

รายงานวิจัยฉบับสมบูรณ์

โครงการ

เครื่องมือวิเคราะห์ขนาดเล็กที่ใช้เทคนิคการไหลสำหรับระดับไมโคร/นาโน Small scale chemical analyzer based on flow based techniques for micro/ nanolevels

> โดย ศาสตราจารย์ ดร.เกตุ กรุดพันธ์ และคณะ

เสนอต่อ สำนักงานกองทุนสนับสนุนการวิจัย (สกว.) มิถุนายน 2561

รายงานวิจัยฉบับสมบูรณ์

โครงการ

เครื่องมือวิเคราะห์ขนาดเล็กที่ใช้เทคนิคการไหลสำหรับระดับไมโคร/นาโน

Small scale chemical analyzer based on flow based techniques for micro/ nanolevels

คณะผู้วิจัย

- 1. ศ. ดร. เกตุ กรุดพันธ์
- 2. อาจารย์ ดร. จรูญ จักร์มุณี
- 3. ผศ. ดร.สุภาภรณ์ ครัดทัพ ฮาร์ดเวล
- 4. ผศ. ดร. สมชัย ลาภอนันต์นพคุณ

สังกัด

ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่ ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่ ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่ ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่

ชุดโครงการ "การสร้างกำลังคนเพื่อพัฒนาอุตสาหกรรม"

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย (สกว.) (ความเห็นในรายงานนี้เป็นของผู้วิจัย สกว. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

สัญญาเลขที่ IUG5080022 โครงการ "เครื่องมือวิเคราะห์ขนาดเล็กที่ใช้เทคนิคการไหลสำหรับระดับไมโคร/นาโน" รายงานวิจัยฉบับสมบูรณ์

รายงานในช่วงตั้งแต่วันที่ 28 กันยายน 2550 ถึงวันที่ 27 กันยายน 2552 ชื่อหัวหน้าโครงการวิจัยผู้รับทุน : ศาสตราจารย์ ดร. เกตุ กรุดพันธ์ หน่วยงาน : ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่

1. Executive summary

ได้ทำการพัฒนาระบบปั๊มป์แบบ peristaltic pump โดยพยายามใช้วัสดุ/อุปกรณ์ ที่หาได้ ไม่ยากในประเทศไทย ปั๊มป์ที่พัฒนาขึ้นสามารถถูกควบคมด้วยคอมพิวเตอร์ โดยพัฒนาระบบ hardware และ software ขึ้นเองจนได้ต้นแบบ (prototype)

ยังได้พัฒนาระบบการวิเคราะห์แบบ lab-on-chip (LOC) อย่างง่าย โดยใช้วัสดุที่หาได้ ไม่ยากเช่นกัน โดยใช้ platform ที่เป็นพลาสติก (acrylic) นำมาทำร่องเป็น channel ใช้ระบบการ ไหลเพื่อป้อนสารตัวอย่างและรีเอเจนต์เข้าไปใน channel เมื่อเกิดปฏิกิริยาขึ้นจะติดตาม การเปลี่ยนแปลงโดยอาศัยเวลาของการเคลื่อนที่ (migration time) ที่อาจวัดได้โดยใช้นาฬิกาจับเวลา และดูการเคลื่อนของ reaction zone ด้วยตาเปล่า สามารถสร้างกราฟจากความสัมพันธ์ ของ migration time และความเข้มข้นของสารตัวอย่าง นำไปประยุกต์ในการหาปริมาณกรด แอสคอร์บิก กรดอะซิติก และเหล็ก โดยการใช้รีเอเจนต์ เพื่อเกิดปฏิกิริยาเคมีต่างๆ กัน สามารถใช้กับ ตัวอย่างจริงได้

งานวิจัยนี้ยังได้พัฒนาการตรวจวัดด้วยคุณสมบัติทางไฟฟ้า (แบบ voltammetry) ที่ใช้ร่วมกับระบบการวิเคราะห์ด้วยการไหลแบบ sequential injection analysis (SIA) ที่ใช้ขั้วไฟฟ้า แบบ bismuth thin film เพื่อการหาปริมาณแคดเมียมและตะกั่ว พร้อมเดียวกันได้ประยุกต์ กับตัวอย่างน้ำในเหมืองแร่สังกะสี

จากงานวิจัยนี้ได้ต้นแบบ (prototype) เครื่องมือวิเคราะห์ขนาดเล็ก 3 ชิ้นงาน คือ ต้นแบบ peristaltic pump simple, simple lab-on-chip และ ได้ขยายการประยุกต์ในการหา ปริมาณน้ำตาลในตัวอย่างของเหลวที่น่าจะเป็นประโยชน์ในอุตสาหกรรมน้ำตาลและอุตสาหกรรมทาง เภสัชกรรมโดยมีความร่วมมือกับภาคเอกชน และนอกเหนือจากการตีพิมพ์ในวารสารนานาชาติ 3 เรื่อง แล้ว ยังได้เสนอจดสิทธิบัตร อีก 2 รายการ

คำสำคัญ: เครื่องมือวิเคราะห์ขนาดเล็ก, เทคนิคการไหล, ระดับไมโคร/นาโน

2. Abstract

Development was made for frication of peristaltic pump by using easily available materials in Thailand. The pump is controlled via lab-developed computer software. A prototype was obtained.

Development was also made for a simple lab-on-chip (LOC) for chemical analysis. The fabrication was made by using easily available materials. A platform was

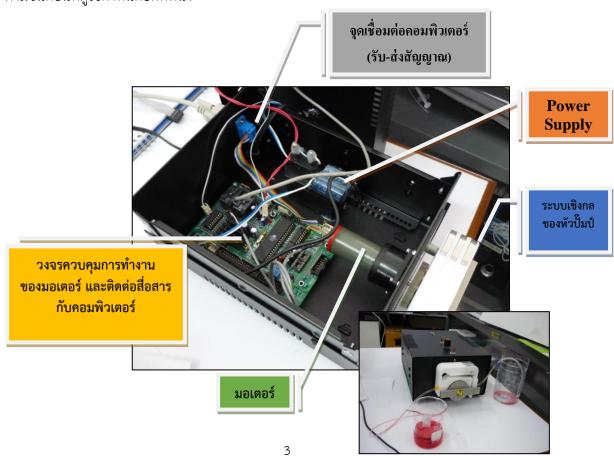
made by drilling acrylic piece to wake channel for flow based system at which reagent sample and reagent would produce chemical reaction along the flowing. Migration time of the reaction zone from the starting point to a detection point could be monitored by using a stop water and with waked eye. A calibration graph of a relation of the migration time and concentration could be established. Applications of the LOC were developed for the determination of ascorbic acid, acetic acid, and iron using appropriate reagents. This could be used for real samples.

Sequential injection analysis (SIA) system with voltammetry (using bismuth thin film) for simultaneous determination of cadmium and lead was also investigated for the application in water of zinc urining, 3 prototypes: peristaltic pump and simple LOC and were obtained, under collaboration with private sectors. Applications have been extended to the assay of sugar contents which will be useful to Sugar and pharmaceutical industries.

Apart from 3 publication in international a journal, 2 patent applications being made.

Keywords: Small scale chemical analyzer, flow based techniques, micro/ nano levels

3. การดำเนินการงาน : **โ** ได้ดำเนินงานตามแผนงานที่ได้วางไว้ทุกประการ ในรอบ 2 ปี ที่ผ่านมาได้


- 🗹 ติดต่อทางโทรศัพท์ / โทรสาร กับผู้ร่วมทุน 85 ครั้ง
- 🗹 ประชุมร่วมกับผู้ร่วมทุน 8 ครั้ง
- 🗹 ประชุมทีมวิจัย 60 ครั้ง เป็นเรื่อง
 - ชี ทบทวน/ ชี วางแผนงาน 17 ครั้ง ชีพารือปัญหาการทำวิจัย 31 ครั้ง
 - 🗹 วิเคราะห์ผล 21 ครั้ง 🗹 มอบหมายงาน 4 ครั้ง 🗹 การจัดหาจัดจ้าง 11 ครั้ง

4. สรุปผลการดำเนินงาน ได้ดำเนินการดังนี้

4.1 ได้ต้นแบบ (prototype) ของส่วนขับเคลื่อนสารละลายเป็นแบบ peristaltic pump โดย พัฒนาระบบการควบคุมการไหล (peristaltic pump) โดยได้พัฒนาระบบวงจรอิเล็กทรอนิกส์ เพื่อควบคุมระบบมอเตอร์ โดยพิจารณาจาก อุปกรณ์และวัสดุที่หาได้ไม่ยากในประเทศไทย ใน ส่วนของหัวปั๊มป์ (pump head) ได้พยายามพัฒนาขึ้นเอง แต่พบว่าประสิทธิภาพยังด้อยกว่า หัวปั๊มที่มีจำหน่ายในท้องตลาด ทำงานเรียบสม่ำเสมอ ได้พัฒนาระบบวงจรอิเล็กทรอนิกส์ของ ปั๊ม เพื่อสามารถที่จะถูกควบคุมด้วยระบบคอมพิวเตอร์ ซึ่งได้รับการพัฒนาทั้ง hard-ware และ soft-ware

Peristaltic pump ที่พัฒนาขึ้นประกอบด้วย

- 1) ส่วนประกอบเชิงกล : การรีดสารละลายในท่อให้เคลื่อนที่
- ระบบมอเตอร์ เป็น DC motor (12V 8W) (ดูในภาพประกอบ)
- ระบบหัวปั๊มป์ (pump head) ประกอบด้วยลู๊กกลิ้ง (12ลูก) ที่รีด ราง และท่อสายยาง) ซึ่งเป็นชุด Ismatec (ดูในภาพประกอบ)
- 2) ส่วนประกอบในการควบคุมปั๊มป์ที่เกี่ยวข้องกับระบบอิเล็กทรอนิกส์ได้พัฒนาวงจรที่เกี่ยวข้องกับ
- การจ่ายไฟ (power supply) ของวงจรคุมการทำงานของมอเตอร์ การให้มอเตอร์หมุนเปลี่ยน ทิศทางได้ (เป็น bidirection ไม่ใช่การหมุนไปทางเดียว) การจะทำให้ปั๊มหยุดเพื่อหยุดการไหล และ สามารถทำให้มอเตอร์ทำงานต่อเพื่อจะไหลต่ออีกได้
- การติดต่อสื่อสารกับคอมพิวเตอร์ ทำให้สามารถติดต่อกับคำสั่ง (software) กับคอมพิวเตอร์เพื่อ รับคำสั่งเกี่ยวกับการทำงานของปั๊มป์ (จำนวนรอบของมอเตอร์ ซึ่งจะมีผลต่ออัตราการไหลของ สารละลาย; ทิศทางการหมุนของมอเตอร์ ซึ่งจะมีผลต่อทิศทางของการไหลในท่อ: ต้องการให้ไหลอย่าง ต่อเนื่องหรือต้องการให้ไหลแล้ว หยุดแล้วไหลต่อ เป็นต้น) จะมีพอร์ตเป็นจุดเชื่อมต่อกับคอมพิวเตอร์ (ดังรูปภาพ)
- 3) ระบบ software
- ได้พัฒนาระบบการควบคุมปั๊มป์โดยอาศัยระบบ micro-controller AVR โดยเขียนโปรแกรมเป็น ภาษา C ขึ้นเองเพื่อควบคุมการทำงานของปั๊มป์ใน mode ต่าง ๆ กัน (อัตราการไหลของปั๊มป์ ทิศ ทางการไหลของสารละลายในท่อเวลาในการทำงานของปั๊มป์ และเวลาที่ต้องการให้ปั๊มป์หยุดไหลก่อนที่ จะไหลต่อ) โดยโปรแกรมดังกล่าวจะฝังตัวใน micro-controller และติดต่อกับโปรแกรมควบคุมระบบ ที่เขียนขึ้นโดยใช้ Visual Basic ซึ่งจะเป็น user interface และการทำ program script เพื่อสั่งงาน ตามขั้นตอนที่ผู้ใช้กำหนดอีกทีหนึ่ง

การทดสอบสมรรถนะการทำงานของปั๊มป์

ได้ทดสอบการทำงานของปั๊มป์โดยประยุกต์ใช้ในระบบ flow injection analysis (FIA) เพื่อ การวิเคราะห์กรดแอสคอร์บิก โดยใช้สารละลายด่างทับทิม (ดังรูป) ซึ่งได้ผลการทดลองที่ดีซึ่งแสดงถึง สมรรถนะที่ดีของปั๊มป์ (ดังตาราง)

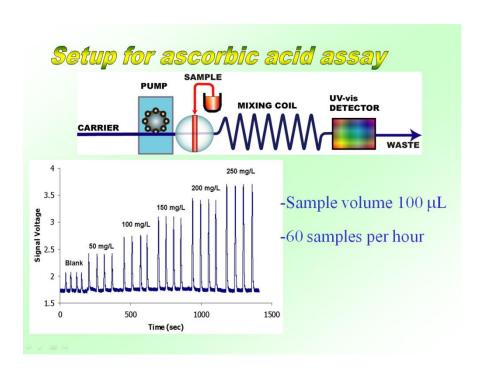


Table 1 Ascorbic acid contents in Vitamin C tablets

Sample (mg/tab labeled)	Found (mg/tab)±SD
S1 (1000)	1035 ± 9
S2 (500)	466 ± 6
S3 (500)	465 ± 13
S4 (300)	283 ± 6
S5 (250)	224 ± 2
S6 (100)	89 ± 1
S7 (50)	49 ±1

4.2 ได้พัฒนาระบบ Lab-on-Chip (LOC) ซึ่งเป็น Lab-on-Chip อย่างง่ายที่ออกแบบ และสร้างขึ้นโดยวัสดุราคาไม่แพง เพื่อจะเป็นเครื่องมือวิเคราะห์ขนาดเล็กสำหรับการวิเคราะห์ในระดับ ไมโคร/นาโน

ตัว chip ซึ่งเป็น platform เพื่อทำการวิเคราะห์ (ทำ lab) ทำด้วยพลาสติก acrylic โดยจัดทำ channel ในรูปแบบต่างๆ ทั้งนี้ การนำสาร (ที่เป็นตัวอย่างและรีเอเจนต์) เข้าไปใน channel ของ chip จะอาศัยหลักการไหล เมื่อสารตัวอย่าง และรีเอเจนต์พบกันใน channel จะ เกิดปฏิกิริยา การเคลื่อนที่ (migration) ของโซนที่เกิดปฏิกิริยานี้จะถูกติดตาม เวลาที่เกี่ยวข้องของการ เคลื่อนที่ของโซนดังกล่าวจากจุดเริ่มต้น (ที่สารตัวอย่างและรีเอเจนต์เริ่มสัมผัสกัน) ไปตามแนว channel จนถึงจุดหนึ่งที่ใช้เป็นจุดสังเกต (observation point) จะมีความสัมพันธ์กับความเข้มข้นของ สารตัวอย่าง เวลาของการเคลื่อนที่ดังกล่าว (migration time) สามารถถูกวัดได้โดยใช้อุปกรณ์ง่ายๆ เช่น ใช้นาหิกาจับเวลา ซึ่งใช้ตาสังเกตการณ์เคลื่อนที่ของสี

- 4.3 พัฒนา Lab-on-Chip จากข้อ (2) เพื่อการหาปริมาณกรดแอสคอร์บิก (Ascorbic acid) โดย
 - 4.3.1 ใช้สารละลายด่างทับทิมเป็นรีเอเจนต์ อาศัยที่ปฏิกิริยา redox ที่เกิด ขึ้นกับสารละลายด่างทับทิม ติดตาม reaction zone ใน channel ที่เกี่ยวข้องกับการ จางไปของสี ของสารละลายด่างทับทิมอันเนื่องจากการเปลี่ยน permanganate (Mn(VII)) เป็น manganese ion (Mn(II)) สามารถสร้างกราฟมาตรฐานที่เกี่ยวข้องกับ ความสัมพันธ์ของ migration time กับ ความเข้มข้นของกรดแอสคอร์บิกได้
 - 4.3.2 ใช้สารละลาย ammonium vanadate เป็นรีเอเจนต์โดยอาศัยการ เกิดปฏิกิริยา redox ของ แอสคอร์บิกกับ vanadate ซึ่งการเปลี่ยนสีอันเนื่องจาก ปฏิกิริยานี้ จะมาใช้ในการสังเกต migration zone ทำให้สร้างกราฟมาตรฐานที่เกี่ยวข้อง กับความสัมพันธ์ของ migration time กับความเข้มข้นของกรดแอสคอร์บิกได้
 - 4.3.3ได้ประยุกต์หลักการข้างต้นในการหาปริมาณกรดแอสคอร์บิกในยาเม็ด วิตามินซี
- 4.4 พัฒนา Lab-on-Chip เพื่อหาปริมาณกรดอะซิติกในน้ำส้มสายชู ใช้หลักการ การ เคลื่อนที่ของ reaction zone อันเกิดจากปฏิกิริยากรดเบส (กรดอะซิติก และโซเดียมไฮดรอก) ทำให้ เกิดการเปลี่ยนสีของสีชมพูของ phenolphthalein (ในสารละลายเบส) การวัด migration time ทำให้ สร้างกราฟมาตรฐานระหว่าง migration time กับความเข้มข้นของกรดอะซิติกได้
 - 4.5 การหาปริมาณเหล็กในตะปู

ได้พัฒนา Lab-on-Chip (LOC) เพื่อการหาปริมาณของเหล็กในตะปูโดยใช้ปฏิกิริยา ของ Fe(III) กับ KSCN ซึ่งจะเกิดสารเชิงซ้อนสีแดง นำมาใช้สามารถสังเกต reaction zone ได้ จากการ จับเวลา migration time สามารถสร้างกราฟมาตรฐานใช้หาปริมาณเหล็กในตะปูได้

4.6 ได้ศึกษาระบบการตรวจวัดทางไฟฟ้าแบบ voltammetry พร้อมระบบการไหลแบบ sequential injection analysis (SIA) เพื่อการหาปริมาณแคดเมียมและตะกั่ว การพัฒนาระบบการ ตรวจวัดนี้รวมถึงขั้วไฟฟ้าแบบ bismuth film ด้วย ทั้งนี้ ระบบการวิเคราะห์ที่พัฒนาขึ้นนี้มี ความสามารถเพิ่มความเข้มข้น (preconcentration) ได้ด้วย สามารถวิเคราะห์หาปริมาณแคดเมียม และตะกั่วพร้อมเดียวกัน (simultaneous determination) ในตัวอย่างน้ำในบ่อเหมืองสังกะสี

อนึ่ง วัสดุบางส่วนในการพัฒนาขั้วไฟฟ้านี้ได้รับความอนุเคราะห์จาก บริษัท Methrom ผ่านบริษัท เมทโธรห์ม สยาม จำกัด ด้วย

- 4.7 ได้ดำเนินการจดสิทธิบัตรการออกแบบผลิตภัณฑ์ เรื่อง "อุปกรณ์การวิเคราะห์ทาง เคมีขนาดพกพา" (ต่อมาได้รับเลขที่คำขอจาก สำนักสิทธิบัตร กรมทรัพย์สินทางปัญญา (เลขที่คำขอ 0902003304)
- 4.8 ได้ดำเนินการจดสิทธิบัตรการออกแบบผลิตภัณฑ์ เรื่อง "อุปกรณ์จับยึดที่สามารถ ปรับมุมได้สำหรับการวิเคราะห์ทางเคมีขนาดพกพา" (ซึ่งต่อมาได้รับเลขที่คำขอจาก สำนักสิทธิบัตร กรมทรัพย์สินทางปัญญา (เลขที่คำขอ 0902003305)

5. สรุปผลงานและผลผลิตที่ได้รับจากโครงการวิจัย

- 5.1 สิทธิบัตร ดำเนินการเพื่อขอจดสิทธิบัตร และได้รับเลขที่คำขอจาก สำนักสิทธิบัตร กรมทรัพย์สินทางปัญญา
 - 5.1.1 สิทธิบัตรการออกแบบผลิตภัณฑ์ เรื่อง "อุปกรณ์การวิเคราะห์ทางเคมี ขนาดพกพา" เลขที่คำขอ 0902003304
 - 5.1.2 สิทธิบัตรการออกแบบผลิตภัณฑ์ เรื่อง "อุปกรณ์จับยึดที่สามารถปรับมุม ได้สำหรับการวิเคราะห์ทางเคมีขนาดพกพา" เลขที่คำขอ 0902003305

5.2 ต้นแบบ

- 5.2.1 ต้นแบบปั้มป์ (peristaltic pump)
- 5.2.2 ต้นแบบเครื่องมือวิเคราะห์ขนาดเล็ก (เป็น portable) เป็นเครื่อง simple lab-on-chip ซึ่งกำลังร่วมมือในการศึกษาความเป็นไปได้ ในการเข้าสู่การตลาด โดย บริษัท เมทโธรห์ม สยาม จำกัด
- 5.2.3 ต้นแบบเครื่องมือวิเคราะห์ขนาดเล็กสำหรับอุตสาหกรรมขนาดเล็ก/กลาง ซึ่งเป็นเครื่องหาปริมาณน้ำตาล (คาดว่าจะเป็นประโยชน์ในอุตสาหกรรมน้ำหวาน และอุตสาหกรรมยา)

5.3 ผลงานตีพิมพ์ในวารสารวิชาการระดับนานาชาติ

- 5.3.1 K. Grudpan, S. Lapanantnoppakhun, S. Kradtap Hartwell, K. Watla-iad, W. Wongwilai, W. Siriangkhawut, W. Jangbai, W. Kumutanat, P. Nantaboon, S. Tontrong (2009) Simple lab on chip approach with time-based detection, Talanta 79(4) 990-994
- 5.3.2 Watsaka Siriangkhawut, Somkid Pencharee, Kate Grudpan, Jaroon Jakmunee (2009) Sequential injection monosegmented flow voltammetric determination of cadmium and lead using a bismuth film working electrode. Talanta 79 (4)1118-1124
- 5.3.3 Kwanhathai Ardnaree, Wasin Wongwilai1, Somchai Lapanantnopphakhun and Kate Grudpan (2013) A simple lab on chip for quantitation of sugar content in a syrup sample. J. Flow Injection Anal 30 (2) 114-116

6. ผลงานกิจกรรมอื่นๆ ที่เกี่ยวข้องได้แก่

6.1 ผลงานที่เสนอในการประชุมวิชาการนานาชาติ

- เรื่อง "Lab-on-chip for the assay of sugar contents in syrup" Kwanhathai Ardnaree, Somchai Lapanantnopphakhun, Wasin Wongwilai, Kate Grudpan. ในการประชุม วิชาการนานาชาติ 16th International Conference on Flow Injection Analysis Including Related Techniques (16th ICFIA) จัดขึ้นระหว่างวัดที่ 25-30 เมษายน 2553, พัทยา จ.ชลบุรี

6.2 การได้รับเชิญไปเป็นวิทยากร

- ศ.ดร.เกตุ กรุดพันธ์ ได้รับเกียรติเป็นวิทยากรบรรยายรับเชิญ และเป็นประธาน (Chair) ใน Oral presentation session ในงานประชุมวิชาการ Pure and Applied Chemistry International Conference 2009 (PACCON 2009) จัดขึ้นในระหว่างวันที่ 14 -16 มกราคม 2552 ณ มหาวิทยาลัยนเรศวร จังหวัดพิษณุโลก และในงานประชุมดังกล่าว ศ.ดร.เกตุ กรุดพันธ์ ได้รับรางวัล "นักเคมีดีเด่น" ประจำปี 2551 (สาขาเคมีวิเคราะห์) จากสมาคมเคมี (คนแรกของประเทศไทย)
- เป็นวิทยากร ในการจัดประชุมเชิงปฏิบัติการเรื่อง การถ่ายทอดเทคโนโลยีการ วิเคราะห์ทางเคมีแนวใหม่ให้กับบุคคลากรในสถานศึกษาในภาคเหนือ โครงการ "การบรูณาการองค์ ความรู้ด้านวิทยาศาสตร์และเทคโนโลยี จากเครือข่ายวิจัยของสถาบันวิจัยและพัฒนาวิทยาศาสตร์และ เทคโนโลยีสู่ชุมชนภาคเหนือเพื่อการพึ่งตนเอง" โครงการย่อยที่ 11 วันศุกร์ที่ 6 มิถุนายน 2551 เวลา 8.00 16.30 น. หน่วยห้องปฏิบัติการเพื่อการพัฒนาเครื่องมือวิเคราะห์ ณ อาคารคณะวิทยาศาสตร์ 40 ปี (SCB 2) ห้องสัมมนาชั้น 2 คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่

6.3 ความเชื่อมโยงทางวิชาการกับนักวิชาการอื่นๆ ทั้งในและต่างประเทศ

- มีความเชื่อมโยงกับนักวิชาการในมหาวิทยาลัยอื่นๆ ในประเทศ เช่น มหาวิทยาลัย แม่ฟ้าหลวง, มหาวิทยาลัยนเรศวร, มหาวิทยาลัยราชภัฏเชียงใหม่
- มีความเชื่อมโยงกับนักวิชาการในต่างประเทศ เช่น ใน University of Washington (สหรัฐอเมริกา), Okayama University (ญี่ปุ่น), Aichi Institute of Technology (ญี่ปุ่น), Monash University (ออสเตรเลีย), Karlsruhe Institute of Technology (เยอรมนี) เป็นต้น

7. ท่านได้พบอุปสรรคในการดำเนินงานหรือไม่ ถ้าพบกรุณาระบุว่ามีอะไรบ้าง และได้แก้ไขอย่างไร

เนื่องด้วยปัญหาสุขภาพของหัวหน้าโครงการวิจัย (ศ.ดร.เกตุ กรุดพันธ์) จึงทำให้การ ประสานงานล่าช้าไป แต่ก็ได้พยายามเร่งรัดงานให้รวดเร็วขึ้นในภายหลัง

8. ข้อคิดเห็นและข้อเสนอแนะอื่น ๆ ต่อ สกว.

เป็นลักษณะโครงการที่ดี เกิดประโยชน์ ทุนวิจัยนี้สนับสนุนให้การทำวิจัยมีมิติที่กว้างขึ้น กว่าเดิม กล่าวคือนอกจากต้องวางแผนงานวิจัยแล้ว ต้องพิจารณาถึงความร่วมมือกับภาคเอกชนด้วย

9. ตาราง Output

Output	ในกรณีล่าช้า (ผลสำเร็จไม่ถึง	
กิจกรรมในข้อเสนอโครงการ/ หรือจากการปรับแผน	ผลสำเ ร็จ (%)	100%)ให้ท่านระบุสาเหตุและ การแก้ไขที่ท่านดำเนินการ
1) ออกแบบชิ้นส่วน/ ส่วนประกอบของเครื่องให้มีขนาดเล็ก 1.2 ส่วนตรวจ / ติดตามการเกิดปฏิกิริยา (ก) วัดคุณสมบัติเชิงแสง (ข) วัดคุณสมบัติเชิงไฟฟ้า 1.3 ระบบควบคุมการทำงานให้เป็นอัตโนมัติ 1.4 ระบบการประเมินผลและรายงานผล	100	ได้ดำเนินการครบถ้วนแต่ล่าช้า ด้วยในบางช่วงหัวหน้าโครงการ มีปัญหาเกี่ยวกับสุขภาพ
2) นำส่วนประกอบในข้อ 1 เพื่อประกอบเป็น 2.1 เครื่องวิเคราะห์ขนาดเล็กเพื่อใช้ในการเรียน-การสอน 2.2 เครื่องวิเคราะห์ขนาดเล็กในการวิเคราะห์ตัวอย่างจริง ซึ่งจะใช้ในงานทางสิ่งแวดล้อม เกษตรกรรมและ/หรือ โรงงานอุตสาหกรรมขนาดเล็ก เช่น คลอไรด์ โปรตีน เป็นต้น	100	
3) ศึกษาปฏิกิริยาที่เกี่ยวข้องในข้อ 2 3.1 เครื่องวิเคราะห์ขนาดเล็กเพื่อใช้ในการเรียน-การสอน 3.2 เครื่องวิเคราะห์ขนาดเล็กในการวิเคราะห์ตัวอย่างจริง ซึ่งจะใช้ในงานทางสิ่งแวดล้อม เกษตรกรรมและ/หรือ โรงงานอุตสาหกรรมขนาดเล็ก เช่น คลอไรด์ โปรตีน เป็นต้น	100	
4) ศึกษา/ทดสอบสมรรถนะของเครื่องต้นแบบ 5)	100	
6) นำเครื่องต้นแบบให้ user ได้ทดสอบใช้ ปรับปรุงสมรรถนะโดยใช้ Feed back จาก ข้อ 4.	100	

ลงนาม

ภาคผนวก

ภาคผนวก 1

สิทธิบัตรการออกแบบผลิตภัณฑ์

- 1.1 สิทธิบัตรการออกแบบผลิตภัณฑ์ เรื่อง "อุปกรณ์การวิเคราะห์ทางเคมีขนาดพกพา" เลขที่คำขอ 0902003304
- 1.2 สิทธิบัตรการออกแบบผลิตภัณฑ์ เรื่อง "อุปกรณ์จับยึดที่สามารถปรับมุมได้สำหรับ การวิเคราะห์ทางเคมีขนาดพกพา" เลขที่คำขอ 0902003305

ผนวก 1.1

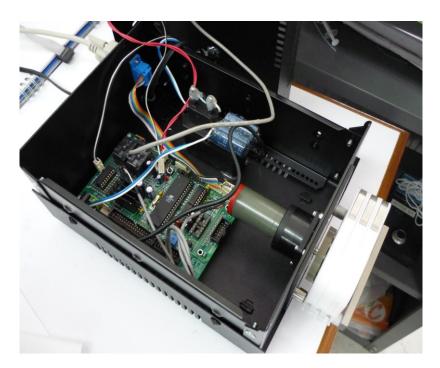
สิทธิบัตรการออกแบบผลิตภัณฑ์ โดยได้รับเลขที่คำขอจาก สำนักสิทธิบัตร กรมทรัพย์สินทางปัญญา สิทธิบัตรการออกแบบผลิตภัณฑ์ เรื่อง "อุปกรณ์การวิเคราะห์ทางเคมีขนาดพกพา" เลขที่คำขอ 0902003304

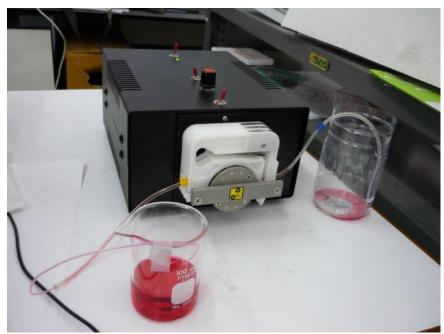
	วันรับคำขญ:	2 71 7 755	เลขที่คำขอ
	วันยื่นคำขอ (6 510 52	0902003304
คำขอรับสิทธิบัตร/อนุสิทธิบัตร	สัญลักษณ์จำเ	แนกการประดิษฐ์	
การประดิษฐ์	ใช้กับแบบผลิต	ตภัณฑ์	
🗹 การออกแบบผลิตภัณฑ์	ประเภทผลิตภั		
 จนสิทธิบัตช่านยากิรณ์ละ 	วันประกา	าศโฆษณา	เลขที่ประกาศโฆษณา
ข้าพเจ้าผู้ลงลายมือชื่อในคำขอรับสิทธิบัตร/ธนุสิทธิบัตรนี้	วันออกสิทธิบั	ัตร/อนุสิทธิบัตร -	เลขที่สิทธิบัตร/อนุสัทธิบัตร
ขอรับสิทธิบัตร/อนุสิทธิบัตร ตามพระราชบัญญัติสิทธิบัตร พ.ศ 2522			
แก้ไขเพิ่มเติมโดยพระราชบัญญัติสิทธิบัตร (ฉบับที่ 2) พ.ศ 2535		ลายมี	มือชื่อเจ้าหน้าที่
และ พระราชบัญญัติสิทธิบัตร (ฉบับที่ 3) พ.ศ 2542			
 ชื่อที่แลดงถึงการประดิษฐ์การขอกแบบผลิตภัณฑ์ อุปกรณ์การบิเคราะห์ทางเคมีขนาดพกพา 			
 2.คำขอรับสิทธิบัตรการออกแบบผลิตภัณฑ์นี้เป็นคำขอสำหรับแบบผลิ ในจำนวน คำขอ ที่ยื่นในคราวเดียวกัน 	โตภัณฑ์อย่างเดีย	กกันและเป็นคำ	แอลำดับที่
 ผู้ขอรับสิทธิบัตร/อนุสิทธิบัตร และที่อยู่ (เลขที่ ถนน ประเทศ) 	3.1	พัญชาติ -	
มหาวิทยาลัยเรียงใหม่	3.2	3.2 โทรศัพท์ 053-210731-2	
เลขที่ 239 ถนนหัวยแก้ว ตำบลสูเทพ อำเภอเมือง จังหวัดเชียงใหม่	50200 3.3	โทรดาร 053-	210733
บระเทศไทย	3.4	3.4 ซีเมล์	
 4.สิทธิในการขอรับสิทธิบัตร/อนุสิทธิบัตร ผู้ประดิษฐ์/ผู้ออกแบบ ☑ ผู้รับโอน ☐ ผู้ขอรับสิทธิโดย 	บเหตุอื่น		
5.ตัวแทน(ถ้ามี)/ที่อยู่ (เลขที่ ถนน จังหวัด รหัสไปรษณีย์)	F9 CM 57	ข้อแทนเลขที่ 13	320
นางสาวภาณุวรรณ จันพวรรณกุร	5.2	โทรศัพท์ 05	53-210731-2
หน่วยจัดการทรัพย์สินทางปัญญาและถ่ายทอดเทคโนโลยี	5.3 โทรตาร 053- 210733		
มหาวิทยาลัยเขียงใหม่ 239 ถนนหัวยแก้ว ตำบลสุเทพ ขำเภอเมือง จังหวัดเพียงใหม่ 50200	Y 54	ขึ้นส์ pa	anuwan@gmail.com
6 ผู้ประพิษฐ์/ผู้ออกแบบผลิตภัณฑ์ และที่อยู่ (เลขที่ ถนนู ประเทศ) 1. คาสตราจารย์ คร. เกตุ กรุดพันธ์ ที่อยู่ 1ช39337 หมูที่ 7 ทิงหน่อง 2. ผู้ช่วยศาสตราจารย์ คร. ตร.ขัย สาภอนันต์นพคุณ ที่อยู่ 43/356 3. นายวศิน วงศ์วิโล ที่อยู่ 94 ถ. กันทรลักษณ์ ค.วารีนชำราบ อ.วา	หมู่ที่ 2 แขวงบาง เริ่นชำราบ จ.อุบล	เมค เขตรอมทอง	ว กรุงเทพมพานพร
7. คำขอรับสิทธิบัตร/อนุสิทธิบัตรนี้แยกจากหรือเกี่ยวข้องกับคำขอเดิม			
ผู้ขอรับสิทธิบัคร/อนุสิทธิบัคร ขอให้ถือว่าได้ยื่นคำขอรับสิทธิบั			
	ผพฐบตรนแยกจาก	บหรอบเลาสองบ	
เลขที่ วันยื่น เพราะคำขอรับสิทธิบัตร/อนุสิ □ คำขะเดิมมีการประดิษฐ์หลายอย่าง □ ถูกคัดค้านเนื่องจากผู้ข		0.00	

ผนวก 1.2

สิทธิบัตรการออกแบบผลิตภัณฑ์ โดยได้รับเลขที่คำขอจาก สำนักสิทธิบัตร กรมทรัพย์สินทางปัญญา สิทธิบัตรการออกแบบผลิตภัณฑ์ เรื่อง

"อุปกรณ์จับยึดที่สามารถปรับมุมได้สำหรับการวิเคราะห์ทางเคมีขนาดพกพา" เลขที่คำขอ 0902003305

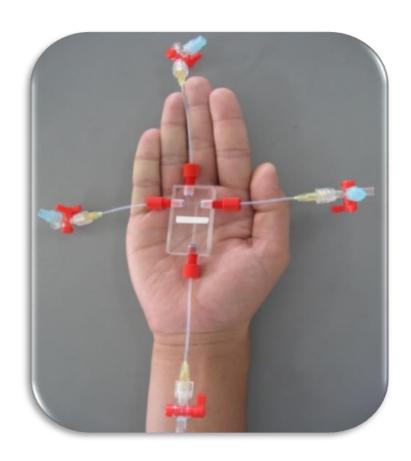

A A TA	สำหรับเจ้าหน้าที่		
	วันรับคำขณิ 🖇 🖽 📜 🚉	เลขที่คำขอ	
	วันยื่นคำขอ 6 ๓๓ ฐน	090200330	
คำขอรับสิทธิบัตร/อนุสิทธิบัตร	สัญลักษณ์จำแนกการประติษฐ์ร		
🗆 การประดิษฐ์	ใช้กับแบบผลิตภัณฑ์		
🗹 การออกแบบผลิตภัณฑ์	ประเภทผลิตภัณฑ์		
 อนุลิทธินัตร ถึงแก้งบุทองกระเร็จงหวัด 	วันประกาศโฆษณา	เลขที่ประกาศโฆษณา	
ข้าพเจ้าผู้ลงลายมือชื่อในคำขอรับสิทธิบัตร/อนุสิทธิบัตรนั้ ขอรับสิทธิบัตร/อนุสิทธิบัตร ตามพระราชบัญญัติสิทธิบัตร พ.ศ 2522	วันออกสิทธิบัตร/อนุสิทธิบัตร	เลขที่สิทธิบัตร/อนุสิทธิบัตร	
ของบลทอบครายนุลทอบคร ตามพระราชบญญูสลทอบคร พ.ศ 2522 แก้ไขเพิ่มเติมโดยพระราชบัญญัติลิทธิบัตร (ฉบับที่ 2) พ.ศ 2535	9	ชื่อเจ้าหน้าที่	
และ พระราชบัญญัติสิทธิบัตร (ขบับที่ 3) พ.ศ 2542	ลายมะ	ขอเราหนาท	
 รือที่แลดงถึงการประติษฐ์/การออกแบบผลิตภัณฑ์ อุปกรณ์จับอิดที่สามารถปรับมุมได้สำหรับการวิเคราะห์ทา 			
2.คำขอรับสิทธิบัตรการออกแบบผลิตภัณฑ์นี้เป็นคำขอสำหรับแบบผลิเ ในจำนวน คำขอ ที่ยื่นในคราวเดียวกัน	ตภัณฑ์อย่างเดียวกันและเป็นคำชา	หล้าดับที่	
 ผู้ขอรับสิทธิบัตร/ข้นผิหธิบัตร และที่อยู่ (เลขที่ ถนน ประเทศ) 	3.1 สัญชาติ -		
มหาวิทยาลัยเชียงใหม่	3.2 โทรศัพท์ 053-2	10731-2	
เลขที่ 239 ถนนหัวยแก้ว ตำบลสุเทพ อำเภอเมือง จังหวัดเขียงใหม่	50200 3.3 โทรดาร 053-2	10733	
ประเทศไทย	3.4 ชีเมล์ -		
4.สิทธิในการขอรับสิทธิบัตร/อนุสิทธิบัตร			
🗌 ผู้ประดิษฐ์/ผู้ขอกแบบ 🗹 ผู้รับโอน 🖾 ผู้ขอรับสิทธิโดย			
5.ด้วนทน(ถ้ามี)/ที่อยู่ (เลขที่ ถนน จังหวัด รหัสไปรษณีย์)	5.1 ตัวแทนเลขที่ 132		
นางสาวภาณุวรรณ จันทวรรณกูร	5.2 โทรศัพท์ 🦙 053	3-210731-2	
หน่วยจัดการทรัพย์สินทางปัญญาและก่ายทอดเทคโนโลยี	5.3 โทรสาร 053-210733		
มหาวิทยาลัยเชียงใหม่ 239 ถนนหัวยแก้ว ตำบลสูเทพ อำเภอเมือง จังหวัดเชียงใหม่ 50200	5.4 ซีเมล์ pa	nuwan@gmail.com	
6.ผู้บ่ระดิษฐ์/ผู้ขอกแบบผลิตภัณฑ์ และที่อยู่ (เลขที่ ถนน ประเทศ) 1. ศาสตราจารย์ คร. เกตุ กรุดพันธ์ ที่อยู่ 178/937 หมู่ที่ 7 ต.หนอง 2. ผู้ช่วยศาสตราจารย์ คร. สมชัย สาภอนันศ์นพคุณ ที่อยู่ 43/356 3. นายวศิน วงศ์วิโล ที่อยู่ 94 ถ. กันทรลักษณ์ ต.วารินข้าราบ ย.วาร์	หมู่ที่ 2 แขวงบางมต เขตจอมทบง รินชำราบ จ.อุบลราชธานี	ารุงเทพมหานคร	
 คำขอรับสิทธิบัตร/อนุสิทธิบัตรนี้แยกจากหรือเกี่ยวข้องกับคำขอเดิม 			
ผู้ชอรับสีทธิบัตร/อนุสิทธิบัตร ขอให้ถือว่าได้ยื่นคำขอรับสิทธิบั			
เลขที่ วันอื่น เพราะคำขอรับสิทธิบัตร/อนุสิทธิบัตรนี้แยกจากหรือเกี่ยวข้องกับคำขอเดิมเพราะ			
🗌 คำขอเดิมมีการประดิษฐ์หลายอย่าง 🗎 ถูกคัดค้านเนื่องจากผู้ข			


ภาคผนวก 2

ต้นแบบ (prototype)

- 2.1 ต้นแบบปั้มป์ (peristaltic pump)
- 2.2 ต้นแบบเครื่องมือวิเคราะห์ขนาดเล็ก (เป็น portable) เป็นเครื่อง simple lab-on-chip ซึ่งกำลังร่วมมือในการศึกษาความเป็นไปได้ ในการเข้าสู่การตลาดโดย บริษัท เมทโธรห์ม สยาม จำกัด
- 2.3 ต้นแบบครื่องมือวิเคราะห์ขนาดเล็กสำหรับอุตสาหกรรมขนาดเล็ก/ กลาง ซึ่งเป็นเครื่อง หาปริมาณน้ำตาล (คาดว่าจะเป็นประโยชน์ในอุตสาหกรรมน้ำหวานและอุตสาหกรรมยา)

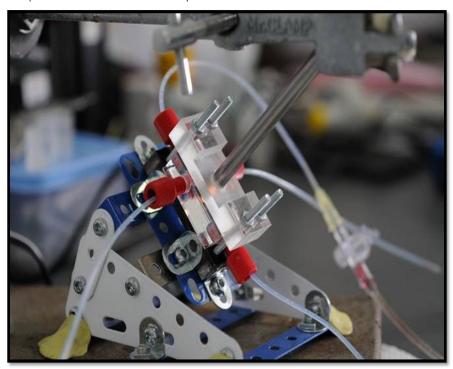
ผนวก 2.1 ต้นแบบปั้มป์ (peristaltic pump)



รูปต้นแบบ (prototype) ของ peristaltic pump ที่พัฒนาขึ้น

ผนวก 2.2

ต้นแบบเครื่องมือวิเคราะห์ขนาดเล็ก (เป็น portable) เป็นเครื่อง simple lab-on-chip ซึ่งกำลัง ร่วมมือในการศึกษาความเป็นไปได้ ในการเข้าสู่การตลาดโดย บริษัท เมทโธรห์ม สยาม จำกัด

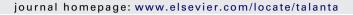


รูปต้นแบบ (prototype) Lab on Chip อย่างง่ายที่พัฒนาขึ้น

ผนวก 2.3

ต้นแบบครื่องมือวิเคราะห์ขนาดเล็กสำหรับอุตสาหกรรมขนาดเล็ก/ กลาง ซึ่งเป็นเครื่องหาปริมาณ น้ำตาล (คาดว่าจะเป็นประโยชน์ในอุตสาหกรรมน้ำหวานและอุตสาหกรรมยา)

รูปปรับมุมของฐาน chip


ภาคผนวก 3

ผลงานตีพิมพ์ในวารสารวิชาการนานาชาติ

- 3.1 K. Grudpan, S. Lapanantnoppakhun, S. Kradtap Hartwell, K. Watla-iad, W. Wongwilai, W. Siriangkhawut, W. Jangbai, W. Kumutanat, P. Nantaboon, S. Tontrong (2009) Simple lab on chip approach with time-based detection, Talanta 79(4) 990-994
- 3.2 Watsaka Siriangkhawut, Somkid Pencharee, Kate Grudpan, Jaroon Jakmunee (2009) Sequential injection monosegmented flow voltammetric determination of cadmium and lead using a bismuth film working electrode. Talanta 79 (4)1118-1124
- 3.3 Kwanhathai Ardnaree, Wasin Wongwilai1, Somchai Lapanantnopphakhun and Kate Grudpan (2013) A simple lab on chip for quantitation of sugar content in a syrup sample. J. Flow Injection Anal 30 (2) 114-116

Contents lists available at ScienceDirect

Talanta

Simple lab-on-chip approach with time-based detection

K. Grudpan^{a,c,*}, S. Lapanantnoppakhun^{a,c}, S. Kradtap Hartwell^{a,c}, K. Watla-iad^b, W. Wongwilai^c, W. Siriangkhawut^a, W. Jangbai^a, W. Kumutanat^a, P. Nuntaboon^a, S. Tontrong^a

- ^a Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University. Chiang Mai 50200. Thailand
- ^b Department of Chemistry, School of Science, Mae Fah Laung University, Chiang Rai 57100, Thailand
- c Institute for Science and Technology Research and Development, Chiang Mai University, Chiang Mai 50200, Thailand

ARTICLE INFO

Article history: Received 30 November 2008 Received in revised form 10 February 2009 Accepted 11 February 2009 Available online 20 February 2009

Keywords: Lab-on-chip Time-based detection Ascorbic acid assay Acetic acid Iron determination Cost-effective analysis Migration time Visual detection

ABSTRACT

A simple lab-on-chip approach with time-based detection is proposed. A platform is made from a piece of acrylic differently shaped channels for introducing sample and reagent(s) using flow manipulation. Time-based changes involving migration of the reaction zone are monitored. The changes can be visually monitored by using a stop-watch with naked eyes observation. Some applications for the determination of ascorbic acid, acetic acid and iron in real samples with different chemistries were demonstrated.

Crown Copyright © 2009 Published by Elsevier B.V. All rights reserved.

1. Introduction

"Lab-on-chip" is the state of the art analysis approach in analytical chemistry. All necessary parts of the analysis process, including sample introduction part (i.e. pump), reaction chamber and detection unit, are integrated into a small one-piece device. With this integrated downscaled system, chemical/biochemical analysis can be miniaturized performing. Advantages of the "lab-on-chip" include the reduction of chemical/sample consumption, ease of operation, rapidity of analysis and with possibility of portability [1,2].

When the word "lab-on-chip" is mentioned, one may assume that it is an invention that requires high technology and expensive fabrication involving a lot of new developments in materials science, electronics, physics and chemistry/biochemistry. However, "lab-on-chip" may simply be made based on the objective of performing an analytical process without bench space. The chip itself

E-mail address: kate@chiangmai.ac.th (K. Grudpan).

can be fabricated in a simple way with commonly found equipment. With a suitable detection method, the whole analysis process can be carried out on a chip without needing any extra-complicated devices.

In this work, we proposed an economic "lab-on-chip". A simple chip was made by drilling channels in a piece of acrylic plastic. Uncomplicated manual operation can be handled. We have demonstrated different uses of the chip with simple reactions, all involving color detection. To eliminate the use of any extra device such as a spectrophotometer, detection was done by bare eyes based on migration time of the reaction zone using a simple stop-watch.

2. Experimental

2.1. Fabrication of the simple chip

A piece of acrylic was cut into rectangular shape of the size $2.5\,\text{cm}\times5.0\,\text{cm}\times1.2\,\text{cm}$ (width \times length \times thickness). It was secured on a drill press and channels were drilled through the side of the acrylic piece using a 1 mm drill bit. The whole volume of the channels was approximately 55 μL . The format of the channels, i.e. the crossing point of the vertical and horizontal channels, or the distance from the edges, can be varied according to the user's designs

^{*} Corresponding author at: Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.

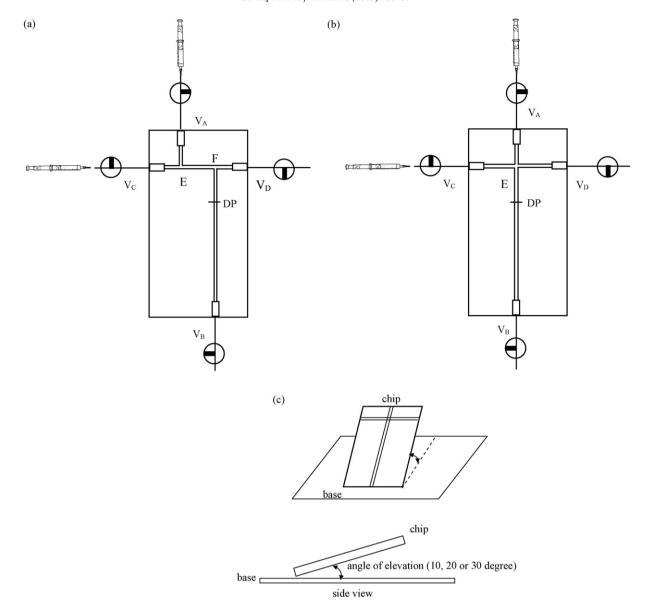


Fig. 1. (a) and (b) Two designs of the simple chip (V: three-way valve, E and F: the points where analyte and reagent having the first contact, i.e. start the reaction zone, DP: mark for detection point) and (c) illustration for the chip tilted on a base.

and applications. Here two different designs, see Fig. 1(a) and (b), were proposed to demonstrate the different migration patterns of the reaction zone.

A larger diameter was made at each channel opening and threads were made to perfectly fit a normal nuts using in flow injection assembles. Each three-way valve was connected to each FI nut with a piece of 0.03 in. i.d. PTFE tubing. These valves act as injection and exit ports of the chip. One of the ports on the vertical channel and one of the ports on the horizontal channel were injection ports where syringes were placed. The rest of the openings were exit ports, connected to the waste container.

2.2. Determination of ascorbic acid in vitamin C

Determination of ascorbic acid in vitamin C tablet was demonstrated through two different reactions, one with KMnO₄ and another with NH₄VO₃ [3,4]. In the experiments with KMnO₄, standard ascorbic acid solutions were prepared at 2, 4, 6 and 8 mM in $0.2\,\mathrm{M\,H_3PO_4}$. The KMnO₄ solution was also prepared in $0.2\,\mathrm{M\,H_3PO_4}$ at $1\times10^{-4}\,\mathrm{M}$. In the experiments with NH₄VO₃, standard ascorbic acid solutions were prepared at 0.6, 0.8

The NH₄VO₃ solution was prepared in 0.2 M H₂SO₄ medium at the concentration of 6.84×10^{-2} M.

Three commercial vitamin C tablet samples with different additives were used in this study. Their compositions are as follows: sample C1 contains 500 mg vitamin C; sample C2 contains 1000 mg ascorbic acid with bioflavonoid complex lemon, acerola and rose hip; sample C3 contains 400 mg ascorbic acid with 350 mg sodium ascorbate, 400 mg calcium ascorbate, 50 mg bioflavonoids, 50 mg rutin, 50 mg hesperidin, 250 mg rose hip, 50 mg acerola, 150 mg tapioca starch, 30 mg magnesium stearate and 30 mg soy polysaccharide.

The results were compared with the standard titration method using blue 2,6-dichlorophenol indophenol (DCIP), prepared in NaHCO₃, as a titrant. End point was observed when the titrand changed from colorless to pink.

2.3. Determination of acetic acid in vinegar

Acetic acid standard solutions were prepared at the concentration of 0.04, 0.06, 0.08 and 0.1 M by dilution of concentrated glacial acetic acid with DI water. Reagent used for this study was

the mixture of 2×10^{-4} M NaOH and phenolphthalein. The vinegar samples were diluted 10-fold with DI water. The performance of the system was demonstrated using three commercial vinegar samples with approval quality from the Thai Food and Drug Administration. Amounts of acetic acid found were compared to the reported values on the products' labels.

2.4. Determination of iron in nail

This application was demonstrated with high iron content nail. A $0.6436\,\mathrm{g}$ nail sample was digested with HNO $_3$ acid and heated for 30 min. The final volume of the digested nail solution was adjusted to $250\,\mathrm{mL}$ with deionized water. The sample solution ($0.3\,\mathrm{mL}$) was diluted to $10\,\mathrm{mL}$ prior to use.

A 17.9 mM stock Fe^{3+} solution was prepared from $NH_4Fe(SO_4)_2\cdot 12H_2O$. Working solutions were diluted to the concentrations of 0.18, 0.54, 0.90, 1.25 and 1.61 mM. The complexing agent was 1 M KSCN solution.

The performance of this system was evaluated by comparing the results with two standard methods; batch molecular spectrometry and atomic absorption spectrometry (AAS). For batch spectrometry, standard Fe³⁺ solutions were prepared at the concentrations of 3.58×10^{-3} , 7.16×10^{-3} , 1.07×10^{-2} , 1.43×10^{-2} and 1.79×10^{-2} mM. The intensity of the red complex was monitored using a spectronic 21. Since the working range is different from the proposed lab-on-chip system, the nail sample solution was prepared at lower concentration by diluting the digested sample solution to obtain concentration in the working range of the standard calibration curve (3.58×10^{-3} to 1.79×10^{-2} mM). For AAS, the procedure was followed the ASTM method [5].

3. Results and discussion

3.1. Important parameters

3.1.1. Planar/angle of elevation

Migration occurred from the difference in concentration of the reagent and sample zones. Capillary action due to small channel also helps accelerate the migration. In addition, gravimetric force should also help to promote migration. This could be due to differences in the densities between the analyte and reagent solutions. This effect was illustrated by the determination of ascorbic acid using KMnO₄, in which the de-colorization is due to redox reaction [3], the effect of elevation was demonstrated using the chip A format. KMnO₄ was introduced in the vertical channel and ascorbic acid was introduced in the horizontal channel. The chip was tilted at various angles (0°, 10°, 20° or 30°) with respect to the horizontal plane, see Fig. 1(c).

It was found that with different tilting angles, reaction zone migrated downward at different rates. Time-based calibration graphs obtained from various angles are shown in Fig. 2. For this particular reaction, the 10° angle gave the best sensitivity but required more detection time. The 20° angle offered better R^2 value with more rapid detection time. Migration was faster with 30° arrangement, but sensitivity and R^2 value were decreased. The selection of the chip's elevation angle should compromise sensitivity and analysis time. Therefore, the 20° angle was chosen for further experiments. However, other reactions or different matrices with different densities and viscosities may yield different results. In some cases, the degree of the angle may not be critical, but it may slightly change sensitivity and working range of the analysis. The selection of the chip's angle should be consistent.

3.1.2. Detection point

The detection is time-based detection. It was done by recording the time that the front of the reaction zone took to reach the

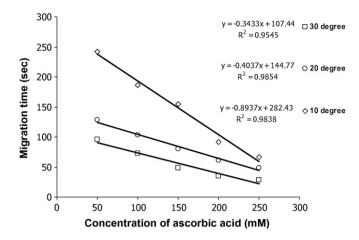
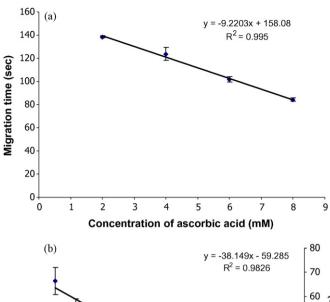


Fig. 2. Time-based calibration graphs of ascorbic acid with various elevation degrees.


detection point. If the zone migrates vertically, the detection point (see Fig. 1: DP) was set down from the intersection. The shorter the distance between the intersection to the detection point, the better sample throughput. However, the longer the distance offers the better precision in timing. The detection point should be located based on compromising between analysis time and precision.

3.2. Demonstration of the system with various reactions

3.2.1. Determination of ascorbic acid in vitamin C tablets

In this study, two reactions were carried out using two different chip formats and both were placed at a 20° angle with respect to the horizontal plane. Chip A was used for the reaction of ascorbic acid with KMnO₄. First, valves V_A and V_B were opened while valves V_C and V_D were closed. KMnO₄ was injected through valve V_A to fill all the channels. Then, valves V_A and V_B were closed, and valves V_C and V_D were opened. Standard ascorbic or sample solution was injected into valve V_C and it could flow out through valve V_D , replacing the reagent in the horizontal channel. Both valves V_C and V_D were immediately closed and timing was started. The purple color of KMnO₄ began fading away from the intersection point F in the vertically downward direction. The detection point was set at 2.0 cm from point F. The migration was faster with the higher concentration of ascorbic acid and therefore, a shorter time was used to reach the detection point.

Chip B was used for the reaction of ascorbic acid with NH₄VO₃. The operation procedures were similar to that described above for chip A. However, here the standard or sample solution was introduced vertically from valve V_A to V_B. The reagent NH₄VO₃ was injected horizontally from valve V_C to V_D. After immediately closing all the valves and starting the timing, the change in color (from pale yellow to blue) of the detection zone was observed starting at the intersection E. The migration of the detection zone was on both left and right horizontally. The detection time was recorded when all the solution in the horizontal channel turned blue. The migration direction of the observed detection zone was different from the above system, even though the chip was also at 20° tilt. This is likely due to the nature of the vanadium comproportionation reaction which can be explained based on the standard reduction potential values of ascorbic acid [6] and vanadium of various oxidation states [7]. When V^{5+} in the form of VO_2^+ in the acidified NH₄VO₃ came into contact with the reducing agent, ascorbic acid at the intersection E, it was likely reduced to V³⁺, as the reducing power of the ascorbic acid is not strong enough to change V5+ to V^{2+} . This V^{3+} started the auto-redox of vanadium contained in the horizontal channel, changing the rest of yellow colored V⁵⁺ to blue

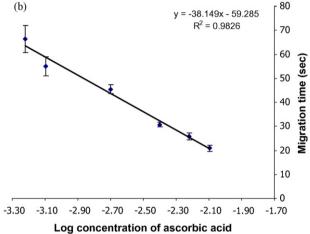


Fig. 3. (a) The time-based calibration graphs for ascorbic acid using (a) $KMnO_4$ as and (b) NH_4VO_3 as oxidizing agent.

colored V^{4+} (in the form of VO^{2+}), $V^{3+} + V^{5+} \rightarrow 2V^{4+}$ [8]. The higher the concentration of ascorbic acid, the more V^{3+} was produced and the faster the auto-redox reaction occurred. This reaction took place at a faster rate as compared to the migration of V^{5+} into the ascorbic acid line. Therefore, the change in color intensity was observed in the horizontal direction rather than in the vertical direction.

Fig. 3(a) and (b) shows the time-based calibration graphs of the ascorbic acid standards, when using KMnO₄ and NH₄VO₃ as a reagent, respectively. Both have linear working range in the concentration ranges used in this study. Vitamin C tablet samples were also analyzed with these two systems. It was found that the proposed systems yielded results that agreed with the standard batch titration method [9], as shown in Table 1.

The results from both systems indicated that this simple labon-chip approach with time-based detection could be applied for analysis of vitamin C tablets of various matrices without the need of dilution or other sample pretreatments. This would help to reduce the errors due to dilution.

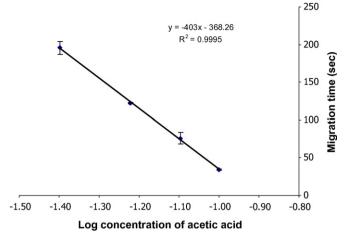


Fig. 4. Time-based calibration graph of acetic acid.

Table 2 Amount of acetic acid in vinegar samples.

Vinegar sample	Labeled amount (%, w/v)	Lab-on-chip (%, w/v)
Sample A1	5	4.8
Sample A2	5	4.8
Sample A3	5	4.2

3.2.2. Determination of acetic acid in vinegar

Chip A was used in this study. It was placed at a 20° angle with respect to the horizontal plane. The mixture of NaOH and phenolphthalein was injected vertically through valves V_A and V_B . The acetic acid standard solution or vinegar sample was injected horizontally through valves V_C and V_D . The detection point was set at 0.5 cm down from point F. When acid migrated down into the reagent line, the pink color faded away. The detection time was recorded and plotted against log the concentration of acetic acid standard. The time-based calibration graph of standard acetic acid is shown in Fig. 4. Amounts of acetic acid in the vinegar samples were determined and the results agreed well with the value reported on the labels, as shown in Table 2.

3.2.3. Determination of Fe in nail

Chip A was used by introducing standard or sample solution through vertical valves V_A and V_B and injecting KSCN through horizontal valves V_C and V_D . The chip was placed flat (0°) to demonstrate that for some reactions, tilting the chip may not be necessary. The reaction occurred at the crossing point F, giving red color complex that migrated down vertically. Time was recorded when the red zone reached the detection point that was set at 2 cm down from the crossing point F. Migration of the reaction zone from the crossing point E toward valve V_A was not observed, even though the chip was placed flat. This is probably due to having more Fe^{3+} present in the lower section from F to V_B as compared to that in the upper section E to V_A .

The time-based calibration graph for Fe³⁺ was obtained as shown in Fig. 5. This calibration graph has positive slope, in contrast

Table 1Comparison of the ascorbic acid contents in vitamin C tablet samples obtained from the proposed simple lab-on-chip and standard batch titration.

Vitamin C sample	Labeled amount (mg/tablet)	Standard titration method with DCIP (mg/tablet)	Lab-on-chip	
			With KMnO ₄ (mg/tablet)	With NH ₄ VO ₃ (mg/tablet)
Sample C1	500	478	481	513
Sample C2	1000	1084	1030	999
Sample C3	1000	957	1098	1063

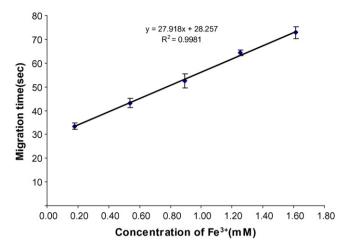


Fig. 5. Time-based calibration graph of Fe³⁺.

to the negative slopes of the other calibration graphs observed in the previous examples. This difference can be explained by considering that in this system, sample solutions of various concentrations were injected vertically while the fixed concentration reagent was injected horizontally. Migration time, therefore, is in direct proportion (positive slope) to the concentration of sample in the vertical line. Linear working range was found over the chosen concentration range of 0.18–1.61 mM. The weight percent of Fe³⁺ in the nail sample was calculated to be 62%.

The same digested nail sample was also analyzed with batch molecular spectrometry and flame AAS. A calibration curve with linear working ranges 3.58×10^{-3} to 1.79×10^{-2} mM (y=8.2339x-0.0004, $R^2=0.9988$) was obtained with the batch molecular spectrometry. The average weight percent of Fe³⁺ in the nail obtained using the batch molecular spectrometry and AAS

were 64 and 60%, respectively. They agreed well with the amount obtained from the simple lab-on-chip system.

4. Conclusion

A simple and economic lab-on-chip with time-based approach has been proposed and demonstrated with various reactions. The detection was based on migration of the colored reaction zone. Visual detection by naked eyes with a stop-watch can be incorporated. The techniques may be useful for on-site analysis by applying some coloration/decoloration reactions to the proposed simple systems. Further development by incorporating cartridge type pretreatment techniques to the proposed simple chip will be explored.

Acknowledgements

The authors thank the Commission on Higher Education (CHE) through Research Group (RG) grant for support. Additional supports from the Center for Innovation in Chemistry: Post Graduate Education and Research Program in Chemistry (PERCH-CIC), and The Thailand Research Fund are also acknowledged.

References

- [1] D.R. Reyes, D. Iossifidis, P. Auroux, A. Manz, Anal. Chem. 74 (2002) 2623.
- [2] R. Daw, J. Finkelstein, Nat. Insight 442 (2006) 367.
- [3] K. Grudpan, K. Kamfoo, J. Jakmunee, Talanta 49 (1999) 1023.
- [4] D.C. Crans, B. Baruah, E. Gaidamauskas, B.G. Lemons, B.B. Lorenz, M.D. Johnson, J. Inorg. Biochem. 102 (2008) 1334.
- [5] American Society for Testing Materials, ASTM D1068 Standard Test Methods for Iron, http://www.astm.org/Standards/D1068.htm.
- [6] H. Borsook, G. Keighley, Physiology 19 (1933) 875.
- [7] D.R. Lide, Electrochemical Series Table 1, CRC Handbook of Chem. And Phys., 73rd ed., CRC Press, London, 1992–1993, pp. 8–22.
- [8] Z. Yang, E.S. Gould, Dalton Trans. (2003) 3963.
- [9] W. Horwitz, AOAC Official Method 967.21 for Vitamin Preparation, 17th ed., Official Methods of Analysis of AOAC International, 2000, p. 16, Chapter 45.

ELSEVIER

Contents lists available at ScienceDirect

Talanta

journal homepage: www.elsevier.com/locate/talanta

Sequential injection monosegmented flow voltammetric determination of cadmium and lead using a bismuth film working electrode

Watsaka Siriangkhawut^a, Somkid Pencharee^{a,b}, Kate Grudpan^a, Jaroon Jakmunee^{a,*}

- a Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- ^b Department of Physics, Faculty of Science, Ubon Rajathanee University, Ubon Rajathanee 34190, Thailand

ARTICLE INFO

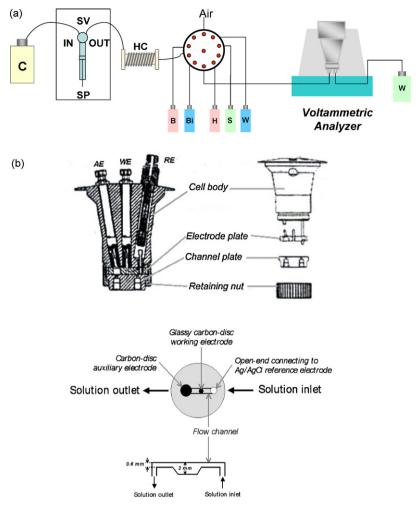
Article history: Available online 25 March 2009

Keywords:
Sequential injection
Monosegmented flow
Anodic stripping voltammetry
Cadmium
Lead
Bismuth film

ABSTRACT

A cost-effective sequential injection monosegmented flow analysis (SI-MSFA) with anodic stripping voltammetric (ASV) detection has been developed for determination of Cd(II) and Pb(II). The bismuth film working electrode (BiFE) was employed for accumulative preconcentration of the metals by applying a fixed potential of $-1.10\,\text{V}$ versus Ag/AgCl electrode for 90 s. The SI-MSFA provides a convenient means for preparation of a homogeneous solution zone containing sample in an acetate buffer electrolyte solution and Bi(III) solution for in situ plating of BiFE, ready for ASV measurement at a flow through thin layer electrochemical cell. Under the optimum conditions, linear calibration graphs in range of $10-100\,\mu\text{g}\,\text{L}^{-1}$ of both Cd(II) and Pb(II) were obtained with detection limits of 1.4 and $6.9\,\mu\text{g}\,\text{L}^{-1}$ of Cd(II) and Pb(II), respectively. Relative standard deviations were 2.7 and 3.1%, for 11 replicate analyses of $25\,\mu\text{g}\,\text{L}^{-1}$ Cd(II) and $25\,\mu\text{g}\,\text{L}^{-1}$ Pb(II), respectively. A sample throughput of $12\,h^{-1}$ was achieved with low consumption of reagent and sample solutions. The system was successfully applied for analysis of water samples collected from a draining pond of zinc mining, validating by inductively coupled plasma-optical emission spectroscopy (ICP-OES) method.

© 2009 Elsevier B.V. All rights reserved.


1. Introduction

Heavy metals such as cadmium and lead are toxic, persistent pollutants and they can be bioaccumulated/concentrated through the food chain. Their contamination to the environment comes from different sources, e.g., soil erosion, mining and industrial activities. Therefore, the development of sufficiently sensitive, selective and reproducible analytical methods for precise and accurate determination of these metals at trace levels is essential. There are several techniques recently utilized including spectrometric, chromatographic and electroanalytical techniques. Spectrometric techniques such as atomic absorption spectrometry (AAS), inductively coupled plasma-optical emission spectroscopy (ICP-OES), inductively coupled plasma-mass spectrometry (ICP-MS) and atomic fluorescence spectrometry (AFS) although provide good sensitivity and selectivity, they usually involve expensive and large equipment.

Electroanalytical techniques such as stripping voltammetry on the other hand usually concern small instrument, which is relatively low cost, low power consumption and portable. The most widely used stripping voltammetric mode for determination of Cd(II) and Pb(II) is an anodic stripping voltammetry (ASV), which

is conventionally performed on mercury electrode, e.g., hanging mercury drop electrode (HMDE) and mercury film electrode (MFE) [1]. Mercury electrode provides a wide cathodic potential limit for reduction of several metals and allows the formation of amalgams for accumulative preconcentration of the metals leading to very high sensitivity and reproducibility for ASV determination. However, due to toxicity of the mercury, recently mercury-free electrodes such as bismuth film electrode (BiFE) are extensively researched [2-32]. BiFE is environmentally friendly since the toxicity of bismuth and its salts is negligible. It can form "fused alloys" with heavy metals, analogously to the amalgams that mercury forms [4,11] leading to high sensitivity and reproducibility of the stripping signal and good resolution of the adjacent stripping peaks. Other attractive properties include its low background characteristics, wide alkaline pH working range and being partially insensitive to dissolved oxygen, which allows the analysis without the timeconsuming de-oxygenation step [2,4-6,10,11]. Similar to the MFE, BiFE could be conveniently prepared by plating a thin bismuth film on a suitable substrate material, which can be done before (ex situ plating) [14] or at the same time (in situ plating) [8,9] with the deposition of the analyte metals. Various substrate materials could be used such as glassy carbon [2,5,6,20,25], carbon fiber [2,14], carbon paste [7,15,18], screen printed electrode [3,9,12,24,30], pencil lead [8], carbon nanotube [27], edged plane graphite [19], gold [16] and copper [17]. Other techniques for preparation of BiFE have been introduced such as sputtering of Bi film on silicon substrate to

^{*} Corresponding author. Tel.: +66 5394 1909; fax: +66 5394 1910. E-mail address: scijjkmn@chiangmai.ac.th (J. Jakmunee).

Fig. 1. The developed sequential injection anodic stripping voltammetric system. (a) Schematic diagram of the system, C: carrier (deionized water), SP: syringe pump, SV: switching valve, HC: holding coil, B: 0.2 M acetate buffer, Bi: 40 mg L⁻¹ Bi(III) in 3 M acetate buffer, H: cleaning solution (0.1 M HNO₃), S: mixed metals standard/sample and W: waste. (b) A thin layer electrochemical flow-cell and the flow channel, AE: auxiliary electrode, WE: working electrode and RE: reference electrode.

produce BiFE microelectrode [22,23] and bismuth-carbon composite electrode using Bi nanoparticles [32]. BiFE is more mechanical durable than MFE which is suitable for application in flow systems [1,11]. Flow based analysis such as flow injection (FI) and sequential injection (SI) offers several advantages over batch analysis such as fast and higher degrees of automation, improvement of accuracy and precision, less risk of contamination and low consumption. Recently, several sequential injection systems have been developed for automation of ASV analysis [29-31,33-38]. However, most of them employing mercury electrodes, either HMDE [37,38] or MFE [34–36]. There is still lack of application of BiFE in flow system [11]. SI-ASV on Nafion® coated BiFE was developed for determination of Cd(II), Pb(II) and Zn(II) [29]. The hybrid FI/SI system using BiFE was also reported for ASV determination of Cd(II) and Pb(II), and AdSV determination of Co(II) and Ni(II) [30]. SI-ASV was proposed for determination of Cd(II), Pb(II) and Zn(II) employing an in situ plated bismuth film screen printed carbon electrode [31].

The SI with monosegmented flow analysis (MSFA) approach was introduced to promote good mixing of the solution zones sandwiched between two air segments, resulting from a turbulent flow in the monosegment [37,39,40]. This approach should improve efficiency in electrodeposition of metal ions on the working electrode, leading to high sensitivity and reproducibility of the analytical results. With MSFA sample dilution, single stock standard calibration and standard addition could be made in-line [37,40]. The

SI-MSFA with voltammetric determination of atrazine on a HMDE was developed [37].

In this work, we developed a cost-effective SI system to perform MSFA aiming to gain benefit in convenient handling in solution preparation for in-line ASV determination of Cd(II) and Pb(II) employing an environmentally friendly BiFE as a working electrode. The BiFE was in situ plated on glassy carbon electrode and the same electrode could be repeatedly used for several times due to efficient cleaning in the flow system. The system provided sensitive and reproducible determinations of Cd(II) and Pb(II), with semi-automatic analysis and low chemical consumption. The developed system with new software offered opportunity to do complicated tasks in SIA, despite a simple script program has been used.

2. Experimental

2.1. Chemicals

All chemicals used were of analytical reagent grade. Deionized water (obtained from a system of Milli-Q, Millipore, Sweden) was used throughout. An acetate buffer solution (0.2 M, pH 4.6), which served as a supporting electrolyte was prepared by dissolving sodium acetate 3-hydrate (Ajax Finechem, Australia) (13.61 g) in water before adding of acetic acid (Carlo Erba, Italy) (5.7 mL) and making up to final volume of 500 mL with water. Working standard solutions of Pb(II) and Cd(II) were daily prepared by appropriate

diluting the stock standard solutions ($1000\,\mathrm{mg}\,\mathrm{L}^{-1}$ atomic absorption standard solutions, Merck, Germany) with the acetate buffer solution. A stock solution of Bi(III) ($1000\,\mathrm{mg}\,\mathrm{L}^{-1}$) was prepared by dissolving $0.23\,\mathrm{g}$ of bismuth (III) nitrate 5-hydrate (Carlo Erba, Italy) in $0.5\,\mathrm{M}$ HNO $_3$ solution. A Bi(III) plating solution ($40\,\mathrm{mg}\,\mathrm{L}^{-1}$) was daily prepared by diluting the stock solution with $3\,\mathrm{M}$ acetate buffer solution.

2.2. Instrumentation and apparatus

An in-house assembled sequential injection-voltammetric system is depicted in Fig. 1(a). It consisted of a syringe pump (Cavro Model XL-3000, USA), a 10-port selection valve (Valco Instrument, USA), a voltammograph (VA 757, Metrohm, Switzerland). Tygon® tubing (1.25 mm i.d., 4.5 m long) was used for assembling a holding coil. Other flow lines were made of a PTFE tubing of 0.5 mm i.d. A thin layer cross-flow cell (Metrohm, Switzerland) as shown in Fig. 1(b) was employed for voltammetric measurement. It consisted of a glassy carbon disc working electrode (WE), a carbon disc auxiliary electrode (AE) and a Ag/AgCl (3 M KCl) reference electrode (RE). An in situ plated bismuth film electrode on the WE was used in anodic stripping voltammetric analysis. The system was computerized controlled by using a home-made program written in Visual Basic 6 (Microsoft, USA). Employing this controller program, different solution sequences as shown in Fig. 2 were created for investigation of monosegmented flow for efficient mixing of various solutions.

2.3. Procedure

The operational sequences for the determination of Pb(II) and Cd(II) by the SI-voltammetric system with monosegmented flow strategy are given in Table 1. This corresponds to the solution sequence F in Fig. 2. Before running the operational sequence, the "Start-up" program sequences was firstly executed, in order to fill the HC, the electrochemical cell and the tubing connecting to the port 6 of the selection valve with 0.2 M acetate buffer solution and to fill tubings connected to other ports of selection valve with their respective solutions. Then operational sequences were started as describing as follows (sequence F, Fig. 2). First, the acetate buffer

solution (800 µL) was aspirated and then delivered through port 6 to the flow cell. Then, air (100 µL) was aspirated to separate buffer solution from the following solutions. After that, Bi(III) plating solution (Bi+B) and mixed standard/sample solution (M) were alternately aspirated to form stacked zones as shown in Fig. 2(F). Then selection valve was switched to port 1 to perform flow reversal to promote mixing of the stacked zones together [39], by aspirating air (300 µL) and pushing air and 25 µL of the solution to waste (port 2). The mixing zone was then propelled through a cross-flow cell for electrodeposition of the metals by applying a potential of $-1.10\,\mathrm{V}$ versus Ag/AgCl to the WE for a specified deposition time. The air segment at the back was taken out to waste before buffer solution was sent to the flow cell. Then, the stripping step was performed in a medium of acetate buffer electrolyte under stop flow condition. A voltammogram was recorded using the following condition: sweep mode, square wave; sweep potential, -1.10to 0.20 V; sweep rate, 0.50 V/s. Finally, the flow cell and the electrodes were cleaned by flowing cleaning solution (0.1 M HNO₃) through the flow cell while applying a potential of 0.20 V to the WE.

3. Results and discussion

3.1. Development of SI system and software for SI operation

An SI system was assembled from commercially available OEM components in order to make the system to be cost-effective. Control of the pump and selection valve was accomplished by sending an ASCII code to the respective component via computer serial ports (COM port). An in-house developed software for control of the SI system was designed and written in Visual Basic 6.0. The control panel of the software is depicted in Fig. 3. As can be seen from the figure, the component could be controlled manually by clicking on the button on the screen or automatically by creating a program sequences or a script program. The way of writing a script program was convenient, i.e., by typing a value in a parameter box of each component and then click "Add" button to insert a script line in the Program Control box. The program script could be easily edited by highlighting on the line to be deleted or inserted and then clicking "Remove" or "Add" button, accordingly. Instruction for delay and

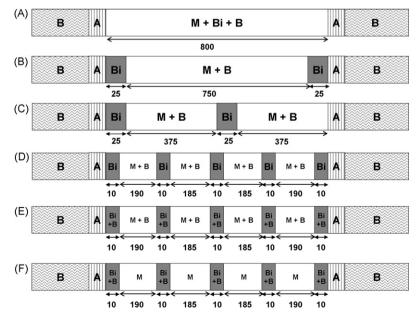


Fig. 2. Sequence of solutions in the monosegmented zone before mixing; A: air, M: mixed solution of Cd(II), Pb(II) and Zn(II) standards (0.1 mg L⁻¹ each), Bi: 40 mg L⁻¹ Bi (III) in nitric acid (pH 1.7), B: 0.2 M acetate buffer, Bi + B: 40 mg L⁻¹ Bi (III) in 3 M acetate buffer. Volume of solution indicated under each zone is in microliter.

Table 1Operational sequences of the SI-MSFA-ASV method for determination of Cd(II) and Pb(II).

Step	Description	Pump valve position	Selection valve position	Volume (μL)	Flow rate (µLs ⁻¹)	WE potential (V)
1	Load buffer solution	Out	3	800	50	
2	Deliver carrier solution to flow cell	Out	6	400	10	
3	Load air	Out	1	100	50	
4	Load bismuth plating solution	Out	4	10	10	
5	Load standard/sample	Out	9	190	10	
6	Load bismuth plating solution	Out	4	10	10	
7	Load standard/sample	Out	9	185	10	
8	Load bismuth plating solution	Out	4	10	10	
9	Load standard/sample	Out	9	185	10	
10	Load bismuth plating solution	Out	4	10	10	
11	Load standard/sample	Out	9	190	10	
12	Load bismuth plating solution	Out	4	10	10	
13	Load air	Out	1	300	50	
14	Taken air out	Out	10	325	50	
15	Deley time 5 s for clicking on start button of the voltammograph					
16	Deliver the sample zone through flow cell for deposition step	Out	6	750	10	-1.10
17	Taken air out	Out	10	150	100	
18	Push buffer to flow cell	Out	6	200	10	
19	Stripping and recording of voltammogram	Out				-1.10 to 0.20
20	Load cleaning solution	Out	7	700	50	
21	Load carrier	In		100	50	
22	Deliver zone of cleaning solution to strip bismuth film	Out	6	975	50	0.20

loop control could be inserted similarly. Additionally, the software was prepared for control of components which will be used in other applications or further development of the system to higher automation, e.g., peristaltic pump, recorder and auto-sampler.

Using the developed system, sequential injection monosegmented flow voltammetric analysis could be semi-automatically

performed according to the operational sequences as described in Table 1. The script program was started to run by clicking on "Start Program" button and it can be stopped at any time by clicking "Stop Program" button. The complicated procedure could be done with higher degrees of automation employing the developed system as described in Section 2.3.

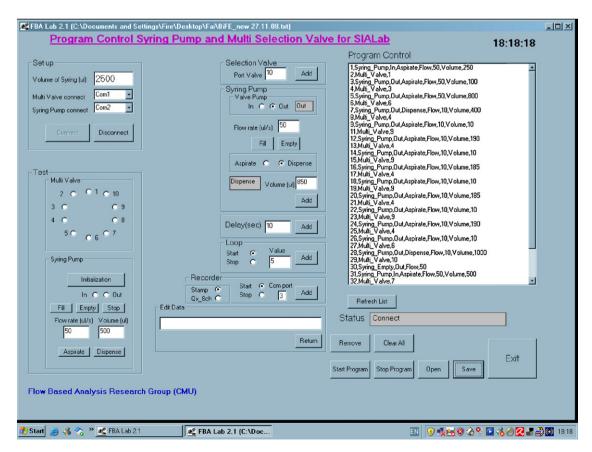
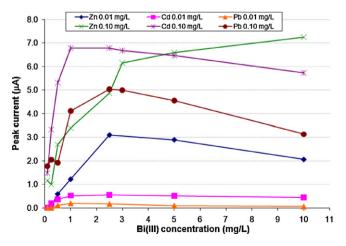
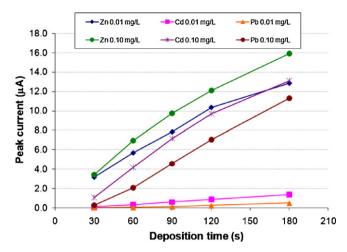



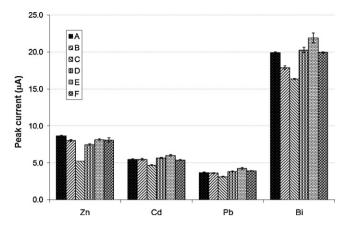
Fig. 3. The control-panel page of an in-house SI controller software (for details see text).


3.2. Optimization of experimental conditions

Conditions of the square wave anodic stripping voltammetric analysis for determination of cadmium and lead (as described in Section 2.3) was selected from the previous study [35], except bismuth film electrode (BiFE) was used instead of mercury film electrode in order to avoid the use of toxic mercury. Preparation of BiFE could be done either by ex situ plating (preplating) or in situ plating. In situ plating could be more convenient to perform by off-line spiking of the standard/sample solution with Bi(III) solution and formation of bismuth film simultaneously occurred with the analyte metals accumulation during the deposition step. In this work, a monosegmented flow analysis (MSFA) [37,39,40] approach was applied in SI systems in order to provide good mixing of Bi(III), standard/sample and acetate buffer electrolyte solutions together in a monosegmented zone. This could be carried out by using air plugs to sandwich the solution zones, which prevent dispersion of solution into a carrier stream and the turbulent flow occurring in the air segmented zone would promote mixing of the sandwiched solution zones to form a homogenized monosegmented zone. The homogeneous solution would provide good performance and reproducibility in the deposition and stripping steps of ASV analysis because the concentration gradient of the sample zone entering the electrochemical flow cell would less occur while the potential was applied to the working electrode [37]. Other segmented flow could also be used to promote mixing but complicated instrumentation and procedure may be needed, e.g., air segmentor and bubble remover devices are required. A 0.2 M acetate buffer pH 4.6 was selected as a supporting electrolyte for voltammetric analysis because this medium provided wider potential window of BiFE than the more acidic medium [5].

Preliminary investigation on the effect of Bi(III) concentration used for formation of BiFE on sensitivity of metals determination was carried out by the off-line premixing of solutions of metal ions, Bi(III) and acetate buffer. The final solution contained 0.01 and 0.1 mg L $^{-1}$ each of Cd(II), Pb(II) and Zn(II), 0.2 M acetate buffer and different concentrations of Bi(III). The premixed solution (800 μ L) was aspirated to sandwich in between air plugs and 0.2 M acetate buffer as shown in Fig. 2(A). After flow reversal, the air plug was removed and the solution zone was then pushed to the flow cell. A fixed potential of $-1.10\,\text{V}$ versus Ag/AgCl electrode was applied to the WE while the solution zone was propelled at 10 μ Ls $^{-1}$ through the cell. The stripping was performed in a medium of 0.2 M acetate buffer by scanning potential from -1.10 to 0.20 V. Effect of Bi(III) concentration on peak currents of the analyte metals is illustrated in Fig. 4. It was found that peak current sharply increased with the

Fig. 4. Effect of concentration of Bi(III) plating solution on peak current of the analyte metals (for details see text).


Fig. 5. Effect of deposition time on peak current of the analyte metals (for details see text).

increase of Bi(III) concentration and reached the maximum at about 2.5 mg L^{-1} Bi(III). This is the same trend with the peak current of Bi itself. Bi(III) concentration would dictate the thickness of the Bi film for deposition of the analyte metals. At high Bi(III) concentration the metals may difficultly stripped out from a thick Bi film leading to lower peak current and broader peak. The Bi(III) concentration of 2.5 mg L^{-1} was selected for further experiment. The in situ plated BiFE on GCE should provide advantages in term of simplicity, low cost and convenient operation since the same electrode could be repeatedly used after proper cleaning.

The reproducibility of peak current may depend on the cleanliness of the working electrode. The cleaning step was applied after the voltammogram was recorded by flowing a cleaning solution (0.1 M HNO₃) while the potential of WE was held at +0.20 V for 15 s. It was found that the relative standard deviations for seven consecutive determinations of 50 $\mu g\,L^{-1}$ Cd(II) and Pb(II) were improved from 5.9 and 6.9 to 1.8 and 1.3%, respectively, for 0 s and 15 s cleaning time. Flow system helped cleaning the working electrode better than in batch method because the fresh solution was flowed through the electrode during cleaning. This would lead to repeatedly use of BiFE on GCE with better reproducibility than in batch method.

Deposition time and volume of the sample zone passing though the flow cell during deposition step were investigated by aspirating different volumes (200, 500, 800, 1100 and 1700 μL of the premixed solution), which corresponded to deposition time of 30, 60, 90, 120 and 180 s, respectively. Effect of deposition time on peak currents of 0.01 and 0.10 mg L^{-1} of each metal is depicted in Fig. 5. Roughly, peak currents linearly increased with deposition time up to 120 s. Deposition time of 90 s was chosen in order to compromise between sample throughput and sensitivity.

Effect of sequence of different solutions (standard/sample, buffer and Bi(III)) on the homogenization of the mixture zone in a monosegment was investigated by creating a monosegment of $800\,\mu\text{L}$ total volume by using different sequences of solutions as depicted in Fig. 2. Once the sequence was created, the stacked zones were moved forward and backward to cause turbulent mixing of the stacked zones in the monosegment. A sequence of off-line mixed (premixed) solution as shown in Fig. 2(A) was also carried out for comparison. A plating solution ($40\,\text{mg}\,\text{L}^{-1}$ Bi(III)) used in sequences A–D was prepared in water, while those of sequences E and F was prepared in 3 M acetate buffer. The peak currents obtained for $0.10\,\text{mg}\,\text{L}^{-1}$ each of Cd(II), Pb(II) and Zn(II) and for Bi(III) when using different sequences are shown in Fig. 6. It was found that all sequences gave comparable peak currents for all the metals.

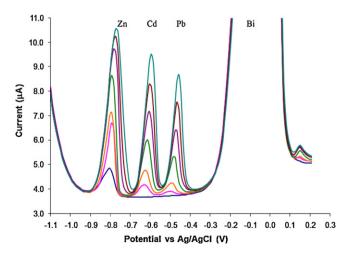


Fig. 6. Peak currents of metals obtained from different sequences A–F as shown in Fig. 5 (for details see text).

However, sequence E, which should provide better mixing and thus resulted in highest peak currents. Sequence E was modified to be sequence F by employing standard/sample solution without off-line adding of buffer, in order to simplify the sample preparation procedure. This modification resulted in a little bit lower peak currents of the metals, but with better reproducibility. The sequence F was selected for sample analysis. Thanks to the automation of the developed SIA system, this complicated procedure could be easily performed with using a simple script program.

3.3. Analytical features of the proposed system

Using SI-monosegmented flow of sequence F together with the conditions as described in Section 2.3, calibration graphs of Cd(II), Pb(II) and Zn(II) in range of $10-100 \,\mu g \, L^{-1}$ of each metal were constructed by plotting peak current (μ A) versus concentration of metal ions (μ g L^{-1}). Fig. 7 shows a series of voltammograms. It could be seen that for Zn(II) a good linear calibration could not be obtained yet. Further studies should be needed for the determination of zinc. Under the selected conditions, linear calibration graphs could be obtained for Cd (II) and Pb(II) with the calibration equations, y = 0.0551x - 0.1142; $R^2 = 0.9999$ for Cd(II) and y = 0.0506x - 0.5435; $R^2 = 0.9966$ for Pb(II). The detection limits (the concentration corresponding to three times of standard deviation of blank) were obtained at $1.4 \,\mu$ g L^{-1} for Cd(II) and $6.9 \,\mu$ g L^{-1} for Pb(II) for deposition time of 90 s. The relative standard deviations for 11 replicate

Fig. 7. Voltammograms of standard solutions containing Zn(II), Cd(II), Pb(II) obtained from SI-MSFA-ASV on BiFE; concentrations of each metal from bottom to top: 0.0, 10.0, 20.0, 40.0, 60.0, 80.0 and $100.0\,\mu g\,L^{-1}$.

Table 2Concentrations of Cd(II) and Pb(II) in water samples found by SI-monosegmented flow-ASV and ICP-OES methods.

Sample	Concentration of metals found $(mg L^{-1})$ by				
	SI-ASV		ICP-OES		
	Cd	Pb	Cd	Pb	
1	0.56 ± 0.02	3.20 ± 0.02	0.51 ± 0.02	3.02 ± 0.06	
2	0.78 ± 0.02	2.10 ± 0.04	0.73 ± 0.04	2.01 ± 0.03	
3	0.56 ± 0.01	2.69 ± 0.02	0.52 ± 0.02	2.52 ± 0.04	
4	0.23 ± 0.01	3.62 ± 0.00	0.21 ± 0.02	3.54 ± 0.05	
5	0.36 ± 0.00	3.85 ± 0.00	0.34 ± 0.03	4.02 ± 0.06	
6	0.44 ± 0.00	2.55 ± 0.00	0.43 ± 0.03	2.53 ± 0.04	
7	0.84 ± 0.02	1.30 ± 0.02	0.82 ± 0.04	1.22 ± 0.02	
8	0.57 ± 0.01	2.11 ± 0.02	0.51 ± 0.02	2.03 ± 0.05	
9	0.76 ± 0.01	1.40 ± 0.03	0.82 ± 0.03	1.52 ± 0.04	
10	0.34 ± 0.07	3.32 ± 0.06	0.31 ± 0.02	3.52 ± 0.05	

analyses of $25~\mu g\,L^{-1}$ Cd(II) and $25~\mu g\,L^{-1}$ Pb(II) were 2.7 and 3.1%, respectively. The analysis time for one sample is 5 min (sample throughput of $12~h^{-1}$). Each analysis cycle consumed 750 μL of sample, $50~\mu L$ of $40~mg\,L^{-1}$ Bi(III) plating solution and $800~\mu L$ of 0.2~M acetate buffer solution.

Monosegmented flow provides completed mixing of the solution zones, thus it would open possibility to perform in-line single standard calibration and in-line standard addition procedures. Preliminary experiment was carried out for in-line single standard calibration by varying the volume of the mixed metals standard to be aspirated into the monosegmented zone. Linear calibration graphs were obtained: y = 0.0110x - 0.0525; $R^2 = 0.9996$ for Cd(II) and y = 0.0701x - 0.6285; $R^2 = 0.9994$ for Pb(II). However, more investigations and refinement for the optimum condition should be made further.

3.4. Analysis of real samples

The proposed system was employed for determination of Cd(II) and Pb(II) in surface water samples collected from a draining pond of zinc mining in northern Thailand. Such a sample was collected in a clean polyethylene bottle (1L) with adding of HCl to acidify sample to about pH 1. No sample pretreatment was made except filtering of the sample just before the analysis and dilution of sample with water (10-fold dilution for Cd(II) and 40-fold dilution for Pb(II) determinations). Samples were also analyzed by ICP-OES at the Office of Primary Industry and Mine Region 3, Chiang Mai for comparison. The obtained results are presented in Table 2. According to t-test at 95% confident limit, the results obtained from both the methods were in good agreement ($t_{critical} = 2.26$, $t_{calculate} = 0.26$ and 0.05 for Cd(II) and Pb(II), respectively). The results were correlated each other well (SI = 0.9463 ICP + 0.0522, R^2 = 0.9761 for Cd(II) and SI = 0.9512 ICP + 0.1472, $R^2 = 0.9784 \text{ for Pb(II)}$. The system was also tried for analysis of bottled mineral drinking water. Concentration of Cd(II) and Pb(II) in those samples were below detection limit of the method. By spiking 25 and $50 \,\mu g \, L^{-1}$ of both metal ions into a sample, recoveries were found in range of 95-108% for Cd(II) and 100-115% for Pb(II). Application of the developed system to determination lower concentration of metal ions in water samples nearby the mining area will be further investigated.

4. Conclusion

A cost-effective sequential injection system was assembled and applied for monosegmented flow anodic stripping voltammetric determination of Cd(II) and Pb(II) employing BiFE in situ plating on a glassy carbon working electrode. The system offered non-toxic, convenient, high degrees of automation and low consumption in the analysis, with precise and accurate results for the determination

of Cd(II) and Pb(II) in contaminated water samples. The monosegmented flow help in in-line preparation of homogeneous solution mixture of sample, Bi(III) plating solution and acetate buffer supporting electrolyte solution. The system has high potential to be developed further to be automated. Further investigations for inline dilution, in-line single standard calibration and in-line standard addition procedures employing monosegmented flow approach are in progress.

Acknowledgements

The Center for Innovation in Chemistry: Postgraduate Education and Research Program in Chemistry (PERCH-CIC), the Commission on Higher Education (CHE) and the Thailand Research Fund (TRF) are acknowledged for financial supports. The Royal Golden Jubilee Ph.D. program is gratefully acknowledged for the scholarship to W.S. We thank Metrohm for supplying the thin layer cross-flow cell as a gift and Dr. Ponlayuth Sooksamiti of the Office of Primary Industry and Mine Region 3, Chiang Mai for providing of water samples and carrying out the ICP-OES analysis.

References

- [1] A. Economou, P.R. Fielden, Analyst 128 (2003) 205.
- [2] J. Wang, J. Lu, S.B. Hobevar, P.A.M. Farias, Anal. Chem. 72 (2000) 3218.
- [3] J. Wang, J. Lu, S.B. Hocevar, B. Ogorevc, Electroanalysis 13 (2001) 13.
- [4] J. Wang, J. Lu, Ü.A. Kirgöz, S.B. Hobevar, B. Ogorevc, Anal. Chim. Acta 434 (2001)
- [5] E.A. Hutton, B. Ogorevc, S.B. Hobevar, F. Weldon, M.R. Smyth, J. Wang, Electrochem. Commun. 3 (2001) 707.
- [6] G. Kefala, A. Economou, A. Voulgaropoulos, M. Sofoniou, Talanta 61 (2003) 603.
- [7] A. Królicka, R. Pauliukaite, I. Švancara, R. Metelka, A. Bobrowski, E. Norkus, K. Kalcher, K. Vytřas, Electrochem. Commun. 4 (2002) 193.
- [8] D. Demetriades, A. Economou, A. Voulgaropoulos, Anal. Chim. Acta 519 (2004) 167.
- [9] R.O. Kadara, I.E. Tothill, Anal. Bioanal. Chem. 378 (2004) 770.

- [10] J. Wang, Electroanalysis 17 (2005) 1341.
- [11] A. Economou, Trends Anal. Chem. 24 (2005) 334.
- [12] R.O. Kadara, I.E. Tothill, Talanta 66 (2005) 1089.
- [13] A. Charalambous, A. Economou, Anal. Chim. Acta 547 (2005) 53.
- [14] E.A. Hutton, S.B. Hobevar, B. Ogorevc, Anal. Chim. Acta 537 (2005) 285.
- [15] L. Baldrianova, I. Svancara, M. Vlcek, A. Economou, S. Sotiropoulos, Electrochim. Acta 52 (2006) 481.
- [16] L. Baldrianova, I. Svancara, A. Economou, S. Sotiropoulos, Anal. Chim. Acta 580 (2006) 24.
- [17] S. Legeai, S. Bois, O. Vittori, J. Electroanal. Chem. 591 (2006) 93.
- [18] L. Baldrianova, I. Svancara, S. Sotiropoulos, Anal. Chim. Acta 599 (2007) 249.
- [19] L. Jiajie, Y. Nagaosa, Anal. Chim. Acta 593 (2007) 1.
- [20] E.O. Jorge, M.M.M. Neto, M.M. Rocha, Talanta 72 (2007) 1392.
- [21] H. Xu, L. Zeng, D. Huang, Y. Xian, L. Jin, Food Chem. 109 (2008) 834.
- [22] C. Kokkinos, A. Economou, I. Raptis, C.E. Efstathiou, T. Speliotis, Electrochem. Commun. 9 (2007) 2795.
- [23] C. Kokkinos, A. Economou, I. Raptis, C.E. Efstathiou, T. Speliotis, Electrochim. Acta 53 (2008) 5294.
- [24] G.J. Lee, H.M. Lee, C.K. Rhee, Electrochem. Commun. 9 (2007) 2514.
- [25] G.H. Hwang, W.K. Han, S.J. Hong, J.S. Park, S.G. Kang, Talanta (2008), doi:10.1016/j.talanta.2008.09.028.
- [26] Z. Zou, A. Jang, E. McKnight, P. Wu, J. Do, P.L. Bishop, C.H. Anh, Sens. Actuators B: Chem. 134 (2008) 18.
- [27] G.H. Hwang, W.K. Han, J.S. Park, S.G. Kang, Talanta 76 (2008) 301.
- [28] F. Torma, M. Kárdá, K. Tóth, E. Tatár, Anal. Chim. Acta 619 (2008) 173.
- [29] G. Kefala, A. Economou, Anal. Chim. Acta 576 (2006) 283.
- [30] A. Economou, A. Voulgaropoulos, Talanta 71 (2007) 758.
- [31] S. Chuanuwatanakul, W. Dungchai, O. Chailapakul, S. Motomizu, Anal. Sci. 24 (2008) 589.
- [32] G. Hwang, W. Han, S. Hong, J. Park, S. Kang, Talanta 77 (2009) 1432.
- [33] R. Pérez-Olmos, J.C. Soto, N. Zárate, A.N. Araújo, M.C.B.S.M. Montenegro, Anal. Chim. Acta 554 (2005) 1.
- [34] A. Ivaska, W.W. Kubiak, Talanta 44 (1997) 713.
- [35] S. Suteerapataranon, J. Jakmunee, Y. Vaneesorn, K. Grudpan, Talanta 58 (2002)
- [36] Y. Wang, Z. Liu, X. Hu, J. Cao, F. Wang, Q. Xu, C. Yang, Talanta (2008), doi:10.1016/j.talanta.2008.08.033.
- [37] L.B.O. dos Santos, M.S.P. Silva, J.C. Masini, Anal. Chim. Acta 528 (2005) 21.
- [38] A.C.V. dos Santos, J.C. Masini, Anal. Bioanal. Chem. 385 (2006) 1538.
- [39] J. Jakmunee, L. Patimapornlert, S. Kradtap, K. Grudpan, Analyst 130 (2005) 299.
- [40] M.S. Pinto Silva, J.C. Masini, Anal. Chim. Acta 466 (2002) 345.

A simple lab on chip for quantitation of sugar content in a syrup sample

Kwanhathai Ardnaree^{1, 2}, Wasin Wongwilai^{1, 2}, Somchai Lapanantnopphakhun^{1, 2} and Kate Grudpan^{1, 2*}

Abstract

A simple lab on chip (LOC) for quantitation of sugar contents was proposed. It is based on migration of sucrose solution along a channel filled with water. The migration time, which is the time period that the sample travels, starting from at the injection moment to the point of detection, is related to the sugar content. By taking the benefits due to the Schlieren effect, the migration time can be monitored by using a fiber optic spectrophotometer. In another simple LOC system, addition of a bromothymol blue indicator in the water channel, the migration time was be able to be monitored via naked eyes and with a stop watch. Calibration equations were : y = 0.430 x + 9.500, R2 = 0.957 (for 800nm), and y = 1.12 x + 43.33, R2 = 0.993 for the LOC with fiber optic spectrophotometer and for the LOC with naked eyes detection, respectively. The results obtained by the proposed methods for determination of sugar contents in concentrates of syrup samples and samples of pharmaceutical preparations for cough syrup, agree with that using a refractometer which is normally used. This is an approach for green analytical chemistry.

Keywords lab on chip, quantitation, sugar, green analytical chemistry

1. Introduction

Table sugar or sucrose is a sweetener involved extensively in food and drink industries. The sugar content in water is usually expressed as degree Brix (oBx). For example, a solution of 5 Brix refers to a solution containing 5 g sugar and 95 g water. Quantitation of sugar or sucrose is of importance. Various analytical techniques have been reported for sugar/sucrose determination, including, polarimetry [1], refractometry [2], chromatography [3], enzymatic reaction via amperometry [4], batch injection analysis [5] and spectrophotometry [6]. Flow analysis techniques have been applied for the determination of sugar. This includes a continuous flow autoanalyzer for sequential determination of total sugar contents in soft drinks [7], and sequential injection (SI) analysis for monitoring of sugar, color and dissolved CO2 contents also in soft drinks [8]. Flow injection (FI) analysis has been applied for the determination of sugar contents in syrup [9] and in injectable drugs [10]. Some of the flow analysis methodologies are based on the Schlieren effect [11]. It involves the change due to refractive index of the media. Reagentless chemical analysis may be able to be performed [12]. Simple instrumentation could be employed for such analysis. The methodologies would be considered to be green analytical chemistry. Lab on chip (LOC) was proposed as a means for down scaling chemical analysis [13], by reducing the amounts/volumes of samples and reagents. LOCs with simple instrumentation have been investigated. The LOC can be fabricated using a simple piece of Acrylic with some drilling for channels. Detection systems may be with fiber optics hooking up with a mini-spectrophometer for conventional and reflection absorbance monitoring [14], or a web camera [15], or even naked eyes [13]. Various analyses have been demonstrated,

including the determinations of acids/bases via a titration reaction [16], redox analyses (e.g., ascorbic acid using permanganate reagent) [13], and viscosity measurement [17].

In this work, we propose procedures for quantifying sugar contents in syrup samples using simple lab on chip systems, one with a fiber optic spectrophotometer and another with naked eyes detection.

2. Materials and methods

2.1 Chemicals and samples

A stock sucrose standard solution was prepared by dissolving 100 g sucrose in 50 ml deionization (DI) water, (100 g of sucrose in total weight of 150 g of solution having 66.7 degree Brix, °Bx). The stock solution was diluted with water to give the appropriate concentrations of working standard solutions (10.0-50.0 °Bx). The solution concentrations were confirmed by using a refractometer. Syrup samples were the concentrates of syrup and pharmaceutical preparations for cough syrup available in local markets and drug stores.

2.2 The LOC set-ups

The basic LOC platform was an Acrylic piece $(20 \times 30 \times 12 \text{ mm})$ with some drillings, as previously described [13-15], to create channels (1.0 mm) with a total volume of approximately 50 μ l. The arrangement of the LOC with fiber optic UV-VIS diode array detector USB 2000 (Ocean Optics Inc., Dunedin, USA) is illustrated in Figure 1(a). Two ends of two fiber probes were put, one underneath and another upper attached to the LOC at 1.0 cm from the crossing of channels of the chip. A volume of DI water was introduced via the peristaltic pump to fill the vertical channel. After that, the sample/standard solution was injected into the horizontal channel. Changes in absorbance, spectra and time could be monitored via the FIAlab program for

¹ Center of Excellence for Innovation in Analytical Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand

² Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

^{*}Corresponding author. E-mail kate.g@cmu.ac.th or kgrudpan@gmail.com

Windows 5.0 (FIAlab, USA). Migration time (the time period that the sample travels starting from at the injecting moment to the point of detection) could be observed. Triplicate injections were made for each solution (standard/sample). Figure 1(b) represents the LOC set up for detection with naked eyes. The LOC set up was aimed for a cost effective approach. A solution (standard/sample) was injected into the vertical channel. After that, bromothymol blue (1.00% w/v in borate buffer) was injected into the horizontal channel. The time period of migration, that is, from starting injection of the dye until the dye moved in the channel and reached a mark on the chip, was made via naked eyes and using a stopwatch.

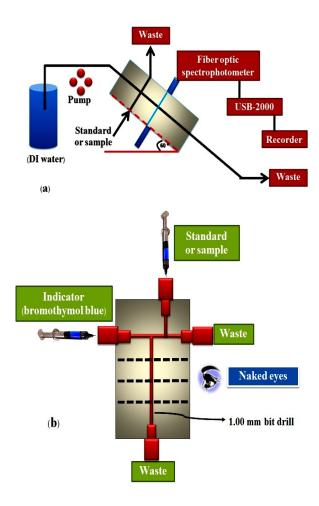


Figure 1. Simple LOC with (a) USB 2000 and (b) naked eyes.

3. Results and discussion

3.1 Simple LOC with fiber optic spectrophotometer

Using the LOC with fiber optic detector (fixed at 1.0 cm from the crossing of the channels), connecting to USB 2000 (see Figure 1(a)), a series of solutions (10.0-50.0 oBx) was injected into the horizontal channel, after filling the vertical channel with DI water using a peristaltic pump. Figure 2 illustrates the obtained signals due to 10.0 oBx. The turning point in the graph would refer to the time that the solution, after injecting, travels/migrates to the detection point. This is due to the Schlieren effect. Table 1 summarizes the turning points, or the migration times due to the standard solutions, and using different wavelengths. The greater the concentration, the longer migration time that was observed. This could be due to the viscosity.

Plotting a graph of the migration time vs. oBx would become a linear calibration graph. Calibration equations obtained were: y = 0.450 x + 8.500, R2 = 0.983 (for 470 and 500 nm) and y = 0.430 x + 9.500, R2 = 0.957 (for 800nm), with y being migration time, and x being the concentration (oBx). The condition operated at 800 nm should be used, as this would minimize the interferences that could be caused by color of the sample.

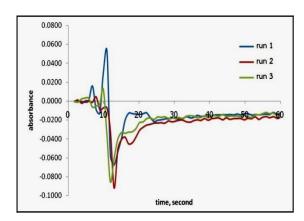


Figure 2. Example signals (due to 10 oBx solution) obtained using LOC with fiber optic detector (fixed at 1.0 cm from the crossing), connecting to USB 2000 spectrometer (at 500 nm).

Table 1. Turning points of standard sucrose solutions detected at four different wavelengths

[Cuarasa]	Turning point, sec			
[Sucrose], ^o Bx	470	500	600	800
DX	nm	nm	nm	nm
10	13	13	13	13
20	18	18	20	20
30	22	22	18	22
40	25	25	-	25
50	32	32	-	32

3.2 Simple LOC with naked eyes detection

In order to reach a cost effective approach, the LOC with detection via naked eyes and a stop watch (Figure 1(b)) was introduced. The difference from the above procedure for the LOC with fiber optic spectrophotometer, is that here, a solution (standard/sample) was injected to fill the channel via the vertical channel, then, bromothymol blue (1.00% w/v in borate buffer) was injected into the horizontal channel. The color moving due to bromothymol blue indicator could be visualized and it could be observed when the head of the zone reached the detection point. Migration time could be observed with naked eyes and a stopwatch. Detection points located at distances of 1.0, 1.5, 2.0, 2.5, and 3.0 cm were investigated by using 10-30 oBx of sucrose standard solutions. A detection at a longer distance results in longer analysis time. It was found that the detection point at 1.5 cm should be chosen. A calibration equation was y = 1.12 x +43.33, R2 = 0.993, with y being migration time (second) and x being concentration (oBx).

3.3 Application to real samples

Employing both LOC systems (one with fiber optic spectrophotometer, and another with naked eyes and a stopwatch), real samples of concentrate syrup and pharmaceutical preparations for cough syrup, taken from local markets and drug stores, were analyzed, with results as shown in

Table 2. The results of the proposed methods agree well with that obtained by a refractometer, which is normally employed.

Table 2. Analysis of samples by the proposed methods, s1-s4 being syrup samples; s5-s8 being pharmaceutical preparations for cough syrups. (the samples with appropriate dilutions before introducing into the LOC)

	[Sucrose], ^o Bx			
	LO			
Samples	USB 2000 (800nm)	naked eyes	Refracto- meter	
s1	78	69	75	
s2	73	61	68	
s3	82	65	75	
s4	65	59	67	
s5	50	44	54	
s6	55	67	64	
s7	70	65	67	
s8	38	48	42	

4. Conclusions

Simple LOC systems with fiber optic spectrophotometer and with naked eyes and a stop watch have been successfully developed for quantitation of sugar contents in syrup samples. They were applied to concentrate syrup samples and samples of pharmaceutical preparations for cough syrups.

The developed systems are cost effective down scaling in analysis. The LOC with fiber optic spectrophotometer involves reagentless procedure. This leads to green analytical chemistry.

Acknowledgements

Thanks are due to the Thailand Research Fund (TRF) and Chiang Mai University through The Center of Excellence for Innovation in Analytical Science and Technology (I-ANALY-S-T) for financial support. We thank Prof Gary Christian for comments and editing the manuscript.

References

[1] G.P. Meade, and J.C.P. Chen, Cane Sugar Handbook, 10th

- Edn., John Wiley and Sons, New York, 1977.
- [2] F.J. Rambla, S. Garrigues, and M. Guardia de la., *Anal.Chim. Acta*, **344**, 41 (1997).
- [3] D. Perrone, C. M. Donangelo, and A. Farah, *Food Chem.*, 110, 1030 (2008).
- [4] F. Mizutani, and S. Yabuki, *Biosens.Bioelectron*, **12**, 1013 (1997).
- [5] P. Thavarungkul, P. Suppapitnarm, P. Kanatharana, and B. Mattiasson, *Biosens. Bioelectron*, 14, 19 (1999).
- [6] Á. Alcázar, J. M. Jurado, M. J. Martín, F. Pablos, and A. G. González, *Talanta*, 67, 760 (2005).
- [7] M. Kogure, H. Mori, H. Ariki, C. Kojima, and H. Yamamoto, Anal. Chim. Acta, 337, 107 (1997).
- [8] S. Teerasong, S. Chan-Eam, K. Sereenonchai, N. Amornthammarong, N. Ratanawimarnwong, and D. Nacapricha, Anal. Chim. Acta, 668, 47 (2010).
- [9] E. R. Alves, P. R. Fortes, E. P. Borges, and A. G. Zagatto, Anal. Chim. Acta, 564, 231 (2006).
- [10] P. H. Diniz, K. D. de Melo, Y.N. Fagundes, A. de Araujo Gomes, E. C. do Nascimento, S. R. dos Santos, L. F. de Almeida, and M. C. de Araújo, *J Pharmaceut Biomed Anal.*, 62, 172 (2012).
- [11] I. D. McKelvie, M.W. Peat, G. P. Matthews, and P. J. Worsfold, *Anal. Chim. Acta*, 351, 265 (1997).
- [12] K. Grudpan, S. Kradtap Hartwell, W. Wongwilai, S. Grudpan, and S. Lapanantnoppakhun, Flow Analysis Conference, Spain (2009).
- [13] K. Grudpan, S. Lapanantnoppakhun, S. Kradtap Hartwell, K.Watla-iad, W. Wongwilai, W. Siriangkhawut, W. Jangbai, W. Kumutanat, P. Nuntaboon, and S. Tontrong, *Talanta*, 79, 990 (2009).
- [14] K. Ardnaree, S. Lapanantnoppakhun, W. Wongwilai1, and K. Grudpan, 16th International Conference on Flow Injection Analysis, Thailand, (2010).
- [15] W. Wongwilai, S. Lapanantnoppakhun, S. Grudpan , and K. Grudpan, *Talanta*, **81**, 1137 (2010).
- [16] B. van der Schoot, P. van der Wal, N. deRooij, and S. West, Sensor Actuator B Chem, 105, 89 (2005).
- [17] J. Hoffmann, L. Riegger, F. Bundgaard, D. Mark, R. Zengerle, and J. Ducrée, *Lab Chip*, **12**, 5231 (2012).

(Received July 11, 2013) (Accepted July 21, 2013)