Copyright © Taylor & Francis Group, LLC ISSN: 1060-1325 print/1520-5738 online DOI: 10.1080/10601320802100572

Improvement of Structural and Thermal Stabilities of PVC and Wood/PVC Composite by Zn and Pb Stearates, and Zeolite

NARONGRIT SOMBATSOMPOP,¹ KULNIDA TAPTIM,¹ KANTIMA CHAOCHANCHAIKUL,¹ CHANCHAI THONGPIN,² and VICHAI ROSARPITAK³

Received November, 2007, Accepted December, 2007

Three different chemical stabilizers were introduced into neat PVC and a wood/PVC composite (containing 50 phr wood flour) to improve their thermal and structural stabilities. The changes in CIE yellowness index, polyene index, %wt loss, and decomposition temperature (T_d) were monitored. The effects of type and content of thermal stabilizers, thermal ageing time, and the presence of wood flour were our main interests. The experimental results suggested that the additions of Zn and Pb stearates into PVC and wood/PVC composite could improve the thermal stability of the PVC. At the test temperature of 177° C, the additions of Zn and Pb stearates could improve the thermal stabilities of PVC by retarding the upzipped reaction and by reducing the conjugated double bonds in PVC, Pb stearate being the most suitable for thermally stabilizing the PVC. Around the T_d range ($\sim 264^{\circ}$ C), the addition of Zn stearate reduced the T_d value of PVC whereas that of Pb stearate had no effect on the change in T_d value. Zeolite loading could shift the T_d value of the PVC from 264 to 280°C. The addition of wood particles increased the polyene content and decreased the decomposition temperature of the PVC. The effect of wood flour on the thermal and structural changes of PVC overruled that of thermal stabilizer loading.

Keywords: poly(vinyl chloride); wood flour; thermal stabilizer; composite; extrusion

1 Introduction

Poly(vinyl chloride) (PVC) is one of the most widely used thermoplastics, but its thermal stability is very poor. Therefore, the addition of thermal stabilizers is necessary during processing. The degradation of PVC proceeds by a dehydrochlorination process resulting in the formation of long conjugated double bonds or polyene sequence (-CH=CH-)_n and the release of gaseous hydrogen chloride (HCl). This leads to progressive resin discoloration, degradation of the polymer backbone, and ultimately deterioration of the polymer properties. Thermal stabilizers are most commonly used in PVC compounds. Their operation involves a reaction with HCl. The commercial thermal stabilizers used

Address correspondence to: Narongrit Sombatsompop, Polymer Processing and Flow (P-PROF) Group, School of Energy, Environment and Materials, King Mongkut's University of Technology, Thonburi (KMUTT) Thongkru, Bangmod, Bangkok 10140, Thailand. Tel.: (662) 470-8645; Fax: (662) 470-8647; E-mail: narongrit.som@kmutt.ac.th

for PVC include metal soaps (lead, calcium, zinc, barium, aluminum and their composites), organotin compounds, organic stabilizers and inorganic stabilizers (zeolite and hydrotalcite). Metal soaps are used to displace the labile chlorine atom in PVC polymer chains by the ester from the decomposed stabilizer to stabilize the PVC. In addition, they can trap HCl gases to retard the damaging autocatalytic action of HCl released by PVC chains (1-5). Zeolite, an acid absorber, can also stabilize the PVC due to absorption of the evolved HCl (2). There are a number of published papers studying the effects of thermal stabilizers on improvement of thermal stabilities of PVC. Kalouskova et al. (1). investigated the effect of lead stearate and synthetic hydrotalcite, alone and in mixed cases, on the stability of PVC during heat treatment. They found that the addition of mixtures of lead stearate and synthetic hydrotalcite increased the thermal and color stabilities of PVC as compared with the addition of either lead stearate or synthetic hydrotalcite alone. Atakul et al. (2) found that using suitable amounts of zeolite and zinc stearate as costabilizer in PVC plastigel could lead to a synergistic effect on thermal stability of PVC. The most recent work, by Liu et al. (5), investigated

¹Polymer Processing and Flow (P-PROF) Group, School of Energy, Environment and Materials, King Mongkut's University of Technology, Bangmod, Bangkok, Thailand

²Faculty of Engineering and Industrial Technology, Department of Materials Science and Engineering, Silpakorn University, Nakornpathom, Thailand

³V.P. Wood Co., Ltd., Thungkru, Bangkok, Thailand

the performance of hydroxylbenzylthioethers employed as organic thermal stabilizers for rigid poly(vinyl chloride) and their efficiencies were compared with Ca-Zn soap and methyltin stabilizers. They found that hydroxylbenzylthioethers exhibited greater efficiency than the other two, this being attributed to the ability of these compounds to prevent the formation of polyene sequences. The hydroxylbenzylthioethers-stabilized PVC showed a slightly lower glass transition temperature in comparison with the original PVC compound.

Wood-polymer composite (WPC) products have been increasingly used in various applications because of cost savings, good mechanical properties, better dimension stability, environmentally friendly products, and low density as compared with use of synthetic-fiber and thermoplastic composites. Applications of the WPC products include decking, window and door profiles, automobile paneling, panel inserts, and flower pots. Wood-PVC composite products have a number of advantages over composite products from wood with other thermoplastics in terms of higher mechanical strength and ignition resistance and better flame retardation due to chlorine atoms in the molecules. However, wood-PVC composite products may be thermally and photochemically unstable by undergoing an autocatalytic dehydrochlorination reaction under heating and UV-light conditions, which quickly deteriorates the composite properties (6, 7). There are a number of reports on the effects of wood fiber types, contents, shape characteristics, surface treatments and processing conditions on the properties (mechanical, thermal, physical and morphological) of natural fiber/PVC composites (8–14) while little attention has been put on the thermal stability of PVC in wood-PVC composites. Matuana et al. (6, 7) studied the ultraviolet weathering performance of wood/ PVC composites and found that the addition of wood fiber had a deleterious effect on the ability of the PVC to resist degradation, but the UV stability of the composites could be improved by the incorporation of rutile-titanium dioxide pigment. Work by Sombatsompop et al. (9) has clearly suggested that the chlorine atoms in PVC could be cleaved easily due to presence of wood particles resulting in production of polyene units in the PVC molecules. This work is extended here by attempting to thermally stabilize the PVC in the wood-PVC composites by incorporating suitable thermal stabilizers into the composites.

As indicated above (1–5), there have been a number of published papers on the effects of incorporating different thermal stabilizers on the thermal stabilities of neat PVC, but those on the thermal stabilities of the PVC in wood-PVC composites are rare and still open for discussion among scientists and technologists. In this work, three different chemical stabilizers were introduced into both neat PVC compound and wood/PVC composite, and the thermal and structural stabilities of the PVC were monitored through the changes in CIE yellowness index, polyene sequences, percentage weight loss (rate of decomposition), and decomposition temperature. The effects of type and content of thermal

Table 1. The ingredients of PVC compounds and composites

Ingredients	Concentration (phr)
Suspension PVC grade SIAMVIC® 258RB	100.0
External lubricant (Finalux® G-741)	0.6
Calcium carbonate (Omyacarb [®] -2T)	12.0
Processing aids (PA-20)	6.0
Wood flour	0 and 50
Thermal stabilizers (Pb or Zinc stearate or Zeolites)	Varied (0, 2.4, 4.8)

stabilizers, thermal ageing time and the presence of wood flour were our main interest in this work. The stabilizing mechanisms of all thermal stabilizers used in the compound and composite were proposed and discussed.

2 Experimental

2.1 Raw Materials

The ingredients of the PVC compounds and composites are shown in Table 1. Suspension PVC was supplied by Vinyl Thai Co., Ltd. (Bangkok, Thailand) in the form of powder; the trade name was SIAMVIC-258RB with K value of 58. The PVC powder was dry-blended with various additives, as listed, to give PVC compounds. Wood particles were obtained from carpentry and wood-working processes and supplied by V.P. Wood Co., Ltd. (Bangkok, Thailand). The average size of the wood particles used in this work was in the range of 150–250 µm. Since previous works (7–9, 11) had extensively studied the effect of wood flour content on thermal and mechanical property changes of PVC in wood/PVC composites, the wood flour content added into the PVC compound in this work was fixed at 50 parts per hundred (phr) of PVC.

Three stabilizers were used in this study: namely; lead (Pb) stearate, and zinc (Zn) stearate, and zeolite; their chemical structures are listed in Table 2. Zeolite stabilizer was supplied by The PQ Chemical Co., Ltd. (Thailand) and both Pb and Zn stearates were supplied by Evergreen Chemical Co., Ltd. (Thailand). With these stabilizers, the influence of the chemical structure and their stabilization mechanisms on thermal stabilities of PVC in wood-PVC composites could be investigated.

Table 2. Chemical structures of thermal stabilizers used

Stabilizer	Chemical structure
Zn stearate Pb stearate Zeolite	$\begin{array}{l} Zn(C_{17}H_{35}COO)_2 \\ Pb(C_{17}H_{35}COO)_2 \\ \{Na_{12} \left[Al_{12}Si_{12}O_{48}\right] \cdot 27H_2O\}_8 \end{array}$

2.2 Preparation of Composite Specimens

Before blending the wood particles and PVC compound, the wood particles were subjected to heat treatment in an oven at 80°C for 24 h until the weight of the wood was constant. After that, the PVC compound was dry-blended with the wood flour by a high speed mixer for 2 min before they were melt-blended in a twin screw extruder (Haake Polylab-Rheomex CTW 100P, Germany). The blending temperature profiles on the extruder were 165, 175, 175 and 185°C from hopper to die zones. The screw rotation speed was 40 rpm, and a slit die having width x height x length of $18.2 \times 2 \times 16 \text{ mm}^3$ was used to produce slit extrudates. The extrudates were then passed through a cooling-system and sizing-control device before collection for thermal stability studies.

2.3 Characterizations

2.3.1 Thermogravimetric Analysis

The decomposition temperature (T_d) was analyzed with a TGA Instruments (Perkin-Elmer TGA7, Boston, MA). For comparison purposes, the onset of decomposition temperature (T_d) was taken when the 10% wt loss had occurred during the TGA runs. The temperature was first held at 100°C about 1 min for removing moisture. After that, the temperature was increased from 100 to 700°C with a heating rate of 5°C/min .

2.3.2 Chemical Degradation Analysis

Polyene sequences (ES) were determined using attenuated total reflectance Fourier-transform infrared (ATR-FTIR) analysis to assess the extent of degradation of the PVC in the mixture. This was carried out by measuring the reflectance difference percentage at the surface of the specimen, which was prepared by the twin screw extruder as mentioned earlier. The dimensions of the samples were prepared as 13 mm wide, 64 mm long and 2 mm thick. The tests were performed using FTIR Spectrometer (Nexus 470-FTIR Spectrometer, Wisconsin, USA) to produce spectra of reflectance against wave number. In this work, polyene sequences (ES) were calculated by subtracting the value of % reflectance of the peak of interest ($\%R_{1629}$) from the baseline ($\%R_{baseline}$) and dividing it by the reference value $(\%R_{2912})$ subtracted from the baseline $(\%R_{baseline})$ as shown in Equation (1) (15). The two different wave numbers followed were 2912 and 1629 cm⁻¹ for C-H stretching and polyene sequences (ES), respectively.

Polyene sequence (ES) =
$$\frac{\%R_{\text{baseline}} - \%R_{1629}}{\%R_{\text{baseline}} - \%R_{2912}}$$
 (1)

2.3.3 Discoloration Test

After processing, thermal stabilities were investigated according to ASTM D2115 (1992) by heating the neat PVC and wood-PVC composite samples at 177°C for various thermal

ageing times (0, 30, 45, 60, 90, 120, 180, 270 and 360 min). The color changes of the PVC compounds were determined using two different color systems, the DataColor CIE LAB System (GretagMacbeth; Color-Eye 3100), and the Munsell Color System, color differences between the measured compound and the control compound under normally visible light were determined (using D₆₅ as illuminant type) (16). The thermally aged specimens were evaluated using a UV-Vis Spectrophotometer (Shimatsu UV-Vis 3100 Spectrophotometer, Japan) according to the standard of the CIE LAB System for measuring X, Y and Z tristimulus values to calculate the CIE yellowness index as shown in Equation (2) (17). For the Munsell color system (18), only the Hue index was considered.

$$YI = \frac{100(1.28X_{CIE} - 1.06Z_{CIE})}{Y_{CIE}} \tag{2}$$

2.3.4 SEM Investigations

The morphological structure of the wood/PVC composites was investigated using a JEOL (JSM-6301F) SEM machine at 15 kV accelerating voltage. The details of the experimental procedure and sample preparations are given elsewhere (9, 11).

3 Results and Discussion

Figure 1 shows the changes in CIE yellowness index of neat PVC compound for various aging times ranging from 0 to 270 min for three different thermal stabilizers at 2.4 and 4.8 phr loadings. Since only the yellow-to-dark zone of PVC color change was considered, decreasing CIE yellowness index on the x-axis simply indicates a degradation of PVC (changing of the sample color from yellow to dark).

Unaged condition: Considering the CIE yellowness index for un-aged samples (0 min), the additions of Zn and Pb stearates resulted in a color change in the PVC while the addition of zeolite had no effect. The lower CIE yellowness index for the PVC compound with added Zn and Pb stearates in this stage (un-aged) resulted from the color of the Zn and Pb stearates, the PVC compounds turning white after these additions.

Aged condition: During the experiment, it was observed that in the ageing time of less than 30 min, the differences in the CIE yellowness results of PVC among the three stabilizers used were not obvious. Therefore, the CIE results were reported only after the ageing time from 30 to 270 min. The degradation reaction of PVC in the initial ageing time (less than 30) may have been retarded by the presence of the stabilizers used. The results in Figure 1 show that during the thermal ageing from 30 to 270 min, the non- and zeolite-stabilized PVC samples showed a progressive decrease in the CIE index (starting at 30 min) which indicated a progressive degradation of the PVC. The degradation of PVC is usually explained by a dehydrochlorination process, involving the formation of long conjugated double bonds or

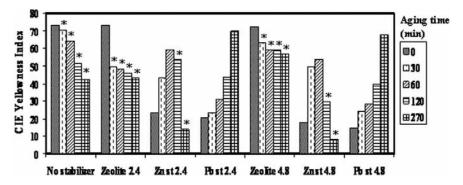


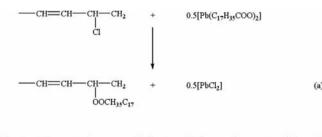
Fig. 1. CIE yellowness index of neat PVC with Zn, Pb and zeolite stabilizers for different ageing times at 177°C (* specimens turning brown color).

polyene groups (-CH=CH-)_n. The occurrence of the polyene groups in the PVC compound leads to the color change, usually turning into brown or dark. Figure 1 also shows that the color of the PVC samples with added Zn stearate changed from white to yellow in the first 60 min of ageing time and then, apparently, degraded (turning brown) at higher ageing times (120-270 mn). In the case of Pb stabilized PVC compound, no obvious degradation was observed for the whole period of ageing times studied although the samples turned yellow with increasing ageing time; the color of the Pb stabilized PVC sample after ageing was similar to the unaged sample with no brown color observed. Although the PVC samples with Pb or Zn stearates started out white, it could be confidently stated that both stearates could improve or prolong the resistance to thermal degradation as compared with zeolite and nonstabilized ones. Specifically, Pb stabilizer was regarded the most suitable of our additives for thermally stabilizing the PVC under the test temperature of 177°C. This statement appears to be true when considering the color change of PVC with Zn stearate after high ageing time of greater than 120 min.

It should be noted that the CIE index cannot be used alone to monitor the degradation of the PVC in the Zn and Pb stabilization systems, due to the fact that the starting CIE indexes (white color) of these compounds were different from those of the non- and zeolite stabilized PVC compounds. Therefore,

the Munsell Colors System was used for quantitative evaluation of the PVC degradation with the various thermal stabilizers; the results are shown in Table 3. The Zn and Pb stearates prolonged the resistance to thermal degradation of the PVC, the color of the PVC compounds remaining yellow (Y) for the whole period of ageing times used (greater than 30 min). In the case of non- and zeolite-stabilized PVC compounds, the color of the PVC changed from yellow-red (YR) to red (R) after thermal ageing. In addition, increasing the dosages of Pb stearate from 2.4 to 4.8 phr improved the thermal stability of the PVC. The Munsell results also re-confirmed that Pb stearate was the most suitable thermal stabilizer in this work.

The mechanisms of PVC stabilization by Zn and Pb stearates are illustrated by Schemes 1 and 2, respectively. Scheme 1 shows that Zn stearate can react with the PVC main-chains to retard the unzipping reaction by substituting the Cl atom with stearate group from the Zn stabilizer (Scheme 1a) and, with the HCl released from the dehydrochlorination process, to form ZnCl₂ molecules (Scheme 1b) (19). In the normal dehydrochlorination process, the released HCl could induce Cl cleavage from the mainchain. By using Zn stabilizer, Zn stearate can retard the dehydrochlorination process. However, it was evident (19) that ZnCl₂ molecules produced in Scheme 1 could cause a further dehydrochlorination by acting as a catalyst for further PVC degradation, and no longer effectively stabilized


Table 3. Results of hue color index for PVC compounds

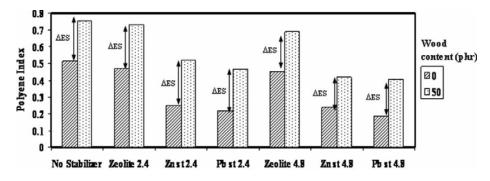
		Hue ind	ex at various aging tin	me (min)	
Formula	0	30	60	120	270
No stabilizer	2.5YR	0.1YR	9.8R	9.7R	7.7R
Zeolite 2.4 phr Zn st. 2.4 phr Pb st. 2.4 phr	4.5YR 7.9Y 8.5Y	3.0YR 2.5Y 5.9Y	2.8YR 0.1Y 5.0Y	2.7YR 0.7GY 4.8Y	2.4YR 6.4YR 9.0YR
Zeolite 4.8 phr Zn st. 4.8 phr Pb st. 4.8 phr	5.5YR 9.5Y 9.0Y	3.0YR 1.8Y 4.5Y	2.4YR 0.6Y 4.6Y	2.3YR 3.1GY 3.9Y	1.4YR 4.9YR 0.8Y

Note: $Y-Yellow,\,YR-Yellow-Red,\,R-Red,\,and\,GY-Green-Yellow.$

$$Zn(C_{17}H_{35}COO)_2 + 2HCl \longrightarrow ZnCl_2 + 2[C_{17}H_{35}COOH]$$
 (b)

Sch. 1. Stabilizing mechanism of PVC by Zn stearate.

 $Pb(C_{17}H_{35}COO)_2 \quad + \ HCl \longrightarrow \quad PbCl(C_{17}H_{35}COOH) \quad + \ \ HCl \longrightarrow \quad PbCl_2 \quad \ (1)$


Sch. 2. Stabilizing mechanism of PVC by Pb stearate.

the PVC. This was why the PVC samples turned brown (decreasing of CIE index shown in Figure 1) at longer ageing times of 120 and 270 min. It was observed that the catalytic effect of ZnCl₂ molecules to cause the further dehydrochlorination was not seen at shorter ageing times below 120 min, this probably is due to an insufficient concentration of ZnCl₂ molecules produced in the PVC compounds (20). It was, however, not intended to quantify the exact concentration of ZnCl₂ molecules in this present work. The stabilizing mechanism of PVC by Pb stearate in Scheme 2 was similar to that by Zn stearate, but the releasing rate of HCl molecules by Pb stearate and the further dehydrochlorination reaction by PbCl₂ molecules were much slower than those by Zn stearate, and ZnCl₂ molecules, respectively (21). Therefore, it could be said that the thermal stabilization of PVC by Pb stearate was more effective than that by Zn stearate.

Figure 2 shows the changes in polyene sequences (ES) for neat PVC compound and wood/PVC composite using the three different thermal stabilizers at dosages of 2.4 and 4.8 phr. The PVC sample with no stabilizers showed the highest polyene content. The results in Figure 2 can be considered in terms of two different effects:

Effect of wood flour incorporation: The concentration of polyene groups increased considerably in the presence of wood flour. The considerable increase in polyene sequence indicates a permanent thermal degradation, resulting from the dehydrochlorination reaction of the PVC in the composite (8, 9). The molecular degradation of PVC by the presence of wood was also observed by Matuana et al. (6, 7). In our work, it was proposed that the PVC degradation induced by the presence of wood particles was probably associated with two production sources, one from moisture residue and the other from HCl release acceleration: (a) moisture residue source; since the wood flour used in this work was hydrophilic in nature, the wood may have picked up moisture during storage, processing and testing. The hydroxyl groups (-OH) in the wood structure result in number of hydrogen bonds between the macromolecules of the wood and polymer. With the presence of moisture, these bonds were broken and new hydrogen bonds with water molecules were formed during the processing, so that Cl atoms could be more easily liberated from the PVC molecules and the HCl gas was then produced (22); (b) HCl release acceleration; it has been proposed that initial HCl and polyene sequences produced during processing could act as a catalyst in the PVC composite to accelerate the rate of the dehydrochlorination reaction, thus producing additional polyene sequences in the composite (23).

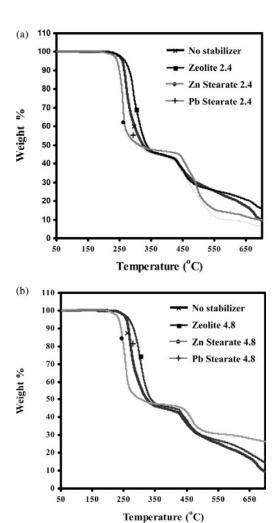

Effect of stabilizer type and content: The polyene content decreased in order of zeolite > Zn > Pb stearates, this being the case for both PVC compounds and with wood/PVC composite. The results correspond very well with the CIE yellowness and Hue indexes discussed earlier. It was interesting to note that the stabilizer content for any given stabilizer did not have an effect on the changes in polyene content in the neat PVC, but did have a slight effect in the wood-PVC composite. The difference in polyene content

Fig. 2. Polyene sequence of PVC in neat PVC and wood/PVC composite with Zn, Pb and zeolite stabilizers for different ageing times at 177°C.

(Δ ES) between unfilled and wood-filled PVC became smaller with increasing the stabilizer dosage from 2.4 to 4.8 phr. This was probably because the stabilizers added into the composites was high enough to reduce the HCl production as discussed in Schemes 1 and 2, and to retard the HCl acceleration as discussed, even in the presence of wood.

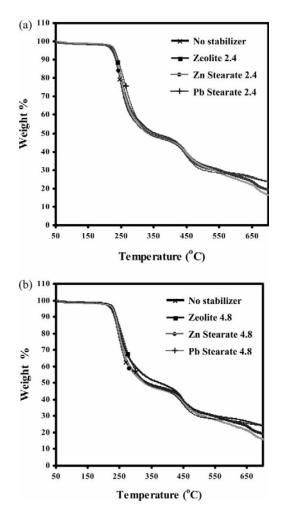

Structural changes during the processing of neat PVC and wood/PVC composite could also be assessed by considering percentage weight loss and decomposition temperature change of PVC through the TGA technique. The temperature at which the weight loss occurred directly indicates the commencing point of decomposition of the polymer. The faster the weight loss, the greater the rate of PVC decomposition. Figures 3a and 3b show the plots of %wt loss against temperature for neat PVC compound and with the three different thermal stabilizers at 2.4 and 4.8 phr loadings. It should be noted that the interpretation of the TGA results in Figure 3 cannot be directly compared to that of CIE yellowness or Munsell results in Figure 1 because the TGA results determined the thermal and structural stabilities of PVC around the decomposition temperature of PVC while the CIE and Munsell results evaluated the stabilities of PVC at the test temperature of 177°C under a prolonged period of time. The results in Figures 3a and 3b suggest that the rate of decomposition of PVC with Zn stearate was the fastest, that with Pb ranking second (equal to non-stabilized PVC), and that with zeolite being the slowest. The differences in Zn and Pb stearates on the weight loss change of PVC are due to differences in the abilities of Zn and Pb stearates to retard the dehydrochlorination process, and those of ZnCl₂ and PbCl₂ molecules to activate the further dehydrochlorination reaction of PVC as discussed earlier. The results in Figures 1 and 3 clearly indicate that Zn and Pb stabilizers could be used to thermally stabilize the PVC at the temperatures below its decomposition temperature, and tended to reduce the decomposition temperature of the PVC. Unlike Zn and Pb stearates, the addition of zeolite into the PVC compound resulted in a considerable shift of decomposition temperature of PVC from 264 to 280°C. The shift of the T_d value indicates a better thermal stability of the PVC. This was because the zeolite is an inorganic substance and can be used to absorb and capture evolved HCl molecules, from the dehydrochlorination reaction, into the zeolite structure (24). This may be why the %wt loss of the zeolite-stabilized PVC did not appear at 264°C (which was referred to as the decomposition temperature of the non-stabilized PVC). However, when the temperature was increased to about 280°C, a sudden drop in %wt loss of PVC added with zeolite was observed, indicating the decomposition temperature of PVC. The considerable shift of decomposition temperature of PVC from 264 to 280°C at this stage can be explained by the saturation of HCl absorption capacity of zeolite (25); the excess HCl evolved from dehydrochlorination reaction could no longer be absorbed by zeolite. The results in this work clearly show that the effectiveness of the three stabilizers used was dependent on the temperature.

Fig. 3. Plots of weight loss against temperature for neat PVC with Zn, Pb or zeolite stabilizers. (a) 2.4 phr stabilizer loading and (b) 4.8 phr stabilizer loading.

That is, the thermal stabilization of PVC can be referred to as either (a) prolonging the resistance to thermal degradation at service or processing temperatures or (b) increasing the decomposition temperature. In this respect, the Pb stearate was offered for the former case whereas the zeolite was for the latter case.

Figures 4a and 4b show the plots of %wt loss against temperature for wood/PVC composite with the three different thermal stabilizers at 2.4 and 4.8 phr. It can be seen that when adding the wood flour particles into the PVC, the effects of type and content of thermal stabilizers on the weight loss change became insignificant. This suggests that the effect of wood particles had a greater effect on the PVC stabilities than that of the three stabilizers. Table 4 shows the decomposition temperature (T_d) value of PVC in neat PVC and wood/PVC composite using the three different thermal stabilizers with 2.4 and 4.8 phr loadings. As expected, the T_d results corresponded well with the changes

Fig. 4. Plots of weight loss against temperature of PVC in wood/PVC composite with Zn, Pb and zeolite stabilizers. (a) 2.4 phr stabilizer loading and (b) 4.8 phr stabilizer loading.

in %wt loss as shown earlier. For neat PVC compound, the T_d value of Pb stabilized PVC was similar to the non-stabilized PVC (\sim 264°C), the T_d value reducing to lower values of 248 and 241°C with Zn stearate addition, and shifting to higher T_d

Table 4. Effect of thermal stabilizers and wood particles on decomposition temperatures

		emperature (°C) at vt. loss
Formula	Wood flour of 0 phr	Wood flour of 50 phr
No Stabilizer	264	235
Zeolite 2.4 phr Zn Stearate 2.4 phr Pb Stearate 2.4 phr	280 248 267	235 237 241
Zeolite 4.8 phr Zn Stearate 4.8 phr Pb Stearate 4.8 phr	280 241 269	237 237 240

value of 280°C with zeolite loading. For wood/PVC composite, the $T_{\rm d}$ value of PVC in the wood/PVC composite was much lower than that in the neat PVC. The reduction of $T_{\rm d}$ value by the presence of wood particles is attributed to the presence of moisture in the hydrophilic wood particles, and the HCl releasing acceleration as already discussed. The additions of none of the thermal stabilizers were found to change the $T_{\rm d}$ value of PVC in the wood/PVC composite.

4 Conclusions

In this work, studies on thermal and structural stabilities of PVC in neat PVC compound and wood/PVC composite were conducted in the presence of wood flour and the additions of Zn and Pb stearates and zeolite as thermal stabilizers. The main findings are noted as follows:

Thermal and structural stabilities of PVC during processing and at the test temperature of 177°C were evaluated through the changes in CIE yellowness and Munsell indices and polyene content. It was found that for neat PVC compound, the additions of Zn and Pb stearates could improve the thermal stabilities of PVC by retarding the upzipping reaction and by reducing the conjugated double bonds in PVC. Pb stearate was found to be the most suitable stabilizer in this work. The incorporation of zeolite was not observed to improve the thermal stability of PVC. For wood/PVC composite, the addition of wood particles resulted in increases in polyene sequences during processing.

Thermal and structural stabilities of PVC around its decomposition temperature range ($\sim\!264^{\circ}\mathrm{C}$ for neat PVC) were evaluated through the changes in %weight loss and T_d value. It was found that for neat PVC compound, the addition of Zn stearate decreased the T_d value whereas that of Pb stearate had no effect on the T_d value. Zeolite was found to act as an acid absorber for PVC thermal stabilization, resulting in a shift of T_d value from 264°C to about 280°C. For wood/PVC composite, loading of 50 phr wood particles in PVC considerably reduced the T_d value of the PVC in the composite from 264 to 235°C. The effect of thermal stabilizers on the changes in T_d result was overruled by the presence of wood particles.

5 Acknowledgments

The authors would like to express their thanks to our funding agencies (Thailand Research Fund (TRF), Small and Medium Enterprise (SME), and V.P. Wood Co., Ltd.) for financial support (Research Grant Code: IUG 5080029) throughout this work.

6 References

 Kalouskova, R., Novotna, M. and Vymazal, Z. (2004) Polym. Degrad. Stab., 85(2), 903-909.

- 2. Atakul, S., Balköse, D. and Ülkü, S. (2005) *J. Vinyl. Addit. Technol.*, **11(2)**, 47–56.
- Elakesh, E.O., Hull, R.T., Price, D. and Carty, P. (2005) Polym. Degrad. Stab., 88(1), 41–45.
- 4. Xu, Z.P., Saha, S.K., Braterman, P.S. and Souza, N.D. (2006) *Polym. Degrad. Stab.*, **91(12)**, 3237–3244.
- Liu, P., Zhu, L., Fang, Y., Zhang, H., Chen, D., Xu, K. and Chen, M. (2007) Polym. Degrad. Stab., 92(3), 503-508.
- Matuana, L.M., Kamdem, D.P. and Zhang, J. (2001) J. Appl. Polym. Sci., 80(11), 1943–1950.
- Matuana, L.M. and Kamdem, D.P. (2002) *Polym. Eng. Sci.*, 42(8), 1657–1666.
- 8. Djidjelli, H., Martinez-Vega, J.J., Farenc, J. and Benachour, D. (2002) *Macromol. Mater. Eng.*, **287(9)**, 611–618.
- Sombatsompop, N., Chaochanchaikul, K., Phromchirasuk, C. and Thongsang, S. (2003) *Polym. Intl.*, 52(12), 1847–1855.
- Matuana, L.M., Woodhams, R.T., Balatinecz, J.J. and Park, C.B. (1998) *Polym. Compos.*, **19(4)**, 446–455.
- Sombatsompop, N. and Chaochanchaikul, K. (2005) J. Appl. Polym. Sci., 96(1), 213–221.
- Zhao, Y., Wang, K., Zhu, F., Xue, P. and Jia, M. (2006) *Polym. Degrad. Stab.*, 91(12), 2874–2883.
- 13. Maldas, D. and Kokta, B.V. (1991) Bio. Technol., 35(3), 251-261.
- Sombatsompop, N., Yotinwattanakumtorn, C. and Thongpin, C. (2005) J. Appl. Polym. Sci., 97(2), 475–484.

- Sombatsompop, N., Sungsanit, K. and Thongpin, C. (2004) *Polym. Eng. Sci.*, 44(3), 487–495.
- Ohta, N. and Robertson, A.R. Colorimetry: Fundamental and Applications; John Wiley & Sons, Ltd: West Sussex, UK, 92–96, 2006.
- 17. Steenwijk, J., Langerock, R., Daan, S., Jacco van, H., Geus, J.W. and Jenneskens, L.W. (2006) *Polym. Degrad. Stab.*, **91(1)**, 52–59.
- 18. Sloane, P. Colour: *Basic Principles New Directions*; Reinhold Book Corporation: New York, 18–21, 1970.
- 19. Edenbaum, J. *Plastics Additives and Modifiers Handbook*; Van Nostrand Reinhold: New York, 272–337, 1992.
- Manzoor, W., Yousaf, S.M. and Ahmad, Z. (1996) *Polym. Degrad. Stab.*, 51(3), 295–299.
- Gachter, R., Muller, H. and Klemchuk, P.P. (1990) Plastics Additives Handbook: Stabilizers, Processing Aids, Colorants for Thermoplastics; Hansers: Munich, 271–323.
- Sombatsompop, N. and Chaochanchaikul, K. (2004) *Polym. Intl.*, 53(9), 1210–1218.
- Hjertberg, T. and Sorvik, E.M. In *Thermal Degradation of PVC*, Owen, E.D. (ed.); Elsevier Applied Science: New York, 75–89, 1984
- 24. Cruciani, G. (2006) J. Phys. Chem. Solid, 67(9-10), 1973-1994.
- Ven, L.V.D., Gemert, V.M.L.M., Batenburg, L.F., Keern, J.J., Gielgens, L.H., Koster, T.P.M. and Fischer, H.R. (2000) *Appl. Clay Sci.*, 17(1–2), 25–34.

เอกสารแนบ 3

- ผลงานวิจัยที่ยื่นขอจดสิทธิบัตรในหัวข้อเรื่องกรรมวิธีการเสริมแรงผลิตภัณฑ์จาก วัสดุผสมพีวีซีและขี้เลื่อยไม้โดยเส้นใยแก้วสังเคราะห์และสารเพิ่มเสถียรภาพทาง ความร้อนและแสงยูวี(Reinforcing and stabilizing Methods for Wood/PVC Composite Products by Synthetic Glass Fiber and Thermal-UV Stabilizers) ได้รับเลขที่คำขอ 0801004853

สำหรับเจ้าหน้าที่

		20 0 0 0000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
		22 N. U. 2551	0801004853		
	วันยื่นคำขอ	1			
คำขอรับสิทธิบัตร/ อนุสิทธิบัตร	สัญลักษณ์จ	าแนกการประดิษฐ์ระหา	ทางประเทศ		
-1					
🗹 การประดิษฐ์	ใช้กับแบบผลิตภัณฑ์				
 การออกแบบผลิตภัณฑ์ 	ประเภทผลิต	ๆภัณฑ์			
อนุสิทธิบัตร	วันเ	ไระกาศโฆษณา	เลขที่ประกาศโฆษณา		
ข้าพเจ้าผู้ลงลายมือชื่อในคำขอรับสิทธิบัตร/ อนุสิทธิบัตร นี้					
ขอรับสิทธิบัตร/ อนุสิทธิบัตร ตามพระราชบัญญัติสิทธิบัตร	วันขอกสิ	ทธิบัตร/อนุสิทธิบัตร	เลขที่สิทธิบัตร/อนุสิทธิบัตร		
พ.ศ. 2522 แก้ไขเพิ่มเติมโดยพระราชบัญญัติสิทธิบัตร (ฉบับ					
ที่ 2) พ.ศ. 2535 และพระราชบัญญัติสิทธิบัตร (ฉบับที่ 3)		ลายมือชื่อ	อเจ้าหน้าที่		
w.n. 2542					
 ชื่อที่แสดงถึงการประดิษฐ์/คารออกแบบผลิตภัณฑ์ 					
"กรรมวิธีการเสริมแรงผลิตภัณฑ์จากวัสดุผสมพีวีซีแล	ละขี้เลื่อยไม้	โดยเส้นใยแก้วสังเค	ราะห์และสารเพิ่มเสถียรภาพ		
ทางความร้อนและแสงยูวี"					
2. คำขอรับสิทธิบัตรการออกแบบผลิตภัณฑ์นี้เป็นคำขอสำหรับเ	แบบผลิตภัณร	์ ก่อย่างเดียวกันและเป็นค	คำขอลำดับที่		
ในจำนวน คำขอ ที่ยื่นในคราวเดียวกัน					
 ผู้ขอรับสิทธิบัตร/อนุสิทธิบัตร และที่อยู่ (เลขที่ ถนน จังหวัด ป 	ไระเทศ)	3.1 สัญชาติ ไทย			
(ดูใบต่อ หน้า 3)		3.2 โทรศัพท์ 0-2470)-9685-8		
		3.3 โทรสาร 0-2872-	9083		
		3.4 ขีเมล์ research@	@kmutt.ac.th		
4. สิทธิในการขอรับสิทธิบัตร/ อนุสิทธิบัตร					
🗆 ผู้ประดิษฐ์/ผู้ออกแบบ 🖾 ผู้รับโอน 🗀 ผู้ขอ	รับสิทธิโดยเห	ตุอื่น			
5. ตัวแทน (ถ้ามี)/ ที่อยู่ (เลขที่ ถนน จังหวัด ประเทศ รหัสไปร	ษณีย์)	5.1 ตัวแทนเลขที่ 174	5,1739		
นางสาวผ่องศรี เวสารัช และ/หรือ นางสาวเชาวนี สน		5.2 โทรศัพท์ 0-2470	-9685-8		
ศูนย์ส่งเสริมงานวิจัยและทรัพย์สินทางปัญญา	5.3 โทรสาร 0-2872-9083				
มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี	5.4 ขีเมล์ research@kmutt.ac.th				
126 ถ.ประชาอุทิศ แขวงบางมด เขตทุ่งครุ กรุงเทพฯ					
6. ผู้ประดิษฐ์/ผู้ ออกแบบผลิตภัณฑ์ และที่อยู่ (เลขที่ ถนน จังหวั	โด ประเทศ)				
(ดูใบต่อ หน้า 3)					
7. คำขอรับสิทธิบัตร/อนุสิทธิบัตรนี้แยกจากหรือเกี่ยวข้องกับคำ		9.52	250		
ผู้ขอรับสิทธิบัตร/อนุสิทธิบัตรขอให้ถือว่าได้ยื่นคำขอรับถึ	สิทธิบัตร/อนุสิ	ทธิบัตรนี้ไว้ ใ นวันเดียวกัว	บคำขอรับสิทธิบัตรเลขที่		
วันยื่น เพราะคำขอรับสิทธิบัตร/อนุสิทธิบัต					
	270		ลี่ยนแปลงประเภทของสิทธิ		
<u>หมายเหตุ</u> ในกรณีที่ไม่จาจรระบุรายละเจียดได้ครบถ้วน ให้จัดทำเป็นเช	อกสารแนบท้ายเ	แบบพิมพ์นี้โดยระบุหมายเล	บกำกับข้อและหัวข้อที่แสดง		
รายละเชียดเพิ่มเติมดังกล่าวด้วย					

วันยื่นคำขอ	เลขที่คำขอ		ŋ	ระเทศ	7	าษณ์จำแนกการ ฐ์ระหว่างประเทศ	สถานะคำขอ
3.1						19	
3.2							
3.3							
	บัตร/อนุสิทธิบัตรขอ: อกสารหลักฐานพร้อ						ต่างประเทศ เป็นครั้งแรก
 การแสดงการประ วันแสดง 	ะดิษฐ์หรือการออกแ	บบผลิตภัถ วันเปิดงา		ทธิบัตร/อนุสิทธิบัต		จงการประดิษฐ์ที่หน่วย จัด	งานของรัฐเป็นผู้จัด
10. การประดิษฐ์เกี่	ยวกับจุลชีพ						
10.1 เลขทะเบียนฝ	ากเก็บ	10.2 วันที	เฝากเก็บ			10.3 สถาบันฝากเก็บ	1
	บภายใน 90 วัน นับจ	ากวันยื่นค			าขอนี้แ	 ละจะจัดยื่นคำขอรับสำ	าธิบัตร/อนุสิทธิบัตรนี้ที่
🗆 อังกฤษ	□ ฝรั่ง	ั่งเศส		🗆 เยอรมัน		🗆 ญี่ปุ่น	🗆 อื่นๆ
หลังจากวันที่ □ ผู้ขอรับสิทธิบัต	ร/อนุสิทธิบัตรขอให้ใ ตร/ อนุสิทธิบัตร นี้ประ	เดือน ช้าูปเขียนเ			.ศ. ระกาศโร	กระบา	าศโฆษณาอนุสิทธิบัตรนี้
ก. แบบพิมพ์คํ		3	หน้า	🗆 เอกสารแ	สดงสิทร์	รู ในการขอรับสิทธิบัตร	/อนุสิทธิบัตร
ข. รายละเอียด	าการประดิษฐ์					รแสดงการประดิษฐ์/ก	87
	ณนาแบบผลิตภัณฑ์	7	หน้า	ผลิตภัณ		_	
ค. ข้อถือสิทธิ		2	หน้า	🗆 หนังสือม	อบอำน	าจ	
ง. รูปเขียน	- 3J	-	หน้า	🗆 เอกสารร	ายละเอี	ยดเกี่ยวกับจุลชีพ	
จ. ภาพแสดงเ	เบบผลิตภัณฑ์			🗆 เอกสารก	ารขอนัเ	บวันยื่นคำขอในต่างปร	ะเทศเป็นวันยื่น
🗆 รูปเขียน	åЛ		หน้า	คำขอในเ	ประเทศ'	ไทย	
🗆 ภาพถ่าย	ย มีกุ		หน้า	🗆 เอกสารข	อเปลี่ยา	แปลงประเภทของสิท	ก็
ฉ. บทสรุปการ	ประดิษฐ์	1	หน้า	🗆 เอกสารอื่	นๆ หนัง	เลือโอนสิทธิ์	
🗆 การประเ	ดิษฐ์นี้ไม่เคยยื่นขอรั	ปรุงมาจาก	1		•••••		

<u>หมายเหตุ</u> บุคคลใดยื่นขอรับสิทธิบัตรการประดิษฐ์ หรือการออกแบบผลิตภัณฑ์ หรืออนุสิทธิบัตร โดยแสดงข้อความอันเป็นเท็จแก่พนักงานเจ้าหน้าที่ เพื่อให้ได้ไปซึ่งสิทธิบัตรหรืออนุสิทธิบัตร ต้องระวางจำคุกไม่เกิน 6 เดือน หรือปรับไม่เกินห้าพันบาท หรือทั้งจำทั้งปรับ

3. ผู้ขอรับสิทธิบัตร/อนุสิทธิบัตร และที่อยู่ (เลขที่ ถนน จังหวัด ประเทศ)

- มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี
 126 ถนนประชาอุทิศ แขวงบางมด เขตทุ่งครุ กรุงเทพฯ 10140
- 2. สำนักงานกองทุนสนับสนุนการวิจัย ตั้งอยู่เลขที่ 979/17-21 ชั้น 14 อาคารเอสเอ็ม ทาวเวอร์ ถนนพหลโยธิน แขวงสามเสนใน เขตพญาไท กรุงเทพฯ 10400
- 3. บริษัท วี.พี. วู๊ด จำกัด ตั้งอยู่เลขที่ 84/3 หมู่ 8 ถนนสุขสวัสดิ์ อำเภอพระประแดง สมุทรปราการ 10130

6. ผู้ประดิษฐ์/ผู้ออกแบบผลิตภัณฑ์ และที่อยู่ (เลขที่ ถนน จังหวัด ประเทศ)

- นายณรงค์ฤทธิ์ สมบัติสมภพ
 คณะพลังงานสิ่งแวดล้อมและวัสดุ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี
 126 ถนนประชาอุทิศ แขวงบางมด เขตทุ่งครุ กรุงเทพฯ 10140
- นายวิชัย โรชาร์พิทักษ์
 บริษัท วี.พี. วู๊ด จำกัด
 84/3 หมู่ 8 ถนนสุขสวัสดิ์ อำเภอพระประแดง จังหวัดสมุทรปราการ 10130
- นางสาวกัลทิมา เชาว์ชาญชัยกุล
 คณะพลังงานสิ่งแวดล้อมและวัสดุ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี
 126 ถนนประชาอุทิศ แขวงบางมด เขตทุ่งครุ กรุงเทพฯ 10140

รายละเอียดการประดิษฐ์

ชื่อที่แสดงถึงการประดิษฐ์

5

10

15

20

25

30

กรรมวิธีการเสริมแรงผลิตภัณฑ์จากวัสดุผสมพีวีซีและขี้เลื่อยไม้โดยเส้นใยแก้วสังเคราะห์ และสารเพิ่มเสถียรภาพทางความร้อนและแสงยูวี

(Reinforcing and stabilizing Methods for Wood/PVC Composite Products by Synthetic Glass Fiber and Thermal-UV Stabilizers)

ลักษณะและความมุ่งหมายของการประดิษฐ์

ลักษณะของการประดิษฐ์นี้ คือ การนำขี้เลื่อยไม้ซึ่งเป็นวัสดุธรรมชาติที่เป็นเศษเหลือทิ้งใน กระบวนการแปรรูปไม้มาหมุนเวียนใช้ใหม่ในกระบวนการอัดรีดขึ้นรูป โดยการผสมกับพลาสติก พีวีซี โดยมีการใช้ปริมาณขี้เลื่อยไม้ที่มีความเข้มข้นสูง และมีการปรับปรุงส่วนผสมของวัสดุผสม โดยการเติมสารเคมีเฉพาะการใช้งาน 2 ส่วน คือ ส่วนที่ 1 มีการเติมเส้นใยแก้วสังเคราะห์ เพื่อ ปรับปรุงสมบัติทางกลเชิงโครงสร้างของผลิตภัณฑ์ และส่วนที่ 2 มีการเติมสารเพิ่มความเสถียรทาง ความร้อนและทางแสงยูวี เพื่อปรับปรุงสมบัติความคงทนต่อสภาพอากาศ ดังนั้นวัตถุประสงค์ของ การประดิษฐ์นี้ คือ เพื่อพัฒนาสมบัติทางกลเชิงโครงสร้างให้เหมาะกับการนำไปใช้งานในทาง โครงสร้างอาคารที่มีความคงทนต่อสภาพอากาศและความร้อน

สาขาวิทยาการที่เกี่ยวข้องกับการประดิษฐ์

วิศวกรรมในส่วนที่เกี่ยวข้องกับกรรมวิธีการเสริมแรงวัสดุผสมพีวีซีและขี้เลื่อยไม้ด้วยเส้น ใยแก้วสังเคราะห์ และกรรมวิธีการเพิ่มเสถียรภาพทางความร้อนและแสงยูวี

ภูมิหลังของศิลปะหรือวิทยาการที่เกี่ยวข้อง

วัสดุผสมพีวีซีกับขี้เลื่อยไม้จัดเป็นผลิตภัณฑ์ไม้ประดิษฐ์ ที่นำเศษขี้เลื่อยไม้ หรือสิ่งที่เหลือ ใช้จากกระบวนการแปรรูปไม้มาผสมกับพีวีซี และขึ้นรูปด้วยกระบวนการอัดรีด และสามารถ ประกอบและติดตั้งด้วยกรรมวิธีเดียวกันกับไม้จริง (สามารถไส ขัดผิว และตอกตะปูได้เหมือนกับไม้ จริง) แต่การใช้งานในปัจจุบันยังถูกจำกัดอยู่ในงานประเภทงานตกแต่งภายในและงานผนังที่ไม่ ต้องรับแรงมากนัก เพื่อเป็นการเพิ่มขีดความสามารถของการนำวัสดุผสมพีวีซีกับขี้เลื่อยไม้มาใช้ใน งานโครงสร้างอาคาร เช่น การทำเป็นคาน และเสา เป็นต้น ทางคณะผู้ประดิษฐ์จึงได้ทำการ ปรับปรุงสมบัติทางกลเชิงโครงสร้างของผลิตภัณฑ์วัสดุผสมพีวีซีกับขี้เลื่อยไม้ด้วยการเติมเส้นใย

หน้าที่ 2 ของจำนวน 7 หน้า

แก้วสังเคราะห์ และมีการเติมสารเคมีอื่นๆ เพื่อช่วยเพิ่มความสามารถในการผลิต และรักษา เสถียรภาพทางความร้อนและแสงยูวีให้แก่ผลิตภัณฑ์จากวัสดุผสมพีวีซีกับขี้เลื่อยไม้

ตัวอย่างสิทธิบัตรที่เกี่ยวข้องกับสิทธิบัตรนี้

5

10

15

20

25

- 1. สิทธิบัตรสหรัฐอเมริกา เลขที่ 20040126568 ชื่อ "Advanced Polymer Wood Composite" ออกให้แก่ Michael J. Dener, Wis.; Giuseppe Puppin, Bayport; Kurt E. Heikkila, Circle Pines, both of Minn. เมื่อวันที่ 17 ตุลาคม 2538 โดยมีการถือสิทธิ เม็ด พลาสติกคอมโพสิต ที่อัดรีดผ่านเครื่องอัดรีด มีขนาดของเม็ดพลาสติกคอมโพสิต ช่วง 1-10 มิลลิเมตร โดยมีส่วนประกอบ คือ พีวีซี 45-70 %โดยน้ำหนัก เส้นใยไม้ 30-50 %โดย น้ำหนัก มีอัตราส่วนระหว่างความยาวเส้นใยและเส้นผ่านศูนย์กลางของเส้นใย 1.8 และ ควบคุมความชื้นของเส้นใยไม่เกิน 8 %
- 2. สิทธิบัตรสหรัฐอเมริกา เลขที่ 5,847,016 ชื่อ "Polymer and wood flour composite extrusion" ออกให้แก่ Marley Mouldings Inc. เมื่อวันที่ 8 ธันวาคม 2541 โดยมีการถือ สิทธิในส่วนผสมของพีวีซีกับซีพีวีซี (CPVC) พอลิสไตรีนและผงไม้ โดยมีขั้นตอนการผลิต เริ่มจากเตรียมของผสมเป็นเม็ด แล้วจึงนำไปขึ้นรูปด้วยกระบวนการอัดรีด ซึ่งลักษณะของ ไม้เทียมนี้จะมีโครงสร้างภายในเป็นโฟมด้วย
- 3. สิทธิบัตรไทย เลขที่สิทธิบัตร 8263 ออกให้แก่นายจีรพรรณ จารุนาวิน และนายจีรพงษ์ จารุนาวิน เมื่อวันที่ 7 สิงหาคม 2541 โดยมีการถือสิทธิ สูตรส่วนผสมในการสร้างไม้เทียม ซึ่งในสูตรประกอบด้วย โพลีเอสเตอร์ เรซิน 50 % โดยน้ำหนัก ผงไม้ละเอียด 35 % โดย น้ำหนัก โพลียูรีเทนโฟม คอมพลีเม้นท์ A (โพลีออล) 10 %โดยน้ำหนัก และโพลียูรีเทนโฟม คอมพลีเม้นท์ B (ไอโซไซยาเนต) 5 %โดยน้ำหนัก
- 4. สิทธิบัตรสหรัฐอเมริกา เลขที่ 6,271,270 ชื่อ "Fiber-reinforced recycled thermoplastic composite" ออกให้แก่ Muzzy; John D., Holty; David W., Eckman; Douglas C., Stoll; John R. เมื่อวันที่ 7 สิงหาคม 2544 โดยมีการถือสิทธิ สูตรส่วนผสมและกรรมวิธี การเตรียมวัสดุผสมเทอร์โมพลาสติกแบบนำกลับมาใช้มาใหม่ที่เสริมแรงด้วยเส้นใย ธรรมชาติและเส้นใยสังเคราะห์ ประกอบด้วย เทอร์โมพลาสติกที่นำกลับมาใช้ใหม่จาก ผลิตภัณฑ์พรม คือ พอลิเอทธิลีน พอลิพรอพิลีน ในล่อน พอลิเอทธิลีนเทเรฟทาเลต และ ยางสไตรีน-บิวตะไดอีน และมีการเติมเส้นใยแก้ว เส้นใยธรรมชาติ (ฝ้าย ปอ ป่าน ศรนารายณ์ และปอกระเจา) เส้นใยคาร์บอน และเส้นใยอะรามิด ที่มีความยาวเส้นใย มากกว่าหรือเท่ากับ ½ นิ้ว และค่ามอดุลัสมากกว่าหรือเท่ากับ 10⁶ ปอนด์/นิ้ว² อย่างน้อย

1 ชนิด ปริมาณ 20-60 %โดยน้ำหนัก และมีการเติมเอ็มเอพีพี (MAPP) ปริมาณ 10 %โดย น้ำหนักของเทอร์โมพลาสติก เพื่อทำหน้าที่ยึดเกาะระหว่างเฟสเทอร์โมพลาสติกและเส้น ใย โดยทำการเคลือบเป็นชั้นๆ

5. สิทธิบัตรไทย เลขที่สิทธิบัตร 22706 ออกให้แก่ สำนักงานกองทุนสนับสนุนการวิจัย มหาวิทยาลัยเทคในโลยีพระจอมเกล้าธนบุรี และบริษัท วี.พี. พลาสติก โปรดักส์ (1993) จำกัด เมื่อวันที่ 24 ธันวาคม 2545 โดยมีการถือสิทธิ สูตรส่วนผสมสำหรับการผลิต ผลิตภัณฑ์จากวัสดุผสมพีวีซีกับขี้เลื่อยไม้ในกระบวนการอัดรีด โดยมีปริมาณขี้เลื่อยไม้ใน การผสมระหว่าง 40-70 ส่วนในพีวีซี 100 ส่วน ผลิตภัณฑ์วัสดุผสมพีวีซีกับขี้เลื่อยไม้ที่ได้ มีสมบัติทางกลด้านความทนต่อแรงกระแทกที่โดดเด่น เนื่องจากในสูตรส่วนผสมมีการเติม สารเพิ่มความเหนียว 2 ชนิด คือ พีวีซีเรซินอิมัลชั่น และแคลเซียมคาร์บอเนตชนิดปรับปรุง ผิว ซึ่งสารเพิ่มความเหนียวทั้งสองชนิดมีกลไกการทำงานที่เสริมกัน อย่างไรก็ตาม สิทธิบัตรดังกล่าวยังมีข้อจำกัดในเรื่องการใช้งานในเชิงโครงสร้างขนาดใหญ่

5

10

15

20

- 6. สิทธิบัตรสหรัฐอเมริกา เลขที่ 6,380,272 ชื่อ "Manufacturing method for structural members from foamed plastic composites containing wood flour" ออกให้แก่ Chen; Kuei Yung Wang เมื่อวันที่ 30 เมษายน 2545 โดยมีการถือสิทธิ วิธีการเตรียม ส่วนผสมและกระบวนการอัดรีดไม้เทียม โดยการผสมแห้งโดยใช้พีวีซีผสมผงไม้ สารเพิ่ม ความเสถียรทางความร้อน และสารพองฟู จากนั้นนำไปเข้าเครื่องกวนที่ให้ความร้อน แล้ว จึงเข้าสู่เครื่องกวนที่ให้ความเย็นซึ่งการผสมนี้ใช้ความเร็วสูงเพื่อให้ผงมีการผสมและ กระจายเป็นเนื้อเดียวกัน จากนั้นจึงเข้าสู่กระบวนการอัดรีดโดยจะต้องมีการดูดอากาศ ภายในเครื่องอัดรีดด้วย
- 7. สิทธิบัตรสหรัฐอเมริกา เลขที่ 20030229160 ชื่อ "Non-wood fiber plastic composites" ออกให้แก่ Williams, Joseph B.; Geick, Kenneth S.; Tafesh, Ahmed M.; Jiang, Xiao; เมื่อวันที่ 18 เมษายน 2546 โดยมีการถือสิทธิในเรื่อง ส่วนผสมระหว่างพอลิเมอร์กับเส้น ใยเซลลูโลส ประกอบด้วย เส้นใยเซลลูโลส 30-70 %โดยน้ำหนัก พอลิเมอร์ 70-30%โดย น้ำหนัก และสารหล่อลื่นในกลุ่มของเอททอกซีเลท เอสเทอร์ (ethoxylated esters) ของไฮแดนโตอิน (hydantoins) เอททอกซีเลท เอสเทอร์ของซอร์บิทอล (sorbitol) และ เอทธิลีน บิสเอไมด์ (ethylene bisamides) ปริมาณ 1-7 %โดยน้ำหนัก พอลิเมอร์ที่ใช้ คือ พอลิเอทิลีนชนิดความหนาแน่นสูง และเส้นใยเซลลูโลสได้จากไม้โอ๊ก สับปะรด ข้าวโพด ฟางข้าว ปอ และไม้ไม่ เป็นต้น

หน้าที่ 4 ของจำนวน 7 หน้า

8. สิทธิบัตรสหรัฐอเมริกา เลขที่ 20030087994 ชื่อ "Flax-filled composite" ออกให้แก่ Frechette, John P. เมื่อวันที่ 8 พฤษภาคม 2546 มีการถือสิทธิในเรื่อง ส่วนผสมของวัสดุ ผสมระหว่างเส้นใยลินิน กับพอลิเมอร์ เช่น พอลิไวนิลคลอไรด์ พอลิพรอพิลีน พอลิเอทิลีน ชนิดความหนาแน่นสูง และสารเติมแต่งต่างๆ เช่น สารหล่อลื่น สารพองฟู เพื่อประดิษฐ์ เป็นวัสดุเชิงไม้ที่มีลักษณะเนื้อเป็นโฟมและเนื้อแข็ง เพื่อทดแทนการใช้ไม้จริงจาก ธรรมชาติ สามารถขึ้นรูปได้หลายกระบวนการ เช่น การอัดรีด การฉีด

5

10

15

- 9. สิทธิบัตรสหรัฐอเมริกา เลขที่ 6,586,504 ชื่อ "Wood and plastic composite material and methods for makingsame" ออกให้แก่ Archuletta, et al. เมื่อวันที่ 1 กรกฎาคม 2546 มีการถือสิทธิในเรื่องของสูตรส่วนผสมของวัสดุผสมระหว่างอนุภาคของผงไม้และ พลาสติก โดยผงไม้ที่ใช้ได้มาจากทุกส่วนของไม้ตระกูลสน (เปลือก ลำต้น และกิ่ง เป็นต้น) มีขนาดอนุภาคอยู่ในช่วง 0.03125–0.25000 นิ้ว และมีปริมาณความชื้นไม่เกิน 2-5 % ส่วนพลาสติกที่ใช้เป็นพวกเทอร์โมพลาสติก ซึ่งก็คือ พอลิพรอพิลีน พอลิเอทธิลีน พอลิยูรีเทน และพอลิไวนิลคลอไรด์ ปริมาณของผงไม้ และพลาสติกในวัสดุผสมอยู่ในช่วง 20-50 % โดยน้ำหนัก
- 10. สิทธิบัตรสหรัฐอเมริกา เลขที่ 20040142160 ชื่อ "Wood fiber polymer composite extrusion and method" ออกให้แก่ Cannon, Chuck; Melkonian, George; Hammock, John เมื่อวันที่ 22 กรกฎาคม 2547 โดยมีการถือสิทธิในเรื่อง ส่วนผสมในการผลิตโฟม ในกระบวนการอัดรีดระหว่างสไตรีน อะคริโลไนไตรล์ (styrene acrylonitrile, SAN) กับ เส้นใยเซลลูโลส ประกอบด้วย สไตรีน อะคริโลไนไตรล์ 70-90 %โดยน้ำหนัก เส้นใย เซลลูโลส 5-25 %โดยน้ำหนัก บิวตะไดอีน สไตรีน (butadiene styrene, BS) 2-27 %โดย น้ำหนัก สารหล่อลื่น 0.1-0.4 %โดยน้ำหนัก สารหล่อลื่น 0.4-3 %โดยน้ำหนัก สารพองฟู 0.4-3 %โดยน้ำหนัก

หน้าที่ 5 ของจำนวน 7 หน้า

การเปิดเผยการประดิษฐ์โดยสมบูรณ์

การเปิดเผยการประดิษฐ์ใดยสมบูรณ์ มีรายละเอียดดังนี้ <u>สูตรส่วนผสมและกรรมวิธีการเสริมแรง และรักษาเสถียรภาพผลิตภัณฑ์</u>

การประดิษฐ์นี้เป็นการผลิตผลิตภัณฑ์จากวัสดุผสมพีวีซีกับขี้เลื่อยไม้ที่มีการเสริมแรงด้วย เส้นใยแก้วสังเคราะห์ ด้วยกระบวนการอัดรีดขึ้นรูป โดยเริ่มจากการเตรียมของผสมระหว่างพีวีซี ขี้เลื่อยไม้ เส้นใยแก้วสังเคราะห์ และสารช่วยผลิต หรือสารเติมแต่งต่างๆ ดังนี้

- พีวีซีเรซิน ปริมาณ 100 phr ซึ่งเรซินนี้มีค่าเค (K value) 58-70 เป็นเรซินแบบ แขวนลอย (Suspension resin) ที่เหมาะสำหรับการผลิตกรอบบานประตูและ หน้าต่าง
- ขี้เลื่อยไม้ ปริมาณ 70-100 phr โดยขนาดของขี้เลื่อยควรมีอนุภาคอยู่ในช่วงประมาณ
 200-300 ไมครอน และเพื่อที่จะได้สมบัติทางกลที่ดี ต้องมีการอบไล่ความชื้นก่อนที่จะ
 นำมาผสมกับพีวีซีด้วย ซึ่งต้องควบคุมความชื้นไม่ควรเกิน 5 %โดยน้ำหนัก
- เส้นใยแก้วสังเคราะห์ เกรดอีกลาส (E glass) ปริมาณ 10–50 phr โดยเส้นใยแก้ว สังเคราะห์มีเส้นผ่านศูนย์กลางของเส้นใย อยู่ในช่วง 10-15 ไมครอน และมีความยาว เส้นใยแก้วอยู่ในช่วง 3-12 มิลลิเมตร โดยขนาดของเส้นใยแก้วสังเคราะห์ที่ระบุนั้น ได้มาจากการพิจารณาทั้งในแง่ของความสามารถในการผลิตขึ้นรูป และสมบัติทางกล ที่ดีควบคู่กัน และเส้นใยแก้วสังเคราะห์ดังกล่าวได้มีการปรับปรุงผิวด้วยสารคู่ควบ ไซเลน ปริมาณ 0.5-2.0 %โดยน้ำหนักของเส้นใย
- สารเพิ่มความเหนียวพีวีซี เช่น พีวีซีอิมัลชั่น (Emulsion PVC: SIAMVIC374MB)
 ปริมาณ 3-5 phr ซึ่งพีวีซีเรซินนี้เป็นเรซินแบบอิมัลชั่น (Emulsion resin) ในที่นี้ทำ หน้าที่เป็นสารช่วยเพิ่มความทนแรงกระแทก (Impact modifier)
- สารเพิ่มความเสถียรทางความร้อน เช่น สารอินทรีย์เชิงซ้อน (Organic Complex: TS-DBL-Pb-Ba) ใช้ในปริมาณ 3.4-3.8 phr ทำหน้าที่เป็นสารเพิ่มความเสถียรทางความ ร้อน โดยมีส่วนประกอบของสารตะกั่วกับแบเรียม ซึ่งทำให้มีความทนต่อสภาพอากาศ ทนต่อความร้อน อีกทั้งยังช่วยทำให้ขึ้นรูปได้ง่าย ช่วยทำให้เกิดการหลอมรวมตัว (Gelation) ได้ดีและมีปริมาณการผลิตเพิ่มสูงขึ้น
- สารเพิ่มความเสถียรภาพความร้อน แบบสารชนิดเดี่ยว ซึงค์สเตียเรต (Zinc stearate)
 ปริมาณ 2-8 phr ทำหน้าที่เพิ่มเสถียรภาพทางความร้อน
- สารเพิ่มความเสถียรภาพความร้อน แบบสารชนิดเดี่ยว ตะกั่ว สเตียเรต (Lead stearate) ปริมาณ 2-8 phr ทำหน้าที่เพิ่มเสถียรภาพทางความร้อน

10

15

20

หน้าที่ 6 ของจำนวน 7 หน้า

- สารเพิ่มความเสถียรภาพความร้อน แบบสารชนิดเดี่ยว ซีโอไลท์ (Zeolite) ปริมาณ 2 phr ทำหน้าที่เพิ่มเสถียรภาพทางความร้อน
- สารหล่อลื่น เช่น Finalux G-741 ใช้ปริมาณ 0.4-0.8 phr ทำหน้าที่เป็นสารหล่อลื่น ภายนอก คือ ช่วยลดความเสียดทานระหว่างพอลิเมอร์กับสกรูที่ใช้ขึ้นรูป
- แคลเซียมคาร์บอเนตชนิดปรับปรุงผิว ใช้ในปริมาณ 10-14 phr ซึ่งเป็นสารเพิ่มเนื้อ พวกแคลเซียมคาร์บอเนตที่มีขนาดอนุภาคอยู่ในช่วง 2-12 ไมครอน และมีค่าความชื้น เฉพาะ 0.2% มักเติมลงไปเพื่อลดต้นทุน แคลเซียมคาร์บอเนตช่วยเพิ่มความคงทนต่อ การสลายตัวของพีวีซีขณะขึ้นรูป
- แคลเซียมสเตียเรต (Calcium stearate) ใช้ในปริมาณ 0.4-1.2 phr ทำหน้าที่ เป็นทั้งสารเพิ่มความเสถียรทางความร้อนและสารหล่อลื่นด้วย และแคลเซียม สเตียเรตในส่วนประกอบนี้ยังช่วยเคลือบแคลเซียมคาร์บอเนตให้มีการกระจายตัวใน เนื้อวัสดุผสมได้ดีขึ้นด้วย
- สารช่วยผลิต (Processing aid) เช่น KANEACE-PA-20 ปริมาณ 3-6 phr ทำหน้าที่ เป็นสารช่วยในการขึ้นรูป โดยทำให้มีการหลอมรวมตัวและมีความเป็นเนื้อเดียวกันเร็ว ขึ้น ทำให้ผิวของส่วนที่ถูกอัดรีดมีความมันเงา รวมถึงการเพิ่มความทนแรงกระแทก
- สารช่วยเพิ่มความทนแรงกระแทก เช่น คลอโรพอลิเอทธิลีน (Chloro-polyethylene, CPE) ปริมาณ 3-8 phr ทำหน้าที่เป็นสารช่วยเพิ่มความทนแรงกระแทก (Impact modifier)
- สารเพิ่มความเสถียรต่อแสงยูวี เบนโซไตรอะโซล (benzotriazole) ปริมาณ 0.2-6.0
 phr ทำหน้าที่ป้องกันการเสื่อมสภาพเนื่องจากแสงยูวี
- สารเพิ่มความเสถียรต่อแสงยูวี เบนโซฟีโนน (benzophenone) ปริมาณ 0.2-6.0 phr ทำหน้าที่ป้องกันการเสื่อมสภาพเนื่องจากแสงยูวี
- สารเพิ่มความเสถียรต่อแสงยูวี รูไทล์ ไททาเนียม ไดออกไซด์ (rutile titanium dioxide) ปริมาณ 0.2-6.0 phr ทำหน้าที่ป้องกันการเสื่อมสภาพเนื่องจากแสงยูวี
- สารคู่ควบ เอ็น-2 (อะมิโนเอทธิล)3-อะมิโนพรอพิล ไตรเมทธอกซีไซเลน(N-2(aminoethyl)3-aminopropyl trimethoxysilane) ปริมาณ 0.5-2.0 %โดยน้ำหนัก ของเส้นใย ทำหน้าที่ปรับปรุงผิวขี้เลื่อยไม้ให้สามารถยึดเกาะกับพีวีซีได้ดีขึ้น ช่วยเพิ่ม ประสิทธิภาพขี้เลื่อยไม้ให้ทำหน้าที่เป็นสารเสริมแรงได้ดียิ่งขึ้น
- สารคู่ควบ 3-เมทธาคริลอคซิลพรอพิล ไตรเมทธอกซีไซเลน (3-methacryloxypropyl trimethoxysilane) ปริมาณ 0.5-2.0 %โดยน้ำหนักของเส้นใย ทำหน้าที่ปรับปรุงผิว

5

10

15

20

หน้าที่ 7 ของจำนวน 7 หน้า

ของเส้นใยแก้วสังเคราะห์ให้สามารถยึดเกาะกับพีวีซีได้ดีขึ้น ช่วยเพิ่มประสิทธิภาพ เส้นใยแก้วสังเคราะห์ให้ทำหน้าที่เป็นสารเสริมแรงได้ดียิ่งขึ้น

จากนั้นนำส่วนผสมนี้ไปผสมคลุกเคล้าให้เข้ากันด้วยเครื่องผสมความเร็วรอบสูง จนทำให้ มีการกระจายตัวเป็นเนื้อเดียวกัน แล้วจึงนำไปเข้าสู่เครื่องอัดรีดเกลียวหนอนคู่ โดยใช้อุณหภูมิ ในช่วงใกล้กรวยเติม (โซนที่ 1) 145-150 °ซ โซนที่ 2 150-155 °ซ โซนที่ 3 155-160 °ซ ช่วงใกล้ หัวขึ้นรูป (โซนที่ 4) 160-165 °ซ และความเร็วรอบของสกรู 60-65 รอบต่อนาที เครื่องอัดรีดที่ใช้ ควรมีระบบการระบายอากาศที่ดีด้วย เนื่องจากส่วนประกอบของวัสดุผสมที่นำมาใช้ในการขึ้นรูป นั้น นอกจากขี้เลื่อยไม้ที่มีความชื้นแล้ว เส้นใยแก้วสังเคราะห์ และสารเติมแต่งต่างๆ ก็มีความชื้น ด้วยเหมือนกัน ซึ่งอาจเป็นสาเหตุของการที่ทำให้พีวีซีผสมของส่วนที่ถูกอัดรีดออกมาไม่สม่ำเสมอ และอาจทำให้เกิดการใหม้ของพีวีซีผสมในเครื่องอัดรีดด้วย สำหรับพีวีซีผสมที่อัดรีดออกมานั้นจะ ถูกลำเลียงเข้าสู่เครื่องปรับขนาดและรูปร่าง (Sizing) และทำให้คงรูปด้วยการให้น้ำหล่อเย็น

ผลิตภัณฑ์วัสดุผสมพีวีซี ขี้เลื่อยไม้ และเส้นใยแก้วสังเคราะห์ที่ได้จากการเปิดเผยการ ประดิษฐ์โดยสมบูรณ์นี้ มีสมบัติทางกลที่โดดเด่นกว่าผลิตภัณฑ์วัสดุผสมพีวีซีกับขี้เลื่อยไม้อื่นๆ ที่มี ใช้อยู่ในปัจจุบัน กล่าวคือ มีความสามารถในการรับแรงดัด แรงเฉือน และแรงอัดได้สูงมาก โดยมี การเติมเส้นใยแก้วสังเคราะห์ที่มีการปรับปรุงผิวด้วยกระบวนการทางเคมีที่สามารถเพิ่มการยึด เกาะระหว่างเส้นใยแก้วสังเคราะห์กับพีวีซีได้ดี ดังนั้น ผลิตภัณฑ์ที่ได้จากวัสดุผสมพีวีซี ขี้เลื่อยไม้ และเส้นใยแก้วสังเคราะห์นี้สามารถรับแรงในงานโครงสร้างขนาดใหญ่ได้ดี นอกจากนี้ ยังมีการเติม สารเคมีเพื่อช่วยเพิ่มความสามารถในการผลิต และรักษาเสถียรภาพทางความร้อนและแสงยูวี ให้แก่ผลิตภัณฑ์จากวัสดุผสมพีวีซีกับขี้เลื่อยไม้ อีกด้วย

วิธีการในการประดิษฐ์ที่ดีที่สุด

10

15

20

25

เหมือนกับที่ได้กล่าวไว้แล้วในหัวข้อ การเปิดเผยการประดิษฐ์โดยสมบูรณ์

การประยุกต์ใช้ในทางอุตสาหกรรม

อุตสาหกรรมที่เกี่ยวข้องกับวัสดุก่อสร้าง

ข้อถือสิทธิ

5

ข้อถือสิทธิ มีรายละเอียดดังนี้

สูตรส่วนผสมและกรรมวิธีการเสริมแรง และรักษาเสถียรภาพผลิตภัณฑ์

1. กรรมวิธีการเสริมแรงวัสดุผสมพีวีซีและขึ้เลื่อยไม้ ที่ซึ่งมีสูตรส่วนผสมประกอบด้วย สูตรเก่า (ส่วนประกอบที่ 1-7) และที่ซึ่งมีลักษณะเฉพาะ คือ ส่วนประกอบ 8-18 เป็นส่วนประกอบ เพิ่มเติมเพื่อปรับปรุงสมบัติเชิงโครงสร้าง และเพิ่มเสถียรภาพทางความร้อนและแสงยูวี ตาม ตารางข้างล่างนี้

ส่วนประกอบ	ปริมาณ (phr)
1. พีวีซี	100
2. สารเพิ่มความเหนียวพีวีซี (พีวีซีอิมัลชั่น)	3-5
3. สารเพิ่มความเสถียรภาพทางความร้อน (สารอินทรีย์เชิงซ้อน)	3.4-3.8
4. สารหล่อลื่น	0.4-0.8
5. แคลเซียมคาร์บอเนต ชนิดปรับปรุงผิว ขนาด 2-12 ไมครอน	10-14
6. แคลเซียมสเตียเรต	0.4-0.8
7. สารช่วยผลิต	3-6
8. ขี้เลื่อยไม้	70-100
9. เส้นใยแก้วสังเคราะห์	10-50
10. สารเพิ่มความเสถียรภาพความร้อน (ซึงค์ สเตียเรต)	2-8
11. สารเพิ่มความเสถียรภาพความร้อน (ตะกั่ว สเตียเรต)	2-8
12. สารเพิ่มความเสถียรภาพความร้อน (ซีโอไลท์)	2
13. สารช่วยเพิ่มความทนแรงกระแทก (คลอโรพอลิเอทธิลีน)	3-8
14. สารเพิ่มความเสถียรต่อแสงยูวี (เบนโซไตรอะโซล)	0.2-6.0
15. สารเพิ่มความเสถียรต่อแสงยูวี (เบนโซฟีโนน)	0.2-6.0
16. ผงสีขาว (รูไทล์ ไททาเนียม ไดออกไซด์)	0.2-6.0
17. สารคู่ควบ เอ็น-2 (อะมิโนเอทธิล)3-อะมิโนพรอพิล ไตรเมทธอกซีไซเลน	0.5-2.0 %โดยน้ำหนัก
	ของขี้เลื่อย
18. สารคู่ควบ 3-เมทธาคริลอคซิลพรอพิล ไตรเมทธอกซีไซเลน	0.5-2.0 %โดยน้ำหนัก
	ของเส้นใยแก้ว
	สังเคราะห์

รายงานฉบับสมบูรณ์ IUG5080029 ศ.ดร. ณรงค์ฤทธิ์ สมบัติสมภพ เอกสารแนบ 3

หน้าที่ 2 ของจำนวน 2 หน้า

- 2. กรรมวิธีการเสริมแรงวัสดุผสมพีวีซีและขี้เลื่อยไม้ด้วยเส้นใยแก้วสังเคราะห์ ตามข้อถือสิทธิ 1 ที่ ซึ่ง เส้นใยแก้วสังเคราะห์ที่ใช้ คือ เส้นใยแก้วสังเคราะห์ เกรดอีกลาส ที่มีขนาดเส้นผ่าน ศูนย์กลางของเส้นใยอยู่ในช่วง 10-15 ไมครอน และมีความยาวเส้นใยแก้วอยู่ในช่วง 3-12 มิลลิเมตร และมีการปรับปรุงผิวด้วยสารคู่ควบไซเลน 3-เมทธาคริลอคซิลพรอพิล ไตรเมทธอกซี ไซเลน ปริมาณ 0.5-2.0 %โดยน้ำหนักของเส้นใย
- 3. กรรมวิธีการเสริมแรงวัสดุผสมพีวีซีและขึ้เลื่อยไม้ด้วยเส้นใยแก้วสังเคราะห์ ตามข้อถือสิทธิ 1 ที่ ซึ่ง เป็นกรรมวิธีการผลิตผลิตภัณฑ์วัสดุผสมพีวีซี ขี้เลื่อยไม้ ที่มีการเติมเส้นใยแก้วสังเคราะห์ เกรดอีกลาส ที่มีการปรับปรุงผิวเส้นใยด้วยสารคู่ควบ เพื่อปรับปรุงสมบัติทางกลเชิงโครงสร้าง และมีการเติมสารเพิ่มความเสถียรทางความร้อนและเพิ่มการทนทานต่อแสงยูวี โดยกรรมวิธี การผลิตเริ่มต้นจากการนำส่วนผสมทั้งหมดไปผสมคลุกเคล้าให้เข้ากันด้วยเครื่องผสมความเร็ว รอบสูง จนให้มีการกระจายตัวเป็นเนื้อเดียวกัน แล้วจึงนำไปเข้าสู่เครื่องอัดรีดเกลียวหนอนคู่ โดยใช้อุณหภูมิในช่วงใกล้กรวยเติม (โซนที่ 1) 145-150 °ซ โซนที่ 2 150-155 °ซ โซนที่ 3 155-160 °ซ ช่วงใกล้หัวขึ้นรูป (โซนที่ 4) 160-165 °ซ และความเร็วรอบของสกรู 60-65 รอบต่อ นาที สำหรับพีวีซีผสมที่อัดรีดออกมานั้นก็จะถูกลำเลียงเข้าสู่เครื่องปรับขนาดและรูปร่างและทำ ให้คงรูปด้วยการให้น้ำหล่อเย็น

20

15

5

10

หน้าที่ 1 ของจำนวน 1 หน้า

บทสรุปการประดิษฐ์

การประดิษฐ์นี้คือ การนำขี้เลื่อยไม้มาหมุนเวียนใช้ใหม่ในกระบวนการอัดรีดขึ้นรูปโดยผสมกับพีวีซี เพื่อเป็นการเพิ่มปริมาณการใช้ขี้เลื่อย ซึ่งเป็นวัสดุธรรมชาติที่เป็นเศษเหลือทิ้งในกระบวนการแปรรูปไม้ให้มากขึ้น และได้มีการปรับปรุงสมบัติการรับแรงด้วยการเติมเส้นใยแก้วสังเคราะห์ และสารคู่ควบ และมีการผสมสารเคมีเพื่อรักษาเสถียรภาพด้านความร้อนและแสงยูวีของผลิตภัณฑ์วัสดุผสมพีวีซีและขี้เลื่อยไม้ และสามารถขึ้นรูปวัสดุผสมพีวีซีและขี้เลื่อยไม้ที่มีการเติมเส้นใยแก้วสังเคราะห์ในรูปของผลิตภัณฑ์ที่มีหน้าตัดกลวงที่ใช้เป็นวัสดุก่อสร้างได้อาทิเช่นคาน พื้น กรอบประตู และหน้าต่างเป็นต้น และผลิตภัณฑ์ที่ได้มีลักษณะภายนอกทั้งสีและผิวคล้ายคลึงกับวัสดุไม้มากขึ้น และมีสมบัติและความทนทานต่อสภาวะอากาศทั้งจากความร้อนและจากแสงยูวี โดยการผลิตผลิตภัณฑ์จากวัสดุผสมพีวีซีกับขี้เลื่อยไม้นี้ใช้กระบวนการอัดรีดเกลียวหนอน (Screw Extruder) ที่ถูกอัดผ่านหัวขึ้นรูป (Die)

15

10

20

เอกสารแนบ 4

- ผลการเปรียบเทียบสมบัติวัสดุผสมพอลิเอทธิลีนและเส้นใยธรรมชาติกับชิ้นงาน ตัวอย่างที่ทางบริษัทผู้ร่วมวิจัยนำมาจากต่างประเทศ

ตารางที่ 1 การเปรียบเทียบสมบัติระหว่างผลิตภัณฑ์ของ V.P. Wood และ WPC

		Te	Tensile Properties	pertie	74		Fle	xural P	Flexural Properties		Impact	Impact Property	Water
	Tensile	ile	Tensile	ile	Elongation	ation	Flexural	ral	Flexural	ral	Image	4 200000000	Absorption
	snInpom	lus	strength	ţth	at break	eak	snInpom	snl	strength	gth	ımpac	mpact strength	at 24 hrs
	(MPa) SD	SD	(MPa)	SD	(%)	SD	(Ma) SD (%) SD (MPa) SD (MPa) SD (J/m²)	SD	(MPa)	SD	(J/m ²)	SD	(%)
VPVC:SD	0 9 0 0		0	7	-	c	000		c	c	0000	1 4 0	-
$(100;100)_VP4$	8082	214	6.13	1.0	1.5 0.1	o.0	9001		59.5 2.0	7.0	0866	143	7.1
VPE:SD (100:100)	950	75	20.2	0.4	3.3	0.3	20.2 0.4 3.3 0.3 2020 75 32.9 1.2 3419	75	32.9	1.2	3419	135	12.5
WPC Sample	1197	06	19.2	1.3	3.3	1.0	19.2 1.3 3.3 1.0 2587 420 31.4 1.3 5735	420	31.4	1.3	5735	069	2.4

หมายเหตุ Tensile Properties: ASTM D638

Flexural Properties: ASTM D790

Impact Properties: ASTM D256

Water Absorption: ASTM D570

เอกสารแนบ 5
 ผลการทดสอบการสมบัติการติดไฟ ของผลิตภัณฑ์ของทางบริษัทผู้ร่วมวิจัย
รายงานฉบับสมบูรณ์ IUG5080029 ศ.ดร. ณรงค์ฤทธิ์ สมบัติสมภท

ผลการทดสอบสมบัติการลามไฟของผลิตภัณฑ์บริษัท V.P. Wood จำกัด

ตารางที่ 2 ผลการทดสอบการลามไฟในแนวตั้ง

	t ₁	\mathbf{t}_2	t ₃	ตัวอย่างเผาหมด	การหยดติดไฟ	ระดับชั้นคุณภาพตาม
	(s)	(s)	(s)			มาตรฐานUL 94
VPVC:SD (100:100)	0	0	0	ไม่	ไม่	V-0
VPE:SD (100:100)	-	-	-	ใช่	ใช่	-
VPP:SD (100:100)	-	-	-	ใช่	ใช่	-

หมายเหตุ

UL 94 or ASTM D 3801

 $\mathbf{t}_{_{1}}$ คือ เวลาที่เปลวไฟดับ ภายหลังการเผาชิ้นงานครั้งที่ $\mathbf{1}$

 ${f t}_2$ คือ เวลาที่เปลวไฟดับ ภายหลังการเผาชิ้นงานครั้งที่ ${f 2}$

 $\mathbf{t}_{_3}$ คือ เวลาที่ควันไฟหมด ภายหลังการเผาชิ้นงานครั้งที่ 3

ตารางที่ 3 ผลการทดสอบการลามไฟในแนวนอน

	อัตราการลามไฟ	ไฟดับก่อนถึงตำแหน่งอ้างอิง
	(มิลลิเมตร/นาที)	(ระยะ 100 มิลลิเมตร)
VPVC:SD (100:100)	-	ใช่
VPE:SD (100:100)	19.33	ไม่
VPP:SD (100:100)	28.47	ไม่

หมายเหตุ

UL 94 or ASTM D 635

ตารางที่ 4 ผลการทดสอบการลามไฟ ตามมาตรฐาน UL 94

	ระดับชั้นคุณภาพตาม มาตรฐาน UL 94	อัตราการลามไฟ (มิลลิเมตร/นาที)
VPVC:SD (100:100)	V-0	-
VPE:SD (100:100)	НВ	19.33
VPP:SD (100:100)	НВ	28.47

เอกสารแนบ 6


- คู่มือการทดสอบสมบัติของวัสดุ WPC

HANDBOOK

TEST PROCEDURES FOR EVALUATING MECHANICAL PROPERTIES OF WOODPLASTIC COMPOSITE MATERIALS

Contents

Chapter	Page
Flexural Test	1
Shear Test	5
Tensile Test	8
Impact Test	11
Compression Parallel to Extrusion Test	13
Nail and Screws Withdrawal Test	16
Radius of Curvature	18
Measurement of Burning Characteristics	19
Water Absorption	24
Thermal Ageing Test	26
Accelerated UV Weathering Test	27
Color and Yellowness Index Measurements	28
Termite Resistance Test	33

Table list

Table 1	Specimen dimensions for tensile test	8
Table 2	Materials classifications followed UL 94 flammability standard	23
Table 3	Classification of Damage Level from Termite	35

Figure list

Figure 1	Typical flexural test setup for four point bending	2
Figure 2	Typical setup of shear test	6
Figure 3	Specimen dimensions type I correlated with ASTM D 638	6
Figure 4	Typical setup of tensile test	9
Figure 5	Typical setup of impact test	12
Figure 6	Typical setup of compression parallel-to-extrusion test	14
Figure 7	Typical setup of nail withdrawal test	16
Figure 8	Equipment for vertical burning test	20
Figure 9	Equipment for horizontal burning test	23
Figure 10	UV-Vis spectrophotometer	29
Figure 11	The Munsell color system	30
Figure 12	Munsell color wheel	31
Figure 13	Coptotermes gestroi termite	33
Figure 14	Typical setup of termite resistance test	34

Flexural Test

Summary of Test Method

This flexural test method covers the determination of modulus of rupture (MOR) and modulus of elasticity (E) for structural beams and deck members made of wood-plastic composite materials. The method is applicable to the structures of rectangular, round, or irregular cross sections. The test method, apparatus, and procedure are in accordance with the ASTM D 198 (1998) flexural test which it is the standard test method used to determine the properties of structural wood. Due to the behavior of plastics the rate of loading must be increased to account for the heightened creep of plastic material during loading. Rate of loading in this test is specified by ASTM D 790-99 (1999). ASTM D 790 is a standard test method for flexural properties of unreinforced and reinforced plastics.

Test Specimens

The unsupported length of test specimen is 16 times of specimen depth and shall be cantilevered from each side of supports at least 10%. In order to avoid an error of the test results, the test specimens should be prepared without any defects.

Test Procedures

- 1. Prepare 5 specimens for each flexural test
- 2. The unsupported span length of test specimen shall be 16 times of the depth
- 3. The typical flexural test setup, test specimen, and apparatus for four-point bending are shown in **Fig.1**

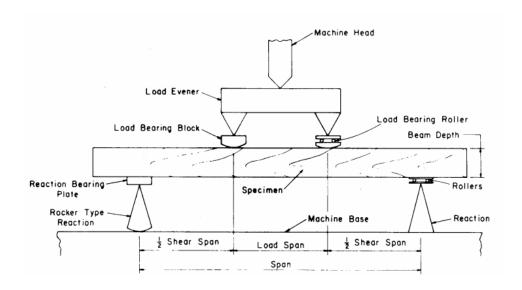


Figure 1 Typical flexural test setup for four point bending

4. Rate of loading specified by ASTM D790 can be computed by the equation 1

$$R = 0.185ZL^2 / d (1)$$

where R = rate of cross head motion [mm/min.]

Z = rate of straining of the outer fiber, Z shall be equal to 0.01 [mm/mm/min.]

L = unsupported span length [mm]

d = the depth of the beam specimen [mm]

- 5. Determine the flexural properties of wood-plastic composite material as;
 - 5.1 Modulus of elasticity

Modulus of elasticity is the most important flexural property. This value indicates the stiffness of material. The higher modulus of elasticity the lower deflection of material can be obtained. The modulus of elasticity for flexural test can be calculated by using the linear relation of applied load and deflection of specimen in elastic limit. Basically, the modulus of elasticity can be computed by **equation 2**

$$E = \frac{Pa}{12\Lambda I} \left(3La - 4a^2 \right) \tag{2}$$

where E = modulus of elasticity $[N/mm^2]$

P = applied load [N]

a = load span or the distance between of two points load [mm]

L = unsupported span length of the test specimen [mm]

 Δ = deflection of the specimen at the location of applied loads [mm]

I = moment of inertia $[mm^4]$

5.2 Maximum bending moment

Maximum bending moment of four point flexural test occurs at the location of applied load. The maximum bending moment can be computed by **equation 3**

$$M = \frac{PL}{6} \tag{3}$$

where M = maximum bending moment [N-m]

P = applied load [N]

L = unsupported span length of the test specimen [mm]

5.3 Modulus of rupture

Modulus of rupture represents the highest flexural stress experienced within the material at its moment of rupture. Modulus of rupture can be computed by **equation 4**

$$f_b = \frac{Mc}{I} \tag{4}$$

```
where f_b = modulus of rupture[N/mm^2]

M = maximum bending moment [N-mm]

c = vertical distance from the neutral axis to the point of interest [mm]

I = moment of inertia [mm^4]
```

Report

The report of flexural test is generally presented in term of modulus of elasticity (E) and the modulus of rupture (MOR). These flexural properties indicate the stiffness of material as mentioned previously. The higher of modulus of elasticity and modulus of rupture indicate that these specimens can resist the higher load or the higher bending moment.

Shear Test

Summary of Test Method

The test method, apparatus, and procedures are in accordance with the five-point bending shear test developed by ASTM D198 (1999). This test method is to determine the shear strength of members made of wood-plastic material. The method is specific to the application of beams and defines the shear strength of a member when loaded normal to the longitudinal axis of the member and can be applied with the members of rectangular, round, or irregular cross sections. To induce a shear failure in the member, the test specimen is subjected to five points bending in which the member is supported at the ends and at the center while load points are to be located at the quarter points.

In order to avoid the excessive creep during testing, the flexural shear test method is also adapted for wood-plastic test specimens by increasing rate of loading in the same configuration with load rates specified by ASTM D 790 (1999).

Test Specimens

The length of specimen is 10 times of specimen depth while the unsupported span length is 5 times of specimen depth. The specimen shall be cantilevered from each side of supports at least 10%. In order to avoid an error of the test results, the test specimens should be prepared without any defects.

Test Procedures

- 1. Prepare 5 specimens for each flexural shear test
- 2. The unsupported span length of the member shall be 5 times of depth
- 3. The typical test setup, specimen, and apparatus for five-point bending shear test are shown in **Fig.2**

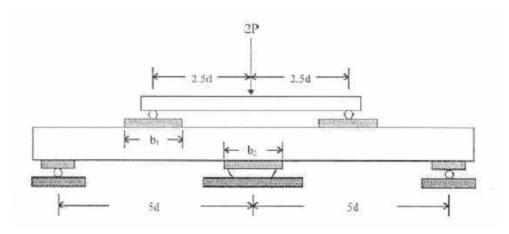


Figure 2 Typical setup of shear test

- 4. Rate of loading can be computed by equation 1 similar with the flexural test
- 5. Determination of mechanical properties of wood-plastic composite material

5.1 Maximum shear force

Maximum shear force is the maximum reaction in the direction perpendicular with longitudinal axis of the member. The maximum shear force is commonly computed by the shear force diagram. However, for the five points bending, the maximum shear force can be calculated by using **equation 5** as shown below.

$$V \max = \frac{11P}{32} \tag{5}$$

where $V_{max} = maximum \text{ shear force [kN]}$

P = maximum applied load [N]

5.2 Shear strength

Shear strength is a term used to describe the strength of a material or component against the type of yield or structural failure where the material or component fails in shear. Usually, shear strength can be computed by **equation 6**

$$\tau = \frac{VQ}{Ib} \tag{6}$$

where τ = shear strength [N/mm^2]

Q = moment of cross-sectional area about neutral axis $[mm^3]$

V = maximum shear force [N]

I = moment of inertia $[mm^4]$

b = width of cross section [mm]

Report

The report of flexural shear test shall be presented in term of shear strength. These results indicate the ability of material to resist shear force. The higher of shear force can resist the higher applied load

Tensile Test

Summary of Test Method

The test method, apparatus, and procedure are in accordance with the ASTM D 638 (1999) tensile test. The purpose of this test is to evaluate the tensile properties of un-reinforced and reinforced plastics in the form of standard dumbbell-shaped test specimens

Test Specimens

The test specimen shall conform to the dimensions shown in Fig.3 and Table 1. In order to avoid an error of the test results, the test specimens should be prepared without any defects.

Table 1 Specimen dimensions for tensile test

Dimensions(see drawings)	Thickness T: Under 0.55 (14) in. (mm)		
Dimensions(see drawings)	Type I		
Wc – Width of narrow section	0.50(13)		
L – Length of narrow section	2.25(57)		
Wo – Width overall	0.75(19)		
Lo – Length overall	6.50(165)		
G – gauge length	2.00(50)		
D – Distance between grips	4.50(115)		
R – Radius of fillet	3.00(76)		

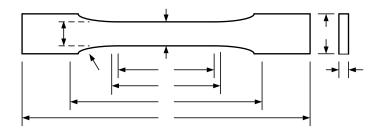


Figure 3 Specimen dimensions type I correlated with ASTM D 638

Test Procedures R

- 1. Prepare 5 specimens for each tensile test
- 2. The typical test setup, test specimen, and apparatus for tensile test are shown in Fig.4

Figure 4 Typical setup of tensile test

- 3. Rate of loading equal to 5 mm/sec.
- 4. Determination of mechanical properties of wood-plastic composite material
 - 4.1 Modulus of elasticity

Modulus of elasticity or Young's modulus (E) describes tensile elasticity, or the tendency of an object to deform along an axis when opposing forces are applied along that axis; it is defined as the ratio of tensile stress to tensile strain. This value is the property indicated the resistance of deformation of material from tension force in linear elastic limit and it can be computed by **equation 7**

$$E = \frac{\sigma}{\mathcal{E}} \tag{7}$$

where
$$\sigma$$
 = stress [N/mm^2]
 ϵ = strain [mm/mm]

4.2 Maximum tensile stress

Maximum tensile stress is ability of material to resist tension force. The maximum tensile stress can be computed by **equation 8**

$$f_t = \frac{P}{A} \tag{8}$$

where $f_t = maximum tensile stress [N/mm^2]$

P = maximum tension force [N]

A = cross-sectional area $[mm^2]$

4.3 Percentage of elongation at breaking point

Percentage of elongation at breaking point is the elongation of material in comparison with original length when the material is applied with the tensile force. Percentage of elongation at breaking point can be computed by **equation 9**

% Elongation at breaking point
$$=\frac{L-L_0}{L_0} x 100$$
 (9)

where L =Distance between gage marks at any time

L₀ =Original distance between gage marks

Report

Report shall be presented the maximum tension force, modulus of elasticity or young's modulus, and percentage of elongation at breaking point or at failure.

Impact Test

Summary of Test Method

This test method is the determination of the energy required to crack or break woodplastic composite profiles. The test method establishes the height in which a standard falling weight will cause a failure at least 50% of specimens tested. The method is applicable for hollow or webbed sections. Solid sections can not be tested using this technique.

The test specimen is impacted by a 10-pound weight to generate the impact failure. The test method, apparatus, and procedure are in accordance with the ASTM D 4495-98 (1998) standard impact test. ASTM D 4495 is a standard test method for impact resistance by means of a falling weight. The testing procedures of ASTM D 4495 were modified so that the diameter of the weight was reduced from 2.5 in. to 1 in. This modification was made to allow the impact failures to occur between the webs of the box section of wood plastic material.

Test Specimens

The test specimen shall be at least 15 cm length. In order to avoid an error of the test results, the test specimens should be prepared without any defects.

Test Procedures

- 1. Prepare 20 specimens for impact test.
- 2. Impact test setup, apparatus, and specimens are shown in **Fig.5.** The falling weight is 10 lb., while the diameter of the falling weight is 1 in. The impact failure is allowed to occur between the web of the box section.

Figure 5 Typical setup of impact test

- 3. Calculate the energy released by dropping the falling weight on the test specimen. Since the falling weight is controlled to be constant of 10 lb, this energy depends on the height of falling weight at failure. Increase or decrease the drop height every 5 cm. If the first time of impact load results the specimen failure, decrease the drop height by one increment (i.e., 5 cm.). If the first impact of the specimen does not cause failure, increase the drop height by one increment. Then, test a second specimen.
- 4. Determination of mechanical properties of wood-plastic composite material
 - 4.1 Energy failure

Energy failure is the energy to break material from vertical impact load. The energy failure can be computed by **equation 10**

Energy failure =
$$W \times h$$
 (10)

where W = weight[N]

h = mean failure height [m]

Report

Report shall be presented the value of energy failure.

Compression Parallel to Extrusion Test

Summary of Test Method

This test method is the determination of compression parallel-to-extrusion strength of members made of wood plastic material. The method is applicable to the members of rectangular, round, or irregular cross sections.

The test method, apparatus, and procedure are in accordance with ASTM D 198-98 (1998) compression parallel-to-grain test. Due to the plastic content in this material, the speed of testing must be increased to account for the heightened creep of plastic material during loading. The compression specimens shall be loaded at a constant displacement rate specified by ASTM D 695-98 (1998). The ASTM D 695 load rates are prescribed as 1.3±0.3 mm/min rate of motion for the crosshead or grips of the machine.

Test Specimens

Test specimen length is required to have a slenderness ratio less than 17 computed by **equation 11**. In order to avoid an error of the test results, the test specimens should be prepared without any defects.

$$L/r \le 17 \tag{11}$$

where L = unsupported length [mm]

r = radius of gyration [mm] which can be computed as

$$r = \sqrt{\frac{I}{A}} \tag{12}$$

where I = moment of inertia of the cross section $[mm^4]$

A = cross-sectional area $[mm^2]$

Test Procedures

- 1. 5 specimens are prepared for compression test
- 2. The typical compressive parallel to extrusion test setup, test specimen, and the apparatus can be shown in **Fig.6**

Figure 6 Typical setup of compression parallel-to-extrusion test

- 3. Set the speed of cross head to be 1.3±0.3 mm/min.
- 4. Record the maximum applied compression load
- 5. Determination of mechanical properties of wood-plastic composite material.
 - 5.1 Maximum compression stress

Maximum compression stress is the stress applied to materials resulting from the compaction (decrease of volume). When a material is subjected to compressive stress, this material is under compression. Usually, compressive stress applied to bars, columns, etc. The maximum compression stress can be computed by **equation 13**

$$f_c = \frac{P}{A} \tag{13}$$

where $f_c = maximum compression stress [N/mm^2]$

P = maximum compression force [N]

A = cross-sectional area $[mm^2]$

Report

Report shall be presented the value of maximum compression stress.

Nail and Screws Withdrawal Test

The test methods appear in the following order:

- 1. Nail withdrawal test
- 2. Screw withdrawal test

1. Nail Withdrawal Test

Summary of Test Method

The test method, apparatus, and procedure are in accordance with the ASTM D6117-97 (1997) mechanical fasteners in plastic lumber and shapes. This method evaluates ability of material to resist withdrawal force. A nail shall have the diameter of 0.148 in.(3.76 mm) and 3 in.(76 mm) in length.

Test Specimens

Specimen length shall be suitable to lock or grip on testing machine. Drive a nail completely through the specimen at least 13 mm.

Test Procedures

- 1. Prepare 5 specimens
- 2. Test setup, apparatus, and specimen can be shown in Fig.7

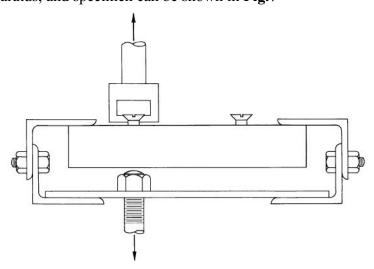


Figure 7 Typical setup of nail withdrawal test

- 3. Speed of testing shall be equal to 2.5 mm/min \pm 25%
- 4. Withdraw a nail until it slips out

Report

Report shall be presented the value of resistance withdrawn force of a nail.

2. Screw Withdrawal Test

Summary of Test Method

The test method, apparatus, and procedure are in accordance with the ASTM D6117-97 (1997) mechanical fasteners in plastic lumber and shapes. This method evaluates ability of material to resist withdrawal force. The screw No.10 with the length of 1 in. (25 mm) is used. These screws shall be represented the normal manufacturing process.

Test Specimens

Specimen length shall be suitable to lock or grip on testing machine. Drive a screw into the lead hole. The size of lead hole shall be 70% of the root diameter of the screw and it shall extend ½ in. (13 mm) into the face of the specimen.

Test Procedures

- 1. Prepare 5 specimens
- 2. Setup the apparatus and specimen as shown in Fig.7
- 3. Speed of testing shall be equal to 2.5 mm/min \pm 25%
- 4. Withdraw a screw until slip out

Report

Report shall be presented the value of resistance withdrawn force of a screw.

Radius of Curvature

Summary of Test Method

The test method, apparatus, and procedure are in accordance with the ASTM D 198 (1998) flexure test of wood. Rate of loading specified by ASTM D 790-99 (1999) are proposed to avoid this excessive creep during testing.

Test Specimens

The specimen length shall be extended from the supports at least 10% of both sides. In order to avoid an error of the test results, the test specimens should be prepared without any defects.

Test Procedures

Radius of curvature is a term characterizing the measure of how curved, or bent, a given curve or surface is. From the flexural test, we obtain a value of modulus of elasticity and maximum bending moment of wood-plastic composite. So the radius of curvature can be directly calculated by **equation 14**

$$\rho = \frac{EI}{M} \tag{14}$$

where ρ = radius of curvature [m]

M = maximum bending moment [N-m]

E = modulus of elasticity $[N/m^2]$

I = moment of inertia $[mm^4]$

Report

Report shall be presented the value of radius of curvature. If the specimens have low radius of curvature, the specimen can bend well.

Measurement of Burning Characteristics

Measurement of burning characteristic can be divided into two parts as shown below:

- 1. The burning characteristics test in vertical position
- 2. The burning characteristics test in horizontal position

1. Burning Characteristics Test in Vertical Position

Summary of Test Method

The burning characteristics test in vertical position was determined according to ASTM D3801-00 (2000) or UL94 standard. This test method is used to estimate flammability of solid plastics.

Test Specimens

Dimension of specimen: The standard specimen geometry shall be 13.0 ± 0.5 by 125 ± 5 mm in the thickness appropriate to the objectives of the determination. Materials thicker than 13 mm shall not be tested by this test method. Surface of specimen shall be smooth and unbroken.

Test Procedures

- 1. Specimens were divided into two sets as follows:
- 1.1 Condition one set of five specimens for at least 48 h at a temperature of 23 ± 2 °C and a relative humidity of 50 ± 5 % prior to testing. Once removed from the conditioning room or chamber, specimens shall be tested within one hour.
- 1.2 Condition second set of five specimens in a circulating-air oven for 168 h at 70 ± 1 °C and then cools in a desiccator for at least 4 h at room temperature prior to testing. Once removed from the dessicator, specimens shall be tested within 30 min.
- 2. The equipment for burning test in vertical position was shown in **Fig. 8**. After that adjustment of burner for producing a blue flame has flame height of 20 ± 2 mm. The blue flame has highest temperature when it was compared with other color flame. Place the test

flame centrally under the lower end of the test specimen with the burner tube 10 ± 1 mm below the specimen and maintain that distance for a flame-impingement time of 10 ± 0.5 s. Withdraw the test flame out of the specimen so that there is no effect on the burning specimen and measure the afterflame time (t₁), in seconds. Record the afterflame time after the first flame application as t₁.

3. When the flaming of the specimen ceases, immediately place the test flame under the specimen again maintaining a distance of $10 \pm \text{mm}$ for a flame-impingement time of 10 ± 0.5 s. After this second flame application, withdraw the test flame and measure the afterflame and afterglow times, in seconds. Record the afterflame and afterglow times after the second flame application as t_2 and t_3 , respectively. Note and record whether any particles fall from the specimen and, if so, whether they ignite the cotton.

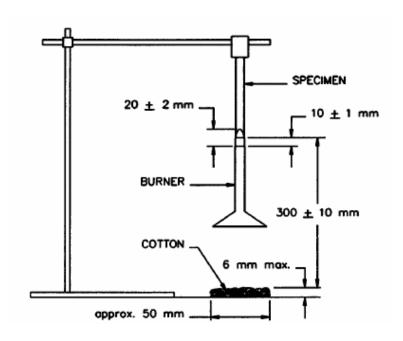


Figure 8 Equipment for vertical burning test

Report

The testing result was report as V-0, V-1 and V-2 classification. The behavior of specimens may be classified in one of the categories shown in **Table 2** by selecting the appropriate column using test results to answer the conditional questions posed.

Table 2 Materials classifications followed UL 94 flammability standard.

Criteria Conditions	V-0	V-1	V-2
Afterflame time for each individual specimen $[t_1, t_2]$	≤10 s	≤30 s	≤30 s
Total afterflame time for any condition set in the five	≤50 s	≤250 s	≤250 s
specimens $[\Sigma(t_1 + t_2)]$			
Afterflame plus afterglow time for each individual	≤30 s	≤60 s	≤60 s
specimen after the second flame application $[t_2 + t_3]$			
Afterflame or afterglow of any specimen up to the	No	No	No
holding clamp			
Cotton indicator ignited by flaming particles or drops	No	No	Yes

Materials classified in <u>V-0</u> have highest burning resistant or <u>lowest flammability</u>.

2. Burning Characteristics Test in Horizontal Position

Summary of Test Method

The burning characteristics test in horizontal position was determined according to ASTM D635-03 (2003). This test method is used to estimate flammability of solid plastics especially plastics cannot be classified in V-0 to V-2 level.

Test Specimens

Dimension of specimen: The standard specimen geometry shall be 13.0 ± 0.5 by 125 ± 5 mm in the thickness appropriate to the objectives of the determination. Materials thicker than 13 mm shall not be tested by this test method. Surface of specimen shall be smooth and unbroken.

Test Procedures

1. Prepare at least ten bar specimens. Condition ten bar specimens for each material and thickness to be tested in accordance with Test Method D 618 at 23 ± 2 °C and 50 ± 5 % relative humidity for a minimum of 48 h. Once removed from the conditioning atmosphere test the specimens within 1 h.

- 2. After that marking each specimen with two lines perpendicular to the longitudinal axis of the bar, 25 ± 1 and 100 ± 1 mm from the end that is to be ignited.
- 3. The equipment of this horizontal burning test was shown in Fig. 9. After that adjustment of burner for producing a blue flame has flame height of 20 ± 2 mm. Place the burner so that the test flame impinges on the free end of the test specimen to a depth of approximately 6 mm starting the timing device simultaneously. The central axis of the burner tube is to be in the same vertical plane as the longitudinal bottom edge of the specimen and inclined toward the end of the specimen at an angle of approximately 45 ± 2 degrees to the horizontal. Apply the flame for 30 ± 1 s without changing its position. Withdraw the test flame sufficiently from specimen so that there is no effect on the specimen after 30 ± 1 s or as soon as the flame front of the specimen reaches the 25 mm mark (if less than 30 s).
- 4. Start the measurement of time when the flame front reaches the 25 mm reference mark. If the specimen continues to burn, with a flame or glowing combustion (visible glow without flame), after removal of the test flame, record the elapsed time (t), in seconds, for the flame front to travel from the 25 mm reference mark to the 100 mm reference mark and record the burned length (L), as 75 mm. If the flame front passes the 25 mm reference mark but does not reach the 100 mm reference mark, record the elapsed time (t), in seconds, and the burned length (L), in millimetres between the 25 mm reference mark and where the flame front stopped. Calculate the linear burning rate (V), in millimetres per minute, for each specimen where the flame front reaches the 100 mm reference mark using equation 15:

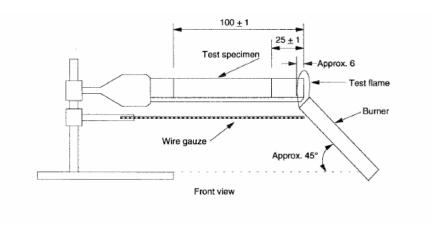


Figure 9 Equipment for horizontal burning test

$$V = 60L/t \tag{15}$$

Where:

V = the linear burning rate, in millimetres per minute; and

L = the burned length, in millimeters; and

t = the elapsed time, in seconds, for the flame front to travel from the 25 mm reference mark to the 100 mm reference mark or where the flame front stopped.

Report

The horizontal burning test was classified as HB. For the result report, it consist of the linear burning rate (V) and the flame front on specimen can stop before the 100 mm reference mark or it cannot. Specimen, having <u>low the linear burning rate</u>, is indicated that this specimen has <u>low flammability</u>.

Water Absorption

Summary of Test Method

The water absorption test is followed the ASTM D 570-98 (1998) to evaluate the water absorption ability of plastic. The absorption ability affects the mechanical properties or load resistance as well as the swelling of specimen from the water.

Test Specimens

Size of specimen is 25.4 mm. in width and 76.2 mm. in length. The thickness of the specimen can be specified. Moreover, the specimen should not have any crack at the surface.

Test Procedures

- 1. 3 specimens are prepared for this test and put the specimens in the oven at the temperature of 50 ± 3°C for duration of 24 hrs and control the relative humidity to be 50 ± 5° % for 48 hrs. Then cool down the specimens with the desiccators and weight specimen immediately to obtain the dry weight. Finally, put the obtained specimens in the water for 24 hrs.
- 2. Bring the specimens from the water and dry the surface. Then, weight the specimens to obtain the weight of specimens when it is wetted.
- 3. Calculate the percent absorption at 24 hrs by using equation 16

%water absorption =
$$\frac{W_{wet} - W_{dry}}{W_{dry}} \times 100$$
 (16)

Where

 W_{wet} is the weight of specimen which is immersed in the water for 24 hrs (gram)

 W_{dry} is the dry weight of specimens (gram)

Report

The percentage of water absorption is reported at 24 hrs. This value indicates the swelling of material. The material with higher percentage water absorption gives the lower strength.

Thermal Ageing Test

Summary of Test Method

Thermal ageing test, following the ASTM D2115, was used to evaluate efficiency of specimen on thermal resistance such as outdoor application. This test was often used to evaluate efficiency of thermal stabilizer of PVC. The thermally ageing specimen was inspected for color change by a digital camera and a UV-Vis Spectrometer.

Test Specimens

Dimension of specimen: Specimen geometry was prepared according to properties investigated after thermal ageing.

Test Procedures

The specimen was heated at 177°C for various thermal ageing times (0, 30, 45, 60, 90, 120, 180, 270 and 360 minutes). Thermally aged PVC specimens occurred color change due to the formation of long conjugated double bonds or polyene sequence in main PVC chains. This led to progressive resin discoloration from white to yellow and yellow to red brown, respectively.

Report

After thermal ageing test, the color changes of thermally aged specimens at various thermal ageing times were determined using a digital camera and a UV-Vis Spectrophotometer.

Accelerated UV Weathering Test

Summary of Test Method

Accelerated UV weathering test by using QUV weatherometer, following the ASTM G154-06 (2006), was used to evaluate efficiency of specimen on UV light resistance. The accelerated UV weathering specimens were inspected for color change by digital camera and UV-Vis Spectrometer. In addition, the weathered specimens were also investigated changes of mechanical properties.

Test Specimens

Dimension of specimen: Specimen geometry was prepared according to properties investigated after accelerated UV weathering.

Test Procedures

The specimens were accelerated UV weathering by using QUV weatherometer. In ASTM G154-06 (2006), it has 7 cycles of weathering test for various applications. Each cycle of accelerated weathering was detailed for UV light source, UV light exposure time, temperature during UV exposure and temperature and time during condensation condition. For example, the cycle 2, which was suitable weathering test for coating, used 4 hours of UV light exposure at 60 °C with the 313 nm fluoreascent UV lamps (UVB 313) followed by 4 hours of condensation at 50 °C.

Report

After weathering test, the weathered specimens were assessed the changes of color and mechanical properties.

Color and Yellowness Index Measurements

1. Assessment of Color by using Digital Camera

Summary of Test Method

Assessment of specimen color by using digital camera was used for reporting color comparison of unaged and aged specimens with heat or UV-light. It was often evaluated effect of type and content of light or thermal stabilizers or effect of various accelerated weathering on the color change of specimens.

Test Specimens

The specimen geometry shall be 13.0 ± 0.5 by 50.0 ± 1.0 mm in the thickness appropriate to the objectives of the determination. Surface of specimen shall be smooth and unbroken.

Test Procedures

Color and appearance of specimen were recorded by using digital camera. It should be detailed for brand and model of digital camera, pixel size and distance between camera and specimen.

Report

The specimen photos were used to report color comparison of unaged and aged specimens with heat or UV-light. If aged specimen had <u>very color change</u> as comparing with unaged specimen, it was indicated that specimen was <u>much degraded by heat or UV-light</u>.

2. Assessment of Color and Yellowness Index by using a UV-Vis Spectrophotometer

Summary of Test Method

Assessments of color and yellowness index of specimens by using UV-Vis spectrophotometer were often used for investigating color change or degradation evaluation of specimens consisting of polymer as constituent when specimens were aged by heat or UV-light.

Test Specimens

Dimension of specimen: The specimen geometry shall be 13.0 ± 0.5 by 50.0 ± 1.0 mm in the thickness appropriate to the objectives of the determination. Surface of specimen shall be smooth and unbroken.

Test Procedures

The color changes of specimen in the Munsell Color System and CIE yellowness index were evaluated using a UV-Vis spectrophotometer (Shimatsu UV-Vis 3100 Spectrophotometer, Japan) with Illuminant C at 2° . The UV-Vis spectrophotometer was shown in **Fig. 10.**

Figure 10 UV-Vis spectrophotometer

Color measurement in the Munsell Color System

The Munsell Color System details on Hue and Value/Chroma. **Fig. 11** shows various values in the Munsell Color System. Hue is color shade orientated along the circumference. The Value is lightness value and the top of cylinder is the most lightness whereas the bottom of cylinder is the lowest lightness. For Chroma, it is color saturation and the position near the center of circle is low Chroma whereas the position near the circumference is high Chroma.

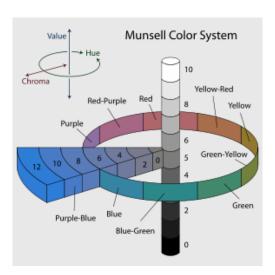


Figure 11 The Munsell Color System.

Based on the color chip system created by Albert Munsell. He determined Hue being that color quality describes by five basic hues: red (R), yellow(Y), green (G), blue(B) and purple (P) and five intermediate hues: yellow red (YR), green yellow (GY), blue green (BG), purple blue (PB) and red purple (RP) as shown in **Fig. 12**. The Hue is expressed by number and letter combination such as 5Y or 10GY where the numbers range from 1 to 10, the letters are taken from the 10 hue names.

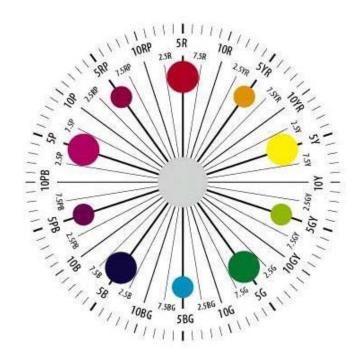


Figure 12 Munsell color wheel

CIE yellowness index

CIE yellowness index was determined by using UV-Vis Spectrophotometer according to the standard of the CIE LAB System for measuring X, Y and Z Tristimulus values to calculate the CIE yellowness index as shown in **equation 17**.

$$YI = \frac{100(1.28X_{CIE} - 1.06Z_{CIE})}{Y_{CIE}}$$
(17)

Report

The result report was divided into two parts as follows

Color measurement in the Munsell Color System was reported to be Hue, Value and Chroma, e.g. 5R 4/10 which means that Hue, lightness and saturation of color, respectively. The increase of Value means that the increasing lightness. The increase of Chroma means that the increasing saturation of color.

For result report of CIE yellowness index, the increase of yellow index means that the increasing yellowness. Sometimes, the decrease of Yellowness index was caused by change of color shade from yellow to yellow red.

Termite Resistance Test

Summary of Test Method

The termite resistance test is basically performed in laboratory. The test procedures are followed the Forest Product and Management Research Institute, Royal Forest Department of Thailand. The termite used in the test is *Coptotermes gestroi* which is the standard type for this test.

Test Specimens

Specimen dimension of 2.5x2.5 cm

Test Procedures

- 1. Prepare 4 pieces of specimens
- 2. Prepare the Coptotermes gestroi termite as shown in Fig. 13

Figure 13 Coptotermes gestroi termite

Put the wood plastic specimens into the plastic case, dimensions of 8x11x5 cm. In the plastic case, it contains purified sand with constant moisture content and 400 termites.
 Wait for 8-12 weeks. The typical setup of termite resistance test can be presented as Fig. 14.

Figure 14 Typical setup of termite resistance test

Evaluation of specimen failure is based on the loss weight calculation. Specimen weight of before and after test is used to determine the percentage of damage as shown in equation (17).

$$\% damage = \frac{weight before test - weight after test}{weight before test} x 100$$
 (17)

Report

The damage rate and level of damage can be reported. The level of specimen damage is detailed in **Table 3**.

 Table 3 Level of Specimen damage from Termite

Level of Damage	Damage Rate (%)	Observed Specimen Damage	Efficiency
0	0	No	Good
1	1-20	At surface	Satisfactory
2	21-40	Inside with low damage content	Acceptable
3	41-60	Inside with medium damage content	Unacceptable
4	61-80	Inside with high damage content	Unacceptable
5	81-100	Inside with severe damage content	Unacceptable

เอกสารแนบ 7

ผลการทดสอบสมบัติการรับแรงดัดของชิ้นงานวัสดุผสมพีวีซีและขึ้เลื่อย
 (100:100) ที่มีการเติมผงทัลคัมเปรียบเทียบกับการเติมแคลเซียมคาร์บอเนต ซึ่งเป็นผลิตภัณฑ์ของทางบริษัท

ผลการทดสอบสมบัติการรับแรงดัดของชิ้นงานวัสดุผสมพีวีซีและชี้เลื่อย (100:100) ที่มีการเติมผงทัลคัม เปรียบเทียบกับการเติมแคลเซียมคาร์บอเนต

จากการทดสอบสมบัติการรับแรงดัดของชิ้นงานวัสดุผสมพีวีซีและขี้เลื่อย (100:100) ที่มีการ เติมผงทัลคัมเปรียบเทียบกับการเติมแคลเซียมคาร์บอเนต โดยทำการทดสอบทั้งแนวตั้งและแนวนอน รายละเอียดของผลการทดลองแสดงในตารางที่ 1-2

ตารางที่ 1 ผลการทคสอบแรงคัครูปแบบแนวนอน

	Deflection at	Max.	Max.	Modu	lus of	Modu	lus of
Section	Max. load	load	bending	rup	ture	elast	icity
	$x10^{-2}$ (m)	(N)	(N-m)	(MPa)	S.D.	(MPa)	S.D.
PL04T	0.976	2,943	156.9	29.11	0.31	3,432	94.89
PL04	0.981	2,978	158.8	29.46	0.75	3,355	120.03

ตารางที่ 2 ผลการทคสอบแรงคัครูปแบบแนวตั้ง

	Deflection at	Max.	Max.	Modu	lus of	Modu	lus of
Section	Max. load	load	bending	rup	ture	elast	icity
	$x10^{-2}$ (m)	(N)	(N-m)	(MPa)	S.D.	(MPa)	S.D.
PL04T	4.269	2,267	547.9	30.74	0.55	4,640	138.80
PL04	4.508	2,314	559.3	31.38	0.66	4,385	87.37

จากการทดสอบทดสอบสมบัติการรับแรงดัดของชิ้นงานวัสดุผสมพีวีซีและขี้เลื่อย (100:100) ที่ มีการเติมผงทัลคัมเปรียบเทียบกับการเติมแคลเซียมคาร์บอเนต พบว่าการพบว่าการเติมผงทัลคัม ไม่ส่งผล ต่อการรับแรงดัดของวัสดุผสมพีวีซีและขี้เลื่อย (100:100)

Le	าก	าสา	าร	LL	น	91	8
O L		וסו		00	ro	_	_

- การศึกษาสมบัติการรับแรงเฉือนของกาวที่ยึดติดชิ้นงานวัสดุผสม พีวีซีและขึ้เลื่อยไม้ (100:100)

การศึกษาสมบัติการรับแรงเฉือนของกาวที่ยึดติดชิ้นงานวัสดุผสมพีวีซีและขี้เลื่อยไม้ (100:100)

1.<u>กาวที่ใช้ทคสอบ</u>

ร**ูปที่ 1** กาวยี่ห้อเอสคิว (SQ)

รูปที่ 2 กาวยี่ห้อ Quick Epoxy Adhesive (EP)

ร**ูปที่ 3** กาวยี่ห้อลีบีส (LI)

2.รูปแสดงการติดตั้งและการพังของชิ้นงานที่ยึดด้วยกาวชนิดต่างๆ

ร**ูปที่ 4** ลักษณะการติดตั้งชิ้นงาน

ร**ูปที่ 5** การพังของชิ้นงานที่ยึดด้วยกาวยี่ห้อ SQ

ร**ูปที่ 6** การพังของชิ้นงานที่ยึดด้วยกาวยี่ห้อ EP

รูปที่ 7 การพังของชิ้นงานที่ยึดด้วยกาวยี่ห้อ LI

3.ผลการทดสอบสมบัติการรับแรงเฉื่อนของกาวยี่ห้อต่างๆที่ยึดติดชิ้นงานวัสดุผสมพีวีซีและขี้เลื่อยไม้ (100:100)

•	,		y
ตารางที่ 1	ผลการทคสอบกาวยี่ห้อต่าง	ๅ โดยไม่มีการ•	บัดผิวชินงาน

NI -4-4		Max	Shear	Tei	nsile	
Notation Of Test Specimen	Test No.	Load F N	Strength T=F/A N/mm²	Max Stress σ=F/A N/mm²	Modulus of elasticity N/mm²	Remark
SQ	Mean	1,061	-	8.07	469	ขาดที่ชิ้นงาน
SQ	S.D.	51.1	-	0.38	81.7	บเทเบนนาน
EP	Mean	474	0.74	-	-	ขาดบริเวณที่ทากาว
EP	S.D.	124.9	0.19	-	-	0 M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
LI	Mean	1,076	-	8.00	414	ขาดที่ชิ้นงาน
LI	S.D.	82.4	-	0.60	63.5	บายเกอนาเน
PVC : SD	Mean	-	-	13.3	737	
(100:100)	S.D.	-	-	0.55	30.3	

จากตารางที่ 1 เป็นผลการทดสอบกำลังรับแรงเฉือนของกาวยี่ห้อต่างๆด้วยเครื่องทดสอบแรงดึงโดย ไม่มีการขัดผิวชิ้นงาน พบว่า ชิ้นงานทดสอบที่ยึดติดด้วยกาวยี่ห้อเอสคิวและกาวยี่ห้อเลีบีส มีการวิบัติที่ ชิ้นงานทดสอบ ซึ่งเป็นการวิบัติเนื่องจากแรงดึง สามารถคำนวณค่าความต้านทานแรงดึงได้จาก σ =F/A โดย ที่ A คือ พื้นที่หน้าตัดของชิ้นงานทดสอบบริเวณที่วิบัติ โดยชิ้นงานทดสอบที่ยึดติดด้วยกาวยี่ห้อเอสคิวมีค่า ความต้านทานแรงดึง เท่ากับ 8.07 N/mm² และชิ้นงานทดสอบที่ยึดติดด้วยกาวยี่ห้อเป็สมีค่าความด้านทาน แรงดึง เท่ากับ 8.00 N/mm² ซึ่งต่างจากชิ้นงานทดสอบที่ยึดติดด้วยกาวยี่ห้อ Quick Epoxy Adhesive ที่มีการ วิบัติบริเวณที่ทากาวซึ่งเป็นการวิบัติเนื่องจากแรงเฉือน สามารถคำนวณค่าความด้านทานแรงเฉือนได้จาก τ =F/A โดยที่ A คือ พื้นที่หน้าตัดของชิ้นงานทดสอบบริเวณที่ทากาว โดยชิ้นงานทดสอบที่ยึดติดด้วยกาว ยี่ห้อ Quick Epoxy Adhesive มีค่าความต้านทานแรงเฉือนเท่ากับ 0.74 N/mm² ซึ่งจากการทดสอบพบว่ากาว ยี่ห้อเอสคิวและกาวยี่ห้อถีบีสมีประสิทธิภาพในการยึดติดชิ้นงานวัสดุผสมพีวีซีและขี้เลื่อยไม้ (100:100)

ตารางที่ 2 ผลการทคสอบกาวยี่ห้อต่างๆ โคยมีการขัดผิวชิ้นงาน

Nisasa		Max	Shear	Tei	nsile	
Notation Of Test Specimen	Test No.	Load F N	Strength T=F/A N/mm²	Max Stress σ=F/A N/mm²	Modulus of elasticity N/mm²	Remark
SQ	Mean	1,126	-	8.46	444	ขาดที่ชิ้นงาน
30	S.D.	91.0	-	0.20	39.0	אואאנא
EP	Mean	604	0.94	-	-	ขาดบริเวณที่ทากาว
EF	S.D.	30.5	0.05	-	-	0 151 17 3 8 3 8 9 11 11 11 1 3
LI	Mean	1,353	-	8.10	403	ขาดที่ชิ้นงาน
LI	S.D.	14.1	-	0.30	32.4	บาทบนาน
PVC : SD	Mean	-	-	13.3	737	
(100:100)	S.D.	-	-	0.55	30.3	

จากตารางที่ 2 เป็นผลการทดสอบกำลังรับแรงเฉือนของกาวยี่ห้อต่างๆด้วยเครื่องทดสอบแรงดึงโดย มีการขัดผิวชิ้นงาน พบว่า ชิ้นงานทดสอบที่ยึดติดด้วยกาวยี่ห้อเอสคิวมีค่าความต้านทานแรงดึงเท่ากับ 8.46 N/mm² ชิ้นงานทดสอบที่ยึดติดด้วยกาวยี่ห้อลีบีสมีค่าความต้านทานแรงดึงเท่ากับ 8.10 N/mm² และชิ้นงาน ทดสอบที่ยึดติดด้วยกาวยี่ห้อ Quick Epoxy Adhesive มีค่าความต้านทานแรงเฉือนเท่ากับ 0.94 N/mm² ซึ่ง จากการทดสอบพบว่ากาวยี่ห้อเอสคิวและกาวยี่ห้อลีบีสมีค่าความต้านทานแรงดึงใกล้เคียงกับผลการทดสอบ กำลังรับแรงเฉือนของกาวยี่ห้อต่างๆ โดยไม่มีการขัดผิวชิ้นงาน ทั้งนี้เนื่องจากชิ้นงานทดสอบมีการวิบัติที่ ชิ้นงานทดสอบ ซึ่งการขัดผิวชิ้นงานไม่มีผลต่อบริเวณที่วิบัติ แตกต่างกับชิ้นงานทดสอบที่ยึดติดด้วยกาวยี่ห้อ Quick Epoxy Adhesive ซึ่งมีค่าความต้านทานแรงเฉือนเพิ่มขึ้น พบว่า การขัดผิวชิ้นงานทดสอบก่อนการทากาว ทำให้กาวมีประสิทธิภาพในการยึดติดเพิ่มมากขึ้น

ตารางที่ 3 ผลการทดสอบกาวยี่ห้อต่างๆ โดยมีการขัดผิวชิ้นงานและกดทับด้วยแผ่นเหล็กหนัก กิโลกรัม บริเวณที่ทากาว

Ni a 4 a 4 a a a		Max Shear		Tei	nsile	
Notation Of Test Specimen	Test No.	Load F	Strength T=F/A	Max Stress σ=F/A	Modulus of elasticity	Remark
SP		N	N/mm ²	N/mm ²	N/mm ²	
SQ	Mean	1,010	-	7.80	382	ขาดที่ชิ้นงาน
SQ	S.D.	98.3	-	0.80	21.0	אוראתוואוט
EP	Mean	834	1.28	-	-	ขาดบริเวณที่ทากาว
LF	S.D.	35.0	0.05	-	-	0 151 17 3 8 3 8 8 8 8 1 11 11 1 3
LI	Mean	1,067	-	7.80	410	ขาคที่ชิ้นงาน
LI	S.D.	72.5	-	0.60	41.4	บ เพยามนา โน
PVC : SD	Mean	-	-	13.3	737	
(100:100)	S.D.	-	-	0.55	30.3	

จากตารางที่ 3 เป็นผลการทดสอบกำลังรับแรงเฉือนของกาวยี่ห้อต่างๆด้วยเครื่องทดสอบแรงคึงโดย มีการขัดผิวชิ้นงานและกดทับด้วยแผ่นเหล็กหนัก 5 กิโลกรัม บริเวณที่ทากาว พบว่า ชิ้นงานทดสอบที่ยึดติด ด้วยกาวยี่ห้อเอสคิวมีค่าความต้านทานแรงคึงเท่ากับ 7.80 N/mm² ชิ้นงานทดสอบที่ยึดติดด้วยกาวยี่ห้อลีบีสมี ค่าความต้านทานแรงคึงเท่ากับ 7.80 N/mm² และชิ้นงานทดสอบที่ยึดติดด้วยกาวยี่ห้อ Quick Epoxy Adhesive มีค่าความต้านทานแรงเฉือนเท่ากับ 1.28N/mm² ซึ่งจากการทดสอบพบว่ากาวยี่ห้อเอสคิวและกาวยี่ห้อถีบีสมี ค่าความต้านทานแรงคึงใกล้เคียงกับผลการทดสอบกำลังรับแรงเฉือนของกาวยี่ห้อต่างๆ โดยไม่มีการขัด ผิวชิ้นงาน และมีการขัดผิวชิ้นงาน ทั้งนี้เนื่องจากชิ้นงานทดสอบมีการวิบัติที่ชิ้นงานทดสอบ ซึ่งการขัด ผิวชิ้นงานไม่มีผลต่อบริเวณที่วิบัติ แตกต่างกับชิ้นงานทดสอบที่ยึดติดด้วยกาวยี่ห้อ Quick Epoxy Adhesive ซึ่งมีค่าความต้านทานแรงเฉือนเพิ่มขึ้น พบว่า การขัดผิวชิ้นงานทดสอบก่อนการทากาวและกดทับด้วยแผ่น เหล็กหนัก 5 กิโลกรัม บริเวณที่ทากาว ทำให้กาวมีประสิทธิภาพในการยึดติดเพิ่มมากขึ้น

ตารางที่ 4 ราคากาวแต่ละยี่ห้อ

กาวยี่ห้อ	ราคา(บาท/กรัม)
เอสคิว	1.5
Quick Epoxy Adhesive	2.86
ลีบีส	0.5

สรุปผลที่ได้จากการทดสอบ พบว่า กาวยี่ห้อเอสคิว และกาวยี่ห้อลีบีส มีประสิทธิภาพในการยึดติด ชิ้นงานวัสดุผสมพีวีซีและขี่เลื่อยไม้ (100:100) มากที่สุด และเมื่อทำการขัดผิวชิ้นงานและกดทับด้วยแผ่น เหล็กหนัก 5 กิโลกรัม บริเวณที่ทากาว จะทำให้กาวมีประสิทธิภาพในการยึดติดมากขึ้น เมื่อเปรียบเทียบราคา กาวแต่ละยี่ห้อ ดังแสดงในตารางที่ 4 พบว่า กาวยี่ห้อลีบีสมีราคาถูกกว่ากาวยี่ห้อเอสคิว ดังนั้นกาวยี่ห้อลีบีส จึงเป็นกาวที่เหมาะสมที่จะนำมายึดติดคานหน้าตัดประกอบ