR) ในแบคทีเรีย นำไปสู่การยับยั้งการสร้างสารสำคัญต่างๆ อาทิเช่น นิวคลี โอไทด์ หรือ กรดอะมิโน ทำให้แบคทีเรียไม่สามารถเจริญเติบโต และตายได้ในที่สุด หากว่ามีรายงานการแพร่ ระบาดของเชื้อดื้อต่อยา Trimethoprim การพัฒนาโครงสร้างที่สามารถเพิ่มประสิทธิภาพของยาจึงเป็นส่วน สำคัญ ทางกลุ่มผู้วิจัยได้พิจารณาโครงสร้างของ Trimethoprim และพันธะสำคัญที่ใช้ในการเกาะจับของยาตัว ้นี้กับ DHFR แล้วพบว่า การเพิ่มของหมู่ Halogens เข้าไปในโครงสร้างจะสามารถช่วยในการเกาะจับกับ DHFR ในเชื้อดื้อยาได้ดียิ่งขึ้น โดยผ่าน Halogen bonds interaction กับส่วนที่เป็น electron-rich ของ DHFR ผลงานนี้ได้ตีพิมพ์ในวารสาร Bioorg. Med. Chem., 2018, 26, 19, 5343-5348 นอกจากนี้เรา ยังได้ประยุกต์ใช้ความรู้พื้นฐานทางเคมีในการพัฒนาสารปฏิชีวนะกลุ่มอื่น อาทิ เช่นสารในกลุ่ม hydroxyphenyl acrylic esters ซึ่งมีรายงานว่าสารกลุ่มนี้สามารถยับยั้งการเจริญเติบโตของแบคทีเรียผ่าน ปฏิกิริยา conjugate addition โดยใช้ nucleophile บนแบคทีเรียในการทำปฏิกิริยา กลุ่มผู้วิจัยจึงได้ทดสอบ เปรียบเทียบความสามารถในการเกิดปฏิกิริยา conjugate addition ของโครงสร้าง allenic esters และ acrylic esters พบว่า allenic esters สามารถเกิดปฏิกิริยา conjugate addition ได้รวดเร็วกว่า และนำไปสู่ การยับยั้งการเจริญเติบโตของแบคทีเรียได้อย่างมีประสิทธิภาพมากยิ่งขึ้น **ผลงานนี้ได้ตีพิมพ์ในวารสาร** Monatshefte für Chemie, 2018, 149, 1059-1068 นอกจากนี้ยังสามารถพัฒนาวิธีการเพิ่มหมู่ฮาโล เจนต่างๆ เช่น ฟลูออรีน เข้าไปในโครงสร้างของสาร ซึ่งฟลูออรีนนั้นมีรายงานว่าสามารถเพิ่มประสิทธิภาพของ สารในการเปลี่ยน conformation ของโปรตีนได้ อีกทั้งยังสามารถเพิ่มประสิทธิภาพของสารในการผ่านสู่เยื้อ หุ้มเซลล์ได้ดียิ่งขึ้น และเนื่องจากฟลูออรีนเป็นอะตอมที่มี electronegativity สูง จึงสามารถโน้มนำให้เกิดการ เปลี่ยนแปลงความหนาแน่นของอิเล็กตรอนรอบๆ อะตอมได้ และการเติมฟลูออรีนนั้นสามารถเปลี่ยนปรับค่า pKa ของสาร ซึ่งนำไปสู่การเปลี่ยนแปลง pharmacokinetic ของสารได้ ผลงานการพัฒนาวิธีการเพิ่มหมู่ฮาโล เจนต่างๆ ได้**ตีพิมพ์ในวารสารชั้นนำต่างๆมากมาย อาทิเช่น**

- Euro. J. Org. Chem., 2019, 29, 4710-4720.
- Euro. J. Org. Chem., 2019, 12, 2212-2223.
- Tet. Lett., 2019, 60, 989-993.

- Euro. J. Org. Chem., 2018, 2, 160-169.
- J. Org. Chem., 2018, 83, 765-782.
- J. Org. Chem., 2018, 83, 388-402.
- Euro. J. Org. Chem., 2018, 295-305.

2. การพัฒนาวิธีการสังเคราะห์ที่มีประสิทธิภาพเพื่อนำไปใช้ในอุตสาหกรรมการผลิตยาปฏิชีวนะ

โดยพัฒนาการสังเคราะห์โครงสร้างสาร heterocyclic derivatives ต่างๆ กล่าวคือ pyridine quinolone isoxazole idolo-indole ซึ่งเป็นโครงสร้างที่มักพบได้ในโครงสร้างของยาปฏิชีวนะและสารออกฤทธิ์ทาง ชีวภาพ อีกทั้งยังมีการพัฒนาการเชื่อมต่อพันธะคาร์บอน (C-C, C-N bond formation) เพื่อนำไปใช้ในการ สังเคราะห์ ผลจากการดำเนินการได้ตีพิมพ์ในวารสารชั้นนำต่างๆ อาทิ เช่น

- Euro. J. Org. Chem., 2019, 42, 7050-7057.
- Euro. J. Org. Chem., 2019, 16, 2759-2766.
- J. Org. Chem. 2019, 84, 23, 15131-15144.
- Org. Chem. Front., 2018, 5, 1928-1932.
- Org. Biomol. Chem., 2018,16, 7050-7054.
- Org. Biomol. Chem., 2018, 16, 2697-2704.
- Org. Lett. 2017, 19, 24, 6546-6549.
- Org. Biomol. Chem., 2016, 14, 590-597
- Tetrahedron, 2016, 72 (12), 1533-1540.

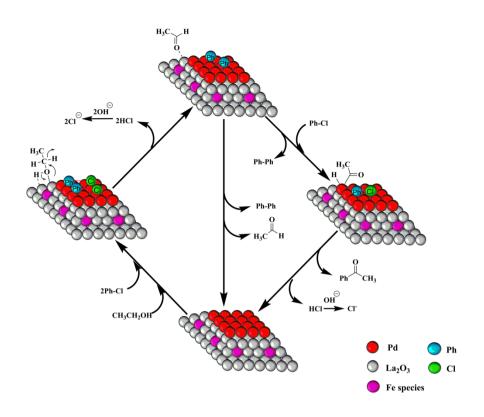
โครงการย่อยที่ 2 การพัฒนาและออกแบบวัสดุที่มีสมบัติพิเศษและ/หรือเป็นมิตรกับสิ่งแวดล้อม โครงการ 2.1 การพัฒนาตัวเร่งปฏิกิริยา เพื่อใช้ในการเพิ่มมูลค่าเคมีภัณฑ์

ตัวเร่งปฏิกิริยาเข้ามามีบทบาทสำคัญ ในกระบวนการผลิตสารเคมี เพราะช่วยลดปริมาณสารเคมีและ พลังงานที่ต้องใช้ในระบบ ตัวเร่งปฏิกิริยาที่สามารถแปลงโมเลกุลขนาดเล็กให้เป็นเคมีภัณฑ์เพิ่มมูลค่า ภายใต้ สภาวะที่เป็นมิตรต่อสิ่งแวดล้อม จึงเป็นประโยชน์ต่อเศรษฐกิจและสิ่งแวดล้อม นำไปสู่การพัฒนาที่ยั่งยืน ใน โครงการวิจัยนี้ได้ศึกษาและพัฒนาตัวเร่งปฏิกิริยาสำหรับปฏิกิริยาสำคัญต่าง ๆ และส่งผลให้เกิดความร่วมมือ กับ สถาบันวิจัยแสงซินโครตรอน สถาบันวิทยสิริเมธี (VISTEC) และ มหาวิทยาลัยโอซากา (Osaka University) ในด้านการวิเคราะห์ตัวเร่งปฏิกิริยาแบบเอกพันธุ์และวิวิธพันธุ์ โดยมีข้อสรุปงานวิจัย ดังนี้

(1) ตัวเร่งคอปเปอร์และพัลเลเดียมสำหรับปฏิกิริยาออกซิเดชันแบบใช้อากาศของแอลกอฮอล์ในน้ำ ผู้รับผิดชอบ: รศ.ดร. ปรียานุช แสงไตรรัตน์นุกูล

ผลการศึกษาประสิทธิภาพการเร่งปฏิกิริยาของอนุภาคพัลเลเดียมที่ถูกทำให้เสถียรด้วยตัวยึดซิลิกาที่มีหมู่ ฟังก์ชันประเภทไตรเอโซล ได้แก่ tris(triazole) bis(triazole) และ pyridine-triazole พบว่าหมู่ฟังก์ชันมีผล ต่อความสามารถการเร่งปฏิกิริยาออกซิเดชันด้วยอากาศของแอลกอฮอล์ ให้เป็นแอลดีไฮด์ โดย pyridine-triazole ส่งผลให้พื้นผิวของพัลเลเดียมมีความสามารถในการเร่งปฏิกิริยาสูงสุด นอกจากนี้กลุ่มผู้วิจัยได้ สังเคราะห์สารเชิงซ้อนแบบไตรนิวเคลียร์และ มอนอนิวเคลียร์ของคอปเปอร์ ที่ประกอบด้วยลิแกนด์ประเภท ไตรเอโซล พบว่าสารเชิงซ้อนไตรนิวเคลียร์คอปเปอร์เร่งปฏิกิริยาออกซิเดชันด้วยอากาศของแอลกอฮอล์ ให้เป็น แอลดีไฮด์ ได้มีประสิทธิภาพกว่าสารเชิงซ้อนมอนอนิวเคลียร์ ความรู้ที่ได้จะถูกนำไปใช้ออกแบบและพัฒนา ตัวเร่งปฏิกิริยาออกซิเดชันต่อไป

(2) MnO_x สำหรับปฏิกิริยาออกซิเดชันแบบใช้อากาศของแอลกอฮอล์


ผู้รับผิดชอบ: รศ.ดร. จงกล ตันติรุ่งโรจน์ชัย

งานวิจัยชิ้นนี้ศึกษาการสังเคราะห์ไมโครสเฟียร์ของซีเรียมแมงกานีสออกไซด์ โดยอาศัยปฏิกิริยารีดอกซ์และ กรดบิวทิริกเป็นตัวกำหนดโครงสร้าง รวมไปถึงศึกษาความสามารถในการเร่งปฏิกิริยาออกซิเดชันของ แอลกอฮอล์แบบใช้อากาศ การเพิ่มโลหะซีเรียมเข้าไปในโครงสร้างของแมงกานีสออกไซด์ส่งผลต่ออัตลักษณ์ สมบัติทางกายภาพ และความสามารถในการเร่งปฏิกิริยาออกซิเดชัน การศึกษาผลของตัวแปรในการ เกิดปฏิกิริยาพบว่าการเกิดออกซิเดชันของเบนซิล แอลกอฮอล์จะเกิดผ่านกลไกแบบ Mars-van Krevelen และ การเร่งปฏิกิริยามีพฤติกรรมเป็นแบบวิวิธพันธุ์ ผลการวิเคราะห์ตัวเร่งปฏิกิริยาที่ใช้แล้วพบว่ามีผลิตภัณฑ์จาก ปฏิกิริยาโอเวอร์ออกซิเดชันเกาะบนพื้นผิวและลดความว่องไวต่อปฏิกิริยาลง อย่างไรก็ตาม เราสามารถคืน สภาพตัวเร่งปฏิกิริยาบางส่วนได้โดยกรรมวิธีให้ความร้อน

(3) ปฏิกิริยาการกำจัดคลอรีนในสภาวะที่มีตัวเร่งปฏิกิริยา (Dechlorination)

ผู้รับผิดชอบ: รศ.ดร. เอกสิทธิ์ สมสุข

งานวิจัยนี้ได้สังเคราะห์ตัวเร่งปฏิกิริยาวิวิธพันธุ์ที่มี Pd/calcined ferrocenated La₂O₃ (**PFL1**) เพื่อใช้ใน ปฏิกิริยาตัดพันธะ C-Cl มากกว่าพันธะ C-X เมื่อ X เป็น F, Br, I ปฏิกิริยานี้ดำเนินที่อุณหภูมิห้อง ซึ่งเป็นการ ค้นพบที่น่าสนใจ เนื่องจากการตัด C-Cl โดยใช้ตัวเร่งปฏิกิริยาเช่น Cu ต้องใช้อุณหภูมิที่ 150 °C นอกจากนี้ ปฏิกิริยายังมีความน่าสนใจที่เลือกตัด C-Cl ก่อน C-X อื่น ๆ โดยปฏิกิริยามีกลไกการเกิดปฏิกิริยาดังรูป

(4) การศึกษากลไกการเปลี่ยน CO_2 เป็นกรดฟอร์มิกด้วยตัวเร่งปฏิกิริยา Cp*Ir(III) โดยวิธีเคมีคำนวณ ผู้รับผิดชอบ: รศ.ดร. พนิดา สุรวัฒนวงศ์

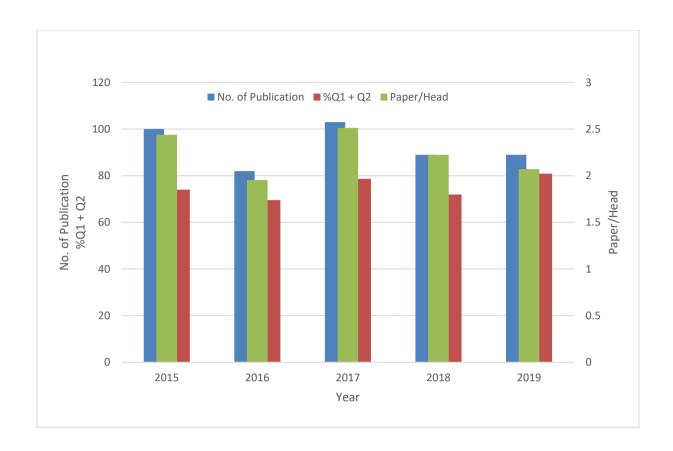
ผู้วิจัยได้ศึกษากลไกการกำจัดไฮโดรเจนจาก HCO_2H และการเติมไฮโดรเจนแก่ CO_2 โดยตัวเร่งปฏิกิริยา [IrCp* $(H_2O)(bpymO_4H_4)]^{2+}$ (bpym $O_4H_4=2,2$ ',6,6'-tetrahydroxy-4,4'-bipyrimidine) ด้วยวิธีการคำนวณทาง ทฤษฎีฟังก์ชันนัลความหนาแน่น พบว่า การปรับ pH ค่าต่าง ๆ มีผลต่อประสิทธิภาพการเร่งปฏิกิริยาด้วย ปัจจัยต่อไปนี้ (i) โปรโตเนชันสเตทของหมู่ OH บนลิแกนด์ของ Ir (ii) การมีส่วนร่วมของ Na+ และ (iii) บทบาท ของ HCO_2H หรือ HCO_3^- ในการทำหน้าที่เป็นตัวส่งผ่านโปรตอน ปัจจัยเหล่านี้ควรต้องนำมาพิจารณาใน การศึกษากลไกของการกำจัดและการเติมไฮโดรเจนแก่ CO_2 ในระบบตัวเร่งปฏิกิริยาอื่น ๆ ที่มีการแตกตัวของ โปรตอน

(5) ตัวเร่งปฏิกิริยาแบบโลหะพอร์ไฟรินบนสารประกอบอินทรีย์-อนินทรีย์แบบใหม่ สำหรับการยึดตรึงแก๊ส คาร์บอนไดออกไซด์เพื่อเปลี่ยนเป็นสารประกอบคาร์บอเนตแบบวง (Metalloporphyrin-based organicinorganic silsesquioxanes for carbon dioxide fixationto cyclic carbonate) ผู้รับผิดชอบ: รศ.ดร. วุฒิชัย เอื้อวิทยาศุภร

งานวิจัยที่ผ่านมาได้มีการค้นพบ สารประกอบ "ลูกผสม" หรือเรียกว่า polyhedral oligomeric silsesquioxanes (POSS) ซึ่งสามารถใช้เป็นของแข็งในการรองรับสารประกอบเชิงซ้อน หรือ อนุภาคนาโน ของโลหะพาลาเดียม เพื่อใช้ในการศึกษาเป็นตัวเร่งปฏิกิริยาแบบ Suzuki-Miyaura cross-coupling และ oxidation alcohol ในขณะเดียวกันได้มีการดัดแปลงหมู่ฟังก์ชันการทำงานของสารประกอบ POSS ให้เป็น

กรดซัลโฟนิก หรือ ไพร์ริลิดิโนเนียม เพื่อสามารถนำมาใช้เป็นตัวเร่งปฏิกิริยาโดยตรง ได้แก่ การเกิดโพลีเมอไร เซชันแบบเปิดวงแหวน ของสารประกอบ **E**-caprolactone และ การเร่งปฏิกิริยาไมเคิลแบบไม่สมมาตร ตามลำดับ ทำให้เกิดการเร่งปฏิกิริยาที่เป็นมิตรต่อสิ่งแวดล้อม เช่น ไม่มีการใช้ตัวทำละลายใดๆเลยระหว่างการ เร่งปฏิกิริยาเคมี

นอกจากนี้ยังได้มีการสังเคราะห์สารอินทรีย์แบบใหม่ที่มีโมเลกุลขนาดเล็ก และ สามารถเปล่งแสงแบบฟลูออ เรสเซนต์ใหม่ เพื่อทำให้เกิดการพัฒนาเป็นสารที่ใช้ตรวจวัดการปนเปื้อนของสสารอื่นๆด้วยตาเปล่า ได้แก่ การ ตรวจวัดกรดพิคริก ฟลูออไรด์ และไซยาไนด์ ในขณะเดียวกันได้พัฒนาโครงสร้างทางเคมีของสารประกอบ POSS โดยการนำสารประกอบโพลีไซคลิคอะโรมาติกไฮโดรคาร์บอน (จากอนุพันธ์แอนทราซีน และ ไพรีน) มา เชื่อมต่อกับโมเลกุล octavinylsilsesquioxane ด้วยปฏิกิริยาแบบ Heck แล้วจึงทำให้เกิดสารประกอบ POSS ชนิดใหม่ที่สามารถเปล่งแสงแบบฟลูออเรสเซนต์ได้ แล้วจึงมาประยุกต์ใช้ในการตรวจวัดทางเคมีเซ็นเซอร์ด้วย ตาเปล่าของไอออนฟลูออไรด์ได้อย่างจำเพาะ รวมถึงยังสามารถนำสารประกอบที่สังเคราะห์ได้เหล่านี้มาใช้ จำแนกประเภทของแอนไอออนชนิดต่างๆ จากการเปลี่ยนแปลงสีหรือความเข้มของแสงฟลูออเรสเซนต์


โครงการ 2.2 การพัฒนาตัวเร่งปฏิกิริยาสำหรับกระบวนการออกซิเดชันด้วยอากาศ เพื่อใช้ในการบำบัด อากาศ และน้ำเสีย

- ร่วมทำวิจัยในทีมเครือข่าย Research University Network ด้านพลังงานชีวภาพ ร่วมกับ มหาวิทยาลัยธรรมศาสตร์ และจุฬาลงกรณ์มหาวิทยาลัย พัฒนาวัสดุตัวเร่งปฏิกิริยาสำหรับ กระบวนการผลิตเชื้อเพลิงชีวภาพ แบบประหยัดพลังงานและลดกากของเสียของกระบวนการ เพื่อ ป้องกันปัญหามลพิษทางน้ำและทางอากาศ มีผลงานบทความวิชาการระดับนานาชาติร่วมกัน 6 เรื่อง
- ร่วมทำวิจัยในทีมเครือข่าย Research University Network ด้านการพัฒนาวัสดุตัวเร่งปฏิกิริยา สำหรับกระบวนการ Methanol steam reforming และการเปลี่ยนคาร์บอนมอนนอกไซด์เป็น คาร์บอนไดออกไซด์ มีผลงานบทความวิชาการระดับนานาชาติร่วมกัน 2 เรื่อง
- ร่วมทำวิจัยในทีมเครือข่ายวิจัยนานาชาติ (International Research Network, IRN) เทคโนโลยีสี เขียวสำหรับสิ่งแวดล้อมที่ยั่งยืนในด้านอาหาร น้ำ พลังงาน ร่วมกับมหาวิทยาลัยเชียงใหม่ มหาวิทยาลัยเทคโนโลยีสุรนารี มหาวิทยาลัยสงขลานครินทร์ มหาวิทยาลัยวลัยลักษณ์, Kyushu University (Japan), University of Nevada at Las Vegas (US.), Osnabrueck University of Applied Science (Germany) และ School of Earth Resources Engineering (UK.) โดย มหาวิทยาลัยมหิดลรับผิดชอบการพัฒนาวัสดุสีเขียวสำหรับบำบัดมลพิษในน้ำและดิน
- ร่วมทำวิจัยกับบริษัท ไออาร์พีซี จำกัด (มหาชน) ใช้เทคนิคสเปกโทรสโกปีขั้นสูงเพื่อศึกษา ความสัมพันธ์ระหว่างความบกพร่องทางโครงสร้างและประสิทธิภาพของวัสดุตัวเร่งปฏิกิริยาเชิงแสงใน การกำจัดสีย้อมอินทรีย์ปนเปื้อนในน้ำ และพัฒนาแนวทางควบคุมคุณภาพของวัตถุดิบของวัสดุตัวเร่ง ปฏิกิริยาเชิงแสง

- ร่วมทำวิจัยกับ Prime Group Joint Stock Company ซึ่งเป็นบริษัทผลิตวัสดุก่อสร้างในประเทศ เวียดนาม (https://www.prime.vn/en) พัฒนาวัสดุตัวเร่งปฏิกิริยาเพิ่มประสิทธิภาพการเผาไหม้ของ ถ่านหิน เพื่อลดต้นทุน ป้องกัน/จำกัดปริมาณแก๊สเรือนกระจก กากและเถ้าจากการเผา
- ร่วมทำวิจัยกับ 2D to 3D S.r.l.s บริษัทเคมีภัณฑ์ในประเทศสาธารณรัฐอิตาลี ศึกษาสมบัติและ ประสิทธิภาพของวัสดุกึ่งตัวนำเพื่อใช้ในงานประยุกต์ด้านสิ่งแวดล้อมและอาหาร ภายใต้โครงการวิจัย ที่ได้รับการสนับสนุนจาก Agenda Strategica di Ricerca 2016 Linea B, EU funds, Region Piemonte, Italy มีผลงานบทความวิชาการระดับนานาชาติร่วมกัน 2 เรื่อง

นอกจากโครงการต่างๆ ตามเป้าหมายที่ได้มีการพัฒนา และส่งเสริมกลุ่มวิจัยข้างต้นแล้ว งบประมาณ จากทุนพัฒนาศักยภาพเชิงสถาบันยังถูกนำไปใช้ในการสนับสนุนงานวิจัยอื่นๆ ที่ไม่ได้อยู่ในกลุ่มข้างต้นอีกด้วย เช่น การวิจัยเพื่อใช้ประโยชน์จากวัสดุเหลือใช้ทางการเกษตร เช่น เส้นใยจากใบสัปปะรด ใช้เป็นสารเสริมแรง พลาสติกและยาง เพื่อทดแทนการใช้เส้นใยจากการสังเคราะห์ การวิจัยเพื่อใช้ CO₂ เป็นสารทดแทนสารก่อ โฟมในการเตรียมผลิตภัณฑ์ประเภทโฟมในอนาคต การพัฒนาพลาสติกย่อยสลายได้ที่เป็นมิตรกับสิ่งแวดล้อม การพัฒนาวัสดุคอมพอสิตที่มีผลต่อการยับยั้งการเติบโตของแบคทีเรีย และงบประมาณจากทุนวิจัยนี้ยังได้ รวมถึงการใช้ในการสนับสนุนกิจกรรมต่างๆ ที่ช่วยทำให้ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล เป็นที่รู้จักในระดับนานาชาติมากขึ้น เช่น การเป็นเจ้าภาพจัดการแข่งขันเคมีโอลิมปิกระหว่างประเทศ ครั้งที่ 49 การจัดการประชุมวิชาการนานาชาติ Pure and Applied Chemistry International Conference 2019 (PACCON 2019)

ผลงานวิจัยของภาควิชาฯ ในรูปผลงานตีพิมพ์ในแต่ละปีในช่วงที่รับทุนสามารถสรุปเทียบกับช่วงก่อน หน้าการรับทุนได้ดังรูป ซึ่งอาจสังเกตลักษณะได้ว่า จำนวนผลงานตีพิมพ์ของภาควิชาฯ อยู่ในช่วงประมาณ 80-100 เรื่อง และเป็นผลงานที่ตีพิมพ์ในวารสารที่อยู่ในควอไทล์ที่ 1 และ 2 (Q1+Q2) ประมาณร้อยละ 70-80 มีอัตราส่วนจำนวนผลงานต่อบุคลากรเท่ากับ 1.95-2.51 โดยค่าเหล่านี้มีการเปลี่ยนแปลงอยู่ในกรอบ ดังกล่าวในช่วงระยะเวลา 5 ปี และไม่มีทิศทาง หรือแนวโน้มที่จะเพิ่มขึ้นอย่างเด่นชัดนัก ซึ่งอาจแปล ความหมายได้ 2 แบบ คือ ลักษณะดังกล่าวแสดงถึงจำนวนที่ค่อนข้างอิ่มตัวที่จะสามารถทำได้ แม้จะมี งบประมาณจากทุนพัฒนาศักยภาพเชิงสถาบันมาสนับสนุนเพิ่มเติมก็ตาม ในอีกความหมายหนึ่ง คือ ผลกระทบ ของทุนฯ ที่ส่งเสริมกลุ่มวิจัยเฉพาะทางนั้น อาจจะต้องใช้เวลาระยะหนึ่งจึงจะสามารถทำผลงานเพิ่มเติมได้ อย่างเด่นชัด โดยตลอดระยะเวลาที่ผ่านมา ภาควิชาฯ ได้พยายามส่งเสริมให้เกิดเครือข่ายวิจัยกับ สถาบันการศึกษาอื่น ที่จะสามารถช่วยเพิ่มผลงานวิจัยให้กับภาควิชาฯ ได้ แม้ว่าผลงานของอาจารย์ในภาควิชา ฯ จะอิ่มตัวตามความหมายแรกก็ตาม

ประโยชน์ที่ได้รับ

จากการได้รับการสนับสนุนจากโครงการพัฒนาศักยภาพเชิงสถาบันนั้น ได้ก่อให้เกิดประโยชน์ต่อ ภาควิชาฯดังนี้

- 1. ภาควิชาฯสามารถดำเนินการเรียนการสอนอย่างมีประสิทธิภาพไปพร้อมๆกับการผลิตผลงานวิจัยที่ ได้รับการตีพิมพ์ในวารสารนานาชาติในระดับสูงอย่างต่อเนื่อง
- 2. ภาควิชาฯได้ผลิตบุคลากรที่มีคุณภาพผ่านการผลิตบัณฑิตศึกษาเพื่อออกไปรับใช้ประเทศชาติและ สังคม โดยมีพื้นฐานองค์ความรู้ที่ตระหนักถึงการวิจัยและพัฒนาที่เป็นมิตรต่อสิ่งแวดล้อมและคุณภาพชีวิตของ ประชาคม
- 3. ภาควิชาฯได้สร้างเครือข่ายการวิจัยและพันธมิตรในการดำเนินการวิจัยในระดับประเทศและ นานาชาติผ่านการจัดประชุมวิชาการนานาชาติด้านเคมี (Pure and Applied Chemistry International Conference, PACCON 2019)

Output ที่ได้จากโครงการ

การวัด output ที่ได้จากโครงการนั้นทำได้ค่อนข้างยาก เนื่องจากอาจารย์ในภาควิชาฯ ส่วนใหญ่ได้รับ ทุนสนับสนุนที่สามารถขับเคลื่อนงานวิจัยให้มีผลงานตีพิมพ์ได้อยู่แล้ว แต่ก็ได้มีการบริหารจัดการให้ทุน สนับสนุนให้นักศึกษาที่จบการศึกษาแล้ว แต่อาจจะอยู่ระหว่างการหางานทำ อยู่ต่อเพื่อพัฒนาผลการทดลอง ให้ได้บทความที่มีผลกระทบสูงขึ้น และสามารถตีพิมพ์ได้ โดยผลจากส่วนนี้สามารถทำได้ถึง 24 เรื่อง ซึ่งหาก พิจารณาจากงบประมาณที่เพิ่มขึ้น 4 ล้านบาทนั้น ค่าเฉลี่ย คือ ประมาณ 166,667 บาทต่อบทความ ซึ่งต่ำกว่า ค่าเฉลี่ยทั่วไป (250,000 บาทต่อเปเปอร์) อย่างมาก และยังไม่รวมถึงผลพลอยได้ทางอ้อมอื่นๆ ที่ช่วยทำให้ ชื่อเสียงของภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดลเป็นที่รู้จักมากขึ้นด้วย

ภาคผนวก

ภาคผนวก ก. ผลงานตีพิมพ์ที่ได้รับทุนสนับสนุนผู้ช่วยวิจัย

ภาควิชาฯ ได้ให้ทุนสนับสนุนผู้ช่วยวิจัยแก่อาจารย์ เพื่อให้นักศึกษาที่มีผลงานสามารถจบการศึกษาตาม เกณฑ์ของบัณฑิตวิทยาลัยแล้ว สามารถทำงานวิจัยเพิ่มเติมเพื่อพัฒนาคุณภาพผลงานให้สามารถตีพิมพ์ได้ใน วารสารที่มีอันดับที่สูงขึ้นหรือมีจำนวนเพิ่มขึ้นได้ ตามประกาศ

ประกาศ (ภาควิชาเคมี) ทุนสนับสนุนผู้ช่วยวิจัย

ตามที่ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล ได้รับทุนพัฒนาศักยภาพเชิงสถาบันจากสำนักงานกองทุน สนับสนุนการวิจัย เพื่อนำภาควิชาไปสู่ความเป็นเลิศในระดับ World class ในด้าน "เคมีเพื่อการยกระดับคุณภาพชีวิตและ สิ่งแวดล้อม" "Chemistry for Better Health and Environment" นั้น และเพื่อให้การดำเนินการบรรลุจุดมุ่งหมาย ภาควิชาจึง ประสงค์ให้ทุนผู้ช่วยวิจัย สำหรับทุนปีงบประมาณ 22 สิงหาคม 2559-21 สิงหาคม 2560 โดยมีรายละเอียดดังนี้

คุณสมบัติของผู้รับทุน

- 1. เป็นนักศึกษาระดับบัณฑิตศึกษาสังกัดภาควิชาเคมี ที่มีอาจารย์ภาควิชาเคมีเป็นอาจารย์ที่ปรึกษาหลัก
- 2. นักศึกษาต้องได้รับผลการสอบวิทยานิพนธ์เป็น 'ผ่าน' (ไม่มีเงื่อนไข) และผ่านเกณฑ์การสำเร็จการศึกษาของบัณฑิตวิทยาลัย และเจ้าของทุน (มีผลงานที่ได้รับการตอบรับตีพิมพ์ หรือตีพิมพ์แล้ว ตามเงื่อนไข)

เงื่อนไขการรับทุน

- 1. ผู้ช่วยวิจัยจะได้รับค่าตอบแทนเป็นรายเดือนๆละ 12,000 บาท เป็นเวลาไม่เกิน 3 เดือน
- 2. ภายในเดือนสุดท้าย จะต้องมีผลการส่งบทความเข้าระบบของวารสาร (Q1 และ Q 2 เท่านั้น) เพื่อประกอบการขอรับ ค่าตอบแทนเดือนสุดท้าย
- 3. ยืนใบสมัครได้ภายในวันที่ 15 พฤษภาคม 2560 โดยระบุวันเริ่มต้น ทั้งนี้ต้องไม่เกินวันที่ 15 มิถุนายน 2560 และวันสิ้นสุด สัญญาต้องไม่เกินวันที่ 15 สิงหาคม 2560
- 4. ต้องระบุข้อความใน acknowledgement ว่าได้รับทุนสนับสนุนบางส่วนจากโครงการ 'IRG5980007'

รองศาสตราจารย์ ดร. ปราณี ภิญโญชีพ หัวหน้าโครงการ FISEVIER

Contents lists available at ScienceDirect

Inorganica Chimica Acta

journal homepage: www.elsevier.com/locate/ica

Research paper

Facile and economical Miyaura borylation and one-pot Suzuki–Miyaura cross-coupling reaction

Phongsakorn Boontiem^a, Supavadee Kiatisevi^{a,b,*}

- ^a Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
- b Center of Sustainable Energy and Green Materials, Faculty of Science, Mahidol University, 999 Phuttamonthon Sai 4 Road, Salaya, Nakhon Pathom 73170, Thailand

ARTICLE INFO

Keywords:
Aryl boronate ester
Miyaura borylation
Suzuki-Miyaura cross-coupling reaction
One-pot reaction
Palladium

ABSTRACT

Facile and economical method for Miyaura borylation reaction between B_2pin_2 and aryl bromides is reported. The catalytic system containing 2 mol% $PdCl_2(PPh_3)_2$ and KOAc serves to enable borylations to occur under solvent-free and atmospheric conditions. The developed protocol can be applied to synthesize symmetrical and unsymmetrical biaryls via one-pot two-step Suzuki–Miyaura cross-coupling reaction and also offers the upscalability.

1. Introduction

Aryl boronic acids and their derivatives have great potential in many applications such as organic synthesis for the formation of C-C and C-X (X=heteroatom) bonds, organic electronics, bioimaging and pharmaceutical applications [1-4]. The traditional method for their synthesis is the reaction of trialkyl borates with organolithium or organomagnesium [5]. However, this method is difficult to handle and incompatible with functional groups sensitive to base, air and moisture. Transition metal-catalyzed Miyaura reaction of boron nucleophiles is an alternative and convenient route to such boronic ester and their derivatives. Although numerous palladium-catalyzed methods have emerged for the conversion of aryl halides to the corresponding aryl pinacol boronated esters [6-14], the system requires an air-sensitive technique, expensive bulky ligands, and purification of solvent and substrates. Therefore, preparations of aryl boronic ester from aryl halides (bromide, chloride) via a mild and environmentally friendly protocol are challenging.

A list of Miyaura borylation protocols under mild conditions reported in literature is shown in Table 1. A few reports involve expensive ligands (conditions A and B) [15] and harmful solvent (condition F) [18]. Some of them still face the difficulties of phosphorus ligands (conditions C and D) [16]. A more environmentally friendly approach using PEG-600 allows cross-coupling of aryl bromides, however, under an inert atmosphere (condition E) [17].

In continuation on the development of Pd catalytic systems, we

reported a straightforward, environmentally friendly and economical method for the synthesis of aryl boronate ester from aryl bromides and $B_2 pin_2$ using simple and moisture-insensitive palladium complexes under solvent-free and atmospheric conditions. In addition, we performed one-pot two-step preparation of symmetrical and unsymmetrical biaryls from aryl bromides by Miyaura borylation, followed by Suzuki–Miyaura cross-coupling reaction.

2. Material and methods

All reagents were purchased from commercial sources (Aldrich, Merck and TCI Chemicals) and used without further purification. 1,4-Dioxane and tetrahydrofuran (THF) were distilled from sodium and sodium benzophenone ketyl under argon. Thin-layer chromatography (TLC) was performed with aluminum-backed silica gel 60 F₂₅₄ analytical plates from Merck. Column chromatography was performed using Merck silica gel 60 (70–230 mesh). NMR spectra were recorded on Bruker Ascend 400 spectrometer. Chemical shifts (δ) for ¹H, ¹³C, and ¹¹B NMR were reported in ppm relative to CDCl₃. Chemical shifts for ¹¹B were reported relative to external BF₃.OEt₂ (δ = 0 ppm). Coupling constants (J) were reported in Hz. Gas chromatography analysis was performed on Agilent technologies 6890A equipped with a flame ionized detector and HP-1 capillary column (stationary phase: 100% dimethylpolysiloxane, 30 m × 0.32 mm × 3.00 µm film thickness) using helium as a carrier gas.

E-mail address: supavadee.mon@mahidol.edu (S. Kiatisevi).

^{*} Corresponding author at: Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok 10400, Thailand.

ELSEVIER

Contents lists available at ScienceDirect

Carbohydrate Polymers

journal homepage: www.elsevier.com/locate/carbpol

Cellulose ultrafine fibers embedded with titania particles as a high performance and eco-friendly separator for lithium-ion batteries

Dul Boriboon^a, Thammasit Vongsetskul^{a,b,*}, Pimpa Limthongkul^c, Worawarit Kobsiriphat^c, Phontip Tammawat^c

- a Materials Science and Engineering Program, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
- b Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
- ^c National Metal and Materials Technology Center, National Science and Technology Development Agency (NSTDA), Khlong Luang, Phahonyothin Road, Pathumthani, 12120, Thailand

ARTICLE INFO

Keywords: Cellulose Composite Electrospinning Fiber Separator Titania

ABSTRACT

Mixtures of cellulose acetate (M.W. $\sim 3 \times 10^4$ g/mol) dissolved in 75% v/v acetic acid in water (17% w/w) and ground anatase titania particles with diameters of 197 \pm 75 nm (0%, 5% and 10% w/w) were electrospun at 17 kV with a fiber collection distance and a feed rate of 10 cm and 0.6 mL/h. Then, the fiber was treated with 0.5 M potassium hydroxide in ethanol. Rough regenerated cellulose (RC)–titania separators with diameters of ~ 310 nm and uniformly dispersed titania particles showed $\sim 78\%$ porosities. They decomposed at 300 °C, higher than the decomposition temperature of polyethylene separators (220 °C). Added titania particles increased the electrolyte wettability and lithium transference number (from 0.22 to 0.62). RC – 10% titania separator retained the capacity with 79 mA h/g after 30 cycles and had excellent discharge capacity. These fascinating properties make RC–titania separator promising for lithium ion battery.

1. Introduction

Nowadays, lithium-ion batteries (LIBs) are widely used dramatically in mobile devices, transportation and electricity generation from environmentally–friendly sources such as sunlight and wind due to their high energy density and relatively light weight (Kojima, Ishizu, Horiba, & Yoshikawa, 2009; Ryou, Lee, Park, & Choi, 2011; Wei et al., 2011). However, the safety of LIBs is still of concern. A separator in the battery affects the safety of LIBs directly because it isolates cathode and anode from contact, which causes internal short circuits. It also plays an important role for ionic channeling through the cell via microspores filled with electrolytes (Jeong, Choi, Lee, & Kim, 2012). In addition, an ionic conductivity of a separator affects the cell's Ohmic polarization which is important in harsh charge – discharge conditions such as high voltages and high current densities (Kim et al., 2013).

Normally, a separator in LIBs is made from polyethylene (PE) and polypropylene (PP) (Arora & Zhang, 2004; Zhang, 2007) because PE and PP are inexpensive and can be produced in a large volume. However, they possess several drawbacks. They have low electrolyte wettability and low porosity which makes them low in electrolyte wettability and, thus, low in the ionic transport through the cell. Also, they have high thermal shrinkage which is difficult to ensure the battery

isolation through critically electrical condition (Cao, Tan, Liu, Ma, & Li, 2014; Fu, Luan, Argue, Bureau, & Davidson, 2012; Miao, Zhu, Hou, Xia, & Liu. 2013).

Solid electrolytes with enhanced safety were also developed. For example, poly(propylene carbonate)-based solid polymer electrolyte with high ionic conductivity, wide electrochemical window, and good mechanical strength (Zhang, Zhao et al., 2015). Then, two years later, free-standing poly(propylene carbonate)/Li_{6.75}La₃Zr_{1.75}Ta_{0.25}O₁₂ composite solid electrolyte with high ionic conductivity (5.2 \times 10 $^{-4}$ S/cm) at 20 °C, wide electrochemical window (4.6 V), high ionic transference number (0.75), satisfactory mechanical strength (6.8 MPa) and good rate capability (5 C) at 20 °C was fabricated (Zhang et al., 2017). Also, heat-resistant (up to 150 °C) alginate nonwoven separator for high-voltage (5 V) lithium batteries with good mechanical property (37 MPa) and high ionic conductivity (1.4 \times 10 $^{-3}$ S/cm) was also prepared (Wen et al., 2017).

Cellulose, the most abundant natural polymer in the world, has high decomposition temperature, and has excellent electrolyte wettability because it is hydrophilic which could enhance ionic conductance through the cell (Zhang et al., 2012; Zhang, Liu, Cui, & Chen, 2015). In addition, processing cellulose in the form of nonwoven mats can solve the problem on low porosity of commercial separators (Cho et al.,

^{*} Corresponding author at: Materials Science and Engineering Program, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand. E-mail address: thammasit.von@mahidol.ac.th (T. Vongsetskul).

ChemComm

COMMUNICATION

View Article Online

Silsesquioxane cages as fluoride sensors†

Cite this: Chem. Commun., 2017, 53 12108

Received 24th August 2017, Accepted 17th October 2017

DOI: 10.1039/c7cc06647c

rsc.li/chemcomm

Supphachok Chanmungkalakul, Vuthichai Ervithayasuporn, **D*** Sasikarn Hanprasit, Manlika Masik, Nicha Prigyai and Suda Kiatkamjornwong bc

Pyrene functionalized silsesquioxane cages (PySQ) not only provide significant fluorescence from pyrene-pyrene excimers with a very large Stokes shift ($\Delta\lambda$ = 143 nm, 69 930 cm⁻¹) in DMSO but also exhibit fluoride capture results coincidentally with a $\pi-\pi^*$ fluorescence enhancement. On the other hand, PySQ-F- in THF significantly exhibits $\pi - \pi^*$ fluorescence quenching and a color change can be observed with the naked eye from light yellow to deep orange by forming a charge-transfer (CT) complex among the pyrenyl rings. Moreover, PySQ selectively captures F- with a response time of <2 min and with a very low detection limit (1.61 ppb), while ¹⁹F NMR is used to confirm encapsulation of F⁻ with $\Delta \delta$ = 19 ppm.

Silsesquioxanes (SQs) are classified as hybrid inorganic-organic materials with the empirical formula RSiO3/2, where R is an organic group, e.g. aryl, alkyl or vinyl. Typically, SQs can exist in many structural forms (e.g., random, ladder, and cage-like structures). However, cage-like octameric structures (T₈) are among the most promising starting points for further elaboration, and are used widely in many applications: bioconjugations,² electronics,³ catalysis,4 and nanocomposites.5 A conventional method to prepare a silsesquioxane cage is to use catalytic tetrabutylammonium fluoride (TBAF) (<5 mol%).⁶ For example, Laine et al. used F⁻ to cleave Si-O-Si bonds that can turn polysilsesquioxanes into SQ cages.^{7a} They have exquisitely explained that the cage reformation definitely involves multiple steps of complex formation and intermediates leading to complex equilibria.^{7b} On the other hand, higher concentrations of F-, e.g., >50 mol%, and TBAF can lead to SQ encapsulated F⁻.8

Considering the silsesquioxane cage as a model, molecular modeling suggests that there is a void within the cage that may be accessible to trap small ions. However, until recently, there was no experimental evidence that such trapping could occur until Päch and Stosser demonstrated that γ -irradiation patterns of H₈T₈ led to hydrogen-encapsulated T₈ cages. Then, Bassindale and Taylor used TBAF to prepare cubic SQs, 8c coincidentally discovering F⁻ encapsulation. Later, Bowers et al. investigated F encapsulated in SQs by using mass spectrometry.8b

As a consequence, we sought to attach fluorophores to an SO cage starting from octavinylsilsesquioxane (OVS) as a model study of fluoride encapsulation. This fluorescent POSS capsule may not only be key to solve the mystery of fluoride encapsulation, but fluoride sensing is also obtained as a side result. The fluoride ion is one of the typical biological anions in the human body and most bones contain fluoride in the form of fluorapatite.¹¹ The consumption of only a suitable amount of fluoride is recommended, and excessive fluoride intake is the main cause of several dental and skeletal diseases.12 Traditional methods used to investigate fluoride sensing include the electrode method, NMR analysis, and chemosensors. However, upon comparing those among methods, fluorometric or colorimetric methods are the most practical, with simple preliminary screening and less instrumental analysis compared to others. 13 It is worth mentioning that one popular type of fluoride chemosensor uses the chemical benefits of thermodynamically stable Si-F and B-F. 14

Herein, pyrene functionalized silsesquioxane cages (PySQ) were successfully synthesized, which can provide different fluorescence properties depending on the polarity of the solvent. For example, PySQ in DMSO potentially generates a significant fluorescence of the pyrene-pyrene excimer through space, while π - π * fluorescence emission of PySQ in THF can be dominant. Upon the addition of the fluoride ion, the highly negatively charged F was pulled into the confined silsesquioxane cage through the electrostatic interactions of electron deficient elements (i.e., silicon). 15 Subsequently, the fluoride ion was centralized within a silsesquioxane cage, which can also compress the cage.8c Therefore, fluorescence responses of PySQ to F- in DMSO and THF can

^a Department of Chemistry, Center of Excellence for Innovation in Chemistry (PERCH-CIC), and Center of Intelligent Materials and Systems, Nanotec Center of Excellence, Faculty of Science, Mahidol University, Rama VI road, Ratchathewi, Bangkok 10400, Thailand. E-mail: vuthichai.erv@mahidol.ac.th

^b Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand

^c Division of Science, The Royal Society of Thailand, Sanam Suepa, Dusit, Bangkok 10300, Thailand

[†] Electronic supplementary information (ESI) available: Experiments, characterizations and spectroscopic studies. See DOI: 10.1039/c7cc06647c

ELSEVIER

Contents lists available at ScienceDirect

Applied Clay Science

journal homepage: www.elsevier.com/locate/clay

Research Paper

Modifying interlayer space of montmorillonite with octakis(3-(1-methylimidazolium)propyl) octasilsesquioxane chloride

Vuthichai Ervithayasuporn^a, Supphachok Chanmungkalakul^a, Nut Churinthorn^a, Thapakorn Jaroentomeechai^a, Sasikarn Hanprasit^a, Rapheepraew Sodkhomkhum^a, Pusthira Kaewpijit^b, Suda Kiatkamjornwong^{c,d,*}

- ^a Department of Chemistry, Center of Excellence for Innovation in Chemistry (PERCH-CIC), Center for Inorganic and Materials Chemistry, Faculty of Science, Mahidol University, Rama VI road, Ratchathewi, Bangkok 10400, Thailand
- b Petrochemistry and Polymer Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand
- ^c Office of University Research Affairs, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand.
- d FRS (T), Division of Science, the Royal Society of Thailand, Sanam Suepa, Dusit, Bangkok 10300, Thailand

ARTICLE INFO

Keywords: Polyhedral oligomeric silsesquioxane Montmorillonite Imidazolium salt Ionic liquid Cation exchange Modified clay mineral Interlayer space

ABSTRACT

Highly water-soluble material of multi-imidazolium based silsesquioxane cages (material **2**) is a promising candidate for modifying clay mineral interlayer space, which is successfully demonstrated by using montmorillonite. The modified montmorillonite can be easily prepared *via* cation exchange reaction between material **2** and sodium ions of montmorillonite, dispersed in an aqueous solution at room temperature. The modified montmorillonite formed a precipitate within a few seconds. A single layer of material **2** found to be intercalated in the modified montmorillonite with a maximum interlayer space (*d*-value) of 18 Å (1.8 nm) from 13 Å (1.3 nm) of the unmodified one was confirmed by transmission electron microscopy (TEM) and X-rays diffraction (XRD). Moreover, the percentage uptake and nature of incorporation of material **2** into montmorillonite layers were investigated by thermal gravimetric analyses (TGA), ²⁹Si NMR and FT-IR spectroscopies.

1. Introduction

Nanocomposite material has received high attentions of many researchers due to its versatile applications and outstanding properties such as flame retardant (Beyer, 2002), conducting materials (Riaz et al., 2015) or capacitors (Dahou et al., 2016). From all of the nanocomposites, polymer clay nanocomposite is the most interesting one, since clay mineral is consistently available at a very low price. Na-montmorillonite with easy modifiable properties become in the pool of researchers interesting, there are new interesting modifications on montmorillonite, for example, bacteria deactivation (Qin et al., 2018), corrosive protection (Contri et al., 2018) or supercapacitor (Zhang et al., 2018). Yei et al. (2004) and Kuo and Chang (2011) successfully prepared a modified montmorillonite using aminopropylsilsesquioxane in acid to intercalate the clay mineral, which the XRD results confirmed that after the modification, the interlayer space between layers of the modified montmorillonite was increased in comparison with the pristine one. This work well demonstrated that using polyhedral oligomeric silsesquioxane (POSS) as nanofiller was a much better way than the organic fillers such as ammonium salt of cetylpyridinium chloride (CPC). For example, POSS-ILs based SPEs (Solid Polymer Electrolytes) would be a good candidate to replace the conventional organic liquid electrolytes for lithium ion batteries (Shang et al., 2018) and for fuel cells (Zhang et al., 2013). Because of its thermal stability and low volatility at high temperature up to 300 °C, thanks to the POSS structure with rigidity by the cage can improve strength of the whole structure (DeArmitt and Wheeler, 2008).

Montmorillonite (Mt) has long been considered inexpensive and naturally available nanomaterial, widely used in various applications as a performance enhancer of organic materials such as adhesive (Kajtna and Šebenik, 2009), sealant (Richardson et al., 2011), and reinforcing filler (Spencer et al., 2010). Recently, much attention has focused on incorporation of montmorillonite into polymer-clay nanocomposites to improve their mechanical and physical properties yet the polymer processing has some limitations from the aggregation of montmorillonite to cause low dispersion and exfoliation in polymer network during the polymerization and melting process. Accounting for these challenges, the imidazolium salts based-ionic liquids were firstly proved by Kim et al. (2006) to sufficiently intercalate into the interlayer spaces of clay mineral, hence improving dispersion, exfoliation, and

E-mail address: ksuda@chula.ac.th (S. Kiatkamjornwong).

^{*} Corresponding author.

Key Engineering Materials ISSN: 1662-9795, Vol. 824, pp 168-175 doi:10.4028/www.scientific.net/KEM.824.168 © 2019 Trans Tech Publications Ltd, Switzerland

Effect of Crystallinity on Near Infrared Reflectance of Indium Tin Oxide Nanorice-Particles

Submitted: 2019-02-28

Accepted: 2019-06-27 Online: 2019-10-10

Revised: 2019-05-23

Thunchanok Hongsakul¹, Supan Yodyingyong², Tshering Nidup^{2,3}, Darapond Triampo^{1*}

¹Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Phuttamonthon Sai 4 Road Phuttamonthon Dist., Salaya, Nakhon Pathom, 73170, Thailand

²Institute for Innovative Learning, Mahidol University, Phuttamonthon Sai 4 Road Phuttamonthon Dist., Salaya, Nakhon Pathom, 73170, Thailand

³Loselling Middle Secondary School, Ministry of Education, Thimphu Thromdhe, Thimphu, Bhutan *E-mail: darapond.tri@mahidol.edu

Keywords: Indium tin oxide (ITO), Crystallinity, Nanorice, Energy-saving window

Abstract. Tin-doped indium oxide or indium tin oxide (ITO) has many promising uses in applications, such as, transparent conductive oxides, flat panel displays, and energy-saving windows. In this work, nanorice particles of tin-doped indium oxide (ITO) were obtained by a simple sol-gel method. Indium salts and stannous fluoride precursors were mixed ultrasonically in an aqueous medium. The crystallinity and chemical bonds were studied by X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). FTIR spectra before calcination showed the characteristic bonds of In–OH and Sn–OH at 1160 cm⁻¹ and 1380 cm⁻¹, respectively. After calcination at 400°C for 2 h, these characteristic bonds disappeared, confirming the formation of crystalline oxide. Moreover, scanning electron micrographs revealed well-defined structure, called nanorice, emerging from controlled crystal growth at 85°C for 90 min. The particle size of ITO was approximately 500 nm in length and diameter of 150 nm. The effect of crystallinity was studied by UV absorbance and NIR reflectance. These demonstrated promising results for use as energy-saving windows.

Introduction

Growing global warming awareness has led to a mission to reduce fossil fuel usage and electricity, and to the design of buildings and vehicles with better energy consumption efficiency [1]. Building energy consumption accounts for 30% of the primary energy demand in many South East Asia countries [2]. Designing how to save energy in a building is necessary for reaching a sustainable environment. Windows in buildings are the main reason for heat transfer between the inside of the buildings and the surroundings. Generally, glass windows without coated films, allow ultraviolet light (UV), visible light (Vis), and infrared radiation (IR) to be transmitted. Infrared radiation responsible for the transfer of heat from the sun, so overheating the interior. Thus, blocking the infrared region of the spectrum is required to decrease heat transfer into a building so reducing energy consumption and saving money. Coating materials for energy saving windows involve many technologies Examples are, thermochromic [3, 4], electrochromic [5, 6], suspended particle [7], liquid crystal [8, 9], and low-emissivity (low-E) coatings [10-14].

Low-E coating is one process for energy saving windows. The requirement is to prevent IR radiation from the sun entering the building without losing the visible transmittance, i.e., still being able to use the natural light. The key to a low-E coating is to reduce the heat transfer from thermal radiation [15]. Low-E coating can be classified into two categories: high solar gain low-E and low solar gain low-E. The high solar gain low-E coating is good for cold weather countries since it allows both visible and near-infrared (NIR) transmission into the building and reduces heat loss from the interior. On the other hand, low solar gain low-E coating is suitable for hot weather countries as the NIR is reflected to the surroundings and keeps the building cool. Multilayer

Dalton Transactions

PAPER View Article Online
View Journal | View Issue

Cite this: *Dalton Trans.*, 2020, **49**, 682

Received 28th August 2019, Accepted 4th December 2019 DOI: 10.1039/c9dt03484f

rsc.li/dalton

Influence of catalyst nuclearity on coppercatalyzed aerobic alcohol oxidation†

Nuttaporn Krittametaporn, ^a Teera Chantarojsiri, ^b ^a Arnut Virachotikul, ^b Khamphee Phomphrai, ^b Naoto Kuwamura, ^c Tatsuhiro Kojima, ^c Takumi Konno ^c and Preeyanuch Sangtrirutnugul ^a

Reactions of CuX with the bis(triazolyl) ligand **Hbtm** [bis(1-benzyl-1H-1,2,3-triazol-4-yl)phenylmethanol] in CH₂Cl₂ afforded trinuclear copper(II) complexes with a core structure (μ -X)Cu₃(μ - κ ³-N,O,N-btm)₃(L)²⁺ [X = Cl, L = CH₃OH (**1**); X = Br, L = H₂O (**2**)], while a similar reaction of [Cu(CH₃CN)₄](PF₆) with the mono (triazolyl) ligand **HPhtm** [(1-benzyl-1H-1,2,3-triazol-4-yl)diphenylmethanol] resulted in the mononuclear complex [Cu(κ ²-N,O-Phtm)(κ ²-N,O-HPhtm)(κ ¹-N-HPhtm)][PF₆] (**3**). The structural characterization of these complexes was made by single-crystal X-ray crystallography in combination with elemental and ESI mass analyses. Catalytic studies toward aerobic oxidation of benzyl alcohol to benzaldehyde revealed that the trinuclear **1** and **2** exhibited higher activities than the mononuclear **3** in both CH₃CN and EtOH/H₂O solvent systems.

Introduction

Copper-containing metalloproteins including binuclear copper enzymes (*i.e.*, tyrosinase and catechol oxidase) and multinuclear copper enzymes (*i.e.*, laccase and ascorbate oxidase) are known to be involved in O_2 activation and catalytic oxidation reactions. In particular, it has recently been proposed that multiple copper active sites efficiently facilitate multi-electron transfer involved in a number of catalytic redox reactions. For example, the active site of the enzyme laccase features a type 2/ type 3 trinuclear copper cluster that catalyzes 4-electron reduction of O_2 to H_2O . Given their prominent roles in biological catalysis, polynuclear copper complexes that mimic the active sites of these oxidase enzymes represent promising targets for the design of novel copper catalysts. However, despite the extensive study of various copper-containing oxidases, only limited examples of multinuclear Cu catalysts

for alcohol oxidation reactions have been reported. In 2010,

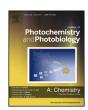
Meanwhile, the catalyst systems of Cu^{II} or Cu^{II}/bpy/TEMPO/base (bpy = 2,2'-bipyridine) for alcohol oxidation have previously been investigated in detail.^{6,7} In accordance with kinetic and DFT studies, both mononuclear and dinuclear copper intermediates have been proposed as active species in the catalytic oxidation reactions.^{6,8} Previously, our group has reported several copper(II) catalyst systems supported by tri-

Zhang and co-workers showed that a mixture of CuCl₂-Cs₂CO₃ in toluene and 1,2-dichloroethane produced the trinuclear intermediate $[Cu_3(\mu_3-OH)(\mu_3-Cl)]^{4+}$, which was catalytically active toward aerobic alcohol oxidation of benzyl alcohol derivatives to the corresponding aldehydes.3 More recently, Zhang's research group has isolated a tetranuclear copper(II) cluster featuring a Cu₄(µ₄-O)Cl₆ core with four 4-dimethylaminopyridine (DMAP) ligands binding to each Cu center from a mixture of CuCl₂/TEMPO/DMAP (TEMPO = 2,2,6,6-tetramethylpiperidinyl-1-oxyl) and benzyl alcohol in a CH₂Cl₂-MeOH solution. This tetranuclear Cu cluster exhibited catalytic activities toward aerobic oxidation of benzyl alcohol in water in the presence of TEMPO/DMAP.4 The same research group has also reported the synthesis of chiral tetranuclear and dinuclear copper(II) complexes with core structures of $\{Cu_4(\mu-O)_2(\mu_3-O)_2N_4O_4\}$ and $\{Cu_2(\mu-O)_2N_2O_2\}$, respectively. Catalytic studies toward alcohol oxidation revealed that the tetranuclear complexes are better than the dinuclear analogues in terms of yields and turnover numbers (TONs). However, it remains inconclusive whether the difference in the activities stems from the difference in coordination environments around each copper(II) center or core nuclearities.⁵

^aCenter of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand. E-mail: preeyanuch.san@mahidol.ac.th

^bDepartment of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand

^cDepartment of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan


[†] Electronic supplementary information (ESI) available: Characterization data for Hbtm, HPhtm, and copper(II) complexes 1–3, including ORTEP diagrams. CCDC 1947048 (1), 1947049 (2) and 1947051 (3) contain the supplementary crystallographic data for this paper. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/C9DT03484F

Contents lists available at ScienceDirect

Journal of Photochemistry and Photobiology A: Chemistry

journal homepage: www.elsevier.com/locate/jphotochem

Cage-like silsesequioxanes bearing rhodamines as fluorescence Hg²⁺ sensors

Rungthip Kunthom^a, Pornthip Piyanuch^b, Nantanit Wanichacheva^{b,*}, Vuthichai Ervithayasuporn^{a,*}

^a Department of Chemistry, Center of Excellence for Innovation in Chemistry (PERCH-CIC), and Center for Inorganic and Materials Chemistry, Faculty of Science, Mahidol University, 272 RAMA VI Road, Ratchathewi District, Bangkok 10400, Thailand

ARTICLE INFO

Article history:
Received 23 October 2017
Received in revised form 18 December 2017
Accepted 24 December 2017
Available online 26 December 2017

Keywords: Colorimetric sensor Fluorescence sensor Mercury POSS Silica Silsesquioxane

ABSTRACT

Polyhedral oligomeric silsesquioxane (POSS) was ultilized as a core and functionalized with the rhodamine hydrazide receptors for incresing the sensitivity of Hg^{2+} sensing. The POSS sensor ($T_{10}Rh$) was synthesised, and its sensing behaviors toward metal ions were investigated by UV/Vis and fluorescence spectroscopy. The sensor provided chromogenic and fluorogenic changes upon Hg^{2+} detection as well as served as a "naked-eye" indicator by a noticeable color change of the aqueous solutions (from colorless to pink-red color). The selective binding resulted in the change in the structures from the spirolactams (non-fluorescent forms) to the non-cyclic forms (fluorescent forms) of $T_{10}Rh$ as indicated by the OFF-ON fluorescence signal upon Hg^{2+} binding and was shown to discriminate Cu^{2+} , Ag^{2+} , Pb^{2+} , Al^{3+} , Cd^{2+} , Mg^{2+} , Pc^{2+} , Pc

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Over the past decades, toxic heavy metal ion contamination has an enormous influence on the environment, human health and other living species upon exposure even at low concentrations. Mercury has been considered as one of the most hazardous heavy metal [1–3]. The accumulation of mercury in humans can lead to the permanent damage of tissues, DNA, and central nervous system as well as Minamata disease [3]. Accordingly, monitoring of Hg²⁺ concentrations in biological and environmental samples is a field of prime importance.

Fluorescence chemosensors can provide rapid and prompt detections as well as real time tracking of several analytes including cations [4–6], anions [7,8], and small molecules [9–11]. Rhodamine B fluorophore have been intensively used as fluorescence chemosensors for mercury ions detections. However, many of them have drawbacks in terms of selectivity, sensitivity, high detection limits or they could not operate in aqueous solutions due to high hydrophobicity of the rhodamine [12–14].

Nevertheless, the utilization of the configurational change from rhodamine B spirolactam (non-fluorescence) to the ring opened amide (fluorescence) process upon ion binding could provide valuable information, and could be observed as both "turn-on" fluorescence emission and visually colorimetric change.

Recently, organic-inorganic hybrid materials can be used as a colorimetric sensor for Hg^{2+} preliminary screening in aqueous samples such as organosilicate and nanoparticles [15–19]. However, incorporation of the sensing molecules, which contained rhodamine B hydrazide, on the surface of silica support, resulted in limited sensitivity due to the surface area dependent effect for metal ion detection. Alternatively, immobilization of the rhodamine-based receptor (RB-Si) on the high surface area and large open pores of flexible fibrous silica spheres could significantly improve the Hg^{2+} detection sensitivity [20]. Potentially, these types of chemical sensors may allow a real-time measurement of metal ion in various applications (e.g. medicine and environment).

Meanwhile, polyhedral oligomeric silsesquioxanes (POSS) or cage-like silsesquioxanes (SQ) are well known as the smallest nanosilica in a cage-like hybrid framework, consisting of inorganic (Si-O) core and reactive organic functional groups [21–24]. Moreover, their organic substituents on POSS can be further modified by conventional organic reactions [25–27]. The formation of POSS can be directly prepared through the hydrolytic

^b Department of Chemistry, Faculty of Science, Silpakorn University, Nakorn Pathom 73000, Thailand

^{*} Corresponding authors.

E-mail addresses: wanichacheva_n@su.ac.th (N. Wanichacheva),
vuthichai.erv@mahidol.ac.th (V. Ervithayasuporn).

DOI: 10.1002/asia.201701369

Hydrothermal Carbonization

One-step Preparation of Carbon-based Solid Acid Catalyst from Water Hyacinth Leaves for Esterification of Oleic Acid and **Dehydration of Xylose**

Jutitorn Laohapornchaiphan, [a] Christopher B. Smith, *[b] and Siwaporn Meejoo Smith*[c]

Abstract: Carbon-based solid acid catalysts were successfully obtained via one-step hydrothermal carbonization (HTC) of water hyacinth (WH) in the presence of p-toluenesulfonic acid (PTSA). Increasing the HTC temperature from 180 to 240 °C resulted in carbonaceous materials with increased sulfur content and less adsorbed water. The material obtained at 220 °C (WH-PTSA-220) contains the highest amount of acid sites and promotes the highest initial rate of two transformations, that is, methanolysis of oleic acid and dehydration of xylose to furfural. While all PSTA-treated WH catalysts gave comparable fatty acid conversions (\approx 97%) and furfural yields (\approx 60%) after prolonged reaction times, the WH-PTSA-240 system bearing a relatively low acid density maintains the most favorable reusability profile. Higher HTC temperatures (220-240 °C) improved the catalyst reusability profiles due to graphitization and hydrophobicity of the carbon surface. The catalyst systems derived herein from biomass may have potential applications in biorefining platforms, utilizing the conversion of waste biomass to chemicals.

Introduction

The shift from petroleum (e.g. crude oil and natural gas) to sustainably produced liquid fuels and fine chemicals from renewable carbon resources (i.e. biomass) requires new conversion technologies. In the case of biorefining, these technologies should be environmentally benign, and if possible utilize feedstock components to enhance sustainability metrics. Plant derived biomass typically requires depolymerization of cellulosic/lignocellulosic components into sugar monomers (e.g. glucose and xylose) which can be fermented to produce bio-alcohols, or catalytically converted into various carbon-based fuels and chemicals through intermediates (e.g. furfural, 5-hydroxy-

methylfurfural (HMF), and levulinic acid) by acid-catalyzed dehydration.[1] Acid catalyst systems are also important for the production of oleochemicals from free fatty acids (FFAs), including the esterification of FFA in low-quality triglyceride feedstocks (e.g. waste cooking oils) for biodiesel production prior to transesterification.[2]

Although liquid mineral acids (e.g. HCl, H₂SO₄, and H₃PO₄) are cheap and often effective for catalyzing the above processes, storage, use and transportation of these reagents is a concern due to their corrosive nature. Recovery, and re-use from homogeneous systems is difficult, and safe disposal is also a major concern impacting the environmental footprint of chemical industries. These factors give credence to the use of solid, easily separable and re-usable heterogeneous acids for the sustainable production of biofuels and chemicals.[3]

Carbon is an attractive support material for solid acid catalyst systems due to its stability, availability, and ease of functionalization.^[4] Its derivation from biomass such as forest residues, weeds, and agricultural waste, allows for the catalyst preparation step to be integrated into biorefinery systems. As an example, carbon bearing strong Brønsted acid (-SO₃H) sites can be prepared in two steps through substrate (sugars, starch, cellulose, or lignocellulosic biomass) carbonization followed by sulfonation. [5] Solid acid catalysts prepared by this method exhibit high catalytic performance and good stability in cellulose hydrolysis, [6] dehydration of pentoses or hexoses, [7] and esterification of FFAs.^[8] However, the high-temperature (> 400 °C) thermal treatment required is energy intensive, with sulfonation requiring very corrosive reagents and generating a noxious waste stream.

[a] J. Laohapornchaiphan Chemistry Graduate Program, Department of Chemistry Faculty of Science Mahidol University

Rama VI Rd, Rajathevi, Bangkok, 10400 (Thailand)

[b] Dr. C. B. Smith Faculty of Science 999 Phuttamonthon Sai 4 Rd. Salava, Nakhon Pathom 73170 (Thailand) E-mail: christopher.smi@mahidol.ac.th

[c] Prof. Dr. S. M. Smith Center of Sustainable Energy and Green Materials and Department of Chemistry

Faculty of Science Mahidol University

999 Phuttamonthon Sai 4 Rd, Salaya, Nakhon Pathom 73170 (Thailand) E-mail: siwaporn.smi@mahidol.edu

Supporting information and the ORCID identification number(s) for the author(s) of this article can be found under https://doi.org/10.1002/ asia.201701369.

Wiley Online Library

Exposure to Nanoscience and Nanotechnology Using Guided-Inquiry-Based Activities with Silica Aerogel To Promote High School Students' Motivation

Wichai Lati,^{†®} Darapond Triampo,[‡] and Supan Yodyingyong*^{,†}

Supporting Information

ABSTRACT: Nanoscience and nanotechnology are the study and application of materials on a nanometer scale. These fields of study aid the developments of innovative technologies that play an important role in our everyday lives. Enabling students to learn these topics makes learning more meaningful and helps prepare them for future technologies. This study aimed to investigate the effects of learning activities about nanoscience and nanotechnology on students' motivation. The designed activities were based on guided-inquiry learning using silica aerogel as the nanomaterial. This material has many interesting properties such as high thermal insulation, low acoustic velocity, very low density, very high specific surface area, etc., which are influenced by structures on the nanometer scale. A variety of teaching methods, including learning with models, multimedia, hands-on activities, and guided-inquiry learning, were implemented to promote the students' motivation. There were 28 grade 12 science students

sampled for this purpose. Three actual methods were adopted to determine the effectiveness of the learning activities, including questionnaires implemented before and after the activities, students' self-assessments, and semistructured interviews at the end of the activities. The results from the questionnaires showed that the students were highly motivated by the nanoscience and nanotechnology learning activities. The students' self-assessment and interviews revealed that the learning activities encouraged the students to learn by allowing them to experience various teaching materials. The students became more interested in finding more information about silica aerogel and other nanomaterials used in daily life.

KEYWORDS: Colloids, Industrial Chemistry, Materials Science, Nanotechnology, Surface Science, Demonstrations, Inquiry-Based/Discovery Learning, Hands-On Learning/Manipulatives, High School/Introductory Chemistry

INTRODUCTION

An important goal of teaching science is making sure that the students have scientific knowledge from science-based concepts.^{1,2} To address this goal, cognitive components are usually not enough to encourage students to gain knowledge effectively. Affective components are also needed. Motivation is one of the affective components that is a natural response behavior to learning tasks and opportunities. It plays an important role in the students' processes of conceptual change and learning achievement^{3,4} and is an important factor for the students' learning success.⁵ The motivation to learn science is beneficial for students because it supports cognitive components by engaging in behaviors such as being curious, questioning, seeking advice, drawing evidence-based conclusions, and making decisions. Therefore, to achieve the goal of learning science effectively, the learning activities should involve both cognitive and affective components.

Learning topics and activities are factors that influence students' attention, curiosity, and engagement.⁷ Providing learning activities to the students with a challenging and interesting topic and relating it to their daily lives can promote the students' motivation and enhance their conceptual understanding of and attitude toward learning science.^{8–10}

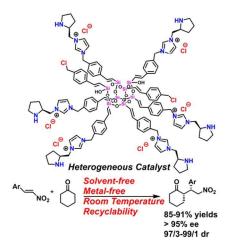
In recent years, silica aerogels have drawn much interest in both science and technology because of their extraordinary properties and their existing and potential applications in a wide variety of technological areas. Silica aerogel is a nanostructured material with promising properties such as very good thermal insulation, high specific surface area, high porosity, low bulk density, low dielectric constant, superhydrophobicity, and optical transparency. 11,12 With its many extraordinary properties and their existing and potential applications in a wide variety of technological areas, these properties of silica aerogel will be used as a tool in motivating students in learning science, catching their attention by curiosity. The properties of this material are influenced by

Received: June 9, 2018 Revised: April 13, 2019 Published: April 24, 2019

Institute for Innovative Learning, Mahidol University, Nakhon Pathom 73170, Thailand

[‡]Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Mahidol University, Nakhon Pathom 73170, Thailand

Chiral Pyrrolidine Bridged Polyhedral Oligomeric Silsesquioxanes as Heterogeneous Catalysts for Asymmetric Michael Additions


Torsak Luanphaisarnnont¹ · Sasikarn Hanprasit¹ · Vetiga Somjit¹ · Vuthichai Ervithayasuporn¹ [0]

Received: 9 November 2017 / Accepted: 21 December 2017 / Published online: 30 December 2017 © Springer Science+Business Media, LLC, part of Springer Nature 2017

Abstract

A chiral pyrrolidine bridged polyhedral oligomeric silsesquioxane (SQ) was synthesized, characterized, and used as an effective heterogeneous catalyst. The synthesis involves two simple steps: nucleophilic substitution between benzylchloride functionalized SQ and imidazoyl pyrrolidine carboxylate and subsequent deprotection. The catalyst was isolated by simple filtration. The SQ-supported chiral pyrrolidine catalyst was used as a heterogeneous catalyst in an asymmetric Michael addition into nitrostyrenes under room temperature and neat condition, giving the product in excellent yields (85–91%), diastereoselectivities (up to 99:1) and enantioselectivities (95–98%). The catalyst can be recycled by a simple filtration without a significant loss in its reactivity and selectivity.

Graphical Abstract

Keywords Silsesquioxane · POSS · Asymmetric catalysis · Michael reaction · Heterogeneous catalysis

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s10562-017-2286-z) contains supplementary material, which is available to authorized users.

- Vuthichai Ervithayasuporn vuthichai.erv@mahidol.ac.th; maldiniandg@hotmail.com
- Department of Chemistry, Center of Excellence for Innovation in Chemistry (PERCH-CIC), and Center for Inorganic and Materials Chemistry, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi District, Bangkok 10400, Thailand

1 Introduction

Development of efficient catalysis for organic transformations has been among major challenges in chemistry [1]. The use of inorganic support for heterogeneous catalysis has gained attention over organic materials due to their outstanding mechanical and thermal stabilities [2]. Although silica gel has been the most widely used support for chiral catalysts [3–5], recent research investigations have shown that an ordered nanostructure of mesoporous silica can also be used

Article

Simple Flow-Based System with an In-Line Membrane Gas-Liquid Separation Unit and a Contactless Conductivity Detector for the Direct Determination of Sulfite in Clear and Turbid Food Samples

Aulia Ayuning Tyas, Thitaporn Sonsa-ard, Kanchana Uraisin, Duangjai Nacapricha and Phoonthawee Saetear *

Flow-Innovation Research for Science and Technology Laboratories (FIRST Labs), Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; auliaaa22@gmail.com (A.A.T.); t.sonsa.ard@gmail.com (T.S.-a.); u_kanchana@hotmail.com (K.U.); dnacapricha@gmail.com (D.N.)

* Correspondence: phoonthawee.sae@mahidol.edu; Tel.: +66-2-201-5122

Received: 19 April 2020; Accepted: 14 May 2020; Published: 18 May 2020

Abstract: This study presents a simple flow-based system for the determination of the preservative agent sulfite in food and beverages. The standard method of conversion of sulfite ions into SO_2 gas by acidification is employed to separate the sulfite from sample matrices. The sample is aspirated into a donor stream of sulfuric acid. A membrane gas–liquid separation unit, also called a 'gas-diffusion (GD)' unit, incorporating a polytetrafluoroethylene (PTFE) hydrophobic membrane allows the generated gas to diffuse into a stream of deionized water in the acceptor line. The dissolution of the SO_2 gas leads to a change in the conductivity of water which is monitored by an in-line capacitively coupled contactless conductivity detector (C4D). The conductivity change is proportional to the concentration of sulfite in the sample. In this work, both clear (wine) and turbid (fruit juice and extracts of dried fruit) were selected to demonstrate the versatility of the developed method. The method can tolerate turbidity up to 60 Nephelometric Turbidity Units (NTUs). The linear range is 5–25 mg L⁻¹ SO_3^{2-} with precision <2% RSD. The flow system employs a peristaltic pump for propelling all liquid lines. Quantitative results of sulfite were statistically comparable to those obtained from iodimetric titration for the wine samples.

Keywords: sulfite; turbid sample; turbidity; contactless conductivity; gas diffusion

1. Introduction

Sulfite is usually added in various forms to preserve food and beverages. Sulfite has the ability to inhibit bacterial growth and chemical processes by either enzymatic or non-enzymatic reaction [1,2]. The active species is free sulfite. However, it is difficult to determine free sulfite due to its low stability. The determination of total sulfite, which is the sum of free sulfite and bound sulfite, is more reliable than only the free sulfite. Release of bound sulfite from other molecules can be carried out by heating or adding alkaline media [3]. Sulfite can cause adverse symptoms such as asthmatic, gastrointestinal distress, diarrhea and hives for certain people [4,5]. According to Joint FAO/WHO Expert Committee on Food Additives (JECFA), the acceptable daily intake of sulfite is 0.7 mg kg⁻¹ body weight per day [6]. The United States Food and Drug Administration (FDA) has announced that all food and beverage products containing sulfite must be labelled on the package as "contains sulfites", if sulfite content is

Disodium Terephthalate Ultrafine Fibers as High Performance Anode Material for Sodium-Ion Batteries under High Current Density Conditions

Worakamol Nakpetpoon,¹ Thammasit Vongsetskul, ¹ Pimpa Limthongkul,³ and Phontip Tammawat³

An aqueous mixture of poly(vinyl alcohol) (M.W. $\sim 8.9 \times 10^4 - 9.8 \times 10^4 \ g \ mol^{-1}$, 14% w/v) and disodium terephthalate (Na₂TP) powders (6% w/v) was electrospun at 14 kV with a fiber collection distance and a feed rate of 12 cm and 0.5 mL h⁻¹. Then, the obtained fibers were calcined at 350°C with a heating rate of 1°C min⁻¹ under air for 7 h. Diameters of hollow Na₂TP fibers, composed of grains with sizes of 76 \pm 27 nm, are 189 \pm 32 nm. Na₂TP fibers are composed of \sim 16% w/w Na₂CO₃. Na₂TP structure is orthorhombic and can be indexed in a space group of Pbc2₁. Degree of crystallinity of Na₂TP fibers is less than that of Na₂TP powders. Galvanostatic curves display stable reversible capacities of Na₂TP powders and fibers at \sim 140 mA h g⁻¹ and \sim 110 mA h g⁻¹, respectively, after 50 cycles at 25.5 mA g⁻¹. On the other hand, at 255 mA g⁻¹ and after 100 cycles, those of the powders and the fibers are \sim 48 mA h g⁻¹ and \sim 70 mA h g⁻¹, respectively. Thus, the eco-friendly Na₂TP fibers are potentially used as anode materials of sodium-ion batteries under high current density.

© 2018 The Electrochemical Society. [DOI: 10.1149/2.0821805jes]

Manuscript submitted November 13, 2017; revised manuscript received March 20, 2018. Published April 14, 2018.

Fossil fuels have been important as energy sources for several hundred years. Unfortunately, a demand on energy still increases, and fossil fuels are non-renewable resources. This causes an interest in energy from renewable sources such as sunlight, wind, biomass, tidal waves, and geothermal power, which is normally fluctuated in a day. Thus, batteries are important in electricity generation from eco–friendly sources. Among several types of batteries, rechargeable lithium ion batteries (LIBs) with high energy density are widely used to store electricity. A cost of LIBs is $\sim\!250~\text{USD}~\text{kW}^{-1}~\text{h}^{-1}$. However, a price of energy suitable to be used in electric grids is 100 USD kW $^{-1}~\text{h}^{-1}$ only. Therefore, inexpensive and powerful energy storage devices for electric grids must be developed.

Sodium ion batteries (SIBs) are very interesting due to natural abundance, non-toxicity, and low cost of sodium for large-scale electric energy storage. Both sodium and lithium are alkali metals. However, a radius of a sodium ion (0.102 nm) is larger than that of a lithium ion (0.076 nm), a major obstacle to develop high performance SIBs. Several organic materials are investigated to be used as SIB anodes such as tetrasodium salt of 2,5-dihydroxyterephthalic acid,⁵ 2,5-dimethoxyl-1,4-benzoquinone,⁶ 2,5-dihydroxy-1,4-benzouinone disodium salt, disodium rhodizonate, poly(diphenylaminesulfonic acid sodium), and disodium terephthalate. Among them, lowtoxic disodium terephthalate (Na₂TP) is interesting because its two carboxylic groups can reversibly either insert or desert two sodium ions per molecule, 11 leading to high sodium ions capacity, good cycling performance, and rate capability. 12 It is prepared by a simple wet chemistry. Furthermore, Na₂TP is produced from either an oxidation of p-xylene or recycling commonly used poly(ethylene terephthalate) (PET) waste. Its theoretical capacity is 255 mA h g⁻¹ corresponding to two Na-ion insertion – extraction. 10 There are reports on the use of Na₂TP as anodes of SIBs. For example, Na₂TP nanosheets (248 mA h g⁻¹) exhibit improved electrochemical properties in comparison with bulk Na₂TP (199 mA h g⁻¹) due to its size.³ Also, Na₂TP is co-precipitated with reduced graphene oxide (rGO) by an ultrasonicassisted co-precipitation, a complicated fabrication method. Its capacity decreases continuously and, after 20 cycles, its capacity becomes constant at 341 mA g h⁻¹.13

Even though the capacities of both Na₂TP nanosheets and Na₂TP-rGO composite are high, their material preparation methods are complicated, and they can form agglomerate. Thus, in this work,

these problems are solved by developing the method for fabricating Na₂TP fibers with high surface area. Electrospinning, a simple and low-cost technique to prepare continuous fibers by an electrostatic force, ¹⁴ is chosen. Morphologies and electrochemical performances of both Na₂TP fibers and Na₂TP powders are studied comparatively as anodes of SIBs. It is expected that, when these problems are solved, Na₂TP fibers with large surface area increase a rate of sodium ion diffusion and free space for volume expansion. ¹⁵ As a result, kinetics of Na-ion exchange, capacity, rate capability, and cycle stability of SIB anodes made from these fibers increase. ^{14,16}

Experimental

Materials.—Absolute ethanol (AR Grade, RCI Labscan, Thailand), carbon black (TIMCAL SUPER C45, MTI Cooperation, USA), copper foil (thickness of 11 μm, MTI cooperation, USA), diethyl carbonate (DEC, 99%, Sigma-Aldrich, Hungary), ethylene carbonate (EC, 99%, Sigma-Aldrich, USA), 1-methyl-2-pyrrolidinone (NMP, 99.5%, Sigma-Aldrich, Netherlands), polyethylene (PE) battery separator (Xiamen Tob New Energy Technology, China), poly(vinyl alcohol) (PVA, M.W. = 8.9×10^4 – 9.8×10^4 g mol $^{-1}$, Sigma-Aldrich, USA), polyvinylidene fluoride (PVDF, M.W. = 6×10^5 g mol $^{-1}$, MTI cooperation, USA), sodium hydroxide (NaOH, 99% w/w, AR Grade, RCI Labscan, Thailand), sodium metal (ACS reagent, Sigma-Aldrich, USA), sodium perchlorate (NaClO₄, 98%, Alfa Aesar, USA), and terephthalic acid (TPA, 98%, Sigma-Aldrich, USA) were used without further purification.

Fabrication of Na₂TP powders and Na₂TP fibers.—TPA (3 g) and NaOH (1.52 g) were dissolved together in ethanol (60 mL) at room temperature for 1 day. Then, the reaction mixture was centrifuged, and the supernatant solution was decanted. The sediment was redispersed in ethanol and centrifuged again for three times to yield white Na₂TP powders. Sediment was dried in vacuum oven at 150°C for 2 h. Then, PVA (1.4 g) was dissolved and stirred in deionized water (10 mL) at 80°C for 30 min and at 60°C for 1 h. Na₂TP powders (0.6 g) was then added into the PVA solution. The mixture was vigorously stirred at 60°C for 1 h. The final PVA and Na₂TP concentrations are 14% w/v and 6% w/v, respectively. The viscosity of spinning solutions was also measured at room temperature by a rotational viscometer (VT-04F, Rion, Japan) with a rotor speed of 62.5 rpm and an aid of an adaptor for liquids with low viscosities. The mixture was transferred

¹Department of Chemistry, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand

²Materials Science and Engineering Program, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand

³National Metal and Materials Technology Center, National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathumthani 12120, Thailand

ELSEVIER

Contents lists available at ScienceDirect

Polymer Testing

journal homepage: www.elsevier.com/locate/polytest

Material Properties

Comparative study of natural rubber and acrylonitrile rubber reinforced with aligned short aramid fiber

Pitchapa Pittayavinai ^a, Sombat Thanawan ^b, Taweechai Amornsakchai ^{a, c, d, *}

- ^a Polymer Science and Technology Program, Department of Chemistry, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Phuttamonthon District, Nakhon Pathom 73170, Thailand
- ^b Rubber Technology Research Center, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Phuttamonthon District, Nakhon Pathom 73170. Thailand
- ^c Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Phuttamonthon District, Nakhon Pathom 73170, Thailand
- ^d Center of Sustainable Energy and Green Materials, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Phuttamonthon District, Nakhon Pathom 73170. Thailand

ARTICLE INFO

Article history: Received 19 August 2017 Accepted 25 September 2017 Available online 3 October 2017

Keywords:
Natural rubber
Acrylonitrile rubber
Aramid fiber
Hybrid composite
Reinforced rubber

ABSTRACT

The aims of this paper are three-fold. The first is to determine the reinforcement of high performance short aramid fiber in two representative rubber matrices, namely natural rubber and acrylonitrile rubber. The second is to ascertain the effect of rubber polarity on the reinforcement. The third is to establish a pattern of reinforcement for use with less studied fibers. The rubbers were reinforced either with only aramid fiber or with a hybrid of aramid fiber and carbon black. The fiber contents were varied at 0, 2, 5 and 10 parts (by weight) per hundred rubber (phr) while those of carbon black were 0, 10, 20 and 30 phr. Conventional sulfur vulcanization was used. It was found that aramid fiber can reinforce both rubbers in the low strain region effectively, although to a significantly different degree. The hybrid carbon black provides additional reinforcement at low to medium strains and allows high strain stress upturn to occur in both rubber matrices. The findings enable the preparation of rubber composites having a wide, controllable range of mechanical behavior for specific high-performance engineering applications. Significantly, they also serve as a benchmark for developing reinforced systems from alternative fibers, particularly those from natural sources.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Short fiber is used in the rubber industry to improve green strength, to provide dimensional stability prior to cure, and also to improve the mechanical properties of the vulcanizate [1]. With proper fiber alignment, short fibers change the general nature of the stress-strain curve of the rubber considerably. They provide the unique characteristic of a very sharp rise in stress at low elongation, which is unattainable with particulate fillers. This property is very useful in applications where large deformation is undesirable [2]. Many types of fiber both synthetic [1,3–5] and natural [2,3,6–13] have been studied. In some cases, hybrid systems of fiber and

E-mail address: taweechai.amo@mahidol.ac.th (T. Amornsakchai).

particulate filler have been studied and shown to be more effective than just fiber alone [14,15].

When the mechanical performance of a rubber composite is of primary concern, it is logical to consider fiber with excellent mechanical properties, hence aramid fiber. Indeed, Kevlar, one type of aramid fiber, has been studied most as the fiber of choice [3,16–22]. However, comparing the mechanical properties of the fiber and rubbers, it is obvious that the limiting factors should be either the mechanical properties of the rubber or the interface. Both are much weaker than the fiber itself. Consequently, it is possible that aramid fiber is unnecessarily (and expensively) strong for many rubber reinforcement applications. Although there are short fiber composite models for the prediction of mechanical properties, they are generally applicable only at very small strains, and not for a highly extended rubber matrix.

Since aramid fiber has been well developed and used in commercial products, it is already well characterized and can serve as a

^{*} Corresponding author. Polymer Science and Technology Program, Department of Chemistry, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Phuttamonthon District, Nakhon Pathom 73170, Thailand.

Key Engineering Materials ISSN: 1662-9795, Vol. 824, pp 156-162 doi:10.4028/www.scientific.net/KEM.824.156 © 2019 Trans Tech Publications Ltd, Switzerland

Durable Superhydrophobic Silica Aerogel Coating from Hydrophobic Gel Synthesis

Submitted: 2019-02-24

Revised: 2019-05-23

Online: 2019-10-10

Accepted: 2019-06-27

Thitirat Piyawongsiri¹, Chanapat Ammarinponchai¹, Supan Yodyingyong², Tshering Nidup^{2,3}, Darapond Triampo^{1*}

¹Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Phuttamonthon Sai 4 Road Phuttamonthon Dist., Salaya, Nakhon Pathom, 73170, Thailand

²Institute for Innovative Learning, Mahidol University, Phuttamonthon Sai 4 Road Phuttamonthon Dist., Salaya, Nakhon Pathom, 73170, Thailand

³Loselling Middle Secondary School, Thimphu Thromdhe, Thimphu, Bhutan *E-mail: darapond.tri@mahidol.edu

Keywords: Superhydrophobic, Silica aerogel, TEOS, Silane, Resin

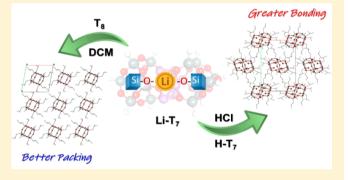
Abstract. Silica aerogel is a nanostructured porous solid material. It has a low bulk density, low thermal conductivity, and can be hydrophobic. In this work, hydrophobic silica gel, a material used to form aerogel, is used instead of its powder form to avoid air pollution by ultrafine particles. It is used to make surface modified materials superhydrophobic and still withstand physical abrasion that an ordinary aerogel would not able to do. The superhydrophobic silica aerogel coating was designed by mixing the hydrophobic gel with DOW CORNING[®] 2405 resin as binder and varying DOWSIL[™] Z-6137 silane and tetraethyl orthosilicate (TEOS). The coating was characterized by the static contact angles (CA) and abrasion testing. Scanning electron micrographs of different coating compositions were investigated. Results show that the hydrophobic gels mixed with resin and Z-6137 silane have a contact angle >179°. Superhydrophobic silica aerogel coatings can be applied to glass, fiber, polymer, etc.

Introduction

Silica aerogel is the most widely studied of aerogels. It has many attractive physical properties, such as, extremely low thermal conductivity, ranging from 0.004 to 0.03 W/m.K, low values of dielectric constant (1.1–2.2) [1,2], low bulk density (3–350 mg/cm³) [3], and very high specific surface area (500–1500 m²/g) [4]. The structure of silica aerogel has a nanoporosity and consists of up to 90% air by volume. Most aerogel as-produced is extremely brittle and fragile because of its nanoand micro-structure. Additionally, subjecting the nano- and micro-structure to surface treatment, it can be made superhydrophobic. Suh silica aerogels have the potential to be used in various applications, such as, energy, environment, and health. Therefore, there has been a continuous research effort creating new industrial and academic dynamics.

The fabrication and use of solid surfaces with superhydrophobic properties such as non-wettability and high water contact angles (WCAs) facilitating the sliding of drops have been intensively studied in recent years. This is because of their potential applications, such as, self-cleaning, antifouling, anti-fogging, antibacterial, and optical applications [5-10]. In this work, an artificial superhydrophobic surface was made from the hydrophobic silica gel and tested for its adhesion as a coating. The technique consists of spin-coating of the hydrophobic silica gel (used instead of its aerogel powder form to avoid ultrafine particle air pollution) with binders. The hydrophobicity of these coatings can be enhanced by increasing the amount of hydrophobic silica gel, resulting in an enhanced roughness and a change in its contact state. Thus, this is a simple and cheap method with wide applicability, such as a self-cleaning coating on many materials.

Inorganic Chemistry © Cite This: Inorg. Chem. 2019, 58, 15110–15117


pubs.acs.org/IC

Lithium-Templated Formation of Polyhedral Oligomeric Silsesquioxanes (POSS)

Nicha Prigyai, Supphachok Chanmungkalakul, Vuthichai Ervithayasuporn, Nuttapon Yodsin, Siriporn Jungsuttiwong,[‡] Nobuhiro Takeda,[§] Masafumi Unno,[§] Jaursup Boonmak, III and Suda Kiatkamjornwong^{1,#}

Supporting Information

ABSTRACT: A coordination complex, lithium hepta(ibutyl)silsesquioxane trisilanolate (1; Li-T₇), a stable intermediate in silsesquioxane (SQ) syntheses, was successfully isolated in 65% yield and found to be highly soluble in nonpolar solvents such as hexane. The structure of Li-T₇ was confirmed by NMR, IR spectroscopy, matrix-assisted laser desorption ionization time-of-flight mass spectrometry, electrospray ionization mass spectrometry, and computational simulation, providing detailed elucidation of the intermolecular self-association of the SQ cage with a box-shaped Li₆O₆ polyhedron through strong coordination bonds. After acid treatment, Li-T₇ undergoes lithium-proton cationic exchange, yielding hepta(i-butyl)silsesquioxane trisilanol (2;

 $H-T_7$) quantitatively. The high yield of $H-T_7$ seems to be influenced by Li-O bonding in the Li- T_7 complex that affects the selective formation of hepta(i-butyl)silsesquioxane trisilanolate and the bulky i-butyl groups which may prevent decomposition or SQ cage-rearrangement even at reflux under alkaline conditions. Single-crystal X-ray crystallography confirms the presence of the dumbbell-shaped SQ partial cages through strong intermolecular hydrogen bonds. Interestingly, lowering the polarity of the reaction solution by adding dichloromethane results in formation of the cubic octa(i-butyl)silsesquioxane (3; T₈) cage in a good yield (47%), which is isolated by crystallization from the reaction solution.

INTRODUCTION

Silica is widely used in a range of applications from making glass, 1-3 to moisture absorbants, 4 to industrial-scale catalysts that polymerize olefins⁵ and as a support for metal catalysts.^{6,7} Although there are many practical applications for silica, the role of silica in these systems is still unclear because of the inorganic structure of pure silica that makes it completely insoluble in most solvents.8 To understand what is really happening at the molecular scale we need appropriate models for mechanistic investigations. Silsesquioxanes have proven to be key in answering some of the questions concerning silica. For example, silsesquioxanes have been used to model silica surfaces^{9–12} and silica-based heterogeneous catalysis.¹¹ Silsesquioxane is the common name for organic-inorganic hybrid molecules with an empirical formula of RSiO_{1.5}, where R represents a peripheral organic group. 12 Silsesquioxanes have many structural types, including ladder, random, cage, and incompletely or partially condensed cages. With these structures, silsesquioxanes have been adapted for use in many research fields such as polymers, 10-12 clay minerals, 13 catalytic supports, and biocompatible materials.¹⁴ Recently, funtionalized silsesquioxanes have also been shown to act as sensors. 15,16 Moreover, polyhedral oligomeric silsesquioxanes

Received: June 20, 2019 Published: October 30, 2019

Department of Chemistry, Center of Excellence for Innovation in Chemistry, and Center for Inorganic and Materials Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok 10400, Thailand

^{*}Center for Organic Electronic and Alternative Energy, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand

[§]Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan

Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand

¹Office of Research Affairs, Chulalongkorn University, 254 Phayathai Road, Wangmai, Phatumwan, Bangkok 10330, Thailand FRS(T), Division of Science, the Royal Society of Thailand, Sanam Suepa, Dusit, Bangkok 10300, Thailand

Green Synthesis of AgNPs Coated Mesoporous Silica Nanoparticles Using Tyrosine as Reducing/Stabilising Agent

Submitted: 2018-02-08

Accepted: 2018-02-12

Online: 2018-08-15

Waranya Ratirotjanakul^{1,a}, Tanapon Sioloetwong^{1,b}, Teeraporn Suteewong^{2,c} and Pramuan Tangboriboonrat^{1,d}

¹Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Phyathai, Bangkok 10400, Thailand

²Department of Chemical Engineering, Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang, Ladkrabang, Bangkok 10520, Thailand

^awaranya.ratirotjanakul@gmail.com, ^bdark_calculus@hotmail.com, ^ct.suteewong@gmail.com, ^dpramuan.tan@mahidol.ac.th

Keywords: Silver nanoparticles, mesoporous silica nanoparticles, tyrosine

Abstract. A novel, simple and environmental friendly approach to fabricate silver nanoparticles (AgNPs) on mesoporous silica nanoparticles (MSNs) using tyrosine (Tyr) as biological reducing agent was developed. The functionalization of Tyr with MSNs (Tyr-MSNs) (150 nm in length) by the sol-gel process was confirmed by the characteristic peaks of amino, carboxyl and silanol groups appeared in FTIR spectrum and the change of the zeta potential from 0 mV at pH 2 to -60 mV at pH 12. Then, AgNPs were formed on the surface of Tyr-MSNs (Tyr-MSN@AgNPs) via only reducibility from phenolic group of Tyr and catalytic activity from base at room temperature. TEM images and UV-Visible absorption band at 420 nm supported the obtained AgNPs (18 nm at pH 11) were tightly bound to Tyr-MSNs even after centrifugation at high speed. These Tyr-MSN@AgNPs would be potentially used as drug carrier in biomedical applications.

Introduction

Silver nanoparticles (AgNPs) are very useful in various fields, e.g., catalysis and sensors [1, 2], but the most important one is in biomedical field due to their unique features, e.g., antibacterial and photothermic activities. Coating AgNPs on the surface of medical devices, e.g., wound dressings, bone implants and central venous catheters, is aimed for enhancing antibacterial property [3, 4]. Their Surface-Plasmon resonance in infrared light is used for diseases diagnosis when incorporated with drug carriers, e.g., mesoporous silica nanoparticles (MSNs) [5]. AgNPs capped on stimuli-responsive linkers based MSNs act as a gatekeeper to control drug releasing rate during transportation by applying specific stimuli, e.g., light and thermal [6].

In general, AgNPs are prepared by chemical and photochemical methods [7, 8]. These methods are complex and employ high thermal energy and hazardous chemicals, both reducing and stabilising agents, which might be harmful to environment and human health and limits the application of AgNPs in the medical field [9, 10]. Therefore, biological molecules are searched for using as non-toxic reducing agents. It was reported that tyrosine (Tyr), an amino acid containing phenolic group, has strong reducibility in reduction of Ag⁺ ions to AgNPs under alkali condition [11]. Based on our knowledge, Tyr has never been used to incorporate with MSNs to produce AgNPs.

In this work, we proposed the simple method to fabricate large amount of AgNPs on the surface of MSNs by using Tyr. Tyr was functionalized on MSNs (Tyr-MSNs) via the sol-gel process, confirmed by Fourier-transform infrared spectroscopy (FTIR) spectrum, before taking the advantage from Tyr to grow AgNPs (Tyr-MSN@AgNPs). Effect of Tyr and reaction pHs on AgNPs formation were studied by transmission electron microscope (TEM) and UV-Visible spectrophotometer.

ELSEVIER

Contents lists available at ScienceDirect

Microporous and Mesoporous Materials

journal homepage: www.elsevier.com/locate/micromeso

Amino acid as a biodegradation accelerator of mesoporous silica nanoparticles

Waranya Ratirotjanakul^a, Teeraporn Suteewong^{b,*}, Duangporn Polpanich^c, Pramuan Tangboriboonrat^a

- ^a Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Phyathai, Bangkok, 10400, Thailand
- b Department of Chemical Engineering, Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang, Ladkrabang, Bangkok, 10520, Thailand
- ^c NANOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathum Thani, 12120, Thailand

ARTICLE INFO

Keywords: Amino acid conjugate Mesoporous silica nanoparticle Degradation accelerator

ABSTRACT

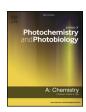
In order to avoid cumulative toxicity of the remained mesoporous silica nanoparticles (MSNs) in biological systems, three amino acids (aâs), i.e., glycine (Gly), aspartic acid (Asp) and cysteine (Cys), were incorporated into MSNs for accelerating their biodegradation. Aâ was conjugated with 3-isocyanatopropyl triethoxysilane (ICPTES) before reacting with tetraethyl orthosilicate to form aâ-MSNs via the sol-gel process based co-condensation. FTIR spectra confirmed the urea bond formation in aâ-ICPTES, whereas silicon resonances of T² and T³ in ²9Si NMR spectrum indicated the incorporation of aâ in MSNs. Spherical bare-MSNs (112 nm) were obtained while the rod-like particles were formed in the case of Gly-MSNs (73 nm in length), Asp-MSNs (90 nm in length), and Cys-MSNs (163 nm in length). The trend of %Si dissolution rate analyzed from microwave plasmatomic emission spectrometer (MP-AES) of aâ-MSNs in phosphate buffer saline (PBS)/trypsin enzyme (pH 7.4) was 3–5 times higher than in PBS (pH 7.4) and 7–8 times higher than in acetate buffer (pH 5.2), respectively. The Asp-MSNs having two carboxylic groups showed the highest degradability, followed by Cys-MSNs, Gly-MSNs, and bare-MSNs in all three media. By capability of aâ as a dissolution promoter, the aâ-MSNs would be an effective and alternative material used as drug carrier in biomedical applications.

1. Introduction

Mesoporous silica nanoparticles (MSNs) combine the advantages of silica, i.e., biocompatible and easy to be functionalized, and porous materials, i.e., high specific surface area, large pore volume, and tunable pore size [1]. Therefore, MSNs are suitable for support, loading, and sensing, which enable them good candidate for various applications including in biomedical fields as drug carrier [2-6]. MSNs loaded with doxorubicin (DOX) or curcumin showed high anti-tumor efficacy against liver and skin cancer cells, respectively [7,8]. Anticancer metallodrugs, e.g., cisplatin, titanocene, triphenyltin (IV), and ruthenium (II) complexes, also exhibited good results in cancer treatment after loading in functionalized MSNs [9-11]. In vivo studies showed that triphenyltin (IV)-loaded SBA-15 suppressed the growth of tumor, while in vitro data further confirmed that triphenyltin (IV)-loaded SBA-15 did not damage cellular organelle [11]. However, most MSNs reported are \sim 50–150 nm [5,12,13], which are too large to be eliminated from the body through renal clearance [14], unless they can completely dissolve or degrade into much smaller form (< 7 nm). *In vivo* studies showed that majority of MSNs administrated was accumulated in organs (> 80%) and 15–45% of total injected MSNs and poly(ethylene glycol)-coated MSNs were detected in urine and feces in degraded form [15]. Similar to other silica, the insoluble portions of MSNs remained in the body might need surgical removal. From the biosafety aspect of view, MSNs should have a relatively fast degradation rate to avoid cumulative toxicity. However, their dissolution mechanism is still inconclusive because of the variation in investigating conditions, synthesis conditions, and materials characteristics, e.g., particle shape, surface area, pore size, functional group, as well as degree of condensation [13,16–18].

It is believed that high surface area and large pore size are key factors affecting fast dissolution [3,19]. The proposed three-stages degradation behavior of surfactant-extracted MCM-41-type MSNs in simulated body fluid (SBF) involved one fast bulk degradation (hourscale) and two slow degradation stages (day-scale) blocked by the formation of calcium/magnesium silicate layer. Hexagonally ordered

E-mail address: teeraporn.su@kmitl.ac.th (T. Suteewong).


^{*} Corresponding author.

FISEVIER

Contents lists available at ScienceDirect

Journal of Photochemistry & Photobiology A: Chemistry

journal homepage: www.elsevier.com/locate/jphotochem

Furan/thiophene-based fluorescent hydrazones as fluoride and cyanide sensors

Neeraj Saini^a, Chidchanok Wannasiri^a, Supphachok Chanmungkalakul^a, Nicha Prigyai^a, Vuthichai Ervithayasuporn^{a,*}, Suda Kiatkamjornwong^{b,c,**}

- ^a Department of Chemistry, Center of Excellence for Innovation in Chemistry (PERCH-CIC), and Center for Inorganic and Materials Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
- ^b Office of Research Affairs, Chulalongkorn University, 254 Phayathai Road, Wangmai, Phatumwan, Bangkok, 10330, Thailand
- ^c FRS(T), Division of Science, The Royal Society of Thailand, Sanam Suepa, Dusit, Bangkok, 10300, Thailand

ARTICLE INFO

Keywords:
Furan
Hydrazone
Fluoride
Cyanide
Thiophene
Chemosensor
Schiff base

ABSTRACT

Four dual optical signalings of fluorescent hydrazone Schiff bases were synthesized from 1,8-naphthalimide hydrazide and substituted furan and thiophene rings, employing ethanol as green solvent. All synthesized molecules can detect F^- and CN^- with fast response with naked eye color change and quenching of fluorescence. Most common competitive anions have paltry interferences during the optical sensing of F^- , while only nitro and methyl furan substituted provided good selectivity to CN^- in THF. Substituents on heterocyclic directly affect fluoride capturing sensitivity, namely, electron donating group provides more sensitivity than with electron withdrawing groups. 1H NMR confirms the H-bonding between sensor molecule and F^-/CN^- . The detection limits of the four-sensor molecules were found below 0.3 ppm for F^- and CN^- detection. The magnitude of fluorescence quenching was estimated through Stern-Volmer plots. Test strips experimentation revealed the on-site solid-state detection efficacy of the sensors. Addition of Cu(II) ions to nitro and methyl furan substituted, resulted in selective discrimination between F^- and CN^- in THF. Computational studies prove the agreement of reactivity for four optical molecules interaction with F^- and show that substituent at furan/ thiophene does not affect the sensitivity, this is contrary to traditional school of thoughts.

1. Introduction

In recent years, the sensing technology has been primarily focused on development of simple, cost-efficient and highly selective recognitions. For example, anions can constitute an integral component of various physiological, chemical and industrial processes [1]. Modern anion recognition would play the important role in the future, it is accounted as smart material which can communicate through the user by changing the optical properties such as fluorescence or UV–vis absorption expressing which can detect or even concentration and identification [2,3]. Fluoride and cyanide ions have gained prime concern nowadays, as elicited concentration above permissible limits results in adverse effect on the living species [4,5]. This apparently necessitate their incessant on-site and off-site recognition and monitoring their environmental levels. Fluoride ions are generally employed as additive in toothpaste and drinking water. Dental caries and osteoporosis are the

outcomes related with fluoride ions deficiency. Contrarily, over exposure accounts for fluorosis and osteosarcoma [6]. Moreover, vulnerability to cyanide ions leads to deadly impact on the human beings [7]. Nevertheless, cyanide salts are extensively employed in different commercial processes such as metal extraction, gold plating, metallurgy, etc [8,9]. Thus, in order to keep a check on ions concentration in the ecosystem, different detection techniques have been developed so far [10-15]. But majority of them are quite expensive with delayed responses and even suffer from interference from other ions [16]. Different fluoride induced desilvlation reaction based sensors have been reported but suffer from delayed responses [17]. Beside immense selectivity, such molecular receptors have negative aspects such as complicated synthetic procedures and use of hazardous chemicals such as pyridine [18]. Most of the previous reports involve reactions based cyanide receptors but mechanistic basis has not been fully established till date. Other obstacles encountered are irreversibility, sensor stability

^{*} Corresponding author at: Department of Chemistry, Center of Excellence for Innovation in Chemistry (PERCH-CIC), and Center for Inorganic and Materials Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand.

^{**} Corresponding author at: Office of Research Affairs, Chulalongkorn University, 254 Phayathai Road, Wangmai, Phatumwan, Bangkok, 10330, Thailand. E-mail addresses: vuthichai.erv@mahidol.edu (V. Ervithayasuporn), suda.k@chula.ac.th (S. Kiatkamjornwong).

IOP Conf. Series: Materials Science and Engineering 811 (2020) 012009 doi:10.1088/1757-899X/811/1/012009

Silica Aerogel Thermal Insulation Coating as Commodity Usage

Noppakun Sanpo¹, Jaturong Jitputti¹, Peeranut Prakulpawong², Chadapon Srikamut², Supan Yodyingyong³, Darapond Triampo²,*

¹SCG Chemical Co., Ltd., Siam Cement Group (SCG), 271 Sukhumvit Road, Muang District, Rayong, 21150, Thailand

²Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Mahidol University, Phuttamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand

³Institute for Innovative Learning, Mahidol University, Phuttamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand

darapond.tri@mahidol.edu

Abstract. Silica aerogel-based thermal insulation coating (SA-coating) was prepared from a commercial acrylic binder. The purpose of this investigation is to determine the effectiveness of SA-coating with the application in energy-efficient home design for temperature insulation purposes. The weather acceleration test and thermal insulation property of SA-coating were investigated and compared to the original commercial binder. The weather acceleration test of SA-coating showed equivalent weathering stability and robustness compared to the original binder. The thermal insulation property was performed from an in-lab setup, called temperature difference (TD) measurement. In a closed chamber, without air circulation, the surface temperature with SA-coating was reduced by as much as 26 degrees from 90°C to ~64°C. More so, if TD measurement was performed in a ventilated area, the temperature can be reduced from 50°C to 36°C (room temperature was 31°C). The thermal conductivity of the coating at different temperatures was also measured. The water contact angle measurements and the scanning electron micrographs showed that SA-coating can be made hydrophilic to hydrophobic by simple abrasion.

1. Introduction

Thermal insulation materials for energy-efficient construction design have been widely discussed and commercialized for applications to lower energy consumption [1-3]. Materials such as, glass fiber, glass wool, or mineral wool, insulation blankets installed under the roof of buildings for cooling purposes [4]. Heat reflective thermal paints and cool-roof shields are a few examples of commercialized products available in the market. The key to these thermal insulation systems is to fill them with porous core material or material with low thermal conductivity (20-80 mW/(m K)) [5-8].

Silica aerogel (SA) is a promising material for insulation applications because of its very low thermal conductivity [9]. The thermal conductivity of silica aerogels is lower than that of still air. Besides its low thermal conductivity, the silica aerogel is extremely lightweight, hydrophobic, and has good fire and acoustic resistances [9-11]. These characteristics make silica aerogel a premier additive material for energy efficiency and protection in building materials and industrial coating.

Published under licence by IOP Publishing Ltd

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

DOI: 10.1002/slct.201702597

■ Materials Science inc. Nanomaterials & Polymers

Heterogeneous Pd/POSS Nanocatalysts for C-C Cross-Coupling Reactions

Vetiga Somjit,^[a] Michel Wong Chi Man,^[b] Armelle Ouali,^[b] Preeyanuch Sangtrirutnugul,^[a] and Vuthichai Ervithayasuporn*^[a]

An insoluble solid support of N-heterocyclic imidazolium-functionalized cage-like silsesquioxane (SQ); Bim-SQ, was synthesized by nucleophilic substitution of octakis(3-chloropropyl)octasilsesquioxane with an excess bis-(imidazol-1-yl) methane and investigated as a new organic-inorganic hybrid support. In the presence of Bim-SQ, Pd(II) from [PdCI₄] $^{2-}$ can be stabilized via both electrostatic interactions and imidazole-N-coordination, giving an amorphous material of Pd(II)@Bim-SQ. Subsequent $in\ situ$ reduction of Pd(II)@Bim-SQ during Suzuki — Miyaura cross-coupling reactions afforded monodispersed Pd

nanoparticles (2.33 \pm 1.50 nm) stablized on Bim-SQ support, PdNp@Bim-SQ with Pd loading up to 14% w/w. Catalytic studies revealed that the pre-catalyst Pd(II)@Bim-SQ was active heterogeneous catalyst for Suzuki – Miyaura cross-coupling reactions, having the maximum TOFs of 5400 h^{-1} under mild conditions and in aqueous ethanol medium. Furthermore, PdNp@Bim-SQ was also shown to be an efficient catalyst for Heck reactions. Simple catalyst recovery and reusability of PdNp@Bim-SQ for at least 5 catalytic cycles without loss of activity were also demonstrated.

Introduction

Palladium – catalyzed carbon – carbon cross-coupling reactions (e.g. Suzuki – Miyaura,^[1] Heck,^[2] and Sonogashira reaction)^[3] are the most popular reactions and have been widely used for building up a complex structure in both organic and material syntheses.[4] Based on their importance, the design of Pd catalysts for C – C coupling reactions, especially the preparation of highly active catalysts with low Pd loadings, represents a key aspect of research.^[5] In particular, convenient catalyst preparation, catalyst's recyclability, and environmental friendly catalytic conditions constitute important catalyst features. [6] Heterogeneous Pd catalysts stabilized on supporting materials (e.g. graphene,[7] chitosan,[8] and silica)[9] have been developed in order to improve the catalytic activities. For example, Gruttadauria et al. successfully prepared the palladium nanoparticles supported on silica-based materials,[10] while Veisi et al. also found that catalytic activities of Pd can be enhanced by highly porous (mesoporous) silica.[11]

[a] V. Somjit, Prof. Dr. P. Sangtrirutnugul, Prof. Dr. V. Ervithayasuporn Department of Chemistry

Center of Excellence for Innovation in Chemistry (PERCH-CIC) and Center for Inorganic and Materials Chemistry, Faculty of Science Mahidol University

Rama VI road, Ratchathewi District, Bangkok 10400, Thailand E-mail: vuthichai.erv@mahidol.ac.th maldiniandg@hotmail.com

Homepage: http://chemistry.sc.mahidol.ac.th/en/people/faculty/vuthichai-ervithayasuporn/

[b] Dr. M. Wong Chi Man, Dr. A. Ouali Institut Charles Gerhardt Montpellier UMR5253 CNRS-ENSCM-UM

8, rue de l'école normale, 34296 Montpellier, France

Supporting information for this article is available on the WWW under https://doi.org/10.1002/slct.201702597

Along the same line, organic-inorganic hybrid materials of polyhedral oligomeric silsesquioxanes (POSS) or cage-like silsesquioxanes (SQ) have been investigated as supports for metal catalysts, [12] as a result of their exceptional thermal stability[13] and ease of surface functional group modification.[14] Not only the SQ cages contain the smallest inorganic silica core, but their molecular structures were also decorated with a wide variety of functional organic groups (e.g. alkyl, [15] aryl, [16] vinyl,[17] acrylate,[18] and hydroxyl groups).[19] Owing to their tunable organic-inorganic structure/property relationships,[23] SQ have been incorporated in a number of novel complex structures for a wide range of applications (e.g. sensors, [20] electronic devices, [21] and catalysts). [22] For catalytic applications, palladium nanoparticles supported on porous cross-linked silsesquioxanes catalyzed aerobic alcohol oxidation in water.[24] Zhang et al. also reported the synthesis of Pd(II) supported on SQ functionalized with Schiff base ligands for Suzuki – Miyaura cross-coupling reaction.[25] Our group has recently shown that Pd(II) complexes supported by pyridine – triazole-functionalized SQ were highly active homogeneous and heterogeneous catalysts, depending on the amount of pyridine-triazole ligands on SO.[28]

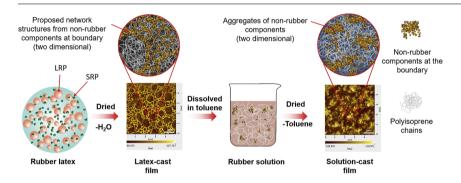
N- Heterocyclic carbene (NHC) ligands are known as highly effective stabilizing ligands^[26] due to their strong π -electrondonating nitrogen atoms. Furthermore, the N- heterocyclic ligands are also able to activate Pd catalysts for C–C coupling reactions. For example, Pd(II) supported on NHC-functionalized SQ can be simply prepared via solid-state annealing. To further broaden aspects of the SQ application in catalysis, it is very important to design a new type of support materials possessing a good stabilizing ligand, which produces efficient catalysts and works under an environmentally benign medium. In this work, the insoluble imidazolium/imidazole ligands derived from SQ can be freshly prepared as a novel support

FISEVIER

Contents lists available at ScienceDirect

Colloids and Surfaces A

journal homepage: www.elsevier.com/locate/colsurfa


Film formation process of natural rubber latex particles: roles of the particle size and distribution of non-rubber species on film microstructure

Manus Sriring^a, Adun Nimpaiboon^b, Sirirat Kumarn^c, Keiko Higaki^e, Yuji Higaki^g, Ken Kojio^{d,e}, Atsushi Takahara^{d,e}, Chee Cheong Ho^f, Jitladda Sakdapipanich^{a,c,*}

- a Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Phayathai, Bangkok, 10400, Thailand
- b Rubber Technology Research Centre (RTEC), Faculty of Science, Mahidol University, Nakhon Pathom, 73170, Thailand
- c Institute of Molecular Biosciences, Mahidol University, 25/25 Phuttamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
- d Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- e International Institute for Carbon-Neutral Energy Research (WPI-12CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- f Faculty of Science, Universiti Tunku Abdul Rahman, Sungai Long Campus, Bandar Sungai Long, 43000 Kajang, Selangor, Malaysia
- Eperatment of Integrated Science and Technology, Faculty of Science and Technology, Oita University, 700 Dannoharu, Oita, 870-1192, Japan

GRAPHICAL ABSTRACT

ARTICLE INFO

Keywords: Film formation Small rubber particle Large rubber particle Natural network Non-rubber distribution Synchrotron SAXS

ABSTRACT

Natural rubber (NR) films from various mixing ratios of large- (LRP) and small rubber particles (SRP) were prepared through latex and solution casting methods. Film-forming behaviours of the resulting films were investigated by monitoring their surface characteristics using atomic force microscopy (AFM). When the SRP portion was higher, the surface of the latex-cast films was found to be smoother as smaller particles protruded out of the surface less than larger ones did. AFM phase micrographs revealed a hexagonal shape of packed rubber particles (RPs) of the LRP film, while the RPs in the other samples were sphere-like. After aging under ambient conditions, the packed RPs were flattened while retaining their RP boundaries, creating a supporting framework within the rubber matrix. On the contrary, when the rubber film was cast from a toluene solution, the characteristic of RP boundaries disappeared and became aggregates of the membrane components on the film surface. The latex-cast films performed much better in mechanical strength than the solution-cast films did due to the destruction of the supporting framework arisen from the non-rubber components at the RP boundaries of the solution-cast film. An inhomogeneous density distribution produced by the non-rubber aggregates in the latex-cast films was observed in small angle X-ray scattering measurements.

E-mail address: Jitladda.sak@mahidol.ac.th (J. Sakdapipanich).

^{*}Corresponding author at: Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Phayathai, Bangkok, 10400, Thailand.

ORIGINAL PAPER

Gauze-reinforced electrospun regenerated cellulose ultrafine fibers for immobilizing bromelain

Sirilak Talingtaisong · Thammasit Vongsetskul D · Weerapha Panatdasirisuk · Pramuan Tangboriboonrat

Received: 29 October 2016/Accepted: 20 April 2017/Published online: 10 May 2017 © Springer Science+Business Media Dordrecht 2017

Abstract This work aims to reuse bromelain, a cysteine protease isolated from stems of pineapples, and to improve its thermal stability by immobilization onto gauze-reinforced regenerated cellulose (RC) fibers. To obtain RC fibers (358 \pm 53 nm), cellulose acetate (CA, M.W. $\sim 3 \times 10^4$ g/mol) fibers $(307 \pm 59 \text{ nm})$ were electrospun from 17% w/w CA mixed with 5% w/w Tween 80 in acetic acid: water of 3:1 by weight at an applied voltage of 17.5 kV and a fiber collection distance of 10 cm. The fiber surface was treated with 0.5 M potassium hydroxide in ethanol, functionalized by coupling with 12% w/v glutaraldehyde using aluminium sulfate as a catalyst, and immobilized with bromelain. Effects of temperature and pH on an enzyme activity of bromelainimmobilized fibers (bromelain-RC) were investigated by a casein assay with a spectrophotometer at 275 nm. Results show that bromelain-RC functioned at 70, 80 and 90 °C at pH 8 better than bromelain did. However, there was no difference in the activities of bromelain and bromelain-RC with the pH change. Bromelain-RC could be reused at least 9 times with >60% of the original activity and had a heat resistance higher than bromelain had. The tensile strength of bromelain-RC $(14.2 \pm 2.5 \text{ MPa})$ was higher than that of the RC fibers (6.9 \pm 1.4 MPa). Therefore, bromelain-RC are potentially used as a heterogeneous catalyst under the conditions that bromelain cannot endure.

Keywords Bromelain · Cellulose · Electrospinning · Enzyme immobilization · Ultrafine fiber

Introduction

Stem bromelain (EC. 3.4.22.32) is a cysteine protease obtained from stems of pineapples (*Ananas comosus*) with a molecular mass of 23.8 kilodaltons (kD) (Devakate et al. 2009; Gupta and Saleemuddin 2006). This protease is widely used in food industries such as beer clarification, meat tenderization and baking industries (Arshad et al. 2014; Ilaria et al. 2012). In medicine, bromelain is used as an antiinflammatory drug, which prevents a platelet aggregation and reduces a level of fibrinogen in blood (Maure 2001). Similar to other enzymes, bromelain is employed as a homogeneous environmentallyfriendly catalyst with a high specificity and a good selectivity. In practical applications, the use of enzyme is limited by its difficulty to be reused and its ease to be denatured when the reaction conditions such as pH and temperature are changed (Huang et al. 2011). To solve these problems, enzymes are normally immobilized onto a solid support. Besides its ease to be handled and separated from a reaction mixture, an immobilization

e-mail: thammasit.von@mahidol.ac.th

S. Talingtaisong · T. Vongsetskul (🖂) · W. Panatdasirisuk · P. Tangboriboonrat Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok 10400, Thailand

IOP Conf. Series: Materials Science and Engineering 811 (2020) 012010 doi:10.1088/1757-899X/811/1/012010

Copper-Zinc Oxide Synergistic Approach as Low-Emissivity Material for Energy-Saving Windows

Sireethorn Termkleebbuppa¹, Supan Yodyingyong², Jeerapond Leelawattanachai³, Wannapong Triampo⁴, Noppakun Sanpo⁵, Jaturong Jitputti⁵, Darapond Triampo¹

¹Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Mahidol University, Phuttamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand

²Institute for Innovative Learning, Mahidol University, Phuttamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand

³National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand

⁴Department of Physics, Faculty of Science, Mahidol University, Phuttamonthon Sai 4 Road, Phuttamonthon, Salaya, Nakhon Pathom, 73170, Thailand

⁵SCG Chemical Co., Ltd., Siam Cement Group (SCG), 271 Sukhumvit Road, Muang District, Rayong, 21150, Thailand

darapond.tri@mahidol.edu

Abstract. In luxurious glass buildings and constructions, heat gain (or heat loss) mostly comes through the windows. Infrared (IR) radiation is an important factor that causes the entry of heat into the buildings. To save energy consumption of air conditioners, low-emissivity (Low-E) glass coating applications are focused. In the energy-saving field, transparent conductive oxide (TCOs) are used as coatings to minimized IR entry. In this work, copper-doped zinc oxide (CZO) is synthesized for thermal reflective material. Cu(II) ions are doped to ZnO by a sol-gel method to obtain CZO nanoparticles and is coated on a glass substrate. The morphology of CZO is investigated with scanning electron microscopy (SEM); phase crystallinity is determined by X-ray diffraction (XRD); and UV-Vis-NIR spectroscopy is used to characterize UV/IR-shielding and also the optical transparency. IR cameras and in-lab thermal insulation setup are used to test the heat insulation properties. The result shows that 15% copper-doped zinc oxide has the best insulation from IR rays with the lowest temperature in the interior (T3) of 50.6°C while the outer temperature (T2) was at 85.5°C the lowering of the temperature by 34.9°C (cooler by 59%). CZO synthesized from the sol-gel method has promising properties for Low-E glass coating applications.

1. Introduction

It is undeniable that glass buildings look attractive and luxurious. However, glass in building constructions is a poor thermal insulator and it serves as an opening entry to solar radiation. Solar energy distribution comprises of 5% from UV (295 - 400 nm), 50% from visible (400 - 700 nm) and 45% from IR region (700 - 2500 nm). The majority of the IR rays from 700 - 1100 nm radiates heat into the

Published under licence by IOP Publishing Ltd

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

ELSEWIED

Contents lists available at ScienceDirect

Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy

journal homepage: www.elsevier.com/locate/saa

Short Communication

A chromogenic and fluorogenic rhodol-based chemosensor for hydrazine detection and its application in live cell bioimaging

Khomsan Tiensomjitr ^{a,b}, Rattha Noorat ^{a,b}, Sinchai Chomngam ^{a,b}, Kanokorn Wechakorn ^{a,b}, Samran Prabpai ^{a,b}, Phongthon Kanjanasirirat ^c, Yongyut Pewkliang ^c, Suparerk Borwornpinyo ^{c,d}, Palangpon Kongsaeree ^{a,b,*}

- ^a Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- b Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- ^c Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- ^d Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand

ARTICLE INFO

Article history: Received 20 September 2017 Received in revised form 28 December 2017 Accepted 12 January 2018 Available online 12 January 2018

Keywords:
Hydrazine-selective chemosensor
Fluorescent detection
Rhodol
Levulinate
Bioimaging

ABSTRACT

A rhodol-based fluorescent probe has been developed as a selective hydrazine chemosensor using levulinate as a recognition site. The rhodol levulinate probe (**RL**) demonstrated high selectivity and sensitivity toward hydrazine among other molecules. The chromogenic response of **RL** solution to hydrazine from colorless to pink could be readily observed by the naked eye, while strong fluorescence emission could be monitored upon excitation at 525 nm. The detection process occurred via a ring-opening process of the spirolactone initiated by hydrazinolysis, triggering the fluorescence emission with a 53-fold enhancement. The probe rapidly reacted with hydrazine in aqueous medium with the detection limit of 26 nM (0.83 ppb), lower than the threshold limit value (TLV) of 10 ppb suggested by the U.S. Environmental Protection Agency. Furthermore, **RL**-impregnated paper strips could detect hydrazine vapor. For biological applicability of **RL**, its membrane-permeable property led to bioimaging of hydrazine in live HepG2 cells by confocal fluorescence microscopy.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Hydrazine (N₂H₄) is a highly reactive base and a reducing agent essential in agricultural, pharmaceutical, and chemical industries [1-3]. It has also been used in missile propulsion systems as high energy fuel and as well as a starting material of many products such as foaming agents for plastics, antioxidants and polymers [4–6]. However, hydrazine has been categorized as a probable human carcinogen by the U.S. Environmental Protection Agency (EPA) with a threshold limit value (TLV) of 10 ppb. It causes neurotoxicity and mutagenic effects to kidney, liver, and lung [7-9]. Thus, various detection techniques for hydrazine have been developed in recent years. Analytical instruments such as GC-MS, LC-MS, and capillary electrophoresis were employed to detect hydrazine [10–12]. Nevertheless, these methods are time consuming, and require complicated sample preparation and specific equipment but incapable for real-time and on-site detection. The use of nanocomposite materials as hydrazine probes are mainly based on electrochemical sensing [13–18] which are not applicable for intracellular hydrazine detection because of their biological incompatibility. Fluorescence-based chemosensors provide sensitive, less expensive, and capable for real

E-mail address: palangpon.kon@mahidol.ac.th (P. Kongsaeree).

time and on-site detection as well as biocompatibility [19–21]. Hence, development of fluorescent chemosensors for selective detection of hydrazine is of scientific interest in recent years [22-28]. Several chromogenic and fluorescent chemosensors for hydrazine were lately reported with various dyes including spirobenzopyran [23], benzothiazole [24], naphthaldehyde [25], tricyanofuran [26], dicyanomethylene-4H-pyran [27], and naphthalimide [28]. Various prosthetic groups were applied as recognition sites for hydrazine including formyl phenol [23]. malononitrile [24], benzothiazole acetonitrile [25], acetyl [26,27], bromobutylate [28], and levulinate [29-31]. Rhodol, a rhodaminefluorescein hybrid molecule, is a functional fluorescent probe with advantageous properties such as high extinction coefficient, high quantum yield, and photostability [32,33]. It has been used in development of chemosensors for various analytes [34–42]. However, rhodol-based chemosensor for hydrazine was reported with only cinnamate prosthetic group [43], but not for other recognition elements. Levulinate, a hydrazine specific cleavable protecting group [44,45], was used in development of a few hydrazine-selective chemosensors [29-31].

Herein, we report a rhodol-levulinate probe (**RL**) as a highly selective and sensitive "off-on" fluorescent chemosensor for hydrazine with a low limit of detection value and a short detection time. We envisioned that hydrazine would react with **RL** with a release of the fluorescent rhodol unit upon hydrazinolysis of the levulinate moiety, leading to the chromogenic and fluorescence changes.

[☆] In remembrance of His Majesty King Bhumibol Adulyadej (1927–2016).

Corresponding author.

ภาคผนวก ข. กิจกรรม กิจกรรม Tentative Program for ACP Recipients เมื่อวันที่ 28 สิงหาคม 2562 ณ ห้องประชุม ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล

นอกจากนี้ภาควิชาฯ ได้สนับสนุนการประชุมกลุ่มย่อยเพื่อสร้างความร่วมมือกับสถาบันอุดมศึกษา ดังต่อไปนี้

กิจกรรมการสร้างเครือข่ายทางการวิจัยในวันที่ 23 กรกฎาคม 2561 โดย Dr. Albena Lederer Dr. Albena Lederer (Head of Polymer Separation Group, Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Macromolecular Chemistry, Department Analysis, Dresden, Germany) มาบรรยายในหัวข้อ Advanced Separation and Characterization of Multifunctional Polymer Systems ณ ห้อง PR201 อาคารปรีคลินิก คณะ วิทยาศาสตร์ มหาวิทยาลัยมหิดล

กิจกรรม Printed Paper-Based Low-Cost Analytical Devices เมื่อวันที่ 7 ตุลาคม 2561 ณ ห้อง PR201 อาคารปรีคลินิก คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล

กิจกรรม Nobel Laureate Lecture Top Academic Research to Commercial prodectcatamedical devices Robert H.Grubbs nobel prize in chemistry วันที่ 14 กันยายน 2561 ณ ห้อง L01 ตึกกลม คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล

กิจกรรมการประชุมวิชาการ Mahidol-Osaka mini symposium ในวันที่ 22 พฤศจิกายน 2561ณ ห้อง K102 อาคารเฉลิมพระเกียรติ คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล

กิจกรรมการสร้างเครือข่ายทางการวิจัย ปรึกษาแนวทางการสร้างเครือข่ายทางการวิจัย ร่วมกับ Dr. Shunichiro Ishigami และคณะผู้เชี่ยวชาญจาก Corporate Research & Development Strategy Department, Mitsubishi Materials Corporation, Japan ในหัวข้อ Future collaboration between Mahidol University and Mitsubishi Materials Corporation 28 สิงหาคม 2562 เวลา 14:00-16:00 น. ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล วิทยาเขตพญาไท

บุคลากรของภาควิชาฯมีความร่วมมือวิจัยกับกับสถาบันชั้นนำในต่างประเทศ

- Kyoto Institute of Technology, Kyoto, Japan และ Japan Advance Institute of Science and Tehcnology (JAIST), Japan (รศ.ดร. พันธ์ญา สุนินทบูรณ์)
- 2. Université du Maine, Le Mans, France , Kyoto Institute of Technology, Japan และ Le Mans Universite, Mulhouse, France (รศ.ดร. ปราณี ภิญโญชีพ)
- 3. Universite de Haute Alsac, Mulhouse, France (รศ.ดร. ดร.ทวีชัย อมรศักดิ์ชัย)
- 4. Kyushu University , Japan (รศ.ดร. ทวีซัย อมรศักดิ์ชัย)
- 5. École Polytechnique Paris, France (รศ.ดร. ดร.ทวีชัย อมรศักดิ์ชัย)
- 6. Universitat de les Illes Balears, Palma de Mallorca, Spain (รศ.ดร. ดร.ทวีซัย อมรศักดิ์ชัย)
- 7. Department of Chemistry and Geochemistry Colorado School of Mines, Golden USA. (รศ.ดร. ดร.ทวีชัย อมรศักดิ์ชัย)
- 8. Vietnam National University, Hanoi (รศ.ดร. ศิวพร มีจู สมิธ)
- Ulsan National Institute Science and Technology (UNIST), South Korea และLouisiana
 State University, Georgia Institute of Technology, The University of Kansas (รศ.ดร.
 รัตติกาล จันทิวาสน์)
- 10. Leibniz-institut für Polymerforschung Dresden, Germany (รศ.ดร. อทิตยา ศิริภิญญานนท์)
- 11. University of Basel, Switzerland, Okayama University, Japan (รศ.ดร. ดวงใจ นาคะปรีชา)
- 12. Veterinaruntersuchungsamter Karlsruhe (CVUA Karlsruhe), Germany (รศ.ดร. เทียนทอง ทองพันชั่ง)
- 13. Nagoya University (อ.ศร. อัญรัตน์ วัฒนพานิช)

การได้รับรางวัลต่าง ๆ ของนักศึกษา และคณาจารย์ (จากรายงานรอบ 6-36 เดือน) รางวัลนักศึกษา

- 1. Mr.Waleed Alahmad นักศึกษาปริญญาเอก สาขาวิชาเคมีวิเคราะห์ อาจารย์ที่ปรึกษา: รศ.ดร. ดวงใจ นาคะปรีชา ได้รับรางวัล BEST ORAL Presentation เมื่อวันที่ 11 ธันวาคม 2559 จากการประชุม วิชาการนานาชาติ The13th Asian Conference on Analytical Sciences (ASIANALYSIS XIII) ระหว่างวันที่ 8-11 ธันวาคม 2559 ณ ศูนย์การประชุมนานาชาติ โรงแรมดิเอมเพรส อ.เมือง จ.เชียงใหม่
- 2. น.ส.นิรมล จิตต์สมหมาย นักศึกษาปริญญาโท สาขาวิชาเคมี อาจารย์ที่ปรึกษา: ผศ. ดร.กาญจนา อุไร สินธว์ ได้รับรางวัล BEST POSTER Presentation เมื่อวันที่ 11 ธันวาคม 2559 จากการประชุม วิชาการนานาชาติ The 13th Asian Conference on Analytical Sciences (ASIANALYSIS XIII) ระหว่างวันที่ 8-11 ธันวาคม 2559 ณ ศูนย์การประชุมนานาชาติ โรงแรมดิเอมเพรส อ.เมือง จ.เชียงใหม่
- 3. นายชีรวัฒน์ ปัญญาบุตร ได้รับรางวัล BEST POSTER Presentation นักศึกษาปริญญาโท สาขาวิชาเคมี อาจารย์ที่ปรึกษา: รศ. ดร.อทิตยา ศิริภิญญานนท์ เมื่อวันที่ 11 ธันวาคม 2559 จากการประชุม วิชาการนานาชาติ The 13th Asian Conference on Analytical Sciences (ASIANALYSIS XIII) ระหว่างวันที่ 8-11 ธันวาคม 2559 ณ ศูนย์การประชุมนานาชาติ โรงแรมดิเอมเพรส อ.เมือง จ.เชียงใหม่
- 4. Miss Karma Wangmo ได้รับรางวัล BEST POSTER Presentation นักศึกษาปริญญาโท สาขาวิชา เคมี อาจารย์ที่ปรึกษา: รศ. ดร.อทิตยา ศิริภิญญานนท์ เมื่อวันที่ 11 ธันวาคม 2559 จากการประชุม วิชาการนานาชาติ The 13th Asian Conference on Analytical Sciences (ASIANALYSIS XIII) ระหว่างวันที่ 8-11 ธันวาคม 2559 ณ ศูนย์การประชุมนานาชาติ โรงแรมดิเอมเพรส อ.เมือง จ.เชียงใหม่
- 5. นายณัฐพงศ์ จันทร์ทิพย์มณี นักศึกษาระดับปริญญาโท สาขาวิชาเคมี อาจารย์ที่ปรึกษา: รศ. ดร.ดวงใจ นาคะปรีชาได้รับรางวัล Award to the Best Short Oral Communication เมื่อวันที่ 26 ธันวาคม 2559 จาก Japanese Association for Flow Injection Analysis (JAFIA) ณ เมือง Palma da Mallorca ประเทศสเปน
- 6. นายชลพิสิฐ เกียรติเสวีนักศึกษาระดับปริญญาโท ชั้นปีที่ 1 สาขาเคมี ได้รับเลือกเป็นตัวแทนประเทศ ไทย โครงการคัดเลือกผู้แทนเข้าร่วมการประชุมผู้ได้รับรางวัลโนเบล ณ เมืองลินเดา ประจำปี 2560 ร่วม รับเสด็จฯ เมื่อวันที่ 20 กุมภาพันธ์ 2560 จากสำนักงานพัฒนาวิทยาศาสตร์และเทคโนโลยีแห่งชาติ (สวทช.)
- 7. น.ส. จารุวรรณ น้ำใจเย็น นักศึกษาระดับปริญญาโท สาขาวิทยาศาสตร์และเทคโนโลยีพอลิเมอร์ ได้รับ รางวัลSciFinder Best Paper award in Oral session Effect of density on mechanical properties of nonstructural composites from pineapple leaf materials and water-based acrylic resin เมื่อวันที่ 3 ก.พ.60จากการประชุมวิชาการ PACCON 2017 ณ Centra Government Complex Hotel&Convention Centre Chaeng Watthana, Bangkok

- 8. น.ส.นิรมล จิตต์สมหมาย นักศึกษาปริญญาโท สาขาวิชาเคมี อาจารย์ที่ปรึกษา: ผศ. ดร.กาญจนา อุไร สินธว์ ได้รับรางวัลวิจัยประเภทดีการพัฒนาระบบการไหลอัติโนมัติร่วมกับการสกัดด้วยตัวดูดซับของ แข็งเพื่อการเตรียมตัวอย่างและตรวจวัดปริมาณไทโอไซยาเนตในปัสสาวะแบบออนไลน์ เมื่อวันที่ 16 มีนาคม 60 จากการประชุมวิชาการและเสนอผลงานวิจัยระดับชาติและนานาชาติ ครั้งที่ 8 "Research4.0 Innovation and Development SSRU's 80th Anniversary" ณ มหาวิทยาลัยราช ภัฏสวนสุนันทา
- 9. นางสาวรวิวรรณ บำรุงพืช นักศึกษาระดับปริญญาตรี สาขาเคมี ชั้นปีที่ 4 ได้รับรางวัล แสดงผลงานวิจัย แบบโปสเตอร์ เมื่อวันที่ 4 มิถุนายน 2560 จากการประชุมวิชาการวิทยาศาสตร์และเทคโนโลยีเพื่อ เยาวชน ครั้งที่ 12 วิทยาศาสตร์และเทคโนโลยีเพื่อเยาวชน ครั้งที่ 12 (วทท.เยาวชน) วิทยาศาสตร์ พื้นฐานสู่นวัตกรรมเพื่อขับเคลื่อนไทยแลนด์ 4.0 The 12 Conference on Science and Technology for Youths
- 10. นางสาวสุกัญญา ทองสุข นักศึกษาระดับปริญญาตรี สาขาเคมี ชั้นปีที่ 4 ได้รับรางวัล แสดงผลงานวิจัย แบบโปสเตอร์ เมื่อวันที่ 4 มิถุนายน 2560 จากการประชุมวิชาการวิทยาศาสตร์และเทคโนโลยีเพื่อ เยาวชน ครั้งที่ 12 วิทยาศาสตร์และเทคโนโลยีเพื่อเยาวชน ครั้งที่ 12 (วทท.เยาวชน) วิทยาศาสตร์ พื้นฐานสู่นวัตกรรมเพื่อขับเคลื่อนไทยแลนด์ 4.0 The12 Conference on Science and Technology for Youths
- 11. นาย อัษฏาวุธ ศรีขาว นักศึกษาระดับปริญญาโท สาขาเคมี ได้รับรางวัล Oral presentation เมื่อ วันที่ 10 มิถุนายน 2560 จากการประชุมวิชาการ RGJ-Ph.D.18 Global Sustainability ณ Richmomd Stylish Convention Hotel, Nonthaburi, Thaliand วันที่ 8-10 มิถุนายน 2560
- 12. นางสาวสุรนันท์ อนันตชัยศิลป์ นักศึกษาระดับปริญญาเอก สาขาเคมีเชิงฟิสิกส์ (นานาชาติ) ได้รับ รางวัลวิทยานิพนธ์ ระดับดี ระดับปริญญาเอก กลุ่มวิทยาศาสตร์สุขภาพและเทคโนโลยี เมื่อวันที่ 10 สิงหาคม 2560 จากงานปฐมนิเทศนักศึกษาใหม่ ปีการศึกษา 2560 บัณฑิตวิทยาลัย มหิดล วิทยาเขต ศาลายา
- 13. นายชนม์ชนก บัวทองจันทร์ นักศึกษาระดับปริญญาโท สาขาเคมี (นานาชาติ) ได้รับรางวัล วิทยานิพนธ์ ระดับดี ระดับปริญญาโท กลุ่มวิทยาศาสตร์สุขภาพและเทคโนโลยี เมื่อวันที่ 10 สิงหาคม 2560 จากงานปฐมนิเทศนักศึกษาใหม่ ปีการศึกษา 2560 บัณฑิตวิทยาลัย มหิดล วิทยา เขตศาลายา
- 14. นางสาวรัฐพร แสนเมืองชิน นักศึกษาระดับปริญญาโท สาขาเคมีวิเคราะห์และเคมีอนินทรีย์ประยุกต์ (นานาชาติ) ได้รับรางวัลวิทยานิพนธ์ ระดับดี ระดับปริญญาโท กลุ่มวิทยาศาสตร์สุขภาพและ เทคโนโลยี เมื่อวันที่ 10 สิงหาคม 2560 จากงานปฐมนิเทศนักศึกษาใหม่ ปีการศึกษา 2560 บัณฑิต วิทยาลัย มหิดล วิทยาเขตศาลายา

- 15. นายนปวิช นนทแก้ว นักศึกษาปริญญาตรี ชั้นปีที่ 4 สาขาเคมี ได้รับทุนเยาวชนคุณภาพแห่งปี 2017 พร้อมใบประกาศเกียรติคุณ เมื่อวันที่ 1 พฤศจิกายน 2560 จากมูลนิธิสภาวิทยาศาสตร์และ เทคโนโลยีแห่งประเทศไทย (มสวท.) รับที่หอประชุมใหญ่ ศูนย์ประชุมสถาบันวิจัยจุฬาภรณ์
- 16. นางสาว ชนม์นิภา ตั้งวงศ์พุฒิ นักศึกษาระดับปริญญาตรี สาขาเคมี ชั้นปีที่ 3 ได้รับทุน The 2017 ACS Asia-Pacific International Chapters (ACS APICC) Conference Student Travel Grant สนับสนุนการเข้าร่วมเสนอผลงานวิจัย งานประชุมวิชาการระดับนานาชาติ ACS APICC Conference, November 5-8, 2017 at the International Convention Center JEJU, Jeju, South Korea พฤศจิกายน 2560จาก The American Chemical Society
- 17. นายชลพิสิฐ เกียรติเสวี นักศึกษาระดับปริญญาโท สาขาเคมี ได้รับทุน The 2017 ACS Asia-Pacific International Chapters (ACS APICC) Conference Student Travel Grant สนับสุนการเข้าร่วม เสนอผลงานวิจัย งานประชุมวิชาการระดับนานาชาติ ACS APICC Conference, November 5-8, 2017 at the International Convention Center JEJU, Jeju, South Korea พฤศจิกายน 2560 จาก The American Chemical Society
- 18. นายชลพิสิฐ เกียรติเสวี นักศึกษาระดับปริญญาโท สาขาเคมี ได้รับรางวัล ACS APICC Poster competition cash award, The 2017 ACS Asia-Pacific International Chapters (ACS APICC) Conference, November 5-8, 2017 at the International Convention Center JEJU, Jeju, South Korea พฤศจิกายน 2560จาก The 2017 ACS Asia-Pacific International Chapters (ACS APICC) Conference, November 5-8, 2017 at the International Convention Center JEJU, Jeju, South Korea
- 19. นางสาววิลาสินี เลิศฤทธิพงศ์ ได้รับคัดเลือกเข้ารอบ 12 ทีมสุดท้าย โครงการ MU Design Thinking Workshop รับเงินรางวัล 5,000 บาท จัดโดยมหาวิทยาลัยมหิดล มิถุนายน-กันยายน 2560
- 20. Miss Chanaporn Tongphang นักศึกษาระดับปริญญาโท สาขา Materials Chemistry ได้รับรางวัล Best Poster Presentation Awards, จากงาน PACCON2017
- 21. Mr.Suparman นักศึกษาระดับปริญญาโท สาขา Analytical Chemistry ได้รับรางวัล Best Poster Presentation Awards, PACCON 2017
- 22. Miss Nadia Mira Kusumaningtyas นักศึกษาระดับปริญญาโท สาขา Applied Science ได้รับ รางวัล BEST ORAL Presentation, ASTC2018
- 23. Mr. Suparman นักศึกษาระดับปริญญาโท สาขา Analytical Chemistry ได้รับรางวัลการนำเสนอ ผลงานวิจัยดีเด่น ประเภทโปสเตอร์ จากการประชุมวิชาการนานาชาติ PERCH-CIC Congress X ณ โรงแรม จอมเทียนปาล์ม บีช พัทยา เมื่อวันที่ 7 กรกฎาคม 2561
- 24. นางสาวกานต์พิชชา อมรเจียรศักดิ์ ได้รับรางวัลการนำเสนอผลงานวิจัยดีเด่นแบบโปสเตอร์ รางวัลที่ 1 และได้รับเงินรางวัล 400 ปอนด์ นักศึกษาสาขาเคมี ชั้นปีที่ 4 เมื่อวันที่ 6 กันยายน 2561 ในงาน

- International Rubber Conference 2018 ณ เมืองกัวลาลัมเปอร์ ประเทศมาเลเซีย ระหว่างวันที่ 4-6 กันยายน 2561
- 25. นายทินพงศ์ วงค์ภักดี นักศึกษาสาขาเคมี ชั้นปีที่ 4 ภาควิชาเคมี อาจารย์ที่ปรึกษา รศ.ดร. ดวงใจ นาคะปรีชา ได้รับรางวัลนำเสนอโปสเตอร์ รางวัลที่ 1 และรางวัล Best Oral Presentation สาขา Inorganic and Analytical Chemistry จากการประชุม วทท. เยาวชน ครั้งที่ 13 จัดที่ BITEC ระหว่าง วันที่ 16-17 กรกฎาคม 2561 เมื่อวันที่ 17 กรกฎาคม 2561
- 26. นายธนากร กิตติกูล นักศึกษาสาขาเคมี ชั้นปีที่ 4 อาจารย์ที่ปรึกษา รศ.ดร. ศิริลตา ยศแผ่น ได้รับ รางวัล Best Oral Presentation สาขา Organic Chemistry จากการประชุม วทท. เยาวชน ครั้งที่
 13 จัดที่ BITEC ระหว่าง วันที่ 16-17 กรกฎาคม 2561 เมื่อวันที่ 17 กรกฎาคม 2561
- 27. นางสาวอัจฉราพรรณ ตันติปัญจพร นักศึกษาระดับปริญญาเอก สาขาเคมี ได้รับรางวัล Best Oral Presentation เรื่อง Highly selective fluorescent sensors for heavy metal detection and applications in bioimagingจาก งานประชุมวิชาการ Junior ICCEOCA-8/Junior ARNCEOCA-4 ประเทศสิงคโปร์ ระหว่างวันที่ 29-31 ตุลาคม 2561 เมื่อวันที่ 31 ตุลาคม 2561
- 28. นางสาวจิตรลัดดา ว่องปรีชา นักศึกษาปริญญาโท สาขาเคมี Advisor: Prof. Dr. Pramuan Tangboriboonrat ได้รับรางวัล Distinguished Thesis Award 2019 Title of Thesis: Synthesis of PMMA particle encircled with silver nanoparticles/chitosan for fabricating antibacterial natural rubber latex film จากบัณฑิตวิทยาลัย มหาวิทยาลัยมหิดล
- 29. นายชลพิสิฐ เกียรติเสวี นักศึกษาปริญญาโท หลักสูตรเคมี อาจารย์ที่ปรึกษา ผศ.ดร. ต่อศักดิ์ ล้วน ไพศาลนนท์ ได้รับรางวัลวิทยานิพนธ์ดี ประจำปี 2562 ผลงาน "CONJUGATE ADDITION OF AMINES INTO ALLENIC AND ACRYLIC ESTERS: CORRELATION WITH ANTIBACTERIAL ACTIVITY" จากบัณฑิตวิทยาลัย มหาวิทยาลัย มหิดล
- 30. นางสาว วราภรณ์ วิชัยต๊ะ นักศึกษาปริญญาโท สาขา Polymer chemistry and bio-based materials ที่ปรึกษา : ศ.ดร.ประมวล ตั้งบริบูรณ์รัตน์ ได้รับรางวัล Best oral presentation award PACCON 2019 หัวข้อ: Core-corona Polymer Particles via ARGET-ATRP and Their Behavior in Suspension เมื่อวันที่ 8 กุมภาพันธ์ 2562 จาก สมาคมเคมีแห่งประเทศไทย
- 31. นางสาว ลักษณา แสงดี นักศึกษาระดับปริญญาเอก สาขาวิทยาศาสตร์และเทคโนโลยีพอลิเมอร์ ที่ ปรึกษา : รศ.ดร. ปราณี ภิญโญชีพ ได้รับรางวัล Outstanding student poster award ในหัวข้อ เรื่อง "Improvement of Solvent, Oil and Weathering Resistances of Natural Rubber by Hydrogenation and Epoxidation Reactions" จากการประชุมวิชาการระดับนานาชาติ Pure and Applied Chemistry International Conference (PACCON 2019) ระหว่างวันที่ 7-8 กุมภาพันธ์ 2562 ณ ศูนย์นิทรรศการและการประชุมไบเทค บางนา

- 32. นายวสันต์ เทศสนั่น นักศึกษาระดับปริญญาเอก สาขาวิทยาศาสตร์และเทคโนโลยีพอลิเมอร์ ที่ ปรึกษา : รศ.ดร. ปราณี ภิญโญชีพ ได้รับรางวัล Outstanding student poster award ในหัวข้อ เรื่อง "Supercritical fluid state of CO2 for fabrication of microcellular natural rubber" จากการประชุมวิชาการระดับนานาชาติ Pure and Applied Chemistry International Conference (PACCON 2019) ระหว่างวันที่ 7-8 กุมภาพันธ์ 2562 ณ ศูนย์นิทรรศการและการ ประชุมไบเทค บางนา
- 33. นางสาวฐิตาพร สอนสะอาด นักศึกษาระดับปริญญาเอก สาขาเคมี อาจารย์ที่ปรึกษา รศ.ดร. ดวงใจ นาคะปรีชาได้รับรางวัลวิทยานิพนธ์นวัตกรรมดีเด่นประจำปี 2562 ระดับดี ผลงาน : เซนเซอร์ระนาบ เอนกประสงค์ชนิดขั้วไฟฟ้าไม่สัมผัสตัวอย่างสำหรับวัดค่าการนำไฟฟ้าพร้อมคุณลักษณะพิเศษเมื่อใช้ ร่วมกับวัสดุพรุนแบบแนบทำให้สารแขวนลอยไม่รบกวนการวัดเมื่อ วันที่ 19 มิถุนายน 2562 จาก บัณฑิตวิทยาลัย มหาวิทยาลัยมหิดล
- 34. นางสาวนิธิมา นาคทอง นักศึกษาปริญญาเอก สาขาวิทยาศาสตร์และวิศวกรรมวัสดุ อาจารย์ที่ปรึกษา รศ.ดร.ทวีชัย อมรศักดิ์ชัย ได้รับรางวัลวิทยานิพนธ์นวัตกรรมดีเด่น ประจำปี 2562 ระดับดี ผลงาน : พลาสติกย่อยสลายได้จากแป้งสับปะรด (Biodegradable plastic from pineapple stem starch) วันที่ 19 มิถุนายน 2562 จาก บัณฑิตวิทยาลัย มหาวิทยาลัยมหิดล
- 35. นายศุภภิศักดิ์ จตุรนต์รัศมี นักศึกษาปริญญาเอก หลักสูตรเคมีอินทรีย์ อาจารย์ที่ปรึกษา ศ.เกียรติคุณ ดร.วิชัย ริ้วตระกูล รางวัลวิทยานิพนธ์ดี ประจำปี 2562 ผลงาน : INVESTIGATIONS OF BIOACTIVE COMPOUNDS FROM GARCINIA NUNTASAENII NGERNS. & SUDDEE (CLUSIACEAE) วันที่ 19 มิถุนายน 2562 จาก บัณฑิตวิทยาลัย มหาวิทยาลัยมหิดล
- 36. นายไพฑูรย์ ประเสริฐยิ่ง นักศึกษาปริญญาเอก หลักสูตรเคมี ได้รับรางวัล การนำเสนอผลงานวิจัย ดีเด่น ประเภทโปสเตอร์ จากงาน PACCON2020 (Outstanding poster presentation Award) จากสมาคมเคมี และมหาวิทยาลัยธรรมศาสตร์ เมื่อวันที่ 13-14 ก.พ. 2563 ณ เมืองทองธานี
- 37. นางสาวอรณิชา ไข่เกษ นักศึกษาปริญญาเอก หลักสูตรเคมี ได้รับรางวัล การนำเสนอผลงานวิจัยดีเด่น ประเภทโปสเตอร์ จากงาน PACCON2020 (Outstanding poster presentation award winners) จากสมาคมเคมี และมหาวิทยาลัยธรรมศาสตร์ เมื่อวันที่ 13-14 ก.พ. 2563 ณ เมืองทองธานี
- 38. นางสาวณัฏฐ์นรี ฟูคณะ นักศึกษาปริญญาโท หลักสูตรเคมี ได้รับรางวัล การนำเสนอผลงานวิจัยดีเด่น ประเภทโปสเตอร์ จากงาน PACCON2020 (Outstanding poster presentation award) จาก สมาคมเคมี และมหาวิทยาลัยธรรมศาสตร์ เมื่อวันที่ 13-14 ก.พ. 2563 ณ เมืองทองธานี
- 39. นายทินพงศ์ วงค์ภักดี นักศึกษาปริญญาโท หลักสูตรเคมี ได้รับรางวัล การนำเสนอผลงานวิจัยดีเด่น ประเภทโปสเตอร์ จากงาน PACCON2020 (Outstanding poster presentation award) จาก สมาคมเคมี และมหาวิทยาลัยธรรมศาสตร์ เมื่อวันที่ 13-14 ก.พ. 2563 ณ เมืองทองธานี

รางวัลคณาจารย์

- 1. รศ. ดร.ชุติมา คูหากาญจน์ ได้รับรางวัลอาจารย์ตัวอย่างของคณะวิทยาศาสตร์ ปี 2559 (ระดับรอง ศาสตราจารย์ ศาสตราจารย์) เมื่อวันที่ 26 ธันวาคม 2559 จากสภาอาจารย์ คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล
- 2. ผศ.ดร. กาญจนา อุไรสินธว์ ได้รับรางวัล FIA Award for Younger Researcher 2016 เมื่อวันที่ 13 ตุลาคม 255จาก Japanese Association for Flow Injection Analysis (JAFIA)
- 3. รศ.ดร. วุฒิชัย เอื้อวิทยาศุภร ได้รับรางวัล CST Distinguished Young Chemist Award ประจำปี พ.ศ. 2559 สาขา เคมือนินทรีย์ เมื่อวันที่ 21 พฤศจิกายน 2559 จากสมาคมเคมีแห่งประเทศไทยใน พระอุปถัมภ์ของศาสตราจารย์ ดร.สมเด็จพระเจ้าลูกเธอ เจ้าฟ้าจุฬาภรณ์วลัยลักษณ์ อัครราชกุมารี
- 4. ผศ.ดร. เทียนทอง ทองพันชั่ง ได้รับรางวัลอาจารย์ตัวอย่าง ประจำปี 2559 (ระดับผู้ช่วยศาสตราจารย์) เมื่อวันที่ 26 ธันวาคม 2559 จากสภาคณาจารย์ มหาวิทยาลัยมหิดล
- 5. ผศ.ดร. พนิดา สุรวัฒนาวงศ์ ได้รับรางวัล 2017 TRF-OHEC-Scopus Young Researcher Awards สาขาChemical & Pharmaceutical Sciences (Including Chemical Engineering) เมื่อวันที่ 11 มกราคม2560 จากสำนักงานกองทุนสนับสนุนการวิจัย (สกว.)
- 6. รศ. ดร.ศิวพร มีจู สมิธ ได้รับทุน Endeavour Executive Fellowship 2017 จากรัฐบาลออสเตรเลีย เมื่อวันที่ 24 กุมภาพันธ์ 2560 Endeavour Scholarships and Fellowships ของรัฐบาล ออสเตรเลีย ภายใต้การดูแลของกระทรวงศึกษาและฝึกอบรม ประเทศออสเตรเลีย
- 7. รศ.ดร. ชุติมา คูหากาญจน์ ได้รับรางวัลนักวิจัยที่มีผลงานวิจัยที่ได้รับการตีพิมพ์สูงสุด ในพ.ศ. 2557-2558 จากฐานข้อมูล WOC เมื่อเดือนสิงหาคม 2560 จากคณะกรรมการตัดสินรางวัลคุณภาพและ ปริมาณการตีพิมพ์ผลงานวิจัย ในวารวิชาการระดับนานาชาติ ในรูปแบบเอกสารวิชาการ ของ มหาวิทยาลัยมหิดล ประจำปี 2559
- 8. ศ.ดร. ประมวล ตั้งบริบูรณ์รัตน์ ได้รับรางวัลนักวิจัยที่มีผลงานวิจัยที่ได้รับการตีพิมพ์สูงสุด ในพ.ศ. 2557-2558 จากฐานข้อมูล SCOPUS เมื่อเดือน สิงหาคม 2560 จากคณะกรรมการตัดสินรางวัล คุณภาพและปริมาณการตีพิมพ์ผลงานวิจัย ในวารวิชาการระดับนานาชาติ ในรูปแบบเอกสารวิชาการ ของมหาวิทยาลัยมหิดล ประจำปี 2559
- 9. ผศ.ดร. ดรุณี สู้รักรัมย์ ได้รับรางวัลนักวิจัยที่มีผลงานวิจัยที่ได้รับการตีพิมพ์สูงสุด ในพ.ศ. 2557-2558 จากฐานข้อมูล SCOPUS เมื่อเดือน สิงหาคม 2560 จากคณะกรรมการตัดสินรางวัลคุณภาพและ ปริมาณการตีพิมพ์ผลงานวิจัย ในวารวิชาการระดับนานาชาติ ในรูปแบบเอกสารวิชาการ ของ มหาวิทยาลัยมหิดล ประจำปี 2559
- 10.รศ.ดร. เทียนทอง ทองพันชั่ง ได้รับรางวัลอาจารย์ดีเด่นแห่งชาติ ปอมท. ประจำปี 2560 เมื่อวันที่ 21 สิงหาคม 2560จากที่ประชุมประธานสภาอาจารย์มหาวิทยาลัยแห่งประเทศไทย สำนักงาน คณะกรรมการการอุดมศึกษา

- 11. รศ.ดร. พสิษฐ์ ภควัชร์ภาณุรัตน์ ได้รับรางวัลอาจารย์ตัวอย่าง ระดับอาจารย์ ผู้ช่วยศาสตราจารย์ ประจำปี 2560เมื่อวันที่ 15 พฤศจิกายน 2560 จากคณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล
- 12. รศ.ดร. ทวีชัย อมรศักดิ์ชัย ได้รับรางวัลอาจารย์ตัวอย่าง ระดับรองศาสตราจารย์ ศาสตราจารย์ ประจำปี 2560เมื่อวันที่ 15 พฤศจิกายน2560 จากคณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล
- 13. รศ.ดร. วุฒิชัย เอื้อวิทยาศุภร ได้รับรางวัล 2018 TRF-OHEC-Scopus Young Researcher Award สาขา Chemical & Pharmaceutical Sciences (Including Chemical Engineering) เมื่อวันที่ 10 มกราคม 2561 จากสำนักงานกองทุนสนับสนุนการวิจัย (สกว.) ร่วมกับ สำนักพิมพ์ Elsevier
- 14. รศ. ดร. ชุติมา คูหากาญจน์ ได้รับรางวัล 2018 TRF-OHEC-Clarivate Analytics Research

 Excellence Award จากสำนักงานกองทุนสนับสนุนการวิจัย (สกว.) ร่วมกับ บริษัท Clarivate

 Analytics และ ได้รับรางวัลอาจารย์ตัวอย่าง ประจำปี 2560 ของสภาคณาจารย์ มหาวิทยาลัยมหิดล
 เมื่อวันที่ 10 มกราคม 2561
- 15. รศ.ดร. พลังพล คงเสรี เป็น 1 ใน 100 คนที่ได้รับเลือกให้ลงหนังสือร้อยคนไทยหัวใจนวัตกรรม (100 Faces of Thailand's Innovation Inspirers) เพื่อนำเสนอชีวิตและการเดินทางของความคิด สร้างสรรค์ของ นวัตกรไทย จากหลากหลายอาชีพและประสบการณ์เพื่อสร้างแรงบันดาลใจให้กับคน ไทย เมื่อเดือน มกราคม 2561 จากสำนักงานนวัตกรรมแห่งชาติ
- 16. ศ.ดร. จิตต์ลัดดา ศักดาภิพาณิชย์ ได้รับรางวัล การนำเสนอผลงานวิจัยดีเด่น แบบโปสเตอร์ ในงาน ประชุมวิชาการระดับนานาชาติ The 15th Pacific Polymer Conference 2017 Xiamen, China
- 17. รศ.ดร.ธรรมสิทธิ์ วงศ์เศรษฐสกุล ได้รับรางวัล Polymer Society of Thailand (PST) Rising Star 2018 โดย สมาคมโพลิเมอร์แห่งประเทศไทย
- 18. รศ.ดร. พลังพล คงเสรี ได้รับรางวัล Pitching : LIVE SCIENCE STARTUP SHOWCASE งาน
 Startup Thailand 2018 Pitching : LIFE SCIENCE STARTUP SHOWCASE จากงาน STARTUP
 THAILAND 2018 ศูนย์การประชุมแห่งชาติสิริกิติ์
- 19. ผศ.ดร. สุภา วิรเศรษฐ์ (ผู้อำนวยการแผนงานวิจัย) และ รศ.ดร. พันธ์ญา สุนินทบูรณ์ (หัวหน้า โครงการย่อยที่ 2) ได้รับรางวัล ผลงานวิจัยดีเด่น สกว.ปี 2560 (ผลงานด้านนโยบาย) หัวข้อ การวิจัย เพื่อพัฒนามาตรฐาน ผลิตภัณฑ์ยางไทยระดับระหว่างประเทศ ในงานพิธีมอบรางวัลผลงานวิจัยเด่น สกว. ประจำปี 2560 ห้องบอลรูม 1-2 โรงแรมสวิสโซเทล เลอ คองคอร์ด กรุงเทพฯ สำนักงาน กองทุนสนับสนุนการวิจัย (สกว.)
- 20. ศ.ดร. จิตต์ลัดดา ศักดาภิพาณิชย์ ได้รับรางวัล การนำเสนอผลงานวิจัยดีเด่น แบบโปสเตอร์ เรื่อง
 Preparation of TiO2 film as nanocatalyst for functionalization of styrene-Butadiene
 Rubber งานประชุมวิชาการระดับนานาชาติ The 24th World Congress on Naonomaterials
 and Nanotecnmology 2018. , Indian Institute of Technology kharagpur, India

- 21. ผลงานวิจัยของ รศ.ดร.ชุติมา คูหากาญจน์และคณะ ได้รับการคัดเลือกลงปก (Cover Feature) วารสาร Asian Journal of Organic Chemistry (Asian JOC)
- 22. ผลงานวิจัยของ รศ.ดร.ชุติมา คูหากาญจน์และคณะ ได้รับการคัดเลือกเป็น highlight ในวารสาร Synthesis
- 23. รศ.ดร.พลังพล คงเสรี ได้รับรางวัลอาจารย์ตัวอย่าง ระดับรองศาสตราจารย์ -ศาสตราจารย์ ของ คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล ประจำปี 2561 เมื่อวันที่ 20 กันยายน 2561
- 24. รศ.ดร. พนิดา สุรวัฒนาวงศ์ ได้รับรางวัลพนักงานมหาวิทยาลัยดีเด่น คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล ประเภท ตำแหน่งด้านวิชาการ มีระยะเวลาปฏิบัติงานติดต่อกันไม่เกิน 10 ปี เมื่อ วันที่ 21 พฤศจิกายน 2561
- 25. ผศ.ดร. ศิริลตา ยศแผ่น ได้รับ รางวัล CST Distinguished Young Chemist Award 2018 (สาขา เคมีอินทรีย์) เมื่อวันที่ 11 ธันวาคม 2561 จาก สมาคมเคมีแห่งประเทศไทยในพระอุปถัมภ์ของ ศาสตราจารย์ ดร.สมเด็จพระเจ้าลูกเธอ เจ้าฟ้าจุฬาภรณวลัยลักษณ์ อัครราชกุมารี
- 26. รศ.ดร. วุฒิชัย เอื้อวิทยาศุภร ได้รับรางวัล Shimadzu-CST Young Chemist Award 2018 เมื่อ วันที่ 11 ธันวาคม 2561 จากสมาคมเคมีแห่งประเทศไทยในพระอุปถัมภ์ของศาสตราจารย์ ดร. สมเด็จพระเจ้าลูกเธอ เจ้าฟ้าจุฬาภรณวลัยลักษณ์ อัครราชกุมารี
- 27. รศ.ดร. วุฒิชัย เอื้อวิทยาศุภร ได้รับรางวัล 2019 TRF-OHEC-Scopus Research Awards for Mid-career Scholar ในสาขา Physical Sciences เมื่อวันที่ 11 มกราคม 2562 ในงานประชุม นักวิจัยรุ่นใหม่ พบเมธีวิจัยอาวุโส สกว. ครั้งที่ 18 ณ โรงแรม เดอะรีเจนท์ ชะอำ บีช รีสอร์ท จังหวัด เพชรบุรี
- 28. อ.ดร. ธีรา ฉันทโรจน์ศิริ ได้รับรางวัลวิทยานิพนธ์ ระดับดี เรื่อง "การศึกษาผลของการเปลี่ยนแปลง ทางอิเล็คทรอนิคส์ของ สารประกอบเชิงซ้อนของเหล็กซึ่งเป็นแบบจำลอง จากเอนไซม์ต่อการเพิ่ม ประสิทธิภาพในการทำปฏิกิริยากับสารเคมีโมเลกุลเล็ก" เมื่อวันที่ 2 กุมภาพันธ์ 2562 ในงานวันนัก ประดิษฐ์ ประจำปี 2562 ณ ศูนย์นิทรรศการและการประชุมไบเทค บางนา กรุงเทพฯ
- 29. ผศ.ดร. โศรยา พรสุวรรณ ได้รับโลห์รางวัล ห้องปฏิบัติการต้นแบบด้านมาตรฐานความปลอดภัยใน ห้อง ปฏิบัติการที่เกี่ยวข้องกับสารเคมี ตามมาตรฐาน ESPRel ห้องปฏิบัติการ C607 ภาควิชาเคมี คณะวิทยาศาสตร์ เมื่อวันที่ 12 พฤษภาคม 2562 จากมหาวิทยาลัยมหิดล
- 30. อ.ดร. ธีรา ฉันทโรจน์ศิริ ได้รับรางวัลผลงานตีพิมพ์คุณภาพดีเยี่ยม กลุ่มที่ 3 (The Best Paper Award) เมื่อวันที่ 13 มิถุนายน 2562 จากสถาบันส่งเสริมการสอนวิทยาศาสตร์และเทคโนโลยี (สสวท.)
- 31. รองศาสตราจารย์ ดร.ทวีชัย อมรศักดิ์ชัย ได้รับรางวัลอาจารย์ดีเด่นแห่งชาติ สาขาวิทยาศาสตร์และ เทคโนโลยีจากที่ประชุมสภาอาจารย์มหาวิทยาลัยแห่งประเทศไทย (ปอมท.) เมื่อวันที่ 24 กรกฎาคม 2562 จากสำนักงานปลัดกระทรวงการอุดมศึกษา วิทยาศาสตร์ วิจัยและนวัตกรรม

- 32. รองศาสตราจารย์ ดร. พนิดา สุรวัฒนาวงศ์ ได้รับรางวัล ทุนวิจัยลอรีอัล ประเทศไทย เพื่อสตรีในงาน วิทยาศาสตร์ ประจำปี 2562 สาขาวิชาวิทยาศาสตร์กายภาพ เมื่อวันที่ 9 กันยายน 2562 จากบริษัท ลอรีอัล (ประเทศไทย) จำกัด ในงานแถลงข่าวผลการคัดเลือกและพิธีมอบทุนโครงการ "วิจัยลอรีอัล ประเทศไทย เพื่อสตรีในงานวิทยาศาสตร์ ประจำปี 2562" ห้อง แกรนด์บอลรูม โรงแรมแกรนด์ ไฮ แอต เอราวัณ กรุงเทพฯ
- 33. รองศาสตราจารย์ ดร. ศิริลตา ยศแผ่น ได้รับรางวัล ทุนวิจัยลอรีอัล ประเทศไทย เพื่อสตรีในงาน วิทยาศาสตร์ ประจำปี 2562 สาขาวิชาวิทยาศาสตร์กายภาพ เมื่อวันที่ 9 กันยายน 2562 จากบริษัท ลอรีอัล (ประเทศไทย) จำกัด ในงานแถลงข่าวผลการคัดเลือกและพิธีมอบทุนโครงการ "วิจัยลอรีอัล ประเทศไทย เพื่อสตรีในงานวิทยาศาสตร์ ประจำปี 2562" ห้อง แกรนด์บอลรูม โรงแรมแกรนด์ ไฮ แอต เอราวัณ กรุงเทพฯ
- 34. รองศาสตราจารย์ ดร.พลังพล คงเสรี ได้รับรางวัลอาจารย์ตัวอย่างระดับรองศาสตราจารย์ ประจำปี พ.ศ. 2562 เมื่อวันที่ 17 กันยายน 2562 จากสภาคณาจารย์ มหาวิทยาลัยมหิดล
- 35. ผู้ช่วยศาสตราจารย์ ดร.จงกล ตันติรุ่งโรจน์ชัย ได้รับรางวัลอาจารย์ตัวอย่างระดับผู้ช่วยศาสตราจารย์ ประจำปี พ.ศ. 2562 เมื่อวันที่ 18 กันยายน 2562จากสภาอาจารย์ คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล
- 36. รองศาสตราจารย์ ดร. ศิริลตา ยศแผ่น ได้รับรางวัล CST Citation Award 2019 เมื่อวันที่ 15 ธันวาคม 2562 จากสมาคมเคมีแห่งประเทศไทยในพระอุปถัมน์ของศาสตราจารย์ ดร. สมเด็จพระเจ้า น้องนางเธอ เจ้าฟ้าจุฬาภรณวลัยลักษณ์ อัครราชกุมารี กรมพระศรีสวางควัฒน วรชชัตติยราชนารี

การเชื่อมโยงกับต่างประเทศ เช่น การส่งนักศึกษาไปทำงานวิจัยในสถาบันต่างประเทศ, การร่วมมือทำงาน วิจัย

คณาจารย์

- 1. รศ.ดร. ชุติมา คูหากาญจน์ และ ผศ.ดร. ดรุณี สู้รักรัมย์ เดินทางไปเข้าร่วมประชุมวิชาการและ บรรยายวิชาการ Molecular iodine mediated synthesis of sulfonylindoles and sulfanylinoles เรื่อง Asymmetric synthesis of lignans และปรึกษางานวิจัย ณ Department of Organic Chemistry, Stockholm University, KTH Royal Institute of Technology ประเทศ ราชอาณาจักรสวีเดน 2-10 กุมภาพันธ์ 2561
- 2. ศ.ดร. ประมวล ตั้งบริบูรณ์รัตน์ เดินทางเข้าร่วมประชุม 6th Asian Symposium on Emulsion Polymerization and Functional Polymeric Microspheres (ASEPFEM 6) ณ University of Fukui ประเทศญี่ปุ่น 6-11 มีนาคม 2561
- 3. รศ.ดร. เอกสิทธิ์ สมสุข และ ผศ.ดร. สุภาวดี เกียรติเสวี เดินทางไปปรึกษางานวิจัยด้าน Olefin Polymerization ณ Zhejiang University ประเทศสาธารณรัฐประชาชนจีน 11-17 มีนาคม 2561
- 4. ผศ.ดร. สุภาวดี เกียรติเสวี เดินทางไปปรึกษางานวิจัยด้าน เซลล์แสงอาทิตย์ ณ Fuzhou University ประเทศสาธารณรัฐประชาชนจีน 25-31 มีนาคม 2561
- 5. รศ.ดร. เอกสิทธิ์ สมสุข เดินทางไปเยี่ยมชมห้องปฏิบัติการและเรียนรู้เกี่ยวกับเครื่องมือที่ใช้ในงานวิจัย ทางด้าน Biorefinery Japan 3 -7 เมษายน 2561
- 6. รศ.ดร. ศิวพร มีจู สมิธ เดินทางเข้าร่วมประชุมวิชาการนานาชาติ Going Global 2018 Kuala Lumpur, Malasia 1-4 พฤษภาคม 2561
- 7. ศ.ดร. วิชัย ริ้วตระกูล เดินทางไปเข้าร่วมประชุมวิชาการ Scientific Advisory Committee

 Meeting International Foundation for Science (IFS) เมือง Lund, Sweden 23-28 พฤษภาคม
 2561
- 8. รศ.ดร. ชุติมา คูหากาญจน์ และ รศ.ดร. วุฒิชัย เอื้อวิทยาศุภร เดินทางไปสร้างความร่วมมือและ แลกเปลี่ยนประสบการณ์กับหน่วยงานต่างประเทศเพื่อสร้างเครือข่ายและพัฒนาศักยภาพของนักวิจัย International Institute for Management Development (IMD), Swiss Federal Institute of Technology in Zurich: ETH Zurich และ Swiss Federal Institite of Technology in Lausanne: EPFL ประเทศสมพันธรัฐสวิส 24 -30 พฤษภาคม 2561
- 9. ศ.ดร. จิตต์ลัดดา ศักดาภาพาณิชย์ เดินทางไปปรึกษางานวิจัยและความร่วมมืออื่นๆ ที่ทำร่วมกัน ระหว่างมหิดลกับ Nagaoka University of Technology Department of Chemistry, Faculty of Engineering, Nagaoka University of Technology, Japan 28 -31 พฤษภาคม 2561

- 10. ผศ.ดร. จงกล ตันติรุ่งโรจน์ชัย ร่วมประชุมวิชาการนานาชาติ 14th edition of the International Conference of Renewable Resources & Biorefineries Het Pand, เมือง Ghent ประเทศ ราชอาณาจักรเบลเยี่ยม 29 พฤษภาคม -2 มิถุนายน 2561
- 11. รศ.ดร. เอกสิทธิ์ สมสุข ร่วมประชุมวิชาการนานาชาติ 14th International Conference o Renewable Resources & Biorefineries Het Pand, เมือง Ghent ประเทศราชอาณาจักรเบลเยี่ยม 30 พฤษภาคม 2561-2 มิถุนายน 2561
- 12. รศ.ดร. ปราณี ภิญโญชีพ เดินทางไปปรึกษางานวิจัยและติดตามความก้าวหน้าของนักศึกษาไทยในการ ทำวิจัยในต่างประเทศ Le Mans University, France 28 มิถุนายน 2561-17 กรกฎาคม 2561
- 13. รศ.ดร. เอกสิทธิ์ สมสุข เดินทางเข้าร่วมประชุมวิชาการ The Tenth International symposium on Nano and Supramolecular chemistry with a special focus on f-block Elements hosted at Dresden (10th ISNSC) ประเทศสหพันธรัฐเยอรมนี 8 -13 กรกฎาคม 2561
- 14. รศ.ดร. วุฒิชัย เอื้อวิทยาศุภร เข้าร่วมประชุมในฐานะวิทยากรในการประชุม The tenth
 International symposium on Nano and Supramolecular Chemistry with a special focus
 on f-block Elements hosted, Technische Universitat Dresden, Germany 8 กรกฎาคม
 2561 13 กรกฎาคม 2561
- 15. ผศ.ดร. จงกล ตันติรุ่งโรจน์ชัย และ ผศ.ดร. สุภาวดี เกียรติเสวี เดินทางไปปรึกษางานวิจัยเรื่อง ตัวเร่ง ปฏิกิริยาที่ใช้ในการผลิต Polypropylene Naple University ประเทศอิตาลี 8 กรกฎาคม 2561-12 กรกฎาคม 2561
- 16. รศ.ดร. เอกสิทธิ์ สมสุข เดินทางไปเข้าร่วมประชุม International Conference on Organometallic Chemistry (ICOMC 2018) เมือง Florence ประเทศอิตาลี 14 กรกฎาคม 2561-21 กรกฎาคม 2561
- 17. รศ.ดร. เอกสิทธิ์ สมสุข ได้รับมอบหมายเป็น Steering Committee เป็นผู้แทนประเทศไทยไปแข่งขัน เคมีโอลิมปิกระหว่างประเทศ ปี 2561 กรุงบราติสลา สาธารณรัฐสโกวัก และกรุงปราก สาธารณรัฐเช็ก 19-29 กรกฎาคม 256
- 18. รศ.ดร. เทียนทอง ทองพันชั่ง เดินทางไปเข้าร่วมประชุม 6th Asian Network for Natural and Unnatural Materials และเสนอผลงานวิจัยแบบปากเปล่าเรื่อง Chiral Derivatizing Agents with Constrained Aromatic Residue for NMR Shift Difference Mothod เมืองกิฟุ ประเทศญี่ปุ่น 27 กรกฎาคม 2561- 28 สิงหาคม 2561
- 19. ผศ.ดร. พนิดา สุรวัฒนาวงศ์ ร่วมประชุมวิชาการนานาชาติ 43th International conference on Coordination Chemistry (ICCC 2018) และเสนอผลงานวิจัยแบบปากเปล่า เรื่อง Mechanisms of C-O and H2 Activation : Density Functional Study Sendai Japan 30 กรกฎาคม 2561-4 สิงหาคม 2561

- 20. รศ.ดร. เทียนทอง ทองพันชั่ง เดินทางไปเข้าร่วมโครงการ Asian Scinece Camp 2018 เมืองมานาโด ซูลาเวซีเหนือ ประเทศอินโดนีเซีย 3 -9 สิงหาคม 2561
- 21. รศ.ดร. วุฒิชัย เอื้อวิทยาศุภร เดินทางไปเข้าร่วมประชุมวิชาการนานาชาติ The 256th ACS national Meeting และเสนอผลงานวิจัยเรื่อง Silsesquioxane cages: Syntheses and applications เมือง บอสตัน รัฐแมสซาซูเซตส์ ประเทศ สหรัฐอเมริกา 19 สิงหาคม 2561-23 สิงหาคม 2561
- 22. รศ.ดร. เอกสิทธิ์ สมสุข เดินทางเข้าร่วมประชุมวิชาการ 16th ICCDU 2018 Conference เมืองริโอ เดอจาเนโอ ประเทศบราซิล 27 สิงหาคม 2561-30 สิงหาคม 2561
- 23. ศ.ดร. วิชัย ริ้วตระกูล เดินทางไปเข้าประชุมเพื่อแลกเปลี่ยนเรียนรู้แนวปฏิบัติที่ดีเป็นมาตรฐานสากล เกี่ยวกับระบบการประเมินคุณภาพการศึกษาของประเทศญี่ปุ่น ณ National Institute for Academic Degrees and Quality Enhancement of Higher Education (NIAD-QE) และ Japan University Accreditation Association (JUAA) ระหว่างวันที่ 1 ตุลาคม 2561 4 ตุลาคม 2561
- 24. รศ.ดร. พันธ์ญา สุนินทบูรณ์ เดินทางไปปรึกษางานวิจัย ณ Inha University College of Medicine, Incheon, South Korea ระหว่างวันที่ 15 ตุลาคม 2561 21 ตุลาคม 2561 จำนวน 7 วัน
- 25. ศ.ดร. วิชัย ริ้วตระกูล เดินทางไปเข้าประชุมเพื่อแลกเปลี่ยนเรียนรู้แนวปฏิบัติที่ดีเป็นมาตรฐานสากล เกี่ยวกับระบบการประเมินคุณภาพการศึกษาของสหราชอาณาจักรและหารือแผนกิจกรรมความร่วมมือ ด้านการประเมินคุณภาพการศึกษา ณ Quality Assurance Agency (QAA) 2. Higher Education Statistics Agency (HESA) 3. Office for Standards in Education, Children's Services and skill (Ofsted) กรุง London, UK และ เมือง Stockholm ประเทศราชอาณาจัรสวีเดน ระหว่างวันที่ 21 ตุลาคม 2561 24 ตุลาคม 2561
- 26. ศ.ดร. จิตต์ลัดดา ศักดาภิพาณิชย์ ได้รับเชิญเพื่อเดินทางไปปรึกษางานวิจัยและความร่วมมืออื่นๆ ณ Japan far Infrared Rays Association (JIRA) ระหว่างวันที่ 28 ตุลาคม 2561 - 3 พฤศจิกายน 2561 จำนวน 7 วัน
- 27. ศ.ดร. ปทุมรัตน์ ตู้จินดา เดินทางเข้าร่วมประชุมวิชาการ The 7th International Conference on Natural Products (NATPR07) ณ เมือง Gyenongju ประเทศสาธารณรัฐเกาหลี ระหว่างวันที่ 17 ตุลาคม 2561- 22 ตุลาคม 2561 จำนวน 6 วัน
- 28. ผศ.ดร.จงกล ตันติรุ่งโรจน์ชัย เดินทางไปเข้าร่วมประชุม 8th Nordic Wood Biorefinery

 Confernce NWBC 2018 Conference in Helsinki, Finland ประเทศสาธารณรัฐฟินแลนด์
 ระหว่างวันที่ 22 ตุลาคม 2561-25 ตุลาคม 2561 จำนวน4 วัน
- 29. รศ.ดร. เอกสิทธิ์ สมสุข เดินทางไปเข้าร่วมประชุม 8th Nordic Wood Biorefinery Confernce NWBC 2018 Conference in Helsinki, Finland ประเทศสาธารณรัฐฟินแลนด์ ระหว่างวันที่ 22 ตุลาคม 2561 25 ตุลาคม 2561 จำนวน 4 วัน

- 30. รศ.ดร. เอกสิทธิ์ สมสุข เดินทางไปเยี่ยมชมสถาบันและปรึกษางานวิจัย ณ Japan Advanced Institute of School of Science and Technology, Japan ระหว่างวันที่ 30 ตุลาคม 2561- 4 พฤศจิกายน 2561 จำนวน 6 วัน
- 31. ผศ.ดร.สุภาวดี เกียรติเสวี เดินทางไปเยี่ยมชมสถาบันและปรึกษางานวิจัย ณ Japan Advanced Institute of School of Science and Technology, Japan ระหว่างวันที่ 30 ตุลาคม 2561 4 พฤศจิกายน 2561 จำนวน 6 วัน
- 32. ผศ.ตร. อัญรัตน์ วัฒนพานิช ได้รับเชิญให้เข้าร่วมอบรมในโครงการ Research Exchange Program on Synthesis Environment-Friendly Materials Derived form Natural Resource in ASEAN Region ณ Nakoya University, Japan ระหว่างวันที่ 6 พฤศจิกายน 2561 11 พฤศจิกายน 2561 จำนวน 11 วัน
- 33. อ.ดร. ธีรา ฉันทโรจน์ศิริ เดินทางเข้าร่วมโครงการ Sakura Exchange Program in Science ณ Graguate school of Engineering, Osaka University, Japan ระหว่างวันที่ 24 พฤศจิกายน 2561 - 1 ธันวาคม 2561 จำนวน 8 วัน
- 34. รศ.ดร. วุฒิชัย เอื้อวิทยาศุภร เดินทางไปเป็นวิทยากรการประชุม The 12th SPSJ International Polymer Conference (IPC2018) ณ Tokyo Institute of Technology, Japan ระหว่างวันที่ 3 ชั้นวาคม 2561 8 ชั้นวาคม 2561 จำนวน 7 วัน
- 35. รศ.ดร.พนิดา สุรวัฒนาวงศ์ เดินทางไปเยี่ยมชมห้องปฏิบัติการและพูดคุยแลกเปลี่ยนงานวิจัย ณ GUNMA University, Japan ระหว่างวันที่ 17 ธันวาคม 2561 25 ธันวาคม 2561 จำนวน 9 วัน
- 36. รศ.ดร. วุฒิชัย เอื้อวิทยาศุภร เดินทางไปเยี่ยมชมห้องปฏิบัติการและพูดคุยแลกเปลี่ยนงานวิจัย ณ GUNMA University, Japan ระหว่างวันที่ 17 ธันวาคม 2561 25 ธันวาคม 2561 จำนวน 9 วัน
- 37. อ.ดร.สุอาวี สนิทศิริวัฒน์ เดินทางไปเยี่ยมชมห้องปฏิบัติการและพูดคุยแลกเปลี่ยนงานวิจัย ณ GUNMA University, Japan ระหว่างวันที่ 17 ธันวาคม 2561 25 ธันวาคม 2561 จำนวน 9 วัน
- 38. อ.ดร. ธีรา ฉันทโรจน์ศิริ เดินทางไปเยี่ยมชมห้องปฏิบัติการและพูดคุยแลกเปลี่ยนงานวิจัย ณ GUNMA University, Japan ระหว่างวันที่ 17 ธันวาคม 2561 25 ธันวาคม 2561 จำนวน 9 วัน
- 39. อ.ดร. ธัญชนก รัตน์วิจิตต์เวช เดินทางไปเยี่ยมชมห้องปฏิบัติการและพูดคุยแลกเปลี่ยนงานวิจัย ณ GUNMA University, Japan ระหว่างวันที่ 17 ธันวาคม 2561 25 ธันวาคม 2561 จำนวน 9 วัน
- 40. อ.ดร.ต่อศักดิ์ ล้วนไพศาลนนท์ เดินทางไปเยี่ยมชมห้องปฏิบัติการและพูดคุยแลกเปลี่ยนงานวิจัย ณ GUNMA University, Japan ระหว่างวันที่ 17 ธันวาคม 2561 25 ธันวาคม 2561 จำนวน 9 วัน
- 41. ศ.ดร. วิชัย ริ้วตระกูล เดินทางไปดูงานและสร้างเครือข่ายการวิจัยระดับนานาชาติในแถบเอเซีย ตะวันออกเฉียงใต้ ณ 1. Vietnam Acedemy of Science and Technology 2. HoChi Minh City University of Technology 3. Hanoi University of Science เมืองฮานอยและโอจิมินห์ ประเทศ สาธารณรัฐสังคมนิยมเวียตนาม ระหว่างวันที่ 15 ธันวาคม 2561 20 ธันวาคม 2561 จำนวน 5 วัน

- 42. รศ.ดร. พสิษฐ์ ภควัชร์ภาณุรัตน์ เดินทางไปดูงานและสร้างเครือข่ายการวิจัยระดับนานาชาติในแถบ เอเซียตะวันออกเฉียงใต้ ณ 1. Vietnam Acedemy of Science and Technology 2. HoChi Minh City University of Technology 3. Hanoi University of Science เมืองฮานอยและโอจิ มินห์ ประเทศสาธารณรัฐสังคมนิยมเวียตนาม ระหว่างวันที่ 15 ธันวาคม 2561 20 ธันวาคม 2561 จำนวน 5 วัน
- 43. อ.ดร.ต่อศักดิ์ ล้วนไพศาลนนท์ เดินทางไปดูงานและสร้างเครือข่ายการวิจัยระดับนานาชาติในแถบ เอเซียตะวันออกเฉียงใต้ ณ 1. Vietnam Acedemy of Science and Technology 2. HoChi Minh City University of Technology 3. Hanoi University of Science เมืองฮานอยและโอจิ มินห์ ประเทศสาธารณรัฐสังคมนิยมเวียตนาม ระหว่างวันที่ 15 ธันวาคม 2561 20 ธันวาคม 2561 จำนวน 5 วัน
- 44. รศ.ดร. ชุติมา คูหากาญจน์ เดินทางไปดูงานและสร้างเครือข่ายการวิจัยระดับนานาชาติในแถบเอเซีย ตะวันออกเฉียงใต้ ณ 1. Vietnam Acedemy of Science and Technology 2. HoChi Minh City University of Technology 3. Hanoi University of Science เมืองฮานอยและโอจิมินห์ ประเทศ สาธารณรัฐสังคมนิยมเวียตนาม ระหว่างวันที่ 15 ธันวาคม 2561 20 ธันวาคม 2561 จำนวน 5 วัน
- 45. รศ.ดร. ดรุณี สู้รักรัมย์ เดินทางไปดูงานและสร้างเครือข่ายการวิจัยระดับนานาชาติในแถบเอเซีย ตะวันออกเฉียงใต้ ณ 1. Vietnam Acedemy of Science and Technology 2. HoChi Minh City University of Technology 3. Hanoi University of Science เมืองฮานอยและโอจิมินห์ ประเทศ สาธารณรัฐสังคมนิยมเวียตนาม ระหว่างวันที่ 15 ธันวาคม 2561 20 ธันวาคม 2561 จำนวน 5 วัน
- 46. ผศ.ดร. ชุติมา เจียรพินิจนันท์ เดินทางไปดูงานและสร้างเครือข่ายการวิจัยระดับนานาชาติในแถบเอเชีย ตะวันออกเฉียงใต้ ณ 1. Vietnam Acedemy of Science and Technology 2. HoChi Minh City University of Technology 3. Hanoi University of Science เมืองฮานอยและโอจิมินห์ ประเทศ สาธารณรัฐสังคมนิยมเวียตนาม ระหว่างวันที่ 15 ธันวาคม 2561 20 ธันวาคม 2561 จำนวน 5 วัน
- 47. รศ.ดร. เอกสิทธิ์ สมสุข เดินทางไปร่วมประชุมวิชาการเรื่อง Euro-Asian Collaboration for Enhancing STEM Education ณ Uppsala University, Ho Chi Minh, Veitnam ระหว่างวันที่ 25 กุมภาพันธ์ 2562 - 27 กุมภาพันธ์ 2562 จำนวน 3 วัน
- 48. รศ.ดร. ชุติมา คูหากาญจน์ ได้รับเชิญให้ไปเยี่ยมชมห้องปฏิบัติการและนำเสนอผลงานวิจัยแบบ บรรยายที่สถาบัน Ecole Polytechique, France และ Chemistry Department of Ludwig Maximilian University, Germany เมื่อวันที่ 15 มีนาคม 2562 ถึง 25 มีนาคม 2562 รวมจำนวน 11 วัน
- 49. รศ.ดร. ดรุณี สู้รักรัมย์ ได้รับเชิญให้ไปเยี่ยมชมห้องปฏิบัติการและนำเสนอผลงานวิจัยแบบบรรยายที่ สถาบัน Ecole Polytechique, France และ Chemistry Department of Ludwig Maximilian University, Germany เมื่อวันที่ 15 มีนาคม 2562 ถึง 25 มีนาคม 2562 รวมจำนวน 11 วัน

- 50. อ.ดร. ปวเรศร์ เหลียววนวัฒน์ได้รับเชิญให้ไปเยี่ยมชมห้องปฏิบัติการและนำเสนอผลงานวิจัยแบบ บรรยายที่สถาบัน Ecole Polytechique, France และ Chemistry Department of Ludwig Maximilian University, Germany เมื่อวันที่ 15 มีนาคม 2562 ถึง 25 มีนาคม 2562 รวมจำนวน 11 วัน
- 51. ศ.ดร. จิตต์ลัดดา ศักดาภิพาณิชย์ ได้รับเชิญให้ไปปรึกษางานวิจัยที่ทำร่วมกัน ที่ Kyushuu University, JAPAN เมื่อวันที่ 17 มีนาคม 2562 ถึง 22 มีนาคม 2562 รวมจำนวน 5 วัน
- 52. รศ.ดร. ปราณี ภิญโญชีพ ได้รับเชิญให้ไป บรรยายวิชาการ ที่ Chonbuk National University, korea วันที่ 23 มีนาคม 2562 ถึง 24 มีนาคม 2562 รวมจำนวน 2 วัน
- 53. อ.ดร. ธีรา ฉันทโรจน์ศิริ เดินทางไปร่วมประชุมวิชาการ เรื่อง Cyclic Voltammetry School ณ University Paris Diderot, France ตั้งแต่วันที่ 7 เมษายน 2562 ถึง 13 เมษายน 2562 รวมจำนวน 7 วัน
- 54. รศ.ดร. วุฒิชัย เอื้อวิทยาศุภร เดินทางไป ประชุมเจรจาสร้างความร่วมมือและแลกเปลี่ยนประสบการณ์ กับสถาบันต่างประเทศเพื่อสร้างเครือข่ายและพัฒนาศักยภาพของนักวิจัยUniversity of Auckland, Massey University, University of Canterbury, Callaghan Innovation, Newzealand วันที่ 10 พฤษภาคม 2562 ถึง 19 พฤษภาคม 2562 รวมจำนวน 10 วัน
- 55. รศ.ดร. เอกสิทธิ์ สมสุข เดินทางไปร่วมประชุมวิชาการ Erasmus+capscity building project EASTEM Uppsala University, Sweden วันที่ 13 พฤษภาคม 2562 ถึงวันที่ 17 พฤษภาคม 2562 รวมจำนวน 6 วัน
- 56. ศ.ดร. วิชัย ริ้วตระกูล เดินทางเข้าร่วมประชุม Scienctific Advisory Committee meeting International Foundation for Science (IFS) เมือง Montpellier, France ตั้งแต่วันที่ 21 พฤษภาคม 2562 ถึงวันที่ 27 พฤษภาคม 2562 รวมจำนวน 7 วัน
- 57. ศ.ดร. ประมวล ตั้งบริบูรณ์รัตน์ เข้าร่วมประชุม International Polymer Colloids Group Conference 2019 The Silosa Beach Resort, Sentosa Island, Singapore วันที่ 22 มิถุนายน 2562 ถึง 29 มิถุนายน 2562 รวมจำนวน 8 วัน
- 58. รศ.ดร. เอกสิทธิ์ สมสุข เดินทางไปร่วมประชุมวิชาการ 5th Blue Sky Conference Federico II ณ University of Naples, Italy วันที่ 24 มิถุนายน 2562 ถึง 2 กรกฎาคม 2562 รวมจำนวน 9 วัน
- 59. ผศ.ดร. จงกล ตันติรุ่งโรจน์ชัย เดินทางไปติดตามความก้าวหน้าของนักศึกษาไทย และปรึกษาหารือใน งานวิจัย ณ Osaka University, Japan วันที่ 30 มิถุนายน 2562 ถึง 8 กรกฎาคม 2562 รวมจำนวน 9 วัน
- 60. รศ.ดร. พนิดา สุรวัฒนาวงศ์ เดินทางไปเสนอผลงานวิชาการ the23 International symposium on olefin metethesis and related chemistry (ISOM23) เมือง Barcelona, Spain ในงาน The

- 23th International symposium on olefin metethesis and related chemistry (ISOM23) เมือง Barcelona, Spain วันที่ 23 มิถุนายน 2562 ถึง 3 กรกฎาคม 2562 รวมจำนวน 4 วัน
- 61. รศ.ดร. ศิวพร มีจู สมิธ เดินทางไปเสนอผลงานวิชาการ The6th European Conference on Environmental Applications of Advance Oxidation Processes (EAAOP-6) ณ เมือง Portoroz ประเทศสาธารณรัฐสโลวีเนีย วันที่ 26 มิถุนายน 2562 ถึง 1 กรกฎาคม 2562 รวมจำนวน 6 วัน
- 62. รศ.ดร. ศิวพร มีจู สมิธ เดินทางไปปรึกษางานวิจัยและเข้าร่วมประชุม The2th International Conference on Sustainable Science and Technology ณ เมือง Istanbul ประเทศสาธารณรัฐ ตุรกี วันที่ 2 กรกฎาคม 2562 ถึง 8 กรกฎาคม 2562 รวมจำนวน 7 วัน
- 63. รศ.ดร. พันธ์ญา สุนินทบูรณ์ เดินทางไปปรึกษาหารือวางแผนงานวิจัยของนักศึกษา ณ Univbersite de Lorraine, France เมื่อวันที่ 8 กรกฎาคม 2562 ถึง 12 กรกฎาคม 2562 รวมจำนวน 5 วัน
- 64. รศ.ดร. อทิตยา ศิริภิญญานนท์ เดินทางไปบรรยายสัมมนา และติดตามความก้าวหน้าในการทำวิจัย ของนักศึกษาและปรึกษางานวิจัย ณ University of Birmingham, UK วันที่ 12 กรกฎาคม 2562 ถึง 22 กรกฎาคม 2562 รวมจำนวน 11 วัน
- 65. ผศ.ดร. ต่อศักดิ์ ล้วนไพศาลนนท์ เป็นผู้ช่วยหัวหน้าทีมเดินทางไปเข้าร่วมการแข่งขันเคมีโอลิมปิก ระหว่างประเทศ ครั้งที่ 51 ณ กรุงปารีส ฝรั่งเศล ในงาน The 51st International Chemistry Olympiad (IChO 2019), Paris, France วันที่ 21 กรกฎาคม 2562 ถึง 30 กรกฎาคม 2562 รวม จำนวน 10 วัน
- 66. รศ.ดร. เอกสิทธิ์ สมสุข เดินทางไปเข้าร่วมประชุมวิชาการ The 5th Blue Sky Conference ณ Federico II University of Naples, Italy ณ University of Naples, Italy วันที่ 23 มิถุนายน 2562 ถึง 2 กรกฎาคม 2562 จำนวน 10 วัน
- 67. รศ.ดร. วุฒิชัย เอื้อวิทยาศุภร เดินทางไปร่วมประชุมและเสนอผลงานวิชาการในที่ประชุม The 7th Asian Silicon Symposium (ASIS-7) เรื่อง Fluorescent Silica Nanocages ณ Nanyang Technology University วันที่ 28 กรกฎาคม 2562 ถึง 31 กรกฎาคม 2562 รวมจำนวน 4 วัน
- 68. รศ.ดร. เอกสิทธิ์ สมสุข เดินทางไปเข้าร่วมประชุมวิชาการ Advances in Polyolefins (APO-2019) เมือง Rohnert Park USA. ณ เมือง Rohnert Park USA. เมื่อวันที่ 22 กันยายน 2562 ถึง 27 กันยายน 2562 รวมจำนวน 5 วัน
- 69. รศ.ดร. ศิริลตา ยศแผ่น เดินทางไปเข้าสอนบรรยายและให้สัมมนาพิเศษ ณ Chiba University,

 Tokyo Institute of Technology, Tokyo Unviersity of Agriculture and Technology, JAPAN
 เมื่อวันที่ 2 พฤศจิกายน 2562 ถึง 9 พฤศจิกายน 2562 รวมจำนวน 8 วัน

- 70. รศ.ดร. รัตติกาล จันทิวาสน์ เดินทางไปร่วมประชุม The International JAFIA 35th Anniversary Symposium with prof.Christian and Dasgupta & The 56th Annual Meeting of JAFIA ณ เมือง นาโกยา ประเทศญี่ปุ่นเมื่อวันที่ 13 ตุลาคม 2562 ถึง 15 ตุลาคม 2562 รวมจำนวน 3 วัน
- 72. ศ.ดร. จิตต์ลัดดา ศักดาภิภาณิชย์ เดินทางไปเป็นวิทยากรบรรยายในการประชุม The 16th Pacific Polymer Conference (PPC16) ณ หอประชุมและนิทรรศการ Suntec City, Singapore วันที่ 8 ธันวาคม 2562 ถึง 12 ธันวาคม 2562 จำนวน 5 วัน
- 73. รศ.ดร. ปราณี ภิญโญชีพ เดินทางไปเสนอผลงานวิชาการ เรื่อง Development of polymeric materials for antimicrobial application ณ International Conference on Advances in Polymeric Materials & Human Healthcare เมือง GOA ประเทศอินเดีย วันที่ 15 ตุลาคม 2562 ถึง 19 ตุลาคม 2562 จำนวน 5 วัน
- 74. รศ.ดร. ศิวพร มีจู สมิช เดินทางไปเข้าร่วมประชุม The 24th International Conference on Semiconductor Photocatalysis and Solar Energy Conversion (SPASEC-24) และ The 25th International Conference on Advanced Oxidation Technologies for Treatment of water, Air and Soil (AOTx-25) และงานAmericana Conference Resort& Spa, Niggara Falls, Ontario, Canada เมื่อวันที่ 12 ตุลาคม 2562 ถึงวันที่ 25 ตุลาคม 2562 รวมจำนวน 14 วัน
- 75. รศ.ดร. อทิตยา ศิริภิญญานนท์ เดินทางไปเข้าร่วมประชุม Educational Programs of Food Safety in University Level in Asia และการประชุม New Mass Spectrometric Technologies for Food Safety and Drug Analysis ประเทศ สาธารณรัฐจีน (ไต้หวัน) เมื่อวันที่ 16 ตุลาคม 2562 ถึง 19 ตุลาคม 2562 รวมจำนวน 4 วัน
- 76. รศ.ดร. วุฒิชัย เอื้อวิทยาศุภร เดินทางไปเป็นวิทยากรในการประชุม The 2nd China Internation Conference of Silicone & Fluorine Industry Development (SIF2019) ณ ประเทศสาธารณรัฐ ประชาชนจีน วันที่ 12 พฤศจิกายน 2562 ถึง 16 พฤศจิกายน 2562 จำนวน 5 วัน
- 77. รศ.ดร. จงกล ตันติรุ่งโรจน์ชัย เดินทางไปเข้าร่วมประชุม 2019 POSTECH Mini-Symposium on Chemistry ณ ประเทศ สาธารณรัฐเกาหลี เมื่อวันที่ 27 ตุลาคม 2562 ถึง 1 พฤศจิกายน 2562 จำนวน 6 วัน
- 78. รศ.ดร. อทิตยา ศิริภิญญานนท์ เดินทางไปเข้าร่วมประชุม 2019 POSTECH Mini-Symposium on Chemistryณ ประเทศ สาธารณรัฐเกาหลี เมื่อวันที่ 27 ตุลาคม 2562 ถึง 1 พฤศจิกายน 2562 จำนวน 6 วัน
- 79. รศ.ดร. ชุติมา คูหากาญจน์ เดินทางไปเข้าร่วมประชุม 2019 POSTECH Mini-Symposium on Chemistryณ ประเทศ สาธารณรัฐเกาหลี เมื่อวันที่ 27 ตุลาคม 2562 ถึง 1 พฤศจิกายน 2562 จำนวน 6 วัน

- 80. รศ.ดร. พลังพล คงเสรี เดินทางไปเข้าร่วมอบรมโครงการพัฒนานักบริหารระดับกลาง มหาวิทยาลัยมหิดล ณ Nanyang Technological University, Singapore เมื่อวันที่ 14 ตุลาคม 2562 ถึง 18 ตุลาคม 2562 จำนวน 5 วัน
- 81. ผศ.ดร. อัญรัตน์ วัฒนพาณิช เดินทางไปเข้าร่วมโครงการ Japan-Asia Younth Exchange Program in Science (SAKURA Exchange Program in Science)Nagoya University, JAPAN เมื่อวันที่ 22 ตุลาคม 2562 ถึง 31 ตุลาคม 2562 จำนวน 10 วัน
- 82. รศ.ดร.ปราณี ภิญโญชีพ เดินทางไปบรรยายในการประชุมวิชาการ The 11th Anniversary of Fedration of Asian Polymer Societies (FAPS) และเสนอผลงานวิจัย เรื่อง synthesis of crosslinked polymeric ligand applied for atom transfer redical polymerization ณ ประเทศสาธารณรัฐจีน (ไต้หวัน) วันที่ 27 ตุลาคม 2562 ถึง 30 ตุลาคม 2562 จำนวน 4 วัน
- 83. รศ.ดร. วุฒิชัย เอื้อวิทยาศุภร ได้รับเชิญให้เดินทางไปแลกเปลี่ยนงานวิจัยและเยี่ยมชมห้องปฏิบัติการ ณ มหาวิทยาลัยโอซาก้า Osaka University, JAPAN เมื่อวันที่ 6 มกราคม 2563 ถึง 12 มกราคม 2563 จำนวน 7 วัน
- 84. ดร. พูนทวี แซ่เตีย ได้รับเชิญให้เดินทางไปแลกเปลี่ยนงานวิจัยและเยี่ยมชมห้องปฏิบัติการ ณ มหาวิทยาลัยโอซาก้า Osaka University, JAPAN เมื่อวันที่ 6 มกราคม 2563 ถึง 12 มกราคม 2563 จำนวน 7 วัน
- 85. อ.ดร. ปวเรศร์ เหลียววนวัฒน์ ได้รับเชิญให้เดินทางไปแลกเปลี่ยนงานวิจัยและเยี่ยมชมห้องปฏิบัติการ ณ มหาวิทยาลัยโอซาก้า Osaka University, JAPAN เมื่อวันที่ 6 มกราคม 2563 ถึง 12 มกราคม 2563 จำนวน 7 วัน
- 86. ศ.ดร. จิตต์ลัดดา ศักดาภิภาณิชย์ เดินทางไปเป็นผู้ทรงคุณวุฒิภายนอกในการสอบปริญญาเอกของ นักศึกษามหาวิทยาลัย Universiti Sains Malaysia Universiti Sains Malaysia เมื่อวันที่ 26 พฤศจิกายน 2562 ถึง 27 พฤศจิกายน 2562 จำนวน 2 วัน
- 87. รศ.ดร. ทวีชัย อมรศักดิ์ชัย เดินทางไปเข้าร่วมประชุมวิชาการ Malaysia Polymer International Conference 2019 Universiti Kebangsaan Malaysia วันที่ 30 ตุลาคม 2562 ถึง 1 พฤศจิกายน 2562 จำนวน 3 วัน
- 88. ศ.ดร. วิชัย ริ้วตระกูล เดินทางเข้าร่วมประชุมคณะกรรมการร่วมไทย-ฝรั่งเศล ปี 2563-2564 Franco-Thai Joint Selection Committee on Higher Education and Research 2020-2021, Paris, FRANCE
- 89. รศ.ดร. เทียนทอง ทองพันชั่ง เดินทางไปปรึกษาหารื่องานวิจัย ณ Michigan State University และ Columbia University, USA. Michigan State University และ Columbia University, USA. เมื่อ วันที่ 11 ชันวาคม 2562 ถึง 12 ชันวาคม 2562 จำนวน 2 วัน

- 90. รศ.ดร. เอกสิทธิ์ สมสุข เดินทางไปเข้าร่วมประชุม The 8th Asian Polyolefin Worksshop (APO2019) ณ เมือง Hiroshima, JAPAN วันที่ 1 ธันวาคม 2562 ถึง 7 ธันวาคม 2562 จำนวน 7 วัน
- 91. รศ.ดร. ชุติมา คูหากาญจน์ เดินทางไปร่วมประชุม Korea-Thailand-Vietnam Trilateral Workshop ณ สาธารณรัฐเกาหลี เมื่อวันที่ 17 ธันวาคม 2562 ถึง 21 ธันวาคม 2562 จำนวน 5 วัน
- 92. รศ.ดร. พสิษฐ์ ภควัชร์ภาณุรัตน์ เดินทางไปร่วมประชุม Korea-Thailand-Vietnam Trilateral Workshop ณ School of Natural Science Korea Advance Institute of Science and Technology (KAIST), KOREA สาธารณรัฐเกาหลี เมื่อวันที่ 17 ธันวาคม 2562 ถึง 21 ธันวาคม 2562 จำนวน 5 วัน
- 93. รศ.ดร.ปราณี ภิญโญชีพเดินทางไปร่วมประชุม Korea-Thailand-Vietnam Trilateral Workshop ณ School of Natural Science Korea Advance Institute of Science and Technology (KAIST), KOREA สาธารณรัฐเกาหลี เมื่อวันที่ 17 ธันวาคม 2562 ถึง 21 ธันวาคม 2562 จำนวน 5 วัน
- 94. ศ.ดร. จิตต์ลัดดา ศักดาภิภาณิชย์ เดินทางไปบรรยายในการประชุม The 16th Pacipic Polymer Conference (PPC16)Suntec City Conventiion and Exhibition Centre, Singapore เมื่อวันที่ 8 ชันวาคม 2562 ถึง12 ชันวาคม 2562 จำนวน 5 วัน
- 95. รศ.ดร. ปรียานุช แสงไตรรัตน์นุกูล เดินทางไปเข้าร่วมประชุมและนำเสนอผลงานวิชาการเรื่อง Copper clusters supported by bridging triazloe-Alkoxy ligands: Molecular structures and catalytic oxidation activities ในงานประชุม the 18th Asian chemical congress and The 20th General Assembly of the federation of asian chemical societies (ACC2019) สาธารณรัฐจีน (ไต้หวัน) เมื่อวันที่ 7 ธันวาคม 2562 ถึง 13 ธันวาคม 2562 จำนวน 7 วัน
- 96. รศ.ดร. พนิดา สุรวัฒนาวงศ์ เดินทางไปหารื่องานวิจัยและเยี่ยมชมห้องปฏิบัติการ ณ Saitama University , JAPAN เมื่อวันที่ 5 มกราคม 2563 ถึง 12 มกราคม 2563 จำนวน 12 วัน
- 97. รศ.ดร. จงกล ตันติรุ่งโรจน์ชัย เดินทางไปเข้าร่วมประชุม The SSEAN-OU chemistry Symposium 2020 (AOCS2020) ณ Osaka University, JAPAN เมื่อวันที่ 8 มกราคม 2563 ถึง 13 มกราคม 2563 จำนวน 6 วัน
- 98. รศ.ดร. เอกสิทธิ์ สมสุข เดินทางไปเข้าร่วมประชุม The SSEAN-OU chemistry Symposium 2020 (AOCS2020) ณ Osaka University, JAPAN เมื่อวันที่ 8 มกราคม 2563 ถึง 13 มกราคม 2563 จำนวน 6 วัน
- 99. รศ.ดร. ปรียานุช แสงไตรรัตน์นุกูล เดินทางไปเข้าร่วมประชุม The SSEAN-OU chemistry

 Symposium 2020 (AOCS2020) Osaka University, JAPAN เมื่อวันที่ 8 มกราคม 2563 ถึง 13

 มกราคม 2563 รวมจำนวน 6 วัน
- 100. รศ.ดร. ดวงใจ นาคะปรีชา เดินทางไปบรรยายในงานประชุม The BK12 plus symposium on nanobio materials and advance analytical techniques และบรรยายเรื่อง Microfluidic

- paper-based analytical device with in-situ headspace for gas separation with versatility in direct analysis of complicated samples ณ Changwon National University, KOREA เมื่อวันที่ 6 กุมภาพันธ์ 2563 ถึง 9 กุมภาพันธ์ 2563 รวมจำนวน 4 วัน
- 101. รศ.ดร. สุภาวดี เกียรติเสวี เดินทางไปปรึกษางานวิจัย Leonardo-buro sachsen technische
 Universital Dreden Universital Dreden, Germany เมื่อวันที่ 16 มีนาคม 2563 ถึง 20 มีนาคม
 2563 รวมจำนวน 5 วัน
- 102. รศ.ดร. เอกสิทธิ์ สมสุข เดินทางไปเข้าร่วมประชุม 4th International green catalysis symposium 2020 ณ เมือง Rennes ประเทศฝรั่งเศล เมื่อวันที่ 30 มีนาคม 2563 ถึง 2 เมษายน 2563 จำนวนรวม 4 วัน

การสร้างความร่วมมือกับสถาบันการศึกษาในต่างประเทศ

- 1. มีการดำเนินการสร้างความร่วมมือ MOU กับ National Cheng Kung University, Tainan, Taiwan and Mahidol University โดยมี รศ.ดร. ธรรมสิทธิ์ วงศ์เศรษฐสกุล เป็นผู้ประสานงาน
- มีนักวิจัยชาวต่างประเทศ Dr. Min Min Yee จาก University of Mandalay, Myanmar เข้ามา
 ฝึกอบรมทดลองและวิจัย ณ ห้องปฏิบัติการเคมี ภาควิชาเคมี ตั้งแต่วันที่ 20 สิงหาคม -20 ตุลาคม 2561
 เป็นระยะเวลา 2 เดือน โดยมี ผศ.ดร. จงกล ตันติรุ่งโรจน์ชัย เป็นผู้ดูแลรับผิดชอบ
- 3. ดำเนินการสร้างความร่วมมือ MOU กับ National Cheng Kung University, Tainan, Taiwan and Mahidol University โดยมี รศ.ดร. ธรรมสิทธิ์ วงศ์เศรษฐสกุล เป็นผู้ประสานงาน
- 4. มีวิทยากรจากต่างประเทศ Dr. Albena Lederer (Head of Polymer Separation Group, Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Macromolecular Chemistry, Department Analysis, Dresden, Germany) มาบรรยายในหัวข้อ Advanced Separation and Characterization of Multifunctional Polymer Systems และจัดให้มีการพูดคุยระหว่างนักวิจัยที่ เกี่ยวข้องและผู้ที่สนใจ ในวันที่ 23 กรกฎาคม 2561 เวลา 10:00-16:00 น. โดยมี รศ.ตร. อทิตยา ศิริภิญญา นนท์ เป็นผู้ดูแลรับผิดชอบ และมีเป้าหมายเพื่อสร้างเครือข่ายวิจัยด้านเทคโนโลยีในการตรวจวิเคราะห์
- 5. มีนักวิจัยชาวต่างประเทศ Dr. Min Min Yee จาก University of Mandalay, Myanmar เข้ามา ฝึกอบรมทดลองและวิจัย ณ ห้องปฏิบัติการเคมี ภาควิชาเคมี ตั้งแต่วันที่ 20 สิงหาคม 2561 -20 ตุลาคม 2561 เป็นระยะเวลา 2 เดือน โดยมี ผศ.ดร. จงกล ตันติรุ่งโรจน์ชัย เป็นผู้ดูแลรับผิดชอบ
- มีนักวิจัยชาวต่างประเทศ Dr. Rakhi Majumdar จาก Vidyasagar University, India เข้ามาปฏิบัติ
 งานวิจัยหลังปริญญาเอก ณ ห้องปฏิบัติการเคมี ภาควิชาเคมี ตั้งแต่วันที่ 1 มกราคม 2562 -31 ธันวาคม
 2562 เป็นระยะเวลา 1 ปี โดยมี รศ.ดร. วุฒิชัย เอื้อวิทยาศุภร เป็นผู้ดูแลรับผิดชอบ

ภาคผนวก ค. รายชื่อคณะผู้วิจัย หัวหน้าโครงการ

รศ. ดร. ปราณี ภิญโญชีพ

ผู้ร่วมโครงการ

รศ. ดร. ทวีชัย อมรศักดิ์ชัย

รศ. ดร. ศิวพร มีจู สมิธ

ดร. ทินกร เตียนสิงห์

ผศ. ดร. ชุติมา เจียรพินิจนันท์

รศ. ดร. จงกล ตันติรุ่งโรจน์ชัย

รศ. ดร. กัลยาณี สิริสิงห

ผศ. ดร. กาญจนา อุไรสินธว์

ศ. ดร. จิตต์ลัดดา ศักดาภิพาณิชย์

ผศ. ดร. ชญาณิศา ชิติโชติปัญญา

รศ. ดร. ชุติมา คูหากาญจน์

รศ. ดร. ดรุณี สู้รักรัมย์

รศ. ดร. ดวงใจ นาคะปรีชา

ผศ. ดร. ดาราภรณ์ เตรียมโพธิ์

ผศ. ดร. ต่อศักดิ์ ล้วนไพศาลนนท์

รศ. ดร. เทียนทอง ทองพันชั่ง

รศ. ดร. ธรรมสิทธิ์ วงศ์เศรษฐสกุล

ดร. ชัญชนก รัตน์วิจิตต์เวช

ดร. ธันฐภัทร์ บุญช่วย

ดร. ธีรา ฉันทโรจน์ศิริ

ดร. นพพร เรื่องสุภาภิชาติ

ศ. ดร. ประมวล ตั้งบริบูรณ์รัตน์

ดร. ปรียานุช จันคง

รศ. ดร. ปรียานุช แสงไตรรัตน์นุกูล

ดร. ปวเรศร์ เหลียววนวัฒน์

รศ. ดร. พนิดา สุรวัฒนาวงศ์

รศ. ดร. พลังพล คงเสรี

รศ. ดร. พันธ์ญา สุนินทบูรณ์

รศ. ดร. พสิษฐ์ ภควัชร์ภาณุรัตน์

ดร. พูนทวี แซ่เตีย

ผศ. ดร. มัณฑนา จริยาบูรณ์

รศ. ดร. รัตติกาล จันทิวาสน์

รศ. ดร. วุฒิชัย เอื้อวิทยาศุภร

ศาสตราจารย์เกียรติคุณ ดร. วิชัย ริ้ว

ตระกูล

รศ. ดร. ศิริลตา ยศแผ่น

ผศ. ดร. โศรยา พรสุวรรณ

ผศ. ดร. สุภา วิรเศรษฐ์

รศ. ดร. สุภาวดี เกียรติเสวี

ดร. สุอาวี สนิทศิริวัฒน์

รศ. ดร. อทิตยา ศิริภิญญานนท์

รศ. ดร. อรอุมา เขียวหวาน

ผศ. ดร. อารดา ชัยยานุรักษ์กุล

รศ. ดร. เอกสิทธิ์ สมสุข

ผศ. ดร. อัญรัตน์ วัฒนพานิช