บทคัดย่อ

การเตรียมอนุภาคทองคำระดับนาโนโดยทั่วไปจะอาศัยการใช้ความร้อน แม้วิธีการนี้จะมี
ประสิทธิภาพสูงแต่ยังไม่เหมาะสำหรับผลิตในระดับอุตสาหกรรม ดังนั้นในงานวิจัยนี้จึงได้ทำการเตรียม
อนุภาคทองคำแบบไม่ใช้ความร้อนโดยอาศัยปฏิกิริยารีดักชั่นของ chloroauric acid ร่วมกับ lysineactivated sodium ascorbate ในสภาวะที่มี potassium hydrogen carbonate อนุภาคทองคำที่เตรียมได้
ถูกนำไปศึกษาเปรียบเทียบคุณสมบัติทางกายภาพกับวิธีมาตรฐานที่เตรียมแบบใช้ความร้อน โดยการ
ถ่ายภาพด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด และวัดการดูดกลืนแลงโดยใช้เครื่องวัดการดูดกลืน
แสงในช่วง UV พบว่าอนุภาคทองคำที่เตรียมมีขนาดระหว่าง 10-30 นาโนเมตร ซึ่งใหญ่กว่าที่เตรียมโดย
วิธีการมาตรฐานเพียงเล็กน้อย แต่มีลักษณะการดูดกลืนแสงในช่วง UV ที่เหมือนกัน จากนั้นนำอนุภาค
ทองคำไปติดฉลากกับโมโนโคลนอลแอนติบอดีที่จำเพาะกับฮีโมโกลบินชนิด Bart's และ ζ-globin chain
แล้วนำมาทดสอบประสิทธิภาพในการติดฉลากกับฮีโมโกลบินมาตรฐานโดยวิธี dot blot sandwich
immunoassay

ABSTRACT

General process for colloidal gold nanoparticle preparation relies on thermal reaction. Although the method has high efficiency, it is not suitable for industrial upscaling process. Herein, we prepared non-heat treated colloidal gold (NHCG) by the reduction of chloroauric acid with lysine-activated sodium ascorbate in the presence of potassium hydrogen carbonate. The pH-adjusted NHCG was characterized and compared with standard colloidal gold preparation i.e. with heating process (HCG) by transmission electron microscopy (TEM) and UV-VIS spectroscopy. The diameter range of NHCG by TEM was between 10-30 nm, which was slightly wider than that of HCG. Whereas, the maximum absorbance of both CG forms was approximately 520 nm. The quality of pH-adjusted NHCG was verified by conjugating with monoclonal antibodies against Hb Bart's and ζ -globin chain to concomitantly detect the purified -hemoglobin Bart's and ζ -globin chain using dot blot sandwich immunoassay.