

รายงานวิจัยฉบับสมบูรณ์

โครงการ

การพัฒนาเทคโนโลยีการผลิตและใช้น้ำเชื้อสุกรแซ่บแข็ง
ในระดับอุตสาหกรรมการผลิตสุกร

โดย

รศ.น.สพ.ดร. เผ็ดจ ธรรมรักษ์ และคณะ

กันยายน 2552

รายงานวิจัยฉบับสมบูรณ์

โครงการ

การพัฒนาเทคโนโลยีการผลิตและใช้น้ำเชื้อสุกรแซ่บแข็ง ในระดับอุตสาหกรรมการผลิตสุกร

คณะผู้วิจัย

- รศ.น.สพ. ดร. เพ็ชร ธรรมรักษ์ คณะสัตวแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย
- รศ. น.สพ. ดร. กัมพล แก้วเกช คณะสัตวแพทยศาสตร์ มหาวิทยาลัยมหิดล
- สพ.ญ. พนิดา ชนาภิวัฒน์ คณะสัตวแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย (สกอ.)

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกอ. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

Executive summary

1. รายละเอียดโครงการ

ชื่อโครงการ การพัฒนาเทคโนโลยีการผลิตและใช้น้ำเชื้อสุกรแช่แข็งในระดับอุตสาหกรรม การผลิตสุกร (The development of boar semen cryopreservation to the pig industry)

หัวหน้าโครงการ รศ. น.สพ. ดร. เพ็ชร์ ธรรมรักษ์

สถานที่ติดต่อ ภาควิชาสูติศาสตร์เนรุเวชวิทยาและวิทยาการสืบพันธุ์ คณะสัตวแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย โทรศัพท์ 02-2189644-5 โทรสาร 02-2520738

E-mail address: Padet.T@chula.ac.th

ผู้ประกอบการ น.สพ. เกียรติภูมิ พฤกษาวน

ชื่อบริษัท มิตรภาพไอบริด จำกัด

ประเภทธุรกิจหลัก ผลิตฟองแม่พันธุ์สุกรและน้ำเชื้อฟองสุกร

สถานที่ติดต่อ 2947/16 ถนน รามคำแหง บางกะปิ กรุงเทพฯ 10240

โทรศัพท์ 02-7322448 โทรสาร 02-3779246 E-mail address: keitipoomp@yahoo.com

2. ความสำคัญและที่มาของปัญหา

วัตถุประสงค์ในการพัฒนาน้ำเชื้อแช่แข็งสำหรับสุกร คือ เพื่อเก็บพันธุกรรมของฟองสุกร ที่มีลักษณะดี กระจายพันธุกรรมได้เร็วกว่าน้ำเชื้อสด และลดข้อจำกัดในการขนส่งน้ำเชื้อระหว่างประเทศ อย่างไรก็ได้สุจิของสุกรหลังผ่านการแช่แข็งและทำละลายค่อนข้างอ่อนแอและมีอัตราการผสานติดต่ำ ปัญหาเกิดจากหลายสาเหตุ ได้แก่ อสุจิสุกรมีโครงสร้างของชั้นไขมันที่ผิวเซลล์ต่างจากอสุจิของโคและมีความไวต่อการเปลี่ยนแปลงของอุณหภูมิมาก หลอดบรรจุน้ำเชื้อหรือวิธีการบรรจุน้ำเชื้อสำหรับการผสานติดต่ำ การใช้หลอดฟางสำหรับบรรจุน้ำเชื้อขนาดใหญ่ (maxi straw ขนาด 5 มล.) ทำให้ความเย็นกระจายไม่ทั่วถึง ทำให้มีการสูญเสียอสุจิหลังทำละลายจำนวนมาก การใช้หลอดฟางขนาดเล็ก (0.25 - 0.5 มล.) ทำให้การผสานติดต่ำไม่สะดวกและต้องใช้หลอยหลอดในการผสานติดต่ำ นอกจากนี้อัตราเร็วในการแช่แข็งน้ำเชื้อและทำละลายน้ำเชื้อ ก็มีความสำคัญต่ออัตราการผสานติดต่ำของอสุจิ ถ้าอัตราการแช่แข็งช้าเกินไปจะทำให้เกิดผลึกน้ำแข็งในเซลล์มาก และต้องมีสารป้องกันการเกิดผลึกน้ำแข็งกับอสุจิด้วย ในกระบวนการแช่แข็งอสุจิสุกรพบว่าจำเป็นต้องมีเวลาในการปรับตัวของอสุจิก่อนแช่แข็ง ควรทิ้งอสุจิที่อุณหภูมิ 15°C นาน 1-5 ชั่วโมง ก่อนทำการลดอุณหภูมิลงต่ำกว่า 15°C เพื่อลดการเกิดปัญหาการซื้อกองของอสุจิเนื่องจากความเย็น (cold shock) ระยะเวลาพักนี้เรียกว่า Holding time (HT) ซึ่งเป็นกระบวนการที่ต่างจากสัตว์เลี้ยงลูกด้วยนมชนิดอื่นๆ เนื่องจากสาเหตุที่สุจิสุกรหลังกระบวนการแช่แข็งค่อนข้างอ่อนแอ และการแช่แข็งในปริมาณน้อยมักส่งผลให้เกิดความ

พยากรณ์ในการผสมเทียมสุกรด้วยน้ำเชื้อปริมาณน้อยเพื่อการใช้น้ำเชื้อสุกรแช่แข็งอย่างมีประสิทธิภาพ

หลังการผสมเทียมสุกร อสุจิต้องถูกขนส่งจากคอมดลูกจนถึงท่อน้ำไปซึ่งมีระยะทางไกลทำให้อสุจิมีมากกว่า 90% สูญเสียจากการเก็บกินของเซลล์เม็ดเลือดขาวชนิดต่างๆ (phagocytosis) ก่อนเดินทางถึงท่อน้ำไป นอกจากนี้การแช่แข็งทำให้อสุจิค่อนข้างอ่อนแอกล้ามและเกิดกระบวนการค่าป่าชีตเซ็น (capacitation) ค่อนข้างเร็วทำให้ตายง่ายกว่าน้ำเชื้อสด วิธีการผสมเทียมโดยฉีดน้ำเชื้อเข้าไปในมดลูกแม่สุกรโดยไม่ต้องใช้วิธีการผ่าตัด (Intra-uterine insemination, IUI และ Deep intra-uterine insemination, DIUI) ได้รับการพัฒนาขึ้น โดยวิธีการนี้สามารถที่จะผสมเทียมสุกรโดยใช้อสุจิเพียง 150-1,000 ล้านตัวต่อโตรีส และได้มีการนำวิธีการนี้ไปประยุกต์ใช้กับน้ำเชื้อแช่แข็งและน้ำเชื้อที่ผ่านการคัดแยกเพคโดยวิธีโฟล์ไซโตรเมตทรีแล้ว เนื่องจากตัวอสุจิที่มีอยู่ในน้ำเชื้อแช่แข็งและน้ำเชื้อที่ผ่านการคัดแยกเพคโดยวิธีโฟล์ไซโตรเมตทรีไม่แข็งแรง ดังนั้นจึงจำเป็นต้องปล่อยน้ำเชื้อให้กลับบกวนที่จะเกิดการปฏิสนธิให้มากที่สุดเพื่อป้องกันไม่ให้ตัวอสุจิเกิดการตายก่อนในระหว่างที่เคลื่อนที่จากคอมดลูกมายังท่อน้ำไปในประเทศไทย การผลิตน้ำเชื้อแช่แข็งในห้องปฏิบัติการ การผสมเทียมโดยวิธี IUI และ DIUI ได้พัฒนาและวิจัยแล้ว (Sumrangsap et al., 2007; Tummaruk et al., 2007; Buranaumnuay et al., 2009) เพื่อความต่อเนื่องและสอดรับกับงานวิจัยที่ผ่านมา การผลิตและใช้น้ำเชื้อแช่แข็งในอุตสาหกรรมการผลิตสุกรควรได้รับการวิจัยและพัฒนา ตลอดจนการประเมินความเหมาะสม และความคุ้มค่าทางเศรษฐกิจสำหรับการใช้งานจริงในภาคอุตสาหกรรมการผลิตสุกรในประเทศไทย

3. วัตถุประสงค์

- เพื่อพัฒนาและปรับปรุงประสิทธิภาพของสารละลายสำหรับการแช่แข็งน้ำเชื้อสุกร
- ศึกษาเทคนิคการผสมเทียมโดยใช้น้ำเชื้อแช่แข็งอย่างมีประสิทธิภาพในระดับฟาร์ม
- เพื่อเป็นประโยชน์ต่อการรักษาพันธุกรรมพ่อพันธุ์ดี
- ศึกษาสมรรถภาพทางการสืบพันธุ์ในแม่สุกร และประเมินความคุ้มค่าทางเศรษฐกิจ หลังการผสมเทียมด้วยน้ำเชื้อแช่แข็ง

4. ระเบียบวิธีวิจัย

การทดลองใช้สุกรเพศผู้ที่โตเต็มวัยใช้สำหรับการผสมเทียม จำนวน 30 ตัว อายุระหว่าง 1.5-3 ปี มีคุณภาพน้ำเชื้อปกติ จากบริษัทมิตรภาพไอบริด จำกัด อำเภอแก่งคอย จังหวัดสระบุรี พ่อสุกรแต่ละตัวถูกเลี้ยงในคอกเดี่ยว มีร่างอาหาร และจุบ้น้ำอัตโนมัติ มีน้ำดื่มตลอด 24 ชั่วโมง รีดน้ำเชื้อจากพ่อสุกรแต่ละตัว ตัวละ ≥ 3 ครั้ง โดยมีระยะห่างของการรีดน้ำเชื้อย่างน้อย 5 วัน น้ำเชื้อที่มีคุณภาพดีถูกแช่แข็งและตรวจสอบคุณภาพน้ำเชื้อหลังการทำสะอาด (ตารางที่ 1) หลังการทำสะอาดน้ำเชื้อที่มีอัตราการเคลื่อนไหวหลังการทำสะอาด $\geq 40\%$ จะทำการเก็บรักษาในน้ำเชื้อ

แซ่แข็งในธนาคารน้ำเชื้อ (semen bank) เพื่อใช้ในการผสมเทียม สุกรเพศเมียที่นำมาใช้ในการผสมเทียมด้วยน้ำเชื้อแซ่แข็ง เป็นแมสุกรระหว่าง ท้อง 2-8 ที่มีประวัติการคลอด และหย่านมปกติ และแสดงอาการเป็นสัดภายใน 6 วัน หลังหย่านม ทำการผสมเทียมในแมสุกรพันธุ์แลนด์เรช จำนวน 69 ตัว (น้ำเชื้อแซ่แข็ง 33 ตัว น้ำเชื้อสด 36 ตัว) (ตารางที่ 2)

รีดเก็บน้ำเชื้อพ่อพันธุ์สุกร โดยวิธี Gloved hand method โดยรีดเก็บเฉพาะส่วน sperm rich fraction หลังจากนั้นทำการตรวจคุณภาพน้ำเชื้อ โดยตรวจดูสี ปริมาณ เบอร์เซนต์การเคลื่อนไหวเป็นรายตัว และตรวจความเข้มข้นด้วย photometer (spermacue[®]) น้ำเชื้อที่มีเบอร์เซนต์การเคลื่อนไหวเป็นรายตัว $\geq 70\%$ ปริมาณ ≥ 100 มิลลิลิตร ความเข้มข้น ≥ 200 ตัว/มิลลิลิตร จะนำมาใช้ในการแซ่แข็ง

เจือจางน้ำเชื้อด้วยสารละลายชนิดที่ 1 (ModenaTM) ในอัตราส่วนน้ำเชื้อ 1 ส่วนต่อ ModenaTM 1-3 ส่วน (1:1-1:3) รักษาอุณหภูมิในตู้เย็นที่ 15°C นาน 2 ชั่วโมง ปั่นเหวี่ยง (centrifuge) ด้วยความเร็ว $800\times g$ ที่อุณหภูมิ 15°C นาน 10 นาที เทส่วนของเหลวด้านบนออก เจือจางส่วนที่เหลือด้วย สารละลายชนิดที่ 2 (Extender II) ซึ่งประกอบด้วย lactose solution และ egg yolk ให้ได้ความเข้มข้นของอสุจิ 1.5×10^9 ตัว/มิลลิลิตร ผสมให้เข้ากัน และทิ้งไว้ที่อุณหภูมิ 5°C นาน 1.5 ชั่วโมง หลังจากนั้นทำการเจือจางเพิ่มด้วยสารละลายชนิดที่ 3 (Extender III) ซึ่งประกอบด้วย สารละลายชนิดที่ 2 กับ glycerol และ Equex STM[®] ในอัตราส่วน 2:1 ให้สารละลายสุดท้ายมีความเข้มข้นของอสุจิ 1×10^9 ตัว/มิลลิลิตร มี glycerol 3% ในน้ำเชื้อ บรรจุสารละลายน้ำเชื้อลงในหลอดพางขนาด 0.5 มิลลิลิตร แล้วปิดผนึก ลดอุณหภูมิน้ำเชื้อที่บรรจุแล้ว ด้วยการวางหลอดพางเหนือระดับผิวของในโตรเจนเหลวที่ 3 เชนติเมตรนาน 20 นาที ก่อนจุ่มลงในในโตรเจนเหลว การทำละลายทำโดยนำน้ำเชื้อใส่ลงในน้ำอุ่นที่อุณหภูมิ 50°C เป็นเวลา 12 วินาที หลังจากนั้น เจือจางน้ำเชื้อด้วยสารละลาย ModenaTM ก่อนนำไปผสมเทียม

หลังจากละลายน้ำเชื้อถูกน้ำละลายด้วย ModenaTM ในสัดส่วน 1:20 ให้มีอสุจิเข้มข้น $50-60\times 10^6$ ตัว/มิลลิลิตร หลังจากนั้นนำน้ำเชื้อถูกนำมาประเมินคุณภาพโดยศึกษาลักษณะผนังเซลล์ (plasma membrane integrity) และ ศึกษาความผิดปกติของอโครซوم (Acrosome defect) โดยการย้อมสี SYBR-14 และ ethidium homodimer-1 (Fertilight[®] Sperm Viability Kit, Molecular Probes Europe BV, The Netherlands)

ตรวจการเป็นสัดในแมสุกรหลังหย่านมวันละ 2 ครั้ง โดยใช้พ่อสุกร เมื่อพบรการเป็นสัดทำการตอกไข่ตรวจโดยใช้เครื่องอัลตราซาวน์ แบบเรียลไทม์ มี โหมด โดยใช้หัวตรวจชนิดสอดเข้าทางทวารหนัก ความถี่ 5 MHz วัดขนาดของฟอลลิเคิลโดยเลือกฟอลลิเคิลที่มีขนาดใหญ่ที่สุด เมื่อแมสุกรแสดงอาการเป็นสัดแล้วจะเพิ่มความถี่การวัดขนาดฟอลลิเคิลเป็นทุก 8 ชั่วโมง จนกว่าจะตกรักษาไว้และวัดขนาดของฟอลลิเคิลด้วยอัลตราซาวน์ละ 1 ครั้ง ตั้งแต่ 1 วันหลังหย่านมเป็นต้นไปจนกระทั่งแมสุกรเป็นสัดจึงเพิ่มความถี่ของการวัดเป็นทุก 8 ชั่วโมง วันที่หย่านม

นับเป็นวันที่ 0 ระยะเป็นสัตถีงอกไข่ในสุกรทุกตัวถูกบันทึก แบ่งแม่สุกรออกเป็น 2 กลุ่ม และทำการผสานเทียนด้วยน้ำเชื้อสตดด้วยวิธีปีกติของฟาร์ม 36 ตัว (กลุ่มควบคุม) และผสานเทียนด้วยน้ำเชื้อแข็งร่วมกับการเหนี่ยวนำการตอกไข่ด้วยออร์โนนส์ hCG (Choluron[®], Intervet, Netherlands) 500 IU im. ในวันแรกของการเป็นสัต 33 ตัว (กลุ่มทดลอง) กลุ่มควบคุมทำการผสานเทียน 2-3 ครั้ง ที่ 12 และ 24 และ 36 ชั่วโมง หลังจากเริ่มพบอาการเป็นสัตยืนนิ่ง การผสานครั้งที่ 3 จะทำการณีที่ตรวจพบว่าแม่สุกรยังยืนนิ่งยอมรับการผสาน กลุ่มทดลอง ทำการผสาน 2-3 ครั้ง ที่ 24 และ 36 และ 48 ชั่วโมง หลังฉีดออร์โนน hCG กลุ่มควบคุมจะใช้ปริมาตรและจำนวนอสุจิตามมาตรฐานของฟาร์ม คือ ปริมาตร 100 มลลิตร อสุจิจำนวน $3,000 \times 10^6$ ตัว ในกลุ่มทดลอง ใช้อสุจิ $2,000 \times 10^6$ ตัว ในสารละลายน้ำ BTS ปริมาตร 20 มลลิตร แม่สุกรทั้ง 2 กลุ่ม ถูกผสานเทียนด้วยวิธี intra-uterine insemination (IUI) หลังการผสานเทียนทำการตรวจการตั้งท้องของแม่สุกรทั้ง 2 กลุ่มด้วยวิธีสังเกตการกลับสัต ในวันที่ 18-24 หลังเริ่มพบอาการเป็นสัตบันทึกและเปรียบเทียบอัตราการตั้งท้อง ร่องน้ำทั้งคอลอตและเปรียบเทียบอัตราการเข้าคอลอตและจำนวนลูกสุกรทั้งหมดแรกคอลอต/ครอกในแม่สุกรทั้ง 2 กลุ่ม ทำการวิเคราะห์ทางสถิติ โดยใช้โปรแกรม SAS (SAS Inst. V. 9.0, Cary, NC USA) เปรียบเทียบคุณภาพน้ำเชื้อภายหลังทำการตั้งท้องโดยประเมินจาก อัตราการเคลื่อนที่ไปข้างหน้า ร้อยละของอสุจิที่ยังมีชีวิตหลังทำการตั้งท้องโดยประเมินจาก อัตราการเข้าคอลอต ด้วยวิธี General linear model (GLM) เปรียบเทียบอัตราการผสานติด อัตราการเข้าคอลอต ด้วยวิธี Chi-square test เปรียบเทียบจำนวนลูกสุกรแรกคอลอตทั้งหมดต่อครอกด้วยวิธี General linear model (GLM) ค่า $P < 0.05$ ถือว่าข้อมูลมีความแตกต่างอย่างมีนัยสำคัญ

5. ผลการทดลอง

คุณภาพน้ำเชื้อสุกรก่อนและหลังผ่านการแข็งร่วง และ ผลการผสานเทียนด้วยน้ำเชื้อสุกรแข็งร่วงเปรียบเทียบกับน้ำเชื้อสตด แสดงในตารางที่ 1 และ 2 ตามลำดับ

ตารางที่ 1 คุณภาพน้ำเชื้อสุกรก่อนและหลังผ่านการแข็งร่วง

พารามิเตอร์	จำนวน	ค่าเฉลี่ย \pm SD	พิสัย
ปริมาตร (มล.)	94	145.1 \pm 38.3	70-255
ความเข้มข้น ($\times 10^6$ ตัว/มล.)	94	449.3 \pm 99.1	290-760
การเคลื่อนไหวก่อนแข็งร่วง (%)	94	85.3 \pm 3.0	80-90
การรอดชีวิตก่อนแข็งร่วง (%)	94	83.6 \pm 4.8	71-95
การเคลื่อนไหวหลังแข็งร่วง (%)	62	31.9 \pm 16.2	0-60
การรอดชีวิตหลังแข็งร่วง (%)	62	28.4 \pm 11.4	4.5-59
จำนวนหลอดfangเฉลี่ย/ครั้ง	14	44.9 \pm 21.7	20-81

ตารางที่ 2 ผลการผสมเทียม (ค่าเฉลี่ย±SD (พิสัย))

พารามิเตอร์	กลุ่มควบคุณ	กลุ่มทดลอง
จำนวนสุกร	36	33
ลำดับครอค	4.8±1.7 (2-8)	4.5±1.9 (2-9)
คะแนนรูปร่าง	2.5±0.4 (2-3)	2.5±0.5 (2-3)
ระยะหย่านมถึงเป็นสัด (วัน)	3.6±1.2 (2-6)	3.6±0.6 (2-4)
อัตราการเคลื่อนไหวหลังทำลัลายน (%)	NA	47.6±3.7 (40-50)
ระยะเป็นสัดถึงตกไข่ (ชม.)	NA	43.0±4.9 (38-50)
นีดออร์โนนถึงตกไข่ (ชม.)	NA	36.4±3.7 (33-42.5)
ผสมเทียมถึงตกไข่ (ชม.)	NA	4.0±4.9 (1.5-17.5)
อัตราผสมติด (%)	91.7	78.8
อัตราเข้าครอต (%)	55	65
จำนวนลูกสุกรแรกราครอตทั้งหมด/ครอค	10.1±0.8	9.2±0.8
จำนวนลูกสุกรมีชีวิต/ครอค	8.3±1.1	8.6±0.9

6. ผลงานที่ได้รับ

ผลผลิตเมื่อสิ้นสุดปีที่ 1

1. มีสูตรในการผลิตนำ้เชื้อแช่แข็ง

ตีพิมพ์ผลงานใน Asian Journal of Andrology (2009) 11: 600-608.

2. ฟาร์มมีนำ้เชื้อแช่แข็งจากพ่อสุกร (semen bank)

ปัจจุบันฟาร์มมีนำ้เชื้อแช่แข็งที่พร้อมใช้งานประมาณ 4,500 หลอด (ตารางที่ 1)

ผลผลิตเมื่อสิ้นสุดปีที่ 2

1. ผลิตลูกสุกรจากการผสมเทียมด้วยนำ้เชื้อแช่แข็งได้

ผลิตลูกสุกรจากนำ้เชื้อแช่แข็งได้แล้ว จำนวน 112 ตัว (กำลังตั้งท้องอีกประมาณ 10 แม่ คาดว่าจะได้ลูกสุกรเพิ่มอีกประมาณ 90 ตัว)

2. มีผลงานตีพิมพ์ในระดับนานาชาติ 4 เรื่อง

(เรื่องเต็ม 2 เรื่อง และ บทคัดย่องานประชุมวิชาการระดับนานาชาติ 2 เรื่อง)

1. Tummaruk, P., Tienthai, P., Manee-In, S., Srisuwatanasagul, S., 2009.

Expression of progesterone receptor in the utero-tubal junction after intra-uterine and deep intra-uterine insemination in sows. Reprod. Domest. Anim. (inpress). Impact factor (2008) = 1.526

2. Chanapiwat, P., Kaeoket, K., Tummaruk, P., 2009. Effects of DHA-enriched

hen egg yolk and L-cysteine supplementation on quality of cryopreserved boar

semen. Asian Journal of Andrology 11 (5): 600-608. Impact factor (2008) = 2.059

3. Chanapiwat, P., Olanratmanee, E., Kaeoket, K., Tummaruk, P., 2009. Conception rate and litter size of sows after intra-uterine insemination using frozen-thawed boar semen. Proc 4th Congress of Asian Pig Veterinary Society, Tsukuba, Ibaraki, Japan, 26th-28th October 2009.
4. Chanapiwat, P., Kaeoket, K., Tummaruk, P., 2009. The DNA damage of frozen-thawed boar spermatozoa: Effect of breed, boar and antioxidant supplementation. Proc 4th Congress of Asian Pig Veterinary Society, Tsukuba, Ibaraki, Japan, 26th-28th October 2009.

บทคัดย่อ

ปัจจุบันการผอมเทียมได้ถูกนำมาใช้อย่างแพร่หลายในอุตสาหกรรมการผลิตสุกรทั่วโลก การผอมเทียมส่วนใหญ่ใช้น้ำเชื้อสอดประมาณ 99% ของการผอมเทียมทั้งหมด ในขณะที่การผอมเทียมสุกรด้วยน้ำเชื้อแข็งมีการใช้เพียง 1% เท่านั้น การวิจัยครั้งนี้มีวัตถุประสงค์เพื่อพัฒนาและปรับปรุงประสิทธิภาพของน้ำยาเจือจางสำหรับแซ่บแข็งน้ำเชื้อสุกร ศึกษาเทคนิคการผอมเทียมโดยใช้น้ำเชื้อแข็งอย่างมีประสิทธิภาพในระดับฟาร์ม และศึกษาสมรรถภาพทางการสืบพันธุ์ในแม่สุกรหลังการผอมเทียมด้วยน้ำเชื้อแข็ง ทำการทดลองฟาร์มสุกรที่ผลิตน้ำเชื้อสุกรเชิงอุตสาหกรรมแห่งหนึ่ง รีดน้ำเชื้อจากสุกรเพศผู้ที่โตเต็มวัยที่ใช้สำหรับการผอมเทียมที่มีคุณภาพน้ำเชื้อปกติ น้ำเชื้อที่มีคุณภาพดีถูกแซ่บแข็งและตรวจสอบคุณภาพหลังการทำลาย น้ำเชื้อที่มีอัตราการเคลื่อนไหวหลังทำลาย $>40\%$ จะทำการเก็บรักษาในน้ำเชื้อโดยการแซ่บแข็งเพื่อใช้ในการผอมเทียม ทำการผอมเทียมสุกรเพศเมียที่มีประจำตัวคลอดและหย่านมปกติ ด้วยน้ำเชื้อแข็ง จำนวน 33 ตัว เปรียบเทียบกับการผอมเทียมด้วยน้ำเชื้อสอด 36 ตัว ด้วยวิธีสอดท่อเข้ามดลูก (intra-uterine insemination) ตรวจติดตามการตกลงในสุกรกลุ่มทดลองด้วยอุปกรณ์อัลตราซาวด์แบบเรียลไทม์ ปี ใหม่ วิเคราะห์ทางสถิติโดยประเมินคุณภาพน้ำเชื้อหลังทำลาย เปรียบเทียบอัตราการผอมติด อัตราการเข้าคลอด และ จำนวนลูกสุกรแรกคลอดทั้งหมดต่อครอก ผลการทดลองพบว่าโดยเฉลี่ยน้ำเชื้อสุกรแซ่บแข็งที่นำไปใช้สำหรับการผอมเทียมมีอัตราการเคลื่อนไหว 47.6% แม่สุกรหย่านมที่ทำการตัดเพื่อผอมเทียมด้วยน้ำเชื้อสุกรแซ่บแข็งมีระยะเวลาตั้งแต่เริ่มเป็นสัดถึงตกไข่เฉลี่ย 43.0 ± 4.9 ชั่วโมง และระยะเวลาตั้งแต่ฉีดฮอร์โมนจนน้ำนมตั้งแต่เริ่มเป็นรายตัวพบว่าระยะเวลาตั้งแต่เริ่มเป็นรายตัว 36.4 ± 3.7 ชั่วโมง จากการตรวจติดตามการตกลงในรายตัวพบว่าระยะเวลาตั้งแต่เริ่มเป็นรายตัว 4.0 ± 4.9 ชั่วโมง อัตราการผอมติดในกลุ่มที่ใช้น้ำเชื้อแข็งมีแนวโน้มต่ำกว่ากลุ่มควบคุม 12.9% ($P=0.12$) อย่างไรก็ได้อัตราเข้าคลอด จำนวนลูกสุกรแรกคลอดทั้งหมดต่อครอก และ จำนวนลูกสุกรมีชีวิตต่อครอก ไม่มีความแตกต่างกันระหว่างกลุ่มควบคุมและกลุ่มที่ใช้น้ำเชื้อแข็ง ($P>0.05$) การวิจัยครั้งนี้แสดงให้เห็นเป็นครั้งแรกว่า การผอมเทียมสุกรด้วยน้ำเชื้อแข็งได้เริ่มต้นทำในอุตสาหกรรมการผลิตสุกรในประเทศไทยแล้ว และผลที่ได้จากการผอมเทียมนับว่าอยู่ในระดับที่น่าพอใจ รูปแบบการผลิตและขั้นตอนการผอมเทียมเหล่านี้สามารถนำไปประยุกต์ใช้ได้ในฟาร์มอื่นๆ ในประเทศไทยได้ต่อไป

คำสำคัญ: สุกร ระบบสืบพันธุ์ ผอมเทียม น้ำเชื้อแข็ง

Abstract

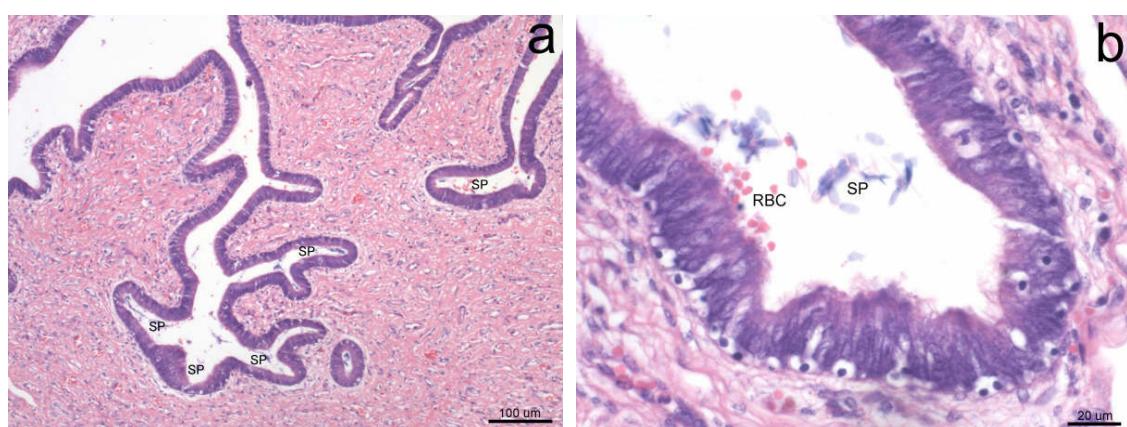
Artificial insemination (AI) is nowadays widely used in the swine industry worldwide. Approximately 99% of the AI was performed by using extended fresh semen, while 1% of frozen-thawed (FT) boar semen is used. The objective of the present study was to develop and modify the semen extenders used for cryopreservation of boar semen, to investigate the optimal insemination technique for AI using FT semen and to evaluate in vivo fertility results of the sows after insemination using FT boar semen. The experiment was conducted in a commercial swine herd. Semen was collected from mature boars routinely used for artificial insemination. Good quality semen were cryopreserved and evaluated for post-thawed sperm qualities. The semen with post-thawed motility of $\geq 40\%$ were kept in the semen bank and were used for AI. Thirty three Landrace sows with a normal farrowing and weaning were inseminated using FT semen compared with 36 control sows, inseminated using conventional extended fresh semen. Both groups were inseminated using IUI procedure. The time of ovulation was determined by monitoring the appearance of the follicles using transrectal real time B-mode ultrasonography. Post-thawed semen qualities, conception rate (24 d non-return rate), farrowing rate (FR), total number of piglets born/litter (TB) and number of piglets born alive/litter (BA) were analyzed. It was found that the individual motility of the FT semen used for IUI was on average 47.6%. The interval from onset of estrus to ovulation (EOI) was 43.0 ± 4.9 h and interval from hCG injection to ovulation (HOI) was 36.4 ± 3.7 h. The interval between the latest insemination and ovulation (IOI) was 4.0 ± 4.9 h. The sows inseminated with extended fresh semen tended to have a 12.9% higher conception rate compared with sows inseminated with FT semen ($P=0.12$). The FR, TB and BA were not significantly different between sows inseminated with extended fresh semen and sows inseminated with FT semen ($P>0.05$). The present study demonstrated that AI using FT boar semen has been established for the first time in a swine commercial herd in Thailand and a reasonable fertility results were obtained. The cryopreservation protocol and the insemination technique demonstrated in the present study could be modified and used in other commercial swine herds.

Keywords: Pig Reproduction Artificial insemination Frozen semen

บทที่ 1

ทบทวนวรรณกรรมที่เกี่ยวข้อง

บทนำ


ปัจจุบันการผสานเทียมได้เข้ามามีบทบาทสำคัญ ในอุตสาหกรรมการผลิตสุกรทั่วโลก เนื่องจากการผสานเทียมทำให้เกิดการถ่ายทอดพันธุกรรมไปได้อย่างรวดเร็ว และมีสมรรถภาพทางการสืบพันธุ์ดีกว่าหรือเท่ากับการผสานพันธุ์แบบธรรมชาติ (Flowers and Esbensen, 1993; Almond, 1998; Weitze, 2000; Singleton, 2001) โดยปัจจัยที่มีผลทำให้การผสานเทียมในสุกรมีประสิทธิภาพ ประกอบด้วย คุณภาพของอสุจิ คุณภาพของสุกรเพศเมีย เวลาในการผสานเทียม และ เทคนิคการผสานเทียม (Soede et al., 1995; Nissen et al., 1997; Tummaruk et al., 2000) อย่างไรก็ได้ผลการวิจัยต่างๆ ในช่วง 10 ปีที่ผ่านมาบ่งชี้ว่าการผสานเทียมสุกรแบบปกติที่ใช้ในปัจจุบันนับว่ายังไม่เหมาะสมที่จะใช้กับเชื้ออสุจิสุกรที่มีมูลค่าสูง และมีความอ่อนแอ เช่น น้ำเชื้อพ่อพันธุ์ที่นำเข้าจากต่างประเทศ น้ำเชื้อที่ผ่านการแช่แข็ง และน้ำเชื้อที่ผ่านการคัดแยกเพศ การผสานเทียมแบบใหม่จึงได้ถูกพัฒนาขึ้น โดยใช้วิธีการสอดท่อผ่านคอมดลูกเพื่อนำน้ำเชื้อไปปล่อยที่ในตัวมดลูก เรียกว่า “intrauterine insemination” (IUI) หรือสอดผ่านไปจนถึงส่วนต้นของปีกมดลูก เรียกว่า “deep intrauterine insemination” (DIUI) โดยไม่ต้องทำการผ่าตัด ปัจจุบันเทคโนโลยีการผสานเทียมสุกรทั้ง 2 วิธี ได้เริ่มมีการนำเข้าจากต่างประเทศ และเริ่มนำมาใช้อุตสาหกรรมการผลิตสุกรในประเทศไทยแล้ว

ในช่วง 2-3 ปีที่ผ่านมา การผสานเทียมสุกรด้วยนำเข้าแช่แข็งมีการพัฒนาและใช้งานในอุตสาหกรรมการผลิตสุกรอย่างรวดเร็วในสหรัฐอเมริกา และยุโรป (Eriksson, 2000; Roca, 2006) ในเชิงอุตสาหกรรมการผลิตสุกรด้วยนำเข้าแช่แข็ง ในประเทศไทยยังล้าหลังมาก เนื่องจากขาดข้อมูลพื้นฐานที่เกี่ยวข้องในกระบวนการผลิตทั้งหมด ทั้งขั้นตอนและเทคนิคการผลิต จนถึงเทคนิคการผสานพันธุ์ ทำให้ต้องพึ่งพาการนำเข้าเทคโนโลยีเหล่านี้จากต่างประเทศทั้งหมด เนื่องจากเกษตรกรยังคงมีความต้องการนำเข้านำเข้าเชื้อพ่อพันธุ์สุกรจากต่างประเทศเพื่อใช้พัฒนาพันธุกรรมของสุกรในประเทศไทยให้มีศักยภาพการผลิตทัดเทียมและสามารถแข่งขัน กับต่างประเทศได้

การเดินทางของอสุจิภายในท่อทางเดินระบบสืบพันธุ์เพศเมีย

โดยปกติการผสานเทียมสุกรแต่ละครั้งจะใช้น้ำเชื้อสดเจือจากที่มีอสุจิ 2,000–5,000 ล้านตัว ในปริมาตร 80–100 มิลลิลิตร และการผสานเทียมโดยปกติจะปล่อยนำเข้าภายในคอมดลูกซึ่งมีความยาวประมาณ 15-20 เซนติเมตร หลังจากนั้นอสุจิก็จะเดินทางต่อไปยังตัวมดลูกซึ่งมีความยาว 5 เซนติเมตร และต่อไปยังปีกมดลูกซึ่งแต่ละข้างมีความยาวประมาณ 90-140 เซนติเมตร ตัวอสุจิจะเดินทางไปจนถึงรอยต่อระหว่างปีกมดลูกและท่อนำเข้าไป (Utero-tubal junction, UTJ) ภายในเวลาไม่กี่นาที บริเวณนี้เรียกว่าเป็นแหล่งกักเก็บอสุจิ (sperm reservoir)

(รูปที่ 1) (Hunter, 1990; Rodriguez-Martinez et al., 2001; Tummaruk and Tienthai, 2009) หน้าที่ของ sperm reservoir คือ เป็นที่คัดกรองอสุจิที่วิ่งผ่านเข้าไปยังท่อน้ำไข่ ให้มีปริมาณน้อยลงเพื่อป้องกันการเกิดภาวะไข่ถูกผสมโดยอสุจิมากกว่า 2 ตัว (polyspermy) ช่วยในการทำให้อสุจิอยู่ในระบบพร้อมปฏิสนธิ (capacitation) และ ช่วยให้อสุจิ มีชีวิตยาวนานขึ้น และป้องกันเซลล์ของระบบภูมิคุ้มกันมิให้ทำลายอสุจิ อสุจิจะรออยู่ที่บริเวณ UTJ จนกระทั่งเกิดการตกไข่ (Hunter, 1990; Rodriguez-Martinez et al., 2001) หลังจากนั้นอสุจิจะถูกปล่อยให้เข้าไปยังท่อน้ำไข่มากขึ้น แต่อย่างไรก็ดีอสุจิที่สามารถเดินทางผ่านท่อน้ำไข่เพื่อเข้าไปผสมกับไข่ได้นั้นมีจำนวนน้อยกว่าจำนวนที่ผสมเข้าไปมาก Mburu et al. (1996) พบว่า มีจำนวนอสุจิที่บริเวณ UTJ เพียงประมาณ 10,000 ถึง 20,000 ตัว และที่บริเวณท่อน้ำไข่ส่วนล่างพบอสุจิ น้อยกว่า 1,000 ตัว ในขณะที่แม่สุกรตกลงไข่และมีอสุจิเพียงหนึ่งตัวเท่านั้นจะมีโอกาสได้ผสมกับไข่หนึ่งในในการผสมเทียมแบบดั้งเดิม (conventional AI) นั้น อสุจิประมาณ 3,000 ล้านถูกผสม แต่พบว่าประมาณ 25-40% ถูกดูดลูกบีบตัวออกมานอกร่างกายหลังจากการผสมเทียมประมาณ 1 ชั่วโมง (Woelders and Matthijs, 2001) และอสุจิส่วนที่เหลือ จะหลบอยู่ตามซอกหลบของคอมดลูก หรือตัวมดลูก (Matthijs et al., 2003) และบางส่วนจะหลุดเข้าไปในช่องท้อง ดังนั้นจะเหลืออสุจิเพียงไม่ถึง 5% ที่มีความสามารถที่จะผสมได้อยู่ บริเวณ UTJ (Mburu et al., 1996; Rodriguez-Martinez et al., 2005)

รูปที่ 1 การกระจายตัวของอสุจิในเยื่อบุผิวของท่อน้ำไข่ (an epithelial crypts of the utero-tubal junction) ของแม่สุกรที่เวลา 24 ชั่วโมงหลังการผสมเทียม SP=Spermatozoa, RBC=Red blood cell, E=Epithelium, S=Subepithelium (a) 100x magnification (b) 400x magnification. H&E stained. (ที่มา: Tummaruk and Tienthai, 2009)

การแช่แข็งน้ำเชื้อสุกร (Cryopreservation of boar semen)

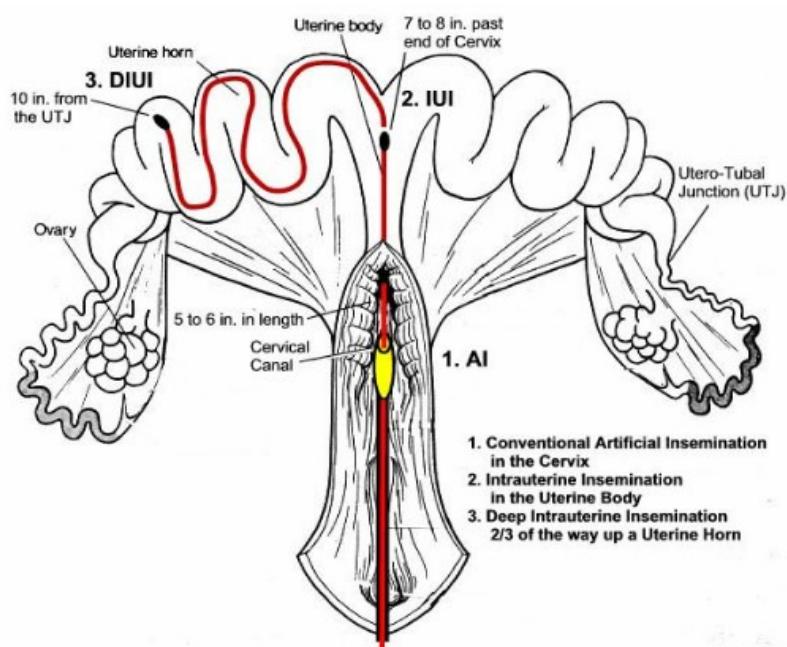
การผสมเทียมด้วยน้ำเชื้อแช่แข็งสำหรับสุกรกำลังพัฒนาอย่างรวดเร็วในหลายประเทศทั่วโลก อเมริกา และออสเตรเลีย (Eriksson, 2000) วัตถุประสงค์ในการพัฒนาน้ำเชื้อแช่แข็งสำหรับสุกร คือเพื่อเก็บพันธุกรรมของพ่อสุกรที่มีลักษณะดี และกระจายพันธุกรรมได้สะดวกและรวดเร็วกว่าน้ำเชื้อสด ลดข้อจำกัดในการขนส่งน้ำเชื้อระหว่างประเทศ อย่างไรก็ได้สุจิของสุกร หลังผ่านการแช่แข็งและทำละลายค่อนข้างอ่อนแอและมีอัตราการผสมติดต่ำ (Eriksson and Rodriguez-Martinez, 2000) ปัญหาเกิดจากหลายสาเหตุ ได้แก่ อสุจิสุกรมีโครงสร้างของชั้นไขมันที่ผิวเซลล์ต่างจากอสุจิของโคและมีความไวต่อการเปลี่ยนแปลงของอุณหภูมิมาก (Johnson et al., 2000) หลอดบรรจุน้ำเชื้อหรือวิธีการบรรจุน้ำเชื้อสำหรับการผสมเทียมค่อนข้างยุ่งยาก เนื่องจากสุกรต้องผสมเทียมด้วยอสุจิจำนวนมากต่อครั้ง การใช้หลอดบรรจุน้ำเชื้อขนาดใหญ่ (maxi straw ขนาด 5 มล.) ทำให้ความเย็นกระจายไม่ทั่วถึง และอสุจิหลังทำละลายตายเมื่อการใช้หลอดขนาดเล็ก (ขนาด 0.5 มล.) ทำให้การผสมไม่สะดวกและต้องใช้หล่ายหลอดในการผสมแต่ละครั้ง การใช้การบรรจุแบบเม็ดสะดวกดีแต่การพิมพ์หมายเลขทำได้ยากและมีโอกาสติดเชื้อได้ง่าย ทำให้การบรรจุน้ำเชื้อแช่แข็งยังเป็นเรื่องที่ต้องทำการวิจัยอย่างต่อเนื่องอยู่ Eriksson and Rodriguez-Martinez (2000) พบว่าการใช้หลอดพลาสติกแบบ (Flatpact) ได้ผลค่อนข้างดีในการแช่แข็งน้ำเชื้อสุกรในปริมาณมาก นอกจากนี้อัตราเร็วในการแช่แข็งน้ำเชื้อและทำละลายน้ำเชื้อก็มีความสำคัญต่ออัตราการลดของอสุจิ ถ้าอัตราการแช่แข็งช้าเกินไปจะทำให้เกิดผลึกน้ำแข็งในเซลล์มาก และต้องมีสารป้องกันการเกิดผลึกน้ำแข็งกับอสุจิตัวย การแช่แข็งน้ำเชื้อสุกรที่มีอัตราการแช่แข็ง $30^{\circ}\text{C}/\text{นาที}$ และมี Glycerol 3% ในหลอดขนาด 0.5 มล. (Fiser and Fairfull, 1990) หรือ $50^{\circ}\text{C}/\text{นาที}$ และมี Glycerol 1.5% (0.2 M) ในหลอดขนาด 0.25 มล. (Woelders and Den Besten, 1993) พบว่าได้ผลดี อย่างไรก็ได้การแช่แข็งน้ำเชื้อสุกรในหลอดบรรจุที่มีขนาดใหญ่ขึ้นควรใช้อัตราการแช่แข็งที่ต่ำลงและ Glycerol มากขึ้น (Pursel and Park, 1985) ในกระบวนการแช่แข็งอสุจิสุกรพบว่าจำเป็นต้องมีเวลาในการปรับตัวของอสุจิก่อนแช่แข็ง ควรทิ้งอสุจิที่อุณหภูมิ 15°C นาน 1-5 ชั่วโมงก่อนทำการลดอุณหภูมิลงต่ำกว่า 15°C ทั้งนี้เพื่อลดการเกิดปัญหา cold shock ระยะการพักนี้เรียกว่า Holding time (HT) (Eriksson, 2000)

การพัฒนาเทคนิคการผสมเทียมเพื่อน้ำเชื้อสุกรแช่แข็ง

เนื่องจากสาเหตุที่สุจิสุกรหลังกระบวนการแช่แข็งค่อนข้างอ่อนแอ และการแช่แข็งในปริมาณน้อยมักสะดวกและได้ผลดีกว่า จึงมีความพยายามในการผสมเทียมสุกรด้วยน้ำเชื้อปริมาณน้อยเพื่อการใช้น้ำเชื้อสุกรแช่แข็งอย่างมีประสิทธิภาพ เป็นที่ทราบดีว่าหลังการผสมเทียมสุกรตัวอสุจิต้องถูกขนส่งจากคอมดลูกจนถึงท่อน้ำไปซึ่งมีระยะทางไกล ทำให้อสุจิมากกว่า 90% สูญเสียจากการเก็บกินของเซล (phagocytosis) ก่อนถึงท่อน้ำไป (Mburu et al., 1996; Stervink et al., 1998) นอกจากนี้การแช่แข็งทำให้อสุจิค่อนข้างอ่อนแอและเกิด

กระบวนการ capacitation ค่อนข้างเร็วทำให้ตาย่ง่ายกว่านำเข้าสู่สอด (Eriksson and Rodriguez-Martinez, 2000; Eriksson et al., 2002) Martinez และคณะ (2002) ได้พัฒนาวิธีการผสมเทียมโดยใส่น้ำเข้าไปในมดลูกแม่สุกรโดยไม่ต้องใช้วิธีการผ่าตัด (deep intrauterine insemination, DIUI) โดยใช้ท่อที่โค้งงอได้ที่ออกแบบเป็นพิเศษ ยาวประมาณ 180 เซนติเมตร และมีเส้นผ่านศูนย์กลาง 0.4 มิลลิเมตร ซึ่งสามารถที่จะสอดผ่านคอมมดลูก และไปปล่อยน้ำเข้าที่ตรงบริเวณส่วนต้นของปีกมดลูก โดยวิธีการนี้สามารถที่จะผสมโดยใช้น้ำเข้าที่มีอสุจิเพียง 150 ล้านตัวต่อโด๊ส และได้มีการนำวิธีการนี้ไปประยุกต์ใช้กับน้ำเข้าแซ่เบ็งและน้ำเข้าที่ผ่านการคัดเลือกโดยวิธีไฟโตเมตทรีแล้ว (Roca et al., 2003; Vazquez et al., 2003) (ตารางที่ 1) เนื่องจากตัวอสุจิที่มีอยู่ในน้ำเข้าแซ่เบ็งและน้ำเข้าที่ผ่านการคัดเลือกโดยวิธีไฟโตเมตทรีไม่แซ่เบ็งแรง ดังนั้นจึงจำเป็นต้องปล่อยน้ำเข้าให้ใกล้กับบริเวณที่จะเกิดการปฏิสนธิให้มากที่สุดเพื่อป้องกันไม่ให้ตัวอสุจิเกิดการตายก่อนในระหว่างที่เคลื่อนที่จากคอมมดลูกมายังท่อน้ำไข่ จากการศึกษาพบว่าเทคนิค DIUI สามารถผสมและได้จำนวนลูกต่อครอกประมาณ 8-10 ตัว อัตราการผสมติดประมาณ 80% ในระดับฟาร์ม (Martinez et al., 2002; Roca et al., 2003; Vazquez et al., 2003)

ตารางที่ 1 ผลผลิตของสุกรหลังการใช้ท่อผสมเทียมชนิดสอดลึกไปยังปีกมดลูก (deep intrauterine insemination) ผสมเทียมด้วยน้ำเข้าแซ่เบ็งในสุกรที่ตกลงตามธรรมชาติ


ปริมาณตัวอสุจิ (ล้านตัว)	ปริมาตรน้ำเข้า (ml.)	จำนวนสุกร	อัตราการเข้า คลอด %	จำนวนลูกทั้งหมด/ครอก	เอกสารอ้างอิง
1,000	5	40	70.0	9.25	(Roca et al., 2003)
250	5	NA	42.9	7.2	(Bathgate et al., 2003)
1,000	0.5	20	65.0*	6*	(Wongtawan, 2004)

*ตัวเลขที่แสดงเป็นอัตรา การตั้งท้อง และจำนวนตัวอ่อนที่นับได้ในมดลูก; NA=ไม่มีข้อมูล

การผสมเทียมแบบสอดท่อเข้ามดลูก (intra-uterine insemination)

งานวิจัยในด้านการผสมเทียมในสุกร มุ่งที่จะลดจำนวนตัวอสุจิต่อการผสม โดยที่ไม่ส่งผลต่อกลุ่มสุกรที่ต้องการ วิธีการหนึ่งคือ การลดจำนวนตัวอสุจิต่อโด๊สการผสมโดยปล่อยน้ำเข้าภายในมดลูก Kruger และคณะ (1999) ได้ทำการทำการผสมเทียมสุกรสาว โดยทำการผ่าตัดและทำการปล่อยน้ำเข้า ที่บริเวณใกล้กับช่วงต่อของปีกมดลูกกับท่อน้ำไข่ (uterotubal junction, UTJ) พบว่าน้ำเข้าที่มีจำนวนตัวอสุจิ 10 ล้านตัวในปริมาตร 0.5 มิลลิลิตร ก็เพียงพอ เมื่อเทียบกับการผสมเทียมตามปกติ เช่นเดียวกันกับในสุกรนาง (Kruger and Rath, 2000) อุปกรณ์ในการผสมเทียมต่างๆได้ถูกพัฒนาขึ้น เพื่อใช้ในการนำน้ำเข้าไปปล่อยที่ในตัวมดลูก (intrauterine insemination, IUI) หรือส่วนต้นของปีกมดลูก (deep intrauterine insemination, DIUI) (รูปที่ 2) Watson and Behan (2002) ศึกษาการใช้ท่อผสมเทียมแบบสอดท่อเข้ามดลูก

(IUI) เป็นอุปกรณ์ในการผสมเทียมสุกร พบร่วมสามารถที่จะลดจำนวนตัวอสุจิลงเหลือ 1,000 ล้านตัวต่อโด๊ส โดยที่ไม่มีผลต่ออัตราการผสมติด และเป็นวิธีการที่ทำได้ง่าย ไม่ยุ่งยาก และมีประสิทธิภาพ Martinez et al. (2001) ประสบความสำเร็จในการผสมเทียมสุกร โดยนีดนำเสนอเข้าไปในปีกมดลูก (deep intrauterine insemination, DIUI) โดยวิธีไม่ผ่าตัดและไม่ต้องวางยาโดยใช้ท่อ endoscope สอดผ่านท่อผสมเทียม ผ่านคอมมดลูก และปล่อยน้ำเชื้อที่ปีกข้างได้ทางหนึ่ง และพบว่าไม่มีความแตกต่างของอัตราการเข้าคอลอต ขนาดครอค เมื่อเทียบกับการผสมเทียมตามปกติ ต่อมา Martinez et al. (2002) ได้พัฒนาวิธีการผสมเทียม DIUI โดยนำท่อที่สามารถโค้งงอได้ (flexible catheter) มาใช้แทนท่อ endoscope ที่มีราคาแพง และแตกหักได้ง่าย ซึ่งไม่เหมาะสมที่จะนำมาใช้ในภาคสนาม จากทดลองพบว่าสามารถที่จะลดความเข้มของน้ำเชื้อลงได้ 20–60 เท่า เมื่อเทียบกับการผสมเทียมแบบเดิม บริเวณที่ปล่อยน้ำเชื้อคือ 1 ใน 3 ของปีกมดลูกทางส่วนต้น (รูปที่ 2)

รูปที่ 2 รูปแสดงอวัยวะสีบันธุ์สุกรเพศเมียที่ได้รับการผสมเทียม 3 แบบ 1=แบบดั้งเดิม (conventional artificial insemination, AI) 2=แบบสอดท่อเข้าตัวมดลูก (intra uterine insemination, IUI) และ 3=แบบสอดท่อเข้าปีกมดลูก (deep intra uterine insemination, DIUI) (ที่มา: Belstra, 2002)

ในการศึกษา ก่อนหน้านี้ของคณะผู้วิจัย (Sumransap et al., 2007; Tummaruk et al., 2007) พบร่วมการผสมเทียมแบบสอดท่อเข้าตัวมดลูก (IUI) สามารถที่จะทำการสอดท่อผสมเทียมผ่านคอมมดลูกได้ในแม่สุกรทุกตัว และไม่พบเลือดที่ปลายท่อผสมเทียม หลังจากการผสมเทียมเสร็จแล้ว ทดสอบล้องกับการศึกษาของ Roca et al. (2003) ที่สามารถสอดท่อผ่านคอม

มดลูกแม่สุกรจำนวน 94.0 เปอร์เซ็นต์ และพบเลือดที่ปลายท่อจำนวน 1.7 เปอร์เซ็นต์ และผลการศึกษาของ Dallanora et al. (2004) พบว่าแม่สุกรจำนวน 94.7 เปอร์เซ็นต์สามารถที่จะสอดท่อได้และพบเลือดที่ปลายท่อจำนวน 1.7 เปอร์เซ็นต์ นอกจากนี้ยังพบอีกว่า หลังการผสมเทียมอสุจิจะสูญเสียจากการไหลย้อนกลับของน้ำเชื้อแล้ว และจะถูกเม็ดเลือดขาวและเซลล์ในระบบภูมิคุ้มกันเข้ามาเก็บกิน (Matthijs et al., 2003) Mburu et al. (1996) พบว่า ก่อนไปตกลงตัวอสุจิ ส่วนใหญ่จะเข้าไปอยู่ในบริเวณส่วนต่อของท่อน้ำไข่และปีกมดลูก และส่วนล่างของอิสมัส แต่หลังไปตกลงตัวอสุจิจะเข้าไปอยู่ในส่วนของอิสมัสส่วนบนมากขึ้น ส่วนรอยต่อของท่อน้ำไข่และปีกมดลูก จะเป็นบริเวณที่สะสมของตัวอสุจิ โดยบริเวณนี้มีสภาพแวดล้อมที่เอื้ออำนวยต่อการมีชีวิตของตัวอสุจิและยังทำหน้าที่ช่วยกรองตัวอสุจิที่จะผ่านเข้าไปในท่อน้ำไข่ด้วย (Rigby, 1966; Tienthai, 2003) ซึ่งสอดคล้องกับผลการทดลองของคณะผู้วิจัย ซึ่งพบว่า หลังผสมเทียม 24 ชั่วโมง อสุจิส่วนใหญ่จะพบที่ส่วนของรอยต่อระหว่างท่อน้ำไข่และมดลูก (ตารางที่ 2)

ตารางที่ 2 ค่าเฉลี่ย (mean) ของจำนวนตัวอสุจิทั้งหมดที่ตรวจพบในท่อน้ำไข่และปีกมดลูกในแม่สุกรหลังการผสมเทียมแบบปกติ (AI) แบบสอดท่อเข้ามดลูก (IUI) และแบบสอดท่อเข้าปีกมดลูก (DIUI) (Sumransap et al., 2007; Tummaruk et al., 2007)

กลุ่ม	จำนวน	1	2	3	4	5	6	7
AI	6	87 ^a	343 ^a	1,411 ^a	142,500 ^b	90,000 ^c	69,167 ^{cd}	45,000 ^d
IUI	6	85 ^a	296 ^a	1,280 ^a	131,167 ^b	90,000 ^c	66,167 ^{cd}	37,250 ^{ad}
DIUI	5	25 ^a	76 ^a	284 ^a	23,500 ^b	15,400 ^c	9,000 ^d	7,000 ^d

* ส่วนที่ 1 แอมพูล่า 2 อิสมัสส่วนต้น 3 อิสมัสส่วนปลาย 4 ยูทิเจ 5 ปีกมดลูกส่วนต้น 6 ปีกมดลูกส่วนกลาง 7 ปีกมดลูกส่วนปลาย ^{abcd} อักษรต่างกันในแต่ละแนวอนุมัติความแตกต่างทางสถิติ ($P<0.05$)

การเกิดค่าป้าชิเตชันของอสุจิสุกรที่ผ่านการแช่เย็นและแช่แข็ง

การแช่แข็งน้ำเชื้อประกอบด้วยกระบวนการต่างๆ ได้แก่ การเจือจางน้ำเชื้อ (dilution) การแช่เย็น (cooling) การบีบเนวี่ยง (centrifugation) การแช่แข็ง (freezing) และการทำละลาย (thawing) ซึ่งกระบวนการต่างๆ เหล่านี้ล้วนส่งผลต่อความเสียหายของตัวอสุจิได้ทั้งสิ้น ในระหว่างกระบวนการแช่แข็งตัวอสุจิจะมีการเปลี่ยนแปลงปริมาตรภายในเซลล์ เนื่องจากการเติมสารกลีเซอรอลมีผลต่อ osmotic pressure โดยตรง นอกจากนี้ในระหว่างการลดอุณหภูมิทั้งในขั้นตอนการแช่เย็นและแช่แข็งก็จะทำให้คุณสมบัติหรือความสามารถในการเลือกผ่านของเมมเบรน (selective permeability) ลดลงซึ่งส่งผลต่อ fluidity ของเมมเบรนทำให้เมมเบรนเกิดความเสียหาย ซึ่งส่งผลทำให้อัตราการมีชีวิตลดลงน้อยลง

กระบวนการทางสรีรวิทยาอันหนึ่งที่ได้มีการทำคันคว้าวิจัยมาก คือ กระบวนการค่าป้าชิเตชัน (capacitation) การรายงานว่า การแช่เย็น การแช่แข็ง การอุ่น หรือการทำละลายน้ำเชื้อ สามารถทำให้เกิดกระบวนการ “capacitation-like change” ได้ รวมไปถึงการพบโปรตีนที่เรียกว่า tyrosine phosphorylated protein ซึ่งโปรตีนตัวนี้จะพบได้ในกรณีที่อสุจิเกิดการค่าป้าชิ

เตชัน มีการคันพบโปรตีนชนิดนี้ในหนูเป็นครั้งแรก และมีการศึกษาต่อมาในสัตว์ชนิดอื่นๆ ซึ่งโปรตีนที่พบได้จะอยู่ในส่วนของ flagellum ซึ่งโปรตีนนี้ช่วยในการควบคุมการเคลื่อนไหวหรือการเกิด hyperactivation อสุจิสุกรค่อนข้างมีความแตกต่างจากสัตว์เลี้ยงลูกด้วยนมชนิดอื่นๆ คือจะพบเป็น tyrosine phosphoprotein complex ซึ่งประกอบด้วยโมเลกุลของโปรตีนขนาด 32 kDa (p32) หลายๆโมเลกุล (Tardif et al., 2001) และโปรตีนเหล่านี้จะพบมากที่บริเวณส่วนหัวมากกว่า flagellum ซึ่งโปรตีนเหล่านี้น่าจะมีส่วนเกี่ยวข้องกับกระบวนการคายาซิเตชันและ acrosome reaction (Flesch et al., 1999; Tardif et al., 2001) Harayama และคณะ (2004) พบว่าโปรตีน p32 มีความสัมพันธ์กับระดับของแคลเซียมภายในเซลล์อสุจิและการสูญเสียอะโครโซมของตัวอสุจิ สอดคล้องกับการศึกษาของ Dube และคณะ (2005) ที่พบว่าองค์ประกอบหลักของโปรตีน p32 ก็คือ proacrosin binding protein ซึ่งช่วยในการคายาซิเตชันและมัตเตอเรชัน (acrosin) ของอะโครโซม (acrosin)

การเกิดคายาซิเตชัน เป็นกระบวนการทางสรีริวิทยาปกติของอสุจิ โดยปกติอสุจิที่ถูกหลังออกมานั้นยังไม่มีความสามารถในการปฏิสนธิจะต้องผ่านกระบวนการคายาซิเตชันและ acrosome reaction ก่อน ซึ่งทั้งสองกระบวนการนี้จะทำให้อสุจิสามารถเคลื่อนที่ผ่านจากท่อน้ำไปที่กลุ่มผ่านเยื่อเมือกต่างๆ ภายในท่อน้ำไป แทรกผ่าน cumulus cell จนในที่สุดอสุจิสามารถที่จะเจาะผ่าน zona pellucida เข้าไปปฏิสนธิกับโอดิโอไซด์ได้ ซึ่งกระบวนการต่างๆ นี้เกิดขึ้นภายในระบบสืบพันธุ์ของเพศเมีย อสุจิที่ถูกกระตุ้นให้เกิดคายาซิเตชันแล้วจะค่อนข้างมีความเปละบางมากและพร้อมที่จะเกิดกระบวนการ acrosome reaction ได้ทันที กระบวนการ acrosome reaction เป็นกระบวนการที่เกิดขึ้นภายในเซลล์ของตัวอสุจิเกิดคายาซิเตชัน โดยตัวอสุจิจะไปจับกับ zona pellucida ของโอดิโอไซด์ซึ่งทำให้ outer membrane ของอะโครโซมเชื่อมรวมกับพลาสมเมบเรนหล่ายๆ ตำแหน่ง และมีการปล่อยสาร acrosomal content ซึ่งเป็น hydrolytic enzyme ที่ช่วยในการย่อย zona pellucida ทำให้ตัวอสุจิสามารถผ่านเข้ามายังบริเวณ perivitelline space และเชื่อมผนังที่บริเวณ oolemma ซึ่งจะทำให้เซลล์ของตัวอสุจิรวมกับเซลล์ของโอดิโอไซด์ต่อไปหรือเกิดการปฏิสนธิ กระบวนการเกิด acrosome reaction ถูกควบคุมจากหลายสัญญาณซึ่งสัญญาณหลักคือ การเพิ่มระดับของแคลเซียมภายในเซลล์อสุจิ มีการศึกษาโดยเติม calcium ionophore ลงในอสุจิที่เกิดคายาซิเตชันแล้วพบว่า แคลเซียมสามารถเหนี่ยวนำให้อสุจิเหล่านี้เกิดการปล่อยเอนไซม์ หรือเกิด acrosome reaction ได้ มีการศึกษาพบว่า การดึงโคลเลสเตอรอลออกจากเมมเบรนเป็นการกระตุ้นที่สำคัญที่ทำให้เกิดการคายาซิเตชันและ acrosome reaction ของอสุจิ (Shadan et al., 2004) โดยเมื่อโคลเลสเตอรอลออกจากเมมเบรนทำให้เมมเบรนมีการเปลี่ยนแปลง และส่งผลให้ ion channel ต่างๆ มีการทำงานที่เปลี่ยนไป โดยเฉพาะแคลเซียมและไบคาร์บอเนตไอออน ซึ่งทั้งสองไอออนนี้ทำหน้าที่กระตุ้น adenyl cyclase โดยตรงทำให้เกิดกระบวนการสร้าง cAMP ซึ่งจากการศึกษาในอสุจิ สุกรพบว่าภายในส่วนหัวของ incubation นำเข้าในสภาวะที่กระตุ้นให้เกิดกระบวนการคายาซิเตชันเพียงไม่กี่นาทีก็สามารถตรวจสอบปริมาณของ cAMP เป็นการยืนยันได้ว่าการสูญเสีย

โคลอสเตอรอลออกจากเมมเบรนเป็นกลไกหนึ่งที่ทำให้ตัวอสุจิสามารถเกิดกระบวนการค่าป่าชีตีชันได้ (Tardif et al., 2004) และเนื่องจากในอสุจิสุกรมีอัตราส่วนของโคลอสเตอรอลต่อฟอสฟอยไลปิดที่ค่อนข้างต่ำ จึงทำให้ตัวอสุจิสุกรไวต่อการเกิด cold shock มากกว่าสัตว์ชนิดอื่นๆ ดังนั้นหากเกิดการสูญเสียโคลอสเตอรอลก็จะทำให้เกิดการเหนี่ยวแน่นกระบวนการค่าป่าชีตีชันได้ง่ายเช่นกัน นอกจากนี้ยังได้มีการศึกษาเกี่ยวกับการเกิด capacitation like change ที่เกิดจาก การแซ่บเย็นและการแซ่บแข็ง ซึ่งการเกิดปรากฏการณ์นี้ส่งผลทำให้ประสิทธิภาพในการปฏิสนธิของอสุจิลดลงไม่เฉพาะแต่ต่อสุจิสุกรแต่รวมไปถึงสัตว์เลี้ยงลูกด้วยนมอื่นๆด้วย การศึกษา capacitation like changes ในอสุจิโดยการใช้วิธีการตรวจโดยใช้สีสี้อม chlortetracycline และเครื่อง flow cytometry พบว่า สัดส่วนของตัวอสุจิแซ่บเย็นที่อุณหภูมิ 5°C เกิดค่าป่าชีตีชัน และ acrosome reaction มากกว่าตัวอสุจิแซ่บเย็นที่อุณหภูมิ 15°C และในน้ำเชื้อสุกรแซ่บแข็งยังพบ สัดส่วนของตัวอสุจิที่เกิดค่าป่าชีตีชัน และ acrosome reaction มากกว่าน้ำเชื้อแซ่บเย็น (Maxwell and Johnson, 1997) นอกจากนี้ Green และ Watson (2001) ได้ทำการศึกษาเปรียบเทียบการเกิดค่าป่าชีตีชันระหว่างตัวอสุจิที่ผ่านการแซ่บเย็นและการอุ่น กับตัวอสุจิที่ incubate ใน capacitating medium พบว่าผลที่ได้มีความคล้ายคลึงกันอย่างมากทั้งปริมาณอสุจิที่เกิดค่าป่าชีตีชันจากการตรวจโดยใช้ CTC staining ระดับของแคลเซียมไอออนภายในเซลล์ และปริมาณของโปรตีน p32 โดยสรุปการเกิดการเปลี่ยนแปลงระหว่างกระบวนการแซ่บเย็นและแซ่บแข็งเกี่ยวข้องกับการสูญเสียโคลอสเตอรอลและทำให้เกิดการเปลี่ยนแปลงภายในเซลล์ เช่น การเกิด calcium uptake ภายในเซลล์อสุจิ ซึ่งจะนำไปสู่ภาวะ capacitation like change ในที่สุด และจากการศึกษาที่พบว่าการสูญเสียโคลอสเตอรอลจะเป็นตัวทำให้เกิดค่าป่าชีตีชัน จึงได้มีการคิดที่จะใช้ cyclodextrins ซึ่งเป็นสารประกอบเชิงซ้อนของน้ำตาลที่มีคุณสมบัติช่วยในการขยับโคลอสเตอรอลเข้าสู่พลาสมามเมมเบรน ซึ่งจากการศึกษาในแพะและวัวพบว่าช่วยเพิ่มอัตราการลดชีวิตของตัวอสุจิแต่อย่างไรก็ตามอัตราการผสานติดยังไม่เป็นที่น่าพอใจ สำหรับการศึกษาในสุกรพบว่าการใช้โคลอสเตอรอล หรือ cyclodextrins เพียงอย่างเดียวอย่างหนึ่งไม่สามารถทำให้คุณภาพของตัวอสุจิดีขึ้น แต่เมื่อใช้โคลอสเตอรอลร่วมกับ cyclodextrins พบว่าทำให้อัตราการลดชีวิตของตัวอสุจิเพิ่มสูงขึ้น ซึ่งแสดงให้เห็นว่า cyclodextrins สามารถช่วยพาโคลอสเตอรอลเข้าสู่พลาสมามเมมเบรนได้ (Bailey et al., 2008) ซึ่งสอดคล้องกับการศึกษาของ Galantino-Homer (2006) ที่รายงานว่าการใส่ cyclodextrins ร่วมกับโคลอสเตอรอล จะสามารถช่วยลดปริมาณโปรตีน p32 ได้นั่นคือ ช่วยลดการเกิดค่าป่าชีตีชัน และ acrosome reaction ซึ่งทำให้เพิ่มอัตราการลดชีวิตในตัวอสุจิที่ผ่านการแซ่บเย็นได้อีกด้วย นอกจากนี้ยังมีการรายงานว่าการเติม seminal plasma 20%v/v จะสามารถช่วยลดจำนวน capacitated sperm และปริมาณของโปรตีน p32 ได้อย่างมีนัยสำคัญ (Kaneto et al., 2002) ซึ่งสอดคล้องกับการศึกษาของ Hirayama และคณะ (1999) ที่พบว่าการเติม seminal plasma สามารถช่วยลดการเกิดค่าป่าชีตีชันของอสุจิสุกรที่ incubate ใน capacitating medium ที่ 39°C

จากการศึกษาดังกล่าวข้างต้นแสดงให้เห็นว่าการเปลี่ยนแปลงอุณหภูมิที่ลดลงหรือเพิ่มขึ้นอย่างรวดเร็วล้วนแล้วแต่เห็นได้ยานำให้เกิดกระบวนการที่เรียกว่า capacitation like change และ acrosome reaction ตามมาได้ ถ้าอสุจิเกิดการคายาซิเตชันที่ในช่วงเวลาที่ไม่เหมาะสม ก็ทำให้อสุจินั้นไม่สามารถที่จะปฏิสนธิกับไขว้ไซต์ได้ส่งผลทำให้อัตราการผสมติดลดลงได้ ดังนั้นหากมีการพัฒนาวิธีการแซ่บเบี้ยงที่ให้ผลเป็นที่ยอมรับในวงการอุตสาหกรรมการผลิตสุกรได้ ก็จะทำให้เกิดประโยชน์ต่างๆ มากมาย อาทิเช่น การเพิ่มผลผลิตสุกรของผู้ ระบบความปลอดภัยทางชีวภาพที่เพิ่มขึ้น การนำไปใช้เพื่อเทคโนโลยีการคัดเลือกเพศ ตลอดจนการจัดตั้ง gene banking เป็นต้น

บทที่ 2

ระเบียบวิธีวิจัย

สัตว์ทดลอง

การทดลองใช้สุกรเพศผู้ที่โตเต็มวัยใช้สำหรับการผสมเทียม จำนวน 30 ตัว พันธุ์แลนด์เรช 10 ตัว ยอร์กเชียร์ 10 ตัว และดูรอก 10 ตัว อายุระหว่าง 1.5-3 ปี มีคุณภาพน้ำเชื้อปกติ จากบริษัทมิตรภาพไอบริด จำกัด จ. สารบุรี พ่อสุกรแต่ละตัวถูกเลี้ยงในคอกเดี่ยว มีรังอาหาร และจุบหัวอัตโนมัติ มีน้ำดื่มตลอด 24 ชั่วโมง (รูปที่ 3) รีดน้ำเชื้อจากพ่อสุกรแต่ละตัว ตัวละ ≥ 3 ครั้ง โดยมีระยะเวลาของการรีดน้ำเชื้อย่างน้อย 5 วัน น้ำเชื้อที่มีคุณภาพดีถูกแช่แข็งและตรวจสอบคุณภาพน้ำเชื้อหลังการทำละลาย (ตารางที่ 3) หลังทำละลายน้ำเชื้อที่มีอัตราการเคลื่อนไหวหลังทำละลาย $> 40\%$ จะทำการเก็บรักษาในตู้แช่แข็ง (semen bank) เพื่อใช้ในการผสมเทียม

สุกรเพศเมียที่นำมาใช้ในการผสมเทียมด้วยน้ำเชื้อแช่แข็ง เป็นแม่สุกรระหว่างท้อง 2-8 ที่มีประวัติการคลอด และหย่านมปกติ และแสดงอาการเป็นสัดภายใน 5 วัน หลังหย่านมทำการผสมเทียมในแม่สุกรพันธุ์แลนด์เรช จำนวน 69 ตัว (น้ำเชื้อแช่แข็ง 33 ตัว น้ำเชื้อสด 36 ตัว) (ตารางที่ 4)

รูปที่ 3 พ่อสุกรที่ใช้ในการผสมเทียมถูกเลี้ยงในโรงเรือนแบบ evaporative cooling system

การรีดน้ำเชื้อ

รีดเก็บน้ำเชื้อพ่อพันธุ์สุกร โดยวิธี Gloved hand method โดยรีดเก็บเฉพาะส่วน sperm rich fraction (รูปที่ 4) หลังจากนั้นทำการตรวจคุณภาพน้ำเชื้อ โดยตรวจดูสี ปริมาตร การ

เคลื่อนไหว และ ตรวจความเข้มข้นด้วย photometer (spermacue®) น้ำเชื้อที่มี อัตราการเคลื่อนไหว >70% ปริมาตร > 100 มล. ความเข้มข้น >200 ตัว/มล จะนำมาใช้ในการแช่แข็ง

รูปที่ 4 น้ำเชื้อพ่อสุกรที่รีดเก็บเฉพาะส่วน Sperm rich fraction วัดปริมาตรก่อนการแช่แข็ง

การแช่แข็งและการทำละลายน้ำเชื้อแช่แข็ง

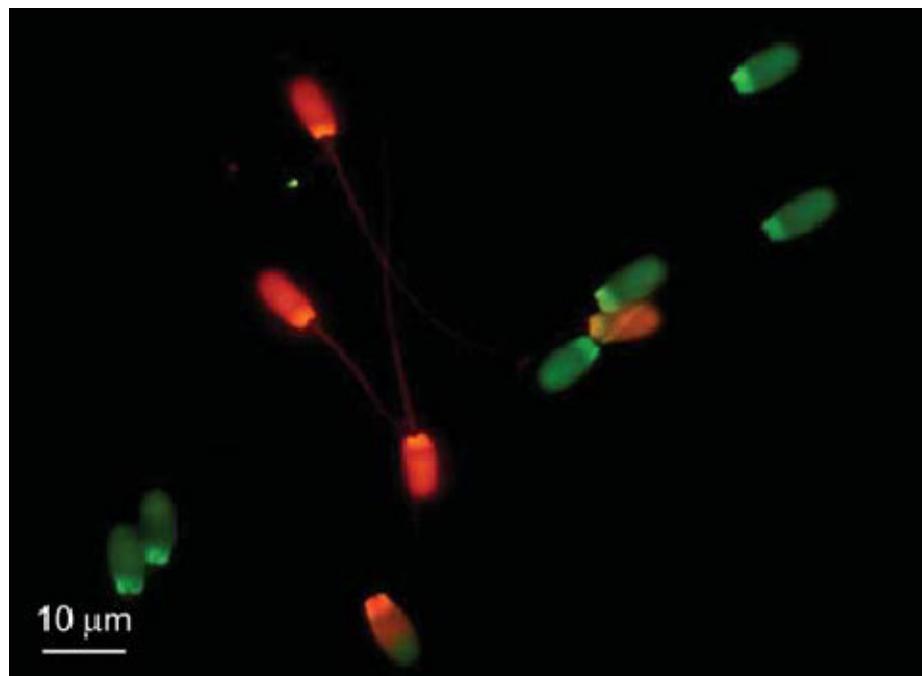
เจือจากน้ำเชื้อด้วยสารละลายชนิดที่ 1 (Modena™) ในอัตราส่วนน้ำเชื้อ 1 ส่วนต่อ Modena™ 1-3 ส่วน (1:1-1:3) รักษาอุณหภูมิในตู้เย็นที่ 15°C นาน 2 ชั่วโมง (รูปที่ 5) ปั่น เหวี่ยง (centrifuge) ด้วยความเร็ว 800x g ที่อุณหภูมิ 15°C นาน 10 นาที (รูปที่ 6) เทส่วน ของเหลวด้านบนออก เจือจากส่วนที่เหลือด้วย สารละลายชนิดที่ 2 (Extender II) ซึ่ง ประกอบด้วย lactose solution และ egg yolk ให้ได้ความเข้มข้นของอสุจิ 1.5×10^9 ตัว/ มิลลิลิตร ผสมให้เข้ากัน และทิ้งไว้ที่อุณหภูมิ 5°C นาน 1.5 ชั่วโมง (รูปที่ 7) หลังจากนั้นทำการ เจือจากเพิ่มด้วยสารละลายชนิดที่ 3 (Extender III) ซึ่งประกอบด้วย สารละลายชนิดที่ 2 กับ glycerol และ Equex STM® ในอัตราส่วน 2:1 ให้สารละลายสุดท้ายมีความเข้มข้นของอสุจิ 1×10^9 ตัว/มิลลิลิตร มี glycerol 3 % ในน้ำเชื้อ บรรจุสารละลายน้ำเชื้อลงในหลอดฟางขนาด 0.5 มิลลิลิตร และปิดผนึก ลดอุณหภูมน้ำเชื้อที่บรรจุแล้ว ด้วยการวางหลอดฟางเหนือระดับผิวของ ในโตรเจนเหลวที่ 3 เซนติเมตร นาน 20 นาที ก่อนจุ่มลงในในโตรเจนเหลว (รูปที่ 8)

การทำละลายทำโดยนำน้ำเชื้อใส่ลงในน้ำอุ่นที่อุณหภูมิ 50°C เป็นเวลา 12 วินาที หลังจากนั้น เจือจากน้ำเชื้อด้วยสารละลาย Modena™ ก่อนนำไปผสมเทียม

รูปที่ 5 นำเชื้อพ่อสุกรที่ถูกนำมาเจือจากน้ำเชื้อด้วยสารละลายน้ำ MedenaTM ในอัตราส่วนน้ำเชื้อ 1 ส่วนต่อ MedenaTM 1-3 ส่วน (1:1-1:3) และเก็บรักษาอุณหภูมิในตู้เย็นที่ 15°C นาน 2 ชั่วโมงก่อนนำไปปั้นแยกเซลล์สุจิเพื่อการแข็งแข็ง

รูปที่ 6 เครื่องปั้นแยกสุจิแบบควบคุมอุณหภูมิ (centrifuge) โดยตั้งความเร็วในการปั้นที่ 800x g อุณหภูมิ 15°C ปั้นให้ครบ 10 นาที ก่อนทำการเทส่วนของเหลวด้านบนออกแล้วเจือจากส่วนที่เหลือด้วยสารละลายน้ำ Lactose และ egg yolk

ຮູບທີ 7 ຕູ້ເຢັນທີ່ປັບອຸນຫຼວມ 5°C ເພື່ອການເກັບໜ້າເຊື້ອຫັນການເຈື້ອຈາງດ້ວຍສາຮລາຍໝັດທີ່ 2 ແລະ ໄຊ້ຮ່ວ່າງການເຈື້ອຈາງດ້ວຍສາຮລາຍໝັດທີ່ 3 ແລະ ຮະ່ວ່າງບຣຽນໜ້າເຊື້ອລົງຫລວດຝາງ



ຮູບທີ່ 8 ການເຕີມກລ່ອງໂຟມທີ່ເຕີມໄຟໂຕຣເຈັນເໜລວເພື່ອການແຊ່ແໜ່ງໜ້າເຊື້ອໃນບັນຕອນສຸດທ້າຍ

ການປະເມີນຄຸນກາພອສຸຈີຫັນທຳລະລາຍ

ຫັນຈາກລະລາຍໜ້າເຊື້ອຖຸກໜ້າລະລາຍດ້ວຍ ModenaTM ໃນສັດສ່ວນ 1:20 ໄກ້ມືອສຸຈີເບັ້ນຂັ້ນ $50-60 \times 10^6$ ຕັ້ງ/ມີລືລືຕົກ ຫັນຈາກນັ້ນໜ້າເຊື້ອຖຸກໜ້າປະເມີນຄຸນກາພໂດຍສຶກໝາລັກຊະນະຜັນ

เชลล์ (plasma membrane integrity) และ ศึกษาความผิดปกติของอโครโซม (Acrosome defect) โดยการย้อมสี SYBR-14 และ ethidium homodimer-1 (Fertilight[®] Sperm Viability Kit, Molecular Probes Europe BV, The Netherlands) (รูปที่ 9)

รูปที่ 9 อสุจิพ่อสุกรที่ย้อมด้วย SYBR-14 / ethidium homodimer-1 (EthD-1) อสุจิมีชีวิตจะย้อมติดสีเขียวของ SYBR-14 อสุจิที่ตายจะย้อมติดสีแดงของ EthD-1 และ อสุจิที่ใกล้ตายจะย้อมติดทั้งสีเขียวและแดง

การตรวจการเป็นสัด

ตรวจการเป็นสัดในแม่สุกรหลังหย่านมวันละ 2 ครั้ง โดยใช้พ่อสุกร เมื่อพบรากการของระยะก่อนการเป็นสัด แม่สุกรจะถูกตรวจการยืนนิ่งทุก 8 ชั่วโมง กำหนดให้เวลาของการเริ่มยืนนิ่งคือ 4 ชั่วโมงก่อนพบรากยืนนิ่ง เมื่อถูกหลังในครั้งแรก และเวลาของการสิ้นสุดการยืนนิ่งคือ 4 ชั่วโมง หลังพบรากยืนนิ่งครั้งสุดท้าย ระยะหย่านมถึงเป็นสัดในสุกรทุกตัวถูกบันทึกและนำไปวิเคราะห์ข้อมูล โดยวันที่หย่านมนับเป็นวันที่ 0 (รูปที่ 10)

รูปที่ 10 แม่สุกรที่ตรวจพบการเป็นสัดถูกนำมาเรียงในกรงตับเพื่อรอผสานเทียมพร้อมกัน

การตรวจการตักไข่

การตักไข่ตรวจโดยใช้เครื่องอัลตราซาวน์ แบบเรียลไทม์ บี โหนด โดยใช้หัวตรวจนิดสอดเข้าทางทวารหนัก ความถี่ 5 MHz ทำการวัดขนาดของฟอลลิเคิลโดยเลือกฟอลลิเคิลที่มีขนาดใหญ่ที่สุด เมื่อแม่สุกรแสดงอาการเป็นสัดแล้วจะเพิ่มความถี่การวัดขนาดฟอลลิเคิลเป็นทุก 8 ชั่วโมง จนกระทั่งตักไข่ (รูปที่ 11) เวลาของการตักไข่คือ 4 ชั่วโมง หลังจากพบฟอลลิเคิลครั้งสุดท้าย แม่สุกรทุกตัวถูกตรวจไข่และวัดขนาดของฟองลิเคิลด้วยอัลตราซาวน์วันละ 1 ครั้ง ตั้งแต่ 1 วันหลังหย่านมเป็นต้นไปจนกระทั่งแม่สุกรเป็นสัดจึงเพิ่มความถี่ของการตักเป็นทุก 8 ชั่วโมง วันที่หย่านมนับเป็นวันที่ 0 ระยะเป็นสัดถึงตักไข่ในสุกรทุกตัวถูกบันทึกและนำไปวิเคราะห์ข้อมูล

รูปที่ 11 การตรวจการตักไข่ในสุกรด้วยอัลตราซาวน์แบบเรียลไทม์ บี โหนด

การผสมเทียม

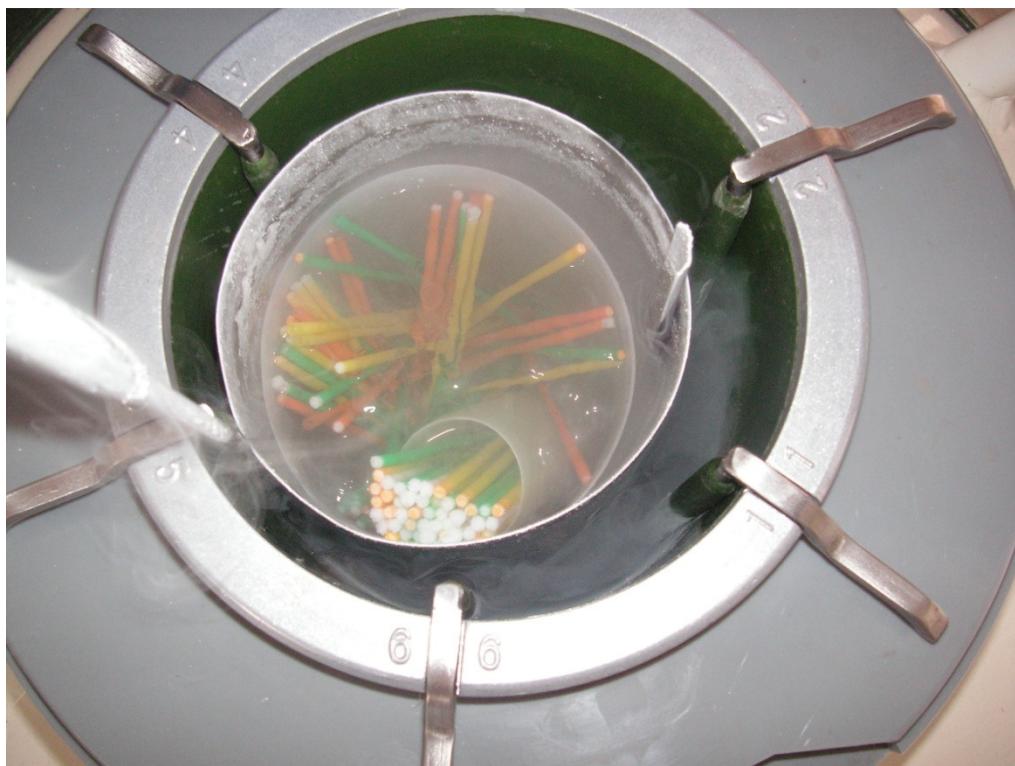
แบ่งแม่สุกรออกเป็น 2 กลุ่ม โดยวิธีสุ่มและทำการผสมเทียมด้วยน้ำเชื้อสุ่ดแบบปกติของฟาร์ม (กลุ่มควบคุม 36 ตัว) และ ผสมเทียมด้วยน้ำเชื้อแข็งในสุกรหย่านมร่วมกับการเหนี่ยวนำการตกไข่ด้วย ออร์โมนส์ hCG (Choluron[®], Intervet, Netherlands) 500 IU im. ในวันแรกของการเป็นสัด (กลุ่มทดลอง 33 ตัว) ในกลุ่มควบคุมจะทำการผสมเทียมตามโปรแกรมปกติของฟาร์ม ได้แก่ ทำการผสม 2-3 ครั้ง คือ ที่ 12 และ 24 และ 36 ชั่วโมง หลังจากเริ่มพบอาการเป็นสัดยืนนิ่ง การผสมครั้งที่ 3 จะทำการณีที่ตรวจพบว่าแม่สุกรยังยืนนิ่งยอมรับการผสมกลุ่มทดลอง ทำการผสม 2-3 ครั้ง คือ ที่ 24 และ 36 และ 48 ชั่วโมง หลังฉีดออร์โมนส์ hCG กลุ่มควบคุมจะใช้ปริมาตรและจำนวนอสุจิตามมาตรฐานของฟาร์ม คือ ปริมาตร 100 มิลลิลิตร อสุจิจำนวน $3,000 \times 10^6$ ตัว ในกลุ่มทดลอง ใช้อสุจิ $2,000 \times 10^6$ ตัว ในสารละลายน้ำ BTS ปริมาตร 20 มิลลิลิตร แม่สุกรทั้ง 2 กลุ่ม ได้รับการผสมเทียมด้วยวิธี intra-uterine insemination (IUI) (รูปที่ 12) หลังการผสมเทียมจะทำการตรวจการตั้งท้องของแม่สุกรทั้ง 2 กลุ่มด้วยวิธีสังเกตการกลับสัด ในวันที่ 18-24 หลังเริ่มตรวจพบอาการเป็นสัดบันทึกและเปรียบเทียบอัตราการตั้งท้อง รожนกระทั้งคลอดและเปรียบเทียบอัตราการเข้าคลอด และจำนวนลูกสุกรทั้งหมดแรกคลอด/ครอกในแม่สุกรทั้ง 2 กลุ่ม

รูปที่ 12 การผสมเทียมสุกรแบบสอดท่อเข้าด้วยด้ามลูก (intra-uterine insemination)

การวิเคราะห์ข้อมูลทางสถิติ

ทำการวิเคราะห์ทางสถิติ โดยใช้โปรแกรม SAS (SAS Inst. V. 9.0, Cary, NC USA) เปรียบเทียบคุณภาพน้ำเชื้อภายหลังทำละลาย โดยประเมินจาก อัตราการเคลื่อนที่ไปข้างหน้า ร้อยละของอสุจิที่มีชีวิตหลังทำละลาย ร้อยละของอสุจิที่มีความผิดปกติของโครโนซม ด้วยวิธี General linear model (GLM) เปรียบเทียบอัตราการผสมติด อัตราการเข้าคลอด ด้วยวิธี Chi-square test เปรียบเทียบจำนวนลูกสุกรแรกคลอดทั้งหมดต่อครอกด้วยวิธี General linear model (GLM) ค่า $P < 0.05$ ถือว่าข้อมูลมีความแตกต่างอย่างมีนัยสำคัญ

บทที่ 4


ผลการทดลอง

คุณภาพน้ำเชื้อสุกรก่อนและหลังผ่านการแช่แข็ง และ ผลการผสmostที่ยึดด้วยน้ำเชื้อสุกรแช่แข็ง เปรียบเทียบกับน้ำเชื้อสด แสดงในตารางที่ 3 และ 4 ตามลำดับ

โดยเฉลี่ยน้ำเชื้อสุกรแช่แข็งที่นำไปใช้สำหรับการผสmostที่ยึดมีอัตราการเคลื่อนไหว 47.6% และ สุกรheyamที่ทำการคัดเพื่อผสmostที่ยึดด้วยน้ำเชื้อสุกรแช่แข็งมีระยะเวลาตั้งแต่เริ่มเป็นสัตถีงตากไปเฉลี่ย 43.0 ± 4.9 ชั่วโมง และระยะเวลาตั้งแต่ฉีดออร์โรมเหนี่ยวน้ำการตากไปจนกระทั่งตากไป เท่ากับ 36.4 ± 3.7 ชั่วโมง จากการตรวจติดตามการตากไปเป็นรายตัวพบว่าระยะเวลาตั้งแต่ ผสmostที่ยึดครั้งสุดท้ายจนถึงไปตากเฉลี่ย 4.0 ± 4.9 ชั่วโมง (ตารางที่ 4) สมรรถภาพการสืบพันธุ์ของแม่สุกรที่ถูกผสmostที่ยึดทุกตัวแสดงในตารางที่ 2 จากการทดลองพบว่าอัตราการผสmostติดในกลุ่มที่ใช้น้ำเชื้อแช่แข็งมีแนวโน้มต่ำกว่ากลุ่มควบคุม 12.9% ($P=0.12$) อย่างไรก็ดีอัตราเข้าคลอด จำนวนลูกสุกรแรกคลอด ทั้งหมดต่อครรภ และ จำนวนลูกสุกรมีชีวิตต่อครรภ ไม่มีความแตกต่างกันระหว่างกลุ่มควบคุมและกลุ่มที่ใช้น้ำเชื้อแช่แข็ง (ตารางที่ 4) ในกลุ่มควบคุมสุกรที่ไม่เข้าคลอดพบว่าเกิดจากปัญหา แท้ง 4 ตัว ตายกระทันหัน 2 ตัว และกลับสัตดไม่ตั้งรอบ 2 ตัว ในกลุ่มที่ผสmostที่ยึดด้วยน้ำเชื้อแช่แข็งพบว่า สุกรที่ไม่เข้าคลอดเกิดจากปัญหา แท้ง 1 ตัว และกลับสัตดไม่ตั้งรอบ 1 ตัว

ตารางที่ 3 คุณภาพน้ำเชื้อสุกรก่อนและหลังผ่านการแช่แข็ง

พารามิเตอร์	จำนวน	ค่าเฉลี่ย \pm SD	Range
ปริมาตร (มล.)	94	145.1 ± 38.3	70-255
ความเข้มข้น ($\times 10^6$ ตัว/มล.)	94	449.3 ± 99.1	290-760
การเคลื่อนไหวก่อนแช่แข็ง (%)	94	85.3 ± 3.0	80-90
การรอดชีวิตก่อนแช่แข็ง (%)	94	83.6 ± 4.8	71-95
การเคลื่อนไหวหลังแช่แข็ง (%)	62	31.9 ± 16.2	0-60
การรอดชีวิตหลังแช่แข็ง (%)	62	28.4 ± 11.4	4.5-59
จำนวนหลอดfangเฉลี่ย/ครั้ง	14	44.9 ± 21.7	20-81

รูปที่ 13 นำเชือกสุกรแซ่แข็งที่เก็บใน semen bank

รูปที่ 14 การอุ่นและเจือจางนำเชือกแซ่แข็งสุกรก่อนนำไปผสมเทียม

ตารางที่ 4 ผลการผสมเทียม (ค่าเฉลี่ย±SD (พิสัย))

พารามิเตอร์	กลุ่มควบคุม	กลุ่มทดลอง
จำนวนสุกร	36	33
ลำดับครอค	4.8 ± 1.7 (2-8)	4.5 ± 1.9 (2-9)
คะแนนรูปร่าง	2.51 ± 0.41	2.51 ± 0.47
ระยะห่างมถึงเป็นสัด (วัน)	3.6 ± 1.2 (2-6)	3.6 ± 0.6 (2-4)
อัตราการเคลื่อนไหวหลังทำละลาย (%)	NA	47.6 ± 3.7 (40-50)
ระยะเป็นสัดถึงตากไข่ (ซม.)	NA	43.0 ± 4.9 (38-50)
นีดออร์โมนถึงตากไข่ (ซม.)	NA	36.4 ± 3.7 (33-42.5)
ผสมเทียมถึงตากไข่ (ซม.)	NA	4.0 ± 4.9 (1.5-17.5)
อัตราผสมติด (%)	91.7	78.8
อัตราเข้าคลอด (%)	55	65
จำนวนลูกสุกรแรกคลอดทั้งหมด/ครอค	10.1 ± 0.8	9.2 ± 0.8
จำนวนลูกสุกรมีชีวิต/ครอค	8.3 ± 1.1	8.6 ± 0.9

รูปที่ 15 การตรวจการเป็นสัดแม่สุกรด้วยวิธี back pressure test เพื่อหาเวลาที่เหมาะสมในการผสมเทียม

รูปที่ 16 การผสานเทียมสุกรด้วยน้ำเชื้อแซ่เรือง

รูปที่ 17 การเตรียมสารละลายเพื่อเก็บรักษา
น้ำเชื้อสุกรแซ่เรืองจากไข่แดง

รูปที่ 18 การเตรียมสารละลายน้ำหัวน้ำเชื้อเช่นเชิง

รูปที่ 19 การเตรียมหลอดฟางเพื่อบรรจุน้ำเชื้อสุกรเช่นเชิง

บทที่ 5 สรุปและวิจารณ์

การศึกษาในครั้งนี้พบว่า การผสมเทียมสุกรด้วยวิธีสอดท่อเข้ามดลูกหรือ intra-uterine insemination (IUI) เป็นวิธีที่มีประสิทธิภาพในการใช้ผสมเทียมสุกรด้วยน้ำเชื้อปริมาณต่ำ (หั้งจำนวนอสุจิ และปริมาตร) ได้ผลดี สำหรับน้ำเชื้อแช่แข็ง ผลการผสมเทียมให้ผลอยู่ในเกณฑ์ที่น่าพอใจ โดยพบว่ามีอัตราการผสมติดที่ 78.8% จำนวนลูกสุกรแรกคลอดหั้งหมด 9.2 ตัว/ครรภ และจำนวนลูกสุกรมีชีวิต 8.6 ตัว/ครรภ ไม่ต่างจากกลุ่มควบคุมที่ผสมเทียมด้วยน้ำเชื้อสดในช่วงเวลาเดียวกัน ผลของการผสมเทียมในการทดลองครั้งนี้ใกล้เคียงกับการทดลองของ Roca et al. (2003) ซึ่งผสมเทียมด้วยวิธี deep intra uterine insemination ด้วยน้ำเชื้อ $1,000 \times 10^6$ ตัว/โดส ซึ่งผสมติด 70% และได้จำนวนลูกสุกรหั้งหมดแรกคลอด 9.25 ตัว/ครรภ และผลการทดลองในครั้งนี้ดีกว่าการทดลองของ Bathgate et al. (2003) และ Wongtawan (2004) ซึ่งได้จำนวนลูกสุกรต่อครรภเพียง 7.2 ตัว และ 6 ตัว ตามลำดับ (ตารางที่ 1)

ในการทดลองครั้งนี้เลือกใช้การผสมเทียมด้วยวิธี IUI แทนการผสมเทียมแบบเดิม และไม่เลือกใช้วิธีการผสมแบบ DIUI เนื่องจากการผสมเทียมแบบเดิมต้องใช้จำนวนอสุจิค่อนข้างมาก ($>3,000 \times 10^6$ ตัว/โดส) และพบการสูญเสียอสุจิในท่อทางเดินระบบสืบพันธุ์ค่อนข้างสูง (Sumransap et al., 2007; Tummaruk et al., 2007) ในขณะที่การผสมเทียมแบบ DIUI อาจพบการกระจายตัวของอสุจิไม่เพียงพอในสุกรบางตัว (Tummaruk et al., 2007) และนอกจากนี้ เมื่อไม่นานมานี้ยังมีการศึกษาพบว่าการตอบสนองของตัวรับฮอร์โมนโปรเจสเตอโรนที่เยื่อบุผนังท่อนำน้ำไข่ในแม่สุกรที่ผสมเทียมด้วยวิธี DIUI แตกต่างจากแม่สุกรที่ผสมเทียมด้วยวิธีปกติ ซึ่งอาจมีผลกระทบต่อการขนส่งอสุจิได้ (Tummaruk et al., 2009)

ปัจจุบันการผสมเทียมได้ถูกนำมาใช้อย่างแพร่หลายในอุตสาหกรรมการผลิตสุกรทั่วโลก ซึ่งการผสมเทียมส่วนใหญ่จะทำการผสมด้วยน้ำเชื้อสด (fresh semen) คิดเป็น 99% ของการผสมเทียมหั้งหมด ในขณะที่การผสมเทียมด้วยน้ำเชื้อสุกรแช่แข็ง (frozen semen) นั้นยังมีการใช้เพียง 1% เท่านั้น (Wagner and Thibier 2000) การผสมเทียมด้วยน้ำเชื้อสด (fresh semen) สามารถนำน้ำเชื้อไปใช้ได้ทันทีภายหลังจากเจือจางด้วยสารละลายน้ำเชื้อ (extender) แล้ว หรืออาจนำไปเก็บไว้ในตู้เย็นที่อุณหภูมิประมาณ 18 องศาเซลเซียส โดยจะสามารถเก็บรักษาได้นาน 3-5 วัน ทั้งนี้ขึ้นกับชนิดของสารละลายน้ำเชื้อที่เลือกใช้ แต่การผสมเทียมด้วยน้ำเชื้อสดก็มีข้อจำกัดในเรื่องของเวลาที่เก็บรักษานำน้ำเชื้อได้ค่อนข้างสั้น ทำให้ไม่สามารถขนส่งไปยังสถานที่ที่มีระยะทางห่างไกลได้ ซึ่งเสียโอกาสในแพร่กระจายลักษณะพันธุกรรมที่ดีไปยังพื้นที่ไกลๆ อีกทั้งอายุการใช้งานของพ่อสุกรจะประมาณ 3 ปี ทำให้จำกัดการใช้ประโยชน์ของพ่อสุกรที่มีพันธุกรรมดี ต่อมาจึงมีการพัฒนาเทคโนโลยีการทำนำน้ำเชื้อสุกรแช่แข็งขึ้นมา เพื่อแก้ไขข้อจำกัดของนำน้ำเชื้อสดหรือนำน้ำเชื้อแช่เย็น ประโยชน์ที่ได้จากการนำเทคโนโลยีการผลิตนำน้ำเชื้อสุกรแช่แข็งมาใช้ในระบบการผลิตสุกร ก็คือ การเก็บรักษาพันธุกรรมของพ่อสุกรที่มีลักษณะดี ที่ผ่านการ

ทดสอบพันธุ์ และการกระจายพันธุกรรมสามารถทำได้เร็กว่านำเข้าสด ลดข้อจำกัดในการขนส่งนำเข้าระหว่างประเทศได้ ลดการแพร่กระจายของโรคระบาดเข้าสู่ผู้ทำให้การจัดการการเลี้ยงสุกรเป็นไปได้ง่ายมากขึ้น เทคโนโลยีการแช่แข็งนำเข้าซึ่งประสบความสำเร็จเมื่อได้มีการค้นพบกลีเซอรอล (glycerol) ว่ามีคุณสมบัติที่ช่วยปกป้องอสุจิจากการบวนการแช่แข็งได้ แต่อย่างไรก็ตามในการผสมเทียมด้วยนำเข้าแช่แข็งจะต้องใช้ปริมาณของตัวอสุจิที่มากกว่าน้ำเข้าสดหรือน้ำเข้าแช่เย็นนึ่งจากอัตราการมีชีวิตรอดของตัวอสุจิภายหลังจากการแช่แข็งน้อยที่ประมาณ 50% เท่านั้น อัตราการมีชีวิตรอดที่ค่อนข้างน้อยเนื่องจากการที่ตัวอสุจิของสุกรมีความไวต่อความเย็นเป็นอย่างมาก (cold shock) ซึ่งจากการวิจัยที่ผ่านมาหลายสิบปีแล้วการใช้น้ำเข้าแช่แข็งในการผสมเทียมยังให้ผลของอัตราการผสมติดที่ยังไม่เป็นที่ยอมรับ (unacceptable fertility) ในอุตสาหกรรมการผลิตสุกร โดยมีอัตราการเข้าคอลดลลง 20-30% และจำนวนลูกต่อครรภ์ลดลง 2-3 ตัว (Eriksson et al., 2000) เมื่อเปรียบเทียบกับการผสมเทียมด้วยนำเข้าแช่เย็น (extended boar semen)

การวิจัยครั้งนี้เป็นครั้งแรกที่แสดงให้เห็นว่า การผสมเทียมสุกรด้วยนำเข้าแช่แข็งได้เริ่มต้นทำในอุตสาหกรรมการผลิตสุกรในประเทศไทยแล้ว และผลที่ได้จากการผสมเทียมนับว่าอยู่ในระดับที่น่าพอใจ รูปแบบการผลิตและขั้นตอนการผสมเทียมเหล่านี้สามารถนำไปประยุกต์ใช้ได้ในฟาร์มอื่นๆ ในประเทศไทยได้ต่อไป

เอกสารอ้างอิง

Almond, G. 1998. The swine AI book: A field and laboratory technicians' guide to artificial insemination in swine. second edition. p. 176.

Bailey, J.L., Lessard, C., Jacques, J., Breque, C., Dobrinski, I., Zeng W., Galantino-Homer, H.L. 2008. Cryopreservation of boar semen and its future importance to the industry. *Theriogenology* 70:1251-1259.

Bathgate, R., Eriksson, B., Maxwell, W.M., Evans, G. 2003. Low dose deep intrauterine insemination of sows with fresh and frozen-thawed spermatozoa. In: 5th International Conference on Boar semen PreservationDoorwerth, Netherland.

Buranaamnuay K, Tummaruk P, Singlor J, Rodriguez-Martinez H, Techakumphu M. 2009. Effects of straw volume and Equex-STM[®] on boar sperm quality after cryopreservation. *Reprod Domest Anim* 44: 69–73.

Buranaamnuay, K., Singlor, J., Tummaruk, P., Techakumphu, M., 2008. The establishment of boar semen cryopreservation in Thailand: Post-thaw semen quality, sperm concentration and variation among ejaculates. *Thai J Agri Sci.* 41: 135-141.

Chanapiwat, P., Kaeoket, K., Tummaruk, P., 2009. Effects of DHA-enriched hen egg yolk and L-cysteine supplementation on quality of cryopreserved boar semen. *Asian Journal of Andrology* 11: 600-608.

Dubé, C., Leclerc, P. Baba, T. Reyes-Moreno C., Bailey, J.L. 2005. The proacrosin binding protein, sp32, is tyrosine phosphorylated during capacitation of pig sperm. *J. Androl.* 26: 519–528.

Einarsson, S., 1981: Sperm distribution within the genital tract of natural inseminated gilts. *Nordisk. Veterinar. Medicin.* 33:145-149.

Eriksson, B. 2000. Cryopreservation of boar semen: study on sperm viability in vitro and fertility. PhD. Thesis. Swedish University of agricultural science. Uppsala, Sweden. 47 pp.

Eriksson, B.M., Rodriguez-Martinez, H. 2000. Effect of freezing and thawing rate on the post-thaw viability of boar spermatozoa frozen in FlatPack and Maxi-straws. *Anim. Reprod. Sci.* 63:205-220.

Flesch, F.M., Colenbrander, B., van Golde L.M., Gadella, B.M. 1999. Capacitation induces tyrosine phosphorylation of proteins in the boar sperm plasma membrane. *Biochem. Biophys. Res. Commun.* 262:787–792.

Flowers, W.L., Esbenshade, K.L. 1993. Optimizing management of natural and artificial mating in swine. *J. Reprod. Fert. Suppl.* 48: 217-228.

Galantino-Homer, H.L., Zeng, W.X., Megee, S.O., Dallmeyer, M., Voelkl D., Dobrinski, I. 2006. Effects of 2-hydroxypropyl-beta-cyclodextrin and cholesterol on porcine sperm viability and capacitation status following cold shock or incubation, *Mol Reprod Dev* 73:638–650.

Green C.E., Watson, P.F. 2001. Comparison of the capacitation-like state of cooled boar spermatozoa with true capacitation, *Reproduction* 122: 889–898.

Harayama, H., Sasaki K., Miyake, M. 2004. A unique mechanism for cyclic adenosine 3',5'-monophosphate-induced increase of 32-kDa tyrosine-phosphorylated protein in boar spermatozoa. *Mol. Reprod. Dev.* 69: 194–204.

Hunter, R.H.F., 1981. Sperm transport and reservoirs in the pig oviduct in relation to the time of ovulation. *J. Reprod. Fertil.* 63:109–117.

Johnson, L.A., Weitze, K.F., Fiser, P., Maxwell, W.M.C., 2000. Storage of boar semen. *Anim. Reprod. Sci.* 62 143-172.

Kaeoket, K., Persson, E., Dalin, A.M., 2002. The influence of pre- and post-ovulatory insemination on sperm distribution in the oviduct, accessory sperm to the zona pellucida, fertilization rate and embryo development in sows. *Anim. Reprod. Sci.* 71 239-248.

Kaneto, M., Harayama, H., Miyake M., Kato, S. 2002. Capacitation-like alterations in cooled boar spermatozoa: assessment by the chlortetracycline staining assay and immunodetection of tyrosine-phosphorylated sperm proteins. *Anim. Reprod. Sci.* 73:197-209.

Krueger, C., Rath, D., Johnson, L.A., 1999. Low dose insemination in synchronized gilts. *Theriogenology.* 52 1363-1373.

Kunavongkrit, A., Sang-Gasanee, K., Phumratanaprapin, C., Tantasuparuk, W., Einarsson, S., 2003. A study on the number of recovered spermatozoa in the uterine horns and oviducts of gilts, after fractionated or non-fractionated insemination. *J. Vet. Med. Sci.* 65:63-67.

Martinez, E.A., Vasquez, J.M., Roca, J., Lucas, X., Gil, M.A. Parriilla, I., 2002. Minimum sperm number for normal fertility after deep intrauterine insemination in sedated sows. *Reproduction.* 123:167-170.

Martinez, E.A., Vazquez, J.M., Parrilla, I., Cuello, C., Gil, M.A., Rodriguez-Matinez, H., Roca, J., Vazquez, J.L., 2006. Incidence of Unilateral Fertilizations after Low Dose

Deep Intrauterine Insemination in Spontaneously Ovulating Sows under Field Conditions. *Reprod. Dom. Anim.* 41:41-47.

Martinez, E.A., Vazquez, J.M., Roca, J., Lucas, X., Gil, M.A., Parrilla, I., Vazquez, J.L., Day, B.N. 2001. Successful non-surgical deep intrauterine insemination with small numbers of spermatozoa in sows. *Reprod.* 122:289-296.

Matthijs, A., Engel, B., Woelders, H., 2003. Neutrophil recruitment and phagocytosis of boar spermatozoa after artificial insemination of sows, and the effects of inseminate volume, sperm dose and specific additives in the extender. *Reproduction* 125:357-367.

Maxwell W.M., Johnson, L.A. 1997. Chlortetracycline analysis of boar spermatozoa after incubation, flow cytometric sorting, cooling or cryopreservation. *Mol. Reprod. Dev.* 46:408-418.

Mburu, J. N., Einarsson, S., Lundeheim, N. and Rodriguez-Martinez, H. 1996. Distribution, number and membrane integrity of spermatozoa in pig oviduct in relation to spontaneous ovulation. *Anim. Reprod. Sci.* 45: 109-121.

Nissen, A.K., Soede, N.M., Hyttel, P., Schmidt, M. and D'Hoore, L. 1997. The influence of time of insemination in relation to time of ovulation on farrowing rate and litter size in sows, investigated by ultrasonography. *Theriogenology* 47: 1571-1583.

Pursel, V.G., Park, C.S. 1985. Freezing and thawing procedure for boar spermatozoa. In: Johnson, L.A. and Larsson, K., (Eds.), *Deep freezing of boar semen*, SLU, Uppsala, Sweden, 147-166.

Roca, J., Carvajal, G., Lucas, X., Vazquez, J.M., Martinez, E.A., 2003. Fertility of weaned sows after deep intrauterine insemination with a reduced number of frozen-thawed spermatozoa. *Theriogenology*. 60:77-87.

Rodriguez-Martinez, H., Saravia, F., Wallgren, M., Tienthai, P., Johannisson, A., Vazquez, J.M., Martinez, E., Roca, J., Sanz, L., Calvete, J.J., 2005. Boar spermatozoa in the oviduct. *Theriogenology*. 63:514-535.

Rodriguez-Martinez, H., Tienthai, P., Suzuki, K., Funahashi, H., Ekwall, H., Johannisson, A. 2001. Involvement of oviduct in sperm capacitation and oocyte development in pigs. *Reprod Suppl* 58:129-145.

Shadan, S., James, P.S., Howes E.A., Jones, R. 2004. Cholesterol efflux alters lipid raft stability and distribution during capacitation of boar spermatozoa. *Biol. Reprod.* 71:253-265.

Singleton, W.L. 2001. State of the art in artificial insemination of pigs in the United States. *Theriogenology* 56: 1305-1310.

Soede, N.M., Wetzels, C.C.H., Zondag, W., de Koning, M.A.I. and Kemp, B. 1995. Effects of time of insemination relative to ovulation, as determined by ultrasonography, on fertilisation rate and accessory spermatozoa count in sows. *J. Reprod. Fert.* 104: 99-106.

Steverink, D.W.B., Soede, N.M., Bouwman, E.G., Kemp, B., 1998. Semen backflow after insemination and its effect on fertilization in sows. *Anim. Reprod. Sci.* 54: 109-119.

Sumransap, P., Tummaruk, P., Kunavongkrit, A., 2007. Sperm distribution in the reproductive tract of sows after intrauterine insemination. *Reprod. Dom. Anim.* 42:113-117.

Tardif, S., Dube, C., Chevalier S., Bailey, J.L. 2001. Capacitation is associated with tyrosine phosphorylation and tyrosine kinase-like activity of pig sperm proteins. *Biol. Reprod.* 65:784–792.

Tienthai, P., Johannisson, A., Rodriguez-Martinez, H., 2004. Sperm capacitation in porcine oviduct. *Theriogenology*. 80:131-146.

Tummaruk, P., Lundeheim, N., Einarsson, S. and Dalin, A.-M., 2000. Reproductive performance of purebred Swedish Landrace and Swedish Yorkshire sows: II. Effect of mating type, weaning-to-first-service interval and lactation length. *Acta Agri. Scand., sect. A, Animal Sci.* 50: 217-224.

Tummaruk, P., Sumransap, P., Techakumphu, M., Kunavongkrit, A., 2007. Distribution of spermatozoa and embryos in the female reproductive tract after unilateral deep intra uterine insemination in the pig. *Reprod. Dom. Anim.* 42: 603-609.

Tummaruk, P., Tienthai, P. 2009. Number of spermatozoa in the crypts of the sperm reservoir at about 24 h after a low dose intra-uterine and deep intrauterine insemination in sows. *Reprod. Dom. Anim.* (inpress).

Tummaruk, P., Tienthai, P., Manee-In, S., Srisuwatanasagul, S., 2009. Expression of progesterone receptor in the utero-tubal junction after intra-uterine and deep intra-uterine insemination in sows. *Reprod. Dom. Anim.* (inpress).

Vazquez, J.M., Martinez, E.A., Roca, J., Gil, M.A., Parrilla, I., Cuello, C., Carvajal, G., Lucas, X., Vazquez, J.L., 2005. Improving the efficacy of sperm technologies in pig: the value of deep intrauterine insemination. *Theriogenology* 63:536-547.

Wagner H.G., Thibier, M. 2000. World statistics for artificial insemination in small ruminants and swine. Proc 14th ICAR, Stockholm, Sweden. P. 15.

Watson, P.F., Behan, J.R. 2002. Intrauterine insemination of sows with reduced sperm numbers: results of commercially based trial. Theriogenology. 57:1683-1693.

Weitze, K.F. 2000. Update on the worldwide application of swine AI. Proceedings IV international conference on boar semen preservation, Beltsville, Maryland, USA. p. 141-145.

Woelders, H., den Besten, M. 1993. Cryopreservation of boar semen with small between boar variation of post thaw sperm survival. Cryobiology. 30:645.

Wongtawan, T., 2004. Fertility after deep intra-uterine AI of concentrated low-volume boar semen dose. M.V.Sc. Thesis, Swedish University of Agricultural Sciences. Uppsala, Sweden.

ภาคผนวก

Original Article

Effects of DHA-enriched hen egg yolk and *L*-cysteine supplementation on quality of cryopreserved boar semen

Panida Chanapiwat¹, Kampon Kaeoket², Padet Tummaruk¹

¹Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand

²Faculty of Veterinary Science, Mahidol University, Nakorn-Pathom 73170, Thailand

Abstract

The objective of the present study was to determine the effects of docosahexaenoic acid (DHA)-enriched hen egg yolks and *L*-cysteine supplementation on the qualities of the cryopreserved boar semen. A total of 15 ejaculates from 5 Pietrain boars were divided into 4 groups according to the compositions of the freezing extenders used, that is, normal hen egg yolk (group I), DHA-enriched hen egg yolk (group II), normal hen egg yolk with 5 mmol L⁻¹ of cysteine supplementation (group III) and DHA-enriched hen egg yolk with 5 mmol L⁻¹ of cysteine supplementation (group IV). The semen was cryopreserved using controlled rate freezer and was thawed at 50°C for 12 s. Progressive motility, sperm viability, acrosome integrity and functional integrity of sperm plasma membrane of the post-thawed semen were evaluated. The supplementation of *L*-cysteine in the freezing extender alone (group III) improved progressive motility ($P < 0.05$), and the supplementation of *L*-cysteine in combination with DHA-enriched hen egg yolk (group IV) improved both progressive motility ($P < 0.05$) and acrosome integrity ($P < 0.01$). The use of DHA-enriched hen egg yolk alone (group II) did not enhance any of the post-thawed semen qualities ($P > 0.05$). In conclusion, the supplementation of antioxidant *L*-cysteine alone or in combination with DHA-enriched hen egg yolk significantly improved the post-thawed semen qualities, especially progressive motility and acrosome integrity.

Asian Journal of Andrology (2009) 11: 600–608. doi: 10.1038/aja.2009.40; published online 27 July 2009.

Keywords: boar, DHA, extender, frozen semen, *L*-cysteine

1 Introduction

Cryopreservation of boar semen has been an established practice in the pig industry for decades [1, 2] in order to preserve genetic resources, enhance genetic improvement, distribute genetic material across countries

and minimize boar transportation [3–5]. In general, frozen–thawed (FT) boar semen has a short survival time in the female reproductive tract compared with extended fresh semen (4 h vs. 24 h) [6], and has a low post-thawed semen quality, particularly regarding individual motility and plasma membrane integrity [7]. For these reasons, the use of FT semen under field conditions resulted in a decrease of 20%–30% in the conception rate and a reduction of two to four liveborn piglets per litter size compared with the use of extended fresh semen [8, 9]. Earlier studies have shown that the cryopreserved boar semen yielded at most 49%–53% individual sperm motility after thawing, and

Correspondence to: Dr Padet Tummaruk, Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.

Fax: +662-2520738.

E-mail: Padet.T@chula.ac.th

Received: 8 January 2009

Revised: 11 June 2009

Accepted: 19 June 2009

Published online: 27 July 2009

each insemination required a total number of 5×10^9 spermatozoa per dose [8, 10].

During recent years, several improved methods for the cryopreservation of boar semen have emerged, including methods to affect the freezing–thawing rate [11, 12], freezing packages [11, 13–15] and the composition of the semen extenders [16–19]. Earlier studies have shown dramatic improvements of FT semen quality by use of these methods. For instance, supplementation of Equex in the semen extender yielded a percentage of individual sperm motility that was higher than conventional methods [15, 20, 21]. In addition, the packaging of semen in Flatpacks resulted in a 47% motility rate, which was higher than that in Maxi or Medium straws (34% and 36%, respectively) [22]. Despite the improvement of cryopreservation protocols over time, individual boar variation in the sperm freezability is still observed. The reason for individual boar variation in sperm freezability has not been completely elucidated [23, 24].

It is well established that the plasma membrane of boar spermatozoa is highly sensitive to thermal changes [25, 26]. The susceptibility to temperature shock is mainly because of poor lipid composition and structure of the plasma membrane of the boar spermatozoa [27]. The plasma membrane of boar spermatozoa contains high levels of polyunsaturated fatty acids (PUFAs), that is, docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA), and has a low level of cholesterol: phospholipids ratio [28, 29]. It has been shown that the cholesterol: phospholipids ratio and the phospholipid saturation play an important role on the temperature shock [30]. PUFAs decrease dramatically when the spermatozoa are attacked by reactive oxygen species (ROS) because of lipid peroxidation (LPO) [31, 32]. ROS resulted from defective/dead spermatozoa, decreased progressive motility, increased mid-piece abnormalities and inhibited sperm–oocyte fusion [33, 34].

The supplementation of antioxidants and fatty acids in the semen extender has been shown to reduce ROS and improve plasma membrane integrity in stallions [35, 36], bulls [37, 38], rams [39, 40] and pigs [16–18, 41, 42]. It has been shown that DHA in boar semen increased after n-3-enriched hen egg yolks were added in the semen extender [42]. Recently, a study has shown that supplements of DHA from fish oil in the semen extender increased progressive motility, viability, plasma membrane integrity and acrosome integrity

of FT boar semen [19]. To date many of the DHA-enriched hen eggs have been produced in the hen-egg industry (for example, Dr Henn, Quality meat Co. Ltd, Thailand). In general, the DHA-enriched egg contained 200–250 mg of DHA, which is about twice higher than that contained in a normal egg. The use of DHA-enriched hen egg yolk for cryopreservation of boar semen has never been considered. In addition, supplementation of L-cysteine, a precursor of intracellular glutathione biosynthesis, in the semen extender have been shown to increase individual sperm motility of FT bull semen [38], and increase sperm viability and acrosome integrity of the boar spermatozoa during chilled storage [43, 44]. L-cysteine plays a role in the intracellular protective mechanism against oxidative stress, and as a membrane stabilizer and capacitation inhibitor [10]. Both DHA and L-cysteine play a major role as the plasma membrane stabilizers of spermatozoa in many domestic species. The influence of L-cysteine and combination of L-cysteine and DHA on FT boar semen has never been investigated. Therefore, the present study investigates the influence of DHA-enriched hen egg yolk and L-cysteine in semen extender on the qualities of cryopreserved boar semen.

2 Materials and methods

The proposal of the present study has been approved by the Faculty of Veterinary Science Animal Care and Use Committee (FVS-ACUC), Mahidol University.

2.1 Boar and semen

Five Pietrain boars aged between 1 and 3 years were used in the experiment. The boars were of proven fertility and held in a commercial herd in Ratchaburi Province, Thailand. The boars were housed in individual pens with a conventional opened-house system in a commercial swineherd near to the laboratory (approximately 30 km). The feed was provided twice daily and water was available ad libitum. Semen was collected once weekly using the gloved-hand method. A total of 15 ejaculates of semen were obtained (3 ejaculates each). The semen was transported from the herd to the laboratory at the Faculty of Veterinary Science, Mahidol University. The semen volume, pH, individual sperm motility, sperm concentration, percentage of live and dead sperms, and morphology were evaluated. Ejaculates with a volume of > 100 mL, a pH of 7.2–7.8, a sperm motility of $\geq 70\%$, a sperm concentration of > 150 spermatozoa

per mL and $\geq 80\%$ normal sperm morphology were used.

2.2 Semen freezing and thawing procedures

Shortly after collection, the semen was diluted (1:1 [v/v]) using extender I (Modena, Swine Genetics International Ltd, Iowa, USA). The diluted semen was transferred to 50 mL centrifuge tubes, equilibrated at 15°C for 120 min and centrifuged at $800 \times g$ for 10 min. The supernatant was discarded and the sperm pellet was re-suspended (about 1:2:1) using extender II (80 mL of 11% lactose solution and 20 mL egg yolk) to a concentration of 1.5×10^9 spermatozoa per mL. The diluted semen was cooled to 5°C for 90 min. Then, two parts of the semen were mixed with one part of extender III (89.5% of extender II with 9% glycerol and 1.5% Equex-STM). The final concentration of semen was approximately 1.0×10^9 spermatozoa per mL and contained 3% glycerol (modified after Westendorf *et al.* [45] and Selles *et al.* [46]). The processed semen was loaded into 0.5 mL straws. The straws were sealed with PVC powder before being placed in a controlled rate freezer (Icecube 14s, Sylab, Purkersdorf, Austria). The freezing rate was 3°C min $^{-1}$ from +5°C to -5°C and thereafter 50°C min $^{-1}$ from -5°C to -140°C. Then the straws were plunged into liquid nitrogen (-196°C) for storage. Thawing was achieved by immersing the straws in water at 50°C for 12 s [46]. Immediately after thawing, the semen was diluted (1:4) using a Modena extender. Post-thawed sperm qualities were evaluated after incubation in a 37°C water bath for 15 min.

2.3 Semen extender

After incubation in extender I, the semen was divided into four groups according to the composition of extender II. In group I, extender II contained 80 mL of 11% lactose solution and 20 mL egg yolk. In group II, extender II was prepared by using DHA-enriched hen egg yolk (Dr Henn, Quality meat Co. Ltd Thailand) instead of conventional egg yolk. Each egg contained 200–250 mg of DHA. The DHA level as well as the fatty acid composition in the egg yolk that was used for preparing semen extender, was analyzed at the Institute of Nutrition, Mahidol University (Association of Official Analytical Chemists, Official Method Analysis, AOAC, Arlington, USA). On an average, DHA (C22 : 6, n-3) in the DHA-enriched hen eggs yolk was about 1.6 times higher than normal hen egg yolk (450 vs. 280 mg per

100 g). In group III, extender II was supplemented with 5 mmol L $^{-1}$ of L-cysteine (Fluka Chemie GmbH, Sigma-Aldrich, Switzerland). In group IV, extender II contained both DHA-enriched hen egg yolk and 5 mmol L $^{-1}$ of L-cysteine.

2.4 Sperm evaluation

2.4.1 Sperm concentration and progressive motility

Sperm concentration was assessed by direct cell count using a Bürker hemocytometer (Boeco, Hamburg, Germany) [47]. The visual progressive motility of both fresh and FT sperm was evaluated at 38°C under a phase contrast microscope at $\times 200$ and $\times 400$ magnifications. The motility was assessed by a same person throughout the experiment.

2.4.2 Sperm viability

The viability was evaluated by SYBR-14 / ethidium homodimer-1 (EthD-1) (Fertilight, Sperm Viability Kit, Molecular Probes Europe, Leiden, The Netherlands). This technique was modified after Axnér *et al.* [48]. In all, 10 μ L of diluted semen was mixed with 2.7 μ L of the user solution of SYBR-14 and 10 μ L of EthD-1. The user solution was SYBR-14 diluted (1:100) in dimethyl sulfoxide, fractionated and frozen in eppendorfs. After incubation at 37°C for 20 min, 200 spermatozoa were assessed ($\times 1\,000$) under fluorescent microscope. The nuclei of the spermatozoa with an intact plasma membrane were stained green using SYBR-14, whereas those with damaged membranes were stained red using EthD-1. Spermatozoa were classified into three types: live spermatozoa stained green using SYBR-14, dead spermatozoa stained red using EthD-1 and moribund spermatozoa stained both green and red (Figure 1) [48, 49]. The results are expressed as the percentage of live spermatozoa with intact plasma membranes.

2.4.3 Acrosome integrity

Acrosome integrity was evaluated using fluorescein isothiocyanate-labeled peanut (Arachis hypogaea) agglutinin (FITC-PNA) staining. A total of 10 μ L of the diluted semen was mixed with 10 μ L of EthD-1 and incubated at 37°C for 15 min. A total of 5 μ L of the mixture was smeared on a glass slide and fixed with 95% ethanol for 30 s. FITC-PNA (dilute FITC-PNA with phosphate-buffered saline [PBS]; 1:10 [v/v]) (50 μ L) was spread over the slide and incubated in a moist chamber at 4°C for 30 min. After incubation, it was rinsed with cold PBS and air dried. A total of 200 spermatozoa were

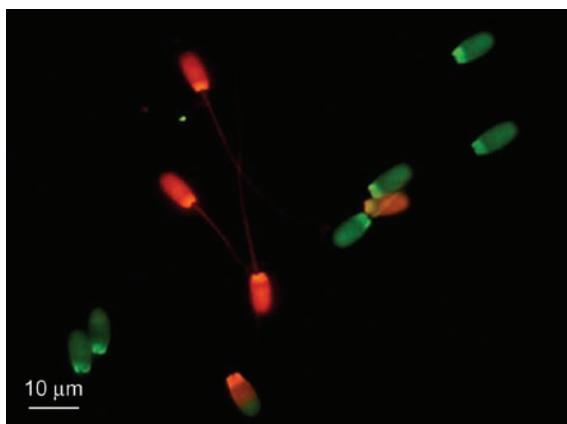


Figure 1. Boar spermatozoa stained with SYBR-14 / ethidium homodimer-1 (EthD-1). Live spermatozoa with intact plasma membrane are stained green using SYBR-14, dead spermatozoa are stained red using EthD-1 and moribund spermatozoa are stained both green and red.

assessed under fluorescent microscope at $\times 1\,000$ magnification and classified as intact acrosome, damaged acrosome and missing acrosome [48, 50]. The results were scored as the percentage of intact acrosome spermatozoa.

2.4.4 The functional integrity of the sperm plasma membrane

The functional integrity of the sperm plasma membrane was assessed using a short hypoosmotic swelling test (sHOST) [51]. Spermatozoa were incubated at 38°C for 30 min, with 75 mOsm kg⁻¹ of a hypoosmotic solution that consisted of 0.368% (w / v) Na-citrate and 0.675% (w / v) fructose (Merck, Germany) in distilled water. After this incubation time, 200 μ L of the semen–hypoosmotic solution was fixed in 1 000 μ L of hypoosmotic solution plus 5% formaldehyde (Merck, Germany), for later evaluation. A total of 200 spermatozoa were assessed under a phase contrast microscope at $\times 400$ magnification. The coiled tail (sHOST positive) spermatozoa found after incubation had a functional intact plasma membrane (Figure 2).

2.4.5 The classification of good and poor freezability in boar spermatozoa after FT process

The boars were classified as having ‘good’ and ‘poor’ freezability according to their post-thawed progressive motility. If post-thawed progressive motility was greater than 30%, the boar sperm was

Figure 2. Boar spermatozoa in short hypoosmotic swelling test (sHOST test). Coiled tail spermatozoa were identified as having a functional intact plasma membrane (arrow head), normal tail spermatozoa were identified as having a non-functional intact plasma membrane.

classified as good ($n = 36$ observations, 9 in each group, 3 boars). If post-thawed progressive motility was lesser than 30%, the boar sperm was classified as poor ($n = 24$ observations, 6 in each group, 2 boars).

2.5 Statistical analysis

The statistical analysis was performed using the Statistical Analysis Systems software package (Version 9.0, SAS Institute Inc., 1996, Cary, NC, USA). Normality of the data was evaluated using UNIVARIATE procedure option NORMAL PLOT. Owing to the skewed distribution of the sperm parameters, arcsine transformation was applied to all sperm parameters. Progressive motility, sperm viability, acrosome integrity and functional integrity of sperm plasma membrane (arcsine transformation) were analyzed using the General Linear Mixed Model (MIXED) procedure of the SAS. The model included the group of extender as fixed effect and boar as random effects. The statistical analysis was also performed on the basis of freezability of the boar sperm. Least-square means were obtained from each class of the factors and were compared using least significant difference. Statistically significant difference was defined as $P < 0.05$.

3 Results

In the present study, fresh semen samples were evaluated for semen quality before the FT process. On

average, the sperm concentration of the fresh semen was 354.5×10^6 spermatozoa per ml and the progressive motility was 86.0% (Table 1). The quality of FT semen is presented in Table 1. In group IV, the progressive motility and acrosome integrity were higher than group I ($P < 0.01$) (Table 1). The progressive motility of the spermatozoa in groups III and IV was higher than in group I ($P < 0.01$). There was no difference between the sperm viability and the functional integrity of the sperm plasma membrane among the groups ($P > 0.05$) (Table 1). However, the highest percentage of the sperm viability and the functional integrity of the sperm plasma membrane seemed to be observed in group IV.

The post-thawed semen qualities, that is, progressive motility, sperm viability, acrosome integrity and functional integrity of the sperm plasma membrane between good and poor freezability of boar spermatozoa are presented in Table 2. The supplementation of both DHA and L-cysteine (group IV) increased progressive motility by 6.2% (compared with group I, $P = 0.59$) in the good freezability semen groups ($P < 0.05$), whereas it improved by only 1.7% in the poor freezability semen groups ($P = 0.59$) (Table 2). The sperm viability in group IV increased by 8.5% compared

with group I ($P = 0.15$) in the good freezability semen groups, but decreased by 8.9% in the poor freezability semen groups ($P = 0.99$). The acrosome integrity in group IV increased by 11.7% compared with group I ($P = 0.14$) in the good freezability semen groups, whereas it improved by 6.2% in the poor freezability semen groups ($P = 0.16$). The functional integrity of sperm plasma membrane in group IV decreased by 1.5% compared with group I ($P = 0.57$) in the good freezability semen groups, whereas it decreased by 4.1% in the poor freezability semen groups ($P = 0.99$).

4 Discussion

In the present study, the supplementation of L-cysteine in the freezing extender improved the motility of boar spermatozoa after cryopreservation. This finding is in accordance with Bilodeau *et al.* [38] who found that the supplementation of L-cysteine promoted the motility of the FT bull spermatozoa. In addition, it has been shown that the supplement of L-cysteine in extended fresh semen significantly increases sperm viability and acrosome integrity [43, 44]. Recently, L-cysteine has also been shown to

Table 1. Means \pm standard deviation of progressive motility (%), sperm viability (%), acrosome integrity (%) and sHost (%) of fresh sperm and frozen-thawed boar sperm between four groups ($n = 15$ ejaculates per group).

Sperm parameters	Fresh sperm	Frozen-thawed sperm			
		Group I	Group II	Group III	Group IV
Progressive motility (%)	86.0 ± 3.4	23.7 ± 7.7^a	27.3 ± 9.2^{ab}	35.3 ± 11.7^b	36.3 ± 10.6^b
Sperm viability (%)	85.9 ± 5.4	46.4 ± 13.3^a	49.0 ± 14.0^a	51.6 ± 12.8^a	53.7 ± 12.4^a
Acrosome integrity (%)	83.7 ± 7.3	31.9 ± 12.1^a	37.0 ± 12.4^{ab}	41.8 ± 15.6^{ab}	49.1 ± 12.6^b
sHost (%) ^a	74.8 ± 8.2	17.4 ± 9.5^a	18.5 ± 10.1^a	19.5 ± 8.2^a	21.8 ± 10.7^a

^asHost = functional integrity of sperm plasma membrane. Values followed by different alphabets within the same row against each parameter were significantly different ($P < 0.01$).

Table 2. Means \pm standard deviation of progressive motility (%), sperm viability (%), acrosome integrity (%) and sHost (%) of frozen-thawed boar semen (good freezability and poor freezability) between four groups.

Sperm parameters	Frozen-thawed Semen							
	Poor freezability				Good freezability			
	Group I ($n = 6$)	Group II ($n = 6$)	Group III ($n = 6$)	Group IV ($n = 6$)	Group I ($n = 9$)	Group II ($n = 9$)	Group III ($n = 9$)	Group IV ($n = 9$)
Progressive motility (%)	20.0 ± 4.5^a	21.3 ± 2.5^a	20.0 ± 2.7^a	21.7 ± 2.9^a	33.8 ± 4.8^a	35.7 ± 6.1^a	40.5 ± 9.1^b	40.0 ± 8.3^b
Sperm viability (%)	45.4 ± 15.0^a	34.6 ± 14.0^a	40.3 ± 13.1^a	36.5 ± 12.2^a	49.1 ± 7.8^a	58.2 ± 9.1^a	56.9 ± 7.2^a	57.6 ± 8.9^a
Acrosome integrity (%)	30.5 ± 11.9^a	36.7 ± 12.9^a	28.1 ± 7.1^a	36.7 ± 12.9^a	38.3 ± 9.6^a	47.3 ± 8.4^a	48.1 ± 12.4^a	50.0 ± 11.8^a
sHost (%) ^a	14.2 ± 8.9^a	12.3 ± 7.4^a	11.3 ± 4.6^a	10.1 ± 4.3^a	26.3 ± 4.1^a	26.8 ± 7.9^a	22.1 ± 6.9^a	24.8 ± 9.8^a

^asHost = functional integrity of sperm plasma membrane. Values followed by different alphabets within the same row against each parameter were significantly different ($P < 0.01$).

improve sperm viability and acrosome integrity of FT ram's semen [39]. The positive effects of *L*-cysteine on many sperm parameters might be because of several factors, for example, *L*-cysteine can reactivate ROS and catalyze the detoxification of H_2O_2 and other superoxides [52]. However, the susceptibility of spermatozoa to LPO differs among species. The doses of antioxidant used for different species may be different. In the present study, 5 mmol L⁻¹ of *L*-cysteine was used, because a previous study reported that a concentration of between 2.5 and 5 mmol L⁻¹ of *L*-cysteine improved extended boar semen qualities [44]. In addition, the present study found that *L*-cysteine only improved motility in good freezability boars, whereas no improvement was noted in poor freezability boars. To our knowledge, this finding has never been reported before. It has been shown that there are differences in specific DNA sequences between boars that have poor and good post-thawed semen quality [53]. In addition, the mutation of ubiquitin-specific protease 26 gene on the X-chromosome has been observed in 22% of infertile men [54]. In our study, poor freezability boars might have had an abnormal DNA sequence or a mutation of some specific genes. The supplementation of *L*-cysteine may not improve the FT semen quality in these boars.

In the present study, we found that the supplement of DHA-enriched hen egg yolk alone did not improve the post-thawed semen quality. In an earlier study, Maldjian *et al.* [42] also failed to improve the post-thawed semen quality after using DHA-enriched hen egg yolk instead of normal hen egg yolk. However, they have shown that the proportion of DHA in phospholipids of spermatozoa could be increased by using DHA-enriched hen egg yolk. In the present study, the percentage of DHA in the sperm plasma membrane has not been evaluated. On the other hand, Kaeoket *et al.* [19] found that the supplementation of DHA by adding fish oil to the freezing extender successfully improved the progressive motility, viability, plasma membrane integrity and acrosome integrity of FT boar spermatozoa. Therefore, in the present study, the reason that DHA alone failed to improve the post-thawed semen quality might be because of a low concentration of DHA in the DHA-enriched hen egg yolk. Furthermore, the ability of DHA uptake of spermatozoa might differ among individual boars and breeds [55]. In the animal model, it was found that the supplement of DHA in boar feed significantly

increased the progressive motility and intact acrosome of fresh semen [56, 57]. However, the supplement of DHA-enriched cod liver oil in boar diet failed to improve the freezability of boar semen, even though cod liver oil supplement increased DHA content of boar spermatozoa plasma membranes [58]. The influence of DHA on the freezing ability of boar spermatozoa is still ambiguous and remains to be further investigated. Sources and concentrations of DHA, as well as breed and the individual boar effect on DHA uptake should also be taken into consideration.

In the present study, the combination of DHA-enriched hen egg yolk and *L*-cysteine significantly increased progressive motility and intact acrosome. The effect of this combination has never been studied before. It is known that both DHA and *L*-cysteine play a major role in protecting sperm structure and function. In general, differences in the lipid composition of the sperm plasma membrane influenced the freezability of the spermatozoa. The proportion of PUFAs, especially DHA and DPA, in the plasma membrane of spermatozoa is affected by use of diluents and by freezing [42]. High levels of PUFAs in the membrane phospholipids increase membrane fluidity and flexibility [59], and subsequently improve freezability of the spermatozoa. In the present study, semen extender containing both DHA and *L*-cysteine resulted in the highest post-thawed semen qualities, especially progressive motility and acrosome integrity. Acrosome integrity is a parameter used to evaluate the functional membrane status of the spermatozoa [49]. Viable spermatozoa with an intact acrosome are able to undergo the acrosome reaction, penetrate the zona pellucida and fuse with the oocyte. The DHA and cysteine combination may protect the acrosome by enhancing fluidity and increasing ROS scavenging. However, the use of DHA alone did not produce a significant difference. This might be because of the low concentration of DHA used in the present study compared with that used by Kaeoket *et al.* [19]. To improve the post-thawed boar semen quality, the effect of concentrations of DHA and *L*-cysteine should be investigated.

Interestingly, in the present study, neither DHA nor *L*-cysteine supplementation improved the FT sperm parameters (that is, progressive motility, sperm viability, acrosome integrity and functional integrity of sperm plasma membrane) in poor freezability spermatozoa. On the other hand, DHA and *L*-cysteine did improve the FT semen qualities of good freezability spermatozoa.

This might be due to the difference of lipid composition in sperm plasma membrane, and because the ability of DHA and *L*-cysteine uptake of spermatozoa differs among boars [55]. The reason for differences in the freezability of boar spermatozoa is unknown at present. A possible explanation might be related to the genetic variation and/or abnormalities of the DNA and genes (see above) among boars [56]. It has been reported that the cryopreservation process significantly reduced intracellular glutathione (GSH) levels of boar spermatozoa [17]. Therefore, supplementation with *L*-cysteine, a precursor of intracellular GSH biosynthesis, has a beneficial effect while intracellular GSH levels are decreased.

In conclusion, the combination of *L*-cysteine and DHA-enriched hen egg yolk significantly improved the progressive motility and acrosome integrity of FT boar spermatozoa. DHA-enriched hen egg yolk alone failed to improve the quality of boar sperm after cryopreservation.

Acknowledgment

This research was supported by grants from the Graduate School, Chulalongkorn University, the National Research Council of Thailand and Thailand Research Fund (IUG5080002). We are thankful to Miss Kakanang Buranaamnuay and Miss Junpen Suwimonteerabutr for their technical support. None of the authors had any financial or administrative ties with Dr Henn Quality Meat Co Ltd. Language editing of the manuscript has been coordinated by Chula Unisearch, Chulalongkorn University.

References

- 1 Polge C. Artificial insemination in pigs. *Vet Rec* 1956; 68: 62–76.
- 2 Larsson K, Einarsson S. Fertility of deep frozen boar spermatozoa. *Acta Vet Scand* 1976; 17: 43–62.
- 3 Almlid T, Hofmo PO. A brief review of frozen semen application under Norwegian AI service conditions. *Reprod Domest Anim* 1996; 31: 169–73.
- 4 Johnson LA. Current developments in swine semen: preservation, artificial insemination and sperm sexing. *Proc 15th IPVS* 1998; 1: 225–9.
- 5 Bailey JL, Lessard C, Jacques J, Brèque C, Dobrinski I, et al. Cryopreservation of boar semen and its future importance to the industry. *Theriogenology* 2008; 70: 1251–9.
- 6 Waberski D, Weitze KF, Gleumes T, Schwarz M, Willmen T, et al. Effect of time of insemination relative to ovulation on fertility with liquid and frozen boar semen. *Theriogenology* 1994; 42: 831–40.
- 7 Saravia F, Wallgren M, Nagy S, Johannison A, Rodriguez-Martinez H. Deep freezing of concentrated boar semen for intra-uterine insemination: effects on sperm viability. *Theriogenology* 2005; 63: 1320–33.
- 8 Eriksson BM, Petersson H, Rodriguez-Martinez H. Field fertility with exported boar semen frozen in the new flatpack container. *Theriogenology* 2002; 58: 1065–79.
- 9 Wongtawan T, Saravia F, Wallgren M, Caballero I, Rodriguez-Martinez H. Fertility after deep intra-uterine artificial insemination of concentrated low-volume boar semen doses. *Theriogenology* 2006; 65: 773–87.
- 10 Johnson LA, Weitze KF, Fiser P, Maxwell WMC. Storage of boar semen. *Anim Reprod Sci* 2000; 62: 142–72.
- 11 Eriksson BM, Rodriguez-Martinez H. Effect of freezing and thawing rate on the post-thaw viability of boar spermatozoa frozen in FlatPack and Maxi-straws. *Anim Reprod Sci* 2000; 63: 205–20.
- 12 Córdova-Izquierdo A, Oliva JH, Lleó B, García-Artiga C, Corcuera BD, et al. Effect of different thawing temperatures on the viability, *in vitro* fertilizing capacity and chromatin condensation of frozen boar semen packaged in 5 ml straws. *Anim Reprod Sci* 2006; 92: 145–54.
- 13 Bwanga CO, Einarsson S, Rodriguez-Martinez H. Deep freezing of boar semen packaged in plastic bags and straws. *Reprod Domest Anim* 1991; 26: 117–25.
- 14 Berger B, Fischerleitner F. On deep freezing of boar semen: investigations on the effects of different straw volumes, methods of freezing and thawing extenders. *Reprod Domest Anim* 1992; 27: 266–70.
- 15 Buranaamnuay K, Tummaruk P, Singlor J, Rodriguez-Martinez H, Techakumphu M. Effects of straw volume and Equex-STM® on boar sperm quality after cryopreservation. *Reprod Domest Anim* 2009; 44: 69–73.
- 16 Peña FJ, Johannesson A, Wallgren M, Rodriguez Martinez H. Antioxidant supplementation *in vitro* improves boar sperm motility and mitochondrial membrane potential after cryopreservation of different fractions of the ejaculate. *Anim Reprod Sci* 2003; 78: 85–98.
- 17 Gadea J, Selles E, Marco MA, Coy P, Matas C, et al. Decrease in glutathione content in boar sperm after cryopreservation, effect of the addition of reduced glutathione to the freezing and thawing extender. *Theriogenology* 2004; 62: 690–701.
- 18 Roca J, Gil MA, Hernandez M, Parrilla I, Vazquez JM, et al. Survival and fertility of boar spermatozoa after freeze-thawing in extender supplemented with butylated hydroxytoluene. *J Androl* 2004; 25: 397–405.
- 19 Kaeoket K, Sang-urai P, Thamniyom A, Chanapiwat P, Techakumphu M. Effect of Docosahexaenoic acid (DHA) on quality of cryopreserved boar semen in different breeds. *Reprod Domest Anim* 2008; In press.
- 20 Pursel VG, Schulman LL, Johnson A. Effect of *Orvus* Es Paste on acrosome morphology, motility and fertility capacity of frozen thawed sperm. *J Anim Sci* 1978; 47: 198–201.
- 21 Fraser L, Strezezek J. Effect of different procedures of

ejaculate collection, extenders and packages on DNA integrity of boar sperm following freezing-thawing. *Anim Reprod Sci* 2007; 99: 317–29.

22 Eriksson BM, Vazquez JM, Martinez EA, Roca J, Lucas X, et al. Effects of holding time during cooling and of type of package on plasma membrane integrity, motility and *in vitro* oocyte penetration ability of frozen-thawed boar spermatozoa. *Theriogenology* 2001; 55: 1593–605.

23 Holt WV, Medrano A, Thurston LM, Watson PF. The significance of cooling rates and animal variability for boar sperm cryopreservation insights from the cryomicroscope. *Theriogenology* 2005; 63: 370–82.

24 Roca J, Hernandez M, Carvajal G, Vazquez JM, Martinez EA. Factors influencing boar sperm cryosurvival. *J Anim Sci* 2006; 84: 2692–9.

25 Holt WV. Fundamental aspects of sperm cryobiology: the importance of species and individual differences. *Theriogenology* 2000; 53: 47–58.

26 Watson PF. The causes of reduced fertility with cryopreserved semen. *Anim Reprod Sci* 2000; 60–1: 481–92.

27 Flesch FM, Gadella BM. Dynamics of the mammalian sperm plasma membrane in the process of fertilization. *Biochim Biophys Acta* 2000; 1469: 197–235.

28 Johnson LA, Gerrits RJ, Young EP. The fatty acid composition of porcine spermatozoa phospholipids. *Biol Reprod* 1969; 1: 330–4.

29 Parks JE, Lynch DV. Lipid composition and thermotropic phase behavior of boar, bull, stallion and rooster sperm membranes. *Cryobiology* 1992; 29: 255–66.

30 Darin-Bennett A, White IG. Influence of the cholesterol content of mammalian spermatozoa on susceptibility to cold-shock. *Cryobiology* 1977; 14: 466–70.

31 de Lamirande ED, Gagnon C. Reactive oxygen species and human spermatozoa. I. Effects on the motility of intact spermatozoa and on sperm axonemes and II. Depletion of adenosine triphosphate plays an important role in the inhibition of sperm motility. *J Androl* 1992; 13: 368–86.

32 Sikka SC, Rajasekaran M, Hellstrom WJ. Role of oxidative stress and antioxidants in male infertility. *J Androl* 1995; 16: 464–8.

33 Chatterjee S, De Lamirande E, Gagnon C. Cryopreservation alters membrane sulfhydryl status of bull spermatozoa: protection by oxidized glutathione. *Mol Reprod Dev* 2001; 60: 498–506.

34 Agarwal A, Prabakaran SA, Said TM. Prevention of oxidative stress injury to sperm. *J Androl* 2005; 26: 654–60.

35 Aurich JE, Schönherr U, Hoppe H, Aurich C. Effects of antioxidants on motility and membrane integrity of chilled stored stallion semen. *Theriogenology* 1997; 48: 185–92.

36 Ball BA, Medina V, Gravance CG, Baumbe J. Effect of antioxidants on preservation of motility, viability and acrosomal integrity of equine spermatozoa during storage at 5 °C. *Theriogenology* 2001; 56: 577–89.

37 Beconi MT, Francia CR, Mora NG, Affranchino MA. Effect of natural antioxidants on frozen bovine semen preservation. *Theriogenology* 1993; 40: 841–51.

38 Bilodeau JF, Blanchette S, Gagnon C, Sirard MA. Thiols prevent H₂O₂-mediated loss of sperm motility in cryopreserved bull semen. *Theriogenology* 2001; 56: 275–86.

39 Uysal O, Bucak MN. Effects of oxidized glutathione, bovine serum albumin, cysteine and lycopene on the quality of frozen-thawed ram semen. *Acta Vet Brno* 2007; 76: 383–90.

40 Bucak MM, Atessahin A, Varisli Ö, Yuce A, Tekin N, et al. The influence of trehalose, taurine, cysteamine and hyaluronan on ram semen Microscopic and oxidative stress parameters after freeze-thawing process. *Theriogenology* 2007; 67: 1060–7.

41 Roca J, Rodriguez JM, Gil MA, Carvajal G, Garcia EM, et al. Survival and *in vitro* fertility of boar spermatozoa frozen in the presence of superoxide dismutase and/or catalase. *J Androl* 2005; 26: 15–24.

42 Maldjian A, Pizzi F, Gliozzi T, Cerolini S, Penny P, et al. Changes in sperm quality and lipid composition during cryopreservation of boar semen. *Theriogenology* 2005; 63: 411–21.

43 Szczesniak-Fabianczyk B, Bochenek M, Smorag Z, Silvestre MA. Effects of antioxidants added to boar semen extender on the semen survival and sperm chromatin structure. *Reprod Biol* 2003; 3: 81–7.

44 Funahashi H, Sano T. Select antioxidants improve the function of extended boar semen stored at 10 degrees C. *Theriogenology* 2005; 63: 1605–16.

45 Westendorf PL, Richter L, Treu H. Zur Tiefgefrierung von Ebersperma. Labor- und Besamungsergebnisse mit dem Hulsenberger Pailletten-verfahren. *Dtsch Tierarztl Wochenschr* 1975; 82: 261–7.

46 Selles E, Gadea J, Romar R, Matas C, Ruiz S. Analysis of *in vitro* fertilizing capacity to evaluate the freezing procedures of boar semen and to predict the subsequent fertility. *Reprod Domest Anim* 2003; 38: 66–72.

47 Beardon HJ, Fuquay JW. Semen evaluation. In: Beardon HJ, Fuquay JW, editors. *Applied Animal Reproduction*, 4th ed. New Jersey: Prentice Hall; 1997. p158–70.

48 Axnér E, Hermansson U, Linde-Forsberg C. The effect of Equex STM paste and sperm morphology on frozen-thawed survival of cat epididymal sperm. *Anim Reprod Sci* 2004; 84: 179–91.

49 Garner DL, Johnson LA. Viability assessment of mammalian sperm using SYBR-14 and propidium iodide. *Biol Reprod* 1995; 53: 276–84.

50 Cheng FP, Fazeli A, Voorhout WF, Marks A, Bevers MM, et al. Use of peanut agglutinin to assess the acrosomal status and the zona pellucida-induced acrosome reaction in stallion spermatozoa. *J Androl* 1996; 17: 674–82.

51 Perez-Llano B, Lorenzo JL, Yenes P, Trejo A, Garcia-Casado P. A short hypoosmotic swelling test for the prediction of boar sperm fertility. *Theriogenology* 2001; 56: 387–98.

52 Meister A. On the antioxidant effects of ascorbic acid and glutathione. *Biochem Pharmacol* 1992; 44: 1905–15.

53 Thurston LM, Siggins K, Mileham AJ, Watson PF, Holt WV. Identification of amplified restriction fragment length polymorphism markers links to genes controlling boar

sperm viability following cryopreservation. *Biol Reprod* 2002; 66: 545–54.

54 Zhang J, Qiu SD, Li SB, Zhou DX, Tian H, *et al.* Novel mutations in ubiquitin-specific protease 26 gene might cause spermatogenesis impairment and male infertility. *Asian J Androl* 2007; 9: 809–14.

55 Vazquez JM, Roldan ERS. Phospholipid metabolism in boar spermatozoa and role of diacylglycerol species in the de novo formation of phosphatidylcholine. *Mol Reprod Dev* 1997; 47: 105–12.

56 Rooke JA, Shao CC, Speake BK. Effects of feeding tuna oil on the lipid composition of pig spermatozoa and *in vitro* characteristics of semen. *Reproduction* 2001; 121: 315–22.

57 Strzezek J, Fraser L, Kuklinska M, Dziekonska A, Lecewicz M. Effects of dietary supplementation with polyunsaturated fatty acids and antioxidants on biochemical characteristics of boar semen. *Reprod Biol* 2004; 4: 271–87.

58 Paulenz H, Taugbøl O, Kommisrud E, Greve IS. Effect of dietary supplementation with cod liver oil on cold shock and freezability of boar semen. *Reprod Domest Anim* 1999; 34: 431–5.

59 Lenzi A, Picardo M, Gandini L, Dondero F. Lipids of the sperm plasma membrane: from polyunsaturated fatty acids considered as markers of sperm function to possible scavenger therapy. *Hum Reprod Update* 1996; 2: 246–56.

Expression of Progesterone Receptor in the Utero-tubal Junction After Intra-uterine and Deep Intra-uterine Insemination in Sows

P Tummaruk¹, P Tienthai², S Manee-In³ and S Srisuwatanasagul²

¹Department of Obstetrics, Gynaecology and Reproduction; ²Department of Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; ³Faculty of Veterinary Science, Mahidol University, Phutthamonthon, Nakorn-pathom, Thailand

Contents

The aim of this study was to investigate the expression of progesterone receptor (PR) in the utero-tubal junction (UTJ) of sows at 24 h after intra-uterine insemination (IUI) and deep intra-uterine insemination (DIUI) compared with conventional artificial insemination (AI) in pigs. Fifteen multiparous sows were used: AI ($n = 5$), IUI ($n = 5$) and DIUI ($n = 5$). The sows were inseminated with a single dose of diluted semen during the second oestrus after weaning at 6–8 h prior to ovulation (AI: 3000×10^6 spermatozoa, IUI: 1000×10^6 spermatozoa and DIUI: 150×10^6 spermatozoa). The UTJ was collected and subject to immunohistochemical staining using avidin-biotin immunoperoxidase technique with mouse monoclonal antibody to PR. In the oviductal part of the UTJ, the intensity of PR in the tunica muscularis and the proportion of PR-positive cells in the surface epithelium after DIUI were lower than AI ($p < 0.05$). The intensity and the proportion of PR-positive cells between AI and IUI in all compartments of the UTJ did not differ significantly ($p > 0.05$). When comparing between tissue compartments, prominent staining was observed in the muscular layer of the UTJ. It could be concluded that the expression of PR in the UTJ prior to fertilization after DIUI with a reduced number of spermatozoa was lower than that after AI. This might influence sperm transportation and the fertilization process.

Introduction

The mechanism of sperm transport from the insemination site to the fertilization area is complex and is regulated by many factors involving both the female genital tract and the spermatozoa (Rodriguez-Martinez et al. 2005). It is well established that the utero-tubal junction (UTJ) is the primary physical barrier to the oviduct and the caudal isthmus with the UTJ acting as a sperm reservoir to restrict sperm access to the fertilization site (Hunter 1981; Rodriguez-Martinez et al. 2005). Ovulation has been postulated to affect sperm transport by initiating the re-distribution of spermatozoa from the sperm reservoirs. This re-distribution is regulated by a change in the hormonal profile that occurs during ovulation (Hunter 1984). Mburu et al. (1996) recovered larger sperm numbers within the upper isthmus during the peri-ovulatory period than during the pre-ovulatory period.

Recently, two types of a specially-designed catheter for artificial insemination (AI) in pig have been established for non-surgical intra-uterine insemination (IUI) (Watson and Behan 2002; Sumransap et al. 2007) and deep intra-uterine insemination (DIUI) with reduction in the number of spermatozoa (Martinez et al. 2002; Vazquez et al. 2005). These procedures

consist of a specially-designed catheter that can be passed through the cervix allowing the deposition of sperm in the uterine body (IUI) or uterine horn (DIUI). Using these techniques, the number of spermatozoa per dose can be reduced. It has been demonstrated that the IUI technique with a 3-times reduction in the sperm number per dose resulted in the same conception rate and litter size, under farm conditions, compared with AI (Watson and Behan 2002). However, Rozeboom et al. (2004) found that IUI with $\leq 1 \times 10^9$ spermatozoa per dose resulted in a smaller litter size compared with an AI with 4×10^9 spermatozoa per dose. For DIUI, earlier studies have shown that the catheter could be passed through the cervix completely in 90–95% of multiparous sows (parities 2–6; $n = 147$) (Martinez et al. 2001, 2002). The technique has also been used for advanced biotechnology procedures such as frozen-thawed semen, sex-sorted sperm and embryo transfer (Roca et al. 2003; Vazquez et al. 2003; Martinez et al. 2004). However, it was found that the number of spermatozoa in the sperm reservoir after DIUI with a reduced number of spermatozoa was significantly lower than that after AI (Tummaruk et al. 2007). Furthermore, poor litter size and low fertilization rate have also been observed for DIUI (Martinez et al. 2006).

It has been demonstrated that progesterone (P_4) significantly increased soon after ovulation in pigs and influenced the transportation of spermatozoa and embryos (Mburu et al. 1996). The physiological mechanism of P_4 on sperm transportation in the female reproductive tract is related to the expression of the progesterone receptor (PR) in the uterine horn of the pig (Sukjumlong et al. 2005) and it has been demonstrated that the PR in the pig oviduct (ampulla and isthmus) was more intense during the luteal phase compared with the follicular phase (Peralta et al. 2005). Furthermore, Sukjumlong et al. (2005) demonstrated that the PR was higher in inseminated sows compared with cyclic sows, and that the immunostaining of PR in the uterus was high during 5 or 6 to 70 h after insemination. Sperm distribution and fertilization after IUI and DIUI with a reduced number of spermatozoa have been demonstrated (Sumransap et al. 2007; Tummaruk et al. 2007). However, the expression of the PR after IUI and DIUI in pigs has never been investigated. This study was performed to investigate the expression of the PR in the UTJ of sows at 24 h after IUI and DIUI compared with that after AI in pigs.

Materials and Methods

Animals, detection of oestrus and ovulation and insemination

Fifteen crossbred Landrace \times Yorkshire multiparous sows were used in the experiment. On the day of weaning, they were brought from commercial farms to the Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University and were allocated to individual pens adjacent to adult boars. The sows were fed 3 kg/day (twice a day) with a commercial feed (Starfeed176[®]; BP Feed Co. Ltd, Saraburi, Thailand) containing 15% protein, 2% fat and 10% fibre. Water was provided ad libitum via water nipple. At arrival, the sows were randomly assigned to three groups according to ear tag, AI ($n = 5$), IUI ($n = 5$) and DIUI ($n = 5$) groups. The sows were subjected to boar contact and were observed for sign of pro-oestrus (e.g., swelling and reddening of vulva, boar interested) twice a day (AM/PM). When the signs of pro-oestrus were observed, the sows were carefully examined for the onset of standing oestrus every 6 h by using a back pressure test in the presence of a mature boar. Transrectal ultrasonography (Echo camera SSD-550; Aloka Co. Ltd., Tokyo, Japan) was performed every 4 h, starting from approximately 10–12 h after the onset of oestrus, using a 5 MHz probe to examine the time when ovulation took place in all sows (Tummaruk et al. 2007). The sows were inseminated with a single dose of diluted semen during the second oestrus after weaning. The time of ovulation during the first oestrus was used to determine the timing of insemination, which was carried out at 6–8 h prior to the expected time of ovulation. The semen was collected from an adult Duroc boar. Semen with a motility of $\geq 70\%$, a concentration of $\geq 150 \times 10^6$ spermatozoa/ml and with normal sperm $\geq 85\%$, was extended with Beltsville thawing solution (Pursel and Johnson 1976). The sperm dose contained 3000×10^6 spermatozoa in 100 ml for AI, 1000×10^6 spermatozoa in 50 ml for IUI (Deep golden pig[®]; Minitube, Tiefenbach, Germany) and 150×10^6 spermatozoa in 5 ml for DIUI. The sows were inseminated by the AI, the IUI or the DIUI technique. Both the IUI and the DIUI techniques have been described previously by Sumransap et al. (2007) and Martinez et al. (2001), respectively.

Tissue collection and immunohistochemistry

The sows were generally anaesthetized at approximately 24 h after insemination. General anaesthesia was induced by azaperone (Stressnil[®]; Janssen Animal Health, Beerse, Belgium), 2 mg/kg, intramuscularly. Thirty minutes later, thio-pental sodium, 10 mg/kg, was given intravenously. The ovario-hysterectomy was performed by laparotomy. The reproductive organs were removed and immediately transferred to the laboratory. The oviducts and the proximal part of uterine horns (1 cm) on each side of the reproductive tracts were collected. The UTJ and all parts of the oviduct were fixed in 10% neutral buffer formalin. The samples were embedded in paraffin blocks, cut in 4 μm thick sections and placed on 3-aminopropyl-triethoxysi-

lane coated slides (SIGMA-ALDRICH, Inc., Steinheim, Germany). The sections were deparaffinized in xylene and rehydrated in graded alcohol. The immunohistochemical protocol was modified after Sukjumlong et al. (2005). Briefly, the antigen retrieval technique was used to enhance the reaction between antigen and antibody by boiling in 0.01 M citrate buffer pH 6.0, 2 \times 5 min in a microwave at 750 watt. A standard avidin-biotin immunoperoxidase technique (Vectastain[®] ABC kit; Vector Laboratories, Inc., Burlingame, CA, USA) was applied to detect the PR proteins. The primary antibodies used were mouse monoclonal antibody to PR (Immunotech, Hamburg, Germany; clone 10A9) at the dilution of 1 : 200 in a humidified chamber for 2 h at room temperature. A negative control was obtained by replacing the primary antibody with non-immune serum of the same concentration as the primary antibody. Normal sow oviducts known to express PR served as positive controls. The oviduct of the positive control sows was taken during day 1–2 of the oestrus cycle. In addition, UTJ from four non-inseminated sows (early dioestrous sows) were included as a non-inseminated control groups (NAI group). In the final step, the colour of the bound enzyme (brown colour) was obtained using 3,3'-diaminobenzidine (Vector Laboratories, Inc.). All sections were counterstained with Mayer's haematoxylin and mounted with glycerine gelatin for investigation under a light microscope.

Classification of positively-stained cells

The UTJ was classified into two parts, the oviductal and the uterine parts. The oviductal part consisted of three compartments: surface epithelium, subepithelial layer of the stroma and muscular layer (tunica muscularis). The uterine part was classified into four compartments: surface epithelium, glandular epithelium, subepithelial layer of the stroma and myometrium. The glandular epithelium was also divided into superficial and deep glandular epithelium (Table 2). The results of the immunostaining were evaluated semi-quantitatively by a manual scoring method. The scoring of PR-positive cells was done by classification into three different levels of intensity: weak, 1; moderate, 2 and strong, 3. As not all cells stained positively in some compartments of the tissue, the proportion of positive to negative cells was also included for these tissues. The estimated proportions were classified into four different levels (marked 1–4): low proportion ($< 30\%$ of positive cells, 1); moderate proportion (30–60% of positive cells, 2); high proportion ($> 60\%$ –90% of positive cells, 3) and almost all cells positive (more than 90%, 4) (Sukjumlong et al. 2005). In connective tissue stroma of the uterine and the oviductal part of the UTJ not all cells were positively stained. Therefore, the number of PR-positive cells per mm^2 in the subepithelial layer was identified in each section. Five arbitrarily chosen microscopic fields were counted. The counting was performed at 400 \times magnification by using an ocular reticule (ocular micrometer, 0.13 \times 0.13 mm, with 25 squares) placed in the eyepiece of the light microscope and by moving the ocular micrometer along the subepithelial layer of the stroma (Sukjumlong et al. 2003).

Statistical analysis

Data were analysed using SAS (Statistical Analysis System; SAS Institute Inc. 1996). The general mean of all parameters were calculated and were used to describe all data. The score of intensities and score of positive cells were compared between groups using Kruskal-Wallis's test and Wilcoxon-rank sum test (NPAR1WAY procedure of SAS). A probability value of $p < 0.05$ was considered as statistically significant.

Table 1. Immunohistochemical staining of progesterone receptors (PR) presented as manual scoring (intensity/proportion) in oviductal tissue compartments of the uterotubal junction of sows inseminated by conventional AI, IUI, DIUI and NAI

Group of sows	Surface epithelium	Stroma	Tunica muscularis
AI	1.8 ^a /2.7 ^A	1.6 ^a /1923 ^A	3.0 ^a /4.0 ^A
IUI	1.4 ^a /2.5 ^A	2.4 ^a /2370 ^A	3.0 ^a /4.0 ^A
DIUI	1.3 ^a /1.8 ^B	1.7 ^a /1475 ^{AB}	2.2 ^b /3.7 ^{AB}
NAI	2.0 ^a /3.8 ^A	1.5 ^a /663 ^B	2.5 ^{ab} /2.5 ^B

The different superscript letters between rows are significantly different ($p < 0.05$).

AI, artificial insemination; IUI, intra-uterine insemination; DIUI, deep intra-uterine insemination; NAI, non-inseminated control.

Results

Immunohistochemical staining of PR after AI, IUI, DIUI and NAI in the oviductal and the uterine parts of the UTJ are shown in Tables 1 and 2 and Fig. 1. In the oviductal part, the intensity of PR in the muscular layer and the proportion of PR-positive cells in the surface epithelium after DIUI were lower than that after AI and IUI ($p < 0.05$) (Table 1). In the tunica muscularis of the oviduct, the intensity of PR in the DIUI group were not significantly different compared with NAI groups

Table 2. Immunohistochemical staining of progesterone receptors (PR) presented as manual scoring (intensity/proportion) in uterine tissue compartments of the uterotubal junction of sows inseminated by AI, IUI, DIUI and NAI

Group of sows	Surface epithelium	Superficial gland	Deep gland	Stroma	Myometrium
AI	1.6 ^a /2.7 ^A	1.4 ^a /2.4 ^A	1.4 ^a /2.4 ^A	1.8 ^a /1990 ^A	3.0 ^a /4.0 ^A
IUI	1.4 ^a /2.7 ^A	1.3 ^a /2.4 ^A	1.4 ^a /2.5 ^A	2.4 ^a /2370 ^A	3.0 ^a /4.0 ^A
DIUI	1.6 ^a /2.7 ^A	1.2 ^a /1.8 ^A	1.2 ^a /1.9 ^A	1.8 ^a /1933 ^{AB}	2.2 ^b /3.8 ^{AB}
NAI	2.0 ^a /3.3 ^A	2.3 ^a /3.8 ^A	2.3 ^a /3.8 ^A	1.5 ^a /663 ^B	2.5 ^{ab} /2.5 ^B

The different superscript letters between rows are significantly different ($p < 0.05$).

AI, artificial insemination; IUI, intra-uterine insemination; DIUI, deep intra-uterine insemination; NAI, non-inseminated control.

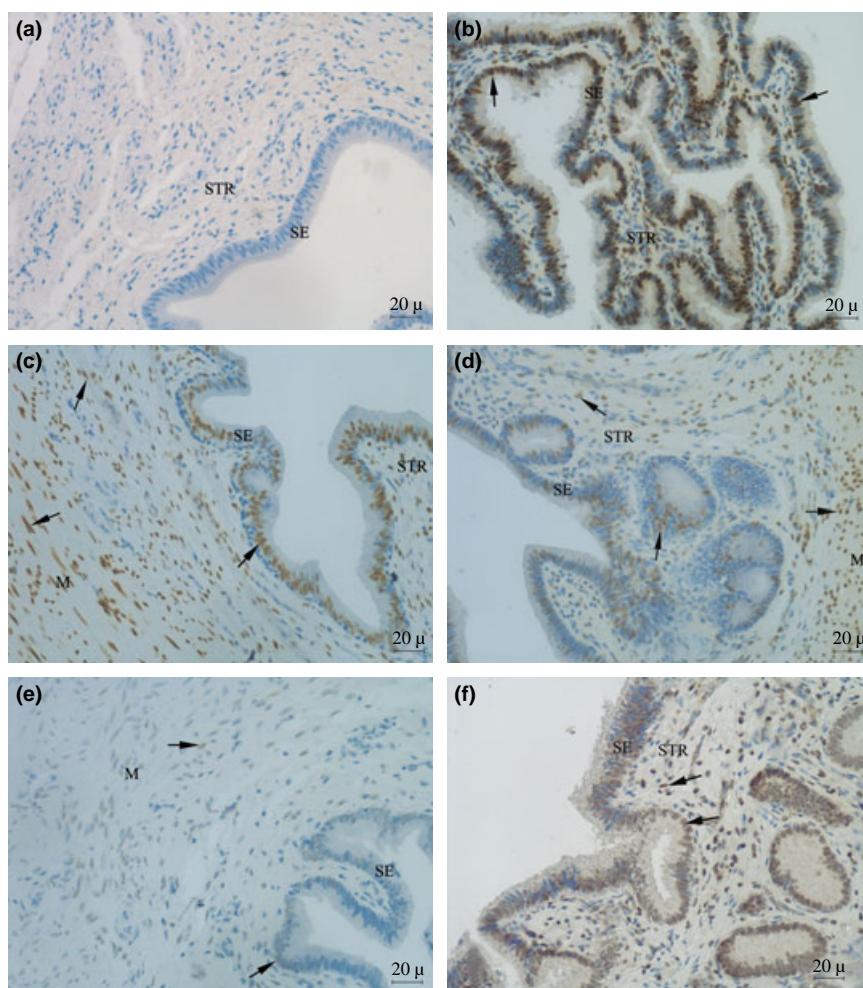


Fig. 1. Expression of progesterone receptor (PR) in the utero-tubal junction (UTJ) of sows: (a) negative control, (b) positive control, (c) artificial insemination (AI), (d) intra-uterine insemination (IUI), (e) deep intra-uterine insemination (DIUI) and (f) non-inseminated sows (NAI). SE, surface epithelium; STR, stroma layer; M, myometrium; black arrow indicate positive staining cell

(Table 1). In the uterine part, both the intensity and the proportion of PR-positive cells in all tissue compartments were not significantly different except for the myometrium in which a higher intensity was found for AI and IUI compared with DIUI ($p < 0.05$) (Table 2).

The proportion of PR-positive cells in the stroma and the myometrium in the NAI group was significantly lower than the AI and IUI groups ($p < 0.05$) in both the oviductal (Table 1) and the uterine parts of the UTJ (Table 2). The intensity and the proportion of PR-positive cells did not differ significantly between IUI and AI groups in all compartments of the UTJ ($p > 0.05$). For AI and IUI, high intensities and high proportion of PR-positive cells were observed in myometrium compartments of the UTJ, while low intensities of PR-positive cells were always observed in the tunica muscularis of DIUI group (Fig. 1). When comparing between tissue compartments, the prominent staining was observed in the muscular layer of the UTJ for all groups (Table 3).

The intensities of the PR in each side of the reproductive tract were compared in each individual sows in all groups. In the AI group, the intensities of the PR between left and right UTJ in all tissue layers in both the oviduct and the uterine compartments were similar in all sows. In the IUI group, the intensities of PR between left and right UTJ in the surface epithelium and myometrium of the oviduct and the uterine compartments were similar in all sows and the intensities of PR in the stroma layer of the oviduct and the uterine compartments and in the glandular layer of the uterine compartment were similar in four out of five sows. For the DIUI group, the intensities of PR between left and right UTJ in the surface epithelium of the uterine compartment, myometrium of the oviduct and the uterine compartments, glandular epithelium of the uterine compartment were similar in all sows, and the intensities of PR in the stroma of the oviduct were similar in four out of five sows and in the stroma of the uterine compartments were similar in three out of five sows (data not shown).

Discussion

This study demonstrated the expression of PR after IUI and DIUI in pigs compared with that after AI. Intrauterine insemination and DIUI are new techniques for insemination in pigs, and the expression of PR after IUI and DIUI have never been reported before. It is known that P_4 mediates changes in pig reproductive tissue during the oestrous cycle and is important for the

fertilization process. During recent years, the expression of PR in pigs as well as in other species has been investigated (Hartt et al. 2005; Peralta et al. 2005; Sukjumlong et al. 2005). An earlier study has demonstrated that the immunostaining of PR in the uterus was high during 5 or 6 to 70 h after insemination (Sukjumlong et al. 2005). The sows in all groups of this study were slaughtered at 24 h after insemination and the expression of PR in some compartments of the UTJ in the DIUI groups was significantly lower than that in the AI and IUI groups. The number of spermatozoa and the volume of semen used for DIUI are 20 times less than AI. It has been demonstrated that E_2 up-regulates PR in the pig uterus (Sukjumlong et al. 2005). As the boar semen contain a certain amount of E_2 , a low volume of semen used for DIUI might also influence the expression of PR due to the lower amount of E_2 . Wu et al. (2006) demonstrated that PR influences the capacitation process of spermatozoa prior to fertilization. The role of PR expression in the oviduct on the fertilization rate after DIUI with a low number of spermatozoa is still unclear. In our previous study, the mean number of spermatozoa in the crypt of the sperm reservoir (both UTJ and caudal isthmus) after DIUI was significantly lower than that after AI and IUI (Tummaruk and Tienthai 2008). In this study, expression of PR in the tunica muscularis/myometrium of the oviductal and the uterine part of the UTJ after DIUI was lower than that after AI and IUI. These findings indicate that DIUI with 150×10^6 spermatozoa significantly reduced the number of spermatozoa in the sperm reservoir and reduced the expression of PR in the UTJ. This might influence the redistribution of the spermatozoa and the fertilization process. In clinical research, a low fertilization rate and poor quality of embryos after DIUI with a small number of spermatozoa have also been observed (Martinez et al. 2006). Although DIUI with a 20-fold reduction in number of spermatozoa resulted in a similar pregnancy rate compared with AI, a higher number of partial fertilizations, unilateral fertilizations and lower litter size were also observed (Martinez et al. 2006).

In general, the amount of spermatozoa recommended to be used for IUI was three times less than AI. This study indicates that the reduction in the number of spermatozoa per insemination by IUI technique dose not alter the expression of PR in the UTJ. P_4 influences the transportation of spermatozoa both before and after fertilization (Mburu et al. 1996). This study suggests that IUI could be used without any effect on the expression of PR in the sperm reservoir prior to fertilization. The sperm acrosome reaction is required for mammalian fertilization. It has been suggested that P_4 is a physiological inducer for sperm acrosome reaction (Wu et al. 2006). In our previous study, the mean number of spermatozoa in the sperm reservoir after IUI was not significantly different from that after AI (Tummaruk and Tienthai 2008). In this study, expression of PR in both the oviductal part and the uterine part of the UTJ after IUI was not significantly different from that after conventional AI. These findings indicate that IUI with 1000×10^6 spermatozoa is sufficient to obtain a certain number of spermatozoa

Table 3. Immunohistochemical staining of progesterone receptors (PR) presented as manual scoring (intensity/proportion) in oviduct and uterine tissue compartments of the uterotubal junction of all sows

Tissue	Surface epithelium	Connective tissue stroma	Tunica muscularis or myometrium
Oviduct	1.6 ^a /2.3 ^A	1.7 ^a /1699 ^A	2.6 ^a /3.9 ^A
Uterus	1.6 ^a /2.7 ^A	1.8 ^a /1962 ^A	2.6 ^a /3.9 ^A

The different superscript letters between rows are significantly different ($p < 0.05$).

in the sperm reservoir and does not alter the expression of PR in the UTJ.

In the uterus of the sow, there are several communications between the uterine epithelial cells and the spermatozoa. These mechanisms depend on many factors, e.g., viability of the spermatozoa, concentration of the semen, presence of seminal plasma, receptors and some mediators (Rath et al. 2008). For instance, it was found that spermatozoa have a regulating influence on epithelial cytokine expression, and that three of five tested cytokines were down-regulated to baseline levels in the presence of spermatozoa (Rath et al. 2008). In our previous study, a number of spermatozoa were observed in the crypt of the sperm reservoir after AI, IUI and DIUI (Tummaruk and Tienthai 2008). The up-regulation of PR in the epithelial cells of the UTJ observed in this study might be, at least in part, due to the presence of spermatozoa in the epithelial crypt. It was found that direct contact between spermatozoa and the epithelium of the UTJ is required to allow the sperm go through the UTJ to form the sperm reservoir (Rath et al. 2008). Furthermore, the maintenance of the sperm reservoir involved several factors, e.g., mucous secretion, oviductal fluid, temperature gradient and receptor-ligand interaction between spermatozoa and oviductal epithelial cells (Tienthai et al. 2003; Rodriguez-Martinez et al. 2005; Rath et al. 2008). In this study, changes in PR expression in the oviductal epithelium reveal that the modification of the AI technique and the reduction in number of spermatozoa and semen volume might influence the mechanism involving sperm reservoir formation and perhaps also the re-distribution of spermatozoa heading to the fertilization site.

It could be concluded that the expression of PR in the tunica muscularis and the myometrium of the UTJ prior to fertilization after DIUI with a 20 times reduced number of spermatozoa was significantly lower than that after AI and IUI. This might influence sperm transportation and the fertilization process by the mechanisms which involve the expression of PR.

Acknowledgements

This study was funded by the Thailand research fund (IUG5080002) and Ratchadaphiseksomphot Endowment Fund, Chulalongkorn University. We would also like to thank Chula Unisearch, Chulalongkorn University for the contribution to language editing.

Author contributions

P. Tummaruk designed study, analysed data and drafted paper, P. Tienthai, S. Manee-In and S. Srisuwatanasagul read paper and technical support.

References

Hartt LS, Carling SJ, Joyce MM, Johnson GA, Vanderwall DK, Ott TL, 2005: Temporal and spatial associations of oestrogen receptor alpha and progesterone receptor in the endometrium of cyclic and early pregnant mare. *Reproduction* **130**, 241–250.

Hunter RHF, 1981: Sperm transport and reservoirs in the pig oviduct in relation to the time of ovulation. *J Reprod Fertil* **63**, 109–117.

Hunter RHF, 1984: Preovulatory arrest and periovulatory redistribution of competent spermatozoa in the isthmus of the pig oviduct. *J Reprod Fertil* **72**, 203–211.

Martinez EA, Vazquez JM, Roca J, Lucas X, Gil MA, Parrilla I, Vazquez JL, Day BN, 2001: Successful non-surgical deep intrauterine insemination with small number of spermatozoa in sows. *Reproduction* **122**, 289–296.

Martinez EA, Vazquez JM, Roca J, Lucas X, Gil MA, Parrilla I, Vazquez JL, Day BN, 2002: Minimum number of spermatozoa required for normal fertility after deep intrauterine insemination in non-sedated sows. *Reproduction* **123**, 163–170.

Martinez EA, Caamano JN, Gil MA, Rieke A, McCauley TC, Cantley TC, Vazquez JM, Roca J, Vazquez JL, Didion BA, Murphy CN, Prather RS, Day BN, 2004: Successful nonsurgical deep uterine embryo transfer in pigs. *Theriogenology* **61**, 137–146.

Martinez EA, Vazquez JM, Parrilla I, Cuello C, Gil MA, Rodriguez-Martinez H, Roca J, Vazquez JL, 2006: Incidence of unilateral fertilizations after low dose deep intrauterine insemination in spontaneously ovulating sows under field conditions. *Reprod Domest Anim* **41**, 41–47.

Mburu JN, Einarsson S, Lundeheim N, Rodriguez-Martinez H, 1996: Distribution, number and membrane integrity of spermatozoa in pig oviduct in relation to spontaneous ovulation. *Anim Reprod Sci* **45**, 109–121.

Peralta LE, Roldán Olarte M, Arganaraz M, Ciocca D, Miceli DC, 2005: Progesterone receptors: their localization, binding activity and expression in the pig oviduct during follicular and luteal phases. *Domest Anim Endocrinol* **28**, 74–84.

Pursel VG, Johnson LA, 1976: Frozen boar spermatozoa: methods for thawing. *J Anim Sci* **42**, 927–932.

Rath D, Schuberth HJ, Coy P, Taylor U, 2008: Sperm interaction from insemination to fertilization. *Reprod Domest Anim* **43** (Suppl. 5), 2–11.

Roca J, Carvajal G, Lucas X, Vazquez JM, Martinez EA, 2003: Fertility of weaned sows after deep intrauterine insemination with a reduced number of frozen-thawed spermatozoa. *Theriogenology* **60**, 77–87.

Rodriguez-Martinez H, Saravia F, Wallgren M, Tienthai P, Johannisson A, Vazquez JM, Martinez E, Roca J, Sanz L, Calvete JJ, 2005: Boar spermatozoa in the oviduct. *Theriogenology* **63**, 514–535.

Rozeboom KJ, Reicks DL, Wilson ME, 2004: The reproductive performance and factors affecting on-farm application of low-dose intrauterine deposit of semen in sows. *J Anim Sci* **82**, 2164–2168.

SAS Institute Inc., 1996: SAS User's guide. Statistics version 9.0 Cary, NC, USA.

Sukjumlong S, Kaeoket K, Dalin AM, Persson E, 2003: Immunohistochemical studies on oestrogen receptor alpha (ER alpha) and the proliferative marker Ki-67 in the sow uterus at different stages of the oestrous cycle. *Reprod Domest Anim* **38**, 5–12.

Sukjumlong S, Dalin AM, Sahlin L, Persson E, 2005: Immunohistochemical studies on the progesterone receptor (PR) in the sow uterus during the oestrous cycle and in inseminated sows at oestrus and early pregnancy. *Reproduction* **129**, 349–359.

Sumransap P, Tummaruk P, Kunavongkrit A, 2007: Sperm distribution in the reproductive tract of sows after intrauterine insemination. *Reprod Domest Anim* **42**, 113–117.

Tienthai P, Yokoo M, Kimura N, Hedin P, Sato E, Rodriguez-Martinez H, 2003: Immunohistochemical localization and expression of the hyaluronan receptor CD44 in the epithelium of the pig oviduct during oestrus. *Reproduction* **125**, 119–132.

Tummaruk P, Tienthai P, 2008: Number of spermatozoa in the crypts of the sperm reservoir at about 24 h after a low-dose intrauterine and deep intrauterine insemination in sows. *Reprod Domest Anim.* doi:10.1111/j.1439-0531.2008.01205.x.

Tummaruk P, Sumransap P, Techakumphu M, Kunavongkrit A, 2007: Distribution of spermatozoa and embryos in the female reproductive tract after unilateral deep intra uterine insemination in the pig. *Reprod Domest Anim* **42**, 603–609.

Vazquez JM, Martinez EA, Parrilla I, Roca J, Gil MA, Vazquez JL, 2003: Birth of piglets after deep intrauterine insemination with flow cytometrically sorted boar spermatozoa. *Theriogenology* **59**, 1605–1614.

Vazquez JM, Martinez EA, Roca J, Gil MA, Parrilla I, Cuello C, Carvajal G, Lucas X, Vazquez JL, 2005: Improving the efficacy of sperm technologies in pig: the value of deep intrauterine insemination. *Theriogenology* **63**, 536–547.

Watson PF, Behan JR, 2002: Intrauterine insemination of sows with reduced sperm numbers: results of commercially based trial. *Theriogenology* **57**, 1683–1693.

Wu JT, Chiang KC, Cheng FP, 2006: Expression of progesterone receptor(s) during capacitation and incidence of acrosome reaction induced by progesterone and zona proteins in boar spermatozoa. *Anim Reprod Sci* **93**, 34–45.

Submitted: 16 Mar 2009

Author's address (for correspondence): Padet Tummaruk, Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand. E-mail: Padet.T@chula.ac.th

The Sperm DNA Damage after Cryopreservation of Boar Semen in Relation to Post-thawed Semen Qualities, Antioxidant Supplementation and Boars Effects

Panida Chanapiwat^{1*} Kampon Kaeoket² Padet Tummaruk ¹

Abstract

The objectives of the present study were to evaluate the damage of DNA of the frozen-thawed (FT) boar spermatozoa and to investigate the effect of various concentrations of *L*-cysteine supplementation on the sperm DNA damage. A total of 104 cryopreserved semen samples from twenty-six ejaculates of 16 proven boars were analyzed. Of these samples, each semen sample contained a different concentration of *L*-cysteine i.e., 0 (n=41), 5 (n=41), 10 (n=11) and 15 (n=11) mM. All of the semen samples were cryopreserved by controlled-rate freezer. The semen was thawed at 50°C for 12 sec and the damage to the sperm DNA was determined using acridine orange (AO) staining. The results revealed that, on average, the DNA damage was observed in 0.5% of the FT boar spermatozoa. DNA damage varied among the boars from 0.0% to 4.0%. The levels of DNA damage were 0.6%, 0.4%, 0.5% and 0.9% in the extenders supplemented with 0, 5, 10 and 15 mM of *L*-cysteine, respectively ($p>0.05$). In conclusion, the DNA damage of the FT boar spermatozoa was relatively low. No adverse effect of *L*-cysteine supplementation up to 10 mM on the damage of the sperm DNA was found. Boar characteristic is the most important factor affecting the damage of the sperm DNA.

Keywords: antioxidant, DNA damage, pig, sperm

¹Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand

²Faculty of Veterinary Science, Mahidol University, Phutthamonthon, Nakorn-pathom, 73170

Corresponding author E-mail: vet011@hotmail.com

บทคัดย่อ

การเสียหายของดีอีนเอของเซลล์อสุจิของน้ำเขี้ยวสุกรแข็งสัมพันธ์กับคุณภาพของน้ำเขี้ยวสุกรแข็ง สารต้านอนุมูลอิสระ และพ่อสุกร

พนิดา ชนากิรัตน์^{1*} กัมพล แก้วเกษา² แพร์จ ธรรมรักษ์²

การศึกษานี้มีวัตถุประสงค์เพื่อตรวจสอบความเสียหายของดีอีนเอของเซลล์อสุจิของน้ำเขี้ยวสุกรแข็งสัมพันธ์กับคุณภาพของน้ำเขี้ยวแข็งหลังทำการต้มสารต้านอนุมูลอิสระ แอล-ซีสเทอีน ที่ความเข้มข้นที่แตกต่างกัน และ ความแปรปรวนระหว่างพ่อสุกรแต่ละตัว ทำการตรวจประเมินตัวอย่างน้ำเขี้ยวสุกรแข็งจำนวน 104 ตัวอย่าง จากพ่อสุกรที่มีความสมบูรณ์พันธุ์จำนวน 16 ตัว แต่ละตัวอย่างถูกถูกแข็งโดยใช้สารละลายที่มีสารแอล-ซีสเทอีน ในความเข้มข้นต่างๆ กัน ได้แก่ 0 (n=41), 5 (n=41), 10 (n=11) และ 15 (n=11) มิลลิโมลาร์ ตัวอย่างน้ำเขี้ยวทั้งหมดถูกนำไปผ่านกระบวนการแข็งแข็งโดยเครื่องควบคุมอุณหภูมิ และถูกทำลายที่ 50 องศาเซลเซียส นาน 12 วินาที และ ทำการตรวจประเมินความเสียหายของดีอีนเอสูจิโดยการใช้ร้อยละคริติค่า 0.6% โดยสัดส่วนความเสียหายของดีอีนเอสูจิอยู่ที่ 0.6% ผลการศึกษาพบว่าสัดส่วนความเสียหายของดีอีนเอของเซลล์อสุจิโดยการใช้ร้อยละคริติค่า 0.6% อยู่ที่ 0.6% 0.4% 0.5% และ 0.9% ในกลุ่มที่เสริมสารซีสเทอีนในปริมาณ 0 5 10 15 มิลลิโมลาร์ ตามลำดับ สรุปได้ว่ากระบวนการแข็งแข็งน้ำเขี้ยวสุกรมีผลต่อความเสียหายของดีอีนเอของเซลล์อสุจิอย่างมาก แต่การเสริมสารซีสเทอีนในน้ำเขี้ยวสุกรแข็ง ไม่มีผลกระทบต่อการเสียหายของดีอีนเอของสุจิพ่อสุกร พ่อสุกรเป็นปัจจัยที่สำคัญที่มีผลต่อความเสียหายของดีอีนเอสูจิ

คำสำคัญ: สารต้านอนุมูลอิสระ ความเสียหายของดีอีนเอ สุกร ตัวอย่างสุจิ

¹ภาควิชาสุสานิคคลาสต์ เนนูวิทยาและวิทยาการลีบพันธุ์ คณะสัตวแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย กรุงเทพฯ 10330

²คณะสัตวแพทยศาสตร์ มหาวิทยาลัยมหิดล คາลายา นครปฐม 73170

*ผู้รับผิดชอบบทความ E-mail: vet011@hotmail.com

Introduction

In general, the fertility rate of female pigs is largely depends on the male factors. A number of studies based on many mammalian species demonstrate that the male factors caused infertility in the female due to many problems, e.g., congenital abnormalities, gene mutation, infectious disease and the damage or fragmentation of DNA of the spermatozoa (Agarwal and Said, 2003; Guerin and Pozzi, 2005). During the last decade, one area of research interest is the studies on the sperm DNA damage that influence male fertility in either humans or animals (Agarwal and Said, 2003; Rybar et al., 2004; Boe-hansen et al., 2005; Perez-Llano et al., 2006). Earlier studies demonstrated that the sperm DNA can be damaged by various mechanisms such as reactive oxygen species (ROS) and apoptosis (Agarwal and Said, 2003). It has been revealed that the DNA damage of the boar spermatozoa depends on two main factors i.e., the tight packaging of chromatin of the spermatozoa of each boar, and the amount of antioxidant substances in seminal plasma (De Ambrogi et al., 2006). Generally, boar spermatozoa are highly susceptible to lipid peroxidation. The

reason is that the plasma membranes of the boar spermatozoa contain high level of polyunsaturated fatty acids and also the cytoplasm has a low level of scavenging enzymes (Alvarez and Storey, 1995; Sharma and Agarwal, 1996). Chanapiwat et al. (2009) demonstrated that a number of sperm parameters, e.g., progressive motility, sperm viability and acrosome integrity, significantly decreased after cryopreservation. However, cryopreserved boar semen with the subjective motility of higher than 40% is still recommended to be used in the swine industry (Eriksson et al., 2000; Buranaumnuay et al., 2010). It was found that the use of FT boar semen under field conditions generally led to a reduction of 2-3 piglets per litter (Johnson et al., 2000; Roca et al., 2003; Buranaumnuay et al., 2008). This might possibly be caused by low fertilization and/or a high proportion of early embryonic loss in which sperm DNA integrity was one of the key factors for successful fertilization and embryo development (Lopes et al., 1998).

There are several methods to determine the sperm DNA damage including, for instance, the sperm chromatin structure assay (SCSA) (Evenson et al., 1994; Rybar et al., 2004), Terminal

deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) (Martins et al., 2007), comet assay (Fraser and Strzezek, 2004), and acridine orange (AO) staining (Thuwanut et al., 2008). AO staining is commonly used for assessing sperm DNA damage in many mammalian species including humans, dogs, bulls and cats (Rota et al., 2005; Dejarkom and Kunathikom, 2007; Martins et al., 2007; Thuwanut et al., 2008). Using this technique, the DNA damage of the FT sperm was 48.1%, 2.5%, 0.5% and 13.3% in humans (Dejarkom and Kunathikom, 2007), dogs (Rota et al., 2005), bulls (Martins et al., 2007) and cats (Thuwanut et al., 2008), respectively.

In the boar, it has been demonstrated that a number of factors influence sperm DNA damage such as long-term storage of extended boar semen (Boehansen et al., 2005; Pérez-Llano et al., 2006), sex-sorted boar semen using flow cytometry (De Ambrogi et al., 2006), and the freezing and thawing process (Evenson et al., 1994; Cordova-Izquierdo et al., 2006; Hu et al., 2008). During the last decade, the use of cryopreserved boar semen under field conditions has increased (Eriksson et al., 2002; Roca et al., 2003). It was found that both the conception rate and the total number of piglets born per litter after using cryopreserved boar semen for artificial insemination (AI) was significantly lower than the use of extended boar semen for AI (Eriksson et al., 2002; Roca et al., 2003). Since the cryopreservation of the spermatozoa can induce ROS formation and leads to lipid peroxidation and DNA oxidation, the evaluation of DNA damage of the cryopreserved boar sperm should be performed. To our knowledge, few studies on sperm DNA damage have been conducted in boars (Hu et al., 2008; Fraser et al., 2009) but the influence of antioxidant supplementation in the semen extender on the sperm DNA damage has not been studied.

The objectives of the present study were to determine the damage to sperm DNA of the FT boar semen in relation to post-thawed sperm qualities and the influence of antioxidant (*L*-cysteine) supplementations in different concentrations in the semen extender, and variation among boars.

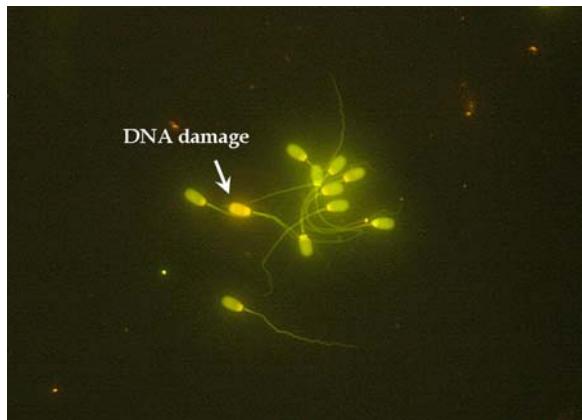
Materials and Methods

Semen samples: A total of 104 cryopreserved semen samples from 16 proven boars were used in the experiment. The semen was collected from 5 Pietrain, 4 Duroc, 4 Landrace and 3 Yorkshire boars. Of these samples, each semen sample contained a different concentration of *L*-cysteine i.e., 0 (n=41), 5 (n=41), 10 (n=11) and 15 (n=11) mM. All of the semen samples were obtained from boars used for routine AI in two commercial swine herds in Ratchaburi Province. The boars were kept in individual pens in a conventional open-housed system. Boars were fed twice daily and water was provided up to *ad libitum* via water nipple. Semen was collected by the gloved-hand method with an interval of at least 5-7 days. Semen qualities including semen volume, pH, subjective sperm motility, sperm concentration, sperm viability and sperm morphology were evaluated by the first author of the present study (P. Chanapiwat). Ejaculated semen with a subjective motility of at least 70%, a

sperm concentration of at least 150 spermatozoa/ml, and normal sperm morphology of more than 80% were included in the experiment.

Semen freezing and thawing procedures: The cryopreservation procedure of the boar semen was carried out according to our previous study (Chanapiwat et al., 2009). Briefly, the sperm-rich fraction of ejaculated semen was diluted with extender I (ModenaTM, Swine Genetics International, Ltd., Iowa, USA), equilibrated for 2 hrs at 15°C, and centrifuged at 800xg for 10 min at 15°C. The semen pellet was re-suspended (about 1:2:1) with lactose-egg yolk (LEY) extender II (80% (v/v) lactose solution and 20% (v/v) egg yolk) to a concentration of 1.5x10⁹ spermatozoa/ml. The re-suspended semen was divided according to the concentration of *L*-cysteine in the semen extender into 4 groups, i.e., 0, 5, 10, 15 mM *L*-cysteine supplementation. The semen was equilibrated at 5°C for 90 min and further diluted with extender III (89.5% extender II, 9% glycerol and 1.5% Equex-STM) to obtain the final concentration of 1,000x10⁶ spermatozoa/ml and 3% (v/v) glycerol. The semen was loaded into 0.5 ml straws (Bio-Vet, Z.I. Le Berdoulet, France) and frozen using a controlled rate freezer (Icecube 14s, Sylab, Purkersdorf, Austria). The freezing rate was 3°C min⁻¹ from +5 to -5°C, then 50°C min⁻¹ from -5 to -140°C and plunged into liquid nitrogen (-196°C) for storage. The frozen semen was thawed at 50°C for 12 sec. The thawed semen was diluted (1:4) with extender I and incubated in water-bath at 37 °C for 15 min before sperm assessment.

Post-thawed semen evaluation


Sperm concentration and subjective motility: The concentration of the boar sperm was evaluated by a Neubauer haemocytometer (Boeco, Hamburg, Germany) at a dilution of 1:100 (v/v) (Beardon and Fuquay, 1997). The subjective sperm motility was evaluated on a warm plate at 37°C under a phase contrast microscope at 200x magnification.

Sperm viability: The sperm viability was assessed using SYBR-14/Ethidiumhomodimer-1 staining technique (Fertilight[®], Sperm Viability Kit, Molecular Probes Europe, Leiden, The Netherlands), which modified after Axnér et al. (2004). Ten μ l of semen samples were mixed with 2.7 μ l of the working solution of SYBR-14 (diluted with DMSO 1:100, v/v) and 10 μ l of EthD-1. The mixture was incubated at 37°C for 20 min, 200 sperm were counted (x1000) under fluorescence microscope. The nuclei of the live spermatozoa with intact plasma membrane were stained green with SYBR-14, while those with damaged membranes were stained red-green and dead spermatozoa were stained red with EthD-1 (Axnér et al., 2004; Chanapiwat et al., 2009). The results were presented as the percentage of live spermatozoa with intact plasma membranes.

Acrosome integrity: Acrosome integrity was assessed using fluorescein isothiocyanate-labeled peanut agglutinin (FITC-PNA) staining. The method was carried out according to our previous study

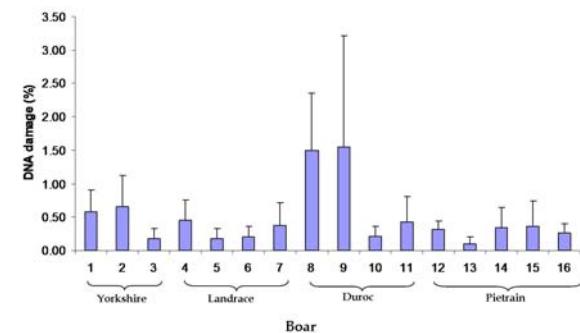
(Chanapiwat et al., 2009). Ten μ l of the diluted semen was mixed with 10 μ l of EthD-1 and incubated at 37°C for 15 min. An aliquot of 5 μ l was smeared on a pre-warmed slide and immersed in 95% ethanol for 30 sec. Fifty μ l of working solution of Fit C-PNA (diluted with PBS 1:10 v/v) was spread over the slides and placed on the chamber at 4°C for 30 min. Thereafter, slides were rinsed with cold PBS and air dried. 200 spermatozoa were counted under fluorescence microscope at 1000x magnification and classified as intact acrosome, reacted acrosome, and loose acrosome (Cheng et al., 1996; Axner et al., 2004). The results were presented as the percentage of spermatozoa with intact acrosome.

DNA damage: DNA damage was evaluated by Acridine orange (AO) staining. The technique was modified after Thuwanut et al. (2008). Briefly, two smears from each sample were prepared on glass slide and air-dried. Each slide was fixed overnight in freshly prepared Carnoy's solution (methanol: glacial acetic acid, 3:1 v/v). Thereafter, slides were air-dried, and stained with 1% (100 mg/ml) AO (Sigma) for 10 min. The AO working solution was daily prepared by mixing 10 ml of 1% AO with 40 ml of 0.1 M citric acid and 2.5 ml of 0.3 M Na₂HPO₄·7H₂O (Merck, Darmstadt, Germany), pH 2.5 and stored in the dark at room temperature. After staining, the slides were gently rinsed by distilled water and air-dried. At least one thousand spermatozoa were counted under the fluorescence microscope. The spermatozoa showing the green fluorescence was considered normal DNA (double-stranded) while those spermatozoa showed orange or red fluorescence were considered damaged DNA (Figure 1). The results were presented as the proportion of the damage/single stranded DNA per 1,000 counted spermatozoa.

Figure 1 The damage of DNA of the FT boar spermatozoa stained with orange (arrow)

Statistical analysis: The statistical analysis was performed using the Statistical Analysis Systems software package version 9.0 (SAS, 1996). All parameters were evaluated for normality by using the UNIVARIATE procedure option NORMAL PLOT. Pearson's correlation was used to analyze the relationships among the post-thawed sperm qualities and the sperm DNA damage. The semen samples were classified as "good" and "poor" freezability according to post-thawed motility. If the post-thawed

motility > 35%, the sperm sample was classified as "good freezability." If post-thawed motility < 35%, the sperm sample was classified as "poor freezability". The sperm DNA damage was compared between good and poor freezability semen by using Student's *t*-test. The influence of boar characteristics and *L*-cysteine supplementation on subjective motility, sperm viability, acrosome integrity and DNA damage were analyzed using the General Linear Model (GLM) procedure of the SAS. The model included boar (16 boars) and concentrations of *L*-cysteine supplementation (0, 5, 10 and 15 mM) as fixed effects. In the results, least significant difference (LSD) test were used to compared least-square means from each class of the factors. $p < 0.05$ was considered as statistically significant.


Results

Descriptive statistics: Subjective motility, sperm viability, acrosome integrity and sperm DNA damage of FT boar semen are demonstrated in Table 1. On average, the sperm DNA damage was 0.5% (Table 1). A negative correlation was found between the sperm DNA damage and the subjective motility ($r=-0.21$, $p=0.03$) and the sperm viability ($r=-0.19$, $p=0.04$).

Table 1 Descriptive statistics for sperm parameters measurements of FT boar sperm (n=104)

Sperm Parameters	Mean \pm SD	Range
Subjective motility (%)	29.3 \pm 13.5	5-55
Sperm viability (%)	45.5 \pm 13.8	10-83
Acrosome integrity (%)	39.4 \pm 16.1	9-80
Sperm DNA damage (%)	0.5 \pm 0.6	0-4

Effect of boar and breed: Among the boars, the sperm DNA damage varied between 0.0% and 4.0% ($p=0.05$). The sperm DNA damage in the 16 boars is presented in Figure 2. Comparing among breeds, the sperm DNA damage was 0.9%, 0.3% and 0.4% in Duroc, Landrace and Yorkshire boars, respectively.

Figure 2 Percentage (Mean \pm SEM) of the sperm DNA damage for each individual 16 boars (3 Yorkshire, 4 Landrace, 4 Duroc and 5 Pietrain)

Effect of *L*-cysteine supplementation: Subjective motility, viability, acrosome integrity and the sperm DNA damage were compared among groups of semen with different concentrations of *L*-cysteine supplementation. Subjective motility, viability and

acrosome integrity in the FT boar semen supplemented with 10 mM were higher than those supplemented with 0 and 15 mM (Table 2). The sperm DNA damage in the extenders supplemented with 0, 5, 10 and 15 mM were 0.6%, 0.4%, 0.5% and 0.9%, respectively (Table 2). The sperm DNA damage in the FT boar semen supplemented with 15 mM was significantly higher than those supplemented with 5

mM ($p<0.05$) (Table 2).

Sperm DNA damage in good and poor freezability sperm: DNA damage in good and poor freezability sperm is demonstrated in Table 3. As can be seen from the table, the sperm DNA damage was not significantly different between good and poor freezability semen ($p=0.23$).

Table 2 Means±standard deviation of progressive motility (%), sperm viability (%), acrosome integrity (%) and sperm DNA damage (%) of FT boar semen between 4 groups (0, 5, 10, 15 mM L-cysteine supplementation)

Sperm parameters	L-cysteine supplementation (mM)			
	0 (n=41)	5 (n=41)	10 (n=11)	15 (n=11)
Subjective motility	17.6±9.1 ^a	28.8±13.9 ^b	34.4±13.5 ^b	15.8±8.2 ^a
Sperm viability	28.9±6.8 ^a	44.5±5.2 ^b	50.5±5.9 ^b	32.5±8.3 ^a
Acrosome integrity	18.7±6.5 ^a	32.8±10.3 ^{b,c}	41.3±10.2 ^c	26.3±11.1 ^{a,b}
Sperm DNA damage	0.6±0.6 ^{a,b}	0.4±0.3 ^b	0.5±0.4 ^{a,b}	0.9±1.2 ^a

^{a,b,c} values with different superscripts within row differ significantly ($p<0.05$)

Table 3 Means±standard deviation of subjective motility (%), sperm viability (%), acrosome integrity (%) and sperm DNA damage (%) of good and poor FT boar semen

Sperm parameters	Good freezability (n=29)	Poor freezability (n=75)	P-value
Subjective motility	42.5±7.9	20.4±8.2	<0.001
Sperm viability	53.1±13.9	41.3±15.6	<0.001
Acrosome integrity	48.7±16.2	32.4±17.0	<0.001
Sperm DNA damage	0.34±0.33	0.44±0.59	0.23

Discussion

In the present study, the sperm DNA damage of FT boar semen was relatively low and varied considerably among the boars. The low sperm DNA damage as determined by AO staining in the present study was in agreement with earlier studies in pigs, where other methods, e.g., SCSA and sperm chromatin dispersion test, were used (Rybar et al., 2004; Enciso et al., 2006; Perez-Llano et al., 2006). On the other hand, Evenson et al. (1994) demonstrated that the sperm DNA damage of the boar FT semen as determined by SCSA was as high as 4.5%. In addition, Rybar et al. (2004) found that the sperm DNA damage of boar spermatozoa after the FT process measured by SCSA varied between 1.6-17.6% among individual boars. These findings indicate that the sperm DNA damage of the FT boar semen was relatively low and varied considerably among the boars. The difference on the sperm DNA damage between the present study and earlier studies might be due to the difference in populations of boars, freezing technique and evaluation technique were used.

In the present study, most of the sperm parameters significantly decreased after the FT process, but the sperm DNA damage was not affected. This finding is in agreement with an earlier study in boars that boar sperm DNA was highly tolerant to cryopreservation. The reason is that the boar sperm DNA is highly condensed with nuclear proteins especially protamine-1 in the sperm nucleus (Evenson

et al., 1994). In other species, e.g., bulls (Martins et al., 2007; Van der Schans et al., 2000) and dogs (Rota et al., 2005), similar findings have also been demonstrated. On the other hand, Fraser and Strzezek (2007) demonstrated that the sperm DNA damage of the FT boar semen was significantly increased. Likewise, Bochenek et al. (2001) demonstrated that the cryopreservation of the bull semen significantly affected the percentage of sperm DNA damage. In bucks, Peris et al. (2004) found that the cryopreservation also affected the DNA damage of the sperm cells. The reasons behind these contradictory results are unknown, but might be related to the different freezability among different populations. In the present study, ejaculates with a poor freezability had a relatively higher percentage of sperm DNA damage than ejaculates with a good freezability.

The present study demonstrated that the supplement of L-cysteine in the freezing extenders up to a concentration of 10 mM did not influence the sperm DNA damage of FT boar semen. It has been demonstrated that oxidative stress is one mechanism which contributes to sperm DNA damage (Bilodeau et al., 2000). The FT process produced a high level of ROS which may induce sperm DNA damage (Barroso et al., 2000; Bilodeau et al., 2000). The finding in those studies indicated that, although L-cysteine was known to enhance membrane integrity and motility of the FT spermatozoa, but did not alter the sperm DNA damage of the boar sperm (Kaeoket et al., 2008; Thuwanut et al., 2008). However, in the present study,

the FT boar semen supplemented with *L*-cysteine up to 15 mM resulted in a higher percentage of sperm DNA damage compared to those supplemented with of 5 mM of *L*-cysteine. The reason for this is unknown, but awareness of the too-high concentration of antioxidant supplementation should be addressed. The advantage of the *L*-cysteine supplementation included an improvement of post-thawed motility and membrane integrity of the boar semen (Chanapiwat et al., 2009), while supplementation of *L*-cysteine with too high concentration may increase DNA damage and subsequently cause infertility.

In the present study, the negative correlations between the sperm DNA damage and other sperm parameters are observed. This is in accordance with the previous studies in boars (Hernandez et al., 2006), bulls (Januskauskas et al., 2001), and bucks (Peris et al., 2004). This indicated that when the sperm motility and viability decreased, the sperm DNA damage increased. The reasons might be due to that the DNA fragmentation might disrupt the vitality of spermatozoa during the FT process. In addition, a high level of sperm DNA damage indicates that the spermatozoa may have a low fertilizing capacity. This could not be determined by using others routine semen evaluation techniques. Therefore, both routine semen evaluation and sperm DNA damage assessment should be carried out in order to effectively determine the fertilizing capacity of the FT boar semen.

In conclusion, the sperm DNA damage of the FT boar spermatozoa was relatively low. No adverse effect of *L*-cysteine supplementation up to 10 mM was found on the sperm DNA damage. Boar characteristic is the most important factor affecting the damage of sperm DNA.

Acknowledgement

A research grant was provided by National Research Council of Thailand (NRCT) and the Thailand Research Fund (IUG5080002). P. Chanapiwat is a grantee of the Ph.D. Program scholarships of the Commission on Higher Education. Language editing of the manuscript has been coordinated by Chula Unisearch, Chulalongkorn University.

References

Agarwal, A. and Said, T.M. 2003. Role of sperm chromatin abnormalities and DNA damage in male infertility. *Hum. Reprod. Update.* 9: 331-345.

Alvarez, J.G. and Storey, B.T. 1995. Differential incorporation of fatty acids into and peroxidative loss of fatty acids from phospholipids of human spermatozoa. *Mol. Reprod. Dev.* 42: 334-346.

Axnér, E., Hermansson, U. and Linde-Forsberg, C. 2004. The effect of Equex STM paste and sperm morphology on frozen-thawed survival of cat epididymal sperm. *Anim. Reprod. Sci.* 84: 179-191.

Barroso, G., Morshedi, M. and Oehninger, S. 2000. Analysis of DNA fragmentation plasma membrane translocation of phosphatidylserine and oxidative stress in human spermatozoa. *Hum. Reprod.* 15: 1338-1344.

Baumber, J., Ball, B.A., Linfor, J.J. and Meyers, S.A. 2003. Reactive oxygen species and cryopreservation promote DNA fragmentation in equine spermatozoa. *J. Androl.* 24: 621-628.

Beardon, H.J. and Fuquay, J.W. 1997. Semen evaluation. In: *Applied Animal Reproduction*, H.J. Beardon and J.W. Fuquay (eds). 4th ed. New Jersey: Prentice Hall 158-170.

Bilodeau, J.F., Chatterjee, S., Sirard, M.A. and Gagnon, C. 2000. Levels of antioxidant defenses are decreased in bovine spermatozoa after a cycle of freezing and thawing. *Mol. Reprod. Dev.* 55: 282-288.

Bochenek, M., Smorag, Z. and Pilch, J. 2001. Sperm chromatin structure assay of bull qualified for artificial insemination. *Theriogenology.* 56: 557-567.

Boe-hansen, G.B., Ersbøll, A.K., Greve, T. and Christensen, P. 2005. Increasing storage time of extended boar reduces sperm DNA integrity. *Theriogenology.* 63: 2006-2019.

Buranaamnuay, K., Singlor, J., Tummaruk, P. and Techakumphu, K. 2008. The establishment of boar semen cryopreservation in Thailand: Post-thaw semen quality, sperm concentration and variation among ejaculations. *Thai J. Agri. Sci.* 41: 135-141.

Buranaamnuay, K., Tummaruk, P. and Techakumphu, M. 2010. Intra-uterine insemination using frozen-thawed boar semen in spontaneous and induced ovulating sows under field conditions. The 36th Annual Conference of the IETS/the 23rd Annual Meeting SBTE. 9-12 January 2010. Cordoba, Argentina.

Chanapiwat, P., Kaeoket, K. and Tummaruk, P. 2009. Effects of DHA-enriched hen egg yolk and *L*-cysteine supplementation on quality of cryopreserved boar semen. *Asian. J. Androl.* 11: 600-608.

Cheng, F.P., Fazeli, A., Voorhout, W.F., Marks, A., Bevers, M.M. and Colenbrander, B. 1996. Use of peanut agglutinin to assess the acrosomal status and the zona pellucida-induced acrosome reaction in stallion spermatozoa. *J. Androl.* 17: 674-682.

Córdoba-Izquierdo, A., Oliva, J.H., Lleó, B., García-Artiga, C., Corcuera B.D. and Perez-Gutierrez, J.F. 2006. Effect of different thawing temperatures on the viability, *in vitro* fertilizing capacity and chromatin condensation of frozen boar semen packaged in 5 ml straws. *Anim. Reprod. Sci.* 92: 145-154.

De Ambrogi, M., Spinaci, M., Galeati, G. and Tamanini, C. 2006. Viability and DNA fragmentation in differently sorted boar spermatozoa. *Theriogenology.* 66: 1994-2000.

Dejarkom, S. and Kunathikom, S. 2007. Evaluation of cryoinjury of sperm chromatin according to liquid nitrogen vapour Method (II). *J. Med. Assoc. Thai.* 90: 852-856.

Enciso, M., López-Fernández, C., Fernández, J.,

García, P., Gosálbez, A. and Gosálvez, J. 2006. A new method to analyze boar sperm DNA fragmentation under bright-field or fluorescence microscopy. *Theriogenology*. 65: 308-316.

Eriksson, B.M. and Rodriguez-Martinez, H. 2000. Effect of freezing and thawing rate on the post-thaw viability of boar spermatozoa frozen in FlatPack and Maxi-straws. *Anim. Reprod. Sci.* 63: 205-220.

Eriksson, B.M., Petersson, H. and Rodriguez-Martinez, H. 2002. Field fertility with exported boar semen frozen in the new flatpack container. *Theriogenology*. 58: 1065-1079.

Evanson, D.P., Thompson, L. and Jost, L. 1994. Flow cytometric evaluation of boar semen by the sperm chromatin structure assay as related to cryopreservation and fertility. *Theriogenology*. 41: 637-651.

Fraser, L. and Strzezek, J. 2007. Effect of different procedures of ejaculate collection, extenders and packages on DNA integrity of boar sperm following freezing-thawing. *Anim. Reprod. Sci.* 99: 317-329.

Fraser, L. and Strzezek, J. 2004. The use of comet assay to assess DNA integrity of boar spermatozoa following liquid preservation at 5°C and 16°C. *Folia. Histochem. Cytobiol.* 42: 49-55.

Fraser, L., Parda, A., Filipowicz, K. and Strzezek, J. 2009. Comparison of post-thaw DNA integrity of boar spermatozoa assessed with the neutral comet assay and sperm-sus Halomax test kit. *Reprod. Dom. Anim. (In press)*.

Guerin, B. and Pozzi, N. 2005. Viruses in boar semen: detection and clinical as well as epidemiological consequences regarding disease transmission by artificial insemination. *Theriogenology*. 63: 556-572.

Hu J.H., Li, Q.W., Jiang, Z.L. and Li, W.Y. 2008. Effects of different extenders on DNA integrity of boar spermatozoa following freezing-thawing. *Cryobiology*. 57: 257-262.

Johnson, L.A., Weitze, K.F., Fiser, P. and Maxwell, W.M.C. 2000. Storage of boar semen. *Anim. Reprod. Sci.* 62: 142-172.

Kaeoket, K., Sang-urai, P., Thamniyom, A., Chanapiwat, P. and Techakumphu, M. 2009. Effect of docosahexaenoic acid (DHA) on quality of cryopreserved boar semen in different breeds. *Reprod. Dom. Anim. (In press)*.

Kaeoket, K., Tantiparinyakul, K., Kladkaew, W., Chanapiwat, P. and Techakumphu, M. 2008. Effect of different antioxidants on quality of cryopreserved boar semen in different breeds. *Thai J. Agri. Sci.* 41: 1-9.

Lopes, J.G., Sun, A., Jurisicova J., Meriano, J. and Casper, R.F. 1998. Sperm deoxyribonucleic acid fragmentation is increased in poor quality semen samples and correlates with failed fertilization in a cytoplasmic sperm injection. *Fertil. Steril* 69: 528-532.

Martins, C.F., Dode1, M.N., Bão, S.N. and Rumpf, R. 2007. The use of the acridine orange test and the tunnel assay to assess the integrity of freeze-dried bovine spermatozoa DNA. *Genet. Mol. Res.* 6: 94-104.

Perez-Llano, B., Enciso, M., Garcia-Casado, P., Sala, R. and Gosalvez, J. 2006. Sperm DNA fragmentation in boars is delayed or abolished by using sperm extenders. *Theriogenology*. 66: 2137-2143.

Roca, J., Carvajal, G., Lucas, X., Vazquez, J.M. and Martinez, E.A. 2003. Fertility of weaned sows after deep intrauterine insemination with a reduced number of frozen-thawed spermatozoa. *Theriogenology* 60: 77-87.

Rybar, R., Faldikova, L., Faldyna, M., Machatkova, M. and Rubes, J. 2004. Bull and boar sperm DNA integrity evaluated by sperm chromatin structure assay in the Czech Republic. *Vet. Med. Czech.* 49: 1-8.

Sharma, R.K. and Agarwal, A. 1996. Role of reactive oxygen species in male infertility (review). *Urology*. 48: 835-850.

Thuwanut, P., Chatdarong, K., Techakumphu, M. and Axnér, E. 2008. The effect of antioxidants on motility, viability, acrosome integrity and DNA integrity of frozen-thawed epididymal cat spermatozoa. *Theriogenology*. 70: 233-240.

Van der Schans, G.P., Haring, R., van Dijk-Knijnenburg, H.C., Bruijnzeel, P.L. and den Daas, N.H. 2000. An immunochemical assay to detect DNA damage in bovine sperm. *J. Androl.* 21: 250-257.

Conception rate and litter size of sows after intra-uterine insemination using frozen-thawed boar semen

Panida Chanapiwat^{1*} Em-on Olanratmanee¹ Kampon Kaeoket² Padet Tummaruk¹

¹Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; ²Faculty of Veterinary Medicine, Mahidol University, Salaya, Nakorn-pathom 73170, Thailand *Corresponding author

Objectives

The present study was performed to evaluate *in vivo* fertility results after intra-uterine insemination (IUI) using frozen-thawed (FT) boar semen in induced-ovulating weaned sows.

Materials and methods

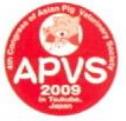
The experiment was conducted between November and December 2008 in a commercial swine herds, Thailand. Forty Landrace sows parities 2 to 7 with a weaning-to-estrus interval of 2 to 5 d were included. The sows were randomly allocated into 2 groups: control (n=20) and treatment (n=20). The control sows were inseminated with extended fresh semen ($3,000 \times 10^6$ motile spermatozoa/dose, 100 ml) at 24, 36 and 48 h after standing estrus and the treated sows were inseminated with FT semen ($2,000 \times 10^6$ motile spermatozoa/dose, 20 ml) at 24, 32 and 40 h after the standing estrus. Both groups were inseminated using IUI procedure. The FT semen was obtained from 10 Yorkshire boars, routine use for AI in the herd. The freezing procedure was carried out according to our previous study (1). Briefly, semen was extended in extender I (ModenaTM), cooled down to 15°C for 2 h, centrifugation at 800xg for 10 min, diluted in lactose-egg yolk (LEY) extender (II), cooling to 5°C for 90 min, re-suspended with extender III (LEY extender, 9% glycerol and 1.5% Equex STM Paste), packed into 0.5 ml straws, and frozen by placing in liquid nitrogen (LN₂) vapor at 3 cm above the level of LN₂ for 20 min and then plunged into LN₂. Thawing was achieved by immersing the straws in 50°C of water for 12 sec. The FT semen was diluted with 20 ml of ModenaTM extender. The diluted semen was incubated at 37°C for 10 min and checked for individual motility before insemination. FT semen with a motility of $\geq 40\%$ was used for insemination. In the treatment group, human chorionic gonadotropin (hCG, Chorulon[®]) 750 IU was applied to the sows at standing estrus to induce ovulation. The time of ovulation was determined by monitoring the appearance of the follicles every 8 h using transrectal real time B-mode ultrasonography. The ovulation time was defined as 4 h before the first time when no follicles were visible. Conception rate (24 d non-return rate), farrowing rate (FR), total number of piglets born/litter (TB) and number of piglets born alive/litter (BA) was evaluated. Conception rate and FR were analyzed by Chi-square test. TB and BA were analyzed by ANOVA.

Results and Discussion

On average, individual motility of the FT semen used for IUI was 44.5%. The interval from onset of estrus to ovulation (EOI) was 42.9 ± 4.9 h and interval from hCG injection to ovulation (HOI) was 36.4 ± 3.9 h. The interval between the latest insemination and ovulation (IOI) was 4.3 ± 5.3 h (Table 1). The reproductive performances of all inseminated sows are presented in Table 1. The conception rate, FR, TB and BA were not significantly different between sows inseminated with extended fresh semen and sows inseminated with FT semen ($P > 0.05$). However, the sows inseminated with extended fresh semen tended to have a higher conception rate compared with sows inseminated with FT semen ($P = 0.07$). In the control group, the failure of farrowing included abortion (n=4), sow death (n=2) and irregular return to estrus (n=2). In the treatment group, the failure farrowing included abortion (n=1) and irregular return to estrus (n=1).

Table 1 Reproductive data of sows inseminated using intra uterine insemination with extended fresh semen (control) compared with frozen-thawed (FT) semen

Parameters	Group	
	Control (n=20)	FT-semen (n=20)
Parity number	4.3 (2-6)	3.9 (2-7)
BCS	2.2	2.3
WOI (days)	3.0 (2-5)	3.7 (2-4)
FT motility (%)	NA	44.5 (40-50)
EOI (h)	NA	42.9 (38-50)
HOI (h)	NA	36.4 (33-42.5)
IOI (h)	NA	4.3 (1.5-17.5)
Conception rate(%)	95	75*
Farrowing rate (%)	55	65 ^{ns}
TB	10.1 ± 0.8	9.2 ± 0.8^{ns}
BA	8.3 ± 1.1	8.6 ± 0.9^{ns}


* $P=0.07$; ns=not significant ($P > 0.1$)

In conclusion, the present study demonstrated that IUI with a relative low number and low volume of FT semen in induced-ovulating sows resulted in reasonable conception rate, TB and BA.

Acknowledgement: Research grant was provided by Thailand Research Fund (IUG5080002).

References

1. Chanapiwat, P. et al., 2009. Asian J. Andro. (In press)

APVS 2009
in Tsukuba Japan

PROCEEDINGS OF THE 4TH CONGRESS OF ASIAN PIG VETERINARY SOCIETY

**in Tsukuba, Japan
October 26-28, 2009**

日本中央競馬会
特別振興資金助成事業

EXPO '70

Commemorative Organization
for the Japan World Exposition '70

Asian Pig Veterinary Society (APVS)
Tsukuba International Congress Center,
Epochal Tsukuba
The APVS 2009 Executive Committee

The Success of Intra-uterine Insemination using Frozen-thawed Boar Semen in a Swine Commercial Herd in Thailand

S. Supanyarak¹, W. Worapol¹, N. Pongklam¹, P. Chanapiwat², P. Tummaruk^{2*}

¹6thyear student, academic year 2008, ²Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand, 10330

*Corresponding author: padet.t@chula.ac.th

Keywords: conception rate, intrauterine insemination, litter size, pig

Introduction

During the last decade, the use of frozen-thawed (FT) boar semen in commercial swine herd is increasing (1). The success of using FT boar semen is mainly due to the improvement of the cryopreservation protocol (2) and the development of intra-uterine insemination technique (3). The objective of the present study was to investigate the conception rate and litter size at birth in sow after intra-uterine insemination with FT boar semen compared with extended fresh semen.

Materials and Methods

Twenty nine Landrace sows, 2nd to 9th parity, with a weaning-to-oestrus interval (WOI) of ≤ 6 days were included. Sixteen sows were inseminated using conventional extended fresh semen and 13 sows were inseminated using FT boar semen. Both groups were inseminated using intra-uterine insemination procedure. An ovulation in the sows inseminated with FT semen was induced by human chorionic gonadotropin (hCG). Time of ovulation was determined by using transrectal real time B-mode ultrasonography. Conception rate, farrowing rate (FR), total number of piglets born/litter (TB) and number of piglets born alive/litter (BA) were analyzed. TB and BA were analyzed using Student's *t*-test. Conception rate and FR were analyzed using Chi-squared test.

Results and Discussion

Reproductive performance of sows after intra-uterine insemination with fresh and FT boar semen are demonstrated in Table 1. Of the sows inseminated with FT boar semen, the interval from onset of oestrus to ovulation was 43.0 ± 5.1 h and the interval from hCG injection to

ovulation was 36.5 ± 3.5 h. The conception rate was 81.25% and 76.92% in sows inseminated with extended fresh semen and FT boar semen, respectively ($p=0.77$). TB and BA were 11.45 and 10.73 piglets/litter in sows inseminated using fresh semen and were 8.67 and 8.44 piglets/litter in those inseminated using FT boar semen ($p<0.05$). The present study demonstrated the successful application of intra-uterine insemination in sows using FT boar semen in a swine commercial herd.

Table 1 Reproductive performance of sows after intra-uterine insemination using fresh and frozen-thawed boar semen

Parameters	Fresh semen	Frozen semen
Number of sows	16	13
Parity	5.2 ± 2.0^a	5.7 ± 1.9^a
Body score	2.75 ± 0.32^a	2.92 ± 0.19^a
WOI (d)	4.33 ± 1.11^a	3.46 ± 0.78^b
Conceptionrate(%)	81.25 ^a	76.92 ^a
Farrowing rate (%)	68.75 ^a	69.23 ^a
Total born/litter	11.45 ± 1.37^a	8.67 ± 2.35^b
Born alive/litter	10.73 ± 1.27^a	8.44 ± 2.07^b

References

1. Roca, J. et al. 2006. J. Anim. Sci. 84: 2692-2699.
2. Chanapiwat, P. et al. 2009. Asian J. Andro. 600-608.
3. Sumransap, P. et al. 2007. Reprod. Domest. Anim. 42: 113-117.