บทคัดย่อ

กากเมล็ดสบ่คำเป็นผลพลอยได้จากกระบวนการสกัดน้ำมันเมล็ดสบ่คำและมีองค์ประกอบ ของโปรตีนสง ดังนั้นกากเมล็ดสบ่ดำน่าจะนำไปประยกต์ใช้เป็นแหล่งของกรคอะมิโนหรือเปปไทด์ที่ ช่วยเร่งการเจริญเติบโตของพืช งานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาผลของโปรตีนสกัดจากการย่อย ้โปรตีนที่แยกจากกากเมล็คสบู่คำต่อการเจริญเติบโตของพืช โคยการใช้เมล็คพันธุ์พริกขี้หนุสายพันธุ์ หัวเรือและต้นคะน้ำเป็นพืชต้นแบบ ผลการศึกษาพบว่ากากเมล็ดสบู่ดำเป็นวัตถุดิบทางการเกษตรที่มี ปริมาณโปรตีนประมาณ 23.5% (w/w) การแยกโปรตีนออกจากกากเมล็ดสบู่ดำสามารถใช้สภาวะ pH 12 อุณหภูมิ 50°C นาน 3 ชั่วโมง และตกตะกอนโปรตีนด้วยการปรับกรดที่ pH 4 ทั้งนี้ pH อุณหภูมิ เวลา ปริมาณเกลือและวิธีการตกตะกอนโปรตีนด้วยการปรับกรด Solvent, Alcohol หรือเกลือ มีผลต่อ การแยกโปรตีนจากกากเมล็ดสบู่คำ สำหรับผลของระดับการย่อยสลายของโปรตีนจากกากเมล็ดสบู่คำ ด้วยเอนไซม์ Neutrase เอนไซม์ Papain เอนไซม์ Trypsin เอนไซม์ Papsin และกรดไฮโครคลอริก ใน ระยะเวลา 12 ชั่วโมง มีค่าระหว่าง 3.8 ถึง 97.3 เปอร์เซ็นต์ ซึ่งเอนไซม์ Neutrase ให้ระดับการย่อย สลายสูงสุดที่ 97.3 เปอร์เซ็นต์ ในระยะเวลา 12 ชั่วโมง ผลการศึกษาการเจริญเติบโตของเมล็คพันธุ์พริก ด้วยโปรตีนสกัด พบว่า โปรตีนสกัดจากเอนไซม์ Neutrase ที่ระยะเวลา 2 ชั่วโมง ณ ความเข้มข้น 30 ใมโครกรัมของกรคอะมิโนต่อมิลลิลิตร ให้ค่าคัชนีชี้วัคการเจริญเติบโตของเมล็คพันธุ์พริก สูงสุด คือให้ค่าเปอร์เซ็นต์ความงอกของเมล็ด 75 เปอร์เซ็นต์ เปอร์เซ็นต์การแทงราก 96 เปอร์เซ็นต์ อัตราการเจริญของต้นกล้า 4.53 และคัชนีการงอกของเมล็ด 7.84 คังนั้นโปรตีน สกัดที่ได้จากการย่อยโปรตีนจากกากเมล็ดสบู่คำด้วยเอนไซม์ Neutrase ที่ระยะเวลา 2 ชั่วโมง สามารถใช้เป็นสารเร่งการเจริญเติบโตของพืชที่ดี ทั้งนี้คาคว่าเปปไทค์ที่มีมวลโมเลกุล ระหว่าง 12-22 กิโลดาลตันในโปรตีนสกัดแสดงคุณสมบัติการเร่งการเจริญเติบโตของพืชดังกล่าว นอกจากนี้โปรตีนสกัดที่ได้จากการย่อยโปรตีนด้วยเอนไซม์ Neutrase ที่ระยะเวลา 2 ชั่วโมง ที่ ความเข้มข้น 10-50 ใมโครกรัมของกรคอะมิโนต่อมิลลิลิตร สามารถเร่งการเจริญเติบโตของต้น คะน้าโดยให้ความสูงและขนาดของต้นคะน้ำ 24-27 เซนติเมตรและ 0.4 เซนติเมตร ตามลำดับ น้ำหนัก แห้งและน้ำหนักสดของต้นคะน้ำ 0.4-0.6 กรัมและ 5.0-6.5 กรัม ตามลำดับ และค่าระดับคุณภาพของ ต้นคะน้ำ 2.4-2.7 จาก 4 ระดับ ดังนั้นจะเห็นว่าโปรตีนสกัดที่ได้จากการย่อยโปรตีนที่แยกจากกาก เมล็ดสบู่คำด้วยเอน ใชม์ Neutrase สามารถเร่งการเจริญเติบ โตของพืช ได้

Abstract

Jatropha curcas seed cake is a by-product generated from oil extraction process of J. curcas seed and contains high protein. It, therefore, would be served as a source of protein hydrolysate applied for plant growth stimulation. This research work was aimed at studying plant growth promotion by protein hydrolysates obtained from enzymatic and acid hydrolyses of protein isolated from J. curcas seed cake using chilli (Capsicum annuum L.) seeds and Chinese kale as model plants. Results showed that J. carcas seed cake sample in this study had a protein content of 23.5% (w/w). Its protein isolation was carried out by suspending the seed cake in an alkaline solution (pH 12) at 50°C for 3 hr. Protein was then precipitated under an acidic condition (pH 4) or its isoelectric point. The study also showed protein isolation from J. curcas seed cake was affected by pH, temperature, agitation time and salt concentration and types, including solvent and alcohol concentration. J. curcas protein hydrolyses were done by four proteolytic enzymes (Neutrase, Papain, Trypsin and Pepsin) and acid (HCl) for 12 hours with various degrees of hydrolysis (3.8-97.3%). Neutrase gave the highest degree of hydrolysis at 97.3%. Tested on chilli seeds, their growth was considerably stimulated by the protein hydrolysate (30 µg amino acid/ml) obtained from Neutrase digestion at 2 hours. The sample gave the maximum germination percentage, radicle emergence percentage, seeding growth rate and germination index of 75%, 96%, 4.53 and 7.84, respectively. It is expected that peptides with molecular mass of 12-22 kDa in the hydrolysate may play an important role in plant growth stimulation. In addition, the protein hydrolysate at the concentrations of 10-50 µg amino acid/ml was able to stimulate the growth of Chinese kale with their heights of 24-27 cm, their diameter of approximately 0.4 cm, their wet and dry weights of 5.0-6.5 g and 0.4-0.6 g, respectively and their quality levels of 2.4-2.7 as of 4. Therefore, the hydrolysate obtained from *J. curcas* protein digestion by Neutrase at 2 hours would be a potent plant growth promoter.