
 

 

 
 

: “
” 

 
 
 
 
 
 
 

 . .    
 
 
 
 
 
 
 
 2554 

 
 



i 

 IUG 5180005 

 
 

 
 

 
 
 
 
 

        
1. . .     

2. . .     

3. . .     

4. .      

 

5. .       
 
 
 
 
 

  
(     . )



ii 

Applying supply chain management to solve demand and supply mismatching problem for 

swine industry   

Supachai Pathumnakula, Kullapapruk Piewthongngamb, Monchai Duangjindac, Sakda Khamjand

and Prasert Vijitnoparatb

aDepartment of Industiral Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen  
40002, Thailand  

bDepartment of Economics, Faculty of Management Science, Khon Kaen University, Khon Kaen  
40002, Thailand  

cDepartment of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen  40002, 
Thailand 

dFaculty of Science and Engineering, Kasetsart University Chalermphrakiat Sakonnakhon Province 
Campus, Sakhonnakhon 47000, Thailand  

Abstract—This research focuses on developing quantitative tools in managing pig supply chain. The research 
composes of three parts: 1. Applying system dynamics in managing breeding herd, 2. The use of pig size prediction 
in pig chain, 3. Forecasting production cost and capability in feed industry under variety and uncertainty of raw 
materials.  For the first component, we develop a system dynamics model to simulate the linkage among all level of 
breeding farm such as great grand parent, grandparent, and fattening units. The relationship among these stages is 
represented by stock and flow of pigs constrained by actual conditions and environment in the farms. The flow 
imitate pig cycle in the farms, hence, it facilitates a planner in visualizing the situation of the whole chain. For the 
second component, we develop a model to estimate the distribution of pig size of a farm. The independent variables: 
feeding pattern, pig age, farming skill, sex, and genotype are used as input variables for Artificial Neural Network. 
The results show quite accurate prediction. Furthermore, the results can be used in the planning and managing of 
the adjacent units of the chain. For the last component, we develop an Artificial Neural Network model to estimate 
feed production cost under the variety and supply uncertainty of raw materials and machine conditions. This model is 
utilized in the industrial level and found that the accuracy of its results is acceptable for industrial use. Hence, during 
the high uncertainty of raw material, the purposed model can be an effective tool to manage cost of feed. Firm can 
use this information for production planning, and pricing more effectively.   

             

Keywords— Supply Chain Management, System dynamic, Artificial Neural Network, Pig chain, Feed Industry 
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 (System Dynamics)   
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 2.1 

 

   

   

  Stella®  

    

   

 Great grandparent (GGP), Grandparent(GP),  parent 

 Large white   Landrace  GGP  GP   

parent  (2X)  

 5 ( )  GGP  GP  

 2  GP  LW  LR  NP 

 2X   

  

2



8 

 2.1   

 
 

1.  
  4    

GGP, GP, parent   2.2 

 

 2.2   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gestation

Gilts stand heat or 
Sow

Mating
Farrowing

Lactation

Pool of gilt

piglets

Male

Female

1st Parity
2nd Parity

10th Parity
.

.
.

Service rate

+
Unsuccessful 
conception

Conception 
rate +

+

+ -

-

+

Abortion rate
-

+

+

+

Wean per sow

Unsuccessful 
pregnancy

+

Sow at 
next cycle

+

+

+

Sex ratio 
(female/male)

Pool of Boar

+ -

+

+

Replacement gilts for 
great-grand parent

Replacement gilts for 
grand parent

Fattening Units

Rate of passing test 
for great-grand parent

+
-

+

Rate of passing test 
for grand parent

+

-

Mortality and 
Culling rate

-

+

Demand for replacement 
gilts for great-grand parent

Demand for replacement 
gilts for grand parent

+

Replacement gilts for 
great-grand parent

Replacement boars 
for grand parent

Demand for replacement 
boars for great-grand parent

+

-

+

+

Fattening Units

-Demand for replacement 
boars for great-grand parent

+

+

+

+

+

 GGP 

 GP 

 Parent 

 

 1

 1

 2x

 2

 2



9 
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 parent  

 1.3  Parent   2   
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 4.4    GGP, 

GP  parent 

 4.5  

 4.6  

 4.7    

 4.8  

 4.9   , , 

  
 

5.  
 

   

   Stella® code 

 

-   1-3   

wk_1_to_3_F5_LW_GGP[parity0](t) = wk_1_to_3_F5_LW_GGP[parity0](t - dt) + 

(to_gest_1_to_3_F5_LW_GGP[parity0] - to_gest_4_to_15_F5_LW_GGP[parity0] - 

leakage_1_F5_LW_GGP[parity0]) * dt 

INIT wk_1_to_3_F5_LW_GGP[parity0] = 8.16,8.16,8.16 

 TRANSIT TIME = 3 

 INFLOW LIMIT = INF 

 CAPACITY = INF 

 INFLOWS: 

to_gest_1_to_3_F5_LW_GGP[parity] = Sow_herd__F5_LW_GGP[parity] 

 OUTFLOWS: 

to_gest_4_to_15_F5_LW_GGP[parity] = CONVEYOR OUTFLOW 

leakage_1_F5_LW_GGP[parity] = LEAKAGE OUTFLOW 

 LEAKAGE FRACTION = (5+0.125*3)/100 

 NO-LEAK ZONE = 0 
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-   4-15   

wk_4_to_15_F5_LW_GGP[parity0](t) = wk_4_to_15_F5_LW_GGP[parity0](t - dt) + 

(to_gest_4_to_15_F5_LW_GGP[parity0] - to_gest_16_F5_LW_GGP[parity0] - 

leakage2_F5_LW_GGP[parity0]) * dt 

INIT wk_4_to_15_F5_LW_GGP[parity0] = 

7.72,7.72,7.72,7.72,7.72,7.72,7.72,7.72,7.72,7.72,7.72,7.72 

 TRANSIT TIME = 12 

 INFLOW LIMIT = INF 

 CAPACITY = INF 

 INFLOWS: 

to_gest_4_to_15_F5_LW_GGP[parity] = CONVEYOR OUTFLOW 

 OUTFLOWS: 

leakage2_F5_LW_GGP[parity] = LEAKAGE OUTFLOW 

 LEAKAGE FRACTION = Leakage_2_Rate_F5_LW_GGP 

 NO-LEAK ZONE = 0 

-  16   

wk_16_F5_LW_GGP[parity0](t) = wk_16_F5_LW_GGP[parity0](t - dt) + 

(to_gest_16_F5_LW_GGP[parity0] - to_sow_to_deliver__F5_LW_GGP[parity0] - 

leakage3_F5_LW_GGP[parity0]) * dt 

INIT wk_16_F5_LW_GGP[parity0] = 7.4 

 INFLOWS: 

to_gest_16_F5_LW_GGP[parity] = CONVEYOR OUTFLOW 

 OUTFLOWS: 

to_sow_to_deliver__F5_LW_GGP[parity] = wk_16_F5_LW_GGP[parity] 

leakage3_F5_LW_GGP[parity] = wk_16_F5_LW_GGP[parity]*pseudo_rate_F5_LW_GGP 

-   

-  16  

  10   

  3 – 5 

  

 9   
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Born_alive__F5_LW_GGP[parity0](t) = Born_alive__F5_LW_GGP[parity0](t - dt) + 

(to_Born_alive__F5_LW_GGP[parity0] - pre_wean_dead_F5_LW_GGP[parity0] - 

to_wean_F5_LW_GGP[parity0]) * dt 

INIT Born_alive__F5_LW_GGP[parity0] = 67.59,67.59,67.59 

 TRANSIT TIME = 3 

 INFLOW LIMIT = INF 

 CAPACITY = INF 

 INFLOWS: 

to_Born_alive__F5_LW_GGP[parity] = 

to_sow_to_deliver__F5_LW_GGP[parity]*NBA__F5_LW_GGP[parity] 

 OUTFLOWS: 

pre_wean_dead_F5_LW_GGP[parity] = LEAKAGE OUTFLOW 

 LEAKAGE FRACTION = Prewean_Dead_GGP 

 NO-LEAK ZONE = 0 

to_wean_F5_LW_GGP[parity] = CONVEYOR OUTFLOW 

-  16-19  3   

Lactation__F5_LW_GGP[parity0](t) = Lactation__F5_LW_GGP[parity0](t - dt) + 

(to_sow_to_deliver__F5_LW_GGP[parity0] - to_cull_lactation_F5_LW_GGP[parity0] - 

to_dry_sow__F5_LW_GGP[parity0]) * dt 

INIT Lactation__F5_LW_GGP[parity0] = 7.35,7.35 

 TRANSIT TIME = 2 

 INFLOW LIMIT = INF 

 CAPACITY = INF 

 INFLOWS: 

to_sow_to_deliver__F5_LW_GGP[parity] = wk_16_F5_LW_GGP[parity] 

 OUTFLOWS: 

to_cull_lactation_F5_LW_GGP[parity] = LEAKAGE OUTFLOW 

 LEAKAGE FRACTION = 0.057 

 NO-LEAK ZONE = 0 

to_dry_sow__F5_LW_GGP[parity] = CONVEYOR OUTFLOW 
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-  19  1  (  dry sow) 

  Array 

 1   2  9  

  (

 (  6 ) ) 

Dry_sow__F5_LW_GGP[parity0](t) = Dry_sow__F5_LW_GGP[parity0](t - dt) + 

(to_dry_sow__F5_LW_GGP[parity0] - dry_sow_to_sow_herd_F5_LW_GGP[parity0] - 

to_cull_dry_sow_F5_LW_GGP[parity0]) * dt 

INIT Dry_sow__F5_LW_GGP[parity0] = 6.93 

 INFLOWS: 

  to_dry_sow__F5_LW_GGP[parity] = CONVEYOR OUTFLOW 

 OUTFLOWS: 

  dry_sow_to_sow_herd_F5_LW_GGP[parity] = Dry_sow__F5_LW_GGP[parity] 

  to_cull_dry_sow_F5_LW_GGP[parity0] = to_dry_sow__F5_LW_GGP[parity0]*0.2 

  to_cull_dry_sow_F5_LW_GGP[parity1] = 

to_dry_sow__F5_LW_GGP[parity1]*0.012237762 

  to_cull_dry_sow_F5_LW_GGP[parity2] = 

to_dry_sow__F5_LW_GGP[parity2]*0.019230769 

  to_cull_dry_sow_F5_LW_GGP[parity3] = 

to_dry_sow__F5_LW_GGP[parity3]*0.057692308 

  to_cull_dry_sow_F5_LW_GGP[parity4] = 

to_dry_sow__F5_LW_GGP[parity4]*0.076923077 

  to_cull_dry_sow_F5_LW_GGP[parity5] = 

to_dry_sow__F5_LW_GGP[parity5]*0.070512821 

  to_cull_dry_sow_F5_LW_GGP[parity6] = 

to_dry_sow__F5_LW_GGP[parity6]*0.134615385 

  to_cull_dry_sow_F5_LW_GGP[parity7] = to_dry_sow__F5_LW_GGP[parity7]*0.7 

  to_cull_dry_sow_F5_LW_GGP[parity8] = to_dry_sow__F5_LW_GGP[parity8]*1 



15 

   2.
5 

 G
GP

 

 
Fa

rm
 GG

P 

 1-
3  

(Pr
e w

ean
 de

ad)
 

  

 
 1 

 4-
15  

 16
  

 3 

 5 

 

 

:
 50

:50
 

 
 20

  
 

55%
 

 
GP

 

 
GG

P
 34

 
 

  
 

  GP
 

 1 

 GG
P 

 1 

 12
  

 90
% 

  

 1-
3 

 

 24
 

  

  

 
  

 44
 

 



16 

-    

  sow herd rate  

 90% 

Sow_herd__F5_LW_GGP[parity0](t) = Sow_herd__F5_LW_GGP[parity0](t - dt) + 

(RM_to_sow_F5_LW_GGP[parity0] + pseudocyesis_to_sow_F5_LW_GGP[parity0] + 

to_sow_herd___F5_LW_GGP[parity0] + Delay_F5_LW_GGP[parity0] - 

to_gest_1_to_3_F5_LW_GGP[parity0]) * dt 

INIT Sow_herd__F5_LW_GGP[parity0] = 7.5 

 INFLOWS: 

RM_to_sow_F5_LW_GGP[parity] = 

(leakage_1_F5_LW_GGP[parity]*leakage1_to_RM_rate_F5_LW_GGP)+(IF(Leakage_2_Rate_F5_

LW_GGP=0.042)THEN(leakage2_F5_LW_GGP[parity]*leakage2_to_RM_rate_normal__F5_LW_G

GP)ELSE(leakage2_F5_LW_GGP[parity]*leakage2_to_RM_rate_shock_F5_LW_GGP)) 

pseudocyesis_to_sow_F5_LW_GGP[parity] = leakage3_F5_LW_GGP[parity] 

to_sow_herd___F5_LW_GGP[parity0] = F5_LW_GGP_to__F5_LW_GGP 

to_sow_herd___F5_LW_GGP[parity1] = 

 dry_sow_to_sow_herd_F5_LW_GGP[parity0]*Sow_herd_rate__F5_LW_GGP 

to_sow_herd___F5_LW_GGP[parity2] = 

 dry_sow_to_sow_herd_F5_LW_GGP[parity1]*Sow_herd_rate__F5_LW_GGP 

to_sow_herd___F5_LW_GGP[parity3] = 

 dry_sow_to_sow_herd_F5_LW_GGP[parity2]*Sow_herd_rate__F5_LW_GGP 

to_sow_herd___F5_LW_GGP[parity4] = 

 dry_sow_to_sow_herd_F5_LW_GGP[parity3]*Sow_herd_rate__F5_LW_GGP 

to_sow_herd___F5_LW_GGP[parity5] = 

 dry_sow_to_sow_herd_F5_LW_GGP[parity4]*Sow_herd_rate__F5_LW_GGP 

to_sow_herd___F5_LW_GGP[parity6] = 

 dry_sow_to_sow_herd_F5_LW_GGP[parity5]*Sow_herd_rate__F5_LW_GGP 

to_sow_herd___F5_LW_GGP[parity7] = 

 dry_sow_to_sow_herd_F5_LW_GGP[parity6]*Sow_herd_rate__F5_LW_GGP 

to_sow_herd___F5_LW_GGP[parity8] = 

 dry_sow_to_sow_herd_F5_LW_GGP[parity7]*Sow_herd_rate__F5_LW_GGP 
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   (  3 

)  (  pre wean dead) 

 50:50  

Born_alive__F5_LW_GGP[parity0](t) = Born_alive__F5_LW_GGP[parity0](t - dt) + 

(to_Born_alive__F5_LW_GGP[parity0] - pre_wean_dead_F5_LW_GGP[parity0] - 

to_wean_F5_LW_GGP[parity0]) * dt 

INIT Born_alive__F5_LW_GGP[parity0] = 67.59,67.59,67.59 

 TRANSIT TIME = 3 

 INFLOW LIMIT = INF 

 CAPACITY = INF 

 INFLOWS: 

to_Born_alive__F5_LW_GGP[parity] = 

to_sow_to_deliver__F5_LW_GGP[parity]*NBA__F5_LW_GGP[parity] 

 OUTFLOWS: 

pre_wean_dead_F5_LW_GGP[parity] = LEAKAGE OUTFLOW 

 LEAKAGE FRACTION = Prewean_Dead_GGP 

 NO-LEAK ZONE = 0 

to_wean_F5_LW_GGP[parity] = CONVEYOR OUTFLOW 

 

Wean_Pool__F5_LW_GGP(t) = Wean_Pool__F5_LW_GGP(t - dt) + (to_wean_F5_LW_GGP[parity] 

+ to_wean_F5_LW_GGP[parity0] + to_wean_F5_LW_GGP[parity1] + 

to_wean_F5_LW_GGP[parity2] + to_wean_F5_LW_GGP[parity3] + 

to_wean_F5_LW_GGP[parity4] + to_wean_F5_LW_GGP[parity5] + 

to_wean_F5_LW_GGP[parity6] + to_wean_F5_LW_GGP[parity7] + 

to_wean_F5_LW_GGP[parity8] - to_boar_11_wk__F5_LW_GGP - to__gilt_19_wk__F5_LW_GGP) 

* dt 

INIT Wean_Pool__F5_LW_GGP = 218.17 

 INFLOWS: 

to_wean_F5_LW_GGP[parity] = CONVEYOR OUTFLOW 

 OUTFLOWS: 
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to_boar_11_wk__F5_LW_GGP = Wean_Pool__F5_LW_GGP*(1-Sex_ratio_F_per_M) 

to__gilt_19_wk__F5_LW_GGP = Wean_Pool__F5_LW_GGP*Sex_ratio_F_per_M 

 
 

   

-  20 

  

 GGP    GP  2 

  GGP  GGP  

 GP  GP 

gilt_20_wk_F5_LW_GGP(t) = gilt_20_wk_F5_LW_GGP(t - dt) + (to_gilt_20_wk_F5_LW_GGP - 

gilt_fattening_55%_20_wk_F5_LW_GGP - grading_gilt_to_F5_F5_LW_GGP - 

gilt_grading_to_f2_F5_LW_GGP) * dt 

INIT gilt_20_wk_F5_LW_GGP = 104.35 

 INFLOWS: 

to_gilt_20_wk_F5_LW_GGP = CONVEYOR OUTFLOW 

 OUTFLOWS: 

gilt_fattening_55%_20_wk_F5_LW_GGP = 

to_gilt_20_wk_F5_LW_GGP*Breeding_Value_fattening_F5_LW_GGP 

grading_gilt_to_F5_F5_LW_GGP = (to_gilt_20_wk_F5_LW_GGP*Noname_65)-

Replace_F5_LW_GGP 

gilt_grading_to_f2_F5_LW_GGP = Replace_F5_LW_GGP 

-  34  20 – 34 

  

 

gilts_34_wk__F5_LW_GGP(t) = gilts_34_wk__F5_LW_GGP(t - dt) + (to_gilt_34_wk__F5_LW_GGP 

- grading_gilt_to_fattening_leakage_15%_34_wks_F5_LW_GGP - 

gilts_to_replace_85%_F5_LW_GGP) * dt 

INIT gilts_34_wk__F5_LW_GGP = 28.02,28.02,28.02,28.02,28.02,28.02,28.02,28.02 

 TRANSIT TIME = 8 

 INFLOW LIMIT = INF 
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 CAPACITY = INF 

 INFLOWS: 

to_gilt_34_wk__F5_LW_GGP = CONVEYOR OUTFLOW 

 OUTFLOWS: 

grading_gilt_to_fattening_leakage_15%_34_wks_F5_LW_GGP = LEAKAGE OUTFLOW 

 LEAKAGE FRACTION = 0.15 

 NO-LEAK ZONE = 0 

gilts_to_replace_85%_F5_LW_GGP = CONVEYOR OUTFLOW 

-   1 

  1  

 
 

    

-  12   

 

boar_12_wk_F5_LW_GGP(t) = boar_12_wk_F5_LW_GGP(t - dt) + (to_boar_12_wk_F5_LW_GGP 

- boar_to_fattening_90%_12_wk_F5_LW_GGP - to_boar_grading_10%_F5_LW_GGP) * dt 

INIT boar_12_wk_F5_LW_GGP = 120.99 

 INFLOWS: 

to_boar_12_wk_F5_LW_GGP = CONVEYOR OUTFLOW 

 OUTFLOWS: 

boar_to_fattening_90%_12_wk_F5_LW_GGP = boar_12_wk_F5_LW_GGP*0.90 

to_boar_grading_10%_F5_LW_GGP = boar_12_wk_F5_LW_GGP*0.10 

-  

24    1.   2. 

  3.  (  

)  2  44  

boar_24_wk__F5_LW_GGP(t) = boar_24_wk__F5_LW_GGP(t - dt) + 

(to_boar_24_wk_F5_LW_GGP - boar_egg_to_fattening_5%from10%_24_wks__LW_GGP - 

to_sale_boar_3%__F5_LW_GGP - to_boar_replace_2%_F5_LW_GGP) * dt 

INIT boar_24_wk__F5_LW_GGP = 12.1 
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 INFLOWS: 

to_boar_24_wk_F5_LW_GGP = CONVEYOR OUTFLOW 

 OUTFLOWS: 

boar_egg_to_fattening_5%from10%_24_wks__LW_GGP = (boar_24_wk__F5_LW_GGP)*(0.5-

0.1204) 

to_sale_boar_3%__F5_LW_GGP = (boar_24_wk__F5_LW_GGP)*(0.3-0.07227) 

to_boar_replace_2%_F5_LW_GGP = (boar_24_wk__F5_LW_GGP)*(0.2+0.07227+0.12045105) 
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a b s t r a c t

Due to frequent changes of feed mix, the anticipation of pellet quality becomes a cumbersome task for

a mill. This paper suggests that the artificial neural network can be used to predict the production rate

and percentage of dust for a particular mill. Applying the suggested method, the potentially costly test

production that otherwise required is prevented. Four models based on process parameters (i.e., feeder

speed, die size, die thickness and press motor amperage), the proportions of nutrient contents (i.e., protein,

fat, fibre, and ash) and the type and proportions of raw materials included in each formula (i.e., corn, rice

bran, and soybean) were applied. The data used in this study are the actual data collected from a feed

mill in Thailand. The assumption of the first model is that the process parameters and the proportions

of nutrient contents in a formula affect the production efficiency and pellet quality. The assumption of

the second model is that the process parameters and the proportions of nutrient contents of each main

raw material included in a formula affect the production efficiency and pellet quality. The assumption

of the third model is that the process parameters and the proportions of main raw materials included

in the formula affect the production efficiency and pellet quality. The assumption underlying the fourth

model is that only the proportions of main raw materials included in each formula affect the production

efficiency and pellet quality. The results show that the process parameters and the percent inclusion

of main raw materials (Model 3) give a more accurate prediction of pelleting rate. For the prediction

of the dust level, Model 1 gives the least accurate results, while the results from the other models are

not significantly different. The ability to predict the production rate and dust level enhances the mill’s

capability to incorporate the cost of production during the feed formulation process. Hence, the mill will

be able to consider both production and raw material costs simultaneously when deciding on the most

economical formula for producing feed.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In the feed industry, a linear programming approach called

the “least cost formulation” (LCF) has been used to determine

the cheapest blend of available raw materials that meet certain

nutritional requirements. Although, using the least cost formula-

tion, the calculated nutritional requirements are met, feed mills

may face problems of pelleting quality due to different types of

feedstuffs incorporated at different inclusion levels (Thomas et al.,

1998). Hence, when different types of feedstuffs are processed,

some pelleting parameters such as die size and die pressure should

be adjusted to accommodate the unique physical–chemical prop-

erties of the diet ingredients. However, in order to correctly adjust

the process parameters, operators need to assess the interactions

∗ Corresponding author. Tel.: +66 43 202401; fax: +66 43 202401.

E-mail addresses: supa pat@kku.ac.th (S. Pathumnakul), pkullap@kku.ac.th

(K. Piewthongngam), arthit.apichot@gmail.com (A. Apichottanakul).
1 Tel.: +66 43 202697.

among each feedstuff and between the feedstuffs and production

processes. Because these interactions are very complex, the effects

of these parameters on pellet quality can only be roughly estimated

rather than exactly measured (Thomas et al., 1998). In the past, mills

slowly adjusted their processes to accommodate changes in the

physical–chemical properties of each feed ingredients via learning-

by-doing. During the learning process, if physical pellet quality did

not meet the mill’s standards, those batches were reprocessed. The

capacity of the mills dropped, as a result, because of extra clearing

and extensive reprocessing time.

From the late 2007 until the beginning of 2008, the price of

agricultural products was soared as indicated by the data obtained

from the Department of Internal Trade (Thailand) shown in Fig. 1.

The fluctuated price resulted in the variation of feed formulas. For

example, during August and October 2007, the percentage change

of price of yellow corn and soybean meal were 17.34% and 25.36%,

respectively, while the price of cassava and rice bran during that

same period did not change radically. As a consequence, LCF sug-

gested substituting cassava for yellow corn in respond to the relative

price change as indicated in Table 1. In September, the percent

0168-1699/$ – see front matter © 2009 Elsevier B.V. All rights reserved.

doi:10.1016/j.compag.2009.04.001
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Fig. 1. Domestic price of main crops used in Thai feed industry, January

2001–September 2007. (a) Yellow corn price; (b) cassava price; (c) rice bran price.

Note: The data were obtained from the Department of Internal Trade (Thailand).

inclusion of cassava chip in a swine feed was 17.76, while it was

31.94 in October. Feed mills are faced with dynamic processes in

which they need to readjust their processes in order to accommo-

date different types of feedstuff of varying inclusion levels. The mill

did not have adequate time for a proper process adjustment. Hence,

the numbers of reprocessed batches rise along with production

completion time as a result of frequently changing feed compo-

sition. For lean production and lean inventory, this situation may

create back orders, which are likely to trigger customer complaints.

If the problem persists, the mills might experience a sale loss in the

near future.

One way to prevent the reprocessing caused by such an issue is to

detect the troubled feed ration prior to starting actual production.

Chappell (1974) suggested that if inclusion of a certain ingredient

at a high level is likely to cause operation problems, a production

manager who uses LCF as a communication tool, may persuade the

Table 1
A swine feed formula suggested by least cost formulation in September and October

2007.

Month Raw material type % inclusion

September Yellow corn 8.00

Tapioca pulp 6.90

Cassava chip 17.76

Rice solvent bran 21.38

Raw rice bran 21.11

Soybean meal (49.15% protein) 9.44

Other ingredients 15.42

Total 100.00

October Cassava chip 31.94

Rice solvent bran 30.00

Raw rice bran 15.00

Soybean meal (46.15% protein) 11.89

Other ingredients 11.17

Total 100.00

Note: The percent inclusion was based on wet basis.

formulation manager to decrease the allowance level of that mate-

rial. However, in order to anticipate those operation problems, the

production manager needs to assess what to do based either upon

his experience (Thomas et al., 1997) or upon trials-and-errors which

can both costly and error-prone. In this study, we offer a predic-

tion model created by the artificial neural network (ANN) as a tool

for the production manager to communicate with the formulation

manager such that they can distinguish troubled feed rations from

the good ones prior to starting actual production.

2. Literature review

Since the 1950s, the “least cost” formula has been used in the

feed industry to determine the optimal blend of feed ingredients

(e.g., Brigham, 1959; Panne and van de Popp, 1963; Mohr, 1972;

Chappell, 1974). In the 1980s, the formula was developed to be

more user-friendly, being utilized by a micro-computer to estimate

how best to produce multi-feed, given different blends, each with

unique requirements and each manufactured from common stocks

of raw materials (Kock and De Sinclair, 1987). From the time the LCF

was first developed until recently, the model was focused more on

the costs of raw materials. Recently, however, environmental fac-

tors are being considered to determine optimal blending (e.g., Jean

dit Bailleul et al., 2001; Tozer and Stokes, 2001; Castrodeza et al.,

2005; Pomar et al., 2007). Few, if any, have attempted to combine

production problems, pellet quality, and LCF model.

Pellet quality is a main concern for feed mills because the sci-

entific literature indicates that its effect on animal growth and

feed utilization of the animal impacts overall production costs. For

example, birds prefer more coarse particles and will eat more of

a coarsely ground than of a finely ground mash diet (Svihus et al.,

2004). Pigs, under pelleted feed, also improve feed utilization about

8% more than mash feed (Thomas et al., 1998). For these reasons,

farmers prefer to purchase feed with minimum amount of fines.

And that, they prefer the high-quality pelleted product that resists

a certain level of stress occurring during transportation. In practical

feed mills, pelleted feeds are subject to shearing actions that cause

the outer layer to crack. These cracks form artifacts in the pelleted

feed and induce fines. Hence, mills need to produce good quality

of pelleted product to endure a certain transportation stresses to

satisfy their customers’ need (Thomas and van der Poel, 1996).

There are two main factors that affect pellet quality of the feed:

(1) process parameters such as the layout and dimensions of the

pelleting machine, the roller, the die assembly and die velocity of

the pellet press, the steam, the temperature and cooling air char-
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acteristics (Thomas et al., 1997); (2) the diet ingredients and their

compositions such as starch, protein, sugar, fat and fibre content

(Thomas et al., 1998). Ingredients affecting pelleting can be clas-

sified into starch and sugar, protein, fat, fibre, inorganic matter

and moisture. The interactions among these constituents are com-

plex. For instance, free fats added in the mixer negatively affect

pellet durability and hardness. By the same token, they lubricate

the mash-die during pelleting, and therefore, enhance press capac-

ity. The same amount of natural fat contained in cell walls of

the raw materials does not have such a marked negative effect

on pelleting. The effects of inclusion of different diet ingredi-

ents and different process parameters on pelleting quality were

extensively summarized by Thomas et al. (1998, 1997), respec-

tively. These complex interactions cannot be explained by simple

functionality.

In this study, an ANN model is developed in order to esti-

mate the production ability of the animal feed mill under dynamic

feed formulations obtained from LCF. ANN is widely applied across

industries for various distinct objectives. Two major applications

of ANN are: (1) output prediction under a given input level;

and (2) determination of suitable input parameters in order to

achieve the required output. The industries applied ANN con-

cept to solve their production problems pertaining to steel (e.g.,

Cox et al., 2002; Fileti et al., 2006), powder metallurgy materials

(e.g., Cherian et al., 2000; Smith et al., 2002), chemical process

(e.g., Mansa et al., 2008) and food industries (e.g., Sanzogni and

Kerr, 2001; Korosec et al., 2005; Qiao et al., 2007; Torrecilla et al.,

2007).

3. Methods and model development

3.1. Parameters affecting pellet production efficiency and quality

Based on interview sessions with a Thai feed mill, the production

efficiency and quality of pellet products is measured in terms of the

production rate and amount of fines or the dust level. Normally, pro-

duction rates are expressed in tonnage per hour, whereas the dust

level is measured in percentage. Both factors contribute to the man-

ufacturing costs of the mill. On the one hand, high production rates

mean shorter production time and hence lower production costs.

On the other hand, high percentage of dust levels lead to repro-

cessing decisions when the dust exceeds its maximum allowance.

This reprocessing causes unnecessary production costs. As stated

in the literature review section, parameters affecting pellet pro-

duction efficiency and quality are mainly derived from process

parameters and the type and amount of raw materials compos-

ing in the feed ration. To find a proper way of predicting these

effects, three sets of parameters are constructed and tested—the

parameters relating to nutrient contents, the parameters relating to

raw material inclusion and the process parameters. These param-

eters are the main contributors affecting the production rate and

dust level. The details of each set of parameters are explained as

follows.

3.1.1. Parameters relating to nutrient contents

In this study, the nutrient contents considered are protein,

oil, fibre, moisture, and ash contents. All raw material contents

are measured in percentages. The protein, oil and fibre contents

usually are uniform according to the specifications of the feed for-

mula, while the moisture and ash contents vary depending on type

and contents of the raw materials included in that particular for-

mula.

3.1.2. Parameters relating to raw material inclusions

Unlike the nutrient contents, the raw material inclusion is not

specific to any feed formula. The inclusions can vary from time-

to-time, depending on the price and availability of raw materials.

For the modern feed mill, the raw material inclusion is obtained

using the LCF. The LCF commercial software (e.g., Format, Feed-

soft, Brill formulation) determines the percent inclusion of various

raw materials in order to satisfy the nutrient contents with the

lowest possible raw material costs. In the case of the Thai feed

mill, more than one hundred raw materials could be used in the

feedstuff with approximately 16 main ones and molasses. Most

of them are domestic products such as yellow corn, broken rice,

tapioca meal, cassava chip, rice solvent barn and feather meal. In

this paper, these main raw materials are used to investigate the

effects of raw material included on the production rate and dust

levels.

3.1.3. Process parameters

Prior to production, an operator needs to adjust or setup the

machine processing parameters (such as changing die, reducing

steam pressure) in order to achieve production efficiency and

product quality. These process parameters vary depending on the

formula, raw material contents and raw material additions. The-

oretically, process parameters should be set up according to the

pelleting operation manual. Because different feed formulations are

obtained using the least cost formulation, setting up the machine

parameters of uncommon formula are based on operators’ experi-

ence and a trial-and-error method. According to available data, the

seven processing parameters considered in this study are: machine

number, die size, die thickness, feeder speed, press motor amper-

age, steam pressure and feed temperature. These parameters affect

production rates and dust levels differently. As stated by Thomas et

al. (1997), high feeder speed results in high production rate, hence,

shortens pelleting time. The shorter the amount of time, the lower

the pellet quality. The lower the pellet quality, the higher rate of

cracking in pelleted products, and the higher the dust level, and

hence, the higher rate of reprocessing. Another example is relating

to die thickness parameter. It is found that the thicker die reduces

the production rate as well as the dust level because the thicker die

requires higher compression power and longer compression time

in the pellet mill.

3.2. Artificial neural network models

The above parameters have led to the consideration of using

artificial neural network as a tool for estimating the pellet pro-

duction ability under various input parameters. Employing an ANN

approach is relatively easy to incorporate a large number of system

inputs as illustrated in this study. Because the modeling is directly

incorporated within the weights of the ANN connections, there-

fore, any non-linearity or inter-dependence relationships between

inputs and outputs are necessarily incorporated within the predic-

tion of output.

In order to train an ANN with suitable data models, the modeling

inputs are grouped into four input datasets as follows:

(1) Model 1: The set of percent content of each nutrient (protein,

fibre, fat, ash and moisture) and process parameters (pelleting

mill number, die size, die thickness, feeder speed, press motor

amperage, steam pressure and feed temperature). In total, there

are 12 parameters used as input for this model.

(2) Model 2: The set of percent of nutrient contents in each

main raw material type, percent of molasses used, and process

parameters. Because there are 16 main raw materials consid-

ered in this study, a total number of 88 input variables were

used in this model (16 raw materials × 5 nutrient contents, 1

molasses, and 7 process parameters).

(3) Model 3: The set of percent of each main raw material included

in feed formula, percent of molasses used and process param-
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Table 2
Parameters used for ANN modeling.

Input layer Hidden layer Learning cycles Transfer function Output

Model No. of neurons No. of layers No. of neurons

1 12 1 3–60 150,000 TanH, sigmoid, linear Production rate (ton/h), dust level (%)

2 88 1 3–60 150,000

3 24 1 3–60 150,000

4 17 1 3–60 150,000

eters. In total, there are 24 parameters used as input (16 raw

materials, 1 molasses, and 7 process parameters).

(4) Model 4: Only the percentage of each main raw material

included in feed formula and percent of molasses inclusion

are used as the input parameters of the model. Then, there

are 17 input parameters in this model (16 raw materials and

1 molasses).

The outputs of the four models are the production rates (ton/h)

and the dust levels (%). The three-layer feed-forward back prop-

agation neural network is used to conduct relationships between

inputs and outputs. The commercial software MATLAB 6.5 was

applied as a tool to develop these four ANN models. The number of

neurons in the input layer is equal to the number of input param-

eters, which are used to assess the production rate and the dust

level. The number of neurons in the hidden layer is determined by

investigating the number of neural networks ranging from 3 to 60

neurons. Then, the number of hidden neurons providing the best

output is selected as the optimal number. Three transfer functions,

which are TanH, sigmoid or linear functions have been tested in

the model. Table 2 shows parameters involved input, hidden and

output layers of the model.

Three months of data (August to October of 2007) were obtained

from one of the largest feed mills in Thailand. During that period, the

mill produced 3508 lots of pelleted products with 27,052 batches.

The descriptive statistics of these data are as shown in Table 3.

The records containing missing or uncommon data were filtered

out. The screened data were then separated into three sets: one for

training, one for the model validation and another for testing. For

the purpose of training the network, about 70% of the samples were

randomly selected, whereas 20% were used for the testing purpose,

and the remaining 10% were used for model validation. The range

of each variable was carefully checked and tested to assure a similar

range in all datasets. The mean absolute percentage error (MAPE)

has been applied to measure the accuracy of the developed model.

MAPE is considered as a standard for examining the quality of the

forecasting model (González and Zamarreño, 2005). It is written as

follows:

MAPE = 1

N

∑N

i=1

|Fa(i) − Fp(i)|
Fa(i)

× 100

Table 3
Descriptive statistics for processing parameters during August–October 2007.

Process parameters Max. Min. Average Std.

Feeder speed (%) 89.00 15.00 32.37 10.06

Press motor amperage (amps) 720.00 200.00 349.83 46.78

Steam pressure (bar) 2.00 1.50 1.50 0.03

Feed temperature (◦C) 95.00 35.00 78.99 4.41

Die size (size) 4.00 3.00 N/A N/A

Die thickness (mm) 70.00 50.00 N/A N/A

Production rate (ton/h) 31.50 2.00 13.62 3.61

Dust level (%) 31.50 0.10 6.18 4.72

Durability (%) 99.90 66.00 97.63 2.24

Note: The data were obtained from a feed mill in Thailand during August–October

2007.

where N is the total number of samples. Fa(i) is the actual value of

the dust level and production rate and Fp(i) is the predicted value

by the ANN. It should be noted that the MAPE is an average of errors

in percentage; hence, it accounts for the magnitude rather than the

direction of the errors. The interpretation of the forecast accuracy

using MAPE, then, should be used with cautions.

In addition to the MAPE, the performance of each model is eval-

uated by testing the statistical significance of regression parameter

as suggested by Uno et al. (2005) using ordinary least squares in

STATA version 9.

4. Results and discussion

Table 4 shows the MAPE results of testing the ANN models.

It indicates that Model 3 provides the best MAPE for production

rate (9.34%) and Model 2 provides the best MAPE for dust levels

(15.51%). The significance of a regression parameters as shown in

Table 5 indicates that most of the regression parameters for all mod-

els are significantly different from their ideal values at (P < 0.05).

As stated by Uno et al. (2005), a perfect fit between actual and

predicted value indicates a regression parameter of 0 for the inter-

cept and 1 for the slope. However, both the MAPE and regression

parameters for Model 4 are not significantly different from those

estimated by the other three models, suggesting that in estima-

tion when compared to the others the process parameters did not

contribute greatly to the estimation of production rates and the

dust levels using these datasets. Because these process parameters

relate to the experiences of operators in setting up the machines,

adding some factors such as human skills might improve prediction

accuracy of the model. It is not, however, practical to include more

additional factors for the time being. Therefore, even if the param-

eters are statistically different from the ideal values, the size of the

errors from the two performance measurements is acceptable in

practice.

As for industrial applications, Model 4 is the most practical

model because it takes into account only percent inclusion of

main raw materials and molasses. Although the model is not

the most accurate one, the input of Model 4 can be obtained

directly from the output of LCF program. Furthermore, because

some other factors such as the process parameters are not known

during formula selection, it is more convenient for the nutri-

tion manager to work on the model which relies mainly on the

LCF output. Hence, Model 4 suits for the present business pro-

cess. At the same time, it leaves the room for future research to

improve estimation accuracy and alter business model accord-

ingly.

4.1. The current pelleting trial procedure vs. ANN estimation of

the production rate and dust level

The current trial procedure has been used for years. As shown

in Fig. 2 after obtaining a skeptical formulation, mills basically

establish the volume of feed that is required for a single produc-

tion run of a minimum of a 1-h duration under normal operating

conditions. If the production run and the feed meet all crite-

ria, normal operation will continue. If this is not the case, the
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Table 4
The MAPE of the four studied models using test dataset.

Model Output: production rate (ton/h) Output: % of dust level

No. of hidden neurons Transfer function Min. MAPE (%) No. of hidden neurons Transfer function Min. MAPE (%)

1 18 TanH 10.46 18 TanH 24.30

2 60 TanH 10.01 35 TanH 15.51

3 35 TanH 9.34 50 TanH 15.64

4 32 TanH 11.24 40 TanH 15.85

Note: The mean absolute percentage error (MAPE) is percentage difference between actual value and fitted value.

Table 5
The regression parameters estimated from regressing predicted values against the measured values.

Model Calibration Validation

Intercept Slope Intercept Slope

Dust level

1 0.728 (0.000) 0.887 (0.000) 0.603 (0.000) 0.904 (0.004)

2 0.574 (0.000) 0.910 (0.000) 0.438 (0.054) 0.902 (0.000)

3 0.561 (0.000) 0.916 (0.000) 0.411 (0.076) 0.920 (0.004)

4 0.670 (0.000) 0.902 (0.000) 0.449 (0.051) 0.916 (0.003)

Production rate

1 6.495 (0.000) 0.559 (0.000) 6.397 (0.000) 0.558 (0.000)

2 6.537 (0.000) 0.552 (0.000) 5.839 (0.000) 0.601 (0.000)

3 6.624 (0.000) 0.544 (0.000) 5.722 (0.000) 0.596 (0.000)

4 8.390 (0.000) 0.424 (0.000) 7.525 (0.000) 0.487 (0.000)

Note: Numbers in parenthesis are P-value.

trouble formulation will be discarded and nutrition department

has to obtain another feed ration using LCF by limiting inclusion

of some raw materials. These processes can be costly and time

consuming as indicated earlier. On the contrary, using ANN to esti-

mate the costs does not require an actual production run. After

obtaining the least cost ration, the nutrition manager can insert

all necessary information into the PC and let the ANN assesses

the performance of the formulation instead of individual opera-

tor. The least cost ration, which meets all pellet criteria will be

obtained in a final step. It can potentially save time and costs for

the mill.

4.2. Adding the production rate and the dust level to raw material

costs

A graphic user interface as shown in Fig. 3 has been created

in order to facilitate the nutrition manager of the mill in order

to visualize the combination of the raw material cost from LCF

Fig. 2. Framework for feed rations selection.
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Fig. 3. Graphic user interface showing its results of production rate and dust level prediction (a) and estimation of total cost (b).

and the production costs. The nutrition manager can insert the

percent inclusion of the raw materials into a PC, where it is imple-

mented into the ANN based software. The software then converts

these input parameters into an estimation of production rate and

dust level. The two outputs can be easily converted to the costs

of production as is explained next. The estimated total cost is the

summation of the estimated production cost and the cost from

LCF.

The following explanation is a demonstration of a simple

method to calculate production costs. The production cost is divided

into two main costs, the operating and the reprocessing costs. The

total operating cost is composed of direct labor and overhead costs

of the mill. The per-hour operating cost is obtained from dividing

the total operating cost by the total machine-hour. As shown in Eq.

(1), the per-ton operating cost can be calculated by dividing the per-

hour operating cost (baht/pelleting machine-hour) by production

rates (tons/h) obtained from ANN. The reprocessing cost is incurred

when the percent of dust level of the product exceeds its maximum

allowance. When the reprocessing decision is triggered, the whole

batch has to be reproduced with process adjustment. In this light,

the reprocessing cost is presumably equal to the per-ton operating

cost. In other words, the reprocessing incurs twice the operating

cost. The mathematical expression of the per-ton total production

cost is illustrated in Eq. (2):

OCi = AOC

PRi
(1)

PCi = OCi + OCi(Xi) (2)

where PCi = the production cost of feed formula i (baht/ton);

OCi = the estimated operating cost of producing feed formula i

(baht/ton); PRi = the production rate of feed formula i (tons/h);

AOC = the average per-hour operating cost (baht/pelleting machine-

hour); Xi =
{

1, if the feed formula i required reprocessing,

0, otherwise.

For illustrative purpose, the estimation of the production rate

and the fine level of a feed formula are obtained using Model

4 as shown in Fig. 3. The raw material types are represented

as raw material codes (i.e., 41112 and 43110 represent yellow

corn and molasses, respectively). A feed formulator inputs the

percents of main raw material inclusions according to the sug-

gestion of LCF as shown in Fig. 3. Let assume that the raw

material cost of this formulation is 12,000 baht/ton. The AOC

of the mill is approximately 8500 baht/pelleting machine-hour.

It should be noted that, the cost data are not an actual one.

These numbers are created for the purpose of illustration. So,

they should be used with cautions. Assume that the maximum

allowance of the percent of dust level is 10%. The production

rate and dust level obtained from the Model 4 is approximately

17.70 tons/h and 9.30%, respectively. This formulation does not

require the reprocessing (9.30% < 10%), then the production cost

is approximately 480.23 baht/ton (8500/17.70). In summary, the

summation of the raw material cost and production cost is

12,480.23 baht/ton.

5. Conclusion

This paper presented the application of artificial neural net-

works to predict production rate and dust levels in the feed industry.

The new pelleting rate predictor presents a quite precise estima-
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tion. The main advantage in the tool is its simplicity based on the

pattern of the data. To convert the production rate to production

costs, an operator can simply divide the per-hour operating cost by

the production rate. And for the dust level, the production cost per-

ton can be added to the total production cost when the dust level

exceeds it maximum allowance. Using this method, production and

raw material costs can be both estimated from the outset. It facili-

tates the selection of feed formula. Formulator can also anticipate

the production problem prior to the starting of the feed production.
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ABSTRACT - The rising price of agricultural products leads to frequent change of feed recipe, which can cause a high
number of reprocessing batches, elevating the overall cost of production. In this study, we proposed an artificial neural network
to predict production rate. The conversion of production rate to production cost, the tips for data collection as well as tips
for implementation of new feed cost estimation are also discussed. Being able to estimate production rate enables feed mills
to improve their operations. In this study, we elaborate its application to feed scheduling (although the applications can be
extended to other aspects such as productivity improvement, which goes beyond the scope of this particular study).

Key Words: artificial neural network, feed cost estimation, feed scheduling

Impacto do aumento dos preços agrícolas sobre os negócios do ramo
alimentício

RESUMO - O aumento do preço dos produtos agrícolas leva à mudança frequente de receita para alimentação animal, que
pode resultar em elevado número de reprocessamento de lotes, aumentando o custo total de produção. Neste estudo, propusemos
uma rede neural artificial para prever a taxa de produção. A conversão da taxa de produção para custo de produção, as dicas para
a coleta de dados, bem como as dicas para a aplicação de nova estimativa de custo de alimentação, também são discutidas. A capacidade
de estimar a taxa de produção e habilitar as fábricas de ração a melhorarem suas operações. Neste estudo, elaboramos a sua
aplicação para abastecer a programação (embora os aplicativos podem ser estendidos a outros aspectos, como a melhoria da
produtividade, o que ultrapassa o âmbito deste estudo).

Palavras-chave: abastecimento de programação, estimativa de custos com alimentação, rede neural artificial

Introduction

The rising use of biomass for energy production puts
the food and feed industry in direct competition with car
drivers for the same agricultural output.  As ethanol demand
rises, prices of agricultural products are now highly
correlated with gasoline prices. As shown in Figure 1, the
price of raw materials such as yellow corn, rice bran, soybean
meal and cassava has fluctuated highly since 2006. The
situation will continue as long as the same agricultural
output is used for both the food and automobile industries.
The recent fluctuation in terms of the cost of feed ingredient
will prove to be a challenge to feed manufacturing practices
across the globe in many ways. Firstly, the rising raw
material prices will also trigger feed prices to rise. This is
because raw material costs usual make up for more than 70%
of the total cost of feed. Secondly, feed mill garners more
interest to control its raw material supply. Integration with
their suppliers is expected to be on the rise as well. Thirdly,

price turbulence leads to frequent change of feed recipes. For
example (Table 1), in September 2009, the percent inclusion
of cassava chips in the swine feed of a Thai feed mill was
12.76, while it was not included in the recipe in October 2009.
Hence, the mill has to deal with frequently recipe change in
this present era of turbulent prices. The first and the second
effects are strategically manageable. However, for the third
effect, feed mill needs to alter their business process in order
to remain efficienct.  In this study, we focus on how the feed
mill should change its cost estimation and feed scheduling
in order to cope with frequent recipe changes.

The cost estimation

Since the 1960s, feed recipe has been obtained using
linear programming. The least-cost formulation determines
the cheapest blend of available raw materials that meet
certain nutritional requirements. Even though the nutritional
requirements are met in the calculations, the minimum cost
considered is raw material cost while the production cost is
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excluded during recipe calculation. The production cost of
each recipe can vary due to different types of feedstuffs
incorporated at different inclusion levels (Thomas et al.,
1998). When different types of feedstuffs are processed, it
results in different feed qualities and pelleting rates, hence,
varying production costs. Operators need to adjust pelleting
parameters such as die size and die pressure in order to
accommodate the unique physical-chemical properties of
the diet ingredients. The frequent change of recipes due to
raw material price fluctuation causes a mill to frequently
adjust their process parameters. However, correct
adjustment of the process parameters is a difficult task
because the interactions among each feedstuff and between
the feedstuffs and production processes are very complex.
As a result, a mill can only roughly estimate rather than

Table 1 - A swine feed formula suggested by least cost formulation
in September and  October 2009

Month Raw material type % inclusion

September Yellow corn 22.45
 Cassava chip 12.74
 Rice solvent bran 17.02
 Rice bran dry season 18.35
 Soybean meal Brazil 9 .69

Soybean meal Argentina 9.69
 Other ingredients 10.06
 Tota l 100.00

October Yellow corn 38.71
 Rice solvent bran 19.59
 Rice bran dry season 12.89
 Soybean meal Brazil 8 .34
 Soybean meal Argentina 7.46

Other ingredients 13.01
 Tota l 100.00

Figure 1 - Price of main raw materials used for feed products.

Yellow corn Rice bran

Soybean meal Cassava
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exactly measure the effects of these parameters on pellet
quality (Thomas et al., 1998) and slowly adjust their
processes to accommodate changes in the physical-chemical
properties of each feed ingredients by trial-and-error. The
slow learning process often gives rise to feed production
that does not meet mill’s standards for pellet quality and
often results in the mill having to reprocess the materials.
Because the reprocess batches need extra clearing and
extensive reprocessing time, dropping of the mill’s capacity
becomes  one of the consequence of the high reprocess
rate. Hence, highly fluctuated agricultural prices are often
followed by high production costs for the mill. Moreover,
the numbers of reprocessed batches also rise along with
production completion time and back orders. The situation
is likely to give rise to customer complaints and even a loss
in sales if it persists (Pathumnakul et al., 2009).

Pathumnakul et al. (2009) suggested a way to prevent
the reprocessing caused by such a situation by detecting
the feed rations prior to starting actual production. They
offer a prediction model created by the artificial neural
network (ANN) as a tool for the production manager to
communicate with the formulation manager such that the
problematic feed rations can be distinguished from the
good ones.

Data collection

For the ANN, Pathumnakul et al. (2009) recommended
the use of a pelleting rate (ton/hr) and dust level (%) as the
output and the percentage of each main raw material (16 raw
materials) included in feed formula and the percentage of
molasses as input parameters of the model. They have
tested the model with other input variables such as process
parameters (pelleting mill number, die size, die thickness,
feeder speed, press motor amperage, steam pressure and
feed temperature), percent of nutrient contents in each main
raw material type. As for industrial applications, using the
percentage of main raw material and molasses as input
parameters is the most practical model because some other
factors such as the process parameters are not known during
formula selection.  It is more convenient for the nutrition
manager to work on the model, which relies mainly on the
least cost formulation output.  Hence, the suggested set of
parameters is best suited for the present business process.

The three-layer feed-forward back propagation neural
network is used to conduct relationships between inputs
and outputs. The commercial software MATLAB 6.5 was
applied as a tool to develop the ANN model. The number of
neurons in the input layer is equal to the number of input
parameters, which are used to assess the production rate
and the dust level. The number of neurons in the hidden

layer is determined by investigating the number of neural
networks ranging from 3 to 60 neurons.

The production cost estimation process

If the proposed cost estimation is to be implemented,
the business process will be changed as shown in Figure 2.
Both approaches differ in the sense that, for the traditional
approach, mills need to operate skeptical formulae in normal
conditions even if they suspect that the pelleted products
might not meet the mill’s quality standards.  These processes
can be costly and time consuming.  On the contrary, the
proposed method requires using ANN to estimate the costs
without an actual production run. After obtaining the least-
cost ration, the nutrition manager can input all necessary
information into the ANN and let it assesses the performance
of the formulation instead of leaving this up to the individual
operator. The least cost ration, which meets all pellet criteria
will be obtained in a final step. It can potentially save time
and costs for the mill.

Table 2 shows the use of ANN to obtain the production
rate and dust level prediction in a feed mill in Thailand.  The
nutrition manager inputs the percent inclusion of the raw
materials into the ANN-based software. Table 2a presents
the input data of a swine-feed recipe. The software then
converts these input parameters into an estimation of
production rates and dust levels of two distinct pelleting
lines (Table 2b). The two outputs, then, are converted to the
costs of production, which is the summation of the estimated
production costs and the raw material costs.

The estimated production cost is divided into total
operating costs (i.e., direct labor and overhead cost) and
reprocessing costs. The per-hour operating cost (baht/
pelleting machine-hour) is obtained from dividing the total
operating cost by the total machine-hour.  Then, the per-ton
operating cost (Eq. (1)) is calculated by dividing the per-
hour operating cost by the estimated production rates
(tons/hr) obtained from ANN. The reprocessing cost is
incurred when the percent of dust level of the product
exceeds its maximum allowance. Because the reprocessing
incurs twice the operating cost, it is presumably equal to the
per-ton operating cost. The mathematical expression of the
per-ton total production cost is illustrated in equation (2).

i

i

PR

AOC
OC �  (1)

� �
iiii

XOCOCPC ��  (2)
where PCi  =  the production cost of feed formula i (baht/
t); OCi  = the estimated operating cost of producing feed
formula i (baht/t); PRi  = the production rate of feed formula
i (t/hr); AOC = the average per-hour operating cost (baht/
pelleting machine-hour)
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Pathumnakul et al.(2009)
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Figure 2 - Framework for feed rations selection.

Pathumnakul et al. (2009)

Table 2 - The use of ANN to estimate production rate and dust level

(a) The example of input data

Swine feed

Raw material % inclusion

Yellow corn Thai 24.98
Soybean meal 20.04
Dry season raw rice bran 18.00
Rice solvent bran 16.38
Cassava chip 12.00
Molasses   2.00
Crude palm oil 1 .60
Others 5.00

Tota l 100.00

(b) The example of results

Swine feed

Pelleting line Estimated production rate (t/h) Estimated dust level (%) Estimated production dost (baht/t)

1 16.44 4.01 386.41
2 14.78 3.75 424.72

Average 15.61 3.88 405.6
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Implementing the new concept of production cost
estimation

To implement the proposed method of production cost
estimation, one needs to collate data from the production
line and the nutrition department. Production rates and the
quantity of each batch should be recorded along with the
dust levels. Production rates can be obtained from
subtracting the ending time from the starting time to retrieve
total production time, then, divide the total production
quantity. The dust level is measured by dividing dust
quantity by the total of the sampled quantity. From our
experience of working with feed mills, long-range data does
not increase the accuracy of the prediction. That is because
the mill might experience employee turnover or pellet
equipment might be adjusted as a part of the technological
improvements. Hence, some other parameters rather than
the percent inclusion of raw material might affect the pelleting
rate. The same recipe might end up with different pelleting
rates. Hence, the long-range data incorporated into the
dynamic change of feed mill environments might have a
negative effect on prediction accuracy. From a practical
standpoint, three months of the most recent data is a good
range of data for the prediction of feed production costs.
However, using short range of data might also cause another
problem. Because the raw material varies by season, short-
range data (e.g., three months) is likely to leave out some of
the raw material from the neural network. For example,
cassava chip is used for certain months of the calendar year.
Three months after the end of cassava harvest season
would not be included in the neural network using the short-
range data. Hence, when the next season starts, the three
month updated neural network will not recognize the effects
of cassava on pelleting rate and quality. The three month
updated neuron will treat it as a new raw material. To solve
this problem, we constructed a database to collect one-year
data. And if the 3–month data set used to train the neural
network indicates unfamiliar raw materials, one can check if
it is really new or if it is only excluded from the data set
because of seasonality. If the mill used that raw material in
the past, its performance can be also included in the train
data set. Hence, the train data set is now composed of 3
months of the current data plus the formulae that produced
in the past but excluded from this 3–month data set due to
its seasonality. Moreover, not all data is appropriate to be
incorporated in the neural network. Some data includes
outliers due to human error or some other factors. Bad data
can create the problem of garbage-in-garbage-out causing

prediction inaccuracy. Therefore, the outliers should be
detected prior to the learning process of the neural network.

Because implementing the proposed cost estimation
involves parties such as the nutrition and operation
departments or perhaps sale department, the concept the
estimation should be clarified among all parties. Meetings
and guidelines should be conducted and agreed on at the
beginning of the project to enhance the success of the
project. Executive involvement will urge all parties to realize
the need for a new cost estimation project. Capability to
estimate production costs will facilitate the mill in determining
the pricing strategies. Hence, it should also enhance
competitiveness of the mill.

After using the ANN for couple of months, prediction
accuracy should again be investigated and another meeting
should be constructed to improve the model.

The use of production rate estimation in feed scheduling

Being able to estimate the production rate can also be
used to facilitate production scheduling and its use is
described next.

The needs for accurate estimation of production rate

Due to highly competitive environment, the feed mills
face with an increasing number of feed formulations and
variety of feed products which tailor-made toward client-
specific needs and requirements. As a result of the feed
industry responds to market trends, their production
processes become more complex. To cope with these
complexities, the feed mills need to be more flexible and more
efficient in coordinating their resources. As the operations
are sequence-dependent, product sequencing is critical for
being efficient. This feed scheduling problem is similar to
the sequencing restrictions found in the food industry. The
mill produces numerous products that differ in package
size, nutrient contents, or presence of ingredients that
increase the functional value. The products can be grouped
according to their transition cost and time into; non-drug
and drug; pelleted, powder and crumble; high fiber and low
fiber; and bulk and packed. The production time is not
uniform among the products. The factors contribute to non-
uniformity production speed, especially in pelleting machine,
is the ingredients of the products. For example, fat contents
enhance lubrication of the products and, hence, the speed.
The fiber contents have the characteristic of being stiffness
and elastics which might inhibit good contact between
particles in the feed (Thomas et al., 1998). Hence, fibrous
products may lead to lower production speed. Some product
families contaminate other if produced in successive
batches. As a result of increasing wide variety of the
product, the production line must be often cleaned,



Pathumnakul & Piewthongngam496

R. Bras. Zootec., v.39, p.491-498, 2010 (supl. especial)

consuming potential production time. Usually, products
in the same family have negligible changeover times, and
identical batch weights and processing times. This amount
of mixer cleaning time can be minimized by good sequencing
of the production of families (Taso et al., 2009). The
example of products that might create different changeover
times for different sequencing is a formula with/without
drugs. Generally, a formula with drugs should be processed
before a formula with drugs. The opposite would require
an extra flushing operation to ensure that no drugs would
be transferred to the non-drug formulae. In this light,
changes in the packaging materials; and configuration
and cleaning the machinery during transition of feed
formula require a changeover time and cost. Hence, an
optimal schedule would reduce the cost and time incurring
during changing over.

Feed processes

To understand the role of production rate estimation
in scheduling, one needs to understand the processing
first. Generally, the feed production process is divided
into three steps: mixing, pelleting, and packing (Figure 3).

In the mixing stage, bulk ingredients such as soybean
meal and some other micro ingredients such as vitamins or
medications stored in waiting bins are weighed according

to feed ratio. The feed ingredients which are coarse cereal
grains such as corn required a grinding process, so, it is
delivered to hammer mills. Grinding will reduce grain size
and expose surface area of the particles allowing digestive
enzymes to access nutritional components such as starch
and protein resulting in better absorption in the digestive
tract of the animal and increase animal performance as
well. Moreover, as a result of size reduction, the modified
physical characteristics of ingredients will improve mixing,
pelleting, handling, and transportation process. After
grinding process, dry meal particles are blending with
liquids ingredients (such as added fat) or others ingredients
in a mixer.

Next, the feed mash is conveyed to pelleting mills. In the
pelleting process, a soft feed mash is forced through holes
in a metal die plate to form compacted pellets, and then, cut
to a pre-determined size. Pelleting is a crucial process in the
feed production.  The high quality pelleted products ensure
the correct amount of nutrition for all that consume them
each and every bite. The thickness of the die plate helps to
determine the compactness and stability of the pellet. In
this process, an operator needs to change die size according
to the mill’s standard. Therefore, choosing die size is
product-dependent and should be accommodated in the

Figure 3 - Feed processing system.



497

R. Bras. Zootec., v.39, p.491-498, 2010 (supl. especial)

How soaring agricultural prices will impact the way we do feed business

scheduling. Changeover time of die size is sequence
dependent. If all products are placed in a succession where
the change of die size is minimized, the capacity of the
machine will, in turn, increase.  From there, the pelleted
products are transferred to a cooler/drier to remove the heat
which is generated during the pelleting process and the
steam conditioning in a mixing process. The moisture content
of the pellets also needs to be reduced to 10-12% or less for
proper storage and handling. Pellets must therefore be
cooled and dried. From the finished product bins the finished
feed is either be bulk transport, loading directly onto trucks
or it will be packed into bags (30 and 50 kg.). The smaller bag
takes longer time to pack, hence, should be also considered
in the scheduling goal.

In the case that a feed mill operates with one mixer,
several pelleting machines and packings, a planner needs
to consider the following factors: The feed production
being scheduled should not exceed capacity of each
machine; The drug free formulae should be processed
before a formula with drugs; The production should meet
demand requirements; The pelleting machine should be
sequenced to minimize the change over time; While the
packing machine is packed, bulk production can be
processed such that ideal time of pelleting machine is
minimized; Mash production does not require pelleting.
Hence, its production can be on parallel with pelleted
products. From this complication, one can notice that ability
to estimate is crucial for effective scheduling. Inappropriate
of production rate estimation could lead to scheduling
solutions with high cost or inappropriate timing and
infeasible schedules respectively. A planner needs to decide
the sequence of the formulae into the mixer and from the
mixer what pelleting machine should be utilized. The
appropriate timing then relies on the estimation of pelleting
rate. The inaccurate estimation of the rate might lead to
under utilizing of machine time, hence, lost of opportunity
cost to the mill.

The benefits of prediction accuracy: an illustrative case

Traditionally, the production rate used in feed
scheduling is obtained by planner’s experience. The
obtained rate is approximately the average of rate of
production produced in the past. This practice leads to
unintentional lost in production cost and time, if the
actual production rate of each feed recipe differs from the
average production rate. In an example of 2 pelleting lines
called PM1 and PM2, the average production rate for
PM1 is 12 tons/hr  and it is 17 tons/hr for PM2.  Assume
that feed mill was to produce 10 batches of 10 distinct
feed products. The quantity production of each batch is
approximately 50 tons. The production rate of each
product is different from one another due to its raw
material composition (Table 3). The clearing time required
in changing one recipe to another is 30 minutes. The
optimal product sequencing of the two pelleting machines
is contructed using the average production rate will be
different from the optimal sequencing formulated based
on a more accurate estimation of production rate. In this
sample case, the total processing time and system
completion time of feed scheduling based on average
capacity are 2,520 and 1,552 minutes, respectively, while
they are 2,274 and 1,261 minutes, for sequencing based
on a more accurate production rate. The use of inaccurate
production rate leads to longer total processing time and
completion time at approximately 9.76% and 18.75%,
respectively (Figure 4a, b).  The longer times of using
inaccurate production rate in scheduling imply the
potential cost saving from using a more accurate
estimation of production rate. The cost saving is even
more shining in the case of agricultural price turbulent.
That is because the frequent change of recipe composition
will make it harder for planner to anticipate the change of
production rate. Hence, inappropriate scheduling is likely
to result from the unanticipated rate.

Table 3 -  Actual production rates in example case

Feed products Actual production rate (t/h) Feed products Actual production rate (t/h)

P M 1 P M 2 P M 1 P M 2

1 10.50 19.00 6 8.80 16.00
2 8.50 15.50 7 10.00 18.80
3 14.50 20.20 8 11.50 18.00
4 12.70 18.40 9 8.80 15.40
5 14.20 19.50 10 13.30 19.00
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Conclusions

In this study, we demonstrate the effects of
agricultural price fluctuation on feed cost estimation as
well as production scheduling. It is found that the
agricultural price fluctuation lead to frequent change of
feed recipe. And the combination of inappropriate process
adjustment and frequent change of feed recipe causes
high number of reprocessed batches, and hence, per unit
production cost. To deal with this problem, we offer an
estimation method based on artificial neural network to
predict production rate and cost prior an actual
production. The estimated production rate is not only
useful for cost estimation but also feed scheduling.
Capability to estimate production facilitates good
sequencing of feed production. Change over time and
cost can be reduced as a result. Although cost estimation
and feed scheduling are the only two applications of feed
production estimation, it can also be applied to other
aspects of feed production (i.e., total productivity

improvement, process adjustment) as well. The other
applications have yet but worth been explored.
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Figure 4 - The comparison between product sequences based on average and actual production rates.
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