Sub-project 1: Extraction/isolation/structure elucidation of natural products

ABSTRACT

Our research group has compiled 725 samples of natural, modified and synthetic compounds, as well as fractions and extracts from our laboratory and tabulated as a list which contains information about types of the isolated compounds, plant sources, sample types, plant parts and bioassays. In addition three more plants have been chemically investigated. The structures of forty-nine pure compounds and a mixture of β -sitosterol/stigmasterol were established on the basis of spectroscopic methods.

Keywords: Flavonoids, terpenoids, lignans, phenolics, Styryllactones, iridoids, xanthones benzophenones

บทคัดย่อ

คณะวิจัยได้จัดรวบรวมข้อมูล ของสารธรรมชาติ สารดัดแปลง และสารสังเคราะห์ พร้อมทั้ง รายละเอียดต่าง ๆ เกี่ยวกับพืช ส่วนของพืช ชนิดของสารที่แยกได้ รวมทั้งฤทธิ์ทางชีวภาพที่ทำการทดสอบ โดยจัดทำเป็นรายการรวม ทั้งหมด 725 รายการ นอกจากนี้นักวิจัยยังได้ทำการศึกษาสารองค์ประกอบของพืชอีก 3 สปีชีส์ ได้แก่ ต้นกาญจนิการ์ หรือ แคดง (Santisukia pagetii) ต้นสบันงาป่า (Goniothalamus calvicarpus) และต้นหมากเหลี่ยม (Mallotus glomerulatus) ซึ่งสามารถแยกสารได้ 49 สาร และสารคู่ผสมของ β —sitosterol/stigmasterol ที่พบในพืชทั้ง 3 สปีชีส์ และได้ทำการวิเคราะห์โครงสร้างเคมีของสารที่แยกได้ด้วยวิธีทางสเปคโทรสโคปี

คำสำคัญ: ฟลาโวนอยด์ เทอปืน ลิกแนน ฟิโนลิก สไตริลแลกโตน อิริดอย แซนโทน เบนโซฟิโนน

1. สกัดแยกสาร ดัดแปลงโครงสร้างและสังเคราะห์สาร เพื่อใช้เป็น compound library นักวิจัยได้ดำเนินการวิจัยดังต่อไปนี้

The information covering the code of sample, natural (Nat) or modified (Mod) or synthetic (Syn) compound, type of compound, plant source, sample type, plant part and bioassay are tabulated (Table 1). A collection of 725 samples, including crude extracts (E), fractions (F) and pure compounds (P) are also categorized.

Table 1.1 Compound Library

Sub-project 2: Cytotoxicity, Anticancer effects of natural derived compounds and their mechanism at molecular targets

Abstract

Cancer remains the leading cause of death and becomes a significant public health burden worldwide including in Thailand and China. Chemotherapy is the gold standard for aggressive and metastasis cancer, however, the satisfactory outcome is poor because of the limitations from their side effects. Therefore, searching for novel compounds with great anticancer activities is our challenge. Herein, under the collaboration between Thai and Chinese scientists, we discover promising compounds from natural resources with anticancer activities. First, we screened 151 compounds from marine-derived actinobacteria and their analogs using sulforhodamine B assay. We found that 90 out of 151 (69.6%) exhibited cytotoxic activity. Among them, 27 compounds showed the IC50 less than 10 mM against all 6 cancer cell lines. Next, we investigated the mechanisms related to the anticancer activity of compound HD ZWM 978 identified from the screening against gastric cancer cell lines, AGS, and MKN 45. HD ZWM 978 was potentially more cytotoxic than the clinically used etoposide, with IC50 values at 48 h of 1.7±0.2 mM and 4.3±1.0 mM in AGS and MKN 45 cells, respectively, whereas the IC50 values of etoposide were 8.6±2.4 mM and >20 mM in AGS and MKN 45 cells. Treatment with HD ZWM 978 markedly induced apoptotic cell death in AGS cells. Moreover, HD ZWM 978 significantly inhibited Topo IIlpha activity leading to DNA damage as demonstrated by an increase in γ -H2A.X expression, the DNA damage marker, in a dose-dependent manner. The anticancer mechanism of HD ZWM 978 was further investigated in the WNT/b-catenin pathway and found that HD ZWM 978 significantly reduced the expression of b-catenin protein and WNT target gene; c-MYC, and survivin. Our results indicate that HD ZWM 978 induces gastric cancer cell apoptosis partly through induction of DNA damage-mediated by topoisomerase $II \alpha$ enzyme inhibition and inhibition of the WNT/ β -catenin signaling pathway. In addition, we investigated the anticancer mechanism of two andrographolide analogs, analog 6 (19-triisopropyl-andrographolide) and analogs 3A.1 (19-tert-butyldiphenylsilyl-8,17-epoxy andrographolide) on gastric cancer and colorectal cell lines, respectively. analog 6 exhibited highly cytotoxic than parent Andrographolide or the clinical drug etoposide with IC50 values of 6.3±0.7 mM and 1.7±0.05 mM at 48 h for MKN 45 and AGS cells, respectively. Analogue 6 reduced the expression of Topo II enzyme, induced DNA damage, and activated PARP-1 and Caspase 3, leading to late apoptosis in AGS cells whereas treatment with the compound did not affect the expression of tumor suppressor p53. Similarly, analogs 3A.1 exhibited a significant cytotoxic effect against CRC cells and more potent than the parent compound. Mechanistically, analogs 3A.1 induced apoptotic cell death probably through inhibition of WNT/b-catenin signaling pathway-mediated DNA damages. Taken together, under the collaboration project between Thai and Chinese scientists, we able to discover the promising compounds that have the potential to be developed as novel anticancer compounds for cancer treatment.

Keywords: anticancer activity, medicinal plants, marine microbes, gastric cancer cells, colorectal cells

บทคัดย่อ

โรคมะเร็งเป็นสาเหตุการตายและเป็นปัญหาทางสาธารณสุขทั่วโลกรวมถึงประเทศไทยและประเทศจีน การรักษาด้วย ยาเคมีบำบัดถือเป็นวิธีการรักษามาตรฐานสำหรับมะเร็งที่มีการแพร่กระจาย แต่ผลสำเร็จของการรักษายังต่ำเนื่องจาก ดังนั้นการค้นหาตัวยาใหม่สำหรับการรักษาโรคมะเร็งจึงมีความสำคัญ ผลข้างเคียงของการใช้ยา วัตถุประสงค์เพื่อค้นหาสารที่ออกฤทธิ์ต้านมะเร็งจากธรรมชาติ ภายใต้ความร่วมมือกับนักวิทยา ศาสตร์ชาวจีน กลุ่ม วิจัยได้คัดกรองสารที่ออกฤทธิ์ต้านมะเร็งจากสารที่คัดแยกได้จากแบคทีเรียใต้ทะเลและสารดัดแปลงโครงสารจำนวน 151 ตัว พบว่า 90 จาก 151 ตัว คิดเป็น 69.6 เปอร์เซ็นต์ ออกฤทธิ์ฆ่าเซลล์มะเร็ง ในจำนวนนี้มีสาร 27 ตัวมีฤทธิ์ดีเด่น โดยมีค่า IC50 ต่ำกว่า 10 μ M ในเซลล์มะเร็งที่ใช้ทดสอบทั้งหมด 6 ชนิด กลุ่มวิจัยได้คัดเลือกสาร HD ZWM 978 มา ศึกษาฤทธิ์ต้านมะเร็งและกลไกที่เกี่ยวข้องในเซลล์มะเร็งกระเพาะอาหาร 2 ชนิด คือ MKN 45 และ AGS จากการ ทดสอบพบว่าสาร HD ZWM 978 ออกฤทธิ์ฆ่าเซลล์มะเร็งกระเพาะอาหารได้ดีกว่า etoposide ซึ่งเป็นยาที่ใช้รักษา ปัจจุบัน โดยมีค่า IC50 ที่ 48 ชั่วโมง เท่ากับ 1.7±0.2 μ M และ 4.3±1.0 μ M สำหรับเซลล์ AGS และ MKN 45 ตามลำดับ ในขณะที่ค่า IC50 ของ etoposide เท่ากับ 8.6±2.4 μ M และมากกว่า 20 μ M สำหรับเซลล์ AGS and MKN 45 ตามลำดับ สาร HD ZWM 978 ออกฤทธิ์เหนี่ยวนำให้เซลล์มะเร็งกระเพาะอาหารตายแบบ apoptosis การศึกษากลไกการออกฤทธิ์ในระดับโมเลกุลพบว่า สาร HD ZWM 978 ออกฤทธิ์ยับยั้งการทำงานของเอนไซม์ Topo แlpha โดยที่ความเข้มข้น 10 μ M สามารถยับยั้งฤทธิ์ของเอนไซม์ Topo แlpha ได้เกือบสมบูรณ์ นอกจากนี้ยังพบว่าสาร HD ZWM 978 สามารถเหนี่ยวนำให้เซลล์เกิดการแตกหักของสายดีเอ็นเอ ซึ่งประเมินได้จากการแสดงของตัวบ่งชี้ของ การแตกหักของสารดีเอ็นเอ คือ 🥎 H2A.X สาร เมื่อบ่มเซลล์ด้วยสาร HD ZWM 978 ยังพบว่าการแสดงออกของ โปรตีน eta-catenin และยืนเป้าหมายของกลไกสัญญาณ WNT/eta-catenin คือ c-MYC, and survivin ลดลง แสดงว่า สาร HD ZWM 978 ออกฤทธิ์ยับยั้งกลไกสัญญาณ WNT/eta-catenin ซึ่งเป็นกลไกสัญญาณที่สำคัญต่อพฤติกรรมความ รุ่นแรงของเซลล์มะเร็ง จากผลการทดลองนี้สรุปได้ว่าสาร HD ZWM 978 เหนี่ยวนำเซลล์มะเร็งกระเพาะอาหารให้เกิด การตายแบบ apoptosis โดยยับยั้งการทำงานของเอนไซม์ Topo IIlpha ซึ่งส่งผลให้เกิดการแตกหักของสายดีเอ็นเอและ ้ ยังออกฤทธิ์ยับยั้งกลไกสัญญาณ WNT/eta-catenin นอกจากนี้กลุ่มวิจัยยังได้ศึกษาฤทธิ์ต้านมะเร็งและกลไกที่เกี่ยวข้อง ของสารดัดแปลงโครงสร้างของ andrographolide 2 ขนิด คือ analogue 6 (19-triisopropyl-andrographolide) ในเซลล์มะเร็งกระเพาะอาหาร และ analogue 3A.1 (19-tert-butyldiphenylsilyl-8,17-epoxy andrographolide) ในเซลล์มะเร็งลำไส้ สาร analogue 6 ออกฤทธิ์ฆ่าเซลล์มะเร็งกระเพาะอาหารได้ดีกว่าสาร andrographolide และ etoposide โดยมีค่า IC50 ที่ 48 ชั่วโมง เท่ากับ 6.3±0.7 μ M และ 1.7±0.05 μ M สำหรับ เซลล์ AGS และ MKN 45 ตามลำดับ โดยสาร analogue 6 ออกฤทธิ์ยับยั้งเอนไซม์ Topo II ก่อให้เกิดการแตกหัก ของสายดีเอ็นเอ เกิดการตัดของโปรตีน PARP-1 และ Caspase 3 ซึ่งส่งผลให้เซลล์มะเร็งกระเพาะอาหารเกิดการตาย apoptosis ในทำนองเดียวกัน สาร analogue 3A.1 ออกฤทธิ์ฆ่าเซลล์มะเร็งลำไส้ได้ดีกว่าสารตั้งต้น andrographolide โดยยับยั้งการทำงานของกลไกสัญญาณ WNT/eta-catenin ส่งผลให้เกิดการตายของเซลล์มะเร็ง จากการทดลองทั้งหมดแสดงให้เห็นว่า ภายใต้โครงการความร่วมมือระหว่าง apoptosis นักวิทยาศาสตร์ชาวไทยและจีนนี้ ส่งเสริมให้มีการค้นพบสารสำคัญที่มีศักยภาพสามารถนำไปพัฒนาต่อยอดเป็นยาต้าน มะเร็งต่อไป

คำสำคัญ: ฤทธิ์ต้านมะเร็ง สมุนไพร เชื้อจากทะเล เซลล์มะเร็งกระเพาะอาหาร เซลล์มะเร็งลำไส้ใหญ่และทวารหนัก

Sub-project 3: Anti-diabetic effect of compounds

ABSTRACT

Kidney plays is one of the most important organ regulating blood glucose by reabsorption of filtered glucose from glomerulus via renal glucose transporters located at renal proximal tubular cells. Sodium glucose cotransporter (SGLT) 2 inhibition has been found to be anti-diabetic drug target for type 2 diabetes, all SGLT2 inhibitors have same core structure as same as phlorizin (first SGLT2 inhibitor). So, it is interesting to find a new SGLT2 inhibitor from natural for diabetic treatment. First, the inhibitory effect of 134 compounds was screened by uptake assay in human renal proximal cell line (HK-2 cell) using [3H]-2deoxy-d-glucose (2DG) as radioactive substrate. 3 marines (HD-ZWM-1081, HD-ZWM-1083, HD-ZWM-1084) inhibited SGLT2 in HK-2 cells with cytotoxicity effect. Kaempferia parviflora extract (KPE) and Boesenbergia pandurata extract (BPE) were found to inhibit SGLT2mediated $[^{3}H]$ -2DG uptake in HK-2 cell with IC₅₀ of 124 and 211 µg/ml, respectively. Moreover, effect of KPE and BPE on glucose transporter (GLUT) 2 inhibition was examined. KPE and BPE inhibited GLUT2-mediated [³H]-2DG uptake with IC₅₀ of 71.59 and 190.9 µg/ml, respectively. Selectivity of hit compounds was tested by examining effects of hit compounds on SGLT1 and GLUTs inhibition in enterocytes (Caco-2 cell). KPE did not inhibit SGLT1 while BPE significant inhibited SGLT1. Both KPE and BPE had no effect on GLUTs inhibition. The effect of KPE and BPE on anti-hyperglycemia was examined in diabetic rat (Goto Kakizaki (GK) rat). Orally administration of KPE and BPE reduce plasma glucose without changing plasma insulin indicating the therapeutic potential for type 2 DM treatment. In addition to the therapeutic potential application of *Boesenbergia pandurata* on diabetes, compounds from this plant panduratin A and pinostrobin showed protective effect of nephrotoxicity induced by drug including cisplatin, anti-cancer, and antibiotic drug, colistin. The protective effect of these compounds were mediated by decrease in ROS, pro-apoptotic proteins, ERK and caspases, and mitochondria damage. Collectively, panduratin A and pinostrobin have potential protective effect on nephrotoxicity induced by cisplatin and colistin.

Keywords: Diabetes; Sodium glucose co-transporter 2; flavonoids; kidney injury; *Boesenbergia pandurata*

บทคัดย่อ

ไตเป็นหนึ่งในอวัยวะที่สำคัญในการควบคุมระดับน้ำตาลกลูโคสในเลือด โดยการควบคุมการดูดกลับกลูโคสที่ ผ่านการกรองจากโกลเมอรูลัสโดยอาศัยการทำงานของตัวจนส่งกลูโคสที่เซลล์ของหลอดไตส่วนต้น การยับยั้ง การทำงานของตัวขนส่งตัวโคสชนิด Sodium glucose cotransporter (SGLT) 2 จึงเป็นหนึ่งเป้าหมายในการ ลดระดับน้ำตาลในเลือดเพื่อรักษาโรคเบาหวานชนิดที่ 2 ยารักษาโรคเบาหวานกลุ่ม SGLT2 inhibitors นั้นมี โครงสร้างพื้นฐานมาจากสาร phlorizin ซึ่งเป็น SGLT2 inhibitor ตัวแรก ดั้งนั้นจึงเป็นที่น่าสนใจที่จะค้นหา สารที่มีฤทธิ์ยับยั้ง SGLT2 ที่มีโครงสร้างอื่นๆจากสารธรรมชาติ โดยเริ่มทำการทดสอบฤทธิ์ของสาร 134 ตัว ใน การยับยั้ง SGLT2 โดยการวัดการขนส่ง [³H]-2-deoxy-d-elucose (2DG) ในเซลล์หลอดไตส่วนต้นของมนุษย์ ชนิด HK-2 cells ที่มีการแสดงออกของ SGLT2 จากการทดสอบพบว่าสารจากทะเล 3 ชนิด ได้แก่ HD-ZWM-1081, HD-ZWM-1083, HD-ZWM-1084 มีฤทธิ์ยับยั้งการขนส่งของ [3 H]-2DG เข้าสู่เซลล์ อย่างไรก็ ตามสารทั้ง 3 ชนิดมีความเป็นพิษต่อเซลล์ สารสกัดจากกระชายดำ Kaempferia parviflora และกระชาย Boesenbergia pandurate มีฤทธิ์ยับยั้ง SGLT โดยการยับยั้งการขนส่งสาร $[^3H]$ -2DG เข้าสู่เซลล์หลอดไต ส่วนต้น ด้วยค่า IC₅₀ ที่ 124 และ 211 µg/ml ตามลำดับ นอกจากนี้ยังพบว่าสารสกัดทั้ง 2 มีฤทธิ์ยับยั้งตัว ขนส่งกลูโคสชนิด GLUT2 ด้วยค่า IC₅₀ ที่ 71.59 และ 190.9 µg/ml ตามลำดับ เนื่องจากเซลล์ HK-2 มีการ แสดงอองทั้ง SGLT1 และ SGLT2 ดังนั้นจึงทำการทดสอบว่าสารสกัดทั้งสองมีฤทธิ์ต่อ SGLT1 หรือไม่ โดยทำ ทำการวัดการขนส่ง [³H]-2DG ในเซลล์ลำไส้ชนิด CaCo-2 ซึ่งมีการแสดงออกของ SGLT1 แต่ไม่พบการ แสดงออกของ SGLT2 จากผลพบว่าสารสกัดจากกระชายดำไม่มีฤทธิ์ยับยั้งการทำงานของ SGLT1 ขณะที่สาร สกัดจากกระชายมีฤทธิ์ยับยั้งการทำงานของ SGLT1 ด้วย อย่างไรก็ตามไม่พบฤทธิ์ของสารทั้งสองต่อการ ทำงานของ GLUT ของเซลล์ลำไส้ ฤทธิ์ลดระดับน้ำตาลในเลือดของสารสกัดกระชายดำและกระชายได้รับการ ทดสอบในหนูที่เป็นโรคเบาหวานชนิดที่ 2 พบว่าสารสกัดกระชายดำและกระชายมีฤทธิ์ลดระดับน้ำตาลใน เลือดโดยไม่มีผลเปลี่ยนแปลงระดับฮอร์โมนอินซูลิน ดังนั้นสารสกัดกระชายดำและกระชายอาจมีศักยภาพใน การรักษาโรคเบาหวานขนิดที่ 2 ได้ นอกเหนือจากฤทธิ์ต้านเบาหวานของสารสกัดจากกระชาย สารแพนดูรา ้ตินเอ และสารไพโนสโทรบิน ซึ่งเป็นสารที่แยกได้จากสารสกัดกระชายมีฤทธิ์ลดการเกิดความเป็นพิษต่อไตจาก การได้รับยาต้านมะเร็งซิสพลาตินและยาปฏิชีวนะโคลิสติน ฤทธิ์ต้านความเป็นพิษต่อไตของสารแพนดูราตินเอ และสารไพโนสโทรบิน เกิดจากการลดการเกิด ROS โปรตีนกระตุ้นการตายของเชลล์ ได้แก่ ERK และ caspases และการลดการทำลายไมโตคอนเดรีย ดังนั้นสารทั้งสองมีสักยภาพในการพัฒนาเพื่อเป็นสารสำหรับ ้ของกันความเป็นพิษต่อไตจากการใช้ยาต้านมะเร็งซิสพลาตินและยาปฏิชีวนะโคลิสติน

คำสำคัญ โรคเบาหวาน ตัวขนส่งกลูโคส 2 ฟลาโวนอยด์ ความเป็นพิษต่อไต กระชาย

INTRODUCTION

Diabetes mellitus (DM) is a group of metabolic disorder, which is more prevalent in elderly. The causes of T2DM are resulted from the defects in insulin secretion and/or insulin action. Approximately 2.8% of the population worldwide suffers from T2DM and it may reach 5.4% by the year 2025 (Wild, 2004). The prevalence of T2DM increases with age and it affects nearly 1 in 5 individuals over the age of 65 years. Blood glucose control is

similar as found in *in vitro* data. Although, KPE and BPE showed the plasma glucose in diabetic rats, the mechanisms responsible are unknown. The further studies concerning the mechanisms are required.

Sub-project 4. Lipid lowering and anti-adiposity effects of naturally occurring compound

ABSTRACT

The incidence of obesity has substantially increased worldwide and has been received considerable attention as a major health hazard. It is common in aging population. The present study aimed to investigate lipid lowering effect of Curcuma comosa Roxb. (C. comosa) which contains phytoestrogen on adiposity and lipid metabolism in estrogendeprived rats. Adult female rats were ovariectomized (OVX) and received daily doses of either a phytoestrogen from C. comosa [(3R)-1,7-diphenyl-(4E,6E)-4,6-heptadien-3-ol; DPHD], C. comosa extract, or estrogen (17 β -estradiol; E2) for 12 weeks. Adipose tissue mass, serum levels of lipids and adipokines were determined. In addition, genes and proteins involved in lipid synthesis and fatty acid oxidation in visceral adipose tissue were analyzed. The results showed that ovariectomy for 12 weeks elevated level of serum lipids and increased visceral fat mass and adipocyte size. These alterations were accompanied with the up-regulation of lipogenic mRNA and protein expressions including LXR-lpha, SREBP1c and their downstream targets. OVX rats showed decrease in proteins involved in fatty acid oxidation including AMPK- α and PPAR- α in adipose tissue, as well as alteration of adipokines; leptin and adiponectin. Treatments with E2, DPHD or C. comosa extract in OVX rats prevented an increase in adiposity, down-regulated lipogenic genes and proteins with marked increases in the protein levels of AMPK- α and PPAR- α . These findings indicated that their lipid lowering effects were mediated via the suppression of lipid synthesis in concert with an increase in fatty acid oxidation and AMPK- α activity in adipose tissues, supporting the use of this plant for health promotion in the post-menopausal women.

In addition, DPHD also inhibited adipocyte differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs) by suppressing the expression of genes involved in adipogenesis through the activation of ER and Wnt/ β catenin signaling pathways. This finding suggests the potential role of DPHD in preventing bone marrow adiposity which is one of major factor that exacerbates osteoporosis in post-menopause.

Keywords: anti-adiposity, diarylheptanoid, phytoestrogen, ovariectomy, *Curcuma comosa*, adipocyte differentiation

บทคัดย่อ

อุบัติการของโรคอ้วนที่เพิ่มขึ้นอย่างชัดเจนทั่วโลก เป็นเรื่องที่ได้รับความสนใจอย่างมากเนื่องจากมี ผลกระทบเสียหายต่อสุขภาพ และโรคอ้วนพบมากในผู้สูงอายุ การวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาฤทธิ์ของสาร จากธรรมชาติในลดไขมัน ได้ศึกษาฤทธิ์ของสารที่แยกได้จากว่านชักมดลูกซึ่งมีสมบัติเป็นไฟโตรเอสโตรเจน โดย ศึกษาผลต่อการสะสมไขมันในเซลล์ กระบวนการเมแทบอลิซึม และการทำหน้าที่ของเนื้อเยื่อไขมันในหนูที่ขาด ฮอร์โมนเอสโตรเจน ผลการศึกษาใช้หนูแรทที่ถูกตัดรังไข่ และได้รับการรักษาด้วยสาร phytoestrogen จาก C. comosa คือ (3R)-1,7-diphenyl-(4E,6E)-4,6-heptadien-3-ol; DPHD หรือสารสกัดของพืช หรือ ฮอร์โมนเอสโตรเจนเป็นเวลา 12 สัปดาห์ โดยศึกษาถึงปริมาณเนื้อเยื่อไขมัน ระดับไขมันในเลือด และฮอร์โมน นอกจากนี้ยังวิเคราะห์ถึงการแสดงออกของยีนและโปรตีน ที่เกี่ยวข้องกับกระบวนการ จากเซลล์ไขมัน สังเคราะห์ใขมัน และกระบวนการสลายไขมันของไขมันในช่องท้อง ยังได้วิเคราะห์ถึงการเปลี่ยนแปลงของเม ทาโบไลท์ของไขมันในเซรั่ม ผลการวิจัยพบว่าการตัดรังไข่เป็นเวลานาน 12 สัปดาห์ มีผลเพิ่มระดับไขมันใน ชีรั่มสูงขึ้น เพิ่มมวลและขนาดของเซลล์ไขมัน การเปลี่ยนแปลงดังกล่าวมีการเพิ่มของยีนและโปรตีนที่เกี่ยวข้อง กับการสังเคราะห์ใขมัน เช่น LXR-**α** และ SREBP-1c ในเนื้อเยื่อไขมัน อีกทั้งยังลดโปรตีนที่เกี่ยวข้องกับการ ออกซิเดชั่นของกรดไขมันได้แก่ AMPK- α และ PPAR- α และมีการเปลี่ยนแปลงของอะดิโพรไคน์ เช่น leptin และ adiponectin ที่หลั่งจากเนื้อเยื่อไขมันอีกด้วย การให้สารเอสโตรเจน (E2), DPHD หรือสารสกัด *C.* comosa แก่หนูที่ถูกตัดรังไข่สามารถป้องกันการเพิ่มขึ้นของมวลเนื้อเยื่อไขมัน รวมทั้งลดการแสดงออกของยืน และโปรตีนในกระบวนการสังเคราะห์ไขมัน เพิ่มระดับโปรตีน AMPK- α and PPAR- α ในกระบวนการออกซิ เดชั่นของกรดไขมัน ผลวิจัยแสดงให้เห็นว่าสาร DPHD และ สารสกัด C. comosa มีประสิทธิภาพดีเด่นในการ ออกฤทธิ์ลดการสะสมของเนื้อเยื่อไขมันโดยยับยั้งกระบวนการสังเคราะห์ไขมันและเพิ่มการสลายของกรด ไขมัน ซึ่งสนับสนุนการใช้สาร และ พืช C. comosaในการดูแลรักษาโรคที่เกี่ยวข้องกับการสะสมไขมัน ส่วนเกินในร่างกายในหญิงวัยหมดประจำเดือน

นอกจากนี้สาร DPHD ยังมีฤทธิ์ต้านการการจำแนกเซลล์ต้นกำเนิดของมนุษย์ในโพรงกระดูกไปเป็นเซลล์ ไขมัน โดยไปลดการแสดงออกของยีนที่เกี่ยวข้องกับการสร้างเซลล์ไขมัน ทำงานกระตุ้นวิถีสัญญาณในเซลล์ที่ เกี่ยวข้องกับตัวรับฮอร์โมนเอสโตรเจน และ Wnt/ $oldsymbol{eta}$ catenin ฤทธิ์ลดการสะสมไขมันในโพรงกระดูกนี้ สนับสนุน การใช้พืชและสารจากพืช C. comosa ในการดูแลรักษาโรคที่เกี่ยวข้องกับการสะสมไขมันส่วนเกินในร่างกาย และ โรคกระดูกพรุนในหญิงวัยหมดประจำเดือน

คำสำคัญ: ลดไขมัน ไดเอริลเฮปตานอย ไฟโตรเอสโตรเจน ตัดรังไข่ ว่านชักมดลูก พัฒนาการของเซลล์ไขมัน

1. INTRODUCTION

1.1 Statement and significance of the research problem, and objectives

Obesity is a disorder of energy balance caused by the energy intake exceeds the expenditure resulting in an excessive accumulation and expansion of adipose tissue. The increase of visceral adipose tissue, specifically in adipocyte size, contributes to a chronic state of low-grade inflammation affecting adipose tissue functionality. Dysfunction of adipose tissue has been reported to be a major cause of metabolic disorders including insulin resistance, type 2 diabetes, and cardiovascular diseases (Romeo, et al., 2012). The

Sub-project 5: Neuroprotective effects of compounds

ABSTRACT

Alzheimer's disease (AD) and Parkinson's disease (PD) are the most two common neurodegenerative diseases related with aging. The cause of these two diseases are still unknown and treatment is unavailable. Oxidative stress occurred form free radical accumulation increased with age and consequences of metabolic disorders are believed to be a major cause of damage and death of neurons. Therefore, preventing oxidative stress could be a strategy preventing neurodegeneration. In this project, in collaboration with chemist from Thailand and China, we have tested several natural product derived compounds and modified compounds for their ability to prevent neurons from damages and death caused by both oxidative stress and factors known to induce neurodegeneration. We found that several plant-derived compounds showed high scavenging property and can protect neurons from oxidative stress induced cell damage and death. Interestingly, modification of a known anti-oxidant compound also yielded compounds with better activities. Among these, linking Alpha-lipoic acid (ALA) with an anti-ischemic drug 3-nbutylphthalide (NBP) produced compounds that contain significantly greater neuroprotective effect. Together the results from this study shade light to several possible compounds that can be further developed into novel therapeutic agents for treatment of neurodegenerative diseases.

Keywords: Neurodegenerative diseases, Alzheimer's disease, Parkinson disease, modified natural compounds, neuroprotection, antioxidant

บทคัดย่อ

โรคอัลไซเมอร์และโรคพาร์กินสันเป็นโรคความเสื่อมของสมองที่พบบ่อยที่สุดในผู้สูงอายุ สาเหตุของ โรคดังกล่าวยังไม่เป็นที่ทราบดีและปัจจุบันยังไม่มีวิธีรักษาให้หายขาด อย่างไรก็ตาม ปัจจุบันเป็นที่ทราบดีว่า ภาวะเครียดที่เกิดจากอ๊อกซิเดชันเกิดจากการสะสมของอนุมูลอิสระที่เพิ่มมากขึ้นตามอายุ และจากโรคที่ เกี่ยวกับเมตาบอลิก เป็นสาเหตุสำคัญของการเสื่อมและตายของเซลล์ประสาท ดังนั้น การป้องกันไม่ให้เซลล์ ประสาทถูกทำลายจากภาวะเครียดที่เกิดจากอ๊อกซิเดชันเป็นวิธีการป้องกันความเสื่อมของสมองที่สำคัญ งานวิจัยในโครงการนี้ ได้มีความร่วมมือกับนักวิจัยด้านเคมีจากประเทศจีน โดยได้พัฒนาโมเดลเพื่อทดสอบฤทธิ์ ของสารที่ได้จากธรรมชาติ สารสังเคราะห์ชนิดใหม่ ตลอดจนสารที่ดัดแปลงโครงสร้างทางเคมี ในการป้องกัน เซลล์ประสาทจากการถูกทำลายด้วยภาวะเครียดที่เกิดจากอ๊อกซิเดชัน ด้วยสภาวะที่เหนี่ยวนำให้เกิดโรคอัลไซ เมอร์และโรคพาร์กินสัน ผลการทดลองพบว่าสารจากพืชสมุนไพรหลายชนิดมีฤทธิ์ต้านอนุมูลอิสระ และ สามารถปกป้องเซลล์ประสาทจากสภาวะดังกล่าวได้อย่างมีประสิทธิภาพ ยกตัวอย่างเช่น การดัดแปลง โครงสร้างของกรดแอลฟาลิโปอิกที่นำมาเชื่อมต่อกับ NBP ซึ่งเป็นยาที่ปัจจุบันใช้เป็นยารักษาภาวะสมองขาด เลือด มีประสิทธิภาพในการป้องกันการทำลายของเซลล์ประสาทได้ดีมากเมื่อเทียบกับสารเดี่ยว ๆ นอกจากนี้ โครงการวิจัยยังได้ค้นพบโมเดลของเซลล์ประสาทแบบใหม่ เพื่อนำไปใช้ในการวิเคราะห์ผลของสารต่อการ

ปกป้องเซลล์ประสาทได้ในอนาคต ผลงานวิจัยจากโครงการนี้เป็นข้อมูลสำคัญที่จะนำไปสู่การพัฒนายาใหม่ สำหรับการป้องกันและรักษาโรคความเสื่อมของสมองได้ในอนาคต

คำสำคัญ: โรคความเสื่อมของสมอง โรคอัลไซเมอร์ โรคพาร์กินสัน สารธรรมชาติดัดแปลง การปกป้องเซลล์ ประสาท ฤทธิ์ต้านอนุมูลอิสระ

Introduction

Neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD) are progressive and irreversible damage of the nervous system. The pathogenesis of these diseases is still unclear but several evidences suggest that oxidative stress, resulted from accumulation of free radicals and decreasing function of endogenous anti-oxidant system, is one of major causes of the degeneration [1-4]. The free radicals oxidize cellular components such as lipids, proteins, and DNA leading to neuronal damage and death. Mitochondrial electron transport chain generates reactive oxygen species (ROS) which toxic to neuron. The ROS that are generated by mitochondrial respiration, including hydrogen peroxide (H_2O_2), hydroxyl radical (OH), superoxide anion (O^{2-})[5, 6] are potent inducers of oxidative damage and mediators of ageing. Moreover, ROS particularly active in neurons as the excitatory amino acid and neurotransmitters serve as source of oxidative stress. In addition, neurons are post-mitotic cells and therefore, they are particularly sensitive to free radicals leading to neuronal dysfunction, neuronal cell death and eventually neurodegenerative diseases [7]. Currently there is no treatment for these diseases once they occur, therefore protecting neurons from such damages is the best way to prevent these neurodegenerative diseases.

Natural products from plants and marine microbes are sources of various biological active compounds. Several of these compounds demonstrated potent anti-oxidation activity. As oxidative stress in a major course of neurodegeneration, compounds derived from these natural products might be able to protect neurons from damages and death caused by oxidative stress or other related factor. Alpha-lipoic acid (ALA) is a naturally occurring compound that has been shown to exert antioxidant and anti-inflammatory properties. Several studies showed that ALA elicits neuroprotective effects both *in vitro* and *in vivo* models [8-16]. Synergistic protective effect has been observed if ALA is combined with other drugs in several different animal models of pathology [17-23].

In this study, a clinical anti-ischemic and neuroprotective drug 3-n-butylphthalide (NBP) [24] was conjugated with lipoic acid by an amide bond and determined its neuroprotective activities against oxidative stress-induced neuronal cell damage.

Sub-project 6: Targeted drug delivery systems (TDDS) for anticancer activities

ABSTRACT

Andrographolide diphenylsilyl-8,17-epoxy analogue, namely 19-tert-butyl andrographolide, or 3A.1, has been reported to be a potential anticancer agent for several cancer types. Due to its poor aqueous solubility, 3A.1 was incorporated within pH-sensitive amphiphilic chitosan derivatives (N-naphthyl-N,O-succinyl chitosan (NSCS), N-octyl-N-Osuccinyl chitosan (OSCS) and N-benzyl-N,O-succinyl chitosan (BSCS). These 3A.1-loaded nanoparticles were nano-sized (<200 nm) and spherical in shape with a negative surface charge. 3A.1-loaded nanoparticles were produced by dropping method. 40% initial 3A.1loaded NSCS exhibited the highest entrapment efficiency. The release of 3A.1 from these nanoparticles displayed a delayed release pattern. Under acidic conditions (pH 1.2) there was no free drug release. After the pH was adjusted to 6.8, a high cumulative 3A.1 release was obtained. In vitro anticancer activity against colorectal cancer cell HT-29 indicated that the 3A.1-loaded nanoparticles had significantly lower IC50 than the free drug and promoted apoptosis. In addition, in vitro wound healing migration assay on head and neck cancer cell (HN-22) revealed that free 3A.1 and the 3A.1-loaded nanoparticles inhibited cell motility compared to untreated cells. Moreover, we synthesized folic acid conjugated NSCS (F-NSC) for active targeting. The result of anticancer activity against HT-29, which are overexpressed folate receptors on cell surface, clearly showed that 3A.1-loaded F-NSC had greater potency than unconjugated NSCS nanoparticles and also more accumulation into cancer cells through folate receptor-mediated endocytosis. These pH-sensitive amphiphilic chitosan nanoparticles decorated with folate may be promising nanocarriers for oral anti-cancer drug delivery to the targeted colon cancer sites.

Keywords: Anticancer, Andrographolide analogue, nanocarrier decorated with folate

บทคัดย่อ

แอนโดรกราโฟไลด์สกัดได้จากฟ้าทะลายโจร มีการเพิ่มฤทธิ์ให้ดีมากขึ้นโดยการเตรียมให้อยู่ในรูป อนุพันธ์ต่างๆ หนึ่งในอนุพันธ์ของสารกึ่งสังเคราะห์มีชื่อทางเคมี 19-tert-butyldiphenylsilyl-8,17-epoxy andrographolide หรือ 3A.1 มีฤทธิ์ต้านเซลล์มะเร็งที่ดีมากและใช้ได้กับเซลล์มะเร็งหลายชนิด 3A.1 จึงเป็น สารที่มีศักยภาพต่อการนำไปใช้เป็นยาเคมีบำบัดตัวใหม่ได้ อย่างไรก็ตามปัญหาหลักของสารนี้ คือ การละลาย น้ำที่ต่ำมาก ดังนั้นในการศึกษานี้จึงสังเคราะห์อนุพันธ์ไคโตซานที่ไวต่อการเปลี่ยนแปลงพีเอช N-naphthyl-N,O-succinyl chitosan (เอ็นเอสซีเอส), N-octyl-N,O-succinyl chitosan (โอเอสซีเอส) และ N-benzyl-N,O-succinyl chitosan (บีเอสซีเอส) และเตรียมพอลิเมอริกไมเซลล์สำหรับนำส่งยา 3A.1 โดยบรรจุยาในพอ

ลิเมอริกไมเซลล์ ด้วยวิธีทางกายภาพ ศึกษาผลของวิธีการเตรียม ชนิดของพอลิเมอร์และปริมาณตัวยาเริ่มต้น ต่อประสิทธิภาพในการบรรจยาและความสามารถในการบรรจยา นอกจากนี้ศึกษาขนาดอนภาค รปร่าง และ การปลดปล่อยยา พบว่าวิธีการหยดสามารถบรรจุยาได้มากกว่าวิธีอื่น และพอลิเมอริกไมเซลล์ที่เตรียมจากเอ็น เอสซีเอสและปริมาณตัวยาเริ่มต้นต่อพอลิเมอร์ร้อยละ 40 โดยน้ำหนัก มีความสามารถในการบรรจยามากกว่า การใช้อนุพันธ์ชนิดอื่น ขนาดอนุภาคเล็กกว่า 200 นาโนเมตร และมีรูปร่างกลม การศึกษาการปลดปล่อยยา 3A.1 ในตัวกลางที่จำลองสภาวะทางเดินอาหารเป็นเวลา 8 ชั่วโมง พบว่าไม่มีการปลดปล่อย 3A.1 ในสภาวะ จำลองกระเพาะอาหารพีเอช 1.2 และเมื่อปรับพีเอชของตัวกลางให้จำลองสภาวะลำไส้เล็กพีเอช 6.8 พบว่า การปลดปล่อย 3A.1 เพิ่มขึ้นอย่างมาก ทั้งนี้เนื่องจากผลของการแตกตัวเป็นไอออนของส่วนหมู่กรดซักซินิก การทดสอบความเป็นพิษต่อเซลล์เอชที-29 พบว่า 3A.1 ที่บรรจุในพอลิเมอริกไมเซลล์มีค่าความเป็นพิษต่อ เซลล์สูงกว่ายาอิสระโดยเพิ่มการตายแบบอะพอพโทซิส การศึกษาการเคลื่อนที่ของเซลล์มะเร็งชนิดเอ็นเอช-22 พบว่าทั้ง 3A.1 อิสระและที่บรรจุในพอลิเมอริกไมเซลล์สามารถยับยั้งการเคลื่อนที่ของเซลล์ได้ นอกจากนี้การ นำโฟลิกมาควบคู่กับเอ็นเอสซีเอส (F-NSC) เพื่อเพิ่มความจำเพาะกับเซลล์มะเร็งลำไส้ใหญ่เอชที-29 ซึ่งที่ผิว เซลล์มีตัวรับโพเลตสูง พบว่าสามารถเพิ่มประสิทธิภาพของระบบนำส่งได้ดีกว่าชนิดไม่มีโฟลิก ผลที่ได้แสดงให้ พอลิเมอริกไมเซลล์เอ็นเอสซีเอสควบคู่กับโฟลิกมีศักยภาพในการเพิ่มการละลายยา ควบคุมการ ปลดปล่อยและนำส่งยาไปบริเวณเป้าหมายที่เป็นมะเร็งลำไส้ใหญ่โดยการรับประทาน

Keywords: ยาต้านมะเร็ง ระบบนำส่งควบคู่กับโฟลิก อนุพันธ์แอนโดรกราโฟไลด์

I. INTRODUCTION

1.2 Statement and significance of the research problem

Drug delivery systems (DDS) are processes or methods of pharmaceutical compounds' administration for an improved therapeutic effect in humans or animals body. DDS improve therapeutic efficacy through control of rate, time and place of drug release. There are commonly used routes of drug delivery including parenteral delivery, oral delivery, transdermal delivery, mucosal delivery (e.g. pulmonary, ocular, sublingual). administration is the most widely used route of drug delivery due to its convenience in terms of self-administration, pain free and high patient compliance, especially in the case of chronic therapies. However, some properties of drugs are not suitable for oral route due to side effects, rapid metabolism, and poor solubility. The low solubility of drug, that is classified in Biopharmaceutical Classification System (BCS) class II and class IV, is a crucial obstacle due to low absorption in the gastrointestinal (GI) tract. Accordingly, the low solubility leads to low bioavailability (Li et al., 2009; Lu and Park, 2013). More than 40% of new chemical entities (NCEs) developed in pharmaceutical industry are practically insoluble in water (Kalepu, 2013). The techniques used for solubility enhancement of drug include particle size reduction, cosolvents, solid dispersions, complexation (Kumar, 2011). Recently, scientists have challenged to generate novel carriers of oral drug delivery for obtaining higher levels in bioavailability such as polymeric micelles, microemulsions, nanoparticles.