รายงานฉบับสมบูรณ์

โครงการ

การพัฒนาผลิตภัณฑ์ธรรมชาติควบคุมวัชพืชจากพุทธชาติก้านแคงเพื่อทดแทนสารเคมี สังเคราะห์

Development of biorational herbicide from Spanish jasmine (*Jasminum officinale*) for substitution of synthetic herbicides

	คณะผู้วิจัย	สังกัด
1.	นายจำรูญ เล้าสินวัฒนา	คณะเทคโนโลยีการเกษตร
		สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง
2.	นางสาวมณทินี ธีรารักษ์	คณะเทคโนโลยีการเกษตร
		สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง
3.	นางสาวพัชนี เจริญยิ่ง	คณะวิทยาศาสตร์
		สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง
4.	นางณัฐชยา ชุ่มสวัสดิ์บริษัท	ป.เคมีเทค จำกัด; บริษัท ไทยเฮอบิไซด์ จำกัด

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย (สกว.) และ บริษัท บริษัท ป.เคมีเทค จำกัด; บริษัท ไทยเฮอบิไซค์ จำกัด (ความเห็นในรายงานนี้เป็นของผู้วิจัย สกว. และบริษัทผู้ร่วมสนับสนุน ไม่จำเป็นต้องเห็นด้วยเสมอไป)

บทคัดย่อ

การสกัดสารออกฤทธิ์จากใบพุทธชาติก้านแดงด้วยสารสกัดอัตราส่วนผสมของเอทานอลต่อ น้ำ ที่ 75/25 สามารถสกัดสารออกฤทธิ์ ใด้ปริมาณสูงสุดร้อยละ 3.79 โดยน้ำหนัก เมื่อลดสัดส่วนของ เอทานอลลงพบว่า ประสิทธิ์ ภาพของการสกัดลดลง การสกัดสารที่อุณหภูมิ 40 - 100 องศาเซลเซียส เป็นเวลานาน 1 ชั่วโมง พบว่า ปริมาณสารและฤทธิ์ของสารสกัดหยาบที่สกัด ได้ จากทุกอุณหภูมิไม่มี ความแตกต่าง เมื่อทำการแยกกลุ่มสารออกฤทธิ์จากสารสกัดหยาบจากใบพุทธชาติก้านแดง ด้วยวิธี solvent partitioning ใค้กลุ่มสาร 3 กลุ่ม ใค้แก่ aqueous fraction (AQ), neutral compound extract (NE) และ acidic compound extract (AE) การเปรียบเทียบฤทธิ์ของกลุ่มสารทั้ง 3 กลุ่ม เปรียบเทียบ กับ crude methanol extract (ME) ที่ระดับความเข้มข้น 250 - 8,000 ppm ต่อการงอกและการ เจริญเติบโตของพืชทดสอบ พบว่าการใช้สารสกัดจากส่วน AE มีผลในการยับยั้งการงอกและการ เจริญเติบโตของพืชทคสอบได้ดีที่สุด รองลงมาคือสารสกัดในส่วน ME เมื่อน้ำสารสกัดหยาบ (ME) จากใบพุทธชาติก้านแดงไปแปรรูปเป็นสารผลิตภัณฑ์ในรูปแบบผงเปียกน้ำ (WP) และรูปแบบ สารละลายเข้มข้น (SC) และนำไปเก็บรักษาที่อุณหภูมิห้อง มีแสง และไม่มีแสง ที่อุณหภูมิเย็น มีแสง และไม่มีแสง พบว่า ที่ทุกสภาพการเก็บรักษาไม่สงผลกระทบต่อประสิทธิภาพสาร หลังการเก็บรักษา เป็นระยะเวลา 12 เดือน เมื่อทำการเปรียบเทียบประสิทธิภาพของสารผลิตภัณฑ์ในรูปแบบ WP และ รูปแบบ SC ต่อการยับยั้งการงอกและการเจริญเติบโตของหญ้าข้าวนก และถั่วผี ที่ระดับความเข้มข้น 500 - 8,000 ppm ในจานทดลอง ผลการทดลองพบว่า ผลิตภัณฑ์ในรูปแบบ SC สามารถยับยั้งการ งอกและการเจริญเติบโตของพืชทคสอบ ได้ดีกว่ารูปแบบ WP และพบว่าผลิตภัณฑ์รูปแบบ SC และ WP สามารถยับยั้งการงอกและการเจริญเติบ โตของถั่วผีได้ดีกว่าหญ้าข้าวนก จากการศึกษากลไกการ ้ยับยั้งการงอกและการเจริญเติบโตของต้นกล้า พบว่า สารออกฤทธิ์จากพุทธชาติก้านแคงยับยั้งการ งอกของเมล็ดพืชทดสอบ โดยการลดการคูดน้ำของเมล็ด และยับยั้งกิจกรรมเอนไซม์อะไมเลสใน เมล็ดพืชทดสอบ ที่มีความสำคัญต่อกระบวนการงอกของเมล็ดพืช เมื่อทดสอบสารผลิตภัณฑ์ในรูปผง เปียกน้ำที่ระดับความเข้มข้น 500 - 8,000 ppm พบว่า สารออกฤทธิ์ทำให้เกิดความผิดปกติของลักษณะ ทางสัณฐานวิทยาของถั่วผี คือ ปลายรากบวม รากแสดงอาการเหี่ยว รากมีลักษณะกุดสั้นและมีสี น้ำตาลคล้ำ นอกจากนี้สารคังกล่าวยังมีผลต่อการพัฒนาและความหนาแน่นของขนราก จากการศึกษา ผลของผลิตภัณฑ์รูปแบบ SC ต่อกิจกรรมการแบ่งเซลล์ในปลายรากหอมหัวใหญ่ พบว่าคัชนีการแบ่ง เซลล์ลคลงตามความเข้มข้นของสารที่เพิ่มขึ้น และส่งผลให้จำนวนเซลล์ที่เข้าสู่ระยะไมโทติกลคลง ความผิดปกติของเซลล์ที่พบลดลงตามไปด้วย เกิดลักษณะความผิดปกติของโครโมโซม 2 ลักษณะ คือ เกิดการหดตัวอัดกันแน่นของโครโมโซมมากกว่าปกติ และรบกวนการจัดเรียงตัวของไมโครทิวบู ลส่งผลต่อการสร้างสายใยสปินเคิล และพื้นที่ของนิวคลีโอลัสลคลงตามความเข้มข้นของสารที่ เพิ่มขึ้น เมื่อเทียบกับ

การทดสอบประสิทธิภาพของสารผลิตภัณฑ์ในการคุมการงอกของวัชพืชในดินชนิดต่างๆ พบว่า เมื่อใช้สารในดินทรายให้ผลในการยับยั้งสูงกว่าการใช้สารในดินร่วนและดินเหนียว และ สามารถควบคุมการงอกของวัชพืชใบกว้างได้ดีกว่าวัชพืชใบแคบ การใช้สารผลิตภัณฑ์ในการกำจัด วัชพืชขนาด 14 วันหลังปลูก พบว่า หลังจากฉีดพ่นผลิตภัณฑ์ควบคุมวัชพืชจากพุทธชาติก้านแดงไป แล้ว 21 วัน ที่ระดับความเข้มข้น 80,000 ppm มีผลทำให้ถั่วผีเกิดความเป็นพิษมากที่สุดถึง 90 เปอร์เซ็นต์ โดยกวามเป็นพิษที่เกิดขึ้นนั้นเกิดจาก สารออกฤทธิ์ทำลายความเสถียรภาพของเยื่อหุ้มเมม เบรน และปริมาณคลอ โรฟิลล์เอและบีลดลง จากการทดลองเปรียบเทียบประสิทธิภาพของสาร ธรรมชาติกำจัดวัชพืชจากพุทธชาติก้านแดงที่อยู่ในรูป SC และ WP เปรียบเทียบกับสารป้องกันกำจัด วัชพืช atrazine พบว่า สารธรรมชาติกำจัดวัชพืชจากพุทธชาติก้านแดงที่อยู่ในรูป SC มีความเป็นพิษ ต่อวัชพืชทดสอบสูงกว่าการใช้สารแอทราซินที่ปริมาณ 0.25 กรัมต่อตารางเมตร ส่วนสารในรูป WP มีความเป็นพิษต่อวัชพืชทดสอบน้อยที่สุด

ABSTRACT

The quantity of crude extract from spanish jasmine (Jasminum officinale L.f. var. grandiforum (L.) Kob.) is found to be dependent on solvent proportion. The recovery of crude extraction increased with increase in the ethanol concentrations. A mixture of ethanol with water at 75:25 (v/v) was the most effective and gave the greatest quantity of crude extract from Jasminum officinale (3.79%). The extraction temperature from 40 – 100 °C for 1 h. had no effect on quantity and efficacy of crude extract. The three parts of solvent partitioning leaf extract from spanish jasmine; aqueous fraction (AQ), neutral compound extract (NE) and acidic compound extract (AE) including crude methanol extract (ME) were comparative studied on seed germination and seedling growth of bioassay plants by using each part of 250 - 8,000 ppm. It was shown that the extract from AE fraction gave the highest inhibitory effect and ME fraction gave high inhibitory effect on seed germination and seedling growth of the bioassay plants. ME fraction was used for further studies. Crude ME fraction was formulated into wettable powder (WP) formulation and/or soluble concentrate (SC) formulation. The adverse effects of storage condition (light and high temperature) on product efficacy were evaluated. The results showed that the inhibition efficacy of both product formulation storage in dark, light, high and low temperature were not significantly after 12 months of storage periods. The efficacy of WP and SC formulation was compared at concentrations of 500 – 8,000 ppm (a.i.) in petri-dish on seed germination and seedling growth of barnyardgrass (Echinochloa crus-galli (L.) Beauv.) and wild pea (Phaseolus lathyroides L.). The results showed that SC formulation had stronger inhibitory effects than WP formulation. At 8000 ppm, wild pea was completely inhibited and barnyard grass was inhibitory 70% on the seed germination. The mechanisms of SC formulation on inhibition of seed germination were evaluated. The results indicated that seed imbibition and α -amylase activities in bioassay seeds decreased with increasing concentration of SC product. The phytotoxic effects of WP product at 2,000 - 8,000 ppm on the growth and morphology in the root of P. lathyroides were examined. These results demonstrated that crude extract in wettable powder form inhibited the growth of wild pea root systems and severely damaged root and root hair. The mitotic index in treated A. cepa root tips decreased with increasing concentrations of SC produced. In addition, the mitotic phase index was

altered in A. cepa incubated with SC product. The results showed that the increase in the percentage of the prophase phase in contrast to the percentage of remaining phases was found to be decreased. The SC product caused the mitotic abnormalities resulting from its action on chromatin organization and mitotic spindle. In addition, the size of the nucleolus area decreased with increasing concentrations when compared with the control. The efficacy of the SC product apllied in different 3 types of soil; silt, silt+sand and sand in Petri-dish were studies. The results showed that applied of SC produced at the rate of 20 g a.i./m² in sand had strongest inhibition effects of bioassay plants and slightly inhibited in silt and clay soil. The SC product applied as foliar spray at the concentration of 80,000 ppm on wild pea at 14 days after planting caused 90% toxic on wild pea plant. Phytotoxic mechanisms were determined on membrane stability index, chlorophyll and carotenoid content at 21 days after foliar applied. The results showed that the membrane stability index and chlorophyll content decrease with increasing concentration. Herbicidal potential of crude extract of J. officinale in WP and SC formulation were tested in the field compared with atrazine herbicide. The results showed that SC formulation was the most effective to control weed following atrazine herbicide and WP formulation.

หน้าสรุปโครงการ (Executive Summary)

การพัฒนาผลิตภัณฑ์ธรรมชาติควบคุมวัชพืชจากพุทธชาดก้านแดงเพื่อทดแทนสารเคมีสังเคราะห์

Development of biorational herbicide from Spanish jasmine (Jasminum officinale)
for substitution of synthetic herbicides

1. ความสำคัญและที่มาของปัญหา

หัวหน้าโครงการและผู้ร่วมวิจัยขณะนี้ได้รับทุนจากสำนักงานกองทุนสนับสนุนการวิจัย ภายใต้ "ชุดโครงการวิจัยพื้นฐานแบบมุ่งเป้าเพื่อสนับสนุนการพัฒนาเกษตรยั่งยืน" ชื่อโครงการ การ พัฒนาผลิตภัณฑ์จากวัสคุธรรมชาติเพื่อการจัดการวัชพืชอย่างยั่งยืน (Development of Natural Products for Sustainable Weed Management) รหัสโครงการ DBG5080019 ระยะเวลาคำเนินการ 2 ปี ์ ตั้งแต่ 31 กรกฎาคม 2550 ถึง 30 กรกฎาคม 2552 ซึ่ง ผลผลิต (Output) ชิ้นหนึ่งจากโครงการนี้ ได้ จด สิทธิบัตร/อนุสิทธิบัตร สิ่งประดิษฐ์ภายใต้ชื่อ"กรรมวิธีการผลิตสารกำจัดวัชพืชจากพุทธชาดก้านแดง และส่วนผสมที่ได้จากกรรมวิธีดังกล่าว" เมื่อวันที่ 13 ตุลาคม 2551 เลขที่คำขอ 0801005224 ทั้งนี้ นายกมล เลิศเคชเคชา กรรมการผู้จัดการ บริษัท ป. เคมีเทค จำกัด ซึ่งเป็นบริษัทผู้ผลิตและจำหน่าย สารกำจัดวัชพืช มีความสนใจที่จะขอซื้อสิทธิบัตรฉบับนี้จากทาง สกว-สจล (ได้แจ้งให้ทางสกว. ทราบ ตั้งแต่เดือน ธันวาคม 2551 และขณะนี้อย่ระหว่างการคำเนินการเจรจาจากทาง สกว) แต่ เนื่องจากสิทธิบัตร/อนุสิทธิบัตร สิ่งประดิษฐ์ดังกล่าว ยังไม่สามารถคำเนินการผลิตทางการค้าได้ เนื่องจากขาคความสมบูรณ์ของข้อมูลอีกหลายค้าน เช่น กรรมวิธีในการสกัคสาร คณะผู้วิจัย ได้ศึกษา กรรมวิธีที่สามารถสกัดสารได้อย่างมีประสิทธิภาพสูงสุด สกัดสารออกฤทธิ์ให้ได้ปริมาณมากที่สุด แต่ในเชิงพาณิชย์กลับต้องการกรรมวิธีในการสกัดสารที่รวดเร็ว และประหยัดมากที่สด จึงต้อง ทำการศึกษาเพิ่มเติม ในส่วนข้อมูลอื่นๆ ก็เช่นเดียวกัน อีกทั้งผลิตภัณฑ์ดังกล่าวยังต้องได้รับการ พัฒนาให้มีประสิทธิภาพสูงขึ้น ทางบริษัทจึงมีความประสงค์ที่จะสนับสนุนให้ทำการวิจัยต่อยอด งานวิจัยชิ้นนี้ให้สมบูรณ์จนสามารถผลิตในเชิงการค้าได้ โดยทางบริษัทยินดีที่จะร่วมเป็นหุ้นส่วนต่อ ยอดงานวิจัยในโครงการที่เสนอครั้งนี้

2. วัตถุประสงค์

- 2.1 พัฒนากรรมวิธีการผลิตสารกำจัดวัชพืชจากพุทธชาดก้านแดง ให้มีประสิทธิภาพและ ศักยภาพสูง เหมาะสมและสามารถผลิตเชิงพาณิชย์ และสามารถจดสิทธิบัตร/อนุสิทธิบัตรต่อยอด สิทธิบัตร/อนุสิทธิบัตรเดิมหรือจดสิทธิบัตร/อนุสิทธิบัตรใหม่ได้
 - 2.2 ศึกษาการใช้ประโยชน์ของสารผลิตภัณฑ์ กลไกการทำลายพืช และผลต่อสิ่งแวคล้อม
- 2.3 ผลิตบุคลากรที่มีทักษะด้านงานวิจัยและผลงานวิชาการที่สามารถนำเสนอในการประชุม วิชาการนานาชาติ และสามารถตีพิมพ์ผลงานในวารสารวิชาการนานาชาติได้

3. บทสรุป

การทดลองที่ 1.1 ศึกษาประสิทธภาพของเอทานอลในน้ำในอัตราส่วนที่แตกต่างกันในการสกัดสาร ออกฤทธิ์จากใบพุทธชาติก้านแดง

การใช้อัตราส่วนของเอทานอลต่อน้ำ ที่ 75/25 สามารถสกัดสารออกฤทธิ์จากใบพุทธชาติก้าน แดง ได้ปริมาณสูงสุด 3.79 กรัม เมื่อลดสัดส่วนของเอทานอลลงพบว่า ประสิทธิ ภาพของการสกัด ลดลง การใช้น้ำกลั่น และเอทานอล 25 เปอร์เซ็นต์ในน้ำกลั่น มีประสิทธิภาพในการสกัดต่ำที่สุด เมื่อ ทำการทดสอบฤทธิ์ของสารที่สกัดได้จากการใช้สารสกัดเอทานอล/น้ำในอัตราส่วนต่างๆ ต่อการงอกของ ถั่วผี พบว่า สารสกัดด้วย เอทานอล/น้ำ ที่อัตราส่วน 75/25 สามารถยับยั้งการงอกได้ 82.5 เปอรี่ เซ็นต์ และ สารสกัดที่ได้จากการใช้ เอทานอลอย่างเดียวสามารถยับยังการงอกได้สูงที่สุด 88.75 เปอรี่ เซ็นต์

การทดลองที่ 1.2 ผลของระดับความร้อนในการสกัดสารออกฤทธิ์ และประสิทธิภาพของสารออก ฤทธิ์จากใบพุทธชาติก้านแคง

การสกัดสารที่อุณหภูมิ 40, 60, 80 และ 100 องสาเซลเซียสเป็นเวลานาน 1 ชั่วโมง พบว่า ปริมาณสารสกัดหยาบที่ได้จากทุกอุณหภูมิไม่มีความแตกต่างกัน และฤทธิ์ของสารสกัดหยาบที่สกัด ได้ไม่แตกต่างกัน แสดงให้เห็นว่าอุณภูมิสูงไม่สงผลต่อประสิทธิภาพของสาร

การทดลองที่ 1.3 การแยกกลุ่มสารออกฤทธิ์ โดยวิธี Acid-base solvent partitioning

ผลการเปรียบเทียบศักยภาพของสารสกัดจากใบพุทธชาติก้านแดงในส่วน crude methanol extract (ME), neutral compound extract (NE), acidic compound extract (AE) และ aqueous fraction (AQ) พบว่าการใช้สารสกัดจากส่วน AE สามารถยับยั้งการงอกของเมล็ดและการเจริญเติบโตของต้น กล้าพืชทดสอบทั้ง 4 ชนิดได้ดีที่สุด รองลงมาคือสารสกัดในส่วน ME สำหรับสารสกัดในส่วน NE และ AQ มีผลในการยับยั้งการงอกและการเจริญเติบโตของต้นกล้าพืชทดสอบน้อย ซึ่งต้องใช้ระดับ ความเข้มข้นสูงจึงแสดงผลในการยับยั้งให้เห็นได้เค่นชัดขึ้น ผลการทดลองนี้แสดงให้ทราบว่าสารที่มี สักยภาพในการยับยั้งการเจริญเติบโตของพืชที่อยู่ในใบพุทธชาติก้านแดงส่วนใหญ่สามารถละลายอยู่ ในส่วน AE

การทดลองที่ 1.4 ศึกษาสภาพที่เหมาะสมต่อการเก็บรักษาสารออกฤทธิ์และสารผลิตภัณฑ์ และ ระยะเวลาในการเสื่อมสลายของสารออกฤทธิ์ในสารผลิตภัณฑ์

จากการเก็บรักษาสารผลิตภัณฑ์ในรูปรูปแบบผงเปียกน้ำ (WP) และรูปแบบสารละลาย (SC) ที่อุณหภูมิห้อง มีแสง และไม่มีแสง ที่อุณหภูมิเย็น มีแสง และไม่มีแสง เป็นระยะเวลา 12 เดือน พบว่า ที่ทุกสภาพการเก็บรักษาไม่สงผลกระทบต่อประสิทธิภาพสาร

การทดลองที่ 2.1 ศึกษารูปแบบของผลิตภัณฑ์ NHSJ ระหว่างรูปแบบผงเปียกน้ำ (WP) และรูปแบบ สารละลาย (SC) ต่อการยับยั้งการงอกและการเจริญเติบโตของพืชทดสอบ

จากการศึกษา รูปแบบของผลิตภัณฑ์ NHSJ ระหว่างรูปแบบ WP และรูปแบบ SC ต่อการ ยับยั้งการงอกและการเจริญเติบโตของพืชทคสอบ พบว่าผลิตภัณฑ์ NHSJ รูปแบบ SC สามารถยับยั้ง การงอกและการเจริญเติบโตของพืชทคสอบ ได้คืกว่ารูปแบบ WP และพบว่าผลิตภัณฑ์รูปแบบ SC สามารถยับยั้งการงอกและการเจริญเติบโตของถั่วผีได้คืกว่าหญ้าข้าวนก เมื่อเทียบกับที่ระดับความ เข้มข้นเดียวกัน แสดงให้เห็นว่าผลิตภัณฑ์ แสดงผลยับยั้งวัชพืชใบเลี้ยงคู่ได้คีกว่าใบเลี้ยงเดี่ยว ซึ่ง สามารถนำไปประยุกต์ใช้เป็นสารกำจัดวัชพืชแบบเลือกทำลายใบเลี้ยงคู่ได้

การทดลองที่ 2.2 ศึกษาชนิดและสัคส่วนที่เหมาะสมของสารเสริมประสิทธิภาพ (additive agent) ใน การเพิ่มประสิทธิภาพของสารสกัดในแต่ละ fractions ที่ได้คัดเลือกมา

จากการนำ citric acid ผสมในสารผลิตภัณฑ์จากสารสกัดหยาบของใบพุทธชาติก้านแดงที่ ความเข้มข้น 1, 2 และ 3 เปอร์เซนต์ พบว่า ทุกความเข้มข้นของ citric acid ไม่สามารถเพิ่มฤทธิ์ของ สารผลิตภัณฑ์จากสารสกัดหยาบของใบพุทธชาติก้านแดงได้

การทดลองที่ 2.3 ศึกษาชนิดและสัดส่วนที่เหมาะสมของการใช้สารสกัดสารออกฤทธิ์จากพืชชนิดอื่น เป็นส่วนผสม

ผลการทดลองปรากฏว่า ที่ระดับความเข้มข้น 2,000 และ 4,000 ppm สารสกัดสารออกฤทธิ์ จาก ประยงค์ พุทธชาติ:ประยงค์ และ พุทธชาติ:ประยงค์:คาวเรื่อง มีผลต่อการยับยั้งความยาวต้นของ หญ้าข้าวนกอย่างไม่แตกต่างกันทางสถิติ และสามารถยับยั้งความยาวต้นของหญ้าข้าวนกได้สูงสุดเมื่อ เปรียบเทียบกับสารสกัดสารออกฤทธิ์ชนิดอื่นๆที่ระดับความเข้มข้นเดียวกัน ในขณะที่สารสกัดสาร ออกฤทธิ์จากพุทธชาติที่ระดับความเข้มข้น 4,000 ppm สามารถยับยั้งความยาวต้นต่ำที่สุดเพียง 19.31 เปอร์เซ็นต์ สำหรับผลต่อความยาวรากพบว่าที่ระดับความเข้มข้น 500 และ 1,000 ppm สารสกัดสาร ออกฤทธิ์จากพุทธชาติ คาวเรื่อง และ พุทธชาติ:ดาวเรื่อง มีผลต่อความยาวรากของหญ้าข้าวนกไม่ แตกต่างกันทางสถิติ และเมื่อผสมสารสกัดสารออกฤทธิ์จากพุทธชาติกับประยงค์ สามารถทำให้ ความสามารถในการยับยั้งความยาวรากของหญ้าข้าวนกเพิ่มขึ้น

การทดลองที่ 2.4 ศึกษาผลของการใช้ผลิตภัณฑ์ควบคุมวัชพืชจากพุทธชาติก้านแดง ก่อนวัชพืชงอก (Pre-emergence)

หลังจากใช้ผลิตภัณฑ์ควบคุมวัชพืชจากพุทธชาติก้านแดงไปแล้ว 3, 5 และ 7 วัน พบว่าทุก อัตรามีผลต่อการงอกของเมล็ดถั่วผีอย่างมีนัยสำคัญทางสถิติ สำหรับในวันที่ 7 หลังจากใช้ผลิตภัณฑ์ ควบคุมวัชพืชจากพุทธชาติก้านแดง พบว่า ที่อัตรา 20 กรัมสารออกฤทธิ์/ตารางเมตร มีผลต่อการงอก ของเมล็ดถั่วผีสูงสุดถึง 20 เปอร์เซ็นต์ ในขณะที่ อัตรา 2.5, 5 และ 10 กรัมสารออกฤทธิ์/ตารางเมตร มีผลต่อการงอกของเมล็ดถั่วผีไม่แตกต่างกันทางสถิติ ผลิตภัณฑ์ควบคุมวัชพืชจากพุทธชาติก้านแดงมีผลให้การยับยั้งการงอกของเมล็ดถั่วผี ในวันที่ 3, 5 และ 7 ไม่แตกต่างกันทางสถิติ

การทดลองที่ 2.5 ศึกษาผลของการใช้ผลิตภัณฑ์ควบคุมวัชพืชจากพุทธชาติก้านแดง หลังวัชพืชงอก (Post-emergence)

หลังจากฉีดพ่นผลิตภัณฑ์ควบคุมวัชพืชจากพุทธชาติก้านแดงไปแล้ว 21 วัน พบว่า ที่ระดับ ความเข้มข้น 80,000 ppm มีผลทำให้ถั่วผีเกิดความเป็นพิษมากที่สุดถึง 90 เปอร์เซ็นต์ รองลงมาคือ ระดับความเข้มข้น 40,000 ppm มีผลทำให้ถั่วผีเกิดความเป็นพิษเพียง 25 เปอร์เซ็นต์ ในขณะที่ ระดับ ความเข้มข้น 10,000 และ 20,000 ppm ไม่มีผลต่อความเป็นพิษของถั่วผี

การทดลองที่ 3.1 การศึกษาประสิทธิภาพของผลิตภัณฑ์ NHSJ ในดินชนิดต่าง ๆ

จากการศึกษา ประสิทธิภาพของผลิตภัณฑ์ NHSJ รูปแบบ SC ในคินชนิคต่าง ๆ พบว่าใน ทรายที่ระคับความเข้มข้น 0.16 กรัม สารออกฤทธิ์/จานทคลอง สามารถยับยั้งการงอกของเมล็ควัชพืช ทั้งสองชนิค ได้อย่างสมบูรณ์ อาจเนื่องมาจากในทราย ไม่มีการคูคซับสารไว้ ส่วนในคินจะมีปริมาณ ของอินทรีย์วัตถุมีบทบาทในการควบกุมการคูคซับของสาร นอกจากนั้นผลิตภัณฑ์ NHSJ สามารถ ยับยั้งการงอกของถั่วผีซึ่งเป็นวัชพืชใบเลี้ยงคู่ได้ดีกว่าหญ้าข้าวนกซึ่งเป็นวัชพืชใบเลี้ยงเคี่ยว มีลักษณะ การเลือกทำลายวัชพืชใบเลี้ยงคู่ดีกว่าใบเลี้ยงเคี่ยว จึงนับว่าเป็นแนวทาง หรือทางเลือกหนึ่งในการ ประยุกต์ใช้ผลิตภัณฑ์ NHSJ เพื่อพัฒนาเป็นสารกำจัดวัชพืชจากธรรมชาติที่สามารถนำไปใช้ได้จริง ทางการเกษตร

การทดลองที่ 4.1 ศึกษาฤทธิ์ของผลิตภัณฑ์ NHSJ ต่อการคูดน้ำของเมล็ดพืชทดสอบ

จากการศึกษา ผลิตภัณฑ์ NHSJ รูปแบบ SC ต่อการดูดน้ำของเมล็ดพืชทดสอบ พบว่า เปอร์เซ็นต์การดูดน้ำของเมล็ดหญ้าข้าวนกและผักโขมสวนลดลงตามความเข้มข้นของผลิตภัณฑ์ NHSJ ที่เพิ่มขึ้นในระยะเวลาในการทดสอบเคียวกัน เมื่อเทียบกับวิธีการควบคุม ที่เวลา 48 ชั่วโมง เปอร์เซ็นต์การดูดน้ำของเมล็ดหญ้าข้าวนกที่ทดสอบในผลิตภัณฑ์ NHSJ ทุกระดับความเข้มข้น มี ความแตกต่างทางสถิติ เมื่อเปรียบเทียบกับวิธีการควบคุม ส่วนเปอร์เซ็นต์การดูดน้ำของเมล็ดผักโขม

สวนที่เวลา 24 ชั่วโมง ให้ผลเช่นเดียวกับการทดสอบในเมล็ดหญ้าข้าวนก คือที่ผลิตภัณฑ์ NHSJ ทุก ระดับความเข้มข้น มีความแตกต่างทางสถิติ เมื่อเปรียบเทียบกับวิธีการควบคุม เมล็ดพืชทั้ง 2 ชนิดมี เปอร์เซ็นต์การดูดน้ำไม่เท่ากัน ขึ้นอยู่กับสรีรวิทยาของเมล็ดพืชนั้น

การทดลองที่ 4.2 การศึกษาผลิตภัณฑ์ NHSJ ต่อการยับยั้งกิจกรรมเอนไซม์อะไมเลส ในเมล็ดพืช ทดสอบ

จากการศึกษา ผลิตภัณฑ์ NHSJ รูปแบบ SC ต่อการยับยั้งกิจกรรมเอนไซม์อะไมเลสใน เมล็ดพืชทดสอบ พบว่ากิจกรรมเอนไซม์อะไมเลสในเมล็ดหญ้าข้าวนกและผักโขมสวนลดลงตาม ความเข้มข้นของผลิตภัณฑ์ NHSJ ที่เพิ่มขึ้นและตามระยะเวลาทดสอบที่เพิ่มขึ้น กิจกรรมเอนไซม์ อะ ไมเลสในเมล็ดหญ้าข้าวนก ที่ระยะเวลา 48 ชั่วโมง ระดับความเข้มข้น 2000-8000 ppm มีความ แตกต่างกับวิธีการควบคุม ส่วนเมล็ดผักโขมสวนที่ระยะเวลา 24 ชั่วโมง ทุกระดับความเข้มข้นของ ผลิตภัณฑ์ NHSJ มีกิจกรรมเอนไซม์อะไมเลส แตกต่างกับชุดควบกุม

การทดลองที่ 4.3 การศึกษาผลิตภัณฑ์ NHSJ ต่อการยับยั้งฮอร์โมนจิบเบลเรลลิน

จากการศึกษา ผลิตภัณฑ์ NHSJ รูปแบบ SC ต่อการยับยั้งฮอร์โมนจิบเบลเรลลินในเมล็ด พืชทดสอบ พบว่าผลิตภัณฑ์ NHSJ สามารถยับยั้งการสร้างฮอร์โมนจิบเบอเรลลิน ที่มีความสำคัญต่อ กระบวนการงอกของเมล็ดพืชทดสอบได้

การทดลองที่ 4.4 การศึกษาผลของผลิตภัณฑ์ NHSJ ในรูป SC ต่อกลไกการทำลายวัชพืชทางรากและ ทางใบ

จากการศึกษา กลไกการทำลายวัชพืชของผลิตภัณฑ์ NHSJ รูปแบบ SC ทางรากและทางใบ พบว่าผลิตภัณฑ์ NHSJ มีประสิทธิภาพในการทำลายทางรากได้ดีกว่าทางใบ และสามารถยับยั้งการ รอดในพืชทดสอบทั้ง 2 ชนิดได้ 100 เปอร์เซ็นต์ ที่ระดับความเข้มข้น 20 มิลลิกรัม สารออกฤทธิ์/มิลลิลิตร ที่ระยะเวลา 30 และ 60 นาที ในขณะที่ชุดควบคุมมีเปอร์เซ็นต์การยับยั้งการรอดเท่ากับ 0 และมีน้ำหนักสดน้ำหนักแห้งเท่ากับ 14.49 และ 2.02 กรัม มีความแตกต่างกันทางสถิติเมื่อ เปรียบเทียบกับวิธีการควบคุม

การทดลองที่ 4.5 การตรวจสอบฤทธิ์ของสารในการทำลายผนังเซลล์และการเปลี่ยนแปลงการซึมผ่าน ของเยื่อเมมเบรน (permeable membrane)

จากการศึกษา ผลของผลิตภัณฑ์ NHSJ รูปแบบ SC ต่อคัชนีความเสถียรภาพของเยื่อหุ้มเมม เบรน ของหญ้าข้าวนกและถั่วผี ที่ระคับความเข้มข้น 2.5, 5, 10 และ 20 มิลลิกรัม สารออกฤทธิ์ / มิลลิลิตร เป็นระยะเวลา 1, 3, 5 และ 7 วัน โดยใช้น้ำกลั่นเป็นวิธีการควบคุม พบว่าในวันที่ 3, 5 และ 7 หลังจากที่พืชทดสอบได้รับผลิตภัณฑ์ NHSJ มีความเสถียรภาพของเยื่อหุ้มเมมเบรนลดลงตามความ เข้มข้นของผลิตภัณฑ์ที่สูงขึ้น เมื่อเปรียบเทียบกับวิธีการควบคุม

การทดลองที่ 4.6 การตรวจสอบฤทธิ์ของสารในการยับยั้ง chlorophyll synthesis

จากการศึกษา ผลของผลิตภัณฑ์ NHSJ รูปแบบ SC ต่อการยับยั้งปริมาณคลอโรฟิลล์เอและ บี ของหญ้าข้าวนกและถั่วผี พบว่าผลิตภัณฑ์ NHSJ สามารถยับยั้งปริมาณคลอโรฟิลล์ ตามความ เข้มข้นของผลิตภัณฑ์ NHSJ ที่เพิ่มขึ้น ที่ระดับความเข้มข้น 5-20 มิลลิกรัม สารออกฤทธิ์/มิลลิลิตร มี ความแตกต่างกันทางสถิติเมื่อเปรียบเทียบกับวิธีการควบคุม ส่วนปริมาณแคโรทีนอยค์มีค่าเพิ่มขึ้น ตามความเข้มข้นของผลิตภัณฑ์ที่เพิ่มขึ้น ที่ระดับความเข้มข้น 5-20 มิลลิกรัม สารออกฤทธิ์/มิลลิลิตร มีความแตกต่างกันทางสถิติเมื่อเปรียบเทียบกับวิธีการควบคุม

การทดลองที่ 4.7 การตรวจสอบความเสียหายของของถั่วผีและลักษณะทางสัณฐานวิทยา

ผลิตภัณฑ์ NHSJ รูปแบบ WP มีประสิทธิภาพในการยับยั้งการเจริญเติบโตของต้นกล้าถั่วผี และการแสดงอาการเป็นพิษที่ทำให้เกิดความผิดปกติของลักษณะทางสัณฐานวิทยาโดยเพิ่มขึ้นตาม ระดับความเข้มข้นของสารปลายราก ทำให้เกิดความผิดปกติต่อลักษณะรากคือ ปลายรากบวม ราก แสดงอาการเหี่ยว หมวกรากมีสีน้ำตาล ที่ระดับความเข้มข้นสูงสุด รากมีลักษณะกุดสั้นและมีสีน้ำตาล กล้ำ นอกจากนี้สารดังกล่าวยังมีผลต่อการพัฒนาและความหนาแน่นของขนราก โดยทุกความเข้มข้น ของผลิตภัณฑ์ NHSJ รูปแบบ WP ยับยั้งการสร้างขนรากของถั่วผี

การทดลองที่ 4.8 การตรวจสอบฤทธิ์ของสารที่มีผลต่อการแบ่งเซลล์พืชและนิวคลี โอลัส

จากการศึกษาผลของผลิตภัณฑ์ NHSJ รูปแบบ SC ต่อกิจกรรมการแบ่งเซลล์ในปลายราก หอมหัวใหญ่ พบว่าดัชนีการแบ่งเซลล์ลดลงตามความเข้มข้นของผลิตภัณฑ์ NHSJ ที่เพิ่มขึ้น และ ส่งผลให้จำนวนเซลล์ที่เข้าสู่ระยะ ไมโทติกลดลง ความผิดปกติของเซลล์ที่พบลดลงตามไปด้วย เกิด ลักษณะความผิดปกติของโครโมโซม 2 ลักษณะ คือ เกิดการหดตัวอัดกันแน่นของโครโมโซม มากกว่าปกติ และรบกวนการจัดเรียงตัวของไมโครทิวบูลส่งผลต่อการสร้างสายใยสปินเดิล ส่วน เปอร์เซ็นต์ที่นับได้รวมถึงพื้นที่ของนิวคลีโอลัสลดลงตามจำนวนและความเข้มข้นของสารที่เพิ่มขึ้น เมื่อเทียบกับวิธีการควบคุม

การทดลองที่ 5.1 ศึกษาเปรียบเทียบประสิทธิภาพของสารผลิตภัณฑ์ที่พัฒนาได้กับสารป้องกัน ควบคุมวัชพืชมาตรฐาน

จากผลการทดลองพบว่า รูปผลิตภัณฑ์ของสารธรรมชาติกำจัดวัชพืชจากพุทธชาติก้านแดงที่ อยู่ในรูป soluble concentrate มีความเป็นพิษต่อวัชพืชทดสอบสูงกว่าสารในรูป wettable powder เมื่อ เปรียบเทียบกับการใช้สารแอทราซีนที่ปริมาณ 0.25 กรัมต่อตารางเมตร พบว่า สารธรรมชาติกำจัด วัชพืชจากพุทธชาติก้านแดงที่อยู่ใน wettable powder มีความเป็นพิษต่อวัชพืชทดสอบน้อยกว่า สารแอทราซีน แต่สารในรูป soluble concentrate ที่ระดับความเข้มข้น 2 เปอร์เซ็นต์ มีความเป็นพิษสูง กว่าแอทราซีน

การพัฒนาผลิตภัณฑ์ธรรมชาติควบคุมวัชพืชจากพุทธชาติก้านแดงเพื่อทดแทนสารเคมี สังเคราะห์

Development of biorational herbicide from Spanish jasmine (*Jasminum officinale*) for substitution of synthetic herbicides

ความสำคัญและที่มาของปัญหา

หัวหน้าโครงการและผู้ร่วมวิจัยขณะนี้ได้รับทุนจากสำนักงานกองทุนสนับสนุนการวิจัย ภายใต้ "ชุดโครงการวิจัยพื้นฐานแบบมุ่งเป้าเพื่อสนับสนุนการพัฒนาเกษตรยั่งยืน" ชื่อโครงการ การ พัฒนาผลิตภัณฑ์จากวัสคุธรรมชาติเพื่อการจัดการวัชพืชอย่างยั่งยืน (Development of Natural Products for Sustainable Weed Management) รหัสโครงการ DBG5080019 ระยะเวลาคำเนินการ 2 ปี ์ ตั้งแต่ 31 กรกฎาคม 2550 ถึง 30 กรกฎาคม 2552 ซึ่ง ผลผลิต (Output) ชิ้นหนึ่งจากโครงการนี้ ได้ จด สิทธิบัตร/อนุสิทธิบัตร สิ่งประดิษฐ์ภายใต้ชื่อ"กรรมวิธีการผลิตสารกำจัดวัชพืชจากพุทธชาติก้านแคง และส่วนผสมที่ได้จากกรรมวิธีดังกล่าว" เมื่อวันที่ 13 ตุลาคม 2551 เลขที่คำขอ 0801005224 ทั้งนี้ นายกมล เลิศเคชเคชา กรรมการผู้จัดการ บริษัท ป. เคมีเทค จำกัด ซึ่งเป็นบริษัทผู้ผลิตและจำหน่าย สารกำจัดวัชพืช มีความสนใจที่จะขอซื้อสิทธิบัตรฉบับนี้จากทาง สกว-สจล (ได้แจ้งให้ทางสกว. ทราบ ตั้งแต่เดือน ธันวาคม 2551 และขณะนี้อยู่ระหว่างการคำเนินการเจรจาจากทาง สกว) แต่ เนื่องจากสิทธิบัตร/อนุสิทธิบัตร สิ่งประดิษฐ์ดังกล่าว ยังไม่สามารถคำเนินการผลิตทางการค้าได้ เนื่องจากขาดความสมบูรณ์ของข้อมูลอีกหลายด้าน เช่น กรรมวิธีในการสกัดสาร คณะผู้วิจัย ได้ศึกษา กรรมวิธีที่สามารถสกัดสารได้อย่างมีประสิทธิภาพสูงสุด สกัดสารออกฤทธิ์ให้ได้ปริมาณมากที่สุด แต่ในเชิงพาณิชย์กลับต้องการกรรมวิธีในการสกัดสารที่รวดเร็ว และประหยัดมากที่สุด จึงต้อง ทำการศึกษาเพิ่มเติม ในส่วนข้อมูลอื่นๆ ก็เช่นเดียวกัน อีกทั้งผลิตภัณฑ์ดังกล่าวยังต้องได้รับการ พัฒนาให้มีประสิทธิภาพสูงขึ้น ทางบริษัทจึงมีความประสงค์ที่จะสนับสนุนให้ทำการวิจัยต่อยอด งานวิจัยชิ้นนี้ให้สมบูรณ์จนสามารถผลิตในเชิงการค้าได้ โดยทางบริษัทยินดีที่จะร่วมเป็นหุ้นส่วนต่อ ยอดงานวิจัยในโครงการที่เสนอครั้งนี้

วัตถุประสงค์

- 1 พัฒนากรรมวิธีการผลิตสารกำจัดวัชพืชจากพุทธชาติก้านแดง ให้มีประสิทธิภาพและ ศักยภาพสูง เหมาะสมและสามารถผลิตเชิงพาณิชย์ และสามารถจดสิทธิบัตร/อนุสิทธิบัตรต่อยอด สิทธิบัตร/อนุสิทธิบัตรเดิมหรือจดสิทธิบัตร/อนุสิทธิบัตรใหม่ได้
 - 2 ศึกษาการใช้ประโยชน์ของสารผลิตภัณฑ์ กลไกการทำลายพืช และผลต่อสิ่งแวคล้อม

3 ผลิตบุคลากรที่มีทักษะด้านงานวิจัยและผลงานวิชาการที่สามารถนำเสนอในการประชุม วิชาการนานาชาติ และสามารถตีพิมพ์ผลงานในวารสารวิชาการนานาชาติได้

ผลงานวิจัยที่เกี่ยวข้อง (literature review)

อัลลีโลพาที (allelopathy) มาจากรากศัพท์ภาษากรีก 2 คำคือ alleon หมายถึงซึ่งกันและกัน และ pathos หมายถึง เดือดร้อนหรือทำให้เกิดอันตราย ปรากฏการณ์อัลลีโลพาทีเป็นปฏิกิริยาทาง ชีวเคมีของพืชและ จุลินทรีย์ มีผลทั้งในด้านการยับยั้งและการกระตุ้นการเจริญเติบโตโดย ผ่านทางสารเคมีที่ปล่อยสู่สภาพแวดล้อม ทำให้เกิดผลกระทบต่อการเจริญเติบโตและพัฒนาการของ พืชและจุลินทรีย์ (Rice, 1984) จากการเล็งเห็นถึงประโยชน์ทางด้านอัลลีโลพาทีนักวิทยาศาสตร์ใน ปัจจุบัน จึงได้พยายามที่จะหาทางนำความรู้ทางด้านอัลลีโลพาทีมาปรับใช้ทางการเกษตร สารอัล ลีโลพาทีเป็นสารผลิตภัณฑ์ธรรมชาติที่มีความปลอดภัยต่อสภาพแวดล้อมสูง แนวทางในการพัฒนา นำพืชหรือจุลินทรีย์ที่มีศักยภาพทางอัลลีโลพาทีสูงไปใช้ในระบบการจัดการวัชพืชแบบยั่งยืนมีหลาย ทาง เช่น

- 1. การวิเคราะห์หาสูตรโครงสร้างของสารออกฤทธิ์และทคสอบเพื่อนำไปใช้เป็นสารกำจัด วัชพืช เช่น สาร bialophos ที่ผลิตจากแบคทีเรีย Streptomyces viridochromogenen ซึ่งปัจจุบันเป็นสาร กำจัดวัชพืชที่เป็นสารจากธรรมชาติและผลิตจำหน่ายที่ประเทศญี่ปุ่น (ธวัชชัย, 2540)
- 2. การคัดแปลงสูตรโครงสร้างของสารอัลลีโลพาที (allelochemicals) จากธรรมชาติให้มี ประสิทธิภาพในการเป็นสารกำจัควัชพืชที่สูงขึ้น เช่น สาร leptospermones เป็นตัวอย่างสารที่ได้รับ การคัดแปลงสูตรโครงสารเป็นสาร mesotrione (ชื่อทางการค้าคือ Callisto) พัฒนาโคยบริษัท Syngenta AG ซึ่งมีประสิทธิภาพในการควบคุมวัชพืชกลุ่มใบกว้างในระบบการปลูกข้าวโพค (Cornes, 2005)
- 3. พัฒนาวิธีการในการนำพืชนั้นๆ มาปรับใช้ในระบบการปลูกพืช เช่น มีรายงานว่า เมื่อผสม ซากของวัชพืช Ambrosia trifida ลงในคินปลูกในอัตรา 5 เปอร์เซ็นต์ สามารถยับยั้งการเจริญเติบโต ของต้นข้าวสาลี 75 % หลังการปลูก 40 วัน (Kong et al., 2007)

การศึกษาด้านอัลลีโลพาทีในระบบนิเวศพืชปลูกรวมถึงวัชพืชนั้นทำได้หลายลักษณะ คือ อาจจะศึกษาผลของอัลลีโลพาทีในพืชปลูกต่อพืชปลูก พืชปลูกต่อวัชพืช วัชพืชต่อวัชพืช และวัชพืช ต่อพืชปลูก เพื่อคัดเลือกพืชที่มีศักยภาพในการยับยั้งการเจริญเติบโตของวัชพืช รวมทั้งนำพืชและ วัชพืชที่มีศักยภาพด้านอัลลีโลพาทีมาสกัดสารธรรมชาติ และพัฒนาเป็นสารธรรมชาติเพื่อการ ควบคุมวัชพืชต่อไป ซึ่งวิธีการศึกษาผลทางอัลลีโลพาทีนั้นมีหลากหลายวิธีการขึ้นอยู่กับความ เหมาะสมและมีวิธีการต่างๆ มากมาย แต่ละวิธีก็มีข้อดี ข้อเสียแตกต่างกันไป ในเบื้องต้นนิยมใช้

วิธีการใช้สารสกัดน้ำ (water extract) ในการสกัด เนื่องจากเห็นผลได้เร็ว สามารถทำการทคสอบได้ เป็นจำนวนมากในแต่ละครั้งที่ทำการทดสอบและเป็นวิธีที่ประหยัดที่สดวิธีหนึ่ง เช่น Tefera (2002) รายงานผลของสารสกัดด้วยน้ำจากส่วนของต้น Parthenium hysterophorus ได้แก่ ต้น ราก ดอก และ ใบ ต่อการงอกและการเจริญเติบโตของ trotter (Eragrostis tef) ที่ความเข้มข้น 0, 1, 5 และ 10 เปอร์เซ็นต์ ผลปรากฏว่า เมื่อความเข้มข้นของสารสกัดจากใบและคอกเพิ่มขึ้น มีผลยับยั้งการงอกของ พืชทดสอบมากขึ้น และสามารถยับยั้งการงอกโดยสมบูรณ์ที่ความเข้มข้น 10 เปอร์เซ็นต์ Akinboro and Bakare (2007) การศึกษาผลของสารสกัดด้วยน้ำจาก Azadirachta indica, Morinda lucida, Cymbopogon citratus, Mangifera indica และ Carica papaya ต่อเซลล์หอมหัวใหญ่ (Allium cepa) โดยมีผลให้การแบ่งเซลล์แบบไมโทซิสลคลง และชักนำให้เกิดการรบกวนสายใยสปินเดิล ซึ่งทำให้ เกิดความผิดปกติในการแบ่งเซลล์ของหอมหัวใหญ่ (Akinboro and Bakare, 2007) หรือการสกัดสาร ด้วยตัวทำละลายอินทรีย์ เช่น การนำใบพืชในวงศ์ Chenopodiaceae 4 ชนิด มาสกัดด้วยเมทานอลที่ ระดับความเข้มข้นต่าง ๆ สามารถยับยั้งการเจริญเติบโต ความยาวของราก และความยาวของลำต้น ของผักกาคหอมได้ (Jefferson and Pennacchio, 2003) ในด้านของ Mao et al. (2006) ศึกษาพบว่าสาร สกัดหยาบจากรากของ Astragalus monglolicus สามารถยับยั้งการงอกของข้าวสาลี (Triticum aestivum L.) และเมื่อนำไปผสมในคินพบว่ามีผลยับยั้งการงอกของเมล็ดข้าวสาลีได้ ปริมาณ ในโตรเจนในดินและการเจริญเติบโตของแบคทีเรียทั่วไปในดินลคลง แต่ส่งผลให้มีการถ่ายเท ในโตรเจนในดินเพิ่มสูงขึ้น การทดสอบสารอัลลีโลพาทีต่อการคูดน้ำ (water uptake) ของเมล็ดพืช โดย Turk and Tawaha (2003) ทคสอบสารสกัดจาก black mustard (Brassica nigra L.) ความเข้มข้น 0, 4, 8, 12, 16 และ 20 กรัมต่อกิโลกรัม พบว่าที่ความเข้มข้น 20 กรัมต่อกิโลกรัม สามารถยับยั้งการ คูดน้ำของเมล็ด wild oat (Avena fatua L.) ได้มากที่สุด ในขณะที่สารสกัดจากส่วนไรโซม ลำต้น และ ใบของขึ้ง (Zingiber officinale Rosc.) เมื่อนำมาทคสอบโคยแช่เมล็คถั่วเหลือง (Glycine max L.) และ กุยช่ายฝรั่ง (Allium schoenoprasum) พบว่าสารสกัดจากส่วนของลำต้น ความเข้มข้น 80 กรัมต่อลิตร ที่แช่เมล็ดนาน 4 ชั่วโมง สามารถยับยั้งการดูดน้ำของเมล็ดได้ 21.6 และ 28.6 เปอร์เซ็นต์ ตามลำดับ (Han et al., 2008) ในการศึกษาถึงผลของการปลดปล่อยสารอัลลี โลพาที่จากซากพืช (plant residues) เป็นการปลดปล่อยสารอัลลีโลพาที่จากซากพืชผู้ให้ (donor plant) และไปมีผลในการยับยั้ง (inhibition) ต่อพืชผู้รับ (receptor plant) ตัวอย่างการทดลองของปรากฏการณ์ เช่น Kobayashi et al. (2008) ศึกษาความเป็นพิษของหญ้าโปร่งคาย (Rottboellia exaltata) ที่ถกบดเป็นผงเมื่อคลกกับดิน ปลูกในอัตรา 0.01, 0.03 และ 0.15 กรัมต่อดินหนึ่งกรัม ต่อการเจริญเติบโตของผักกาดหัว ผลปรากฏ ว่า รากของผักกาดหัวมีการตอบสนองต่อสารพิษไวกว่าต้น และเมื่อมีการศึกษาถึงการสลายตัวของ สารอัลลีโลพาทีในคินโดยใช้ซากของถั่วอัลฟัลฟา (Medicago sativa) และ kava (Piper methysticum) ในปริมาณอัตรา 0.64 กรัมแห้ง คลุกกับดิน 300 กรัมแห้ง ผลปรากฏว่าช่วง 10 วันแรกหลังปลูก ทั้ง ถั่วอัลฟัลฟา และ kava สามารถยับยั้งการเจริณเติบโตของหญ้าข้าวนก (Echinochloa cruss-galli (L.)

Beauv.) และขาเขียด (Monochoria vaginalis) ได้ถึง 80 – 100 เปอร์เซ็นต์แต่เมื่อเวลาผ่านไป 25 วัน หลังปลูก พบว่าความสามารถในการยับยั้งลดลงอย่างรวดเร็วเหลือเพียง 50 เปอร์เซ็นต์ (Xuan et al., 2005)

การทำลายเยื่อหุ้มเซลล์ สารที่มีคุณสมบัติทำลายเยื่อหุ้มเซลล์ มีผลทำให้เกิดการรั่วไหล (leak) ของสารประกอบภายในเซลล์ออกสู่ช่องว่างภายนอกเซลล์ ทำให้พืชแสดงอาการในลักษณะของการ เปียกโชกด้วยน้ำ น้ำที่ไหลออกมาจะระเหยออกจากเนื้อเยื่อพืช ทำให้พืชเกิดอาการแห้งและซีด ผล ของสารกำจัดวัชพืชที่สำคัญอย่างหนึ่ง คือ สารกำจัดวัชพืชนั้นมีผลกระทบต่อการทำงานหรือการทำ หน้าที่ของเยื่อเมมเบรน หน้าที่หลักของเยื่อเมมเบรนคือการป้องกันสารที่ได้จากการเมแทบอลิซึม หรือเอนไซม์ ไม่ให้ซึมออกจากไซโทพลาสซึม และป้องกันไม่ให้สารพิษหรือสารที่เซลล์พืชไม่ ต้องการซึมเข้าสู่เซลล์ สารกำจัดวัชพืชที่ก่อให้เกิดการเปลี่ยนแปลงของเยื่อเมมเบรนโดยยอมให้สาร บางชนิดซึมผ่านหรือเกิดการรั่วของเมมเบรนนั้น อาจมีผลกระทบต่อความเป็นพิษของเซลล์พืชอย่าง รุนแรงและอาจทำให้เซลล์พืชตายได้ โดยทั่วไปการศึกษาการรั่วของเยื่อเมมเบรน สามารถทำได้โดย การวัดปริมาณสารละลายที่ได้จากการเมแทบอลิซึม เช่น ไอออน สารสี สารอินทรีย์ชนิดต่างๆ การวัด ปริมาณสารละลายโดยรวมที่รั่วไหลเนื่องจากเซลล์เมมเบรนถูกทำลายนั้นสามารถวัดได้โดยการวัดค่า การนำไฟฟ้าของสารที่รั่ว (electrolyte leakage) (Kopi et al., 2007)

การยับยั้งกระบวนการสังเคราะห์แสง คลอโรฟิลล์เป็นรงควัตถุที่อยู่ในคลอโรพลาสต์ ที่มี ความสำคัญในกระบวนการสังเคราะห์แสง โดยทำหน้าที่เป็นตัวดูครับแสงในคลื่นความยาวที่สามารถ มองเห็นได้ เพื่อเริ่มต้นในกระบวนการการเปลี่ยนพลังงานแสงเป็นพลังงานเคมีในพืช การยับยั้ง กระบวนการสังเคราะห์แสงเป็นผลมาจากการขัดขวางการเคลื่อนที่ของอิเลคตรอน เป็นกระบวนการ สำคัญในการเปลี่ยนพลังงานแสงอาทิตย์ไปเป็นพลังงานเคมี ซึ่งเป็นพลังงานที่จะถูกนำไปใช้ใน กระบวนการเกิดปฏิกิริยาต่างๆ ภายในเซลล์สำหรับการสร้างอาหารเพื่อการเจริญเติบโตของพืช (Dyer and Weller, 2005) สารเคมีกำจัดวัชพืชมีกลไกการทำลายพืชโดยการยับยั้งกระบวนการสังเคราะห์ แสง ลักษณะอาการที่ปรากฏให้เห็นคือ วัชพืชจะเหลืองซีด (chlorosis) และตายในที่สุด (ทศพล, 2545) ในการตรวจสอบการยับยั้งการสังเคราะห์ด้วยแสงของพืชทดสอบ สามารถคำเนินการได้โดย การวัดปริมาณคลอโรฟิลล์ในใบพืช ปริมาณของคลอโรฟิลล์นำมาใช้เป็นตัวบ่งชี้ถึงความเสียของ ภายในเซลล์เนื่องจากการถูกออกซิไดส์ (oxidative damage) และยังแสดงถึงผลต่อการรบกวน กระบวนการสังเคราะห์แสงในพืชทคสอบ (Dyer and Weller, 2005) จากรายงานของ Inderjit (2006) พบว่า การใช้สารกำจัดวัชพืช metsyulfuron คลุกในดินในอัตรา 226, 452, 1356 และ 2260 ไมโครกรัม/น้ำหนักดิน 1 กิโลกรัม และสารกำจัดวัชพืช isoxaflutole คลุกในดินในอัตรา 452, 1356 และ 2260 ใมโครกรัม/น้ำหนักคิน 1 กิโลกรัม ก่อนปลูกถั่วปากอ้า (*Phaseolus aureus* Roxb.) มีผลทำ ให้ปริมาณคลอโรฟิลล์ในใบถั่วปากอ้าลดลง

การยับยั้งการแบ่งเซลล์ การเจริณเติบโตของพืชเกิดขึ้นโดยผ่านกระบวนการแบ่งเซลล์แบบ ใมโทซิส ประกอบกระบวนการแบ่งนิวเคลียส หรือโครโมโซม (karvokinesis) โดยเริ่มต้นสังเคราะห์ ้คีเอ็นเอ และสารต่างที่จำเป็นต่อการแบ่งเซลล์ เพื่อเตรียมความพร้อมของเซลล์เป็นระยะที่เรียกว่า interphase เมื่อเซลล์สร้างสารต่างๆ และจำลองโครโมโซมเรียบร้อยแล้ว เซลล์จะเข้าสู่ mitotic phase ประกอบด้วย ระยะ prophase, metaphase, anaphase และ telophase และตามด้วยขั้นตอนสุดท้ายของ การแบ่งเซลล์ คือการแบ่งไซโทพลาสซึม การแบ่งเซลล์เป็นกระบวนการที่เกิดขึ้นอย่างต่อเนื่องที่ บริเวณเนื้อเยื่อเจริญ (Singh, 2002) ในบางสภาวะที่พืชได้รับสารเคมีหรือสารสกัดบางชนิดที่ส่งผล กระทบต่อการแบ่งเซลล์ของพืช ทำให้เซลล์พืชได้รับความเสียหาย เกิดความผิดปกติของโครโมโซม ในลักษณะต่างๆ การทดสอบที่นิยมใช้เพื่อทดสอบถึงการเปลี่ยนแปลงของโครโมโซมที่เกิดจากการ สัมผัสกับสารเคมี คือ การทดสอบที่เรียกว่า allium test ซึ่งพืชที่นำมาใช้ในการทดสอบ ได้แก่ พืชสกุล allium โดยเฉพาะ หอมหัวใหญ่ (Allium cepa L.) เนื่องจากพืชในสกุล allium มีโครโมโซม 16 แท่ง โครโมโซมมีขนาดใหญ่ และสามารถย้อมติดสีได้ง่าย (Havey, 2002) จึงได้ถูกนำมาประยุกต์ให้เป็น วิธีมาตรฐาน ในการศึกษาถึงการเปลี่ยนแปลงของลักษณะของโครโมโซม (chromosome aberration) ที่เกิดจากสารเคมีในสิ่งแวคล้อม เช่น ปุ๋ยที่ตกค้างในดินจากการทำการเกษตรกรรม และโลหะหนักที่ ปนเปื้อนมากับตะกอนน้ำเสียจากแหล่งอุตสาหกรรม โคยศึกษาภายใต้กล้องจุลทรรศน์ ข้อมูลจาก การศึกษาทางเซลล์พันธุศาสตร์ นำไปคาดประมาณกับความเป็นพิษที่เกิดต่อมนุษย์ และความผิดปกติ ของการแบ่งเซลล์เนื่องจากผลของสารเคมี รวมทั้งนำไปประยุกต์ใช้ศึกษากลไกการทำลายของสาร กำจัดวัชพืชภายในต้นพืช เพื่อแสดงตำแหน่งเฉพาะของปฏิกิริยาทางชีวเคมีของสารกำจัดวัชพืชในการ ยับยั้ง หรือทำลายภายในบริเวณเนื้อเยื่อเจริญปลายรากพืช จากการศึกษาในสารกำจัดวัชพืชหลายชนิด เช่น carbamates, mercurials, chlorocyclohexan, nitralin, malelic hydrazide และ atrazine ส่งผล กระทบในทุกระยะของการแบ่งเซลล์แบบไมโทซิส และสารกำจัดวัชพืชบางชนิดยังมีผลต่อการสร้าง cell plate ในการแบ่งเซลล์แบบ ไมโทซิส ซึ่งจะมีผลยับยั้งการสร้าง microtubule โดยตรง (Oliva et al., 2002) การทำการศึกษากลใกการทำลายของสารกำจัดวัชพืช malelic hydrazide บริเวณเนื้อเยื่อปลาย รากหอม โดยทดลองใช้สารกำจัดวัชพืช malelic hydrazide ที่ความเข้มข้นและระยะเวลาต่างๆกัน ผล ปรากฏว่าการยับยั้งการแบ่งเซลล์แบบไมโทซิส (mitotic index) สัมพันธ์กันกับความเข้มข้นและ ระยะเวลาที่เพิ่มขึ้น และกระตุ้นให้เกิดความผิดปกติของโครโมโซมในระยะเมทาเฟส เกิดลักษณะ โครโมโซมมีลักษณะยึคติคกันแน่น (stickiness) และเกิดการเชื่อมต่อกันระหว่างโครโมโซมที่อย่ต่าง ขั้วกันในระยะแอนาเฟส (anaphase bridges) (Marcano et al., 2004) ถ้าเซลล์ยังคงลักษณะความ ผิดปกติในเซลล์ที่จะแบ่งในรุ่นต่อไป อาจมีผลทำให้เกิดการยับยั้งการแบ่งเซลล์ หรือสุดท้ายอาจ นำไปสู่การตายของเซลล์และต้นพืชได้ (Ulm, 2004)

นิวคลีโอลัส นิวคลีโอลัสเป็นองค์ประกอบที่ใหญ่ที่สุดและโดดเค่นที่สุดภายในนิวเคลียส และยังเป็นตำแหน่งของ nucleolar organizer regions (NORs) ประกอบด้วยยืน rDNA เรียงต่อกันเป็น ชุดที่ซ้ำๆ กัน ทำหน้าที่กำหนดการสร้าง ribosomal RNA เกี่ยวข้องกับการสังเคราะห์โปรตินทั้งหมด ภายในเซลล์ (Dervan et al., 1989; Sumner, 2003) บริเวณ NORs ประกอบด้วยโปรติน argyphilia สามารถย้อมติคสีด้วยซิลเวอร์ ภายหลังการย้อมด้วยซิลเวอร์บริเวณ NOR จะปรากฏเป็นสีน้ำตาล จึง เรียกว่า silver-stained nucleolar organizer regions (AgNORs) (Ploton et al., 1986) ในระยะอินเตอร์ AgNORs จะอยู่บริเวณที่เรียกว่า fibrillar centre ภายในนิวคลีโอลัส บริเวณดังกล่าวจะพบโปรตีน nucleolin และโปรตีน B23 ยังมีความเกี่ยวข้องกับโดยตรงกับการ transcription ของขืน rRNA ที่ กำหนดการสร้างไรโบโซม (Sumner, 2003) จำนวนของ AgNORs ภายในเซลล์ และขนาดของ AgNORs เป็นพารามิเตอร์ในการประเมินอัตราการแบ่งเซลล์ รวมถึงอัตรา การ transcription ของขืน rRNA ด้วย (Mehta, 1995; Derenzini, 2000) ในทางการแพทย์ จำนวนของ AgNORs และขนาดของ AgNORs เป็นพารามิเตอร์ในการช่วยวินิจฉัยความรุนแรงและการรอดชีวิตของผู้ป่วยโรคมะเร็ง (Derenzini, 2000) ดังนั้น จำนวนนิวคลีโอลันและพื้นที่นิวคลีโอลัสสามารถนำมาใช้ประโยชน์ในการ ประเมินอัตราการแบ่งเซลล์จากพืชที่ได้รับสารเคมีรวมทั้งสารกำจัดวัชพืช

การพื้นฟูเซลล์ ในบางครั้งเมื่อพืชได้รับสารเคมี รวมถึงสารกำจัดวัชพืชในช่วงระยะเวลาหนึ่ง มีผลทำให้การแบ่งเซลล์ลดลง เมื่อเซลล์หรือต้นพืชได้รับน้ำที่อาจเกิดจากฝนตก หรือการรดน้ำ อาจทำ ให้ฤทธิ์ของสารภายในเซลล์พืชลดลง จึงทำให้เซลล์เกิดการพืชฟื้นฟูตัวเอง สามารถกลับมาแบ่งเซลล์ ได้ตามปกติ (Granier et al., 2007) ความสามารถในการฟื้นฟูเซลล์ของพืชสามารถนำมาใช้เป็นตัวชี้วัด ความคงทนของสารภายในเซลล์ Fernades et al. (2007) ศึกษาของผลสารกำจัดวัชพืช trituralin ต่อ การแบ่งเซลล์บริเวณปลายรากหอมหัวใหญ่เป็นเวลา 24 ชั่วโมง แปรียบเทียบกับปลายรากหอมหัวใหญ่ ที่ได้รับสารกำจัดวัชพืชเป็นเวลา 24 ชั่วโมง และนำไปปลูกต่อในน้ำกลั่นอีก 48 ชั่วโมง เพื่อศึกษา ความสามารถในการฟื้นฟูการแบ่งเซลล์ และนำไปใช้ประเมินความคงทนสารภายในเซลล์ พบว่า ปลายรากหอมหัวใหญ่ที่ได้รับ trituralin เข้มข้น 0.42 และ 0.84 ppm เป็นเวลา 24 ชั่วโมงมีดัชนีการแบ่งเซลล์ใกล้เคียงกับปลายรากหอมหัวใหญ่ที่ได้รับ trituralin ที่ความเข้มข้นระดับเดียวกันเป็นเวลา 24 ชั่วโมง และนำกลับมาแช่ในน้ำกลั่นเป็น 1.67 และ 0.84 ppm เป็นเวลา 24 ชั่วโมงมีคัชนีการแบ่งเซลล์ ต่ำกว่าปลายรากหอมหัวใหญ่ที่ได้รับ trituralin ที่ความเข้มข้นระดับเดียวกันเบ็นง และนำกลับมาแช่ในน้ำกลั่นเป็น 1.67 และ 0.84 ppm เป็นเวลา 24 ชั่วโมงมีคัชนีการแบ่งเซลล์ ต่ำกว่าปลายรากหอมหัวใหญ่ที่ได้รับ trituralin ที่ความเข้มข้นระดับเดียวกันเป็นเวลา 24 ชั่วโมง และ นำกลับมาแช่ในน้ำกลั่นเป็นเวลา 48 ชั่วโมง แสดงให้เห็นว่า สารกำจัดวัชพืช trituralin ฤทธิ์ของสาร ยังลงอยู่ภายในเซลล์ถึงแม้ต้นพืชจะได้รับน้ำภายหลังจากได้รับสารกำจัดวัชพืชภายใน 24 ชั่วโมง

พุทธชาติก้านแดง (spanish jasmine) มีชื่อวิทยาศาสตร์ว่า Jasminum officinale Linn.f.var. grandiforum (Linn.) Kob. เป็นพืชสกุลมะลิชนิดหนึ่ง มีกลิ่นหอมเฉพาะตัว นิยมนำมาปลูกประดับ สถานที่ (ปียะ, 2541) ได้มีการศึกษาเกี่ยวกับพืชในสกุลนี้ในด้านการจัดการศัตรูพืช โดยนำสารสกัด เมทานอลจากใบพุทธชาติก้านแดงที่ระดับความเข้มข้น 250, 500, 1,000, 5,000 และ 10,000 ppm พบว่าสารสกัดสามารถยับยั้งการเจริญเติบโตของเชื้อ colletotrichum ทั้ง 3 ชนิด คือ C. musae, C.

nicotianae และ C. gloeosporioides โดยยับยั้งการสร้างสปอร์ได้เฉพาะในเชื้อ C. musae เท่านั้น ในขณะที่สารสกัดสามารถยับยั้งการงอกของสปอร์ของเชื้อ C. gloeosporioides ตั้งแต่ความเข้มข้น 5,000 ppm ขึ้นไป แต่ไม่มีผลต่อการงอกของสปอร์ของเชื้อ C. musae และ C.nicotianae อย่างไรก็ ตามสารสกัดสามารถยับยั้งการเจริญของ germ tube ของเชื้อ Colletotrichum ทั้ง 3 ชนิดได้อย่างมี ประสิทธิภาพ (วีระณีย์ และคณะ, 2548) Loasinwattana et al. (2002) ได้ศึกษาผลการเปรียบเทียบสาร สกัดจากพืชสกุลมะลิจำนวน 7 ชนิด ที่มีผลต่อการงอกของเมล็ดผักกวางตุ้ง ปรากฏว่า สารสกัดจาก พุทธชาติก้านแคงแสคงผลยับยั้งการงอกและการเจริญเติบโตของผักกวางตุ้งสูงสุด และจากการศึกษา เบื้องต้นของ คารารัตน์ (2546) ที่ทำการทคสอบสารสกัคน้ำจากพืชสกุลมะลิจำนวน 11 ชนิค พบว่า สารสกัดจากใบพุทธชาติก้านแคงให้ผลในการยับยั้งการงอกและการเจริญเติบโตของพืชทคสอบ สูงสุด ต่อมาได้มีการวิจัยเกี่ยวกับใบพุทธชาติก้านแดง โดยการศึกษาเปรียบเทียบผลสารสกัดน้ำจาก ส่วนใบ กิ่ง ลำต้น และส่วนผสมรวมทั้ง 3 ส่วน ของต้นพุทธชาติก้านแดง ที่ระดับความเข้มข้น 3.12, 6.25, 12.50, 25.00, 50.00 และ 100.00 มิลลิกรัม/มิลลิลิตร ต่อการงอกของเมล็ดและการเจริญเติบโต ของหญ้าข้าวนก และ โสน (Sesbania roxbughii) พบว่าสารสกัดจากส่วนใบมีผลในการยับยั้งการงอก และการเจริญเติบโตของวัชพืชทดสอบทั้ง 2 ชนิดดีที่สุด ขณะที่สารสกัดน้ำจากส่วนของลำต้นและ จากส่วนผสมรวมทั้ง 3 ส่วน ในระดับความเข้มข้น 3.12 มิลลิกรัม/มิลลิลิตร มีผลส่งเสริมการ เจริญเติบโตในค้านความยาวรากของหญ้าข้าวนก (คารารัตน์ และคณะ, 2546) ต่อมา Phuwiwat et al. (2004) พบว่าสารสกัดจากใบพุทธชาติถ้านแดงที่ความเข้มข้น 100 มิลลิกรัม/มิลลิลิตร สามารถยับยั้ง การงอกของเมล็คหญ้าข้าวนกได้อย่างสมบูรณ์ วิรัตน์ และคณะ (2547) สกัดแยกสารจากใบพุทธชาติ ก้านแคงด้วยวิธี solvent partitioning ได้สารจำนวน 3 ส่วน คือ สารสกัดหยาบชั้นน้ำ (aqueous fraction : AQ) สารสกัดหยาบที่มีคุณสมบัติเป็นกลาง (neutral compound extract : NE) และสารสกัด หยาบที่มีคุณสมบัติเป็นกรค (acidic compound extract : AE) เปรียบเทียบกับสารสกัดหยาบจากชั้นเม ทานอล (crude methanol extract : ME) พบว่าสารสกัดส่วน AE มีประสิทธิภาพในการยับยั้งการงอก ของพืชทคสอบสูงสุด พัชนี และคณะ (2551) ได้ทำการแยกสารออกฤทธิ์จากสารสกัดชั้น AE โดย เทคนิคโครมาโทกราฟี ได้สารบริสุทธิ์อยู่ในรูปน้ำมันสีเหลืองอ่อนจาก IR สเปกตรัม ประกอบด้วย หมู่ฟังก์ชันคือ หมู่ไฮดรอกซิล (-OH) หมู่คาร์บอนิล (C=O) และพันธะคู่ (C=C) ¹³C NMR สเปกตรัม ประกอบด้วยคาร์บอนอะตอมจำนวน 25 คาร์บอนอะตอม แสดงถึงหมู่ C=C หมู่คาร์บอนิลของเอส เทอร์ (-COOR) และเอไมด์ (-CONH,) คาร์บอนพันธะคู่ที่ และ ¹H NMR สเปกตรัม แสดงถึงพันธะคู่ ของวงอะโรมาติกและหมู่เมทอกซี่ (-OMe)

ดังนั้นงานวิจัยในครั้งนี้จึงได้นำใบพุทธชาติก้านแคงมาแปรรูปเป็นผลิตภัณฑ์สารกำจัดวัชพืช ในรูปผงเปียกน้ำ โดยทำการศึกษารูปแบบการใช้ผลิตภัณฑ์สารกำจัดวัชพืชทางคินจากใบพุทธชาติ ก้านแคงประเภทก่อนและหลังงอกรวมถึงการฉีดพ่นทางใบ อีกทั้งยังศึกษาถึงผลการใช้ผลิตภัณฑ์สาร กำจัดวัชพืชต่อการดูดน้ำของเมล็ดพืช ตลอดจนการศึกษากลไกการทำลายพืชของสารออกฤทธิ์ โดย การใช้ผลิตภัณฑ์สารกำจัดวัชพืชจากใบพุทธชาติก้านแดงทดสอบผลต่อการเปลี่ยนแปลงของราก หอมหัวใหญ่ทั้งต่อความยาวรากและต่อการแบ่งเซลล์ของปลายราก รวมถึงการศึกษาการสลายตัว ของผลิตภัณฑ์สารกำจัดวัชพืชจากใบพุทธชาติก้านแดงในดิน เพื่อเป็นข้อมูลที่สำคัญการประยุกต์การ ใช้ผลิตภัณฑ์สารกำจัดวัชพืชจากใบพุทธชาติก้านแดงในการควบคุมวัชพืชในระบบการปลูกพืชต่อไป ในอนาคต

โครงการที่ 1

ศึกษากรรมวิธีการสกัดและเก็บรักษาสารออกฤทธิ์จากพุทธชาติก้านแดงที่เหมาะสม ต่อการผลิตในเชิงพาณิชย์

จากข้อมูลการศึกษาที่มีมาก่อนหน้านั้น ผู้วิจัยมุ่งเน้นในการหาสารอินทรีย์ (organic solvent) ทั้งชนิดและสัดส่วนที่เหมาะสมในการสกัดสารออกฤทธิ์จากใบและกิ่งพุทธชาติก้านแดงให้ได้สาร ออกฤทธิ์ในปริมาณที่มากที่สุด แต่ในด้านของการผลิตเชิงพาณิชย์ ต้องการชนิดสารอินทรีย์และ สัดส่วนที่เหมาะสมที่สุดในการสกัดสารในด้านของความรวดเร็ว ความประหยัด ความปลอดภัย โดย ให้มีต้นทุนในการสกัดสารออกฤทธิ์ต่อหน่วยน้ำหนักน้อยที่สุด ดังนั้นในโครงการวิจัยนี้ จึง จำเป็นต้องเริ่มต้นศึกษากรรมวิธีในการสกัดสารที่ คุ้มค่าเชิงพาณิชย์

การทดลองที่ 1.1 ศึกษาประสิทธภาพของเอทานอลในน้ำในอัตราส่วนที่แตกต่างกันในการสกัดสาร ออกฤทธิ์จากใบพุทธชาติก้านแดง

วิธีการทดลอง

การวางแผนการทดลอง

ทำการทดลองโดยใช้แผนการทดลองแบบ Completely Randomized Design (CRD) วิธีการ ทดลองละ 4 ซ้ำ ดังนี้ สกัดใบพุทธชาติก้านแดงด้วยเอทานอลในน้ำ ที่อัตราส่วน 25, 50, 75 และ 100 เปอร์เซ็นต์ (v/v) เปรียบเทียบกับการสกัดใบพุทธชาติก้านแดง ในน้ำกลั่น

การเตรียมสารสกัดจากพูทธชาติก้านแดง

เก็บใบพุทธชาติก้านแดงที่มีความอุดมสมบูรณ์ ไม่มีโรคและแมลง อบให้แห้งที่อุณหภูมิ 45 องศาเซลเซียส เป็นระยะเวลา 72 ชั่วโมง ตัดใบเป็นชิ้นเล็ก ๆ สกัดด้วยเอทานอลที่ระดับความเข้มข้น ต่าง ๆ โดยชั่งใบพุทธชาติก้านแดง 10 กรัมต่อ สกัดสารออกฤทธิ์ด้วยสารสกัดเอทานอลในน้ำที่ อัตราส่วนต่างๆ กัน 100 มิลลิลิตร สกัดทิ้งไว้ 72 ชั่วโมง จากนั้นกรองสารละลายเอทานอลผ่าน กระดาษกรอง แยกส่วนกาก (residue) สกัดอีก 4 รอบ แล้วนำสารสกัดที่ได้ระเหยออกให้แห้งด้วย เครื่องระเหยสุญญากาศ ชั่งปริมาณสาสกัดหยาบที่ได้จากการสกัดแต่ละครั้ง (ภาพที่ 1.1.1)

<u>การเตรียมเมล็ดวัชพืชทดสอบ</u>

เมล็ควัชพืชทคสอบ คือ ถั่วผี (*Phaseolus lathyroides* Linn.) เลือกเมล็คที่มีขนาดเท่า ๆ กัน สมบูรณ์แข็งแรง ทำการขัดด้วยกระคาษทราย เพื่อทำลายการพักตัวของเมล็ด แล้วนำไปแช่น้ำที่ ระยะเวลา 24 ชั่วโมง พร้อมสำหรับการทดสอบ

ชั่งใบแห้งของพุทธชาติก้านแคง 10 กรัมต่อเอทานอลอัตราส่วนต่าง ๆ 100 มิลลิลิตร สกัดทิ้งไว้ 3วัน ในคู้เย็น กรองด้วยผ้าขาวบางและกระดาษกรอง เบอร์ 1 หลังจากนั้นสกัดต่อไปอีกจนใส

ชั่งปริมาณสารสกัดหยาบที่ได้ จากการ สกัดในแต่ละครั้ง

เมื่อสกัดจนใสแล้ว นำกากที่เหลือไปอบ ที่อุณหภูมิ 45 องศาเซลเซียส นาน 3 วัน และหั่งน้ำหนักที่ได้

ชั่งขวดรูปชมพู่ ที่ใช้ในการสกัด ไปลบ กับขวด+กากใบพุทธชาดก้านแดง เท่ากับน้ำหนักของกากใบของพุทธชาติ ก้านแดง

ภาพที่ 1.1.1 แสดงขั้นตอนการสกัดสารด้วยสารสกัด เอทานอล/น้ำ ในอัตราส่วนแตกต่างกัน

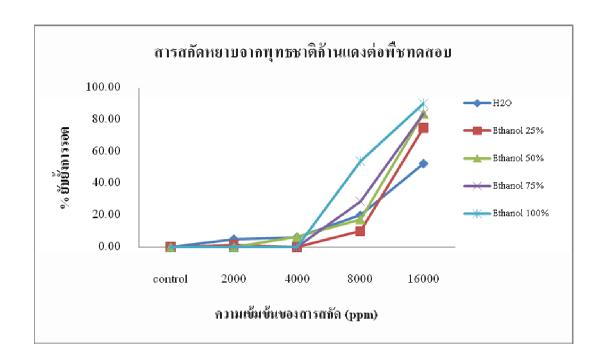
การทคสอบ

เจือจางความเข้มข้นของสารสกัดจากพุทธชาติก้านแดง ที่ระดับความเข้มข้น 2000, 4000, 8000 และ 16000 ppm โดยใช้น้ำกลั่นเป็นวิธีการเปรียบเทียบ ใส่จานทดลองขนาดเส้นผ่านศูนย์กลาง 9 เซนติเมตร ซึ่งรองด้วยกระดาษเพาะเมล็ด 2 ชั้น จานทดลองละ 5 มิลลิลิตร เกลี่ย วางเมล็ดวัชพืช ทดสอบ ในจานทดลอง จานละ 20 เมล็ด ปิดฝาและนำไปวางไว้ในตู้ควบคุมการเจริญเติบโตของพืช

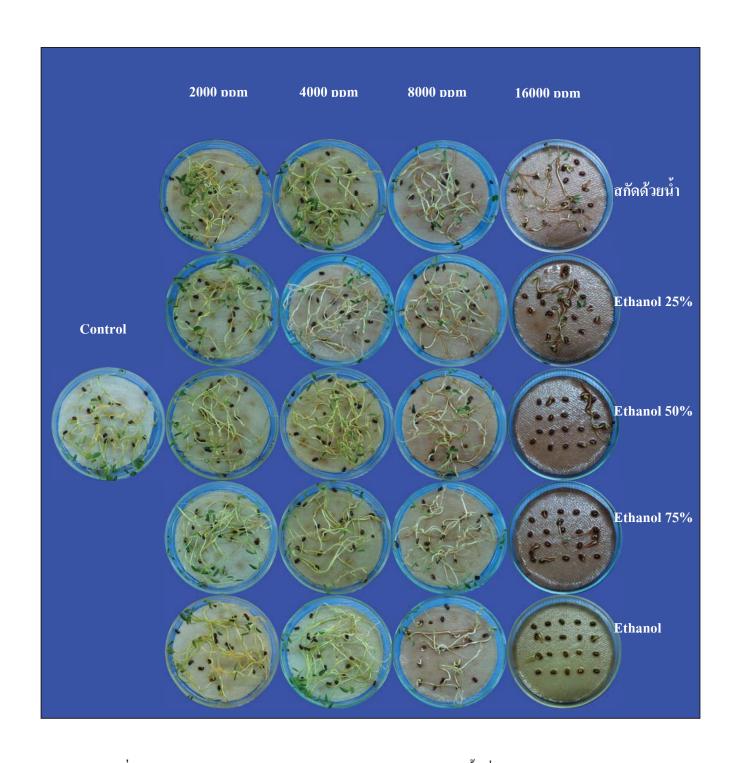
ที่ตั้งค่าแสงสว่าง 12 ชั่วโมง อุณหภูมิ 32 องศาเซลเซียส และไม่มีแสงสว่าง 12 ชั่วโมง อุณหภูมิ 25 องศาเซลเซียส ความชื้นสัมพัทธ์ 80 เปอร์เซ็นต์

การบันทึกผล และการวิเคราะห์ผลการทดลอง

ชั่งปริมาณสารสกัดจากพุทธชาติถ้านแดงที่ได้จากเอทานอลความเข้มข้นต่าง ๆ ในแต่ละครั้ง และวัดอัตราการงอก อัตราการรอด ความยาวต้น ความยาวราก ของพืชทดสอบ วันที่ 7 หลังจากทำ การทดสอบ นำข้อมูลที่ได้มาวิเคราะห์ก่าความแปรปรวนทางสถิติ (ANOVA) และเปรียบเทียบความ แตกต่างของค่าเฉลี่ยโดยวิธี Tukey's Studentized Range Test ที่ระดับความเชื่อมั่น 95 %


ผลการทดลอง

จากข้อมูลในตารางที่ 1.1.1 พบว่าปริมาณสารสกัดหยาบโดยน้ำหนักที่สกัดได้จากใบ พุทธชาติก้านแดงแห้ง (10 กรัม) แตกต่างกันเมื่อสกัดด้วยสารเอทานอล/น้ำ ในอัตราส่วนเอทานอล 0, 25, 50, 75 และ 100 เปอร์เซ็นต์ โดยการใช้อัตราส่วนของเอทานอลต่อน้ำ ที่ 75/25 สามารถสกัดสาร ออกฤทธิ์จากใบพุทธชาติก้านแดง ได้ปริมาณสูงสุด 3.79 กรัม เมื่อลดสัดส่วนของเอทานอลลงพบว่า ประสิทธิ ภาพของการสกัดลดลง การใช้น้ำกลั่น และเอทานอล 25 เปอร์เซ็นต์ในน้ำกลั่น มี ประสิทธิภาพในการสกัดต่ำที่สุด จากข้อมูลแสดงให้เห็นว่า การเพิ่มอัตราส่วนเอทานอลในน้ำ ช่วย เพิ่มประสิทธิภาพในการสกัดสารจอกฤทธิ์ได้ดีขึ้น แต่อย่างไรก็ตาม การใช้เอทานอล/น้ำ ในอัตราส่วน 75/25 โดยปริมาตร


เมื่อทำการทดสอบฤทธิ์ของสารที่สกัดได้จากการใช้สารสกัดเอทานอล/น้ำในอัตราส่วนต่างๆ ต่อการงอกของ ถั่วผี พบว่า สารสกัดด้วย เอทานอล/น้ำ ที่อัตราส่วนแตกต่างกัน มีฤทธิ์ในการยับยั้ง การงอกของเมล็ดถั่วผีแตกต่างกัน โดยสารสกัดด้วยน้ำมีฤทธิ์ในการยับยั้งการงอกต่ำสุด โดยสามารถ ยับยั้งการงอกได้ 54 เปอร์เซ็นต์ (กราฟที่ 1.1.1 และภาพที่ 1.1.2) โดยที่ฤทธิ์ในการยับยั้งการงอกจะ เพิ่มตามอัตราส่วนของการใช้เอทานอลที่เพิ่มขึ้น ที่อัตราส่วนสารสกัดด้วยเอทานอล/น้ำ 75/25 สามารถยับยั้งการงอกได้ 82.5 เปอร์เซ็นต์ และ สารสกัดท่ได้จากการใช้ เอทานอลอย่างเคียวสามารถ ยับยังการงอกได้ 88.75 เปอร์เซ็นต์

ตารางที่ 1.1.1 แสดงปริมาณน้ำหนักสารสกัดหยาบที่ได้จากการสกัดด้วยสารอินทรีย์ผสมของเอทา นอลในน้ำที่สักส่วนต่างๆ กัน จากใบพุทธชาติก้านแดงแห้ง 10 กรัม

อัตราส่วน	นน. สารสกัดหยาบที่ได้ในแต่ละครั้ง (g)				#291 (~)	กากที่เหลือ
มหายายาม	1	2	3	4	รวม (g)	จากการสกัด (g)
H2O	2.35	0.30	0.22	0.19	3.06	6.62
Ethanol 25%	2.17	0.46	0.24	0.18	3.05	6.53
Ethanol 50%	2.27	0.55	0.29	0.12	3.23	6.36
Ethanol 75%	2.36	0.79	0.44	0.20	3.79	6.15
Ethanol 100%	1.07	0.53	0.47	0.31	2.38	6.97

กราฟที่ 1.1.1 แสดงเปอร์เซ็นต์การยับยั้งการงอกของเมลี่ถั่วผี ที่เพาะ ในสารสกัดจากเอทานอล/น้ำที่ อัตราส่วนต่างๆ กัน โดยวัดการยับยั้งการงอกหลังจากเพาะ 7 วัน

ภาพที่ 1.1.2 ผลของสารสกัดจากพุทธชาติก้านแดงด้วยเอทานอล/น้ำ ที่อัตราส่วนแตกต่างกัน ต่อการ ยับยั้งการงอกและการเจริญเติบโตของเมลี็ดถั่วผี

การทดลองที่ 1.2 ผลของระดับความร้อนในการสกัดสารออกฤทธิ์ และประสิทธิภาพของสารออก ฤทธิ์จากใบพุทธชาติก้านแดง

วิธีการทดลอง

การวางแผนการทดลอง

ทำการทคลอง โดยใช้แผนการทคลองแบบ Completely Randomized Design (CRD) วิธีการ ทคลองละ 4 ซ้ำ ดังนี้ สกัดสารออกฤทธิ์จากใบพุทธชาติก้านแดงด้วยน้ำที่อุณหภูมิ 40, 60, 80 และ 100 องศาเซลเซียส ทคสอบประสิทธิภาพของสารออกฤทธิ์ ที่ระดับความเข้มข้น 12.5, 25, 50 และ 100 มก ต่อมล. โดยมีน้ำกลั่นเป็นวิธีการควบคุม

การเตรียมสารสกัดจากพุทธชาติก้านแดง

เก็บใบพุทธชาติก้านแคงที่มีความอุคมสมบูรณ์ ไม่มีโรคและแมลง อบให้แห้งที่อุณหภูมิ 45 องศาเซลเซียส เป็นระยะเวลา 72 ชั่วโมง ตัดใบเป็นชิ้นเล็ก ๆ สกัดใบพุทธชาติก้านแคงด้วยน้ำ ใน สัคส่วน ใบแห้ง 10 กรัมต่อน้ำ 90 มิลลิลตรที่อุณหภูมิ 40, 60, 80 และ 100 องศาเซลเซียสเป็น เวลานาน 1 ชั่วโมง จากนั้นปล่อยให้สารสกัดเย็นและกรอง ด้วยผ้าขาวบาง ตามด้วยกระดาษกรอง เบอร์ 1 ได้สารสกัดพุทธชาติก้านแคงที่มีความเข้มข้น 100 มกต่อมล.

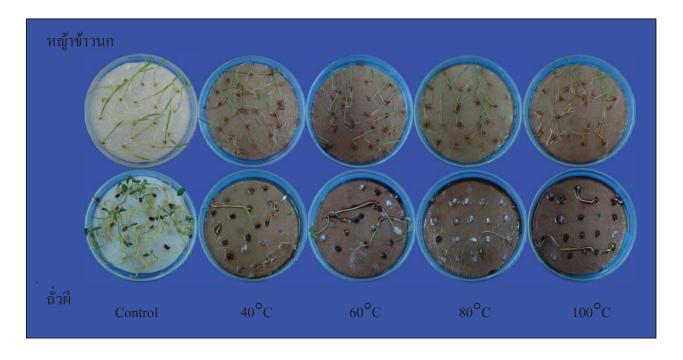
การเตรียมเมล็ดวัชพืชทดสอบ

เมล็ดวัชพืชทดสอบ คือ ถั่วผี (*Phaseolus lathyroides* Linn.) เลือกเมล็ดที่มีขนาดเท่า ๆ กัน สมบูรณ์แข็งแรง ทำการขัดด้วยกระดาษทราย เพื่อทำลายการพักตัวของเมล็ด แล้วนำไปแช่น้ำที่ ระยะเวลา 24 ชั่วโมง พร้อมสำหรับการทดสอบ และหญ้าข้าวนก (*Echinochloa crus-galli*)

การทคสอบ

เจือจางความเข้มข้นของสารสกัดจากพุทธชาติก้านแดง ที่ได้จากการสกัดสารที่อุณหภูมิ แตกต่างกันให้ได้ระดับความเข้มข้น 12.5, 25, 50 และ 100 มกต่อมล. โดยใช้น้ำกลั่นเป็นวิธีการ เปรียบเทียบ ใส่จานทดลองขนาดเส้นผ่านศูนย์กลาง 9 เซนติเมตร ซึ่งรองด้วยกระดาษเพาะเมล็ด 2 ชั้น จานทดลองละ 5 มิลลิลิตร วางเมล็ดวัชพืชทดสอบ ในจานทดลอง จานละ 20 เมล็ด ปิดฝาและนำไป วางไว้ในตู้ควบคุมการเจริญเติบโตของพืช ที่ตั้งค่าแสงสว่าง 12 ชั่วโมง อุณหภูมิ 32 องศาเซลเซียส และไม่มีแสงสว่าง 12 ชั่วโมง อุณหภูมิ 32 องสาเซลเซียส

การบันทึกผล และการวิเคราะห์ผลการทดลอง


วัดอัตราการงอก ความยาวต้น ความยาวราก ของพืชทดสอบ วันที่ 7 หลังจากทำการทดสอบ นำข้อมูลที่ได้มาวิเคราะห์ค่าความแปรปรวนทางสถิติ (ANOVA) และเปรียบเทียบความแตกต่างของ ค่าเฉลี่ยโดยวิธี Tukey's Studentized Range Test ที่ระดับความเชื่อมั่น 95 %

ผลการทดลอง

จากข้อมูลในตารางที่ 1.2.1 พบว่าปริมาณสารสกัดหยาบโดยน้ำหนักที่สกัดได้จากใบ พุทธชาติก้านแดงแห้ง (10 กรัม) ไม่แตกต่างกันเมื่อสกัดด้วยน้ำที่อุณหภูมิแตกต่างกัน ตั้งแต่ 40, 60, 80 และ 100 องสาเซลเซียส เป็นระยะเวลา 1 ชั่วโมงโดยที่ปริมาณสารสกัดหยาบที่สกัดได้จากใบแห้ง 10 กรัมมีน้ำหนัก 3.12, 3.24, 3.13 และ 3.16 กรัมตามลำดับ เมื่อทำการทดสอบฤทธิ์ของสารสกัด หยาบในการยับยั้งการงอกและการเจริญเติบโตต่อหญ้าข้าวนก และถั่วผี พบว่า สารสกัดหยาบที่สกัด จากใบพุทธชาติก้านแดงด้วยน้ำโดยใช้อุณหภูมิแตกต่างกันในการสกัด มีฤทธิ์ในการยับยั้งการงอก และการเจริญเติบโตของพืชทดสอบทั้งสองชนิดไม่แตกต่างกัน (ภาพที่ 1.2.1)

ตารางที่ 1.2.1 แสดงปริมาณน้ำหนักสารสกัดหยาบที่ได้จากการสกัดด้วยน้ำที่อุณหภูมิแตกต่างกัน จากใบพุทธชาติก้านแดงแห้ง 10 กรัม

อุณภูมิในการสกัด ([°] C)	น้ำหนักสารสกัดหยาบที่ได้จากการสกัด (g)
40	3.12
60	3.24
80	3.13
100	3.16

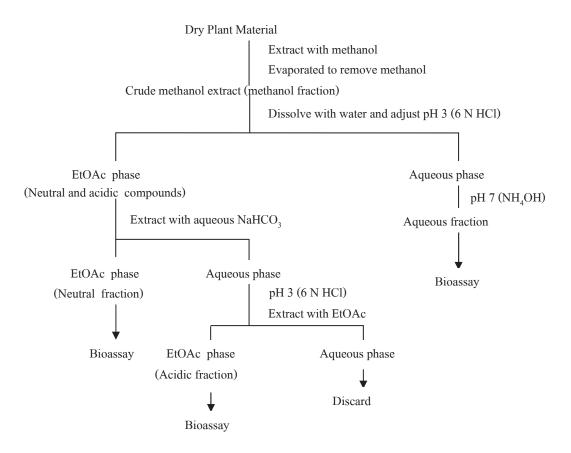
ภาพที่ 1.2.1 แสดงผลในการยับยั้งการงอกและการเจริญเติบโตของหญ้าข้าวนกและถั่วผีที่เพาะในสาร สกัดด้วยน้ำจากใบพุทธชาติก้านแดง ที่สกัดด้วยอุณหภูมิแตกต่างกัน

การทดลองที่ 1.3 การแยกกลุ่มสารออกฤทธิ์โดยวิธี Acid-base solvent partitioning

การวางแผนการทดลอง

วางแผนการทดลองแบบ 4x7 factorial in CRD การทดลองละ 4 ซ้ำ โดยมีกลุ่มสาร 4 กลุ่ม ได้แก่ crude methanol, neutral compounds, acidic compounds และ aqueous fraction เป็นปัจจัยหลัก และ ความเข้มข้นของสาร 6 ความเข้มข้น ได้แก่ 250, 500, 1,000, 2,000, 4,000 และ 8,000 ppm. เป็น ปัจจัยรองโดยมีน้ำกลั่นเป็นกรรมวิธีเปรียบเทียบ

การสกัดสารจากพืช

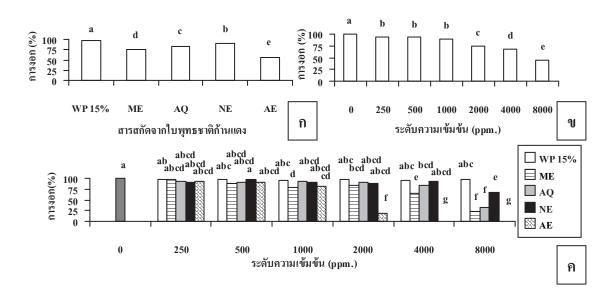

นำใบพุทธชาติก้านแคงมาล้างทำความสะอาดผึ่งและอบแห้งที่อุณหภูมิ 45 °ซ เป็นเวลา 72 ชั่วโมง แล้วตัดให้เป็นชิ้นเล็กๆนำไปสกัดด้วยสารละลายอินทรีย์ เมทานอล โดยการแช่ใบพุทธชาติ ก้านแคง 200 กรัม ในเมทานอล 2 ลิตร ในภาชนะปิด ตั้งไว้ที่อุณหภูมิห้องเป็นระยะเวลา 48 ชั่วโมง กรองสารละลายด้วยผ้ากรองและกระดาษกรอง ระเหยสารละลายเมทานอลด้วยเครื่องระเหยสาร สุญญากาศ ชั่งน้ำหนัก crude methanol extract ที่ได้ ทำการแยกสารในเบื้องต้นด้วยวิธี solvent partitioning ตามขั้นตอนในแผนแสดงการแยกสาร (ภาพที่ 1.3.1) ซึ่งจะได้สาร 4 ส่วน คือ crude methanol, neutral compound, acidic compounds (EtOAc phase) และ aqueous fraction นำสารที่แยก ได้ไปทดสอบผลกับพืชทดสอบ 4 ชนิด ได้แก่ ผักกาดหัว, ไมยรา, ข้าว และหญ้าข้าวนก

การทคสอบในจานทคลอง

ทำการเจือจาง crude methanol, neutral, acidic และ aqueous fractions ให้แต่ละส่วนมีระดับ ความเข้มข้นเป็น 250, 500, 1,000, 2,000, 4,000 และ 8,000 ppm. ทคสอบผลของสารสกัดทั้งหมดโดย ใช้วิธีการทคสอบในจานทคลองจานละ 20 เมล็ด ปิดฝาและนำไปวางไว้ในตู้ควบคุมการเจริญเติบโต ที่ตั้งค่าแสงสว่าง 12 ชั่วโมง อุณหภูมิ 32 องสาเซลเซียส ความชื้นสัมพัทธ์ 80 % และไม่มีแสงสว่าง 12 ชั่วโมง อุณหภูมิ 25 องสาเซลเซียส ความชื้นสัมพัทธ์ 80 % โดยใช้น้ำกลั่นเป็นวิธีการเปรียบเทียบ

การบันทึกผล และการวิเคราะห์ผลการทดลอง

ทำการนับจำนวนการงอกของเมล็ดพืชที่ทำการทดสอบทุกวัน เป็นเวลา 5 วัน นับจากวันที่ เริ่มทำการเพาะ โดยเมล็ดที่มีความยาวรากตั้งแต่ 2 มิลลิเมตรขึ้นไปให้นับเป็นเมล็ดที่งอก นำไป คำนวณหาเปอร์เซ็นต์การงอกต่อไป จากนั้นเมื่อครบเวลาในการทดสอบจึงนำต้นกล้าไปอบแห้งที่ อุณหภูมิ 60 ช และชั่งหาน้ำหนักแห้ง นำข้อมูลที่ได้มาวิเคราะห์ค่าความแปรปรวนทางสถิติ (ANOVA) และเปรียบเทียบความแตกต่างของค่าเฉลี่ยโดยวิธี Tukey's Studentized Range Test ที่ ระดับความเชื่อมั่น 95 %


ภาพที่ 1.3.1 แสดงขั้นตอนการสกัดส่วนออกฤทธิ์จากใบและกิ่งพุทธชาติก้านแดงด้วยวิธี Acid-Base Solvent partitioning

ผลการทดลอง

ผลต่อการงอกและการเจริญเติบโตของผักกาดหัว

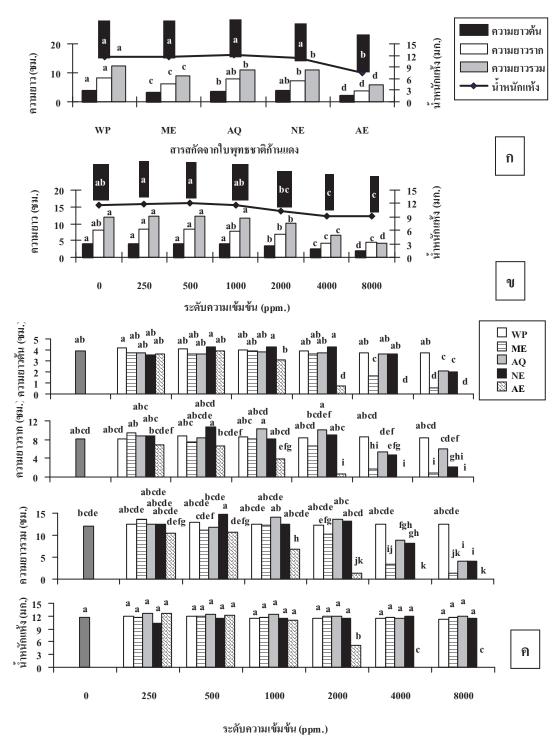
ผลต่อการงอก การเปรียบเทียบผลของสารสกัดจากใบพุทธชาติก้านแดงในส่วน crude methanol extract (ME), aqueous fraction(AQ), neutral compound extract (NE) และ acidic compound extract (AE) ที่ระดับความเข้มข้น 0, 250, 500, 1,000, 2,000, 4,000 และ 8,000 ppm ต่อการงอกและ การเจริญ เติบโตของผักกาดหัว โดยใช้สารละลายผงไม่ละลายน้ำ (WP) ที่อัตราเดียวกันเป็นวิธีการ เปรียบเทียบ พบว่าอิทธิพลของสารสกัดในส่วนต่างๆ ระดับความเข้มข้นของสารสกัด และปฏิสัมพันธ์ระหว่างปัจจัยทั้งสองล้วนมีผลต่อการงอกของเมล็ดผักกาดหัวอย่างมีนัยสำคัญทางสถิติ โดย พบว่าสารสกัดจากส่วน AE สามารถยับยั้งการงอกของเมล็ดผักกาดหัวได้ดีที่สุดเมื่อเปรียบเทียบกับ สารสกัดในส่วนอื่นๆ และสารละลาย WP (กราฟที่ 1.3.1ก.) ในด้านระดับความเข้มข้นของสารสกัด พบว่า สารสกัดทุกระดับความเข้มข้นสามารถยับยั้งการงอกของเมล็ดได้อย่างมีนัยสำคัญทางสถิติ การ เพิ่มความเข้มข้นของสารสกัดมีผลให้การงอกของเมล็ดถูกยับยั้งมากขึ้น ซึ่งที่ระดับความเข้มข้น 8,000 ppm สามารถยับยั้งการงอกได้ 56.33 เปอร์เซ็นต์ เมื่อเปรียบเทียบกับการเพาะเมล็ดในน้ำกลั่น (กราฟที่

1.3.1ข.) สำหรับปฏิสัมพันธ์ระหว่างปัจจัยทั้งสอง พบว่าการใช้สารละลาย WP ทุกระคับความเข้มข้น มีผลต่อการงอกของเมล็ดผักกาดหัวไม่แตกต่างจากการเพาะเมล็ดในน้ำกลั่น ในขณะที่สารสกัดจาก ส่วน ME และ AE ตั้งแต่ระคับความเข้มข้น 1,000 ppm ขึ้นไป สามารถยับยั้งการงอกของเมล็ดได้ อย่างมีนัยสำคัญทางสถิติเมื่อเปรียบเทียบกับการเพาะเมล็ดในน้ำกลั่น สำหรับสารสกัดจากส่วน AQ และ NE ต้องใช้ระคับความเข้มข้น 4,000 และ 8,000 ppm ตามลำคับ จึงมีผลให้การงอกของเมล็ด ลดลงอย่างมีนัยสำคัญทางสถิติ เมื่อเปรียบเทียบกับการเพาะในน้ำกลั่น การเพิ่มระคับความเข้มข้นของ สารสกัดมีผลยับยั้งการงอกของเมล็ดมากขึ้น โดยที่ระคับความเข้มข้น 4,000 ppm สารสกัดในส่วน AE สามารถยับยั้งการงอกได้อย่างสมบูรณ์ ในขณะที่สารสกัดจากส่วน ME, NE และ AQ ที่ระคับ ความเข้มข้น 8,000 ppm สามารถยับยั้งการงอกได้ 76.67 68.33 และ 33.33 เปอร์เซ็นต์ตามลำคับ เมื่อ เปรียบเทียบกับการเพาะในน้ำกลั่น (กราฟที่ 1.3.1ค.)

กราฟที่ 1.3.1 ผลของสารสกัดจากใบพุทธชาติก้านแดงที่แยกด้วยวิธี solvent partitioning ต่อการงอก ของเมล็ดผักกาดหัว 5 วันหลังการเพาะ (ก. อิทธิพลของสารสกัดในส่วนต่างๆ ข. อิทธิพลของระดับความเข้มข้น ค. อิทธิพลของปฏิสัมพันธ์ระหว่างสารสกัดในส่วน ต่างๆ และระดับความเข้มข้น) ค่าเฉลี่ยจาก จำนวน 3 ซ้ำ ค่าเฉลี่ยที่มีอักษรเหมือนกัน แสดงว่าไม่มีความแตกต่างกันทางสถิติจากการวิเคราะห์ค่าเฉลี่ยโดย Tukey's Studentized Range Test (p = 0.05)

ผลต่อการเจริญเติบโต พบว่าอิทธิพลของสารสกัดในส่วนต่างๆ ระดับความเข้มข้นของสาร สกัด และปฏิสัมพันธ์ระหว่างปัจจัยทั้งสองล้วนมีผลต่อการเจริณเติบโตของต้นกล้าผักกาดหัวอย่างมี นัยสำคัญทางสถิติ (ตารางที่ 1.3.1) สารสกัดในส่วน AE มีผลการยับยั้งความยาวต้นได้ดีที่สุดเมื่อ เปรียบเทียบกับสารสกัดจากส่วนอื่นๆ รองลงมาได้แก่สารสกัดจากส่วน ME และ AQ ตามลำดับ (กราฟที่ 1.3.2 ก.) ในด้านระดับความเข้มข้นปรากฏว่า สารสกัดตั้งแต่ระดับความเข้มข้น 2,000 ppm ขึ้นไป สามารถยับยั้งความยาวต้นของต้นกล้าผักกาดหัวได้อย่างมีนัยสำคัญทางสถิติ (กราฟที่ 1.3.2 ข.) ซึ่งการเพิ่มความเข้มข้นของสารสกัดมีผลให้ความยาวต้นถูกยับยั้งมากขึ้น โดยที่ระดับความเข้มข้น 8,000 ppm สามารถยับยั้งความยาวต้นได้ 56.33 เปอร์เซ็นต์ เมื่อเปรียบเทียบกับการเพาะ ในน้ำกลั่น สำหรับผลของปฏิสัมพันธ์ระหว่างปัจจัยทั้งสอง พบว่าการใช้สารสกัดจากส่วน AE ตั้งแต่ระดับความ เข้มข้น 2,000 ppm ขึ้นไป มีผลให้ความยาวต้นของต้นกล้าลคลงอย่างมีนัยสำคัญทางสถิติ เมื่อ เปรียบเทียบกับการเพาะในน้ำกลั่น ในขณะที่สารสกัดจากส่วน ME ต้องใช้ความเข้มข้น 4,000 ppm ส่วนสารสกัดจากส่วน AQ และ NE ต้องใช้ความเข้มข้น 8,000 ppm ซึ่งที่ระดับความเข้มข้น 8,000 ppm สารสกัดจากส่วน AE สามารถยับยั้งความยาวต้นได้อย่างสมบูรณ์ รองลงมาได้แก่สารสกัดใน ส่วน ME, NE และ AQ โดยสามารถยับยั้งความยาวต้นได้ 86.05, 48.32 และ 48.06 เปอร์เซ็นต์ ตามลำคับ เมื่อเปรียบเทียบกับการเพาะในน้ำกลั่น ในขณะที่สารละลาย WP ไม่มีผลในการยับยั้งความ ยาวต้นของต้นกล้าผักกาดหัว (กราฟที่ 1.3.2 ค.)

ตารางที่ 1.3.1 ผลการวิเคราะห์ทางสถิติการเจริญเติบโตของผักกาดหัว ที่เพาะในสารสกัดจากใบ พุทธชาติก้านแดงที่แยกด้วยวิธี solvent partitioning จำนวน 4 ส่วน 7 ระดับความ เข้มข้น โดยใช้สารละลาย WP ที่ระดับความเข้มข้นเดียวกันเป็นวิธีการเปรียบเทียบ

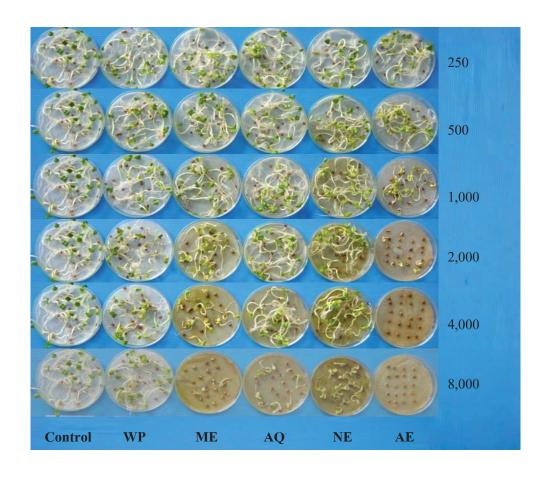

Source of	df	Mean Square				
Variation		ความยาวต้น	ความยาวราก	ความยาวรวม	น้ำหนักแห้ง	
Treatment	34	4.53 **	28.20 **	56.19 **	26.37 **	
A	4	10.22 **	77.39 **	136.32 **	74.18 **	
В	6	10.98 **	66.47 **	147.20 **	22.48 **	
AB	24	1.98 **	10.44 **	20.08 **	19.37 **	

^{**} มีความแตกต่างกันทางสถิติอย่างมีนัยสำคัญยิ่ง

A คือ สารสกัดในส่วนต่างๆ

B คือ ระดับความเข้มข้นของสารสกัด

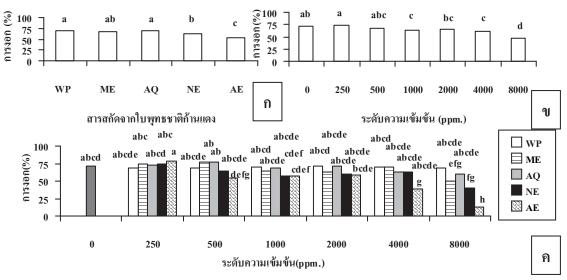
AB คือ ปฏิสัมพันธ์ระหว่างปัจจัย A และ B



กราฟที่ 1.3.2 ผลของสารสกัดจากใบพุทธชาติก้านแดงที่แยกด้วยวิธี solvent partitioning ต่อการ เจริญเติบโตของต้นกล้าผักกาดหัว 5 วันหลังการเพาะ (ก. อิทธิพลของสารสกัดในส่วน ต่างๆ ข. อิทธิพลของระดับความเข้มข้น และ ค. อิทธิพลของปฏิสัมพันธ์ระหว่างสาร สกัดในส่วนต่างๆ และระดับความเข้มข้น) ค่าเฉลี่ยจากจำนวน 3 ซ้ำ ค่าเฉลี่ยที่มีอักษร เหมือนกันแสดงว่าไม่มีความแตกต่างกันทางสถิติจากการวิเคราะห์ค่าเฉลี่ยโดย Tukey's Studentized Range Test (p = 0.05)

ในค้านความยาวราก ปรากฏว่าการใช้สารสกัดจากส่วน AE มีผลยับยั้งความยาวรากของค้น กล้าได้คีที่สุดเมื่อเปรียบเทียบกับสารสกัดจากส่วนอื่นๆ รองลงมาได้แก่สารสกัดจากส่วน ME และ NE ตามถำคับ ในขณะที่สารสกัดในส่วน AQ และสารละถาย WP มีผลต่อความยาวรากไม่แตกต่าง กัน (กราฟที่ 1.3.2 ก.) ในค้านระดับความเข้มข้นพบว่าสารสกัดตั้งแต่ระดับความเข้มข้น 4,000 ppm ขึ้นไป สามารถยับยั้งความยาวรากของค้นกล้าอย่างมีนัยสำคัญทางสถิติ (กราฟที่ 1.3.2 ข.) และที่ระดับความเข้มข้น 8,000 ppm สามารถยับยั้งความยาวรากได้ 44.86 เปอร์เซ็นต์ เมื่อเปรียบเทียบกับการเพาะ ในน้ำกลั่น สำหรับผลของปฏิสัมพันธ์ระหว่างปัจจัยทั้งสองพบว่าการใช้สารสกัดจากส่วน AE ตั้งแต่ ระดับความเข้มข้น 1,000 ppm ขึ้นไป มีผลให้ความยาวรากของค้นกล้าลดลงอย่างมีนัยสำคัญทางสถิติ เมื่อเปรียบเทียบกับการเพาะในน้ำกลั่น ในขณะที่สารสกัดจากส่วน ME และ NE ต้องใช้ความเข้มข้น 4,000 ppm ส่วนสารสกัดจากส่วน AQ ไม่มีผลยับยั้งความยาวรากทางสถิติ การใช้สารสกัดที่ระดับความเข้มข้น 8,000 ppm พบว่าสารสกัดจากส่วน AE ให้ผลในการยับยั้งความยาวรากได้อย่างสมบูรณ์ ในขณะที่สารสกัดจากส่วน ME และ NE สามารถยับยั้งความยาวรากได้ 89.84 และ 74.10 เปอร์เซ็นต์ตามลำคับ เมื่อเปรียบเทียบกับการเพาะในน้ำกลั่น ส่วนสารละลาย WP ไม่มีผลในการยับยั้งความยาวรากของต้นกล้าผักกาดหัว (กราฟที่ 1.3.2 ค.)

เมื่อพิจารณาความยาวรวมพบว่า การใช้สารสกัดจากส่วน AE มีผลยับยั้งความยาวรวมของค้น กล้าผักกาดหัวได้ดีที่สุดเมื่อเปรียบเทียบกับสารสกัดจากส่วน ME (ภาพที่ 1.3.2ก.) ในด้านของระคับความเข้มข้นปรากฏว่า สารสกัดตั้งแต่ระดับความเข้มข้น 2,000 ppm ขึ้นไป สามารถยับยั้งความยาวรวมของค้นกล้าผักกาดหัวได้อย่างมีนัยสำคัญทางสถิติ ซึ่งการเพิ่ม ความเข้มข้นของสารสกัดมีผลให้ความยาวรวมถูกยับยั้งมากขึ้น โดยที่ระดับความเข้มข้น 8,000 ppm สามารถยับยั้งความยาวรวมได้ 65.33 เปอร์เซ็นต์ เมื่อเปรียบเทียบกับการเพาะในน้ำกลั่น (ภาพที่ 1.3.2 ข.) สำหรับผลของปฏิสัมพันธ์ระหว่างปัจจัยทั้งสองพบว่า การใช้สารสกัดจากส่วน AE ตั้งแต่ระดับ ความเข้มข้น 1,000 ppm ขึ้นไป มีผลให้ความยาวรวมของค้นกล้าลดลงอย่างมีนัยสำคัญทางสถิติ เมื่อ เปรียบเทียบกับการเพาะในน้ำกลั่น ในขณะที่สารสกัดจากส่วน ME, NE และ AQ ต้องใช้ความ เข้มข้น 4,000 ppm ซึ่งที่ระดับความเข้มข้น 8,000 ppm สารสกัดจากส่วน AE สามารถยับยั้งความยาว รวมของค้นกล้าได้อย่างสมบูรณ์ รองลงมาได้แก่สารสกัดจากส่วน ME, NE และ AQ โดยสามารถ ยับยั้งความยาวรวมได้ 88.53, 65.75 และ 64.91 เปอร์เซ็นต์ ตามลำคับ เมื่อเปรียบเทียบกับการเพาะใน น้ำกลั่น ในขณะที่สารละลาย WP ไม่มีผลในการยับยั้งความยาวรวมของต้นกล้าผักกาดหัว (กราฟที่ 1.3.2ค. และ ภาพที่ 1.3.2)


ในด้านน้ำหนักแห้งของต้นกล้า พบว่าการใช้สารสกัดในส่วน AE มีผลให้น้ำหนักแห้งของ ต้นกล้าผักกาดหัวน้อยที่สุดเมื่อเปรียบเทียบกับสารสกัดในส่วนอื่นๆ ในขณะที่สารสกัดจากส่วน ME, AQ, NE และสารละลาย WP มีผลต่อน้ำหนักแห้งไม่แตกต่างกัน (กราฟที่ 1.3.2 ก.) ในด้านของระดับ ความเข้มข้น ปรากฏว่าสารสกัดตั้งแต่ระดับความเข้มข้น 4,000 ppm ขึ้นไป มีผลให้น้ำหนักแห้งของ ต้นกล้าลดลงอย่างมีนัยสำคัญทางสถิติ (กราฟที่ 1.3.2 ข.) โดยที่ระดับความเข้มข้น 8,000 ppm มีผลให้ น้ำหนักแห้งลดลง 20.82 เปอร์เซ็นต์ เมื่อเปรียบเทียบกับการเพาะในน้ำกลั่น สำหรับผลของปฏิ สัมพันธ์ระหว่างปัจจัยทั้งสอง พบว่าการใช้สารสกัดจากส่วน AE ตั้งแต่ระดับความเข้มข้น 2,000 ppm ขึ้นไป มีผลให้น้ำหนักแห้งของต้นกล้าผักกาดหัวลดลงอย่างมีนัยสำคัญทางสถิติเมื่อเปรียบเทียบกับ การเพาะในน้ำกลั่น และการใช้สารสกัดจากส่วน AE ตั้งแต่ระดับความเข้มข้น 4,000 ppm ขึ้นไป มีผล ให้น้ำหนักแห้งของต้นกล้าลดลงได้อย่างสมบูรณ์ ในขณะที่สารสกัดจากส่วน ME, AQ, NE และ สารละลาย WP ไม่มีผลให้น้ำหนักแห้งของต้นกล้าลดลง (กราฟที่ 1.3.2 ค.)

ภาพที่ 1.3.2 ผลของสารสกัดจากใบพุทธชาติก้านแดงที่แยกด้วยวิธี solvent partitioning 7 ระดับ ความเข้มข้นต่อการงอกและการเจริญเติบโตของผักกาดหัวหลังการเพาะ 5 วัน

ผลต่อการงอกและการเจริญเติบโตของ ใมยรา

ผลต่อการงอก การเปรียบเทียบผลของสารสกัดจากใบพุทธชาติก้านแดงในส่วน crude methanol extract (ME), aqueous fraction(AQ), neutral compound extract (NE) และ acidic compound extract (AE) ที่ระดับความเข้มข้น 0, 250, 500, 1,000, 2,000, 4,000 และ 8,000 ppm ต่อการงอกและ การเจริญเติบ โตของ ไมยรา โดยใช้สารละลายผง ไม่ละลายน้ำ (WP) ที่อัตราเดียวกันเป็นวิธีการ เปรียบเทียบ พบว่าอิทธิพลของสารสกัดในส่วนต่างๆ ระดับความเข้มข้นของสารสกัด และปฏิสัมพันธ์ระหว่างปัจจัยทั้งสองล้วนมีผลต่อการงอกของเมล็ด ไมยราอย่างมีนัยสำคัญทางสถิติ โดย พบว่าสารสกัดจากส่วน AE สามารถยับยั้งการงอกของเมล็ดไมยราได้ดีที่สุดเมื่อเปรียบเทียบกับสาร สกัดจากส่วนอื่นๆ และสารละลาย WP (กราฟที่ 1.3.3 ก.) ในค้านระดับความเข้มข้นของสารสกัด พบว่า การใช้สารสกัดตั้งแต่ระดับความเข้มข้น 1,000 ppm ขึ้นไป มีผลให้การงอกลดลงอย่างมี นัยสำคัญทางสถิติ ยกเว้นที่ระดับความเข้มข้น 2,000 ppm การเพิ่มความเข้มข้นของสารสกัดมีผลให้ การงอกของเมล็ดถูกยับยั้งมากขึ้น ซึ่งที่ระดับความเข้มข้น 8,000 ppmสามารถยับยั้งการงอกได้ 35.36 เปอร์เซ็นต์ เมื่อเปรียบเทียบกับการเพาะเมล็ดในน้ำกลั่น (กราฟที่ 1.3.3 ข.) สำหรับปฏิสัมพันธ์ระหว่าง ปัจจัยทั้งสอง พบว่าการใช้สารละลาย WP และ สารสกัดในส่วน AQ ทุกระดับความเข้มข้นมีผลต่อ การงอกของเมล็ดไมยราไม่แตกต่างจากการเพาะเมล็ดในน้ำกลั่น ในขณะที่สารสกัดจากส่วน AE

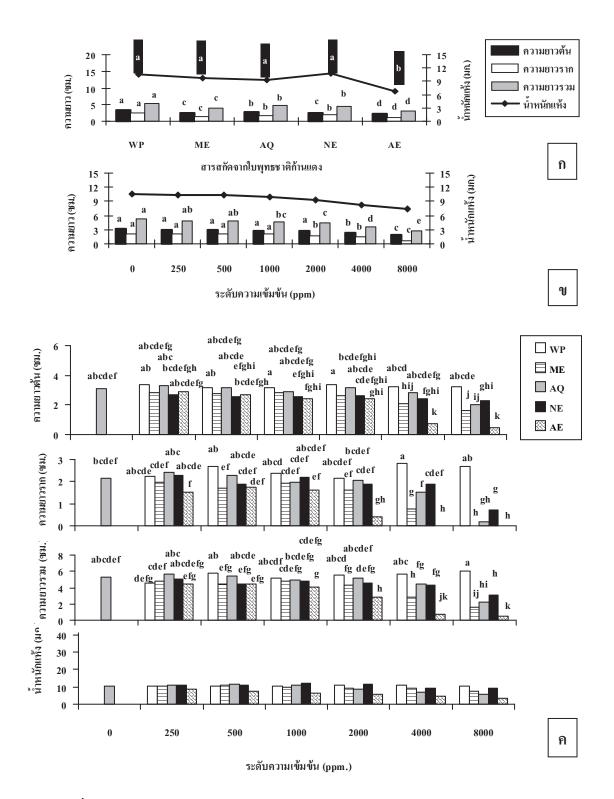
กราฟที่ 1.3.3 ผลของสารสกัดจากใบพุทธชาติก้านแดงที่แยกด้วยวิธี solvent partitioning ต่อการงอก ของเมล็ดไมยรา 5 วันหลังการเพาะ (ก. อิทธิพลของสารสกัดในส่วนต่างๆ ข. อิทธิพล ของระดับความเข้มข้น ค. อิทธิพลของปฏิสัมพันธ์ระหว่างสารสกัดในส่วนต่างๆ และ ระดับความเข้มข้น) ค่าเฉลี่ยจาก จำนวน 3 ซ้ำ ค่าเฉลี่ยที่มีอักษรเหมือนกันแสดงว่า ไม่มี ความแตกต่างกันทางสถิติจากการวิเคราะห์ค่าเฉลี่ยโดย Tukey's Studentized Range Test (p = 0.05)

ตั้งแต่ระดับความเข้มข้น 4,000 ppm ขึ้นไป สามารถยับยั้งการงอกของเมล็ดได้อย่างมีนัยสำคัญทาง สถิติ เมื่อเปรียบเทียบกับการเพาะเมล็ดในน้ำกลั่น สำหรับสารสกัดจากส่วน ME และ NE ต้องใช้ ระดับความเข้มข้น 8,000 ppm จึงมีผลให้การงอกของเมล็ดลดลงอย่างมีนัยสำคัญทางสถิติ เมื่อ เปรียบเทียบกับการเพาะในน้ำกลั่น ซึ่งที่ระดับความเข้มข้น 8,000 ppm สารสกัดจากส่วน AE สามารถ ยับยั้งการงอกได้ 81.40 เปอร์เซ็นต์ เมื่อเปรียบเทียบกับการเพาะในน้ำกลั่น ในขณะที่สารสกัดจากส่วน ME และ NE สามารถยับยั้งการงอกได้ 30.24 และ 44.19 เปอร์เซ็นต์ตามลำดับ เมื่อเปรียบเทียบกับการ เพาะในน้ำกลั่น (กราฟที่ 1.3.3 ค.)

ผลต่อการเจริญเติบโต พบว่าอิทธิพลของสารสกัดในส่วนต่างๆ ระดับความเข้มข้นของสาร สกัด และปฏิสัมพันธ์ระหว่างปัจจัยทั้งสองล้วนมีผลต่อการเจริญเติบโตของต้นกล้าไมยราอย่างมี นัยสำคัญทางสถิติ ยกเว้นอิทธิพลของระดับความเข้มข้น และปฏิสัมพันธ์ระหว่างปัจจัยทั้งสองที่ไม่มี ผลต่อน้ำหนักแห้งของต้นกล้าไมยรา (ตารางที่ 1.3.2) สารสกัดในส่วน AE มีผลยับยั้งความยาวต้นได้ ดีที่สุดเมื่อเปรียบเทียบกับสารสกัดจากส่วนอื่นๆ รองลงมาได้แก่สารสกัดจากส่วน ME, NE และ AQ ตามลำดับ (กราฟที่ 1.3.4 ก.) ในด้านระดับความเข้มข้นปรากฏว่า สารสกัดตั้งแต่ระดับความเข้มข้น 4,000 ppm ขึ้นไป สามารถยับยั้งความยาวต้นได้อย่างมีนัยสำคัญทางสถิติ (กราฟที่ 1.3.4 ข.) ซึ่งการ เพิ่มความเข้มข้นของสารสกัดมีผลให้ความยาวต้นของต้นกล้าไมยราถูกยับยั้งมากขึ้น โดยที่ระดับ ความเข้มข้น 8,000 ppm สามารถยับยั้งความยาวต้นได้ 37.74 เปอร์เซ็นต์

ตารางที่ 1.3.2 ผลการวิเคราะห์ทางสถิติการเจริญเติบโตของไมยรา ที่เพาะในสารสกัดจากใบพุทธชาติ ก้านแคงที่แยกด้วยวิธี acid-base solvent partitioning จำนวน 4 ส่วน 7 ระดับความ เข้มข้น โดยใช้สารละลาย WP ที่ระดับความเข้มข้นเดียวกันเป็นวิธีการเปรียบเทียบ

Source of	df	Mean Square				
Variation		ความยาวต้น	ความยาวราก	ความยาวรวม	น้ำหนักแห้ง	
Treatment	34	1.31 **	1.89 **	5.65 **	13.82 **	
A	4	3.86 **	5.54 **	14.85 **	55.49 **	
В	6	2.76 **	4.02 **	12.34 **	23.31 ns	
AB	24	0.26 **	0.74 **	2.45 **	4.50 ns	

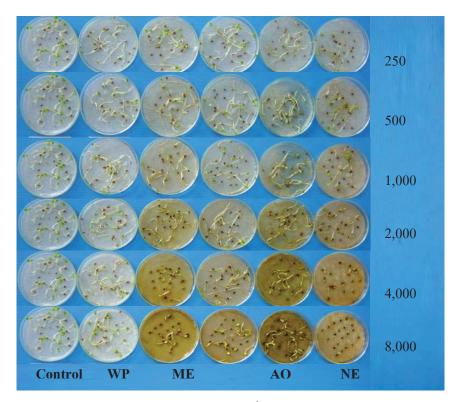

ns ไม่มีความแตกต่างกันทางสถิติ

มีความแตกต่างกันทางสถิติอย่างมีนัยสำคัญยิ่ง

A คือ สารสกัดในส่วนต่างๆ

B คือ ระดับความเข้มข้นของสารสกัด

AB คือ ปฏิสัมพันธ์ระหว่างปัจจัย A และ B



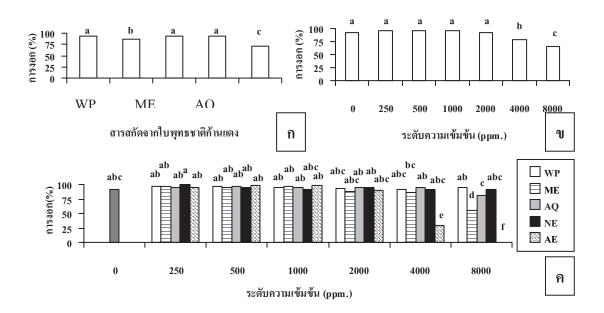
กราฟที่ 1.3.4 ผลของสารสกัดจากใบพุทธชาติก้านแดงที่แยกด้วยวิธี solvent partitioning ต่อการ เจริญเติบโตของต้นกล้าไมยรา 5 วันหลังการเพาะ (ก. อิทธิพลของสารสกัดในส่วนต่างๆ อิทธิพลของ ระดับความเข้มข้น และ ค. อิทธิพลของปฏิสัมพันธ์ระหว่างสารสกัดในส่วนต่างๆ และระดับความ เข้มข้น) ค่าเฉลี่ยจากจำนวน 3 ซ้ำ ค่าเฉลี่ยที่มีอักษรเหมือนกันแสดงว่าไม่มีความแตกต่างกันทางสถิติ จากการวิเคราะห์ค่าเฉลี่ยโดย Tukey's Studentized Range Test (p = 0.05)

ในขณะที่สารสกัดจากส่วน ME ต้องใช้ความเข้มข้น 4,000 ppm ส่วนสารสกัดจากส่วน AQ และ NE ต้องใช้ความเข้มข้น 8,000 ppm ซึ่งที่ระดับความเข้มข้นของสารเข้มข้น 2,000 ppm ขึ้นไป มีผลให้ ความยาวต้นของต้นกล้าลดลงอย่างมีนัยสำคัญทางสถิติ โดยสารสกัดจากส่วน AE สามารถยับยั้งความ ยาวต้นได้มากที่สุดคือ 83.87 เปอร์เซ็นต์ เมื่อเปรียบเทียบกับการเพาะในน้ำกลั่น รองลงมาได้แก่สาร สกัดในส่วน ME, AQ และ NE โดยสามารถยับยั้งความยาวต้นได้ 48.71, 34.19 และ 26.13 เปอร์เซ็นต์ ตามลำดับ ในขณะที่สารละลาย WP ไม่มีผลในการยับยั้งความยาวต้นของต้นกล้าไมยรา (กราฟที่ 1.3.4 ค.)

ในด้านความยาวราก พบว่าสารสกัดในส่วน AE มีผลยับยั้งความยาวรากของต้นกล้าได้ดีที่สุด เมื่อเปรียบเทียบกับสารสกัดจากส่วนอื่น ๆ รองลงมาได้แก่สารสกัดจากส่วน ME, AQ และ NE ตามลำดับ (กราฟที่ 1.3.4 ก.) ในด้านระดับความเข้มข้นปรากฏว่า สารสกัดตั้งแต่ระดับความเข้มข้น 2,000 ppm ขึ้นไป มีผลยับยั้งความยาวรากอย่างมีนัยสำคัญทางสถิติ (กราฟที่ 1.3.4 ข.) ซึ่งการเพิ่มระดับ ความเข้มข้นของสารสกัดมีผลให้ความยาวรากของต้นกล้าถูกยับยั้งมากขึ้น โดยที่ระดับความเข้มข้น 8,000 ppm สามารถยับยั้งความยาวรากได้ 65.75 เปอร์เซ็นต์ เมื่อเปรียบเทียบกับการเพาะในน้ำกลั่น สำหรับผลของปฏิสัมพันธ์ระหว่างปัจจัยทั้งสองพบว่า สารสกัดจากส่วน AE ตั้งแต่ระดับความเข้มข้น 2,000 ppm ขึ้นไป มีผลให้ความยาวรากของต้นกล้าลดลงอย่างมีนัยสำคัญทางสถิติ เมื่อเปรียบเทียบกับ การเพาะในน้ำกลั่น ในขณะที่สารสกัดจากส่วน ME ต้องใช้ความเข้มข้น 4,000 ppm ส่วนสารสกัดจากส่วน AQ และ NE ต้องใช้ความเข้มข้น 8,000 ppm ซึ่งที่ระดับความเข้มข้นของสารสกัด จากส่วน AQ และ NE สามารถยับยั้งความยาวรากได้อย่างสมบูรณ์ ใน ขณะที่สารสกัดจากส่วน AQ และ NE สามารถยับยั้งความยาวรากได้ 90.61 และ 65.73 เปอร์เซ็นต์ตามลำดับ ส่วน สารละลาย WP ไม่มีผลในการยับยั้งความยาวรากของต้นกล้าไมยรา (กราฟที่ 1.3.4 ค.)

เมื่อพิจารณาความยาวรวมพบว่า การใช้สารสกัดจากส่วน AE มีผลยับยั้งความยาวรวมของต้น กล้าไมยราได้ดีที่สุดเมื่อเปรียบเทียบกับสารสกัดจากส่วนอื่นๆ รองลงมาได้แก่สารสกัดจากส่วน ME (กราฟที่ 1.3.4 ก.) ในด้านระดับความเข้มข้นของสารสกัดปรากฏว่า สารสกัดตั้งแต่ระดับความเข้มข้น 1,000 ppm ขึ้นไป มีผลยับยั้งความยาวรวมของดันกล้าอย่างมีนัยสำคัญทางสถิติ การเพิ่มความเข้มข้ มของสารสกัดมีผลให้ความยาวรวมถูกยับยั้งมากขึ้น โดยที่ระดับความเข้มข้น 8,000 ppm สามารถ ยับยั้งความยาวรวมได้ 45.31 เปอร์เซ็นต์ เมื่อเปรียบเทียบกับการเพาะในน้ำกลั่น (กราฟที่ 1.3.4 ข.) สำหรับผลของปฏิสัมพันธ์ระหว่างปัจจัยทั้งสองพบว่าการใช้สารสกัดจากส่วน AE ตั้งแต่ระดับความ เข้มข้น 1,000 ppm ขึ้นไป มีผลให้ความยาวรวมของด้นกล้าลดลงอย่างมีนัยสำคัญทางสถิติเมื่อ เปรียบเทียบกับการเพาะในน้ำกลั่น ในขณะที่สารสกัดจากส่วน ME ต้องใช้ความเข้มข้น 4,000 ppm ขึ้นไป ส่วน AQ และ NE ต้องใช้ระดับความเข้มข้น 8,000 ppm ปรากฏว่าสารสกัดจากส่วน AE สามารถยับยั้งความยาวรวมของด้นกล้าได้มากที่สุดคือ 90.46 เปอร์เซ็นต์ เมื่อเปรียบเทียบกับการเพาะในน้ำกลั่น รองลงมาได้แก่สารสกัดจากส่วน ME AQ และ NE

ภาพที่ 1.3.3 ผลของสารสกัดจากใบพุทธชาติก้านแดงที่แยกด้วยวิธี acid-base solvent partitioning 7 ระดับความเข้มข้นต่อการงอกและการเจริญเติบโตของไมยราหลังการเพาะ 5 วัน


โดยสามารถยับยั้งความยาวรวมได้ 69.66, 57.06 และ 42.37 เปอร์เซ็นต์ตามลำดับ ในขณะที่สาร ละลาย WP ไม่มีผลยับยั้งความยาวรวมของต้นกล้ำ (กราฟที่ 1.3.4 ค. และ ภาพที่ 1.3.2)

ในด้านน้ำหนักแห้งของต้นกล้าพบว่า การใช้สารสกัดในส่วน AE มีผลให้น้ำหนักแห้งของ ต้นกล้าไมยรา น้อยที่สุดเมื่อเปรียบเทียบกับสารสกัดในส่วนอื่นๆ ในขณะที่สารสกัดจากส่วน ME AQ NE และสารละลาย WP มีผลต่อน้ำหนักแห้งไม่แตกต่างกัน (กราฟที่ 1.3.4 ก.)

<u>ผลต่อการงอกและการเจริญเติบ โตของข้าว</u>

ผลต่อการงอก การเปรียบเทียบผลของสารสกัดจากใบพุทธชาติก้านแดงในส่วน crude methanol extract (ME), aqueous fraction(AQ), neutral compound extract (NE) และ acidic compound extract (AE) ที่ระดับความเข้มข้น 0, 250, 500, 1,000, 2,000, 4,000 และ 8,000 ppm ต่อการงอกและ การเจริญเติบโตของข้าว โดยใช้สารละลายผงไม่ละลายน้ำ (WP) ที่อัตราเดียวกันเป็นวิธีการ เปรียบเทียบ พบว่าอิทธิพลของสารสกัดในส่วนต่างๆ ระดับความเข้มข้นของสารสกัด และปฏิสัมพันธ์ระหว่างปัจจัยทั้งสองล้วนมีผลต่อการงอกของเมล็ดข้าวอย่างมีนัยสำคัญทางสถิติ โดยพบว่า สารสกัดจากส่วน AE สามารถยับยั้งการงอกของเมล็ดข้าวได้ดีที่สุดเมื่อเปรียบเทียบกับสารสกัดใน ส่วนอื่นๆ และสารละลาย (กราฟที่ 1.3.5 ก.) ในด้านระดับความเข้มข้นของสารสกัดพบว่า สารสกัด

ตั้งแต่ระดับความเข้มข้น 4,000 ppm ขึ้นไป สามารถยับยั้งการงอกของเมล็ดได้อย่างมีนัยสำคัญทาง สถิติ การเพิ่มความเข้มข้นของสารสกัดมีผลให้การงอกของเมล็ดถูกยับยั้งมากขึ้น ซึ่งที่ระดับความ เข้มข้น 8,000 ppm สามารถยับยั้งการงอกได้ 29.45 เปอร์เซ็นต์ เมื่อเปรียบเทียบกับการเพาะเมล็ดในน้ำ กลั่น (กราฟที่ 1.3.5 ข.) สำหรับปฏิสัมพันธ์ระหว่างปัจจัยทั้งสอง พบว่าการใช้สารละลาย WP ทุก ระดับความเข้มข้นมีผลต่อการงอกของเมล็ดข้าวไม่แตกต่างจากการเพาะเมล็ดในน้ำกลั่น ในขณะที่ สารสกัดจากส่วน AE ที่ระดับความเข้มข้น 4,000 ppm ขึ้นไป สามารถยับยั้งการงอกของเมล็ดได้อย่าง มีนัยสำคัญทางสถิติ การเพิ่มระดับความเข้มข้นของสารสกัดจากส่วน AE เป็น 8,000 ppm มีผลให้การ งอกของเมล็ดถูกยับยั้งได้อย่างสมบูรณ์ การใช้สารสกัดจากส่วน ME ที่ระดับความเข้มข้น 8,000 ppm สามารถยับยั้งการงอกได้ 40.00 เปอร์เซ็นต์ เมื่อเปรียบเทียบกับการเพาะเมล็ดในน้ำกลั่น ในขณะที่สาร สกัดจากส่วน AQ และ NE ทุกระดับความเข้มข้น ไม่มีผลในการยับยั้งการงอก (กราฟที่ 1.3.5 ค.)

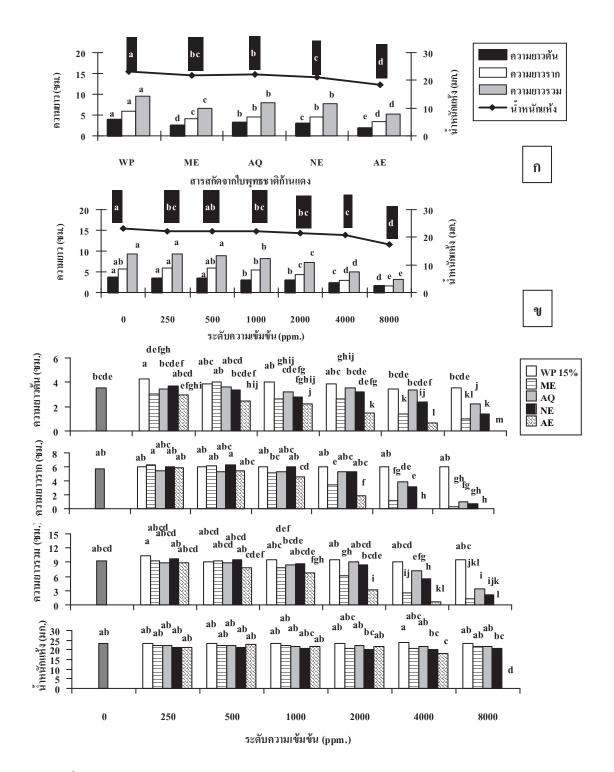
กราฟที่ 1.3.5 ผลของสารสกัดจากใบพุทธชาติก้านแดงที่แยกด้วยวิธี solvent partitioning ต่อการงอก ของเมล็ดข้าว 5 วันหลังการเพาะ (ก. อิทธิพลของสารสกัดในส่วนต่างๆ ข. อิทธิพลของ ระดับความเข้มข้น ค. อิทธิพลของปฏิสัมพันธ์ระหว่างสารสกัดในส่วนต่างๆ และระดับ ความเข้มข้น) ค่าเฉลี่ยจาก จำนวน 3 ซ้ำ ค่าเฉลี่ยที่มีอักษรเหมือนกันแสดงว่าไม่มีความ แตกต่างกันทางสถิติจากการวิเคราะห์ค่าเฉลี่ยโดย Tukey's Studentized Range Test (p = 0.05)

ผลต่อการเจริญเติบโต พบว่าอิทธิพลของสารสกัดในส่วนต่างๆ ระดับความเข้มข้นของสาร สกัด และปฏิสัมพันธ์ระหว่างปัจจัยทั้งสองถ้วนมีผลต่อการเจริญเติบโตของต้นกล้าข้าวอย่างมี นัยสำคัญทางสถิติ (ตารางที่ 1.3.3) สารสกัดในส่วน AE สามารถยับยั้งความยาวต้นได้ดีที่สุดเมื่อ เปรียบเทียบกับสารสกัดจากส่วนอื่นๆ รองลงมาได้แก่สารสกัดจากส่วน ME, NE และ AQ ตามลำคับ (กราฟที่ 1.3.6 ก.) ในด้านระดับความเข้มข้นปรากฏว่า สารสกัดตั้งแต่ระดับความเข้มข้น 1,000 ppm ขึ้นไป สามารถยับยั้งความยาวต้นของต้นกล้าข้าวได้อย่างมีนัยสำคัญทางสถิติ (กราฟที่ 1.3.6 ข.) การ เพิ่มความเข้มข้นของสารสกัคมีผลให้ความยาวต้นของต้นกล้าข้าวถูกยับยั้งมากขึ้น โดยที่ระดับความ เข้มข้น 8,000 ppm สามารถยับยั้งความยาวต้นได้ 54.62 เปอร์เซ็นต์ เมื่อเปรียบเทียบกับการเพาะในน้ำ กลั่น สำหรับปฏิสัมพันธ์ระหว่างปัจจัยทั้งสอง พบว่าการใช้สารสกัดจากส่วน AE ตั้งแต่ระดับความ ррт ขึ้นไป มีผลให้ความยาวต้นของต้นกล้าลดลงอย่างมีนัยสำคัญทางสถิติเมื่อ เปรียบเทียบกับการเพาะในน้ำกลั่น ในขณะที่สารสกัดจากส่วน ME และ NE ต้องใช้ความเข้มข้น 1,000 ppm ส่วนสารสกัดจากส่วน AQ ต้องใช้ความเข้มข้น 8,000 ppm ซึ่งที่ระดับความเข้มข้น 8,000 ppm สารสกัดจากส่วน AE สามารถยับยั้งความยาวต้น ได้อย่างสมบูรณ์ สำหรับสารสกัดจากส่วน ME, NE และ AQ สามารถยับยั้งความยาวต้น ได้ 72.55, 61.34 และ 37.25 เปอร์เซ็นต์ตามลำดับ เมื่อ เปรียบเทียบกับการเพาะในน้ำกลั่น ในขณะที่สารละลาย WP ไม่มีผลในการยับยั้งความยาวต้นของต้น กล้าข้าว (กราฟที่ 1.3.6 ค.)

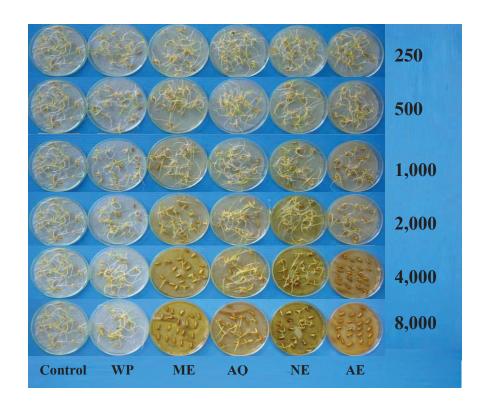
ในด้านความยาวราก ปรากฏว่าการใช้สารสกัดจากส่วน AE มีผลยับยั้งความยาวรากของด้น กล้าได้ดีที่สุดเมื่อเปรียบเทียบกับสารสกัดจากส่วนอื่นๆ รองลงมาได้แก่สารสกัดจากส่วน ME AQ และ NE ตามลำดับ (กราฟที่ 1.3.6 ก.) ในด้านระดับความเข้มข้นพบว่าสารสกัดตั้งแต่ระดับความเข้มข้น 2,000 ppm ขึ้นไป มีผลให้ความยาวรากลดลงอย่างมีนัยสำคัญทางสถิติ (กราฟที่ 1.3.6 ข.) ซึ่ง การเพิ่มระดับความเข้มข้นมีผลให้ความยาวรากของต้นกล้าถูกยับยั้งมากขึ้น โดยที่ระดับความเข้มข้น 8,000 ppm สามารถยับยั้งความยาวรากได้ 72.47 เปอร์เซ็นต์ เมื่อเปรียบเทียบกับการเพาะในน้ำกลั่น สำหรับผลของปฏิสัมพันธ์ระหว่างปัจจัยทั้งสองพบว่า สารสกัดจากส่วน AE ตั้งแต่ระดับความเข้มข้น 1,000 ppmขึ้นไป สามารถยับยั้งความยาวรากของต้นกล้าได้อย่างมีนัยสำคัญทางสถิติเมื่อเปรียบเทียบ กับการเพาะในน้ำกลั่น ในขณะที่สารสกัดจากส่วน ME ต้องใช้ความเข้มข้น 2,000 ppm ส่วนสารสกัด จากส่วน AQ และ NE ต้องใช้ความเข้มข้น 4,000 ppm ซึ่งที่ระดับความเข้มข้น 8,000 ppm สารสกัด จากส่วน AE สามารถยับยั้งความยาวรากได้อย่างสมบูรณ์ ในขณะที่สารสกัดจากส่วน ME, NE และ AQ สามารถยับยั้งความยาวรากได้ 95.82, 81.71และ 88.50 เปอร์เซ็นต์ตามลำคับ เมื่อเปรียบเทียบกับ การเพาะในน้ำกลั่น ในขณะที่สารละลาย WP ไม่มีผลยับยั้งความยาวราก (กราฟที่ 1.3.6 ค.)

ตารางที่ 1.3.3 ผลการวิเคราะห์ทางสถิติการเจริญเติบโตของข้าว ที่เพาะในสารสกัดจากใบพุทธชาติ ก้านแดงที่แยกด้วยวิธี acid-base solvent partitioning จำนวน 4 ส่วน 7 ระดับความเข้ม ข้นโดยใช้สาร ละลาย WP ที่ระดับความเข้มข้นเดียวกันเป็นวิธีการเปรียบเทียบ

Source of	df		Mean S	Square	
Variation		ความยาวต้น	ความยาวราก	ความยาวรวม	น้ำหนักแห้ง
Treatment	34	3.25 **	13.09 **	27.11 **	45.59 **
A	4	10.66 **	19.67 **	52.46 **	67.34 **
В	6	7.84 **	43.61 **	85.34 **	53.18 **
AB	24	0.86 **	4.37 **	8.33 **	40.09 **


^{**} มีความแตกต่างกันทางสถิติอย่างมีนัยสำคัญยิ่ง

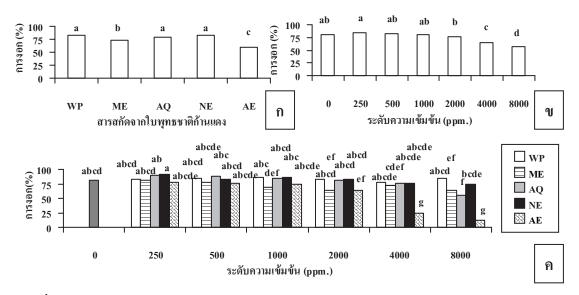
A คือ สารสกัดในส่วนต่างๆ


B คือ ระดับความเข้มข้นของสารสกัด

AB คือ ปฏิสัมพันธ์ระหว่างปัจจัย A และ B

เมื่อพิจารณาความยาวรวมพบว่า การใช้สารสกัดจากส่วน AE สามารถยับยั้งความยาวรวม ของต้นกล้าข้าวได้ดีที่สุดเมื่อเปรียบเทียบกับสารสกัดจากส่วน AE และ AQ (กราฟที่ 1.3.6 ก.) ในด้านระดับความเข้มข้นปรากฏว่า สารสกัดตั้งแต่ระดับความ เข้มข้น 1,000 ppm ขึ้นไป สามารถยับยั้งความยาวรวมของต้นกล้าข้าวได้อย่างมีนัยสำคัญทางสถิติ (กราฟที่ 1.3.6 ข.) การเพิ่มความเข้มข้นของสารสกัดมีผลให้ความยาวรวมถูกยับยั้งมากขึ้นโดยที่ระดับ ความเข้มข้น 8,000 ppm สามารถยับยั้งความยาวรวมได้ 65.63 เปอร์เซ็นต์ เมื่อเปรียบเทียบกับการเพาะ ในน้ำกลั่น สำหรับผลของปฏิสัมพันธ์ระหว่างปัจจัยทั้งสองพบว่าการใช้สารสกัดจากส่วน AE ตั้งแต่ ระดับความเข้มข้น 1,000 ppm ขึ้นไป สามารถยับยั้งความยาวรวมได้อย่างมีนัยสำคัญทางสถิติเมื่อ เปรียบเทียบกับการเพาะในน้ำกลั่น ในขณะที่สารสกัดจากส่วน ME ต้องใช้ความเข้มข้น 2,000 ppm ส่วนสารสกัดจากส่วน NE และ AQ ต้องใช้ความเข้มข้น 4,000 ppm ซึ่งที่ระดับความเข้มข้น 8,000 ppm สารสกัดจากส่วน AE สามารถยับยั้งความยาวรวมของด้นกล้าได้อย่างสมบูรณ์ ในขณะที่สาร สกัดจากส่วน ME, NE และ AQ สามารถยับยั้งความยาวรวมได้ 86.90, 78.20 และ 64.66 เปอร์เซ็นต์ ตามลำดับ เมื่อเปรียบเทียบกับการเพาะในน้ำกลั่น ส่วนสารละลาย WP ไม่มีผลยับยั้งความยาวรวม ของต้นกล้าใจ้าว (กราฟที่ 1.3.6 ก. และ ภาพที่ 1.3.4)

กราฟที่ 1.3.6 ผลของสารสกัดจากใบพุทธชาติก้านแดงที่แยกด้วยวิธี acid-base solvent partitioning ต่อการเจริญเติบโตของต้นกล้าข้าว 5 วันหลังการเพาะ (ก. อิทธิพลของสารสกัดในส่วน ต่าง ๆ ข. อิทธิ พลของระดับความเข้มข้น และ ค. อิทธิพลของปฏิสัมพันธ์ระหว่างสาร สกัดในส่วนต่างๆ และระดับความเข้มข้น) ค่าเฉลี่ยจากจำนวน 3 ซ้ำ ค่าเฉลี่ยที่มีอักษร เหมือนกันแสดงว่าไม่มีความแตกต่างกันทางสถิติจากการวิเคราะห์ค่าเฉลี่ยโดย Tukey's Studentized Range Test (p = 0.05)


ภาพที่ 1.3.4 ผลของสารสกัดจากใบพุทธชาติก้านแดงที่แยกด้วยวิธี acid-base solvent partitioning 7 ระดับความเข้มข้นต่อการงอกและการเจริญเติบโตของข้าวหลังการเพาะ 5 วัน

ในด้านน้ำหนักแห้งของต้นกล้า พบว่าการใช้สารสกัดในส่วน AE มีผลให้น้ำหนักแห้งของต้นกล้าข้าวน้อยที่สุดเมื่อเปรียบเทียบกับสารสกัดในส่วนอื่นๆ รองลงมาได้แก่ สารสกัดจากส่วน NE, ME และ AQ ตามลำดับ (กราฟที่ 1.3.6 ก.) ในด้านระดับความเข้มข้นปรากฏว่า สารสกัดตั้งแต่ระดับความเข้มข้น 250 ppm ขึ้นไป มีผลให้น้ำหนักแห้งของต้นกล้าข้าวลดลงอย่างมีนัยสำคัญทางสถิติเมื่อ เปรียบเทียบกับการเพาะในน้ำกลั่น ยกเว้นสารสกัดที่ระดับความเข้มข้น 500 ppm สำหรับการใช้สารสกัดที่ระดับความเข้มข้น 500 ppm สำหรับการใช้สารสกัดที่ระดับความเข้มข้น 8,000 ppm มีผลให้น้ำหนักแห้งลดลง 25.11 เปอร์เซ็นต์ เมื่อเปรียบเทียบกับการเพาะในน้ำกลั่น (กราฟที่ 1.3.6 ข.) สำหรับผลของปฏิสัมพันธ์ระหว่างปัจจัยทั้งสองพบว่าการใช้สารสกัดจากส่วน AE ตั้งแต่ระดับความเข้มข้น 4,000 ppm ขึ้นไปเท่านั้นที่มีผลให้น้ำหนักแห้งลดลงอย่างมีนัยสำกัญทางสถิติ เมื่อเปรียบเทียบกับการเพาะในน้ำกลั่น ซึ่งที่ระดับความเข้มข้น 8,000 ppm สารสกัดจากส่วน AE มีผลให้ไม่ปรากฏน้ำหนักแห้งของต้นกล้า ในขณะที่สารสกัดทุกระดับความเข้มข้นจากส่วน ME, AQ NE และสารละลาย WP ไม่มีผลให้น้ำหนักแห้งของต้นกล้าลดลง (กราฟที่ 1.3.6 ค.)

ผลต่อการงอกและการเจริญเติบโตของหญ้าข้าวนก

ผลต่อการงอก การเปรียบเทียบผลของสารสกัดจากใบพุทธชาติก้านแดงในส่วน crude methanol extract(ME), aqueous fraction(AQ), neutral compound extract (NE) และ acidic compound extract (AE) ที่ระดับความเข้มข้น 0, 250, 500, 1,000, 2,000, 4,000 และ 8,000 ppm ต่อการงอกและ การเจริญเติบ โตของหญ้าข้าวนก โดยใช้สารละลายผงไม่ละลายน้ำ (WP) ที่อัตราเดียวกันเป็นวิธีการ เปรียบเทียบ พบว่าอิทธิพลของสารสกัดในส่วนต่างๆ ระดับความเข้มข้นของสารสกัดและปฏิสัมพันธ์ ระหว่างปัจจัยทั้งสองล้วนมีผลต่อการงอกของเมล็ดหญ้าข้าวนกอย่างมีนัยสำคัญทางสถิติ โดยพบว่า สารสกัดจากส่วน AE สามารถยับยั้งการงอกของเมล็ดหญ้าข้าวนกได้ดีที่สุดเมื่อเปรียบเทียบกับสาร สกัดในส่วนอื่นๆ และสารละลาย WP (กราฟที่ 1.3.7 ก.) รองลงมาได้แก่สารสกัดจากส่วน ME ใน ด้านระดับความเข้มข้นของสารสกัดพบว่า สารสกัดตั้งแต่ระดับความเข้มข้น 4,000 ppm ขึ้นไปมีผล ยับยั้งการงอกของเมล็ดหญ้าข้าวนกได้อย่างมีนัยสำคัญทางสถิติ การเพิ่มความเข้มข้นของสารสกัดมี ผลให้การงอกถูกยับยั้งมากขึ้น ซึ่งที่ระดับความเข้มข้น 8,000 ppm สามารถยับยั้งการงอกได้ 28.80 เปอร์เซ็นต์ เมื่อเปรียบเทียบกับการเพาะในน้ำกลั่น (กราฟที่ 1.3.7 ข.) สำหรับปฏิสัมพันธ์ระหว่าง ปัจจัยทั้งสองพบว่าการใช้สารสกัดในส่วน NE และสารละลาย WP ทุกระดับความเข้มข้น ไม่มีผลให้ การงอกของเมล็ดหญ้าข้าวนกลดลง ในขณะที่สารสกัดจากส่วน AE และ ME ตั้งแต่ระดับความ เข้มข้น 2,000 ppmขึ้นไป สามารถยับยั้งการงอกของเมล็ดได้อย่างมีนัยสำคัญทางสถิติเมื่อเปรียบเทียบ กับการเพาะในน้ำกลั่น การเพิ่มระดับความเข้มข้นของสารสกัคมีผลยับยั้งการงอกของเมล็ดมากขึ้น ยกเว้นสารสกัดจากส่วน ME ที่ระดับความเข้มข้น 4,000 ppm อย่างไรก็ตามที่ระดับความเข้มข้น 8,000 ppm สารสกัดในส่วน AE สามารถยับยั้งการงอกมากที่สุดคือ 85.59 เปอร์เซ็นต์ รองลงมาได้แก่ สารสกัดจากส่วน AQ และ ME ซึ่งสามารถยับยั้งการงอกได้ 32.10 และ 21.81 เปอร์เซ็นต์ตามลำคับ เมื่อเปรียบเทียบกับการเพาะในน้ำกลั่น (กราฟที่ 1.3.7 ค.)

ผลต่อการเจริญเติบโต พบว่าอิทธิพลของสารสกัดในส่วนต่างๆ ระดับความเข้มข้นของสาร สกัด และปฏิสัมพันธ์ระหว่างปัจจัยทั้งสองล้วนมีผลต่อการเจริญเติบโตของคันกล้าหญ้าข้าวนกอย่างมี นัยสำคัญทางสถิติ ยกเว้นผลของปฏิสัมพันธ์ระหว่างปัจจัยทั้งสองที่มีต่อน้ำหนักแห้งของคันกล้าหญ้า ข้าวนก (ตารางที่ 1.3.4) สารสกัดในส่วน AE มีผลการยับยั้งความยาวต้นได้ดีที่สุดเมื่อเปรียบเทียบกับ สารสกัดจากส่วนอื่นๆ รองลงมาได้แก่สารสกัดจากส่วน ME และ NE ตามลำดับ (กราฟที่ 1.3.8 ก.) ในด้านระดับความเข้มข้นปรากฏว่า สารสกัดตั้งแต่ระดับความเข้มข้น 1,000 ppm ขึ้นไป สามารถ ยับยั้งความยาวต้นของต้นกล้าหญ้าข้าวนกได้อย่างมีนัยสำคัญทางสถิติ (กราฟที่ 1.3.8 ข.) ซึ่งการเพิ่ม ความเข้มข้นของสารสกัดมีผลให้ความยาวต้นของต้นกล้าถูกยับยั้งมากขึ้น โดยที่ระดับความเข้มข้น 8,000 ppm สามารถยับยั้งความยาวต้นใด้ 49.43 เปอร์เซ็นต์ เมื่อเปรียบเทียบกับการเพาะในน้ำกลั่น

กราฟที่ 1.3.7 ผลของสารสกัดจากใบพุทธชาติก้านแดงที่แยกด้วยวิธี acid-base solvent partitioning ต่อการงอกของเมล็คหญ้าข้าวนก 5 วันหลังการเพาะ (ก. อิทธิพลของสารสกัดในส่วน ต่างๆ ข. อิทธิพลของระดับความเข้มข้น ค. อิทธิพลของปฏิสัมพันธ์ระหว่างสารสกัดใน ส่วนต่าง ๆ และระดับความเข้มข้น) ค่าเฉลี่ยจาก จำนวน 3 ซ้ำ ค่าเฉลี่ยที่มีอักษร เหมือนกันแสดงว่าไม่มีความแตกต่างกันทางสถิติจากการวิเคราะห์ค่าเฉลี่ยโดย Tukey's Studentized Range Test (p = 0.05)

สำหรับ ปฏิสัมพันธ์ระหว่างปัจจัยทั้งสอง พบว่าการใช้สารสกัดจากส่วน AE ตั้งแต่ระดับความเข้มข้น 500 ppm ขึ้นไป มีผลให้ความยาวต้นของต้นกล้าลดลงอย่างมีนัยสำคัญทางสถิติเมื่อเปรียบเทียบกับ การเพาะในน้ำกลั่น ในขณะที่สารสกัดจากส่วน ME ต้องใช้ความเข้มข้น 1,000 ppm ส่วนสารสกัดจากส่วน NE ต้องใช้ความเข้มข้น 4,000 ppm การเพิ่มระดับความเข้มข้นของสารสกัดมีผลให้ความ ยาวต้นของต้นกล้าถูกยับยั้งมากขึ้น ซึ่งที่ระดับความเข้มข้น 8,000 ppm สารสกัดจากส่วน AE สามารถ ยับยั้งความยาวต้นได้ 89.43 เปอร์เซ็นต์ เมื่อเปรียบเทียบกับการเพาะในน้ำกลั่น รองลงมาได้แก่สาร สกัดจากส่วน ME และ NE โดยสามารถยับยั้งความยาวต้นได้ 70.02 และ 60.92 เปอร์เซ็นต์ ตามลำดับ ในขณะที่สารสกัดจากชั้น AQ และ สารละลาย WP ไม่มีผลในการยับยั้งความยาวต้นของต้นกล้าหญ้า ข้าวนก (กราฟที่ 1.3.8 ค.)

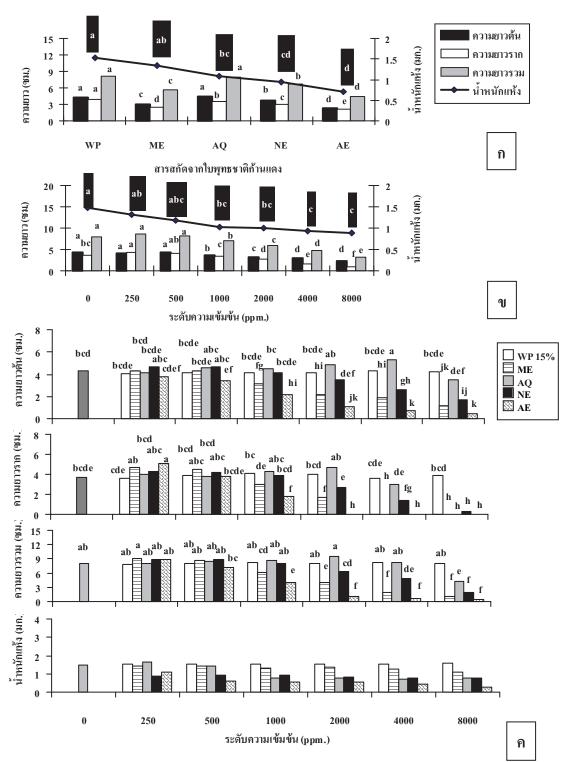
ในด้านความยาวราก ปรากฏว่าการใช้สารสกัดจากส่วน AE มีผลในการยับยั้งความยาวราก ของต้นกล้าได้ดีที่สุดเมื่อเปรียบเทียบกับสารสกัดจากส่วนอื่นๆ รองลงมาได้แก่สารสกัดจากส่วน ME, NE และ AQ ตามลำดับ (กราฟที่ 1.3.8 ก.) ในด้านระดับความเข้มข้นพบว่าสารสกัดตั้งแต่ระดับความ เข้มข้น 2,000 ppm ขึ้นไป มีผลให้ความยาวรากลดลงอย่างมีนัยสำคัญทางสถิติ (กราฟที่ 1.3.8 ข.) ซึ่ง การเพิ่มระดับความเข้มข้นของสารสกัดมีผลให้ความยาวรากของต้นกล้าถูกยับยั้งมากขึ้น โดยที่ระดับ ความเข้มข้น 8,000 ppm สามารถยับยั้งความยาวรากได้ 73.58 เปอร์เซ็นต์ เมื่อเปรียบเทียบกับการเพาะ

ในน้ำกลั่น สำหรับผลของปฏิสัมพันธ์ระหว่างปัจจัยทั้งสองพบว่าการใช้สารสกัดจากส่วน AE ตั้งแต่ ระดับความเข้มข้น 1,000 ppm ขึ้นไป สามารถยับยั้งความยาวรากของต้นกล้าได้อย่างมีนัยสำคัญทาง สถิติเมื่อเปรียบเทียบกับการเพาะในน้ำกลั่น ในขณะที่สารสกัดจากส่วน ME ต้องใช้ความเข้มข้น 2,000 ppm สารสกัดจากส่วน NE ต้องใช้ความเข้มข้น 4,000 ppm และสารสกัดจากส่วน AQ ต้องใช้ ความเข้มข้น 8,000 ppm ซึ่งที่ระดับความเข้มข้น 8,000 ppm สารสกัดในส่วน AE, ME และ AQ สามารถยับยั้งความยาวรากได้อย่างสมบูรณ์ สำหรับสารสกัดจากส่วน NE มีผลยับยั้งความยาวรากได้ 92.99 เปอร์เซ็นต์ ในขณะที่สารละลาย WP ไม่มีผลให้ความยาวราก ลดลง (กราฟที่ 1.3.8 ค.)

ตารางที่ 1.3.4 ผลการวิเคราะห์ทางสถิติการเจริญเติบ โตของหญ้าข้าวนก ที่เพาะ ในสารสกัดจากใบ พุทธชาติก้านแคงที่แยกด้วยวิธี solvent partitioning จำนวน 4 ส่วน 7 ระดับความเข้ม ข้น โดยใช้สารละลาย WP ที่ระดับความเข้มข้นเคียวกันเป็นวิธีการเปรียบเทียบ

Source of	df		Mean	Square	
Variation		ความยาวต้น	ความยาวราก	ความยาวรวม	น้ำหนักแห้ง
Treatment	34	5.01 **	7.97 **	24.09 **	0.49 **
A	4	16.11 **	10.43 **	52.74 **	2.24 **
В	6	9.52 **	24.40 **	61.26 **	0.71 **
AB	24	2.03 **	3.45 **	10.03 **	0.15 ns

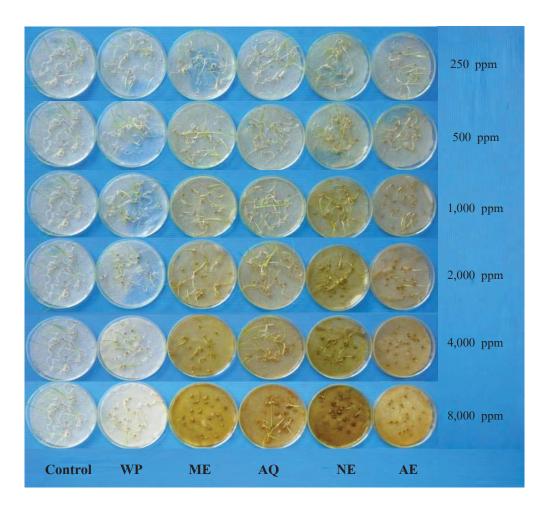
ns ไม่มีความแตกต่างกันทางสถิติ


** มีความแตกต่างกันทางสถิติอย่างมีนัยสำคัญยิ่ง

A คือ สารสกัดในส่วนต่างๆ

B คือ ระดับความเข้มข้นของสารสกัด

AB คือ ปฏิสัมพันธ์ระหว่างปัจจัย A และ B


เมื่อพิจารณาความยาวรวมพบว่า การใช้สารสกัดจากส่วน AE สามารถยับยั้งความยาวรวม ของต้นกล้าหญ้าข้าวนกได้ดีที่สุดเมื่อเปรียบเทียบกับสารสกัดจากส่วนอื่นๆ รองลงมาได้แก่สารสกัด จากส่วน ME และ NE ตามลำดับ (กราฟที่ 1.3.8 ก.) ในด้านระดับความเข้มข้นปรากฏว่า สารสกัด ตั้งแต่ระดับความเข้มข้น 2,000 ppm ขึ้นไป มีผลให้ความยาวรวมลดลงอย่างมีนัยสำคัญทางสถิติ (กราฟที่ 1.3.8 ข.) ซึ่งการเพิ่มความเข้มข้นของสารสกัดมีผลให้ความยาวรวมของต้นกล้าถูกยับยั้งมาก ขึ้น โดยที่ระดับความเข้มข้น 8,000 ppm สามารถยับยั้งความยาวรวมได้ 60.67 เปอร์เซ็นต์เมื่อ เปรียบเทียบกับการเพาะในน้ำกลั่น สำหรับผลของปฏิสัมพันธ์ระหว่างปัจจัยทั้งสองพบว่า การใช้สาร สกัดจากส่วน AE และ ME ตั้งแต่ระดับความเข้มข้น 1,000 ppm ขึ้นไป สามารถยับยั้งความยาวรวมได้ อย่างมีนัยสำคัญทางสถิติเมื่อเปรียบเทียบกับการเพาะในน้ำกลั่น ในขณะที่สารสกัดจากส่วน NE ต้อง

กราฟที่ 1.3.8 ผลของสารสกัดจากใบพุทธชาติก้านแดงที่แยกด้วยวิธี solvent partitioning ต่อการ เจริญเติบโตของต้นกล้าหญ้าข้าวนก 5 วันหลังการเพาะ (ก. อิทธิพลของสารสกัดใน ส่วนต่างๆ ข. อิทธิพลของระดับความเข้มข้น และ ค. อิทธิพลของปฏิสัมพันธ์ระหว่าง สารสกัดในส่วนต่างๆ และระดับความเข้มข้น) ค่าเฉลี่ยจากจำนวน 3 ซ้ำ ค่าเฉลี่ยที่มี อักษรเหมือนกันแสดงว่าไม่มีความแตกต่างกันทางสถิติจากการวิเคราะห์ค่าเฉลี่ยโดย Tukey's Studentized Range Test (p = 0.05)

ความเข้มข้น 2,000 ppm และสารสกัดจากส่วน AQ ต้องใช้ความเข้มข้น 8,000 ppm ซึ่งที่ระดับความ เข้มข้น 8,000 ppm สารสกัดจากส่วน AE สามารถยับยั้งความยาวรวมของต้นกล้าได้มากที่สุดคือ 94.29 เปอร์เซ็นต์ รองลงมาได้แก่สารสกัดจากส่วน ME, NE และ AQ โดยมีผลยับยั้งความยาวรวมได้ 86.10, 75.81และ 47.15 เปอร์เซ็นต์ ตามลำดับ ในขณะที่สารละลาย WP ไม่มีผลยับยั้งความยาวรวม ของต้นกล้า (กราฟที่ 1.3.8 ค. และ ภาพที่ 1.3.5)

ในด้านน้ำหนักแห้งของต้นกล้าพบว่า สารสกัดจากส่วน AE มีผลให้น้ำหนักแห้งของต้นกล้า น้อยที่สุด รองลงมาได้แก่สารสกัดจากส่วน ME และ AQ ตามลำดับ (กราฟที่ 1.3.8 ก.) ในด้านระดับ ความเข้มข้นของสารสกัด ปรากฏว่าสารสกัดตั้งแต่ระดับความเข้มข้น 1,000 ppm ขึ้นไป มีผลให้ น้ำหนักแห้งของต้นกล้าลดลงอย่างมีนัยสำคัญ การเพิ่มระดับความเข้มข้นสูงขึ้นมีผลให้น้ำหนักแห้ง ของต้นกล้าลดลงมากขึ้น ซึ่งที่ระดับความเข้มข้น 8,000 ppm น้ำหนักแห้งลดลง 39.86 เปอร์เซ็นต์ (กราฟที่ 1.3.8 ข.)

ภาพที่ 1.3.5 ผลของสารสกัดจากใบพุทธชาติก้านแดงที่แยกด้วยวิธี acid-base solvent partitioning 7 ระดับความเข้มข้นต่อการงอกและการเจริญเติบโตของหญ้าข้าวนกหลังการเพาะ 5 วัน

การทดลองที่ 1.4 ศึกษาสภาพที่เหมาะสมต่อการเก็บรักษาสารออกฤทธิ์และสารผลิตภัณฑ์ และ ระยะเวลาในการเสื่อมสลายของสารออกฤทธิ์ในสารผลิตภัณฑ์

ศึกษาสภาพแวดล้อม (รูปแบบของผลิตภัณฑ์ อุณหภูมิ และแสง) ที่เหมาะสมในการเก็บรักษา สารผลิตภัณฑ์ให้สามารถคงสภาพ และ ไม่เกิดการเสื่อมสลายของสารออกฤทธิ์ และระยะเวลาในการ เสื่อมสลายของสารออกฤทธิ์ เมื่อเก็บ ไว้ในสภาพแวดล้อมต่างๆกัน โดยศึกษาลักษณะรูปแบบของ ผลิตภัณฑ์ของสารกำจัดวัชพืชจากพุทธชาติก้านแดง ปั้นเม็ด และสารละลาย และศึกษาการเก็บรักษา สารออกฤทธิ์และสารผลิตภัณฑ์ ที่อุณหภูมิห้องและอุณหภูมิเย็นในสภาพที่มีแสง (ขวดใส) และ ไม่มี แสง (ขวดทึบแสง)

วิธีการทดลอง

<u>การวางแผนการทดลอง</u>

ทำการทดลองโดยใช้แผนการทดลองแบบ Completely Randomized Design (CRD) วิธีการ ทดลองละ 4 ซ้ำ ดังนี้ น้ำกลั่น (วิธีการเปรียบเทียบ), สารกำจัดวัชพืชจากพุทธชาติก้านแดงรูปแบบผลิต ภัณฑ์สารละลายอุณหภูมิห้องมีแสง, อุณหภูมิห้องไม่มีแสง, อุณหภูมิเย็นมีแสง, อุณหภูมิเย็นมีแสง, อุณหภูมิเย็นมีแสง, รูปแบบผลิตภัณฑ์ปั้นเม็ดอุณหภูมิห้องมีแสง, อุณหภูมิห้องไม่มีแสง, อุณหภูมิเย็นมีแสง และอุณหภูมิเย็นไม่มีแสง

การเตรียมผลิตภัณฑ์สารกำจัดวัชพืชจากพุทธชาติก้านแคง

การเตรียมสารสกัดหยาบ (crude ethanol extract)นำใบพุทธชาติก้านแดงมาผึ่งและอบให้แห้ง ด้วยอุณหภูมิ 45 องศาเซลเซียส เป็นเวลา 72 ชั่วโมง แล้วตัดเป็นชิ้นเล็กๆ นำไปสกัดด้วยสารละลายเอ ทานอล โดยการแช่ใบพุทธชาติก้านแดง 100 กรัม ต่อ เอทานอล 1 ลิตร ในภาชนะปิด ตั้งไว้ที่อุณหภูมิ ห้องเป็นเวลา 48 ชั่วโมง กรองสารละลายด้วยผ้ากรอง สำลี และกระดาษกรองเบอร์ 1 แยกส่วนกาก (residue) จากนั้นนำกากไป สกัดด้วยเอทานอลอีก 3 รอบ นำสารละลายเอทานอลที่ผ่านการกรองทั้ง 4 รอบมาผสมรวมกัน จากนั้นระเหยเอทานอลออกด้วยเครื่องระเหยสุญญากาส (vacuum rotary evaporator) จะได้สารสกัดหยาบจากเอทานอล (crude methanol extract) ของพุทธชาติก้านแดง

การเตรียมผลิตภัณฑ์สารกำจัดวัชพืชจากพุทธชาติก้านแดงรูปแบบสารละลาย สารกำจัด วัชพืชจากพุทธชาติก้านแดงเตรียมได้จากการผสมของสารสกัดหยาบจากใบพุทธชาติก้านแดงกับ surfactant ในอัตราส่วน 30 : 70 ตามลำดับ ได้สารออกฤทธิ์ที่ความเข้มข้น 30 เปอร์เซ็นต์ ในรูป สารละลาย ทดสอบประสิทธิภาพของสารกำจัดวัชพืชจากพุทธชาติก้านแดง ที่ระดับความเข้มข้น 30 เปอร์เซ็นต์ ของสารออกฤทธิ์

การเตรียมผลิตภัณฑ์สารกำจัดวัชพืชจากพุทธชาติก้านแดงรูปแบบปั้นเม็ด สารกำจัดวัชพืช จากพุทธชาติก้านแดงเตรียมได้จาก การนำใบแห้งของพุทธชาติก้านแดงผสมกับแป้งมัน และดินสอ พอง ในอัตราส่วน 2:1:1 โดยละลายแป้งมันในน้ำ ตามด้วยดินสอพอง ผสมให้เข้ากันจากนั้นนำไปตั้ง ไฟให้ร้อน แล้วยกออกจากไฟ ตามด้วยใบแห้งของพุทธชาติก้านแดง ผสมจนเป็นเนื้อเดียวกัน และอบ ให้แห้งที่อุณหภูมิ 40-50°C นาน 2 วัน นำไปปั่นด้วยเครื่องปั่นให้มีขนาดเล็กลง พร้อมสำหรับการ ทดสอบ

ขั้นตอนก<u>ารทดสอบ</u>

ชั่งและคูดสารกำจัดวัชพืชจากพุทธชาติก้านแดงที่อยู่ในรูปของผลิตภัณฑ์ปั้นเม็ดและ สารละลาย ต่อการงอกและการเจริญเติบโตของพืชทดสอบ คือ หญ้าข้าวนก และถั่วผี ปริมาณการใช้ สารผลิตภัณฑ์เทียบกับใบแห้งที่อัตรา 0.02, 0.04, 0.08 และ 0.16 g/plate เปรียบเทียบกับชุดควบคุม ทดลองในจานทดลองขนาดเส้นผ่านศูนย์กลาง 9 เซนติเมตร แล้ววางพืชทดสอบ 10 เมล็ดต่อ 1 จาน ทดลอง ทำการทดลอง 4 ซ้ำ แล้วนำไปวางไว้ในตู้ growth chamber บันทึกอัตราการงอก ความยาวต้น และความยาวรากของวัชพืช 7 วัน หลังการเพาะ

การบันทึกผลการทดลอง

ทำการทดสอบประสิทธิภาพของสารผลิตภัณฑ์ที่เก็บรักษาสภาพแวดล้อมที่ต่างกัน ทุก ๆ 30 วัน บันทึกข้อมูลการงอกและการเจริญเติบโตของพืชทดสอบ

ผลการทดลอง

ผลต่อเปอร์เซ็นต์การงอก จากการทดสอบประสิทธิภาพของสารของสารผลิตภัณฑ์แบบปั้น เม็ดและสารละลายเข้มข้น ที่เก็บรักษาในสภาพอุณหภูมิและแสงที่แตกต่างกัน เป็นระยะเวลา 12 เดือน เมื่อทคสอบกับเมล็ดหญ้าข้าวนกต่อเปอร์เซ็นต์การงอก พบว่า ผลิตภัณฑ์แบบสารละลายเข้มข้น สามารถยับยั้งการงอกของเมล็ดหญ้าข้าวนกได้มากกว่า เมื่อเปรียบเทียบกับผลิตภัณฑ์แบบปั้นเม็ด โคยที่ผลิตภัณฑ์แบบสารละลายเข้มข้น เก็บรักษาที่อุณหภูมิห้องไม่มีแสง สามารถยับยั้งการงอกของ เมล็ดหญ้าข้าวนกได้มากที่สุด สามารถยับยั้งได้โดยสมบูรณ์ รองลงมาคือ การเก็บรักษาที่อุณหภูมิห้อง ้มีแสง ที่อุณหภูมิเย็นไม่มีแสง และที่อุณหภูมิเย็นมีแสง ตามลำดับ ส่วนผลิตภัณฑ์แบบปั้นเม็ด ทั้งการ เก็บรักษาแบบอุณหภูมิห้องและอุณหภูมิเย็น มีแสงและไม่มีแสง ให้ผลไม่สามารถยับยั้งการงอกของ เมล็ดหญ้าข้าวนกได้ โดยเปรียบเทียบกับวิธีการควบคุม (ตารางที่ 1.4.1) เมื่อทดสอบกับเมล็ดถั่วผื พบว่า ผลิตภัณฑ์แบบสารละลายเข้มข้น ทุกการเก็บรักษา ทุกระดับความเข้มข้นสามารถยับยั้งการงอก ของเมล็ดถั่วผีได้โดยสมบูรณ์ ส่วนผลิตภัณฑ์แบบปั้นเม็ด การเก็บรักษาที่อุณหภูมิเย็นมีแสง สามารถ ยับยั้งการงอกของเมล็ดถั่วผีได้ดีกว่า การเก็บรักษาที่อุณหภูมิเย็นมีแสง ที่อุณหภูมิห้องไม่มีแสง และที่ อุณหภูมิห้องมีแสง ตามลำดับ เมื่อเปรียบเทียบกับวิธีการควบคุม (ตารางที่ 1.4.2) เมื่อเปรียบเทียบ ผลิตภัณฑ์แบบปั้นเม็ดและสารละลายเข้มข้น ที่เก็บรักษาในสภาพอุณหภูมิและแสงที่แตกต่างกัน เป็น ระยะเวลา 12 เคือน โคยเปรียบเทียบจากเคือนที่ 1 ถึงเคือนที่ 12 ที่ระดับความเข้มข้นเคียวกัน พบว่า ระยะเวลาการเก็บรักษาผลิตภัณฑ์ให้ผลการทดสอบไม่แตกต่างกัน ทั้งเมล็ดหญ้าข้าวนกและเมล็ดถั่วผื

ผลต่อการเจริญเติบโตค้านความยาวต้น เมื่อทคสอบกับเมล็คหญ้าข้าวนกต่อการเจริญเติบโต ค้านความยาวต้น พบว่า ผลิตภัณฑ์แบบสารละลายเข้มข้น มีความยาวต้นน้อยกว่า เมื่อเปรียบเทียบกับ ผลิตภัณฑ์แบบปั้นเม็ด โดยที่ผลิตภัณฑ์แบบสารละลายเข้มข้น เก็บรักษาที่อุณหภูมิห้องไม่มีแสง มี ความยาวต้นน้อยที่สุด รองลงมาคือ การเก็บรักษาที่อุณหภูมิห้องมีแสง ที่อุณหภูมิเย็นแสง และที่ อุณหภูมิเย็นไม่มีมีแสง ตามลำดับ ส่วนผลิตภัณฑ์แบบปั้นเม็ด ทั้งการเก็บรักษาแบบอุณหภูมิห้องและ อุณหภูมิเย็น มีแสงและไม่มีแสง ให้ผลด้านการส่งเสริมความยาวต้น โดยเปรียบเทียบกับวิธีการ ควบคุม (ตารางที่ 1.4.3) เมื่อทคสอบกับเมล็ดถั่วผี พบว่า ผลิตภัณฑ์แบบสารละลายเข้มข้น ทุกการเก็บ รักษา ทุกระดับความเข้มข้นสามารถยับยั้งการเจริญเติบโตด้านความยาวต้นของเมล็ดถั่วผีได้โดย สมบูรณ์ ส่วนผลิตภัณฑ์แบบปั้นเม็ด การเก็บรักษาที่อุณหภูมิเย็นไม่มีแสง มีความยาวต้นน้อยที่สุด รองลงมาคือ การเก็บรักษาที่อุณหภูมิเย็นมีแสง ที่อุณหภูมิห้องไม่มีแสง และที่อุณหภูมิห้องมีแสง ตามลำดับ เมื่อเปรียบเทียบกับวิธีการควบคุม (ตารางที่ 1.4.4)

ผลต่อการเจริญเติบโตค้านความขาวราก เมื่อทคสอบกับเมล็ดหญ้าข้าวนกต่อการเจริญเติบโตค้านความขาวราก พบว่า ผลิตภัณฑ์แบบสารละลายเข้มข้น ทุกการเก็บรักษา ทุกระคับความเข้มข้น สามารถขับขั้งการเจริญเติบโตความขาวรากของเมล็ดหญ้าข้าวนกได้โดยสมบูรณ์ ส่วนผลิตภัณฑ์แบบ ปั้นเม็ด การเก็บรักษาที่อุณหภูมิห้องไม่มีแสง มีความขาวรากน้อยที่สุด รองลงมาคือ การเก็บรักษาที่อุณหภูมิห้องมีแสง ที่อุณหภูมิเข็นมีแสง และที่อุณหภูมิเข็นไม่มีแสง ตามลำดับ เมื่อเปรียบเทียบกับ วิธีการควบคุม (ตารางที่ 1.4.5) เมื่อทดสอบกับเมล็ดถั่วผี พบว่า ผลิตภัณฑ์แบบสารละลายเข้มข้น ทุกการเก็บรักษา ทุกระดับความเข้มข้นสามารถขับขั้งการเจริญเติบโตค้านความขาวรากของเมล็ดถั่วผีได้โดยสมบูรณ์ ส่วนผลิตภัณฑ์ปั้นเม็ด การเก็บรักษาที่อุณหภูมิห้องไม่มีแสง หือวามขาวรากน้อยที่สุดรองลงมาคือ การเก็บรักษาแบบอุณหภูมิเย็นมีแสง ที่อุณหภูมิเข็นไม่มีแสง และที่อุณหภูมิห้องมีแสงตามลำดับ เมื่อเปรียบเทียบกับวิธีการควบคุม (ตารางที่ 1.4.6)

ตารางที่ 1.4.1 แสดงประสิทธิภาพของสารผลิตภัณฑ์แบบปั้นเม็ด (pellet formulation) และ แบบ สารละลายเข้มข้น (Soluble Concentrate formulation) ที่เก็บรักษาในสภาพอุณหภูมิ และแสงที่แตกต่างกัน เป็นระยะเวลา 12 เดือนต่อเปอร์เซ็นต์การงอกของหญ้าข้าวนก

v_v				เดือน	ที่เก็บรัศ	าษาผลิเ	ทภัณฑิ๊	ในสภา	พต่างๆ			
ความเข้มข้น	1	2	3	4	5	6	7	8	9	10	11	12
Control	100	100	100	100	100	100	100	100	100	100	100	100
ปั้นเม็ด อุณหภูมิห้อง มีแสง	ı											
0.125 g/plate	100	100	100	100	100	100	100	100	100	100	100	100
0.25 g/plate	100	100	100	100	100	100	100	100	100	100	100	100
0.5 g/plate	100	100	100	100	100	100	100	100	100	100	100	100
1 g/plate	100	100	100	100	100	100	100	100	100	100	100	100
ปั้นเม็ด อุณหภูมิห้อง ไม่มีแ	រផារ											
0.125 g/plate	100	100	100	100	100	100	100	100	100	100	100	100
0.25 g/plate	100	100	100	100	100	100	100	100	100	100	100	100
0.5 g/plate	100	100	100	100	100	100	100	100	100	100	100	100
1 g/plate	100	100	100	100	100	100	100	100	100	100	100	100
ปั้นเม็ด อุณหภูมิเย็น มีแสง												
0.125 g/plate	100	100	100	100	100	100	100	100	100	100	100	100
0.25 g/plate	100	100	100	100	100	100	100	100	100	100	100	100
0.5 g/plate	100	100	100	100	100	100	100	100	100	100	100	100
1 g/plate	100	100	100	100	100	100	100	100	100	100	100	100
ปั้นเม็ด อุณหภูมิเย็น ใม่มีแ	ជ ា											
0.125 g/plate	100	100	100	100	100	100	100	100	100	100	100	100
0.25 g/plate	100	100	100	100	100	100	100	100	100	100	100	100
0.5 g/plate	100	100	100	100	100	100	100	100	100	100	100	100
1 g/plate	100	100	100	100	100	100	100	100	100	100	100	100
สารละลาย อุณหภูมิห้อง มีเ	แสง											
0.068 g/plate	30	27.5	25	25	27.5	25	25	30	27.5	25	22.5	22.5
0.137 g/plate	10	7.5	7.5	7.5	7.5	7.5	7.5	10	7.5	5	5	5
0.274 g/plate	0	0	0	0	0	0	0	0	0	0	0	0
0.547 g/plate	0	0	0	0	0	0	0	0	0	0	0	0

ตารางที่ 1.4.1 แสดงประสิทธิภาพของสารผลิตภัณฑ์แบบปั้นเม็ด (pellet formulation) และ แบบ สารละลายเข้มข้น (Soluble Concentrate formulation) ที่เก็บรักษาในสภาพอุณหภูมิ และแสงที่แตกต่างกัน เป็นระยะเวลา 12 เดือนต่อเปอร์เซ็นต์การงอกของหญ้าข้าวนก (ต่อ)

สารละลาย อุณหภูมิห้อง	ไม่มีแสง											
0.068 g/plate	47.5	47.5	45	1.8	42.5	45	45	45	42.5	45	47.5	42.5
0.137 g/plate	0	0	0	0	0	0	0	0	0	0	0	0
0.274 g/plate	0	0	0	0	0	0	0	0	0	0	0	0
0.547 g/plate	0	0	0	0	0	0	0	0	0	0	0	0
สารละลาย อุณหภูมิเย็น โ	ใม่มีแสง											
0.068 g/plate	50	50	45	50	850	47.5	47.5	45	40	40	37.5	35
0.137 g/plate	17.5	15	15	15	15	12.5	12.5	15	15	17.5	12.5	12.5
0.274 g/plate	0	0	0	0	0	0	0	0	0	0	0	0
0.547 g/plate	0	0	0	0	0	0	0	0	0	0	0	0
สารละลาย อุณหภูมิเย็น โ	ใม่มีแสง											
0.068 g/plate	77.5	72.5	70	72.5	72.5	72.5	72.5	65	67.5	62.5	60	55
0.137 g/plate	35	35	35	35	30	30	35	32.5	32.5	30	32.5	27.5
0.274 g/plate	0	0	0	0	0	0	0	0	0	0	0	0
0.547 g/plate	0	0	0	0	0	0	0	0	0	0	0	0

ตารางที่ 1.4.2 แสดงประสิทธิภาพของสารผลิตภัณฑ์แบบปั้นเม็ด (pellet formulation) และ แบบ สารละลายเข้มข้น (Soluble Concentrate formulation) ที่เก็บรักษาในสภาพอุณหภูมิ และแสงที่แตกต่างกัน เป็นระยะเวลา 12 เดือนต่อเปอร์เซ็นต์การงอกของถั่วผี

ความเข้มข้น						เดือ	นที่					
กาเมเขมขน	1	2	3	4	5	6	7	8	9	10	11	12
Control	100	100	100	100	100	100	100	100	100	100	100	100
ปั้นเม็ด อุณหภูมิห้อง	มีแสง											
0.125 g/plate	100	100	100	100	100	100	100	100	100	100	100	100
0.25 g/plate	50	50	42.5	50	50	50	50	50	55	50	57.5	50
0.5 g/plate	15	15	17.5	15	15	15	15	17.5	20	15	20	15
1 g/plate	12.5	10	10	10	10	10	7.5	15	15	10	7.5	10
ปั้นเม็ด อุณหภูมิห้อง	ไม่มี											
แสง												
0.125 g/plate	100	100	100	100	100	100	100	100	100	100	100	100
0.25 g/plate	45	35	35	35	35	35	35	47.5	45	35	50	35
0.5 g/plate	7.5	7.5	7.5	7.5	7.5	7.5	7.5	10	10	7.5	10	7.5
1 g/plate	7.5	7.5	7.5	7.5	7.5	7.5	7.5	10	5	7.5	7.5	7.5
ปั้นเม็ด อุณหภูมิเย็น	ฎแนง											
0.125 g/plate	100	100	100	100	100	100	100	100	100	100	100	100
0.25 g/plate	22.5	20	22.5	20	20	20	20	27.5	25	20	22.5	20
0.5 g/plate	5	5	2.5	5	5	5	5	5	7.5	5	10	5
1 g/plate	5	5	5	5	5	5	5	10	5	5	7.5	5
ปั้นเม็ด อุณหภูมิเย็น โ	ไม่มีแสง											
0.125 g/plate	100	100	100	100	100	100	100	100	100	100	100	100
0.25 g/plate	25	22.5	22.5	22.5	22.5	27.5	27.5	25	25	27.5	22.5	22.5
0.5 g/plate	7.5	5	5	5	5	2.5	2.5	10	7.5	2.5	7.5	5
1 g/plate	0	5	5	5	5	5	5	10	5	5	0	5

ตารางที่ 1.4.2 แสดงประสิทธิภาพของสารผลิตภัณฑ์แบบปั้นเม็ด (pellet formulation) และ แบบ สารละลายเข้มข้น (Soluble Concentrate formulation) ที่เก็บรักษาในสภาพอุณหภูมิ และแสงที่แตกต่างกัน เป็นระยะเวลา 12 เดือนต่อเปอร์เซ็นต์การงอกของถั่วผี (ต่อ)

	า มีแสง											
0.068 g/plate	0	0	0	0	0	0	0	0	0	0	0	0
0.137 g/plate	0	0	0	0	0	0	0	0	0	0	0	0
0.274 g/plate	0	0	0	0	0	0	0	0	0	0	0	0
0.547 g/plate	0	0	0	0	0	0	0	0	0	0	0	0
สารละลาย อุณหภูมิห้อง	าไม่มีแส	(1										
0.068 g/plate	0	0	0	0	0	0	0	0	0	0	0	0
0.137 g/plate	0	0	0	0	0	0	0	0	0	0	0	0
0.274 g/plate	0	0	0	0	0	0	0	0	0	0	0	0
0.547 g/plate	0	0	0	0	0	0	0	0	0	0	0	0
สารละลาย อุณหภูมิเย็น	ไม่มีแส	1										
0.068 g/plate	0	0	0	0	0	0	0	0	0	0	0	0
0.137 g/plate	0	0	0	0	0	0	0	0	0	0	0	0
0.274 g/plate	0	0	0	0	0	0	0	0	0	0	0	0
0.547 g/plate	0	0	0	0	0	0	0	0	0	0	0	0
สารละลาย อุณหภูมิเย็น	ไม่มีแส	1										
0.068 g/plate	0	0	0	0	0	0	0	0	0	0	0	0
0.137 g/plate	0	0	0	0	0	0	0	0	0	0	0	0
0.274 g/plate	0	0	0	0	0	0	0	0	0	0	0	0
0.547 g/plate	0	0	0	0	0	0	0	0	0	0	0	0

ตารางที่ 1.4.3 แสดงประสิทธิภาพของสารผลิตภัณฑ์แบบปั้นเม็ด (pellet formulation) และ แบบ สารละลายเข้มข้น (Soluble Concentrate formulation) ที่เก็บรักษาในสภาพอุณหภูมิ และแสงที่แตกต่างกัน เป็นระยะเวลา 12 เดือนต่อความยาวต้นของหญ้าข้าวนก

ความเข้มข้น												
กาเมเขมขน	1	2	3	4	5	6	7	8	9	10	11	12
control	4.0	3.8	3.9	4.0	3.9	4.1	3.8	3.9	4.0	4.0	3.8	3.8
ปั้นเม็ด อุณหภูมิห้อง	มีแสง											
0.125 g/plate	6.2	6.1	6.2	6.3	6.1	6.4	6.0	6.2	6.2	6.3	6.0	6.0
0.25 g/plate	5.6	5.5	5.6	5.7	5.5	5.8	5.6	5.6	5.6	5.7	5.3	5.4
0.5 g/plate	5.6	5.4	5.5	5.6	5.4	5.7	5.4	5.5	5.6	5.6	5.3	5.3
1 g/plate	4.5	4.4	4.5	4.6	4.4	4.7	4.3	4.5	4.5	4.6	4.2	4.5
ปั้นเม็ด อุณหภูมิห้อง	ไม่มีแสง											
0.125 g/plate	4.6	4.5	4.6	4.7	4.7	4.8	4.4	4.6	4.6	4.7	4.5	4.3
0.25 g/plate	5.1	4.9	5.0	5.1	4.9	5.2	4.9	5.0	5.1	5.1	4.9	4.9
0.5 g/plate	5.1	4.9	5.0	5.1	5.0	5.2	4.8	5.0	5.1	5.1	4.9	4.9
1 g/plate	4.7	4.6	4.7	4.8	4.6	4.9	4.7	4.7	4.7	4.8	4.5	4.6
ปั้นเม็ด อุณหภูมิเย็น	มีแสง											
0.125 g/plate	5.0	4.8	4.9	5.0	5.0	5.1	4.8	4.9	5.0	5.0	4.8	4.8
0.25 g/plate	5.8	5.6	5.7	5.8	5.6	5.9	5.6	5.7	5.8	5.8	5.6	5.5
0.5 g/plate	5.0	4.9	5.0	5.1	4.6	5.2	4.8	5.0	5.0	5.1	4.8	4.7
1 g/plate	5.0	4.8	4.9	5.0	5.0	5.1	4.8	4.9	5.0	5.0	4.7	4.7
ปั้นเม็ด อุณหภูมิเย็น โ	ไม่มีแสง											
0.125 g/plate	5.0	4.9	5.0	5.1	4.9	5.2	4.8	5.0	5.0	5.1	4.8	4.6
0.25 g/plate	5.0	4.9	5.0	5.1	4.9	5.2	4.9	5.0	5.0	5.1	4.6	4.5
0.5 g/plate	4.8	4.7	4.8	4.9	4.9	5.0	4.6	4.8	4.8	4.9	4.5	4.4
1 g/plate	3.5	3.3	3.4	3.5	3.5	3.6	3.3	3.4	3.5	3.5	3.2	3.2

ตารางที่ 1.4.3 แสดงประสิทธิภาพของสารผลิตภัณฑ์แบบปั้นเม็ด (pellet formulation) และ แบบ สารละลายเข้มข้น (Soluble Concentrate formulation) ที่เก็บรักษาในสภาพอุณหภูมิ และแสงที่แตกต่างกัน เป็นระยะเวลา 12 เดือนต่อความยาวต้นของหญ้าข้าวนก (ต่อ)

สารละลาย อุณหภูมิห์	้อง มีแสง	1										
0.068 g/plate	2.1	2.0	2.0	2.2	2.2	2.3	1.9	1.9	1.9	2.2	1.9	2.0
0.137 g/plate	0.7	0.5	0.6	0.7	0.7	0.5	0.4	0.6	0.6	0.5	0.5	0.4
0.274 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.547 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
สารละลาย อุณหภูมิห์	เอง ไม่มีแ	เสง										
0.068 g/plate	1.7	1.7	1.8	1.8	1.8	1.9	1.6	1.6	1.7	1.8	1.7	1.7
0.137 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.274 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.547 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
สารละลาย อุณหภูมิเย็	ข็น ไม่มีแ	ផារ										
0.068 g/plate	1.8	1.8	1.8	2.0	2.0	2.1	1.7	1.9	1.7	2.0	1.8	1.9
0.137 g/plate	0.7	0.7	0.9	0.9	0.9	0.8	0.7	0.5	0.7	0.7	0.5	0.7
0.274 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.547 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
สารละลาย อุณหภูมิเย็	ข็น ไม่มีแ	តារ										
0.068 g/plate	2.5	2.3	2.4	2.5	2.5	2.6	2.4	2.4	2.5	2.5	2.4	2.3
0.137 g/plate	2.1	2.0	2.1	2.2	2.2	2.3	2.0	2.1	2.1	2.2	2.1	2.0
0.274 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.547 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

ตารางที่ 1.4.4 แสดงประสิทธิภาพของสารผลิตภัณฑ์แบบปั้นเม็ด (pellet formulation) และ แบบ สารละลายเข้มข้น (Soluble Concentrate formulation) ที่เก็บรักษาในสภาพอุณหภูมิ และแสงที่แตกต่างกัน เป็นระยะเวลา 12 เดือนต่อความยาวต้นของถั่วผี

ความเข้มข้น						เดือา	นที่					
นแนนแนเเน	1	2	3	4	5	6	7	8	9	10	11	12
Control	6.4	6.4	6.4	6.5	6.3	6.6	6.6	6.4	6.5	6.5	6.2	6.2
ปั้นเม็ด อุณหภูมิห้อง	มีแสง											
0.125 g/plate	8.1	8.0	8.1	8.2	7.9	8.3	8.1	8.1	8.2	8.2	7.8	7.8
0.25 g/plate	8.2	8.2	8.3	8.4	8.2	8.5	8.1	8.3	8.3	8.4	8.0	8.0
0.5 g/plate	7.5	6.8	7.1	7.5	7.1	7.6	6.7	6.7	6.5	7.5	5.0	6.8
1 g/plate	0.7	0.8	0.9	1.0	1.0	0.6	0.6	0.9	0.8	0.5	0.7	0.9
ปั้นเม็ด อุณหภูมิห้อง	ไม่มีแสง											
0.125 g/plate	7.5	7.5	7.6	7.7	7.3	7.8	7.2	7.6	7.6	7.7	7.2	7.2
0.25 g/plate	3.6	4.5	5.1	4.1	3.9	3.8	3.5	3.7	3.9	3.7	3.6	3.8
0.5 g/plate	2.0	2.8	2.9	3.0	1.7	1.2	1.0	2.9	2.9	1.1	2.4	2.9
1 g/plate	0.6	0.6	0.7	0.8	0.8	0.6	0.5	0.7	0.4	0.6	0.6	0.7
ปั้นเม็ด อุณหภูมิเย็น ร์	วีแส ง											
0.125 g/plate	9.2	9.4	8.7	9.5	9.3	8.9	8.3	9.4	9.4	9.6	9.1	8.9
0.25 g/plate	4.3	7.6	7.1	7.3	6.8	6.8	5.7	6.3	6.3	6.7	6.2	6.9
0.5 g/plate	0.6	1.1	1.8	1.1	1.0	0.1	0.0	1.1	1.1	0.1	1.1	1.1
1 g/plate	0.2	0.2	0.3	0.3	0.3	0.2	0.1	0.3	0.2	0.1	0.2	0.3
ปั้นเม็ด อุณหภูมิเย็น ไ	ม่มีแสง											
0.125 g/plate	7.3	7.2	7.3	7.4	7.2	7.5	7.0	7.3	7.3	7.4	7.0	7.0
0.25 g/plate	6.7	7.7	7.8	7.9	7.5	7.3	6.4	7.0	7.0	7.2	6.5	7.4
0.5 g/plate	1.1	1.1	1.1	1.2	1.2	1.1	1.1	1.1	1.1	1.1	1.0	1.1
1 g/plate	0.0	0.1	0.2	0.2	0.2	0.0	0.0	0.2	0.2	0.0	0.1	0.2

ตารางที่ 1.4.4 แสดงประสิทธิภาพของสารผลิตภัณฑ์แบบปั้นเม็ด (pellet formulation) และ แบบ สารละลายเข้มข้น (Soluble Concentrate formulation) ที่เก็บรักษาในสภาพอุณหภูมิ และแสงที่แตกต่างกัน เป็นระยะเวลา 12 เดือนต่อความยาวต้นของถั่วผี (ต่อ)

สารละลาย อุณหภูมิเ	ร้อง มีแสง	1										
0.068 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.137 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.274 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.547 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
สารละลาย อุณหภูมิเ	ร้อง ไม่มีแ	เสง										
0.068 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.137 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.274 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.547 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
สารละลาย อุณหภูมิเ	ย็น ไม่มีแ	ព រ										
0.068 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.137 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.274 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.547 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
สารละลาย อุณหภูมิเ	ย็น ไม่มีแ	ផា										
0.068 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.137 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.274 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.547 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

ตารางที่ 1.4.5 แสคงประสิทธิภาพของสารผลิตภัณฑ์แบบปั้นเม็ค (pellet formulation) และ แบบ สารละลายเข้มข้น (Soluble Concentrate formulation) ที่เก็บรักษาในสภาพอุณหภูมิ และ แสงที่แตกต่างกัน เป็นระยะเวลา 12 เดือนต่อความยาวรากของหญ้าข้าวนก

 ความเข้มข้น						เดือน	เที่					
มาเทกทาห	1	2	3	4	5	6	7	8	9	10	11	12
Control	2.6	2.4	2.2	2.8	2.6	2.7	2.5	2.6	2.7	2.6	2.5	2.6
ปั้นเม็ด อุณหภูมิห้อง	มีแสง											
0.125 g/plate	4.9	4.8	4.9	5.0	4.8	5.1	4.8	4.9	4.9	5.0	4.7	4.8
0.25 g/plate	5.9	5.8	6.3	6.0	5.9	6.1	5.9	5.9	5.9	6.0	5.6	5.7
0.5 g/plate	2.1	1.9	2.1	2.1	2.1	2.2	2.2	2.0	2.1	2.1	2.0	1.9
1 g/plate	1.0	0.9	1.1	1.1	1.3	1.2	0.9	1.0	1.0	1.1	1.0	1.0
ปั้นเม็ด อุณหภูมิห้อง	ใม่มีแสง											
0.125 g/plate	4.2	4.1	4.4	4.3	4.3	4.4	4.0	4.2	4.2	4.3	4.0	4.0
0.25 g/plate	6.2	6.0	6.1	6.2	5.9	6.3	5.9	6.1	6.2	6.2	5.9	6.0
0.5 g/plate	2.0	1.8	2.0	2.0	2.1	2.1	1.9	1.9	2.0	2.0	1.9	1.9
1 g/plate	1.0	0.9	0.8	1.1	1.1	1.2	1.0	1.0	1.0	1.1	0.9	0.9
ปั้นเม็ด อุณหภูมิเย็น มี	ໍ່າແດງ											
0.125 g/plate	4.8	4.7	4.1	4.9	4.9	5.0	4.6	4.8	4.8	4.9	4.6	4.6
0.25 g/plate	4.9	4.8	5.0	5.0	4.7	5.1	4.8	4.9	4.9	5.0	4.7	4.7
0.5 g/plate	2.2	2.1	2.5	2.3	2.4	2.4	2.1	2.2	2.2	2.3	2.1	2.1
1 g/plate	1.7	1.5	1.4	1.7	1.7	1.8	1.6	1.6	1.7	1.7	1.6	1.6
ปั้นเม็ด อุณหภูมิเย็น ใ	ม่มีแสง											
0.125 g/plate	5.9	5.7	5.8	5.9	5.8	6.0	5.6	5.8	5.9	5.9	5.6	5.4
0.25 g/plate	5.5	5.3	5.9	5.5	5.3	5.6	5.3	5.4	5.5	5.5	5.1	5.0
0.5 g/plate	3.3	3.1	3.6	3.3	3.3	3.4	3.2	3.2	3.3	3.3	3.0	3.0
1 g/plate	2.3	2.1	2.5	2.3	2.3	2.4	2.2	2.2	2.3	2.3	2.2	2.1

ตารางที่ 1.4.5 แสดงประสิทธิภาพของสารผลิตภัณฑ์แบบปั้นเม็ด (pellet formulation) และ แบบ สารละลายเข้มข้น (Soluble Concentrate formulation) ที่เก็บรักษาในสภาพอุณหภูมิ และแสงที่แตกต่างกัน เป็นระยะเวลา 12 เดือนต่อความยาวรากของหญ้าข้าวนก (ต่อ)

สารละลาย อุณหภูมิ	ห้อง มีแสง	1										
0.068 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.137 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.274 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.547 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
สารละลาย อุณหภูมิ	ห้อง ไม่มีแ	สง										
0.068 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.137 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.274 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.547 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
สารละลาย อุณหภูมิ	เย็น ไม่มีแ	ត ា										
0.068 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.137 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.274 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.547 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
สารละลาย อุณหภูมิ	เย็น ไม่มีแ	ព រ										
0.068 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.137 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.274 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.547 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

ตารางที่ 1.4.6 แสดงประสิทธิภาพของสารผลิตภัณฑ์แบบปั้นเม็ด (pellet formulation) และ แบบ สารละลายเข้มข้น (Soluble Concentrate formulation) ที่เก็บรักษาในสภาพอุณหภูมิ และแสงที่แตกต่างกัน เป็นระยะเวลา 12 เดือนต่อความยาวรากของถั่วผี

ความเข้มข้น						เดือ	นที่					
	1	2	3	4	5	6	7	8	9	10	11	12
Control	3.0	2.7	2.9	2.7	2.6	3.1	2.6	2.9	2.9	3.0	2.8	2.8
ปั้นเม็ด อุณหภูมิห้อง	มีแสง											
0.125 g/plate	3.0	2.9	3.0	4.9	5.0	3.2	4.8	3.0	3.1	3.1	3.0	2.9
0.25 g/plate	2.9	2.7	2.8	5.9	6.0	3.0	5.7	2.8	2.9	2.9	2.7	2.7
0.5 g/plate	1.8	1.7	1.8	2.1	2.1	1.9	1.9	1.6	1.5	1.8	1.1	1.7
1 g/plate	1.1	0.9	1.0	1.0	1.1	1.4	1.0	1.0	0.9	1.3	0.8	0.8
ปั้นเม็ด อุณหภูมิห้อง	ไม่มีแสง											
0.125 g/plate	2.6	2.5	2.6	4.2	4.3	2.8	4.0	2.6	2.6	2.7	2.5	2.5
0.25 g/plate	1.2	1.4	1.5	6.2	6.2	1.3	6.0	1.1	1.2	1.2	1.1	1.2
0.5 g/plate	0.5	0.8	1.0	2.0	2.0	0.2	1.9	0.8	0.8	0.1	0.8	0.8
1 g/plate	0.4	0.3	0.4	1.0	1.1	0.4	0.9	0.4	0.2	0.4	0.3	0.4
ปั้นเม็ด อุณหภูมิเย็น ร	มีแสง											
0.125 g/plate	3.3	3.1	3.2	4.8	4.9	3.4	4.6	3.2	3.3	3.3	3.1	3.1
0.25 g/plate	2.1	2.2	2.2	4.9	5.0	2.1	4.7	1.9	1.9	2.0	1.9	2.2
0.5 g/plate	0.2	0.3	0.5	2.2	2.3	0.1	2.1	0.3	0.3	0.1	0.3	0.3
1 g/plate	0.1	0.1	0.2	1.7	1.7	0.2	1.6	0.2	0.1	0.1	0.2	0.2
ปั้นเม็ด อุณหภูมิเย็นไ	ไม่มีแสง											
0.125 g/plate	2.8	2.7	2.8	5.9	5.9	3.0	5.4	2.8	2.8	2.9	2.7	2.7
0.25 g/plate	2.2	2.4	2.5	5.5	5.5	2.5	5.0	2.2	2.3	2.4	2.1	2.4
0.5 g/plate	0.3	0.2	0.3	3.3	3.3	0.2	3.0	0.3	0.3	0.2	0.3	0.3
1 g/plate	0.0	0.1	0.2	2.3	2.3	0.0	2.1	0.2	0.2	0.0	0.1	0.2

ตารางที่ 1.4.6 แสดงประสิทธิภาพของสารผลิตภัณฑ์แบบปั้นเม็ด (pellet formulation) และ แบบ สารละลายเข้มข้น (Soluble Concentrate formulation) ที่เก็บรักษาในสภาพอุณหภูมิ และแสงที่แตกต่างกัน เป็นระยะเวลา 12 เดือนต่อความยาวรากของถั่วผี (ต่อ)

-												
สารละลาย อุณหภูมิห้อง มีแสง												
0.068 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.137 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.274 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.547 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
สารละลาย อุณหภูมิห้อง ไม่มีแสง												
0.068 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.137 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.274 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.547 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
สารละลาย อุณหภูมิเย็เ	สารละลาย อุณหภูมิเย็น ไม่มีแสง											
0.068 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.137 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.274 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.547 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
สารละลาย อุณหภูมิเย็น ไม่มีแสง												
0.068 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.137 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.274 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.547 g/plate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

โครงการที่ 2

ศึกษาและพัฒนาการเพิ่มประสิทธิภาพผลิตภัณฑ์จากพุทธชาติก้านแดง

การทดลองที่ 2.1 ศึกษารูปแบบของผลิตภัณฑ์ NHSJ ระหว่างรูปแบบผงเปียกน้ำ (WP) และรูปแบบ สารละลาย (SC) ต่อการยับยั้งการงอกและการเจริญเติบโตของพืชทดสอบ

วิธีการทดลอง

การวางแผนการทดลอง

วางแผนการทคลองแบบสุ่มสมบูรณ์ (Completely Randomized Design : CRD) 11 กรรมวิธี การทคลอง วิธีการทคลองละ 4 ซ้ำ คังนี้

- 1.1.1.1 น้ำกลั่น (วิธีการเปรียบเทียบ)
- 1.1.1.2 สารผลิตภัณฑ์ NHSJ WP ที่ระดับความเข้มข้น 500 ppm สารออกฤทธิ์
- 1.1.1.3 สารผลิตภัณฑ์ NHSJ WP ที่ระดับความเข้มข้น 1000 ppm สารออกฤทธิ์
- 1.1.1.4 สารผลิตภัณฑ์ NHSJ WP ที่ระดับความเข้มข้น 2000 ppm สารออกฤทธิ์
- 1.1.1.5 สารผลิตภัณฑ์ NHSJ WP ที่ระดับความเข้มข้น 4000 ppm สารออกฤทธิ์
- 1.1.1.6 สารผลิตภัณฑ์ NHSJ WP ที่ระดับความเข้มข้น 8000 ppm สารออกฤทธิ์
- 1.1.1.7 สารผลิตภัณฑ์ NHSJ SC ที่ระดับความเข้มข้น 500 ppm สารออกฤทธิ์
- 1.1.1.8 สารผลิตภัณฑ์ NHSJ SC ที่ระดับความเข้มข้น 1000 ppm สารออกฤทธิ์
- 1.1.1.9 สารผลิตภัณฑ์ NHSJ SC ที่ระดับความเข้มข้น 2000 ppm สารออกฤทธิ์
- 1.1.1.10 สารผลิตภัณฑ์ NHSJ SC ที่ระดับความเข้มข้น 4000 ppm สารออกฤทธิ์
- 1.1.1.11 สารผลิตภัณฑ์ NHSJ SC ที่ระดับความเข้มข้น 8000 ppm สารออกฤทธิ์

การเตรียมสารผลิตภัณฑ์ NHSJ

เก็บใบพุทธชาดก้านแดงที่มีความอุดมสมบูรณ์ ไม่มีโรคและแมลง อบให้แห้งที่อุณหภูมิ 45 องศาเซลเซียส เป็นระยะเวลา 72 ชั่วโมง ตัดใบเป็นชิ้นเล็ก ๆ สกัดด้วยเอทานอล โดยชั่งใบพุทธชาด ก้านแดง 100 กรัมต่อเอทานอล 1 ลิตร สกัดทิ้งไว้อย่างน้อย 72 ชั่วโมง จากนั้นกรองสารละลายเอทา นอลผ่านกระดาษกรองเบอร์ 1 แยกส่วนกาก สกัดด้วยเอทานอลอีก 4 รอบ แล้วนำสารสกัดที่ได้ระเหย เอทานอลออกให้แห้งด้วยเครื่องระเหยสูญญากาศ จะได้สารสกัดหยาบ (crude ethanol extract) จากนั้นนำมาแปรรูปเป็นผลิตภัณฑ์ NHSJ

เตรียมสารผลิตภัณฑ์รูปแบบผงเปียกน้ำ เตรียมได้จาก นำผง แร่คาโอลิในต์ โซเคียมรอลิ ซัลเฟต และ ทวีน 80 ในอัตราส่วน 97 : 1.5 : 1.5 โดยน้ำหนัก ตามลำคับ ผสมส่วนผสมในโกร่งบด สาร โดยมีอะซีโตนเป็นตัวช่วยทำละลาย บดส่วนผสมให้เป็นเนื้อเดียวกัน จนอะซีโตนระเหยแห้ง หมด จะได้ผงเปียกน้ำ นำสารสกัดหยาบจากเอทานอล ผสมกับผงเปียกน้ำในอัตราส่วน 30 : 70 โดย น้ำหนัก ผสมส่วนผสมในโกร่งบดสารโดยมีอะซีโตนเป็นตัวช่วยทำละลาย บดส่วนผสมจนกว่า อะซี โตนระเหยจนแห้ง จะได้ผลิตภัณฑ์ NHSJ ที่อยู่ในรูป WP ที่มีสารออกฤทธิ์ 30 เปอร์เซ็นต์

เตรียมสารผลิตภัณฑ์รูปแบบสารละลายเข้มข้น เตรียมได้จาก สารสกัดหยาบจากพุทธชาด ก้านแดงผสมกับ ทวีน 80 และ โซเคียมรอลิซัลเฟต ในอัตราส่วน 30 : 10 : 60 โดยน้ำหนัก ตามลำดับ ผสมให้เข้ากัน ก็จะได้ผลิตภัณฑ์ NHSJ ที่อยู่ในรูป SC ที่มีสารออกฤทธิ์ 30 เปอร์เซ็นต์

การเตรียมเมล็ดวัชพืชทดสอบ

เมล็ควัชพืชทคสอบ 2 ชนิค คือ หญ้าข้าวนก เป็นตัวแทนของวัชพืชใบเลี้ยงเดี่ยว และถั่วผี เป็นตัวแทนของวัชพืชใบเลี้ยงคู่ ขัคเปลือกเมล็คถั่วผีด้วยกระคาษทรายเพื่อทำลายการพักตัวของเมล็ค จากนั้นแช่เมล็คถั่วผีในสารละลายโซเคียมไฮโปคลอไรค์ ความเข้มข้น 1 เปอร์เซ็นต์ นาน 20 นาที เพื่อ ทำการฆ่าเชื้อจุลินทรีย์ที่ติดมากับเมล็ค เมื่อครบเวลาล้างเมล็คด้วยน้ำสะอาค 2-3 ครั้ง แช่เมล็คถั่วผีใน น้ำสะอาคนานอย่างน้อย 12 ชั่วโมง สำหรับหญ้าข้าวนก แช่เมล็คในน้ำสะอาคนาน 24 ชั่วโมง ห่อค้วย ผ้าขาวบางเป็นเวลา 48 ชั่วโมง พร้อมสำหรับการทคสอบ

การทคสอบ

เจือจางผลิตภัณฑ์ NHSJ ใส่ในจานทดลอง ที่ระดับความเข้มข้น 500, 1000, 2000, 4000 และ 8000 ppm สารออกฤทธิ์ โดยใช้น้ำกลั่นเป็นวิธีการเปรียบเทียบ ใส่จานทดลองขนาดเส้นผ่าน ศูนย์กลาง 9 เซนติเมตร ซึ่งรองด้วยกระดาษเพาะเมล็ด 2 ชั้น จานทดลองละ 5 มิลลิลิตร เกลี่ย ผลิตภัณฑ์ให้ทั่วจานทดลอง จากนั้นวางเมล็ดวัชพืชทดสอบ คือ หญ้าข้าวนก และถั่วผี ในจานทดลอง จานละ 20 เมล็ด ปิดฝาและนำไปวางไว้ในคู้ควบคุมการเจริญเติบโตของพืช ที่ตั้งค่าแสงสว่าง 12 ชั่วโมง อุณหภูมิ 32 องศาเซลเซียส ความชื้นสัมพัทธ์ 80 เปอร์เซ็นต์ และไม่มีแสงสว่าง 12 ชั่วโมง อุณหภูมิ 25 องศาเซลเซียส ความชื้นสัมพัทธ์ 80 เปอร์เซ็นต์

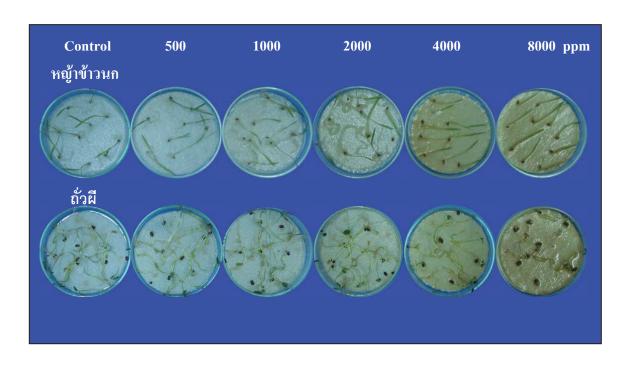
การบันทึกผล และการวิเคราะห์ผลการทคลอง

ทำการบันทึกผล นับจำนวนการงอกของเมล็ดวันที่ 7 หลังจากเริ่มเพาะเมล็ด กำหนดให้เมล็ด ที่มีส่วน radicle ออกมาจากเปลือกหุ้มเมล็ดอย่างน้อย 2 มิลลิเมตร เป็นเมล็ดที่งอก วัดความยาวต้น และความยาวราก นำข้อมูลที่ได้มาวิเคราะห์ค่าความแปรปรวนทางสถิติ และเปรียบเทียบความ แตกต่างของค่าเลลี่ยโดยวิธี Turkey's Studentized Range Test ที่ระดับความเชื่อมั่น 95 เปอร์เซ็นต์

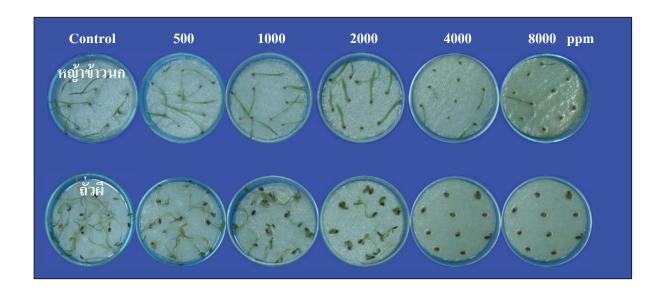
ผลการทดลอง

จากการทดสอบพบว่าประสิทธิภาพของผลิตภัณฑ์ NHSJ ในรูปแบบของผงเปียกน้ำ และ สารละลาย ที่ระดับความเข้มข้น 500, 1000, 2000, 4000 และ 8000 ppm ของสารออกฤทธิ์ พบว่า ผลิตภัณฑ์รูปแบบสารละลายสามารถยับยั้งการงอกของหญ้าข้าวนกได้ดีกว่าผงเปียกน้ำ มีเปอร์เซ็นต์ การยับยั้งการงอกเท่ากับ 0, 7.50, 5.00, 40.00 และ 70.00 เปอร์เซ็นต์ ตามลำดับ และความยาวต้นความ ยาวรากของหญ้าข้าวนกลดลงตามความเข้มข้นของสารที่เพิ่มขึ้นได้ (ตารางที่ 2.1.1 และ ภาพที่ 2.1.1) ส่วนการงอกและการเจริญเติบโตของถั่วฝี พบว่าผลิตภัณฑ์รูปแบบสารละลายสามารถยับยั้งการงอก ได้ดีกว่าผงเปียกน้ำ ให้ผลเช่นเดียวกับการทดสอบในหญ้าข้าวนก โดยในที่ระดับความเข้มข้น 4000 และ 8000 ppm สามารถยับยั้งการงอกของถั่วฝีได้อย่างสมบูรณ์ เมื่อเทียบกับวิธีการควบคุม ส่วนความ เข้มข้นที่ 500 ppm ทั้งความยาวต้นและความยาวรากมีการเจริญเติบโตได้ดีกว่าวิธีการควบคุม เมื่อเพิ่ม ความเข้มข้นของผลิตภัณฑ์ NHSJ รูปแบบสารละลายที่สูงขึ้นจะมีการเจริญเติบโตของพืชทดสอบ ลดลง (ตารางที่ 2.1.2 และ ภาพที่ 2.1.2)

ตารางที่ 2.1.1 การทดสอบเปรียบเทียบผลของผลิตภัณฑ์ NHSJ ระหว่างรูปแบบผงเปียกน้ำ (WP) และรูปแบบสารละลาย (SC) ต่อการยับยั้งการงอก และการเจริญเติบโตของหญ้า ข้าวนก


รูปแบบผลิตภัณฑ์	 ความเข้มข้น	เปอร์เซ็นต์ยับยั้ง	 ความยาวต้น	ความยาวราค	
ใกทาทผยผานหล		เกด 1เม หผดกด/		ความยาวราก	
NHSJ	(ppm)	การงอก	(An')	(ฆม.)	
	Control	0.00c	3.94bc	2.96c	
	500	0.00c	3.98bc	5.15a	
$\operatorname{WP}_{_{y}}$	1000	15.00bc	4.14bc	4.06b	
(ผงเปียกน้ำ)	2000	7.50c	4.36bc	4.31ab	
	4000	15.00bc	3.66bc	1.71d	
	8000	15.00bc	3.07c	0.05e	
	500	0.00c	5.46ab	4.66ab	
SC	1000	7.50c	3.19c	0.70e	
(สารละลาย)	2000	5.00c	3.12c	0.09e	
,	4000	40.00a	2.75c	0.00e	
	8000	70.00a	2.40c	0.00e	

ค่าเฉลี่ยที่อยู่ในคอลัมน์เดียวกันที่ตามด้วยตัวอักษรเหมือนกันแสดงว่าไม่มีความแตกต่างกันทางสถิติ จากการวิเคราะห์ค่าเฉลี่ยแบบ Turkey's Studentized Range Test (p=0.05)


ตารางที่ 2.1.2 การทดสอบเปรียบเทียบผลของผลิตภัณฑ์ NHSJ ระหว่างรูปแบบผงเปียกน้ำ (WP) และรูปแบบสารละลาย (SC) ต่อการยับยั้งการงอกและการเจริญเติบโตของถั่วผี

	ความเข้มข้น	เปอร์เซ็นต์ยับยั้ง	ความยาวต้น	ความยาวราก	
NHSJ	(ppm)	การงอก	(an')	(An')	
	Control	0.00d	7.29a	2.96a	
	500	0.00d	7.26a	2.99a	
WP	1000	0.00d	7.15a	2.94a	
(ผงเปียกน้ำ)	2000	0.00d	7.08a	2.90a	
	4000	2.50d	6.01ab	2.77a	
	8000	22.50bc	1.94f	0.65c	
	500	0.00d	5.15bc	1.84c	
	1000	0.00d	3.52de	0.69c	
SC (dagayaan)	2000	12.50cd	2.27ef	0.30c	
(สารละลาย)	4000	100.00a	0.00g	0.00c	
	8000	100.00a	0.00g	0.00c	

ค่าเฉลี่ยที่อยู่ในคอลัมน์เดียวกันที่ตามด้วยตัวอักษรเหมือนกันแสดงว่าไม่มีความแตกต่างกันทางสถิติ จากการวิเคราะห์ค่าเฉลี่ยแบบ Turkey's Studentized Range Test (p=0.05)

ภาพที่ 2.1.1 ผลของผลิตภัณฑ์ NHSJ รูปแบบผงเปียกน้ำ (WP) ต่อการยับยั้งการรอดและการเจริญ เติบโตของพืชทดสอบ

ภาพที่ 2.1.2 ผลของผลิตภัณฑ์ NHSJ รูปแบบสารละลาย (SC) ต่อการยับยั้งการรอดและการเจริญ เติบโตของพืชทดสอบ

การทดลองที่ 2.2 ศึกษาชนิดและสัดส่วนที่เหมาะสมของสารเสริมประสิทธิภาพ (additive agent) ใน การเพิ่มประสิทธิภาพของสารสกัดในแต่ละ fractions ที่ได้คัดเลือกมา

วิธีการทดลอง

การวางแผนการทดลอง

ทำการทคสอบพืช 3 ชนิค ได้แก่ ข้าวพันธุ์สุพรรณบุรี (*Oryza sativa* RD. Supanburi), หญ้า ข้าวนก (*Echinochloa cruss-galli* (L.) Beav.) และกวางคุ้ง (*Brassica chinensis* var. parachinensis) โดยวางแผนการทคลองแบบ Completely Randomized Design (CRD) ประกอบด้วย 8 วิธีการ จำนวน 4 ซ้ำ โดยวิธีการ ดังนี้

วิธีการที่ 1 น้ำกลั่น (วิธีการเปรียบเทียบ)

วิธีการที่ 2 สารผลิตภัณฑ์ 1% ปริมาตร 15 มิลลิลิตรต่อกระถาง

วิธีการที่ 3 สารผลิตภัณฑ์ 2% ปริมาตร 15 มิลลิลิตรต่อกระถาง

วิธีการที่ 4 สารผลิตภัณฑ์ 3% ปริมาตร 15 มิลลิลิตรต่อกระถาง

วิธีการที่ 5 สารผลิตภัณฑ์ 1% + acitic acid 3% ปริมาตร 15 มิลลิลิตรต่อกระถาง

วิธีการที่ 6 สารผลิตภัณฑ์ 2% + acitic acid 3% ปริมาตร 15 มิลลิลิตรต่อกระถาง

วิธีการที่ 7 สารผลิตภัณฑ์ 3% + acitic acid 3% ปริมาตร 15 มิลลิลิตรต่อกระถาง

วิธีการที่ 8 acitic acid 3% ปริมาตร 15 มิลลิลิตรต่อกระถาง

การเตรียมสารสกัดจากใบพุทธชาติก้านแดง

โดยนำใบของพุทธชาติก้านแดงล้างทำความสะอาดแล้วนำไปอบแห้งในตู้อบแห้งด้วย อุณหภูมิประมาณ 45 องสาเซลเซียส 3 วัน หรือจนกว่าใบแห้ง จากนั้นนำไปใส่ในขวดโหลแก้วแล้วเท ethanol ให้ท่วมใบพุทธชาติก้านแดง ห่อหุ้มขวดด้วยกระดาษฟอยล์ (foil) แล้วแช่ทิ้งไว้อย่างน้อย 24 ชั่วโมง นำสารสกัดที่ได้กรองด้วยผ้าขาวบาง แล้วกรองด้วยสำลี เสร็จแล้วจึงนำไปกรอง ด้วยกระดาษ กรองเบอร์ 1 นำสารละลายที่ได้ไประเหย ethanol ออกด้วยเครื่อง Vacuum Rotary Evaporator จนได้ สารที่มีลักษณะแห้งเหนียว (crude ethanol extract)

นำสารแห้งเหนียวที่ได้มาสกัดน้ำตาลออก โดยใช้สารเอทธิลอะซิเตท เป็นตัวทำละลาย วิธีการคือนำน้ำกลั่นผสมกับสารแห้งเหนียวนี้ เบย่าสารให้เข้ากัน แล้วทำการปรับ pH ให้อยู่ในช่วง 2-3 ด้วยกรดไฮโดรคลอริก (HCL) แล้วจึงใส่ ethyl acetate ลงไป เบย่ากรวยแยกเพื่อให้สารเข้ากัน จากนั้นปล่อยตั้งทิ้งไว้ให้สารแยกชั้น ซึ่งจะแยกเป็น 2 ชั้น คือ ชั้นบนจะเป็นชั้นของ ethyl acetate และ ชั้นล่างเป็น น้ำตาลที่ไม่ต้องการละลายอยู่ในน้ำ ทำการปล่อยสารชั้นล่างลงมาเพื่อนำสารมาสกัดอีก รอบ โดยการเติม ethyl acetate ลงไป เบย่ากรวยเพื่อให้สารเข้ากัน จากนั้นต้องรอให้สารแยกชั้น ทำซ้ำ จนสารตั้งต้นคูใสแล้วจึงพอ ส่วนสารชั้น ethyl acetate ปล่อยรวมไว้ในขวดทั้งหมด จากนั้นนำมา ระเทย ethyl acetate ออกด้วยเครื่อง Vacuum Rotary Evaporator จะได้สารที่มีลักษณะเหนียวข้น (crude hydrolyze)

นำสารเหนียวข้น (crude hydrolyze) มาผสมกับผง W.P. (wettable powder) โดยใช้อัตราส่วน ในการผสม คือ สารสกัดจากใบพุทธชาติก้านแดง 30% ต่อ ผง W.P. 70% โดยผสมสารทั้งสองในครก บดยา โดยใช้ acetone เป็นตัวทำละลาย ทำการบดเพื่อให้สารเข้ากันจนได้สารเป็นผงละเอียดแห้งเติม สารที่ได้ในภาชนะแห้งมีฝาปิด เพื่อใช้ในการทดลองต่อไป

การทคสอบผลิตภัณฑ์

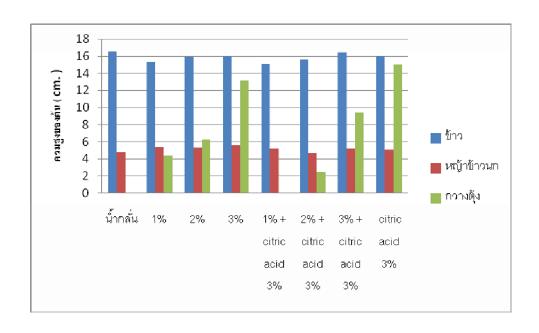
นำเมล็ดวัชพืชทดสอบ ได้แก่ ข้าว กวางคุ้ง หญ้าข้าวนก โดยนำเมล็ดข้าวและหญ้าข้าวนกแช่ น้ำทิ้งไว้ให้งอก ก่อนนำไปปลูก จากนั้นนำดินใส่กระถางพลาสติกขนาด 6 นิ้ว โดยแบ่งการปลูกเป็น 3 ส่วน : 1 กระถาง จากนั้นโรยเมล็ดประมาณ 10 เมล็ด จากนั้นนำดินละเอียดกลบเมล็ดวัชพืช รดน้ำวัน ละ 2 ครั้ง เช้า-เย็น ด้วยหัวฉีดน้ำที่มีความละเอียด เพื่อป้องกันการชะล้างของหน้าดิน เมื่ออายุได้ 4 วัน ก็จะถอนต้นกล้าออกให้เหลือชนิดละ 4 ต้น ต่อกระถาง โดยต้นกล้าที่ยังอยู่จะต้องมีความสูง ความ สมบูรณ์สม่ำเสมอกันทุกกระถาง เมื่ออายุได้ 7 วัน จะทำการฉีดพ่นสารด้วยหัวพ่น รดน้ำ เช้า-เย็น หลังจากวันที่ฉีดพ่นสาร รอทำการบันทึกผลต่อไป

การบันทึกผลการทดลอง

ทำการวัคความสูง เปอร์เซ็นต์ความเป็นพิษของต้นกล้าพืชทคสอบ ในวันที่ 1, 3, 5, 7, 14, 21 และ 28 วัน นับจากวันที่เริ่มสเปรย์สาร เมื่อครบ 28 วันจึงตัดต้นกล้าพืชที่วัคการเจริญเติบโตค้านความ สูง และเปอร์เซ็นต์ความเป็นพิษ แล้วนำไปอบที่อุณหภูมิ 45 องสาเซลเซียส เมื่อครบ 72 ชั่วโมง นำไป ชั่งหาน้ำหนักแห้ง นำข้อมูลทั้งหมดไปวิเคราะห์ความแปรปรวนทางสถิติและเปรียบเทียบค่าเฉลี่ยด้วย วิธี Duncan's multiple range tast (DMRT)

ผลการทดลอง

ผลของสารผลิตภัณฑ์จากสารสกัดหยาบใบพุทธชาติก้านแคงที่มีต่ออัตราการเจริญเติบโตของ ต้นกล้า ความเป็นพิษของต้นกล้า และน้ำหนักแห้งของข้าวพันธุ์สุพรรณบุรี

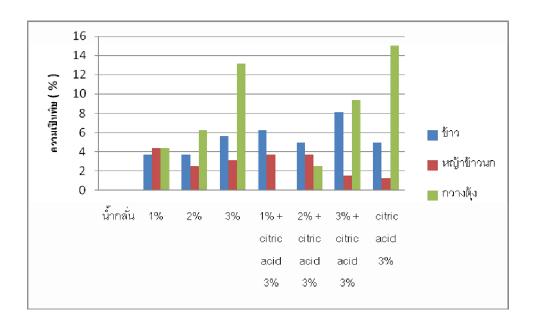

อัตราการเจริญเติบโต (ความสูงของต้นกล้า) จากการทดลองพบว่า อัตราการเจริญเติบโต ของต้นกล้า โดยการวัดความสูงต้นในวันที่ 7 และ 14 หลังฉีดพ่นสารผลิตภัณฑ์จากสารสกัดหยาบใบ พุทธชาติก้านแดง ในทุกสารผลิตภัณฑ์ ไม่มีความแตกต่างกันทางสถิติ เมื่อเปรียบเทียบกับกระถาง ควบคุม (น้ำกลั่น)(กราฟที่ 2.2.1), ในวันที่ 21 หลังฉีดพ่นสารผลิตภัณฑ์จากสารสกัดใบพุทธชาติก้าน แดง ในสารผลิตภัณฑ์ 1%, 2%, 3%, 2%+citric acid 3%, 3%+citric acid 3% และ citric acid 3% ไม่ มีความแตกต่างกันทางสถิติ เมื่อเปรียบเทียบกับกระถางควบคุม(น้ำกลั่น) แต่ใน 1%+citric acid 3% มี ความสูงน้อยที่สุด เท่ากับ 18.35 เซนติเมตร ในวันที่ 28 หลังฉีดพ่นสารผลิตภัณฑ์จากสารสกัดหยาบ ใบพุทธชาติก้านแดง ในสารผลิตภัณฑ์ 1%, 2%, 3%, 1%+citric acid 3%, 2%+citric acid 3% และ

3%+citric acid 3% ไม่มีความแตกต่างกันทางสถิติ เมื่อเปรียบเทียบกับกระถางควบคุม(น้ำกลั่น) แต่ใน citric acid 3% มีความแตกต่างกันทางสถิติ เมื่อเปรียบเทียบกับกระถางควบคุม(น้ำกลั่น) ซึ่งใน citric acid 3% มีความสูงน้อยที่สุด เท่ากับ 20 เซนติเมตร (ตารางที่ 2.2.1) ซึ่งมีผลในการยับยั้งการ เจริญเติบโตของต้นกล้าข้าว อย่างมีนัยสำคัญ

ตารางที่ 2.2.1 ผลของสารผลิตภัณฑ์จากสารสกัดหยาบใบพุทธชาติก้านแคงที่มีต่อความสูงของต้น กล้าข้าวพันธุ์สุพรรณบุรี

สารผลิตภัณฑ์	ความสูงของต้นกล้า (cm.)			
	หลังฉีดพ่นสารผลิตภัณฑ์			
	7	14	21	28
น้ำกลั่น	16.50a	18.51ab	20.91a	22.29a
1%	15.32a	18.99a	21.59ab	22.27a
2%	15.92a	19.06a	20.89ab	21.35ab
3%	16.02a	17.27ab	19.39ab	21.00ab
1% + citric acid	15.08a	16.51b	18.35b	20.12ab
2% + citric acid	15.58a	17.45ab	19.75ab	20.85ab
3% + citric acid	16.44a	18.09ab	19.91ab	21.00ab
citric acid 3%	16.00a	17.18ab	18.73ab	20.00b

ค่าเฉลี่ยความสูงของต้นกล้าในแต่ละวันด้วยตัวอักษรเหมือนกัน ไม่มีความแตกต่างทางสถิติจาก การวิเคราะห์ค่าเฉลี่ยโดยวิชี DMRT (p=0.05)


กราฟที่ 2.2.1 เปรียบเทียบความสูงของข้าว, หญ้าข้าวนก และกวางตุ้ง หลังจากฉีดพ่นสารผลิตภัณฑ์ จากสารสกัดหยาบของใบพุทธชาติก้านแดง 7 วัน

ความเป็นพิษ (%) จากการทดลองพบว่า ความเป็นพิษของต้นกล้า โดยการวัดในวันที่ 7 หลัง ฉีดพ่นสารผลิตภัณฑ์จากสารสกัดหยาบใบพุทธชาติก้านแดง ในทุกสารผลิตภัณฑ์ มีความแตกต่างกัน ทางสถิติ เมื่อเปรียบเทียบกับกระถางควบคุม (น้ำกลั่น)(กราฟที่ 2.2.2) โดยมีความเป็นพิษสูงกว่าอย่าง มีนัยสำคัญ, การวัดในวันที่ 14 หลังฉีดพ่นสารผลิตภัณฑ์จากสารสกัดหยาบใบพุทธชาติก้านแดง ใน ทุกสารผลิตภัณฑ์ ไม่มีความแตกต่างกันทางสถิติ เมื่อเปรียบเทียบกับกระถางควบคุม (น้ำกลั่น), การ วัดในวันที่ 21 หลังฉีดพ่นสารผลิตภัณฑ์จากสารสกัดหยาบใบพุทธชาติก้านแดง ในสารผลิตภัณฑ์ 2% และ 3% ไม่มีความแตกต่างกันทางสถิติ เมื่อเปรียบเทียบกับกระถางควบคุม(น้ำกลั่น) ส่วนสาร ผลิตภัณฑ์ 1%, 1 %+citric acid 3%, 2 %+citric acid 3%, 3%+citric acid 3% และcitric acid 3% มี ความแตกต่างกันทางสถิติ เมื่อเปรียบเทียบกับกระถางควบคุม(น้ำกลั่น), การวัดในวันที่ 28 หลังฉีด พ่นสารผลิตภัณฑ์จากสารสกัดใบพุทธชาติก้านแดง ในทุกสารผลิตภัณฑ์ ไม่มีความแตกต่างกันทาง สถิติ เมื่อเปรียบเทียบกับกระถางควบคุม (น้ำกลั่น) (ตารางที่ 2.2.2)

ตารางที่ 2.2.2 ผลของสารผลิตภัณฑ์จากสารสกัดหยาบใบพุทธชาติก้านแดงที่มีต่อความเป็นพิษของ ต้นกล้าข้าวพันธุ์สุพรรณบุรี

สารผลิตภัณฑ์	f	ความเป็นพิษของต้นกล้า (%)		
		หลังฉีดพ่นล	ารผลิตภัณฑ์	
	7	14	21	28
น้ำกลั่น	0.00c	10.63a	16.25c	30.00ab
1%	3.75b	11.88a	24.38ab	30.63ab
2%	3.75b	11.88a	20.00bc	30.00b
3%	5.63ab	11.25a	21.25abc	28.75ab
1% + citric acid	6.25ab	12.50a	25.63a	30.00ab
2% + citric acid	5.00ab	10.83a	25.00ab	31.25ab
3% + citric acid	8.13a	10.00a	25.00ab	30.63ab
citric acid 3%	5.00ab	10.63a	22.50ab	33.75a

ค่าเฉลี่ยความเป็นพิษของต้นกล้าในแต่ละวันด้วยตัวอักษรเหมือนกัน ไม่มีความแตกต่างทาง สถิติจากการวิเคราะห์ค่าเฉลี่ยโดยวิธี DMRT (p=0.05)

กราฟที่ 2.2.2 เปรียบเทียบความเป็นพิษ (%) ของข้าว, หญ้าข้าวนก และกวางคุ้ง หลังจากฉีดพ่นสาร ผลิตภัณฑ์จากสารสกัดหยาบของใบพุทธชาติก้านแดง 7 วัน

น้ำหนักแห้ง เมื่อนำต้นกล้าอายุ 28 วัน ในแต่ละกระถางมาอบและชั่งน้ำหนักแห้ง พบว่า น้ำหนักแห้งของกระถางที่ฉีดพ่นสารผลิตภัณฑ์ของสารสกัดหยาบจากใบพุทธชาติก้านแดง ทุกความ เข้มข้น มีความแตกต่างกันทางสถิติ เมื่อเปรียบเทียบกับกระถางควบคุม (น้ำกลั่น) โดยมีน้ำหนักแห้ง น้อยกว่าอย่างมีนัยสำคัญ (ตารางที่ 2.2.3)

ผลของสารผลิตภัณฑ์จากสารสกัดหยาบใบพุทธชาติก้านแดงที่มีต่ออัตราการเจริญเติบโต ความ เป็นพิษ และน้ำหนักแห้งของต้นกล้าหญ้าข้าวนก

อัตราการเจริญเติบโต จากการทดลองพบว่า อัตราการเจริญเติบโตของต้นกล้า โดยการวัดความ สูงต้นในวันที่ 7, 14, 21 และ 28 วัน หลังฉีดพ่นสารผลิตภัณฑ์จากสารสกัดหยาบใบพุทธชาติก้านแดง ในทุกสารผลิตภัณฑ์ ไม่มีความแตกต่างกันทางสถิติ เมื่อเปรียบเทียบกับกระถางควบคุม (น้ำกลั่น) (ตารางที่ 2.2.4)

ตารางที่ 2.2.3 ผลของสารผลิตภัณฑ์จากสารสกัดหยาบใบพุทธชาติก้านแดงที่มีต่อน้ำหนักแห้งของ ต้นกล้าข้าวพันธุ์สุพรรณบุรี

9 9 9	
สารผลิตภัณฑ์	น้ำหนักแห้ง (g.)
น้ำกลั่น	0.1933a
1%	0.0344b
2%	0.0251b
3%	0.0316b
1% + citric acid	0.0271b
2% + citric acid	0.0289b
3% + citric acid	0.0298b
citric acid 3%	0.0310b

ค่าเฉลี่ยน้ำหนักแห้งของต้นกล้าในแต่ละวันค้วยตัวอักษรเหมือนกัน ไม่มีความแตกต่างทางสถิติ จากการวิเคราะห์ค่าเฉลี่ยโดยวิธี DMRT (p=0.05)

ตารางที่ 2.2.4 ผลของสารผลิตภัณฑ์จากสารสกัดหยาบใบพุทธชาติก้านแดงที่มีต่อความสูงของต้น กล้าหญ้าข้าวนก

สารผลิตภัณฑ์	ความสูงของต้นกล้ำ (cm.)			ı	
		หลังฉีดพ่นสารผลิตภัณฑ์			
	7	14	21	28	
น้ำกลั่น	4.80a	6.70a	7.90a	8.54ab	
1%	5.40a	6.45a	7.02a	7.45ab	
2%	5.28a	7.17a	8.78a	9.81a	
3%	5.62a	6.40a	7.05a	7.37ab	
1% + citric acid	5.24a	6.29a	7.75a	8.51ab	
2% + citric acid	4.68a	5.26a	5.90a	6.11b	
3% + citric acid	5.26a	6.00a	7.36a	7.63ab	
citric acid 3%	5.08a	6.00a	6.72a	6.71ab	
,					

ค่าเฉลี่ยความสูงของต้นกล้าในแต่ละวันด้วยตัวอักษรเหมือนกัน ไม่มีความแตกต่างทางสถิติจาก การวิเคราะห์ค่าเฉลี่ยโดยวิธี DMRT (p=0.05)

ความเป็นพิษ จากการทดลองพบว่า ความเป็นพิษของต้นกล้า โดยการวัดความสูงต้นในวันที่ 7 หลังฉีดพ่นสารผลิตภัณฑ์จากสารสกัดหยาบใบพุทธชาติก้านแดง ในสารผลิตภัณฑ์ 1%, 2%, 3%, 3%+citric acid 3% และ citric acid 3% ไม่มีความแตกต่างกันทางสถิติ เมื่อเปรียบเทียบกับกระถาง ควบคุม(น้ำกลั่น) ส่วนสารผลิตภัณฑ์ 1%+citric acid 3% และ 2 %+citric acid 3% มีความแตกต่างกัน ทางสถิติ เมื่อเปรียบเทียบกับกระถางควบคุม(น้ำกลั่น), ในวันที่ 14, 21 หลังฉีดพ่นสารผลิตภัณฑ์จาก สารสกัดหยาบใบพุทธชาติก้านแดง ในสารผลิตภัณฑ์ 2% และ 1%+citric acid 3% ไม่มีความแตกต่าง กันทางสถิติ เมื่อเปรียบเทียบกับกระถางควบคุม(น้ำกลั่น) ส่วนสารผลิตภัณฑ์ 1%, 3 %, 2%+citric acid 3% และ 3%+citric acid 3% มีความแตกต่างกันทางสถิติ เมื่อเปรียบเทียบกับกระถางควบคุม(น้ำ กลั่น), ในวันที่ 28 หลังฉีดพ่นสารผลิตภัณฑ์จากสารสกัดหยาบใบพุทธชาติก้านแดง ในทุกสาร ผลิตภัณฑ์ มีความแตกต่างกันทางสถิติ เมื่อเปรียบเทียบกับกระถางควบคุม (น้ำกลั่น) โดยมีความเป็น พิษสูงกว่าอย่างมีนัยสำคัญ (ตารางที่ 2.2.5)

ตารางที่ 2.2.5 ผลของสารผลิตภัณฑ์จากสารสกัดหยาบใบพุทธชาติก้านแคงที่มีต่อความเป็นพิษของ ต้นกล้าหญ้าข้าวนก

สารผลิตภัณฑ์	ความเป็นพิษของต้นกล้า (%)			<u>,</u>)
	หลังฉีดพ่นสารผลิตภัณฑ์			
	7	14	21	28
น้ำกลั่น	0.00b	5.63b	13.13d	18.96b
1%	4.38ab	13.75a	20.63bc	26.88a
2%	2.50ab	10.63ab	15.00cd	27.92a
3%	3.13ab	15.00a	25.00ab	27.50a
1% + citric acid	3.75a	11.88ab	18.13bcd	29.38a
2% + citric acid	3.75a	16.25a	25.00ab	29.38a
3% + citric acid	1.50ab	14.38a	28.75a	28.75a
citric acid 3%	1.25ab	13.75a	23.13ab	28.75a

ค่าเฉลี่ยความเป็นพิษของต้นกล้าในแต่ละวันด้วยตัวอักษรเหมือนกัน ไม่มีความแตกต่างทาง สถิติจากการวิเคราะห์ค่าเฉลี่ยโดยวิธี DMRT (p=0.05)

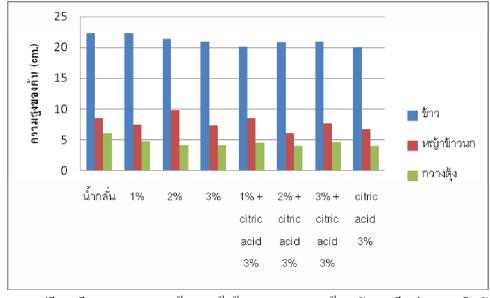
ตารางที่ 2.2.6 ผลของสารผลิตภัณฑ์จากสารสกัดหยาบใบพุทธชาติก้านแดงที่มีต่อน้ำหนักแห้งของต้น กล้าหญ้าข้าวนก

สารผลิตภัณฑ์	น้ำหนักแห้ง (g.)
น้ำกลั่น	0.0040a
1%	0.0022a
2%	0.0023a
3%	0.0013a
1% + citric acid	0.0023a
2% + citric acid	0.0009a
3% + citric acid	0.0014a
citric acid 3%	0.0011a

ค่าเฉลี่ยน้ำหนักแห้งของต้นกล้าในแต่ละวันด้วยตัวอักษรเหมือนกัน ไม่มีความแตกต่างทาง สถิติจากการวิเคราะห์ค่าเฉลี่ยโดยวิธี DMRT (p=0.05) น้ำหนักแห้ง เมื่อนำต้นกล้าอายุ 28 วัน ในแต่ละกระถางมาอบและชั่งน้ำหนักแห้ง พบว่า น้ำหนักแห้งของกระถางที่ฉีดพ่นสารผลิตภัณฑ์ของสารสกัดหยาบจากใบพุทธชาติก้านแดง ทุกความ เข้มข้น ไม่มีความแตกต่างกันทางสถิติ เมื่อเปรียบเทียบกับกระถางควบคุม (น้ำกลั่น) (ตารางที่ 2.2.6)

ผลของสารผลิตภัณฑ์จากสารสกัดหยาบใบพุทธชาติก้านแดงที่มีต่ออัตราการเจริญเติบโต ความเป็น พิษ และน้ำหนักแห้งของต้นกล้ากวางตุ้ง

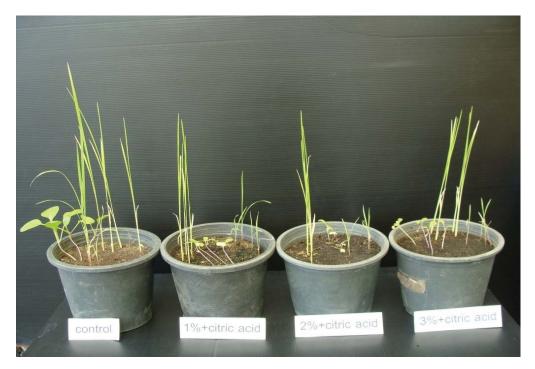
อัตราการเจริญเติบโต จากการทดลองพบว่า อัตราการเจริญเติบโตของต้นกล้า โดยการวัด กวามสูงต้นในวันที่ 7, 14 หลังฉีดพ่นสารผลิตภัณฑ์จากสารสกัดหยาบใบพุทธชาติก้านแดง ในสาร ผลิตภัณฑ์ 1%, 2 %, 3 %, 1%+citric acid 3%, 2 %+citric acid 3% และ 3%+citric acid 3% ไม่มีความ แตกต่างกันทางสถิติ เมื่อเปรียบเทียบกับกระถางควบคุม(น้ำกลั่น) แต่ใน citric acid 3% มีความ แตกต่างกันทางสถิติ เมื่อเปรียบเทียบกับกระถางควบคุม(น้ำกลั่น), ในวันที่ 21 หลังฉีดพ่นสาร ผลิตภัณฑ์จากสารสกัดหยาบใบพุทธชาติก้านแดง ในสารผลิตภัณฑ์ 1%, 1%+citric acid 3% และ 3%+citric acid 3% ไม่มีความแตกต่างกันทางสถิติ เมื่อ เปรียบเทียบกับกระถางควบคุม (น้ำกลั่น) ส่วน สารผลิตภัณฑ์ 2 %, 3 %, 2 %+citric acid 3% และ citric acid 3% มีความแตกต่างกันทางสถิติ เมื่อ เปรียบเทียบกับกระถางควบคุม(น้ำกลั่น), ในวันที่ 28 หลังฉีดพ่นสารผลิตภัณฑ์จากสารสกัดหยาบใบ พุทธชาติก้านแดง ในสารผลิตภัณฑ์ 1%, 3%, 1%+citric acid 3%, 2 %+citric acid 3% และ 3%+citric acid 3% ไม่มีความแตกต่างกันทางสถิติ เมื่อเปรียบเทียบกับกระถางควบคุม (น้ำกลั่น) ส่วนสาร ผลิตภัณฑ์ 2 % และ citric acid 3% มีความแตกต่างกันทางสถิติ เมื่อเปรียบเทียบกับกระถางควบคุม (น้ำกลั่น) (กราฟที่ 2.2.3 และ ภาพที่ 2.2.1 และ 2.2.2) ซึ่งจะเห็นได้ว่า citric acid 3% มีความสูงต้น น้อยที่สุด คือ 3.37, 3.33, 3.58, 4.03 ซม. ตามลำดับวันที่วัด (7, 14, 21, 28 วัน) โดยเปรียบเทียบกับ สารผลิตภัณฑ์ทุกชนิดและน้ำกลั่น (ตารางที่ 2.2.7)


ความเป็นพิษ (%) จากการทคลอง พบว่า ความเป็นพิษของค้นกล้า ในการวัควันที่ 7 หลังฉีค พ่นสารผลิตภัณฑ์จากสารสกัดหยาบใบพุทธชาติก้านแคง ในสารผลิตภัณฑ์ 1%, 2 %, 1%+citric acid 3%, 2 %+citric acid 3% และ 3%+citric acid 3% ไม่มีความแตกต่างกันทางสถิติ เมื่อเปรียบเทียบกับ กระถางควบคุม(น้ำกลั่น) ส่วนสารผลิตภัณฑ์ 3% และ citric acid 3% มีความแตกต่างกันทางสถิติ เมื่อ เปรียบเทียบกับกระถางควบคุม(น้ำกลั่น) ในวันที่ 14 หลังฉีดพ่นสารผลิตภัณฑ์จากสารสกัดหยาบใบ พุทธชาติก้านแคง ในสารผลิตภัณฑ์ 1%, 1%+citric acid 3% และ2 %+citric acid 3% ไม่มีความ แตกต่างกันทางสถิติ เมื่อเปรียบเทียบกับกระถางควบคุม (น้ำกลั่น) ส่วนสารผลิตภัณฑ์ 2 %, 3%, 3%+citric acid 3% และ citric acid 3% แตกต่างกันทางสถิติ เมื่อเปรียบเทียบกับกระถางควบคุม ใน วันที่ 21 และ28 ในสารผลิตภัณฑ์ 1%, 2%, 3%, 1%+citric acid 3%, 2%+citric acid 3% และ 3%+citric acid 3% ไม่มีความแตกต่างกันทางสถิติ เมื่อเปรียบเทียบกับกระถางควบคุม แต่ใน citric

acid 3% มีความแตกต่างกันทางสถิติ เมื่อเปรียบเทียบกับกระถางควบคุม(น้ำกลั่น) (กราฟที่ 2.2.3 ตารางที่ 2.2.8 และ ภาพที่ 2.2.1)

ตารางที่ 2.2.7 ผลของสารผลิตภัณฑ์จากสารสกัดหยาบใบพุทธชาติก้านแดงที่มีต่อความสูงของต้น กล้ากวางตุ้ง

สารผลิตภัณฑ์		ความสูงของ	ต้นกล้า (cm.)	
		หลังฉีดพ่นส	ารผลิตภัณฑ์	
	7	14	21	28
น้ำกลั่น	4.85a	5.24a	5.94a	6.15a
1%	4.44ab	4.55ab	4.64ab	4.76ab
2%	3.97ab	4.16ab	4.23b	4.20c
3%	3.98ab	4.13ab	4.23b	4.13abc
1% + citric acid	4.44ab	4.61ab	4.64ab	4.56ab
2% + citric acid	4.11ab	4.13ab	4.23b	4.08abc
3% + citric acid	4.40ab	4.47ab	4.57ab	4.64ab
citric acid 3%	3.37b	3.33b	3.58b	4.03bc


ค่าเฉลี่ยความสูงของต้นกล้าในแต่ละวันด้วยตัวอักษรเหมือนกัน ไม่มีความแตกต่างทางสถิติจาก การวิเคราะห์ค่าเฉลี่ยโดยวิธี DMRT (p=0.05)

กราฟที่ 2.2.3 เปรียบเทียบความสูงของข้าว, หญ้าข้าวนก และกวางตุ้ง หลังจากฉีดพ่นสารผลิตภัณฑ์ จากสารสกัดหยาบของใบพุทธชาติก้านแดง 28 วัน

ภาพที่ 2.2.1 ผลของสารผลิตภัณฑ์ของสารสกัดหยาบจากใบพุทธชาติก้านแคงที่ 1%, 2%, 3% ที่มีต่อ อัตราการเจริญเติบโตและความเป็นพิษของข้าว, หญ้าข้าวนก, กวางคุ้ง หลังฉีดพ่น 28 วัน

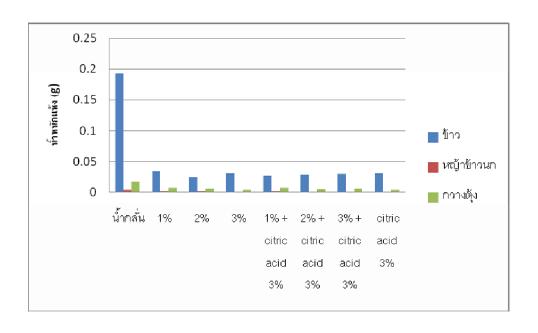
ภาพที่ 2.2.2 ผลของสารผลิตภัณฑ์ของสารสกัดหยาบจากใบพุทธชาติก้านแดงที่ 1%+citric acid 3%, 2%+citric acid 3%, 3%+citric acid 3% ที่มีต่ออัตราการเจริญเติบโตและความเป็นพิษ ของข้าว, หญ้าข้าวนก, กวางตุ้ง หลังฉีดพ่น 28 วัน

ความเป็นพิษ (%) จากการทดลอง พบว่า ความเป็นพิษของต้นกล้า ในการวัดวันที่ 7 หลังฉีด พ่นสารผลิตภัณฑ์จากสารสกัดหยาบใบพุทธชาติก้านแดง ในสารผลิตภัณฑ์ 1%, 2%, 1%+citric acid 3%, 2%+citric acid 3% และ 3%+citric acid 3% ไม่มีความแตกต่างกันทางสถิติ เมื่อเปรียบเทียบกับ กระถางควบคุม(น้ำกลั่น) ส่วนสารผลิตภัณฑ์ 3% และ citric acid 3% มีความแตกต่างกันทางสถิติ เมื่อ เปรียบเทียบกับกระถางควบคุม(น้ำกลั่น), ในวันที่ 14 หลังฉีดพ่นสารผลิตภัณฑ์จากสารสกัดหยาบใบ พุทธชาติก้านแดง ในสารผลิตภัณฑ์ 1%, 1%+citric acid 3% และ 2%+citric acid 3% ไม่มีความ แตกต่างกันทางสถิติ เมื่อเปรียบเทียบกับกระถางควบคุม(น้ำกลั่น) ส่วนสารผลิตภัณฑ์ 2%, 3%, 3%+citric acid 3% และ citric acid 3% มีความแตกต่างกันทางสถิติ เมื่อเปรียบเทียบกับกระถางควบคุม(น้ำกลั่น), ในวันที่ 21 และ 28 ในสารผลิตภัณฑ์ 1%, 2%, 3%, 1%+citric acid 3%, 2 %+citric acid 3% และ3%+citric acid 3% ไม่มีความแตกต่างกันทางสถิติ เมื่อเปรียบเทียบกับกระถางควบคุม แต่ใน citric acid 3% มีความแตกต่างกันทางสถิติ เมื่อเปรียบเทียบกับกระถางควบคุม เต่ใน citric acid 3% มีความแตกต่างกันทางสถิติ เมือนที่นักของกับกระถางควบคุม เต่ใน citric acid 3% มีความแตกต่างกันทางสถิติ เมื่อเปรียบเทียบกับกระถางความ เต่ใน citric acid 3% มีความแตกต่างกันทางสถิติ เมื่อเกียบกับกระถางความ เต่ใน citric acid 3% มีความ เต่ใน citric acid 3% มีความ เต่ใน citric acid 3% มีคามาย

ตารางที่ 2.2.8 ผลของสารผลิตภัณฑ์จากสารสกัดหยาบใบพุทธชาติก้านแดงที่มีต่อความเป็นพิษของ ต้นกล้ากวางตุ้ง

สารผลิตภัณฑ์	f	ความเป็นพิษของต้นกล้า (%)		
		หลังฉีดพ่นส	ารผลิตภัณฑ์	
	7	14	21	28
น้ำกลั่น	0.00cd	4.38c	0.00b	0.00b
1%	4.38cd	10.63bc	0.00b	0.00b
2%	6.25bcd	14.38b	0.00b	0.00b
3%	13.13ab	22.50a	10.21ab	8.54b
1% + citric acid	0.00d	5.00c	0.00b	0.00b
2% + citric acid	2.50cd	11.88bc	0.00b	0.00b
3% + citric acid	9.38abc	16.25ab	0.00b	0.00b
citric acid 3%	15.00a	16.25ab	21.25a	38.54a

ค่าเฉลี่ยความเป็นพิษของต้นกล้าในแต่ละวันด้วยตัวอักษรเหมือนกัน ไม่มีความแตกต่างทางสถิติ จากการวิเคราะห์ค่าเฉลี่ยโดยวิธี DMRT (p=0.05)


กราฟที่ 2.2.4 เปรียบเทียบความเป็นพิษของข้าว, หญ้าข้าวนก และกวางตุ้ง หลังจากฉีดพ่นสาร ผลิตภัณฑ์จากสารสกัดหยาบของใบพุทธชาติก้านแดง 28 วัน

น้ำหนักแห้ง เมื่อนำต้นกล้าอายุ 28 วันในแต่ละกระถางมาอบและชั่งน้ำหนักแห้ง พบว่า น้ำหนักแห้งของกระถางที่ถีดพ่นสารผลิตภัณฑ์ของสารสกัดหยาบจากใบพุทธชาติก้านแดง ทุกความ เข้มข้น มีความแตกต่างกันทางสถิติ เมื่อเปรียบเทียบกับกระถางควบคุม โดยมีน้ำหนักแห้งน้อยกว่า อย่างมีนัยสำคัญ (กราฟที่ 2.2.5 และ ตารางที่ 2.2.9)

ตารางที่ 2.2.9 ผลของสารผลิตภัณฑ์จากสารสกัดหยาบใบพุทธชาติก้านแดงที่มีต่อน้ำหนักแห้งของ ต้นกล้ากวางตุ้ง

สารผลิตภัณฑ์	น้ำหนักแห้ง (g)
น้ำกลั่น	0.0180a
1%	0.0069b
2%	0.0067b
3%	0.0043b
1% + citric acid	0.0071b
2% + citric acid	0.0052b
3% + citric acid	0.0061b
citric acid 3%	0.0038b

ค่าเฉลี่ยของน้ำหนักแห้งต่อต้นกล้าที่อายุ 28 วันด้วยตัวอักษรเหมือนกัน ไม่มีความแตกต่างทาง สถิติจากการวิเคราะห์ค่าเฉลี่ยโดยวิชี DMRT (p=0.05)

กราฟที่ 2.2.5 เปรียบเทียบน้ำหนักแห้งของข้าว, หญ้าข้าวนก และกวางตุ้ง หลังจากฉีดพ่นสาร ผลิตภัณฑ์จากสารสกัดหยาบของใบพุทธชาติก้านแดง 28 วัน

ภาพที่ 2.2.3 ผลของ citric acid 3% ที่มีต่ออัตราการเจริญเติบ โตและความเป็นพิษของข้าว, หญ้า ข้าวนก, กวางตุ้ง หลังฉีดพ่น 28 วัน

การทดลองที่ 2.3 ศึกษาชนิดและสัดส่วนที่เหมาะสมของการใช้สารสกัดสารออกฤทธิ์จากพืชชนิดอื่น เป็นส่วนผสม

สารออกฤทธิ์จากพุทธชาติก้านแคงมีคุณสมบัติในการเลือกทำลายวัชพืชใบแคบได้ดีกว่าใบ กว้าง เพื่อให้ผลิตภัณฑ์มีประสิทธิภาพสูงสุดจึงจำเป็นต้องมีการทดลองนำสารสกัดออกฤทธิ์จากพืช มาผสมในผลิตภัณฑ์ เพื่อให้มีประสิทธิภาพในการควบคุมวัชพืชได้กว้าง และมากชนิดขึ้น อีกทั้งทำ การทดลองศึกษาการเกิดปฏิกริยาเสริมฤทธิ์ (synergistic) ของการใช้สารสกัดออกฤทธิ์จากพืชมาผสม ในผลิตภัณฑ์ควบคุมวัชพืชจากพุทธชาติก้านแดง

วิธีการทดลอง

การวางแผนการทดลอง

วางแผนการทดลองแบบ Completely Randomized Design (CRD) 4 ซ้ำ โดยผสมสารสกัด หยาบในอัตราส่วน 1:1 (ปริมาตรต่อปริมาตร) ดังนี้ พุทธชาติก้านแดง:พุทธชาติก้านแดง ประยงค์: ประยงค์ คาวเรื่อง:คาวเรื่อง พุทธชาติก้านแดง:ประยงค์ พุทธชาติก้านแดง:คาวเรื่อง และ พุทธชาติก้าน แดง:ประยงค์:คาวเรื่อง ทดสอบประสิทธิภาพของสารสกัดหยาบที่ระดับความเข้มข้น 500, 1,000, 2,000 และ 4,000 ppm โดยมีน้ำกลั่นเป็นวิธีเปรียบเทียบ (control) พืชทดสอบ 2 ชนิดคือ หญ้าข้าวนก และถั่วผี

การเตรียมสารสกัดหยาบ

เก็บใบพุทธชาติก้านแดง ใบประยงค์ และใบคาวเรื่อง ที่มีความอุคมสมบูรณ์ ไม่มีโรคและ แมลง อบให้แห้งที่อุณหภูมิ 45 องศาเซลเซียส เป็นระยะเวลา 72 ชั่วโมง ตัดใบเป็นชิ้นเล็ก ๆ สกัดด้วย เอทานอลในอัตราส่วนใบแห้ง 100 กรัมต่อเอทานอล 1,000 มิลลิลิตร สกัดทิ้งไว้ 72 ชั่วโมง จากนั้น กรองสารละลายเอทานอลผ่านกระคาษกรอง แล้วนำสารสกัดที่ได้ระเหยออกให้แห้งด้วยเครื่องระเหย สุญญากาศ จะได้สารสกัดหยาบ (crude ethanol extract)

การทคสอบ

เจือจางความเข้มข้นส่วนผสมของสารสกัดหยาบชนิดต่างๆ ด้วยเอทานอล ที่ระดับความ เข้มข้น 500, 1,000, 2,000 และ 4,000 ppm โดยมีน้ำกลั่นเป็นวิธีการเปรียบเทียบ ใส่ในจานทดลอง ขนาดเส้นผ่านศูนย์กลางขนาด 9 เซนติเมตร ซึ่งรองด้วยกระดาษเพราะเมล็ด 2 ชั้น จากนั้นระเหย เอทา นอลออกจนหมด แล้วใส่น้ำกลั่น 5 มิลลิลิตรต่อจานทดลอง วางเมล็ดวัชพืชทดสอบคือ ข้าวนก และ ถั่วผี ในจานทดลอง จานละ 20 เมล็ด ปิดฝาและนำไปวางไว้ในตู้ควบคุมการเจริญเติบโตของพืช ที่ตั้ง ค่าแสงสว่าง 12 ชั่วโมง อุณหภูมิ 32 องสาเซลเซียส และ ไม่มีแสงสว่าง 12 ชั่วโมง อุณหภูมิ 25 องสาเซลเซียส ความชื้นสัมพัทธ์ 80 เปอร์เซ็นต์

<u>การบันทึกผลและการวิเคราะห์ผล</u>

- วัดอัตราการงอกของเมล็ดหญ้าข้าวนกและถั่วผี วันที่ 7 หลังวันเพาะเมล็ด เมล็ดที่มีราก งอก ออกมา 0.2 มิลลิเมตร นับว่างอก

- วัดอัตราการรอดชีวิตของต้นกล้าหญ้าข้าวนกและถั่วผี ในวันที่ 7 หลังวันเพาะเมล็ด โดยมี เกณฑ์วัดการตายของต้นกล้า คือ 1) รากเน่า มีสีน้ำตาล 2) ต้นกล้าไม่ยืดยาว หงิกงอ ไม่มีใบเลี้ยง
 - วัดความยาวลำต้นของต้นกล้าที่รอดชีวิต ในวันที่ 7 หลังวันเพาะเมล็ด
 - วัดความยาวรากของต้นกล้าที่รอดชีวิต ในวันที่ 7 หลังวันเพาะเมล็ด

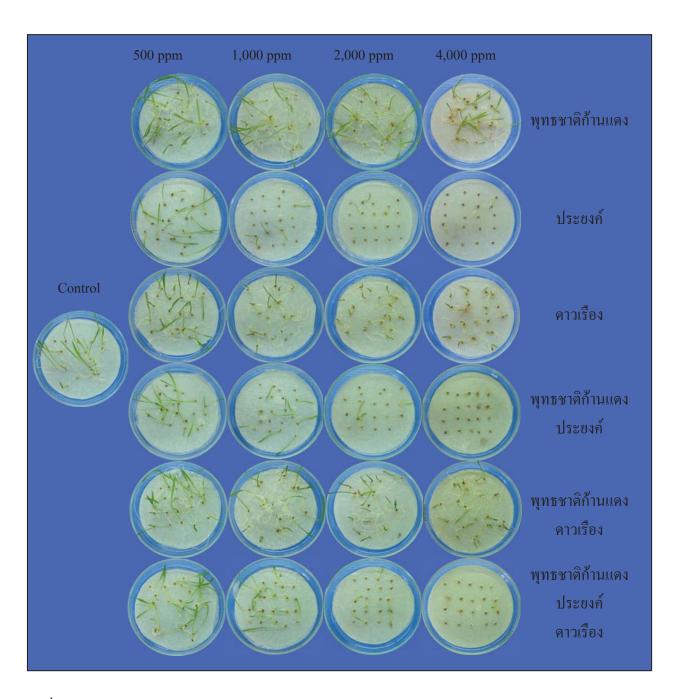
นำข้อมูลที่ได้มาวิเคราะห์ค่าความแปรปรวนทางสถิติ (ANOVA) และเปรียบเทียบความ แตกต่างของค่าเฉลี่ยโดยวิธี Tukey's Studentized Range Test ที่ระดับความเชื่อมั่น 95 %

ผลการทดลอง

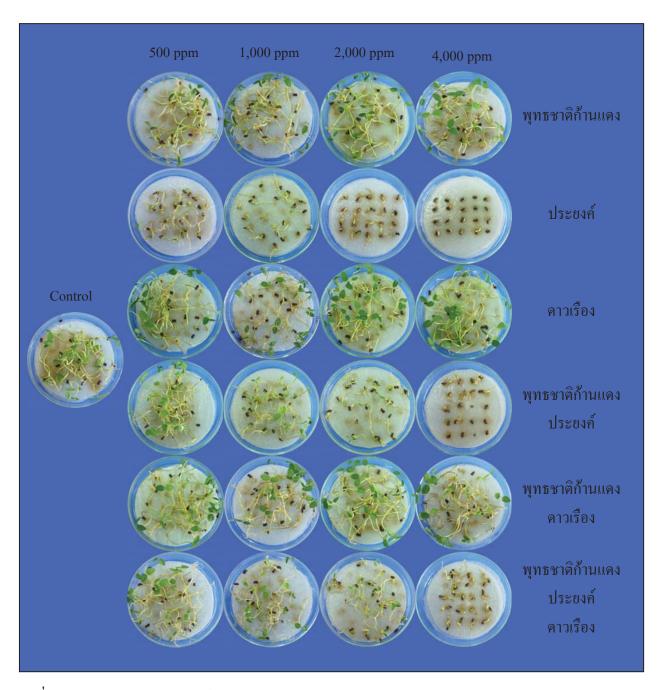
ผลต่อการอกของเมล็คหญ้าข้าวนก หลังจากเพาะเมล็คหญ้าข้าวนกเป็นเวลา 7 วัน พบว่า ที่ ระคับความเข้มข้น 2,000 และ 4,000 ppm สารสกัคสารออกฤทธิ์จากประยงค์ พุทธชาติ:ประยงค์ และ พุทธชาติ:ประยงค์:ดาวเรื่อง สามารถยับยั้งการงอกของเมล็คหญ้าข้าวนกได้สูงสุดและ ไม่แตกต่างกัน ทางสถิติ ในขณะที่สารสกัคสารออกฤทธิ์จากพุทธชาติ ที่ระคับความเข้มข้น 4,000 ppm ไม่สามารถ ยับยั้งการงอกของเมล็คได้ (ตารางที่ 2.3.1, รูปที่ 2.3.1)

ผลต่อการเจริญเติบโตหญ้าข้าวนก ผลการทดลองปรากฏว่า ที่ระดับความเข้มข้น 2,000 และ 4,000 ppm สารสกัดสารออกฤทธิ์จาก ประยงค์ พุทธชาติ:ประยงค์ และ พุทธชาติ:ประยงค์:ดาวเรื่อง มี ผลต่อการยับยั้งความยาวต้นของหญ้าข้าวนกอย่างไม่แตกต่างกันทางสถิติ และสามารถยับยั้งความยาว ต้นของหญ้าข้าวนกได้สูงสุดเมื่อเปรียบเทียบกับสารสกัดสารออกฤทธิ์ชนิดอื่นๆที่ระดับความเข้มข้น เดียวกัน ในขณะที่สารสกัดสารออกฤทธิ์จากพุทธชาติที่ระดับความเข้มข้น 4,000 ppm สามารถยับยั้ง ความยาวต้นต่ำที่สุดเพียง 19.31 เปอร์เซ็นต์ สำหรับผลต่อความยาวรากพบว่าที่ระดับความเข้มข้น 500 และ 1,000 ppm สารสกัดสารออกฤทธิ์จากพุทธชาติ ดาวเรื่อง และ พุทธชาติ:ดาวเรื่อง มีผลต่อ ความยาวรากของหญ้าข้าวนกไม่แตกต่างกันทางสถิติ และเมื่อผสมสารสกัดสารออกฤทธิ์จากพุทธชาติกับประยงค์ สามารถทำให้ความสามารถในการยับยั้งความยาวรากของหญ้าข้าวนกเพิ่มขึ้น (ตารางที่ 2.3.1, รูปที่ 2.3.1)

ผลต่อการอกของเมล็ดถั่วผี หลังจากเพาะเมล็ดหญ้าข้าวนกเป็นเวลา 7 วัน พบว่า ที่ระดับ ความเข้มข้น 4,000 ppm สารสกัดสารออกฤทธิ์จากประยงค์สามารถยับยั้งการงอกของเมล็ดถั่วผีได้ สูงสุด คือ 78.75 เปอร์เซ็นต์ ในขณะที่ระดับความเข้มข้น 4,000 ppm สารสกัดสารออกฤทธิ์ของ พุทธชาติ สามารถยับยั้งการงอกของเมล็ดถั่วผีได้เพียง 6.25 เปอร์เซ็นต์ เมื่อผสมสารสกัดสารออกฤทธิ์ของของพุทธชาติกับประยงค์พบว่า ที่ระดับความเข้มข้น 4,000 ppm สามารถยับยั้งการงอกของเมล็ดถั่วผีได้ 30 เปอร์เซ็นต์ (ตารางที่ 2.3.2, รูปที่ 2.3.2)


<u>ผลต่อการเจริญเติบโตของถั่วผี</u> ผลการทคลองปรากฏว่า ที่ระคับความเข้มข้น 4,000 ppm สาร สกัคสารออกฤทธิ์จาก ประยงค์ พุทธชาติ:ประยงค์ และ พุทธชาติ:ประยงค์:คาวเรื่อง มีผลต่อการยับยั้ง ความยาวต้นของ ถั่วผีไม่แตกต่างกันทางสถิติ และสามารถยับยั้งความยาวต้นของถั่วผีได้ดีที่สุดเมื่อ เปรียบเทียบกับสารสกัดสารออกฤทธิ์ชนิดอื่นๆ ที่ระดับความเข้มข้นเดียวกัน ในขณะที่สารสกัดสาร ออกฤทธิ์จากพุทธชาติที่ระดับความเข้มข้น 4,000 ppm ไม่สามารถยับยั้งความยาวต้นของถั่วผีได้ สำหรับความยาวราก พบว่า สารสกัดสารออกฤทธิ์จากพุทธชาติที่ระดับความเข้มข้น 4,000 ppm สามารถยับยั้งความยาวรากของถั่วผีได้ 13.89 เปอร์เซ็นต์ เมื่อผสมสารสกัดสารออกฤทธิ์ของพุทธชาติ กับประยงค์พบว่า สามารถยับยั้งความยาวรากของถั่วผีได้ถึง 95.30 เปอร์เซ็นต์ (ตารางที่ 2.3.2, รูปที่ 2.3.2)

ตารางที่ 2.3.1 แสดงผลของผลิตภัณฑ์ควบคุมวัชพืชจากพุทธชาติก้านแดงต่อการงอกและการ เจริญเติบโตของหญ้าข้าวนก


97 97	การงอกและการเจริญเติบโต			
ความเข้มข้น (ppm) —	การงอก	ความยาวต้น	ความยาวราก	
	(%)	(cm.)	(cm.)	
พุทธชาติก้านแดง				
500	-2.60 d	-2.16 hi	-47.15 c	
1,000	0.00 d	2.16 hi	-42.26 c	
2,000	1.30 d	-0.38 hi	19.16 b	
4,000	-2.60 d	19.31 fgh	57.62 ab	
ประยงค์				
500	15.58 d	7.62 ghi	89.80 a	
1,000	57.14 bc	67.60 cd	96.81 a	
2,000	80.52 a	96.06 ab	99.75 a	
4,000	89.61 a	100.00 a	100.00 a	
คาวเรื่อง				
500	-2.60 d	16.93 fgh	-47.30 c	
1,000	-1.30 d	67.73 cd	-29.73 c	
2,000	6.49 d	65.82 cd	12.65 b	
4,000	1.30 d	72.24 bcd	21.74 b	
พุทธชาติก้านแดง : ประยงค์				
500	3.90 d	-2.03 hi	85.75 a	
1,000	45.45 c	34.82 ef	88.08 a	
2,000	74.03 ab	86.91 abc	98.89 a	
4,000	83.12 a	100.00 a	100.00 a	
พุทธชาติก้านแดง : คางเรื่อง				
500	-1.30 d	-11.82i	-38.45 c	
1,000	-1.30 d	9.91fghi	-53.56 c	
2,000	0.00 d	48.41de	-29.85 c	
4,000	0.00 d	62.52cd	23.10 b	
พุทธชาติก้านแดง : ประยงค์ : ดาวเรื่อง				
500	3.90 d	-4.19hi	38.33 b	
1,000	12.99 d	32.91efg	86.00 a	
2,000	77.92 a	84.37abc	95.58 a	
4,000	92.21 a	98.35ab	97.05 a	

ตารางที่ 2.3.2 แสดงผลของผลิตภัณฑ์ควบคุมวัชพืชจากพุทธชาติก้านแดงต่อการงอกและการ เจริญเติบโตของถั่วผี

ay ay	เปอร์เซ็นต์ยับยั้งการงอกและการเจริญเติบโต			
ความเข้มข้น (ppm)	การงอก	ความยาวต้น	ความยาวราก	
	(%)	(%)	(%)	
พุทธชาติก้านแดง				
500	0.00 c	-35.42 gh	1.07 fghij	
1,000	1.25 c	-28.62 gh	-5.13 ghijk	
2,000	1.25 c	-20.41 fgh	17.95 defgh	
4,000	6.25 c	-27.65 fgh	13.89 efghi	
ประยงค์				
500	1.25 с	58.66 c	41.24 ef	
1,000	3.75 c	85.16 ab	62.82 abc	
2,000	5.00 c	90.55 ab	74.36 abc	
4,000	78.75 a	100.00 a	100.00 a	
ดาวเรื่อง				
500	1.25 с	-28.71 gh	-39.74 jk	
1,000	2.50 c	-21.11 fgh	6.62 efghi	
2,000	1.25 c	-27.83 fgh	9.83 efghi	
4,000	3.75 c	-20.41 fgh	1.07 fghij	
พุทธชาติก้านแคง : ประยงค์				
500	1.25 c	24.56 e	-12.39 hijk	
1,000	0.00 c	31.10 de	11.97 efghi	
2,000	1.25 c	71.82 bc	47.86 cde	
4,000	30.00 b	97.97 ab	95.30 ab	
พุทธชาติก้านแดง : ดาวเรื่อง				
500	0.00 c	-18.82 fgh	-44.87 k	
1,000	0.00 c	-8.13 fg	-21.79 hijk	
2,000	2.50 c	-27.39 fgh	4.06 fghi	
4,000	2.50 c	-2.92 fg	9.69 efghi	
พุทธชาติก้านแคง : ประยงค์ : ดาวเรื่อง				
500	0.00 c	-1.94 f	-26.71 ijk	
1,000	3.75 c	30.92 de	-4.70 ghijk	
2,000	0.00 c	51.15 cd	33.12 cdefg	
4,000	7.50 c	85.07 ab	57.69 bcd	

รูปที่ 2.3.1 แสดงผลของผลิตภัณฑ์ควบคุมวัชพืชจากพุทธชาติก้านแดงต่อการงอกและการเจริญเติบโต ของหญ้าข้าวนก

รูปที่ 2.3.2 แสดงผลของผลิตภัณฑ์ควบคุมวัชพืชจากพุทธชาติก้านแดงต่อการงอกและการเจริญเติบโต ของถั่วฝี

การทดลองที่ 2.4 ศึกษาผลของการใช้ผลิตภัณฑ์ควบคุมวัชพืชจากพุทธชาติก้านแคง ก่อนวัชพืชงอก (Pre-emergence)

วิธีการทดลอง

การวางแผนการทดลอง

วางแผนการทดลองแบบ Completely Randomized Design (CRD) 4 replication ที่อัตราสาร ออกฤทธิ์เท่ากับ 2.5, 5, 10 และ 20 กรัมสารออกฤทธิ์/ตารางเมตร โดยมีน้ำกลั่นเป็นวิธีเปรียบเทียบ (control) พืชทดสอบ 2 ชนิดคือ หญ้าข้าวนก และถั่วผื

การเตรียมผลิตภัณฑ์

นำใบพุทธชาติก้านแดง มาอบให้แห้งที่อุณหภูมิ 45 องศาเซลเซียส เป็นเวลา 72 ชั่วโมง นำใบ พุทธชาติก้านแดงที่อบแห้งแล้วมาสกัดด้วยเอทานอล จากนั้นระเหยเอทานอลออกด้วยเครื่องระเหย สูญญากาศ (vacuum rotary evaporator) จะได้สารสกัดหยาบ (crude ethanol extract) ของพืชออกมา นำสารสกัดหยาบมาแปรรูปเป็นผลิตภัณฑ์ โดยมีอัตราส่วนดังนี้ crude ethanol extract 30%, tween 80 0.625%, NP-40 3.125%, coconut diethanolamide 25%, ethanol 15% และ น้ำ 26.25%

การทคสอบผลิตภัณฑ์

ทำการปลูกพืช 2 ชนิด คือ หญ้าข้าวนก และ ถั่วผี ลงในกระถางพลาสติกขนาดเส้นผ่าน ศูนย์กลาง 9.5 เซนติเมตร โดยใช้ดินร่วนผสมกับทราย ในอัตราส่วน 1:1 (ปริมาตร/ปริมาตร) ใส่ลงใน กระถาง ประมาณ 2/3 ของกระถาง เกลี่ยผิวหน้าให้เรียบ แล้วนำเมล็ดพืชทดสอบปลูกลงในกระถาง และใช้ดินที่ผสมไว้กลบหนา 1-2 เซนติเมตร รดน้ำให้ชุ่ม ฉีดพ่นผลิตภัณฑ์ควบคุมวัชพืชจากพุทธชาติ ก้านแดงอัตราต่างๆตามแผนการทดลอง โดยมีอัตราการใช้น้ำ 160 ลิตร/ไร่ หลังจากฉีกพ่นสารแล้ว 24 ชั่วโมง รดน้ำวันละ 1 ครั้ง ทำการถอนแยกเมื่อพืชทดสอบอายุ 7 วัน ให้เหลือต้นพืชทดสอบที่มีขนาด ความสม่ำเสมอกัน 5 ต้น/กระถาง

<u>การบันทึกผล</u>

- วัดอัตราการงอกของหญ้าข้าวนกและถั่วฝี ที่ 3, 5 และ 7 วันหลังปลูก
- วัดความยาวลำต้นของหญ้าข้าวนกและถั่วผีที่รอดชีวิต ที่ 7, 14, 21 และ 28 วันหลังปลูก
- หาน้ำหนักแห้งส่วนเหนือดินของหญ้าข้าวนก และถั่วฝีหลังจากปลูก 28 วัน อบที่อุณหภูมิ 45 องศาเซลเซียส เป็นเวลา 3 วัน

การวิเคราะห์ผล

นำข้อมูลที่ได้มาวิเคราะห์ค่าความแปรปรวนทางสถิติ (ANOVA) และเปรียบเทียบความ แตกต่างของค่าเฉลี่ยโดยวิธี Tukey's Studentized Range Test ที่ระดับความเชื่อมั่น 95 %

ผลการทดลอง

2.4.1 ผลของการใช้ผลิตภัณฑ์ควบคุมวัชพืชจากพุทธชาติก้านแดงต่อการงอกของเมล็ดและ การเจริญเติบโตของ

ผลต่อการงอกของเมล็ดหญ้าข้าวนก การใช้ผลิตภัณฑ์ควบคุมวัชพืชจากพุทธชาติก้านแดงใน อัตรา 2.5, 5, 10 และ 20 กรัมสารออกฤทธิ์/ตารางเมตร พบว่า ที่ 3 วันหลังการใช้ผลิตภัณฑ์ควบคุม วัชพืชจากพุทธชาติก้านแดงทุกอัตรามีผลต่อการงอกของหญ้าข้าวนกไม่แตกต่างกันทางสถิติ ในวันที่ 5 และ 7 หลังจากใช้ผลิตภัณฑ์ควบคุมวัชพืชจากพุทธชาติก้านแดง พบว่าที่อัตรา 20 กรัมสารออก ฤทธิ์/ตารางเมตร สามารถยับยั้งการงอกได้สูงสุด คือ 22.22 และ 21.05 เปอร์เซ็นต์ ตามลำดับ หลังจาก การใช้ผลิตภัณฑ์ควบคุมวัชพืชจากพุทธชาติก้านแดงไปแล้ว 3 วัน พบว่าสามารถยับยั้งการงอกของ เมล็ดหญ้าข้าวนกได้สูงสุด ส่วนวันที่ 5 และ 7 หลังจากใช้ผลิตภัณฑ์ควบคุมวัชพืชจากพุทธชาติก้าน แดงสามารถยับยั้งการงอกของเมล็ดหญ้าข้าวนกไม่แตกต่างกันทางสถิติ (ตารางที่ 2.4.1)

ผลต่อการเจริญเติบโตและน้ำหนักแห้งส่วนเหนือดินของหญ้าข้าวนก หลังจากใช้ผลิตภัณฑ์ ควบคุมวัชพืชจากพุทธชาติก้านแดงไปแล้ว 8 วัน พบว่า ที่อัตรา 2.5, 5 และ 10 กรัมสารออกฤทธิ์/ ตารางเมตร มีผลต่อการเจริญเติบโตของหญ้าข้าวนกไม่แตกต่างกันทางสถิติ ในขณะที่อัตรา 20 กรัม สารออกฤทธิ์/ตารางเมตร สามารถยับยั้งการเจริญเติบโตได้สูงสุด 5.97 เปอร์เซ็นต์ (ตารางที่ 2.4.2, รูป ที่ 2.4.1) เมื่อตัดส่วนเหนือดินของต้นหญ้าข้าวนกอายุ 28 วัน ไปอบเพื่อหาน้ำหนักแห้งพบว่า การใช้ ผลิตภัณฑ์ควบคุมวัชพืชจากพุทธชาติก้านแดงทุกอัตรา มีผลต่อน้ำหนักแห้งส่วนเหนือดินของหญ้า ข้าวนกไม่แตกต่างกันทางสถิติ (ตารางที่ 2.4.2)

ผลต่อการงอกของเมล็ดถั่วผี หลังจากใช้ผลิตภัณฑ์ควบคุมวัชพืชจากพุทธชาติก้านแดงไป แล้ว 3, 5 และ 7 วัน พบว่าทุกอัตรามีผลต่อการงอกของเมล็ดถั่วผีอย่างมีนัยสำคัญทางสถิติ สำหรับใน วันที่ 7 หลังจากใช้ผลิตภัณฑ์ควบคุมวัชพืชจากพุทธชาติก้านแดง พบว่า ที่อัตรา 20 กรัมสารออกฤทธิ์/ตารางเมตร มีผลต่อการงอกของเมล็ดถั่วผีสูงสุดถึง 20 เปอร์เซ็นต์ ในขณะที่ อัตรา 2.5, 5 และ 10 กรัม สารออกฤทธิ์/ตารางเมตร มีผลต่อการงอกของเมล็ดถั่วผีไม่แตกต่างกันทางสถิติ ผลิตภัณฑ์ควบคุม วัชพืชจากพุทธชาติก้านแดงมีผลให้การยับยั้งการงอกของเมล็ดถั่วผี ในวันที่ 3, 5 และ 7 ไม่แตกต่างกันทางสถิติ (ตารางที่ 2.4.1)

ผลต่อการเจริญเติบ โตและน้ำหนักแห้งส่วนเหนือดินของถั่วผี หลังจากใช้ผลิตภัณฑ์ควบคุม วัชพืชจากพุทธชาติไปแล้ว 28 วันพบว่า ที่อัตรา 2.5, 5, 10 และ 20 กรัมสารออกฤทธิ์/ตารางเมตร มีผล ต่อการเจริญเติบ โตของหญ้าข้าวนกไม่แตกต่างกันทางสถิติ (ตารางที่ 2.4.2, รูปที่ 2.4.2) เมื่อตัดส่วน เหนือดินของต้นถั่วผีอายุ 28 วัน ไปอบเพื่อหาน้ำหนักแห้งพบว่า การใช้ผลิตภัณฑ์ควบคุมวัชพืชจาก พุทธชาติก้านแดง ที่อัตรา 5, 10 และ 20 กรัมสารออกฤทธิ์/ตารางเมตรสารมารถยับยั้งน้ำหนักแห้ง ส่วนเหนือดินสูงสุด และ ไม่แตกต่างกันทางสถิติ (ตารางที่ 2.4.2)

ตารางที่ 2.4.1 แสดงเปอร์เซ็นต์ยับยั้งการงอกของพืชทดสอบหลังจากฉีดพ่นผลิตภัณฑ์ควบคุมวัชพืช จากพุทธชาติก้านแดง

อัตราการใช้		% ยับยั้งการงอก	
(g a.i./m ²)	วันที่ 3	วันที่ 5	วันที่ 7
หญ้าข้าวนก 2.5	26.09 a	8.33 b	0.00 b
5	30.43 a	11.11 b	5.26 b
10	34.78 a	13.89 b	7.89 b
20	39.13 a	22.22 a	21.05 a
เฉลี่ย	32.16 a	13.89 b	8.55 b
ถั่วฝี 2.5	15.79 b	2.50 c	0.00 b
5	18.42 b	7.50 bc	2.50 b
10	23.68 b	12.50 ab	5.00 b
20	39.47 a	20.00 a	20.00 a
เฉลี่ย	24.34 a	10.63 a	6.88 a

ค่าเฉลี่ยที่ตามด้วยอักษรเหมือนกันแสดงว่าไม่มีความแตกต่างกันทางสถิติ (p=0.05) จากการ วิเคราะห์ค่าเฉลี่ยโดย Turkey's Studentized Range Test

ตารางที่ 2.4.2 แสดงเปอร์เซ็นต์ยับยั้งการเจริญเติบโต (ความสูง) และน้ำหนักแห้งของพืชทดสอบ หลังจากฉีดพ่นผลิตภัณฑ์ควบคุมวัชพืชจากพุทธชาติก้านแดง

อัตราการใช้	% ยับยั้งการเจริญเติบโต				% ยับยั้งน้ำหนักแห้ง	
(g a.i./m ²)	วันที่ 7	วันที่ 14	วันที่ 21	วันที่ 28	ส่วนเหนือดิน	
หญ้าข้าวนก						
2.5	1.36 b	1.01 b	0.46 b	0.42 b	1.61 a	
5	6.88 b	3.34 b	2.94 ab	-0.52 b	-2.41 a	
10	10.84 b	6.25 b	4.48 ab	1.15 b	3.23 a	
20	34.13 a	16.34 a	8.81 a	5.97 a	7.26 a	
เฉลี่ย	13.30 a	6.73 a	4.17 a	1.76 a		
ถั่วฝื						
2.5	4.97 c	2.62 b	1.13 a	0.33 a	-0.17 b	
5	6.74 c	5.56 b	2.26 a	0.65 a	2.67 ab	
10	23.83 b	18.12 a	7.92 a	5.54 a	5.83 a	
20	49.12 a	20.91 a	10.94 a	8.47 a	7.17 a	
เฉลี่ย	21.17 a	11.83 a	5.56 a	3.67 a		

ค่าเฉลี่ยที่ตามด้วยอักษรเหมือนกันแสดงว่าไม่มีความแตกต่างกันทางสถิติ (p=0.05) จากการ วิเคราะห์ค่าเฉลี่ยโดย Turkey's Studentized Range Test

รูปที่ 2.4.1 แสดงผลของการใช้ผลิตภัณฑ์ควบคุมวัชพืชจากพุทธชาติก้านแดง ต่อการเจริญเติบโตของ หญ้าข้าวนกหลังจากเพาะ 14 วัน

รูปที่ 2.4.2 แสดงผลของการใช้ผลิตภัณฑ์ควบคุมวัชพืชจากพุทธชาติก้านแดง ต่อการเจริญเติบโตขอ ถั่วฝีหลังจากเพาะ 14 วัน

การทดลองที่ 2.5 ศึกษาผลของการใช้ผลิตภัณฑ์ควบคุมวัชพืชจากพุทธชาติก้านแดง หลังวัชพืชงอก (Post-emergence)

วิธีการทดลอง

การวางแผนการทดลอง

วางแผนการทดลองแบบ Completely Randomized Design (CRD) 4 replication ทดสอบที่ ความเข้มข้น 10,000, 20,000, 40,000 และ 80,000 ppm โดยมีน้ำกลั่นเป็นวิธีเปรียบเทียบ (control) พืช ทดสอบ 2 ชนิดคือ หญ้าข้าวนก และถั่วผี

การเตรียมผลิตภัณฑ์

นำใบพุทธชาติก้านแดง มาอบให้แห้งที่อุณหภูมิ 45 องศาเซลเซียส เป็นเวลา 72 ชั่วโมง นำใบ พุทธชาติก้านแดงที่อบแห้งแล้วมาสกัดด้วยเอทานอล จากนั้นระเหยเอทานอลออกด้วยเครื่องระเหย สูญญากาศ (vacuum rotary evaporator) จะได้สารสกัดหยาบ (crude ethanol extract) ของพืชออกมา นำสารสกัดหยาบมาแปรรูปเป็นผลิตภัณฑ์ โดยมีอัตราส่วนดังนี้ crude ethanol extract 30%, tween 80 0.625%, NP-40 3.125%, coconut diethanolamide 25%, ethanol 15% และ น้ำ 26.25%

การทดสอบ

ทำการปลูกพืช 2 ชนิด คือ หญ้าข้าวนก และ ถั่วผี ลงในกระถางพลาสติกขนาดเส้นผ่าน ศูนย์กลาง 9.5 เซนติเมตร โดยใช้ดินร่วนผสมกับทราย ในอัตราส่วน 1:1 (ปริมาตรต่อปริมาตร) ใส่ลง ในกระถาง ประมาณ 2/3 ของกระถาง เกลี่ยผิวหน้าให้เรียบ แล้วนำเมล็ดพืชทดสอบปลูกลงใน กระถาง และใช้ดินที่ผสมไว้กลบหนา 1-2 เซนติเมตร รดน้ำให้ชุ่ม เมื่อพืชทดสอบอายุ 7 วัน ให้ถอน แยกเหลือกระถางละ 5 ต้น เมื่อพืชทดสอบอายุ 14 วัน ทำการฉีดพ่นผลิตภัณฑ์ควบคุมวัชพืชจาก พุทธชาติก้านแดงที่ความเข้มข้นตามแผนการทดลอง โดยมีอัตราการใช้น้ำ 160 ลิตร/ไร่

การบันทึกผลและการวิเคราะห์ผล

- ประเมินประสิทธิภาพในการควบคุมวัชพืชด้วยสายตา โดยการให้คะแนน (Bryan, 1977) ที่ 1, 3, 5, 7, 14 และ 21 วันหลังฉีดพ่น
 - บันทึกจำนวนพืชทดสอบที่ยังมีชีวิตอยู่ หลังฉีดพ่น 21 วัน
- บันทึกน้ำหนักแห้งส่วนเหนือดิน โดยตัดส่วนเหนือดินของพืชทดสอบในวันที่ 21 หลังจาก ฉีดพ่นสาร ไปอบที่อุณหภูมิ 45 °C เป็นเวลา 3 วัน

นำข้อมูลที่ได้มาวิเคราะห์ค่าความแปรปรวนทางสถิติ (ANOVA) และเปรียบเทียบความแตก ต่างของค่าเฉลี่ยโดยวิธี Tukey's Studentized Range Test ที่ระดับความเชื่อมั่น 95 %

ผลการทดลอง

ความเป็นพิษของสารต่อส่วนเหนือคินของหญ้าข้าวนก หลังจากฉีดพ่นผลิตภัณฑ์ควบคุม วัชพืชจากพุทธชาติก้านแดงไปแล้ว 21 วัน พบว่า ที่ระดับความเข้มข้น 80,000 ppm มีผลทำให้หญ้า ข้าวนกเกิดความเป็นพิษมากที่สุดถึง 82.5 เปอร์เซ็นต์ ในขณะที่ความเข้มข้น 10,000 20,000 และ 40,000 ppm มีผลต่อความเป็นพิษของหญ้าข้าวนกไม่แตกต่างกันทางสถิติ (ตารางที่ 2.5.1 รูปที่ 2.5.1)

ผลต่อการรอดชีวิต หลังจากฉีดพ่นผลิตภัณฑ์ควบคุมวัชพืชจากพุทธชาติก้านแดง 21 วัน พบว่า ที่ระดับความเข้มข้น 80,000 ppm มีผลทำให้หญ้าข้าวนกมีอัตราการรอดชีวิต 25 เปอร์เซ็นต์ ในขณะที่ความเข้มข้น 10,000, 20,000 และ 40,000 ppm มีผลทำให้หญ้าข้าวนกมีอัตราการรอดชีวิต 100 เปอร์เซ็นต์ (ตาราง 2.5.2)

ผลต่อน้ำหนัก<u>แห้งส่วนเหนือดิน</u> หลังจากฉีดพ่นผลิตภัณฑ์ควบคุมวัชพืชจากพุทธชาติก้าน แคงไปแล้ว 21 วัน พบว่า ที่ระดับความเข้มข้น 80,000 ppm มีผลทำให้น้ำหนักแห้งส่วนเหนือดินของ หญ้าข้าวนกต่ำสุดคือ 35.32 เปอร์เซ็นต์ ในขณะที่ระดับความเข้มข้น 10,000, 20,000 และ 40,000 ppm มีผลต่อน้ำหนักแห้งส่วนเหนือดินของหญ้าข้าวนกไม่แตกต่างกันทางสถิติ (ตารางที่ 2.5.3)

2.5.2 ผลของการใช้ผลิตภัณฑ์ควบคุมวัชพืชจากพุทธชาติก้านแดงต่อความเป็นพิษ การรอด ชีวิตและน้ำหนักแห้งส่วนเหนือดินของถั่วผี

ความเป็นพิษของสารต่อส่วนเหนือคินของถั่วผี หลังจากฉีดพ่นผลิตภัณฑ์ควบคุมวัชพืชจาก พุทธชาติก้านแดงไปแล้ว 21 วัน พบว่า ที่ระดับความเข้มข้น 80,000 ppm มีผลทำให้ถั่วผีเกิดความเป็น พิษมากที่สุดถึง 90 เปอร์เซ็นต์ รองลงมาคือ ระดับความเข้มข้น 40,000 ppm มีผลทำให้ถั่วผีเกิดความ เป็นพิษเพียง 25 เปอร์เซ็นต์ ในขณะที่ ระดับความเข้มข้น 10,000 และ 20,000 ppm ไม่มีผลต่อความ เป็นพิษของถั่วผี (ตารางที่ 2.5.1, รูปที่ 2.5.2)

ผลต่อการรอดชีวิต หลังจากฉีดพ่นผลิตภัณฑ์ควบคุมวัชพืชจากพุทธชาติก้านแดงไปแล้ว 21 วัน พบว่า ที่ระดับความเข้มข้น 80,000 ppm มีผลทำให้ถั่วผีมีอัตราการรอดชีวิต 10 เปอร์เซ็นต์ ในขณะที่ความเข้มข้น 10,000, 20,000 และ 40,000 ppm มีผลทำให้ถั่วผีมีอัตราการรอดชีวิต 100 เปอร์เซ็นต์ (ตารางที่ 2.5.2)

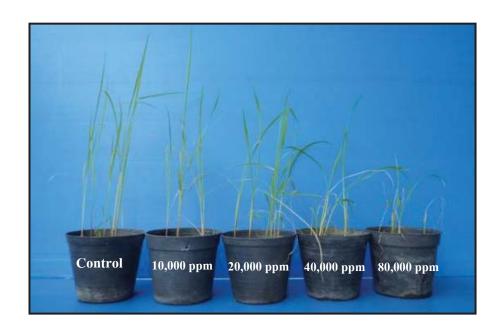
ผลต่อน้ำหนักแห้งส่วนเหนือดิน เมื่อตัดส่วนเหนือดินของต้นถั่วฝีหลังจากฉีดพ่นผลิตภัณฑ์ ควบคุมวัชพืชจากพุทธชาติก้านแดงไปแล้ว 21 วัน พบว่า ที่ระดับความเข้มข้น 80,000 ppm มีผลทำให้ น้ำหนักแห้งส่วนเหนือดินของถั่วฝีต่ำสุดคือ 11.49 เปอร์เซ็นต์ รองลงมาคือ ความเข้มข้น 40,000 ppm มีผลทำให้มีน้ำหนักแห้งส่วนเหนือดินเท่ากับ 52.17 เปอร์เซ็นต์ ในขณะที่ความเข้มข้น 10,000 และ 20,000 ppm มีผลทำให้น้ำหนักแห้งส่วนเหนือดินเท่าอีดินของถั่วฝีไม่แตกต่างกันทางสถิติ (ตารางที่ 2.5.3)

ตารางที่ 2.5.1 แสดงเปอร์เซ็นต์ความเป็นพิษของพืชทดสอบ หลังจากฉีดพ่นผลิตภัณฑ์ควบคุมวัชพืช จากพุทธชาติก้านแดง 14 วัน

ความเข้มข้น		ความเป็นพิษ (%)				
(ppm)	วันที่ 1	วันที่ 3	วันที่ 5	วันที่ 7	วันที่ 14	วันที่ 21
ข้าวนก						
10,000	10.00 d	10.00 c	0.00 d	0.00 c	0.00 c	0.00 b
20,000	40.00 c	42.50 b	42.50 c	47.50 b	27.50 b	0.00 b
40,000	60.00 b	70.00 a	70.00 b	57.50 b	45.00 b	5.00 b
80,000	70.00 a	75.00 a	82.50 a	87.50 a	87.50 a	82.50 a
ถั่วฝึ						
10,000	10.00 c	0.00 d	0.00 c	0.00 c	0.00 c	0.00 c
20,000	10.00 c	10.00 c	7.50 c	0.00 c	0.00 c	0.00 c
40,000	60.00 b	60.00 b	60.00 b	40.00 b	32.50 b	25.00 b
80,000	77.50 a	90.00 a	90.00 a	90.00 a	90.00 a	90.00 a

ค่าเฉลี่ยที่ตามด้วยอักษรเหมือนกันแสดงว่าไม่มีความแตกต่างกันทางสถิติ (p=0.05) จากการ วิเคราะห์ค่าเฉลี่ยโดย Turkey's Studentized Range Test

ตารางที่ 2.5.2 แสดงเปอร์เซ็นต์การรอดชีวิตของพืชทดสอบ หลังจากฉีดพ่นผลิตภัณฑ์ควบคุมวัชพืช จากพุทธชาติก้านแดง 21 วัน


ความเข้มข้น (ppm)	การรอดชีวิต (%)	
ข้าวนก		
10,000	100 a	
20,000	100 a	
40,000	100 a	
80,000	25 b	
ถั่วผี		
10,000	100 a	
20,000	100 a	
40,000	100 a	
80,000	10 b	

ค่าเฉลี่ยที่ตามด้วยอักษรเหมือนกันแสดงว่าไม่มีความแตกต่างกันทางสถิติ (p=0.05) จากการ วิเคราะห์ค่าเฉลี่ยโดย Turkey's Studentized Range Test

ตารางที่ 2.5.3 แสดงเปอร์เซ็นต์น้ำหนักแห้งส่วนเหนือดินเปรียบเทียบกับ Control ของพืชทดสอบ หลังจากฉีดพ่นผลิตภัณฑ์ควบคุมวัชพืชจากพุทธชาติก้านแดง 21 วัน

ความเข้มข้น (ppm)	น้ำหนักแห้งส่วนเหนือดิน (%)		
ข้าวนก			
10,000	98.09 a		
20,000	97.25 a		
40,000	95.92 a		
80,000	35.32 b		
ถั่วผี			
10,000	101.86 a		
20,000	98.76 a		
40,000	52.17 b		
80,000	11.49 c		

ค่าเฉลี่ยที่ตามด้วยอักษรเหมือนกันแสดงว่าไม่มีความแตกต่างกันทางสถิติ (p=0.05) จากการ วิเคราะห์ค่าเฉลี่ยโดย Turkey's Studentized Range Test

รูปที่ 2.5.1 แสดงความเป็นพิษและการเจริญเติบโตของหญ้าข้าวนกหลังจากฉีดพ่นผลิตภัณฑ์ควบคุม วัชพืชจากพุทธชาติก้านแดง 14 วัน

รูปที่ 2.5.2 แสดงความเป็นพิษและการเจริญเติบโตของถั่วฝีหลังจากฉีดพ่นผลิตภัณฑ์ควบคุมวัชพืช จากพุทธชาติก้านแดง 14 วัน

โครงการที่ 3

ศึกษาสภาพและวิธีการใช้สารผลิตภัณฑ์ให้มีประสิทธิภาพสูงสุด ในสภาพแวดล้อมระดับแปลงผลิตพืช

การทดลองที่ 3.1 การศึกษาประสิทธิภาพของผลิตภัณฑ์ NHSJ ในดินชนิดต่าง ๆ วิธีการทดลอง

<u>การวางแผนการทดลอง</u>

วางแผนการทคลองแบบสุ่มสมบูรณ์ 10 กรรมวิธีการทคลอง วิธีการทคลองละ 4 ซ้ำ คังนี้ ชนิคคิน 3 ชนิค คือ ทราย คินร่วน และคินร่วน+ทราย อัตราส่วนที่เท่ากัน อัตราผลิตภัณฑ์ NHSJ ใน รูป SC ดีที่สุดในการทคลองก่อนหน้า อัตรา คือ 0.16, 0.32 และ 0.64 กรัม สารออกฤทธิ์/จานทคลอง โดยมีน้ำกลั่นเป็นวิธีการเปรียบเทียบ

การเตรียมผลิตภัณฑ์ NHSJ

เก็บใบพุทธชาติก้านแคงที่มีความอุคมสมบูรณ์ ไม่มีโรคและแมลง อบให้แห้งที่อุณหภูมิ 45 องศาเซลเซียส เป็นระยะเวลา 72 ชั่วโมง ตัดใบเป็นชิ้นเล็ก ๆ สกัดด้วยเอทานอล โดยชั่งใบพุทธชาติ ก้านแคง 100 กรัมต่อเอทานอล 1 ลิตร สกัดทิ้งไว้อย่างน้อย 72 ชั่วโมง จากนั้นกรองสารละลายเอทา นอลผ่านกระคาษกรองเบอร์ 1 แยกส่วนกาก สกัดด้วยเอทานอลอีก 4 รอบ แล้วนำสารสกัดที่ได้ระเหย เอทานอลออกให้แห้งด้วยเครื่องระเหยสูญญากาศ จะได้สารสกัดหยาบ (crude ethanol extract) จากนั้นนำมาแปรรูปเป็นผลิตภัณฑ์ NHSJ

<u>เตรียมสารผลิตภัณฑ์รูปแบบผงเปียกน้ำ</u>

เตรียมได้จาก นำผง แร่กาโอลิในต์ โซเคียมรอลิซัลเฟต และ ทวีน 80 ในอัตราส่วน 97:1.5:1.5 โดยน้ำหนัก ตามลำดับ ผสมส่วนผสมในโกร่งบดสาร โดยมีอะซีโตนเป็นตัวช่วยทำละลาย บด ส่วนผสมให้เป็นเนื้อเดียวกัน จนอะซีโตนระเหยแห้งหมด จะได้ผงเปียกน้ำ นำสารสกัดหยาบจากเอ ทานอล ผสมกับผงเปียกน้ำในอัตราส่วน 30:70 โดยน้ำหนัก ผสมส่วนผสมในโกร่งบดสารโดยมีอะซีโตนเป็นตัวช่วยทำละลาย บดส่วนผสมจนกว่า อะซีโตนระเหยจนแห้ง จะได้ผลิตภัณฑ์ NHSJ ที่อยู่ใน รูป WP ที่มีสารออกฤทธิ์ 30 เปอร์เซ็นต์

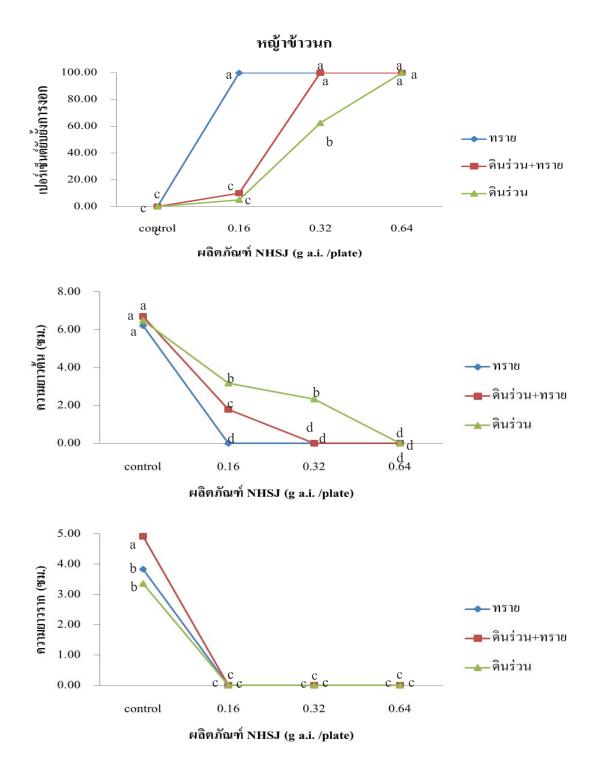
เตรียมสารผลิตภัณฑ์รูปแบบสารละลายเข้มข้น

เตรียมได้จาก สารสกัดหยาบจากพุทธชาติก้านแดงผสมกับ ทวีน 80 และ โซเดียมรอลิซัลเฟต ในอัตราส่วน 30:0:60 โดยน้ำหนัก ตามลำดับ ผสมให้เข้ากัน ก็จะได้ผลิตภัณฑ์ NHSJ ที่อยู่ในรูป SC ที่มีสารออกฤทธิ์ 30 เปอร์เซ็นต์

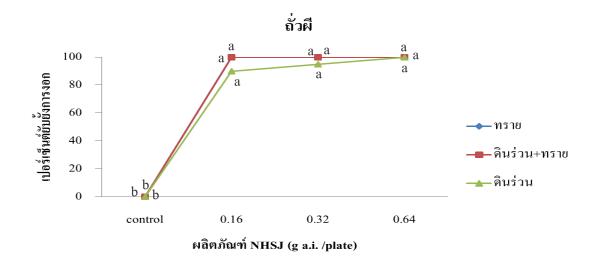
การเตรียมเมล็ดวัชพืชทดสอบ

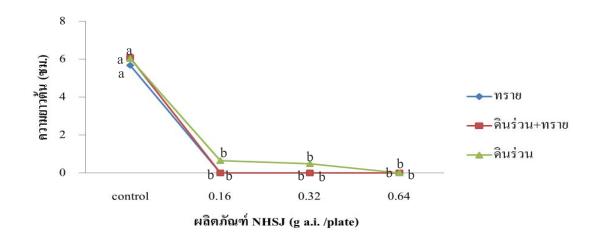
เมล็ดวัชพืชทดสอบ 2 ชนิด คือ หญ้าข้าวนก เป็นตัวแทนของวัชพืชใบเลี้ยงเคี่ยว และถั่วผี เป็นตัวแทนของวัชพืชใบเลี้ยงคู่ ขัดเปลือกเมล็ดถั่วผีด้วยกระดาษทรายเพื่อทำลายการพักตัวของเมล็ด จากนั้นแช่เมล็ดถั่วผีในสารละลายโซเดียมไฮโปคลอไรด์ ความเข้มข้น 1 เปอร์เซ็นต์ นาน 20 นาที เพื่อ ทำการฆ่าเชื้อจุลินทรีย์ที่ติดมากับเมล็ด เมื่อครบเวลาล้างเมล็ดด้วยน้ำสะอาด 2-3 ครั้ง แช่เมล็ดถั่วผีใน น้ำสะอาดนานอย่างน้อย 12 ชั่วโมง สำหรับหญ้าข้าวนก แช่เมล็ดในน้ำสะอาดนาน 24 ชั่วโมง ห่อด้วย ผ้าขาวบางเป็นเวลา 48 ชั่วโมง พร้อมสำหรับการทดสอบ

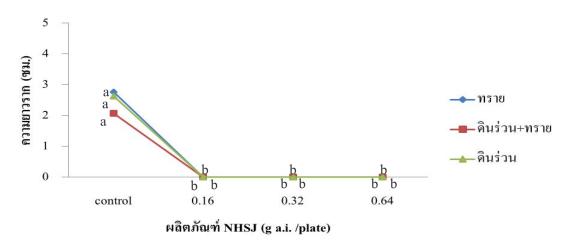
การทคสอบ

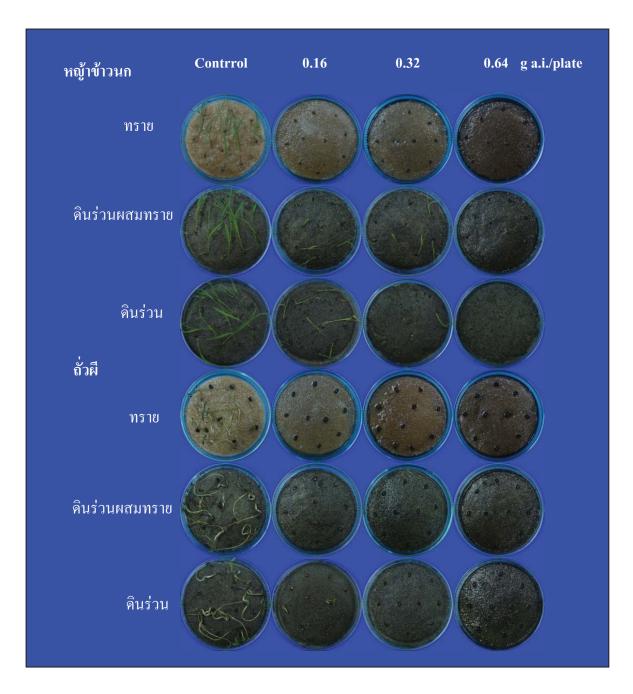

เตรียมคิน 3 ชนิค คือ ทราย คินร่วน และคินร่วน-ทรายอัตราส่วนที่เท่ากัน มาบคแล้วร่อน ค้วยตะแกรงที่มีรูเส้นผ่านศูนย์กลางขนาค 1 มิลลิเมตร อบฆ่าเชื้อ ทราย คินร่วน และ คินร่วน-ทราย ในอัตราส่วนที่เท่ากัน ค้วยหม้อนึ่งฆ่าเชื้อความคัน ไอน้ำที่อุณหภูมิ 121 องศาเซลเซียส ความคัน 15 ปอนค์ต่อตารางนิ้ว เป็นเวลา 20 นาที ชั่งคินแต่ละชนิค 10 กรัม/จานทคลอง โดยชั่งผลิตภัณฑ์ NHSJ ในรูป SC มา 0.16, 0.32 และ 0.64 กรัม สารออกฤทธิ์/จานทคลอง (ในอัตรา 0.25, 0.5 และ 1 ตัน สาร ออกฤทธิ์/ไร่ ใช้น้ำกลั่นเป็นวิธีการเปรียบเทียบ ปริมาตร 10 มิลลิลิตร วางเมล็ควัชพืชทคสอบ คือ ถั่วผี และหญ้าข้าวนก ในจานทคลอง จานละ 20 เมล็ค ปิคฝาและนำไปวางไว้ในคู้ควบคุมการเจริญเติบโต ของพืช ที่ตั้งค่าแสงสว่าง 12 ชั่วโมง อุณหภูมิ 32 องศาเซลเซียส ความชื้นสัมพัทธ์ 80 เปอร์เซ็นต์ และ ไม่มีแสงสว่าง 12 ชั่วโมง อุณหภูมิ 25 องศาเซลเซียส ความชื้นสัมพัทธ์ 80 เปอร์เซ็นต์

การบันทึกผล และการวิเคราะห์ผลการทคลอง


ทำการบันทึกผล และวิเคราะห์ผลการทคลอง โดยนับจำนวนการงอกของเมล็ดวันที่ 7 หลังจากเริ่มเพาะเมล็ด โดยกำหนดให้เมล็ดที่มีส่วน radicle ออกมาจากเปลือกหุ้มเมล็ดอย่างน้อย 2 มิลลิเมตร เป็นเมล็ดที่งอก วัดความยาวต้น และความยาวราก นำข้อมูลที่ได้มาวิเคราะห์ค่าความ แปรปรวนทางสถิติ และเปรียบเทียบความแตกต่างของค่าเฉลี่ยโดยวิธี Turkey's Studentized Range Test ที่ระดับความเชื่อมั่น 95 เปอร์เซ็นต์


ผลการทดลอง


เลือกผลิตภัณฑ์ NHSJ รูปแบบ SC มาทำการทดลองต่อไป พบว่าในทรายทุกอัตราของ ผลิตภัณฑ์ NHSJ รูปแบบสารละลายสามารถยับยั้งการงอกของพืชทดสอบ คือ หญ้าข้าวนกและถั่วผื ได้อย่างสมบูรณ์ รองลงมา คือดินร่วนผสมทราย และดินร่วน ตามลำดับ ส่วนความยาวรากในดินทั้ง 3 ชนิด และทุกอัตราของผลิตภัณฑ์ NHSJ ที่ทดสอบสามารถยับยั้งความยาวรากของพืชทดสอบทั้งสอง ชนิดได้อย่างสมบูรณ์ สำหรับความยาวต้น ที่อัตรา 0.16 กรัม (สารออกฤทธิ์)/จานทดลอง ในดินร่วน ผสมทราย และดินร่วน มีความยาวต้นของหญ้าข้าวนก 1.78 และ 3.18 เซนติเมตร ส่วนในถั่วผีมีความ ยาว 0 และ 0.67 เซนติเมตร (กราฟที่ 3.3.1, 3.3.2 และ ภาพที่ 3.3.1)


กราฟที่ 3.3.1 ผลของผลิตภัณฑ์ NHSJ ต่อการยับยั้งการงอก และการเจริญเติบโตของหญ้าข้าวนก ใน ทราย ดินร่วนผสมทราย และดินร่วน ค่าเฉลี่ยที่อยู่ในความเข้มข้นเดียวกัน ที่ตามด้วย ตัวอักษรเหมือนกัน แสดงว่าไม่มีความแตกต่างกันทางสถิติ จากการวิเคราะห์ค่าเฉลี่ย แบบ Turkey's Studentized Range Test (p=0.05)

กราฟที่ 3.3.2 ผลของผลิตภัณฑ์ NHSJ ต่อการยับยั้งการงอก และการเจริญเติบ โตของถั่วผี ในทราย คินร่วนผสมทราย และคินร่วน ค่าเฉลี่ยที่อยู่ในความเข้มข้นเคียวกัน ที่ตามค้วยตัว อักษร เหมือนกัน แสดงว่าไม่มีความแตกต่างกันทางสถิติ จากการวิเคราะห์ค่าเฉลี่ยแบบ Turkey's Studentized Range Test (p=0.05)

ภาพที่ 3.3.1 แสดงผลของผลิตภัณฑ์ NHSJ ต่อการยับยั้งการงอก และการเจริญเติบ โตของพืช ทคสอบในทราย คินร่วนผสมทราย และคินร่วน

โครงการที่ 4

สึกษากลไกการออกฤทธิ์ของสารจากพุทธชาติก้านแดง

การทดลองที่ 4.1 ศึกษาฤทธิ์ของผลิตภัณฑ์ NHSJ ต่อการคูดน้ำของเมล็ดพืชทดสอบ วิธีการทดลอง

การวางแผนการทดลอง

วางแผนการทดลองแบบสุ่มสมบูรณ์ 6 กรรมวิธีการทดลอง วิธีการทดลองละ 4 ซ้ำ ดังนี้ ผลิตภัณฑ์ NHSJ ในรูป SC ที่ระดับความเข้มข้น 500, 1000, 2000, 4000 และ 8000 ppm โดยมีน้ำกลั่น เป็นวิธีการเปรียบเทียบ

เตรียมสารผลิตภัณฑ์รูปแบบสารละลายเข้มข้น

เตรียมได้จาก สารสกัดหยาบจากพุทธชาติก้านแดงผสมกับ ทวีน 80 และ โซเดียมรอลิซัลเฟต ในอัตราส่วน 30:0:60 โดยน้ำหนัก ตามลำดับ ผสมให้เข้ากัน ก็จะได้ผลิตภัณฑ์ NHSJ ที่อยู่ในรูป SC ที่มีสารออกฤทธิ์ 30 เปอร์เซ็นต์

การเตรียมเมล็ดพืช

เมล็ดพืชทดสอบที่ใช้ คือ หญ้าข้าวนก และผักโขมสวนโดยทำการคัดเลือกเมล็ดหญ้าข้าวนก และเมล็ดผักโขมสวนให้มีขนาดใกล้เคียงกัน

<u>การทคสอบ</u>

ทำการเลือกเมล็ดหญ้าข้าวนกและเมล็ดผักโขมสวนโดยเลือกเมล็ดที่มีความสม่ำเสมอกัน จำนวน 80 เมล็ด และเมล็ดผักโขมสวนจำนวน 200 เมล็ด ชั่งน้ำหนักเริ่มต้น แล้วนำมาแช่ในผลิตภัณฑ์ NHSJ ในรูป SC ที่เตรียมไว้ที่ระดับความเข้มข้นต่าง ๆ กัน ปริมาตร 5 มิลลิลิตร โดยใช้น้ำกลั่นเป็น วิธีการเปรียบเทียบ ในจานทดลองขนาดเส้นผ่าสูนย์กลาง 9 เซนติเมตร แช่หญ้าข้าวนกเป็นระยะเวลา 12, 24 และ 48 ชั่วโมง และแช่ผักโขมสวนเป็นระยะเวลา 6, 12 และ 24 ชั่วโมง เนื่องจากเป็น ระยะเวลาที่มีความเหมาะสมแก่การงอกของเมล็ดพืชทดสอบของแต่ละชนิด วางในกล่องทึบแสงแล้ว นำไปวางในตู้ควบคุมการเจริญเติบโตของพืช ที่ตั้งค่าแสงสว่าง 12 ชั่วโมง อุณหภูมิ 32 องสาเซลเซียส ความชื้น สัมพัทธ์ 80 เปอร์เซ็นต์ และ ไม่มีแสงสว่าง 12 ชั่วโมง อุณหภูมิ 25 องสาเซลเซียส ความชื้น สัมพัทธ์ 80 เปอร์เซ็นต์ เมื่อครบตามเวลาที่กำหนด นำเมล็ดพืชทดสอบมาล้างด้วยน้ำกลั่น 2 ครั้ง ซับ น้ำออกให้แห้งด้วยกระดาษกรองเบอร์ 1 นาน 30 วินาที จากนั้นชั่งน้ำหนักที่เพิ่มขึ้น (น้ำหนักหลังแช่) โดยคำนวณเป็นเปอร์เซ็นต์การดูดน้ำของเมล็ดพืชทดสอบ (Maity et al. 2009)

การดูดน้ำของเมล็ด (เปอร์เซ็นต์) = <u>น้ำหนักที่เพิ่มขึ้น - น้ำหนักเริ่มต้น</u> ≥ 100

การบันทึกผลและการวิเคราะห์ผลการทดลอง

ทำการบันทึกข้อมูลและนำข้อมูลการคูดน้ำของเมล็ค(เปอร์เซ็นต์) มาวิเคราะห์ความ แปรปรวนทางสถิติและเปรียบเทียบความแตกต่างของค่าเฉลี่ยโดยวิธี Turkey's Studentized Range Test ที่ระดับความเชื่อมั่น 95 เปอร์เซ็นต์

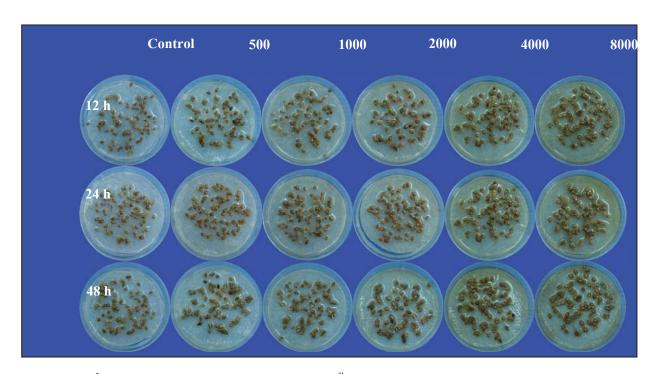
ผลการทดลอง

หญ้าข้าวนก ผลการทดสอบฤทธิ์ของผลิตภัณฑ์ NHSJ ที่ระดับความเข้มข้น 500, 1000, 2000, 4000 และ 8000 ppm ของสารออกฤทธิ์ ทคสอบที่ระยะเวลา 12, 24 และ 48 ชั่วโมง ต่อการการ คูดน้ำของหญ้าข้าวนก พบว่าที่ระยะเวลา 12 ชั่วโมง ที่ระดับความเข้มข้น 500, 1000 และ 2000 ppm มี ค่าเปอร์เซ็นต์การคูดน้ำเท่ากับ 32.99, 34.78 และ 34.00 เปอร์เซ็นต์ ตามลำดับ ซึ่งมีเปอร์เซ็นต์การคูด น้ำมากกว่าชุดควบคุมมีค่าเปอร์เซ็นต์การคูดน้ำเท่ากับ 32.84 เปอร์เซ็นต์ และเมื่อเพิ่มความเข้มข้น ีสูงขึ้นเป็น 4000 และ 8000 ppm พบว่า การคูดน้ำของหญ้าข้าวนกลคลง มีเปอร์เซ็นต์การคูดน้ำเท่ากับ 31.97 และ 29.50 เปอร์เซ็นต์ เมื่อเปรียบเทียบกับวิธีการควบคุม ไม่มีความแตกต่างทางสถิติ เมื่อเพิ่ม ระยะเวลาเป็น 24 ชั่วโมง พบว่าเป็นไปในแนวทางเคียวกันกับ 12 ชั่วโมง คือ ที่ระคับความเข้มข้น 500, 1000 และ 2000 ppm มีค่าเปอร์เซ็นต์การคูดน้ำเท่ากับ 45.83, 46.85 และ 46.61 เปอร์เซ็นต์ ตามลำดับ มีมากกว่าวิธีการควบคุม ขณะที่ชุดควบคุมมีค่าเปอร์เซ็นต์การคูดเท่ากับ 45.11 เปอร์เซ็นต์ และเมื่อเพิ่มความเข้มข้นของผลิตภัณฑ์ NHSJ ให้สูงขึ้นเป็น 4000 และ 8000 ppm เปอร์เซ็นต์การคูด น้ำของหญ้าข้าวนกมีค่าลดลง เท่ากับ 40.40 และ 35.31 เปอร์เซ็นต์ ส่วนที่ระยะเวลา 48 ชั่วโมง เริ่มมี การงอกของเมล็คในวิธีการควบคุม และที่ระดับความเข้มข้น 500, 1000 และ 2000 ppm มีการงอกของ เมล็คหญ้าข้าวนกลดลงเรื่อย ๆ ตามความเข้มข้นของสารที่เพิ่มขึ้น และที่ระดับความเข้มข้น 4000 และ 8000 ppm ไม่พบการงอกของหญ้าข้าวนก เมื่อวัดค่าเปอร์เซ็นต์การดูดน้ำ พบว่า ที่ระดับความเข้มข้น 500 ถึง 8000 ppm มีการคูดน้ำของเมล็ดหญ้าข้าวนกลคลงเรื่อย ๆ ตามความเข้มข้นของสารที่เพิ่ม สูงขึ้น มีเปอร์เซ็นต์การคูดน้ำเท่ากับ 66.37, 50.62, 49.18, 47.44 และ 41.45 ตามลำดับ ในขณะที่ชุด ควบคุมมีค่าเปอร์เซ็นต์การคูดน้ำเท่ากับ 79.54 เปอร์เซ็นต์ มีความแตกต่างทางสถิติ (ตารางที่ 4.1.1 ແລະ ภาพที่ 4.1.1)

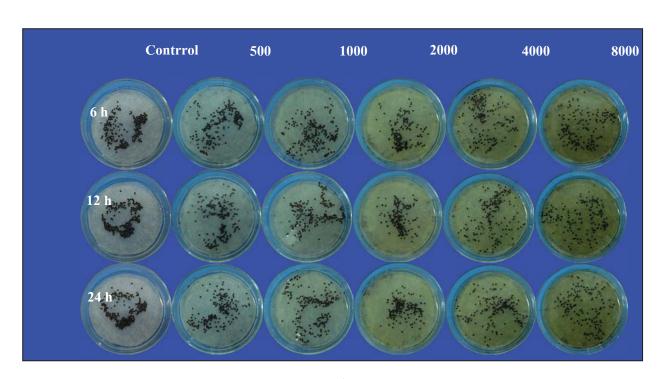
ผักโขม ผลการทดสอบฤทธิ์ของผลิตภัณฑ์ NHSJ ที่ระดับความเข้มข้น 500, 1000, 2000, 4000 และ 8000 ppm ของสารออกฤทธิ์ทดสอบที่ระยะเวลา 6, 12 และ 24 ชั่วโมง ต่อการการดูดน้ำ ของเมล็ดผักโขม พบว่าเปอร์เซ็นต์การดูดน้ำของเมล็ดผักโขมเพิ่มขึ้นตามระยะเวลาในการทดสอบ ที่ ระยะเวลา 6 ชั่วโมง มีค่าเปอร์เซ็นต์การดูดน้ำเท่ากับ 25.50, 24.87, 24.75, 24.47 และ 24.56 เปอร์เซ็นต์ ตามลำดับ ขณะที่ชุดควบคุมมีเปอร์เซ็นต์การดูดน้ำเท่ากับ 26.64 เปอร์เซ็นต์ ไม่มีความ แตกต่างทางสถิติ เช่นเดียวกับที่ระยะเวลา 12 ชั่วโมง มีค่าเปอร์เซ็นต์การดูดน้ำของเมล็ดผักโขมเท่ากับ 31.46, 30.42, 31.61, 30.22 และ 29.93 เปอร์เซ็นต์ ตามลำดับ ขณะที่ชุดควบคุมมีเปอร์เซ็นต์การดูดน้ำของเมล็ดผักโขม เท่ากับ 31.92 เปอร์เซ็นต์ และที่ระยะเวลา 24 ชั่วโมง พบว่ามีเปอร์เซ็นต์การดูดน้ำของเมล็ดผักโขม

ลดลงตามความเข้มข้นของผลิตภัณฑ์ NHSJ ที่เพิ่มขึ้น คือมีเปอร์เซ็นต์การคูดน้ำเท่ากับ 35.25, 36.86, 35.50, 34.17 และ 32.09 เปอร์เซ็นต์ ตามลำดับ ขณะที่ชุดควบคุมมีเปอร์เซ็นต์การคูดน้ำเท่ากับ 40.00 เปอร์เซ็นต์ มีความแตกต่างกันทางสถิติ และเริ่มมีการงอกของเมล็ดผักโขม (ตารางที่ 4.1.2 และ ภาพที่ 4.1.2)

ตารางที่ **4.1.1** ผลของผลิตภัณฑ์ NHSJ ต่อการคูดน้ำของหญ้าข้าวนกที่ระยะเวลา 12, 24 และ 48 ชั่วโมง


12 ชั่วโมง 32.84 ± 3.73 a	24 ชั่วโมง 45.11 ± 2.80a	48 ชั่วโมง
32.84 ± 3.73 a	45 11 + 2 90 ₀	
	$43.11 \pm 2.80a$	$79.54 \pm 4.60a$
$32.99 \pm 0.55a$	$45.83 \pm 4.85a$	66.37 ± 10.95 b
$34.78\pm0.82a$	$46.85 \pm 5.16a$	$50.62 \pm 4.28c$
$34.00 \pm 3.55a$	$46.61 \pm 5.78a$	$49.18 \pm 3.31c$
$31.97\pm2.73a$	$40.40 \pm 6.68a$	$47.44 \pm 5.49c$
$29.50 \pm 4.24a$	$35.31 \pm 6.65a$	$41.45 \pm 5.12c$
	$34.78 \pm 0.82a$ $34.00 \pm 3.55a$ $31.97 \pm 2.73a$	$34.78 \pm 0.82a$ $46.85 \pm 5.16a$ $34.00 \pm 3.55a$ $46.61 \pm 5.78a$ $40.40 \pm 6.68a$

ค่าเฉลี่ยที่อยู่ในคอลัมน์เดียวกันที่ตามด้วยตัวอักษรเหมือนกันแสดงว่าไม่มีความแตกต่างกันทางสถิติ จากการวิเคราะห์ค่าเฉลี่ยแบบ Turkey's Studentized Range Test (p=0.05)


ตารางที่ 4.1.2 ผลของผลิตภัณฑ์ NHSJ ต่อการคูดน้ำของเมล็ดวัชพืชผักโขมที่ระยะเวลา 6, 12 และ 24 ชั่วโมง

ผลิตภัณฑ์ NHSJ	เปอร์เซ็นต์การดูดน้ำของเมล็ดผักโขม				
พยุดบุเกิญ NH21	6 ชั่วโมง	12 ชั่วโมง	24 ชั่วโมง		
ชุดควบคุม	$26.64 \pm 1.77a$	$31.92\pm0.73a$	$40.00 \pm 0.64a$		
500 ppm	$25.50 \pm 1.14a$	$31.46 \pm 0.96a$	35.25 ± 0.68 bc		
1000 ppm	$24.87 \pm 1.19a$	$30.42 \pm 2.32a$	$36.86 \pm 1.41b$		
2000 ppm	$24.75\pm1.28a$	$31.61 \pm 0.34a$	35.50 ± 0.82 bc		
4000 ppm	$24.47 \pm 2.85a$	$30.22 \pm 1.95a$	$34.17 \pm 0.62c$		
8000 ppm	24.56 ± 2.60a	$29.93 \pm 1.07a$	$32.09 \pm 1.07d$		

ค่าเฉลี่ยที่อยู่ในคอลัมน์เดียวกันที่ตามด้วยตัวอักษรเหมือนกันแสดงว่า ไม่มีความแตกต่างกันทางสถิติ จากการวิเคราะห์ค่าเฉลี่ยแบบ Turkey's Studentized Range Test (p=0.05)

ภาพที่ 4.1.1 ผลของผลิตภัณฑ์ NHSJ ต่อการคูดน้ำของเมล็ดวัชพืชหญ้าข้าวนกที่ระยะเวลา 12, 24 และ 48 ชั่วโมง

ภาพที่ 4.1.2 ผลของผลิตภัณฑ์ NHSJ ต่อการดูดน้ำของเมล็ดวัชพืชผักโขมที่ระยะเวลา 6, 12 และ 24 ชั่วโมง

การทดลองที่ 4.2 การศึกษาผลิตภัณฑ์ NHSJ ต่อการยับยั้งกิจกรรมเอนไซม์อะไมเลส ในเมล็ดพืช ทดสอบ

วิธีการทดลอง

การวางแผนการทดลอง

วางแผนการทดลองแบบสุ่มสมบูรณ์ 6 กรรมวิธีการทดลอง วิธีการทดลองละ 4 ซ้ำ ดังนี้ ผลิตภัณฑ์ NHSJ ในรูป SC ที่ระดับความเข้มข้น 500, 1000, 2000, 4000 และ 8000 ppm โดยมีน้ำกลั่น เป็นวิธีการเปรียบเทียบ

เตรียมสารผลิตภัณฑ์รูปแบบสารละลายเข้มข้น

เตรียมได้จาก สารสกัดหยาบจากพุทธชาติก้านแดงผสมกับ ทวีน 80 และ โซเดียมรอลิซัลเฟต ในอัตราส่วน 30:10:60 โดยน้ำหนัก ตามลำดับ ผสมให้เข้ากัน ก็จะได้ผลิตภัณฑ์ NHSJ ที่อยู่ในรูป SC ที่มีสารออกฤทธิ์ 30 เปอร์เซ็นต์

การเตรียมเมล็ดพืช

เมล็ดพืชทดสอบที่ใช้ คือ หญ้าข้าวนก และผักโขมสวน เนื่องจากเมล็ดวัชพืชทั้งสองชนิดนี้ เมื่อแช่ในน้ำและผลิตภัณฑ์ เอนไซม์อะไมเลสภายในเมล็ดไม่มีการรั่วไหลออกมาข้างนอก โดยทำการ คัดเลือกเมล็ดหญ้าข้าวนกและเมล็ดผักโขมสวนให้มีขนาดใกล้เคียงกัน

การทคสอบ

ทำการเลือกเมล็ดหญ้าข้าวนกและเมล็ดผักโขมสวนโดยเลือกเมล็ดที่มีความสม่ำเสมอกัน จำนวน 80 เมล็ค และเมล็คผักโขมสวนจำนวน 200 เมล็ค ชั่งน้ำหนักเริ่มต้น แล้วนำมาแช่ในผลิตภัณฑ์ NHSJ ในรูป SC ที่เตรียมไว้ที่ระดับความเข้มข้นต่าง ๆ กัน ปริมาตร 5 มิลลิลิตร โดยใช้น้ำกลั่นเป็น วิธีการเปรียบเทียบ ในจานทคลองขนาคเส้นผ่าศูนย์กลาง 9 เซนติเมตร แช่หญ้าข้าวนกเป็นระยะเวลา 12, 24 และ 48 ชั่วโมง และแช่ผักโขมสวนเป็นระยะเวลา 6, 12 และ 24 ชั่วโมง เนื่องจากเป็น ระยะเวลาที่มีความเหมาะสมแก่การงอกของเมล็ดพืชทดสอบของแต่ละชนิด วางในกล่องทึบแสงแล้ว นำไปวางในศู้ควบคุมการเจริญเติบโตของพืช ที่ตั้งค่าแสงสว่าง 12 ชั่วโมง อุณหภูมิ 32 องศาเซลเซียส ความชื้นสัมพัทธ์ 80 เปอร์เซ็นต์ และ ไม่มีแสงสว่าง 12 ชั่วโมง อุณหภูมิ 25 องศาเซลเซียส ความชื้น ้สัมพัทธ์ 80 เปอร์เซ็นต์ เมื่อครบตามเวลาที่กำหนด นำเมล็ดพืชทดสอบมาล้างด้วยน้ำกลั่น 2 ครั้ง แล้ว ซับน้ำออกให้แห้งด้วยกระดาษกรองเบอร์ 1 นาน 30 วินาที จากนั้นบดเมล็ดให้ละเอียดในโกร่งบด สาร เติมแคลเซียมคลอไรค์ (แช่เย็น) ปริมาตร 4 มิลลิลิตร นำไปหมุนเหวี่ยงด้วยเครื่องหมุนเหวี่ยงที่ ความเร็ว 20000 รอบ/นาที เป็นเวลา 20 นาที จะได้สารละลายในรูปของเหลวใสซึ่งแยกชั้นกับกาก ตะกอนของเมล็ดพืชทดสอบด้านล่างของหลอดทดลอง ดูดสารละลายของเหลวใส 1 มิลลิลิตรใส่ใน หลอดทดลองขนาด 10 มิลลิลิตร และเติมสารละลายแป้ง 1 เปอร์เซ็นต์ ปริมาตร 1 มิลลิลิตร นำไปบ่ม ที่อุณหภูมิ 37 องศาเซลเซียส เป็นเวลา 15 นาที จากนั้นใส่ dinitrosalicylic reagent 1 มิลลิลิตร แล้ว นำไปต้มเป็นเวลา 5 นาที เมื่อครบเวลาที่กำหนด นำหลอดทดลองมาผ่านน้ำไหลให้อุณหภูมิลดลง

ปรับปริมาตรให้ได้ 7 มิลลิลิตร โดยการเติมน้ำกลั่น วัดค่าการดูดกลืนแสงที่ความยาวคลื่น 560 นาโน เมตร (Maity et al. 2009) จากนั้นนำค่าที่วัดได้ไปคำนวณหาความเข้มข้นของเอนไซม์อะไมเลส

โดยใช้สูตร X = (Y + 0.019)/0.0027

โดยกำหนดให้ X = ความเข้มข้นของเอนไซม์อะไมเลส

Y = ค่าการดูคกลื่นแสง

จากนั้นนำค่าความเข้มข้นของเอนไซม์อะไมเลส (X) ไปคำนวณหากิจกรรมของเอนไซม์อะ ไมเลส โดยใช้สูตร

กิจกรรมเอนไซม้อะไมเลส (
$$\mu$$
mol/min/g (FW)) = $\frac{X \times V}{T \times g \ (FW) \times M \ (maltose) \times 0.125}$

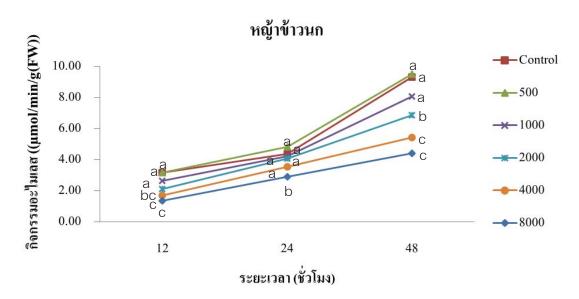
กำหนดให้ X =กวามเข้มข้นของอะไมเลส

V = ปริมาตรสุดท้าย

T = เวลาที่ใช้ในการบ่ม

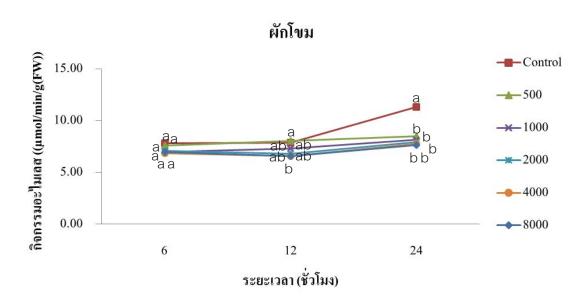
g (FW) = น้ำหนักของเมล็ด

M (maltose) = มวลโมเลกุลของ maltose (342.31)


การบันทึกผล และการวิเคราะห์ผลการทดลอง

ทำการบันทึกข้อมูล และนำข้อมูลกิจกรรมของเอนไซม์อะไมเลส มาวิเคราะห์ความ แปรปรวนทางสถิติ และเปรียบเทียบความแตกต่างของค่าเฉลี่ยโดยวิธี Turkey's Studentized Range Test ที่ระดับความเชื่อมั่น 95 เปอร์เซ็นต์

ผลการทดลอง


หญ้าข้าวนก ผลการทดสอบประสิทธิภาพของผลิตภัณฑ์ NHSJ ต่อการยับยั้งกิจกรรม เอนไซม์อะไมเลสของหญ้าข้าวนก ที่ระดับความเข้มข้น 500, 1000, 2000, 4000 และ 8000 ppm ของ สารออกฤทธิ์ ที่ระยะเวลา 12, 24 และ 48 ชั่วโมง พบว่าการทดสอบที่ระยะเวลา 12 ชั่วโมง ระดับ ความเข้มข้น 500 ppm มีค่ากิจกรรมเอนไซม์อะไมเลสเท่ากับวิธีการควบคุม และเมื่อเพิ่มความเข้มข้น ของสารให้สูงขึ้น 1000-8000 ppm มีค่ากิจกรรมเอนไซม์อะไมเลสในเมล็ดหญ้าข้าวนกลดลงตาม ความเข้มข้นของสารที่สูงขึ้น คือมีกิจกรรมเอนไซม์อะไมเลสในเมล็ดหญ้าข้าวนก เท่ากับ 2.63, 2.12, 1.69 และ 1.34 µmol/min/g(FW) ตามลำดับ ค่ากิจกรรมเอนไซม์อะไมเลสของเมล็ดหญ้าข้าวนก ที่ ระดับความเข้มข้น 4000 และ 8000 ppm มีความแตกต่างทางสถิติเมื่อเปรียบเทียบกับวิธีการควบคุม และเมื่อเพิ่มระยะเวลาในการทดสอบเป็น 24 ชั่วโมง ซึ่งเป็นไปในแนวทางเดียวกันกับที่ระยะเวลา 12 ชั่วโมง พบว่าที่ระดับความเข้มข้น 500 ppm มีค่ากิจกรรมเอนไซม์อะไมเลสในเมล็ดหญ้าข้าวนกสูง

กว่าวิธีการควบคุม มีค่าเท่ากับ 4.82 µmol/min/g(FW) ในขณะที่ชุดควบคุมมีค่ากิจกรรมเอนไซม์ อะไมเลสเท่ากับ 4.37 µmol/min/g(FW) ไม่มีความแตกต่างทางสถิติ แต่เมื่อเพิ่มความเข้มข้นของ ผลิตภัณฑ์ NHSJ ให้สูงขึ้นเป็น 1000-8000 ppm พบว่ากิจกรรมเอนไซม์อะไมเลสมีค่าลดลงตามความ เข้มข้นของสารที่เพิ่มสูงขึ้น ซึ่งมีค่าเท่ากับ 4.17, 4.09, 3.48 และ 2.89 µmol/min/g(FW) ส่วนที่ ระยะเวลา 48 ชั่วโมง ค่าความกิจกรรมเอนไซม์อะไมเลสมีค่าเป็นไปในแนวทางเดียวกันกับการที่ ทคสอบที่ระยะเวลา 24 ชั่วโมง พบว่าที่ระดับความเข้มข้น 500 ppm มีค่ากิจกรรมเอนไซม์อะไมเลส ในเมล็ดหญ้าข้าวนกสูงกว่าวิธีการควบคุม มีค่าเท่ากับ 9.52 µmol/min/g(FW) ในขณะที่ชุดควบคุมมีค่ากิจกรรมเอนไซม์อะไมเลสมีค่าเท่ากับ 9.49 µmol/min/g(FW) ไม่มีความแตกต่างทางสถิติ และเมื่อ เพิ่มความเข้มข้นของผลิตภัณฑ์ NHSJ ให้สูงขึ้นเป็น 1000-8000 ppm พบว่ากิจกรรมของเอนไซม์ อะไมเลสมีค่าลดลงตามความเข้มข้นของสารที่เพิ่มสูงขึ้น ซึ่งมีค่าเท่ากับ 8.08, 6.81, 5.38 และ 4.39 µmol/min/g(FW) ตามลำดับ กราฟที่ 4.2.1)

กราฟที่ 4.2.1 ผลของผลิตภัณฑ์ NHSJ ต่อการยับยั้งกิจกรรมเอนไซม์อะไมเลสของหญ้าข้าวนกที่ ระยะเวลา 12, 24 และ 48 ชั่วโมง ค่าเฉลี่ยที่อยู่ในชั่วโมงเคียวกันที่ตามด้วยตัวอักษร เหมือนกันแสดงว่าไม่มีความแตกต่างกันทางสถิติ จากการวิเคราะห์ค่าเฉลี่ยแบบ Turkey's Studentized Range Test (p=0.05)

<u>ผักโขม</u> ผลการทดสอบประสิทธิภาพของผลิตภัณฑ์ NHSJ ต่อการยับยั้งกิจกรรมเอนไซม์ อะไมเลสของผักโขม ทดสอบที่ระดับความเข้มข้น 500, 1000, 2000, 4000 และ 8000 ppm ของสาร ออกฤทธิ์ ที่ระยะเวลา 6, 12 และ 24 ชั่วโมง พบว่าการทดสอบที่ระยะเวลา 6 ชั่วโมง ไม่มีความ แตกต่างทางสถิติเมื่อกับวิธีการควบคุม คือมีกิจกรรมเอนไซม์อะไมเลสในเมล็ดผักโขม เท่ากับ 7.58, 6.95, 7.07, 6.82 และ 6.93 μmol/min/g(FW) ตามลำดับ ขณะที่ชุดควบคุมมีค่ากิจกรรมเอนไซม์อะไม เลสของเมล็ดผัก โขมเท่ากับ 7.77 μmol/min/g(FW) เมื่อเพิ่มระยะเวลาในการทดสอบเป็น 12 ชั่วโมง ค่ากิจกรรมเอนไซม์อะไมเลสเพิ่มขึ้นเมื่อเทียบกับระดับความเข้มข้นเดียวกัน แต่จะลดลงตามความ เข้มข้นของผลิตภัณฑ์ NHSJ ที่สูงขึ้น คือ 8.02, 7.27, 6.78, 6.56 และ 6.55 μmol/min/g(FW) ตามลำดับ ขณะที่ชุดควบคุมมีค่ากิจกรรมเอนไซม์อะไมเลสของเมล็ดผักโขมเท่ากับ 7.78 μmol/min/g(FW) ส่วน ที่ระยะเวลา 24 ชั่วโมง พบว่าให้ผลไปในแนวทางเดียวกับที่ระยะเวลา 12 ชั่วโมง มีกิจกรรม เอนไซม์อะไมเลสค่าเท่ากับ 8.50, 8.14, 7.93, 7.73 และ 7.64 μmol/min/g(FW) ตามลำดับ ในขณะที่ ชุดควบคุมมีค่ากิจกรรมเอนไซม์อะไมเลสมีค่าเท่ากับ 11.28 μmol/min/g(FW) มีความแตกต่างทาง สถิติเมื่อเปรียบเทียบกับวิธีการควบคุม (กราฟที่ 4.2.2)

กราฟที่ 4.2.2 ผลของผลิตภัณฑ์ NHSJ ต่อการยับยั้งกิจกรรมเอนไซม์อะไมเลสของผักโขมที่ระยะ เวลา 6, 12 และ 24 ชั่วโมง ค่าเฉลี่ยที่อยู่ในชั่วโมงเคียวกันที่ตามด้วยตัวอักษรเหมือน กัน แสดงว่าไม่มีความแตกต่างกันทางสถิติ จากการวิเคราะห์ค่าเฉลี่ยแบบ Turkey's Studentized Range Test (p=0.05)

การทดลองที่ 4.3 การศึกษาผลิตภัณฑ์ NHSJ ต่อการยับยั้งฮอร์โมนจิบเบลเรลลิน วิธีการทดลอง

<u>การวางแผนการทดลอง</u>

วางแผนการทคลองแบบสุ่มสมบูรณ์ 6 กรรมวิธีการทคลอง วิธีการทคลองละ 4 ซ้ำ คังนี้ ผลิต ภัณฑ์ NHSJ ในรูป SC ที่ระดับความเข้มข้น 500, 1000, 2000, 4000 และ 8000 ppm โดยมีน้ำกลั่นเป็น วิธีการเปรียบเทียบ

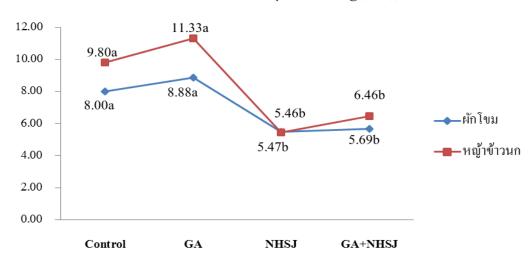
เตรียมสารผลิตภัณฑ์รูปแบบสารละลายเข้มข้น

เตรียมได้จาก สารสกัดหยาบจากพุทธชาติก้านแดงผสมกับ ทวีน 80 และ โซเดียมรอลิซัลเฟต ในอัตราส่วน 30:10:60 โดยน้ำหนัก ตามลำดับ ผสมให้เข้ากัน ก็จะได้ผลิตภัณฑ์ NHSJ ที่อยู่ในรูป SC ที่มีสารออกฤทธิ์ 30 เปอร์เซ็นต์

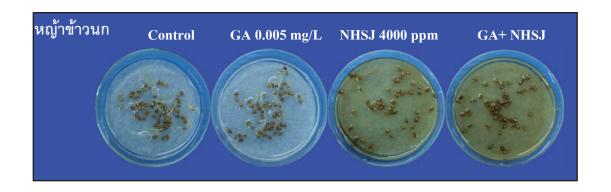
การเตรียมเมล็ดพืช

เมล็ดพืชทดสอบที่ใช้ คือ หญ้าข้าวนก และผักโขมสวนโดยทำการคัดเลือกเมล็ดหญ้าข้าวนก และเมล็ดผักโขมสวนให้มีขนาดใกล้เคียงกัน

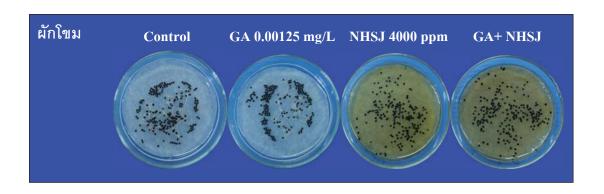
การทดสอบ


ล้างเมล็ดพืชทดสอบด้วยน้ำกลั่นแล้วซับน้ำออกให้แห้งด้วยกระดาษกรองเบอร์ 1 นาน 30 วินาที จากนั้นบดเมล็ดให้ละเอียดในโกร่งบดสาร เติมแคลเซียมคลอไรด์ (แช่เย็น) ปริมาตร 4 มิลลิลิตร นำไปหมุนเหวี่ยงด้วยเครื่องหมุนเหวี่ยงที่ความเร็ว 20000 รอบ/นาที เป็นเวลา 20 นาที จะได้ สารละลายในรูปของเหลวใสซึ่งแยกชั้นกับกากตะกอนของเมล็ดพืชทดสอบด้านล่างของหลอด ทดลอง ดูดสารละลายของเหลวใส 1 มิลลิลิตรใส่ในหลอดทดลองขนาด 10 มิลลิลิตร และเติม สารละลายแป้ง 1 เปอร์เซ็นต์ ปริมาตร 1 มิลลิลิตร นำไปบ่มที่อุณหภูมิ 37 องสาเซลเซียส เป็นเวลา 15 นาที จากนั้นใส่ dinitrosalicylic reagent 1 มิลลิลิตร แล้วนำไปด้มเป็นเวลา 5 นาที เมื่อครบเวลาที่ กำหนดแล้ว นำหลอดทดลองมาผ่านน้ำไหลให้อุณหภูมิลดลง ปรับปริมาตรให้ได้ 7 มิลลิลิตร โดยการ เติมน้ำกลั่น วัดค่าการดูดกลืนแสงที่ความยาวคลื่น 560 นาโนเมตร (Maity et al. 2009) จากนั้นให้นำ ค่าที่วัดได้ไปคำนวณหาความเข้มข้นของเอนไซม์อะไมเลส

ผลการทดลอง


หญ้าข้าวนก ผลการทดสอบประสิทธิภาพของผลิตภัณฑ์ NHSJ ต่อฮอร์โมนจิบเบลเรลลิน ของหญ้าข้าวนก ที่ระดับความเข้มข้น 4000 ppm ฮอร์โมนจิบเบอเรลลินที่ระดับความเข้มข้น 0.005 มิลลิกรัม/ลิตร และผลิตภัณฑ์ NHSJ ผสมกับฮอร์โมนจิบเบอเรลลิน โดยมีน้ำกลั่นเป็นวิธีการ เปรียบเทียบ ทดสอบที่ระยะเวลา 48 ชั่วโมง พบว่าเมล็ดหญ้าข้าวนกที่ได้เพิ่มฮอร์โมนจิบเบอเรลลินมี กิจกรรมเอนไซม์อะไมเลสมากที่สุด รองลงมาคือวิธีการควบคุม ผลิตภัณฑ์ NHSJ ผสมกับฮอร์โมน จิบเบอเรลลิน และผลิตภัณฑ์ NHSJ เพียงอย่างเดียว มีค่าเท่ากับ 11.33. 9.80. 6.46 และ 5.46 μmol/min/g(FW) ตามลำดับ การทดสอบที่ผลิตภัณฑ์ NHSJ ผสมกับฮอร์โมนจิบเบอเรลลิน และ ผลิตภัณฑ์ NHSJ เพียงอย่างเดียว มีความแตกต่างกันทางสถิติ เมื่อเปรียบเทียบกับฮอร์โมนจิบเบอ เรลลินและวิธีการควบคุม (กราฟที่ 4.3.1 และ ภาพที่ 4.3.1)

ผักโขม ผลการทดสอบประสิทธิภาพของผลิตภัณฑ์ NHSJ ต่อฮอร์ โมนจิบเบลเรลลินของผัก โขม ที่ระดับความเข้มข้น 4000 ppm ฮอร์ โมนจิบเบอเรลลินที่ระดับความเข้มข้น 0.00125 มิลลิกรัม/ลิตร และผลิตภัณฑ์ NHSJ ผสมกับฮอร์ โมนจิบเบอเรลลิน โดยมีน้ำกลั่นเป็นวิธีการเปรียบเทียบ ทดสอบที่ระยะเวลา 24 ชั่วโมง พบว่าเมล็ดหญ้าข้าวนกที่ได้เพิ่มฮอร์ โมนจิบเบอเรลลินมีกิจกรรม เอนไซม์ อะไมเลสมากที่สุด รองลงมาคือวิธีการควบคุม ผลิตภัณฑ์ NHSJ ผสมกับฮอร์ โมนจิบเบอ เรลลิน และผลิตภัณฑ์ NHSJ เพียงอย่างเดียว มีค่าเท่ากับ 8.88, 8.00, 5.69 และ 5.47 μmol/min/g(FW) ตามลำดับ การทดสอบที่ผลิตภัณฑ์ NHSJ ผสมกับฮอร์ โมนจิบเบอเรลลิน และผลิตภัณฑ์ NHSJ เพียงอย่างเดียว มีค่าเท่ากับ 3.88, 8.00, 5.69 และ 5.47 μmol/min/g(FW) อย่างเดียว มีความแตกต่างกันทางสถิติ เมื่อเปรียบเทียบกับฮอร์ โมนจิบเบอเรลลินและวิธีการควบคุม (กราฟที่ 4.3.1 และ ภาพที่ 4.3.2)


กิจกรรมอะไมเลส ((µmol/min/g(FW))

กราฟที่ 4.3.1 ผลของผลิตภัณฑ์ NHSJ ต่อการยับยั้งฮอร์โมนจิบเบลเรลลิน ของหญ้าข้าวนก ที่ระยะ เวลา 48 ชั่วโมง และผักโขมที่ระยะเวลา 24 ชั่วโมง วัดค่ากิจกรรมเอนไซม์อะไมเลส ค่าเฉลี่ยที่ตามด้วยตัวอักษรเหมือนกันในพืชชนิดเดียวกัน แสดงว่าไม่มีความแตกต่างกัน ทางสถิติ จากการวิเคราะห์ค่าเฉลี่ยแบบ Turkey's Studentized Range Test (p=0.05)

ภาพที่ 4.3.1 ผลของผลิตภัณฑ์ NHSJ ต่อการยับยั้งฮอร์โมนจิบเบลเรลลิน ของหญ้าข้าวนก ที่ ระยะเวลา 48 ชั่วโมง

ภาพที่ 4.3.2 ผลของผลิตภัณฑ์ NHSJ ต่อการยับยั้งฮอร์โมนจิบเบลเรลลิน ของผักโขม ที่ระยะเวลา 24 ชั่วโมง

การทดลองที่ 4.4 การศึกษาผลของผลิตภัณฑ์ NHSJ ในรูป SC ต่อกลไกการทำลายวัชพืชทางรากและ ทางใบ

วิธีการทดลอง

การวางแผนการทดลอง

วางแผนการทดลองแบบสุ่มสมบูรณ์ 17 กรรมวิธีการทดลอง วิธีการทดลองละ 4 ซ้ำ ดังนี้ ระยะเวลาในการแช่ผลิตภัณฑ์ NHSJ ในรูป SC 1, 15, 30 และ 60 นาที ที่ระดับความเข้มข้น 2.5, 5, 10, และ 20 มิลลิกรัม สารออกฤทธิ์/มิลลิลิตร โดยมีน้ำกลั่นเป็นวิธีการควบคุม

เตรียมสารผลิตภัณฑ์รูปแบบสารละลายเข้มข้น

เตรียมได้จาก สารสกัดหยาบจากพุทธชาติก้านแดงผสมกับ ทวีน 80 และ โซเดียมรอลิซัลเฟต ในอัตราส่วน 30 : 10 : 60 โดยน้ำหนัก ตามลำดับ ผสมให้เข้ากัน ก็จะได้ผลิตภัณฑ์ NHSJ ที่อยู่ในรูป SC ที่มีสารออกฤทธิ์ 30 เปอร์เซ็นต์

การเตรียมพืชทดสอบ

เมล็ดวัชพืชทดสอบ 2 ชนิด คือ หญ้าข้าวนก และถั่วผี เตรียมหญ้าข้าวนก โดยแช่เมล็ดในน้ำ สะอาดนาน 24 ชั่วโมง ห่อด้วยผ้าขาวบางเป็นเวลา 48 ชั่วโมง สำหรับเมล็ดถั่วผีขัดเปลือกด้วยกระดาษ ทรายเพื่อทำลายการพักตัวของเมล็ด จากนั้นแช่เมล็ดถั่วผีในสารละลายโซเดียมไฮโปคลอไรด์ ความ เข้มข้น 1 เปอร์เซ็นต์ นาน 20 นาที เพื่อทำการฆ่าเชื้อจุลินทรีย์ที่ติดมากับเมล็ด เมื่อครบเวลาล้างเมล็ด ด้วยน้ำสะอาด 2-3 ครั้ง แช่เมล็ดถั่วผีในน้ำสะอาดนานอย่างน้อย 12 ชั่วโมง นำเมล็ดหญ้าข้าวนกและ ถั่วผีที่เตรียมไว้ปลูกในกระถางพลาสติกขนาดเส้นผ่านสูนย์กลาง 9 เซนติเมตร โดยมีทรายเป็นวัสดุ ปลูก กระถางละ 20 เมล็ด เมื่อต้นพืชทดสอบมีความสูงประมาณ 20 เซนติเมตร พร้อมสำหรับการ ทดสอบ

การทคสอบ

ทำการทคสอบโดยการแช่ผลิตภัณฑ์ NHSJ ในรูป SC หญ้าข้าวนกและถั่วผี กลใกการเข้า ทำลายทางรากและทางใบ ที่ ระยะเวลาในการแช่ผลิตภัณฑ์ NHSJ ในรูป SC 1, 15, 30 และ 60 นาที ที่ ระคับความเข้มข้น 2.5, 5, 10, และ 20 มิลลิกรัม สารออกฤทธิ์/มิลลิลิตร โดยมีน้ำกลั่นเป็นวิธีการ ควบคุม

การบันทึกผล และการวิเคราะห์ผลการทคลอง

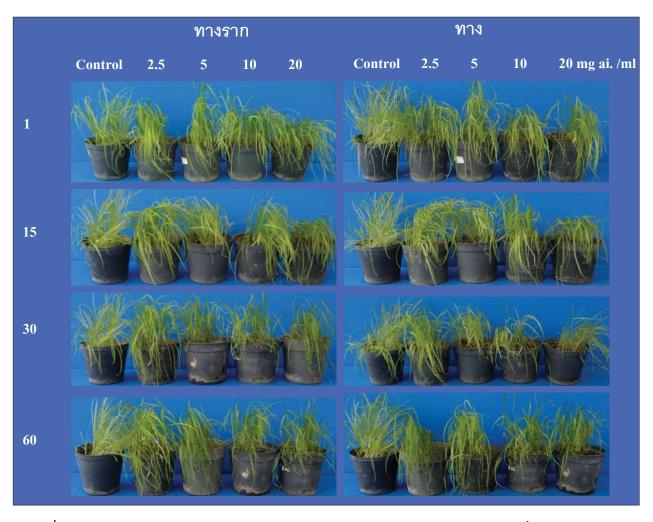
วัดอัตราการรอดของพืชทดสอบ ที่ระยะเวลา 1, 3, 5 และ 7 วัน และชั่งน้ำหนักสดน้ำหนัก แห้งของพืชทดสอบ ในวันที่ 7 หลังการทดสอบ นำข้อมูลที่ได้ มาวิเคราะห์ความแปรปรวนทางสถิติ และเปรียบเทียบความแตกต่างของค่าเฉลี่ยโดยวิธี Turkey's Studentized Range Test ที่ระดับความ เชื่อมั่น 95 เปอร์เซ็นต์

ผลการทดลอง

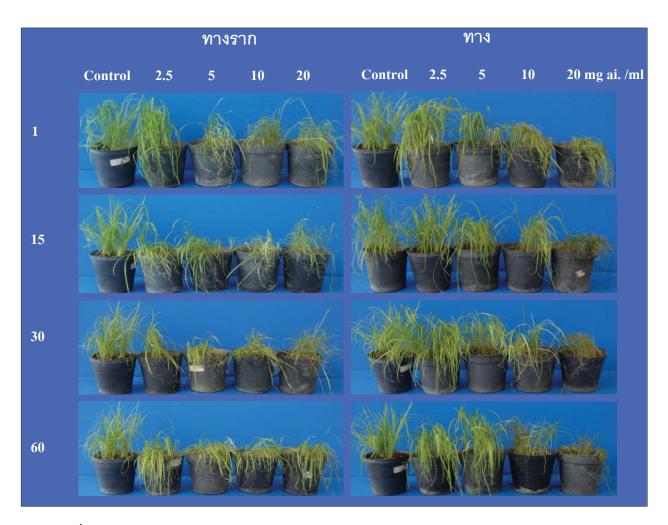
หญ้าข้าวนก จากการศึกษากล ใกการทำลายวัชพืชของผลิตภัณฑ์ NHSJ ทางรากและทางใบ ต่อเปอร์เซ็นต์การรอด น้ำหนักสด และน้ำหนักแห้งของหญ้าข้าวนก ที่ระดับความเข้มข้น 2.5, 5, 10 และ 20 มิลลิกรัม (สารออกฤทธิ์)/มิลลิลิตร เป็นระยะเวลา 1, 15, 30 และ 60 นาที โดยมีน้ำกลั่นเป็น วิธีการเปรียบเทียบ วัดเปอร์เซ็นต์การรอดของหญ้าข้าวนก ที่ระยะเวลา 1, 3, 5 และ 7 วัน และชั่ง น้ำหนักสดน้ำหนักแห้งของพืชทดสอบ ในวันที่ 7 หลังการทดสอบ พบว่าผลิตภัณฑ์ NHSJ มี ประสิทธิภาพในการทำลายทางรากของหญ้าข้าวนกได้ดีกว่าทางใบ ที่ระดับความเข้มข้น 20 มิลลิกรัม (สารออกฤทธิ์)/มิลลิลิตร สามารถยับยั้งการรอดได้ 100 เปอร์เซ็นต์ ที่ระยะเวลา 15, 30 และ 60 นาที ในขณะที่ชุดควบคุมมีเปอร์เซ็นต์การยับยั้งการรอดเท่ากับ 0 และมีน้ำหนักสดน้ำหนักแห้งเท่ากับ 14.49 และ 2.02 กรัม มีความแตกต่างกันทางสถิติเมื่อเปรียบเทียบกับวิธีการควบคุม (ตารางที่ 4.4.1) (ภาพที่ 4.4.1-4.4.4)

ถั่วผี จากการศึกษากล ใกการทำลายวัชพืชของผลิตภัณฑ์ NHSJ ทางรากและทางใบ ต่อ เปอร์เซ็นต์การรอด น้ำหนักสด และน้ำหนักแห้งของถั่วผี ที่ระดับความเข้มข้น 2.5, 5, 10 และ 20 มิลลิกรัม (สารออกฤทธิ์)/มิลลิลิตร เป็นระยะเวลา 1, 15, 30 และ 60 นาที โดยมีน้ำกลั่นเป็นวิธีการ เปรียบเทียบ วัดเปอร์เซ็นต์การรอดของถั่วผี ที่ระยะเวลา 1, 3, 5 และ 7 วัน และชั่งน้ำหนักสดน้ำหนัก แห้งของพืชทดสอบ ในวันที่ 7 หลังการทดสอบ พบว่าผลิตภัณฑ์ NHSJ มีประสิทธิภาพในการทำลาย ทางรากของถั่วผีได้ดีกว่าทางใบ สามารถยับยั้งการรอดของถั่วผีได้ 100 เปอร์เซ็นต์ ในทุกระดับความ เข้มข้นของผลิตภัณฑ์ NHSJ ที่ทดสอบ ที่มีการแช่ในผลิตภัณฑ์นาน 60 นาที ในขณะที่ชุดควบคุมมี เปอร์เซ็นต์การยับยั้งการรอดเท่ากับ 0 และมีน้ำหนักสดน้ำหนักแห้งของถั่วผีเท่ากับ 19.54 และ 2.93 กรัม มีความแตกต่างกันทางสถิติเมื่อเปรียบเทียบกับวิธีการควบคุม (ตารางที่ 4.4.2) (ภาพที่ 4.4.5-4.9)

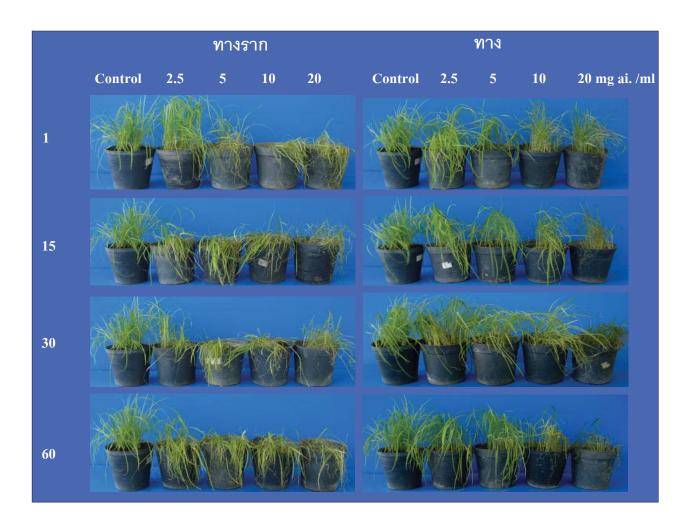
ตารางที่ 4.4.1 ผลิตภัณฑ์ NHSJ ต่อกลไกการทำลายวัชพืชทางราก และทางใบของหญ้าข้าวนก ที่ระดับความเข้มข้นและระยะเวลาที่ต่างกัน

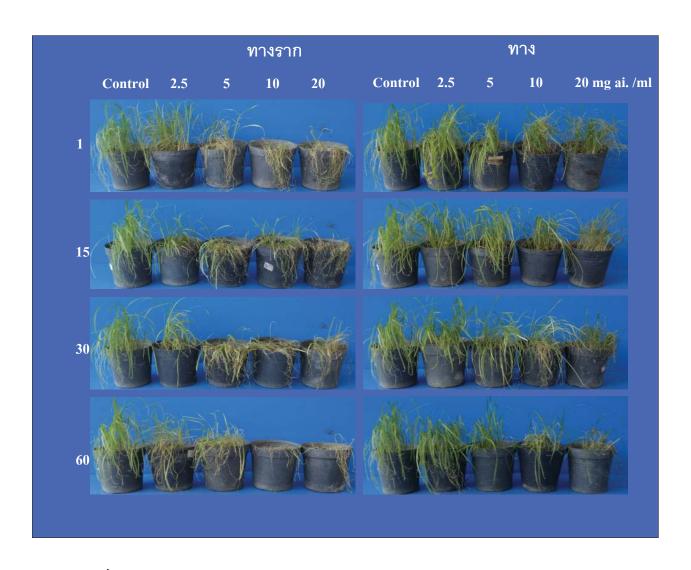

(mg/ml)	6	9			<u> </u>	การทคสอ	การทดสอบทางราก				J	การทคสอบทางใบ	บทางใบ	
ung/motion 1 3 5 7 (m²n) (nñ²n) (nñ²n) 1 3 5 7 ung/motion 1 3 5 7 (m²n) (nn²n) (nn²n) 1 3 5 7 und 0.00 0.00 0.00 0.00 14.73 1.23 ± 6.11ab 1.72 ± 0.38ab 0.00		ความเข็นขึ้นค	เปอร์เซ็	์ รันค์ชับชัง	การรอด (วันที่)	น้ำหนักสด	น้าหนักแห้ง	เปอร์เ	ซืนต์ซับซึ่ง	เการรอด (วันที่)	น้ำหนักสด	น้าหนักแห้ง
13/1 0.00 0.00 0.00 14.49 ± 2.78a 2.02 ± 0.45a 0.00 5.00	U 33 b 1 1 1	l (mil/gmi)	1	3	5	7	(ពទ័ង)	(កទីឃ)	1	3	5	7	(กรัม)	(กรีม)
2.5 0.00 0.00 0.00 14.75 12.35 ± 6.11ab 1.72 ± 0.38ab 0.00 0.00 0.00 0.00 0.00 0.00 0.00 34.75 34.55 3.69 ± 5.26c 0.52 ± 0.11c 0.00 19.75 14.50 9.50 10 0.00 29,75 34.25 89.75 1.48 ± 5.39cd 0.27 ± 0.05cd 0.00 19.75 14.50 9.50 20 0.00 19.50 54.50 94.50 0.80 ± 4.47cd 0.11 ± 0.02cd 0.00 29.55 44.25 9.50 2.5 4.50 30.00 55.00 6.52 ± 2.79c 0.91 ± 0.2cd 0.00 4.75 4.50 5 0.00 44.25 30.50 6.52 ± 2.79c 0.91 ± 0.2cd 0.00 4.75 4.50 10 0.00 44.25 30.50 84.25 2.28 ± 3.27cd 0.31 ± 0.0cd 0.00 4.75 4.50 2 0.00 64.25 50.28 ± 3.27cd 0.38 ± 0.0cd 34.25 49.50 49.50 <td< td=""><td>ชุดควบคุม</td><td>ູ້ ເກິ</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>$14.49 \pm 2.78a$</td><td>$2.02\pm0.45a$</td><td>0.00</td><td>5.00</td><td>5.00</td><td>5.00</td><td>$13.76\pm2.11ab$</td><td>$1.99\pm0.38ab$</td></td<>	ชุดควบคุม	ູ້ ເກິ	0.00	0.00	0.00	0.00	$14.49 \pm 2.78a$	$2.02\pm0.45a$	0.00	5.00	5.00	5.00	$13.76\pm2.11ab$	$1.99\pm0.38ab$
5 0.00 34.75 34.50 3.69±5.26c 0.52±0.11c 0.00 19.75 14.50 3.69±5.26c 0.52±0.11c 0.00 19.75 14.50 34.25 34.25 34.25 34.25 34.25 34.25 34.25 34.25 34.25 34.25 34.25 34.25 34.25 14.8±5.39cd 0.27±0.05cd 0.00 29.50 39.25 <t< td=""><td></td><td>2.5</td><td>0.00</td><td>0.00</td><td>0.00</td><td>14.75</td><td>$12.35 \pm 6.11ab$</td><td>$1.72 \pm 0.38ab$</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>$14.32 \pm 3.57a$</td><td>$2.12\pm0.58a$</td></t<>		2.5	0.00	0.00	0.00	14.75	$12.35 \pm 6.11ab$	$1.72 \pm 0.38ab$	0.00	0.00	0.00	0.00	$14.32 \pm 3.57a$	$2.12\pm0.58a$
10 0.00 29.75 34.25 89.75 1.48 ± 5.39cd 0.27 ± 0.05cd 0.00 29.50 44.25 44.25 44.25 44.25 44.25 44.25 44.25 94.50 0.80 ± 4.47cd 0.11 ± 0.02cd 0.00 29.50 30.00 55.00 6.52 ± 2.79c 0.91 ± 0.20c 0.00 4.75 45.0 45.0 45.0 0.01 ± 0.20c 0.00 4.75 45.0 45.0 45.0 45.2 0.91 ± 0.20c 0.00 0.00 0.00 4.75 45.0 </td <td>1 1 1 1 1</td> <td>5</td> <td>0.00</td> <td>34.75</td> <td>39.75</td> <td>74.50</td> <td>$3.69 \pm 5.26c$</td> <td>$0.52 \pm 0.11c$</td> <td>0.00</td> <td>19.75</td> <td>14.50</td> <td>9.50</td> <td>$13.1 \pm 3.14ab$</td> <td>$1.82 \pm 0.52ab$</td>	1 1 1 1 1	5	0.00	34.75	39.75	74.50	$3.69 \pm 5.26c$	$0.52 \pm 0.11c$	0.00	19.75	14.50	9.50	$13.1 \pm 3.14ab$	$1.82 \pm 0.52ab$
20 0.00 19.50 54.50 0.80 ± 4.47cd 0.11 ± 0.02cd 0.00 30.00 59.25 59.75 2.5 4.50 30.00 55.00 6.52 ± 2.79c 0.91 ± 0.20c 0.00 4.75 4.50 5 0.00 44.25 39.50 84.25 2.28 ± 3.27cd 0.38 ± 0.07cd 0.00 29.25 29.50 29.75 10 0.00 64.75 65.00 94.25 0.83 ± 1.83cd 0.16 ± 0.12cd 0.00 29.25 29.50 29.75 20 0.00 64.75 74.25 100.00 0.00 ± 0.00d 0.00 ± 0.00d 0.00 34.25 40.00 2.5 0.00 59.75 59.50 5.87 ± 1.38c 0.82 ± 0.27c 0.00 </td <td>2</td> <td>10</td> <td>0.00</td> <td>29.75</td> <td>34.25</td> <td>89.75</td> <td>$1.48 \pm 5.39cd$</td> <td>$0.27 \pm 0.05 cd$</td> <td>0.00</td> <td>29.50</td> <td>44.25</td> <td>44.25</td> <td>$8.07 \pm 2.69 bc$</td> <td>$1.12 \pm 0.46 bc$</td>	2	10	0.00	29.75	34.25	89.75	$1.48 \pm 5.39cd$	$0.27 \pm 0.05 cd$	0.00	29.50	44.25	44.25	$8.07 \pm 2.69 bc$	$1.12 \pm 0.46 bc$
2.5 4.50 30.00 55.00 6.52 ± 2.79c 0.91 ± 0.20c 0.00 0.00 4.75 4.50 5 0.00 44.25 39.50 84.25 2.28 ± 3.27cd 0.38 ± 0.07cd 0.00 29.25 29.50 29.75 10 0.00 64.75 65.00 94.25 0.83 ± 1.83cd 0.16 ± 0.12cd 0.00 34.25 40.00 34.50 20 0.00 64.75 74.25 100.00 0.00 ± 0.00d 0.00 89.50 49.50 40.00 2.5 0.00 59.75 59.50 5.87 ± 1.38c 0.82 ± 0.27c 0.00 89.50 49.50 <		20	0.00	19.50	54.50	94.50	$0.80 \pm 4.47 cd$	$0.11 \pm 0.02 cd$	0.00	30.00	59.25	59.75	$5.83 \pm 2.66cd$	$0.81 \pm 0.46cd$
5 0.00 44.25 39.50 84.25 2.28 ± 3.27cd 0.38 ± 0.07cd 0.00 29.25 29.50 29.75 10 0.00 64.75 65.00 94.25 0.83 ± 1.83cd 0.16 ± 0.12cd 0.00 34.25 40.00 34.50 20 0.00 64.25 74.25 100.00 0.00 ± 0.00d 0.00 0.00 89.50 49.50 40.00 2.5 0.00 35.00 59.75 59.50 5.87 ± 1.38c 0.82 ± 0.27c 0.00		2.5	4.50	30.00	30.00	55.00	$6.52 \pm 2.79c$	$0.91 \pm 0.20c$	0.00	0.00	4.75	4.50	$13.83 \pm 3.84ab$	$1.92 \pm 0.62 \text{ ab}$
10 0.00 64.75 65.00 94.25 0.83 ± 1.83cd 0.16 ± 0.12cd 0.00 34.25 40.00 34.50 20 0.00 64.25 74.25 100.00 0.00 ± 0.00d 0.00 ± 0.00d 0.00 89.50 49.50 40.00 2.5 0.00 35.00 59.75 59.50 5.87 ± 1.38c 0.82 ± 0.27c 0.00 6.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.50 5.00 4.50 0.00	15 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	5	0.00	44.25	39.50	84.25	$2.28 \pm 3.27 cd$	$0.38 \pm 0.07 cd$	0.00	29.25	29.50	29.75	$10.17 \pm 3.53 bc$	$1.41 \pm 0.58 bc$
20 0.00 64.25 74.25 100.00 0.00 ± 0.00d 0.00 ± 0.00d 0.00 89.50 49.50 40.00 2.5 0.00 35.00 35.00 59.75 59.75 5.87 ± 1.38c 0.82 ± 0.27c 0.00 0.00 0.00 0.00 0.00 0.00 4.50 0.00 0.00 4.50 0.00 4.50 4.50 0.00 4.50 0.00 4.50 0.00 4.50 0.00 4.50 0.00 4.50 0.00 4.50 0.00 </td <td>2</td> <td>10</td> <td>0.00</td> <td>64.75</td> <td>65.00</td> <td>94.25</td> <td>$0.83 \pm 1.83cd$</td> <td>$0.16 \pm 0.12cd$</td> <td>0.00</td> <td>34.25</td> <td>40.00</td> <td>34.50</td> <td>$9.48 \pm 2.61 bc$</td> <td>$1.32 \pm 0.45 bc$</td>	2	10	0.00	64.75	65.00	94.25	$0.83 \pm 1.83cd$	$0.16 \pm 0.12cd$	0.00	34.25	40.00	34.50	$9.48 \pm 2.61 bc$	$1.32 \pm 0.45 bc$
2.5 0.00 35.00 59.75 5.87 ± 1.38c 0.82 ± 0.27c 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.50 5.00 4.50 10 0.00 24.50 74.50 100.00 0.00 ± 0.00d 0.00 ± 0.00d 0.00 ± 0.00d 0.00 ± 0.00d 0.00 44.75 54.75 49.50 20 0.00 59.75 64.75 100.00 0.00 ± 0.00d 0.00 ± 0.00d 0.00 94.25 69.50 54.75 25 0.00 39.25 49.50 64.75 5.11 ± 2.12c 0.71 ± 0.16c 0.00		20	0.00	64.25	74.25	100.00	0.00 ± 0.000	0.00 ± 0.004	0.00	89.50	49.50	40.00	$8.69 \pm 2.06 bc$	$1.21 \pm 0.37 bc$
5 0.00 24.50 69.75 79.25 3.01 ± 2.67cd 0.42 ± 0.09cd 0.00 4.50 5.00 4.50 5.00 4.50 10 0.00 64.50 74.50 100.00 0.00 ± 0.00d 0.00 ± 0.00d 15.00 44.75 54.75 49.50 20 0.00 59.75 64.75 100.00 0.00 ± 0.00d 0.00 ± 0.00d 0.00 94.25 69.50 54.75 2.5 0.00 39.25 49.50 64.75 5.11 ± 2.12c 0.71 ± 0.16c 0.00		2.5	0.00	35.00	59.75	59.50	$5.87 \pm 1.38c$	$0.82 \pm 0.27c$	0.00	0.00	0.00	0.00	$14.18\pm5.06a$	$2.22\pm0.79a$
10 0.00 64.50 74.50 100.00 0.00 ± 0.00d 0.00 ± 0.00d 15.00 44.75 54.75 49.50 20 0.00 59.75 64.75 100.00 0.00 ± 0.00d 0.00 ± 0.00d 0.00 ± 0.00d 0.00 94.25 69.50 54.75 49.50 2.5 0.00 39.25 49.50 64.75 5.11 ± 2.12c 0.71 ± 0.16c 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.75 4.75 4.50 20 0.00 45.00 45.00 45.00 0.00 ± 0.00d 0.0	30 11 M	5	0.00	24.50	69.75	79.25	$3.01 \pm 2.67cd$	$0.42 \pm 0.09 cd$	0.00	4.50	5.00	4.50	$13.83 \pm 3.61ab$	$1.91 \pm 0.59 ab$
20 0.00 59.75 64.75 100.00 0.00 ± 0.00d 0.00 ± 0.00d 10.00 94.25 69.50 54.75 2.5 0.00 39.25 49.50 64.75 5.11 ± 2.12c 0.71 ± 0.16c 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.75 4.75 4.50 10 9.75 39.25 74.75 100.00 0.00 ± 0.00d 0.00 ± 0.00d 0.00 ± 0.00d 4.75 94.75 60.00 60.00 20 0.00 45.00 89.25 100.00 0.00 ± 0.00d 0.00 ± 0.00d 0.00 ± 0.00d 4.75 94.75 64.25 69.50	= 2 0	10	0.00	64.50	74.50	100.00		0.00 ± 0.004	15.00	44.75	54.75	49.50	$7.31 \pm 2.81cd$	$1.02 \pm 0.48cd$
2.5 0.00 39.25 49.50 64.75 $5.11 \pm 2.12c$ $0.71 \pm 0.16c$ 0.00 $0.$		20	0.00	59.75	64.75	100.00	0.00 ± 0.000	0.00 ± 0.004	10.00	94.25	69.50	54.75	$6.55 \pm 2.11 cd$	$0.91 \pm 0.38cd$
5 0.00 29.75 45.00 90.00 1.45 ± 3.12cd 0.20 ± 0.0.5cd 0.00 4.75 4.75 4.50 4.50 10 9.75 39.25 74.75 100.00 0.00 ± 0.00d 0.00 ± 0.00d 0.00 ± 0.00d 4.75 94.75 64.25 69.50		2.5	0.00	39.25	49.50	64.75	$5.11 \pm 2.12c$	$0.71 \pm 0.16c$	0.00	0.00	0.00	0.00	$14.21\pm4.09a$	$1.92\pm0.66a$
	60 117%	5	0.00	29.75	45.00	90.00	$1.45 \pm 3.12cd$	$0.20 \pm 0.0.5cd$	0.00	4.75	4.75	4.50	$13.83 \pm 4.96ab$	$1.92 \pm 0.78ab$
0.00 45.00 89.25 100.00 $0.00 \pm 0.00d$ $0.00 \pm 0.00d$ $0.00 \pm 0.00d$ 4.75 94.75 64.25 69.50		10	9.75	39.25	74.75	100.00		0.00 ± 0.004	4.50	54.50	00.09	00.09	$6.51 \pm 2.61 cd$	$0.90\pm0.45cd$
		20	0.00	45.00	89.25	100.00	0.00 ± 0.00	0.00 ± 0.00	4.75	94.75	64.25	69.50	$4.41 \pm 1.22d$	$0.61 \pm 0.26 d$

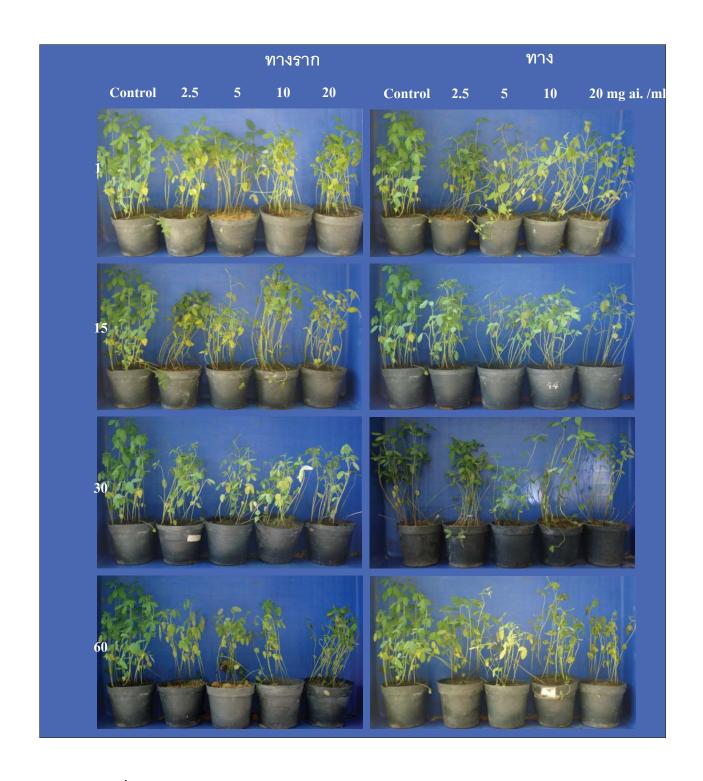
ค่าเฉลียที่อยู่ในคอลัมน์เดียวกันที่ตามด้วยตัวอักษรเหมือนกันแสดงว่าไม่มีความแตกต่างกันทางสถิติ จากการวิเคราะห์โดย Turkey's Studentized Range Test (p=0.05)

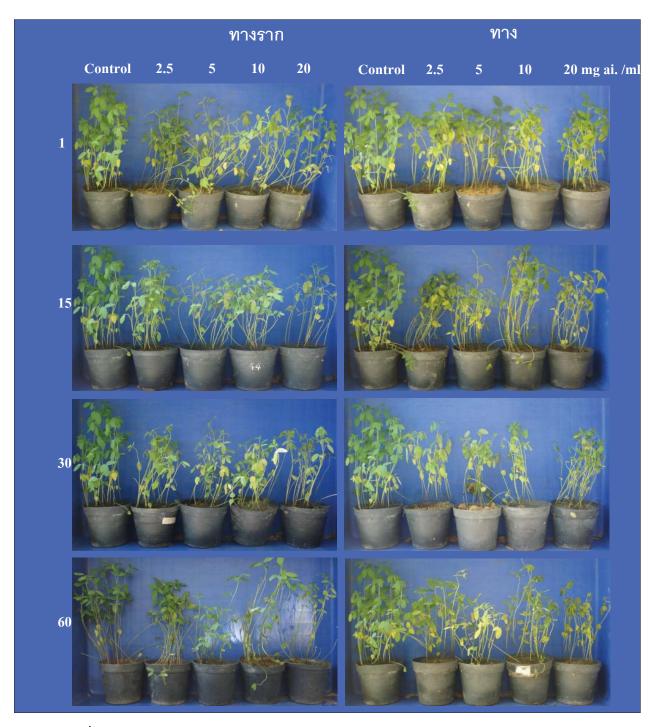

ตารางที่ 4.4.2 ผลิตภัณฑ์ NHSJ ต่อกลไกการทำลายวัชพืชทางราก และทางใบของถ้วฝี ที่ระดับความเข้มข้นและระยะเวลาที่ต่างกัน

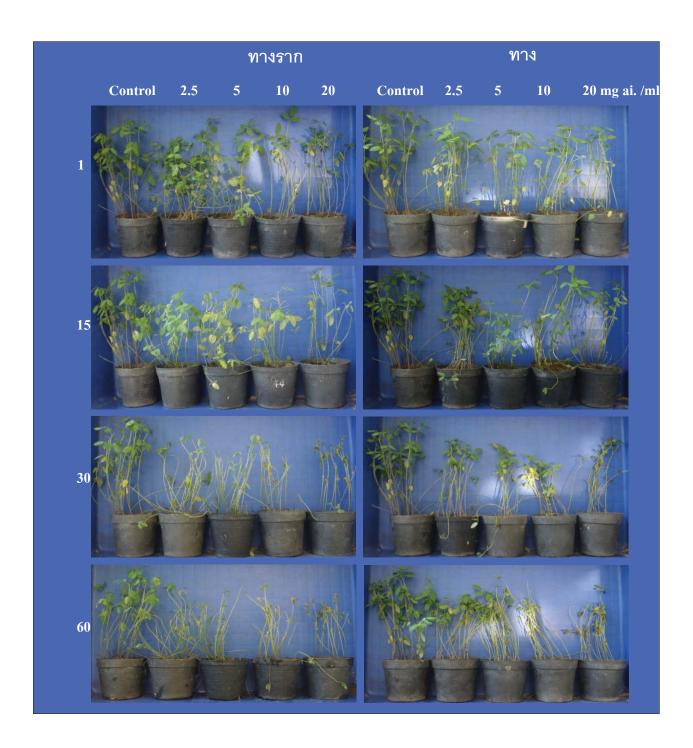
	9				การทคสัย	การทคสอบทางราก				_	U 3 N N G G D N I A 1 D	חאואת	
ายเมาเน		เปอร์เต็	นค์ซับซั้ง	เปอร์เซ็นต์ับยั้งการรอด (วันที่)	(วันที่)	น้ำหนักสด	น้ำหนักแห้ง	เปอร์เ	เปอร์เซ็นต์ขับซึ่งการรอด (วันที่)	าการรอด (วันที่)	น้ำหนักสด	น้ำหนักแห้ง
G . 33 F I I I	(mg/m)	1	3	5	7	(កร្ម័ង)	(ពទីង)	1	3	'n	7	(ពទ័ង)	(ពទ័ង)
ชุดควบคุม	ູ້ ນຳ	0.00	0.00	0.00	0.00	$19.54 \pm 2.78a$	$2.93 \pm 0.35a$	0.00	5.00	5.00	5.00	$18.56 \pm 2.23a$	$2.78\pm0.30ab$
	2.5	0.00	0.00	0.00	0.00	$19.35\pm4.32a$	$2.83 \pm 0.31a$	0.00	0.00	0.00	0.00	$19.54 \pm 3.69a$	$2.93 \pm 0.52a$
1 190	S	0.00	0.00	0.00	0.00	$19.61 \pm 3.45a$	$2.96\pm0.34a$	0.00	4.50	9.25	4.25	$18.71 \pm 3.26a$	$2.81 \pm 0.46a$
<u> </u>	10	0.00	9.50	14.25	34.25	$12.85 \pm 4.68 bc$	$1.93 \pm 0.14 bc$	0.00	14.25	20.00	25.00	$14.65 \pm 2.81 bc$	$2.20 \pm 0.39 bc$
	20	0.00	24.25	39.25	49.75	$9.82 \pm 3.24cd$	$1.48 \pm 0.11 cd$	0.00	24.75	44.25	44.50	$10.84 \pm 2.78cd$	$1.62 \pm 0.38 cd$
	2.5	0.00	0.00	9.25	9.50	$17.69 \pm 2.98 bc$	$2.66\pm0.29 bc$	0.00	0.00	0.00	0.00	$19.54 \pm 3.96a$	$2.93 \pm 0.56 a$
15 11 21	S	0.00	19.75	24.50	44.25	$10.89 \pm 2.27 cd$	$1.64 \pm 0.17 cd$	0.00	0.00	4.25	14.50	$16.70 \pm 3.65 ab$	$2.51 \pm 0.52 ab$
Z 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10	0.00	29.50	44.25	59.75	$7.86 \pm 1.73 cd$	$1.18 \pm 0.22 cd$	0.00	10.00	24.75	29.25	$13.82 \pm 2.73 bc$	$2.07 \pm 0.37 bc$
	20	0.00	30.00	59.25	80.00	$3.90 \pm 1.02 c$	$0.59\pm0.04c$	0.00	24.25	34.25	44.75	$10.79 \pm 2.18 bc$	$1.62 \pm 0.29 bc$
	2.5	0.00	0.00	39.75	59.50	$7.91 \pm 1.81 cd$	$1.19 \pm 0.37 cd$	0.00	0.00	0.00	0.00	$19.54 \pm 5.18a$	$2.93\pm0.73a$
30 117g	ς.	0.00	29.25	64.25	89.25	$2.10 \pm 0.67 c$	$0.32 \pm 0.19c$	0.00	0.00	4.25	9.50	$17.68 \pm 3.73 ab$	$2.65 \pm 0.53 ab$
	10	4.50	34.25	74.50	100.00	0.00 ± 0.004	0.00 ± 0.004	0.00	19.50	39.50	44.25	$10.89 \pm 2.93 bc$	$1.63 \pm 0.41 bc$
	20	4.75	74.50	100.00	100.00	0.00 ± 0.004	0.00 ± 0.004	0.00	45.00	74.25	100.00	0.00 ± 0.00	0.00 ± 0.00
	2.5	0.00	0.00	64.75	100.00	0.00 ± 0.004	0.00 ± 0.00	00.00	0.00	0.00	0.00	$19.54 \pm 4.21a$	$2.93 \pm 0.60 \mathrm{a}$
שנוו עש	5	0.00	4.50	84.75	100.00	0.00 ± 0.004	0.00 ± 0.004	0.00	0.00	9.25	14.75	$16.65 \pm 4.08ab$	$2.50 \pm 0.58 ab$
	10	10.00	44.75	100.00	100.00	0.00 ± 0.004	0.00 ± 0.00	0.00	69.25	74.75	89.50	$2.05\pm0.73c$	$0.30\pm0.08c$
	20	15.00	94.25	100.00	100.00	$0.00\pm0.00d$	0.00 ± 0.004	0.00	79.50	94.50	100.00	0.00 ± 0.004	0.00 ± 0.004

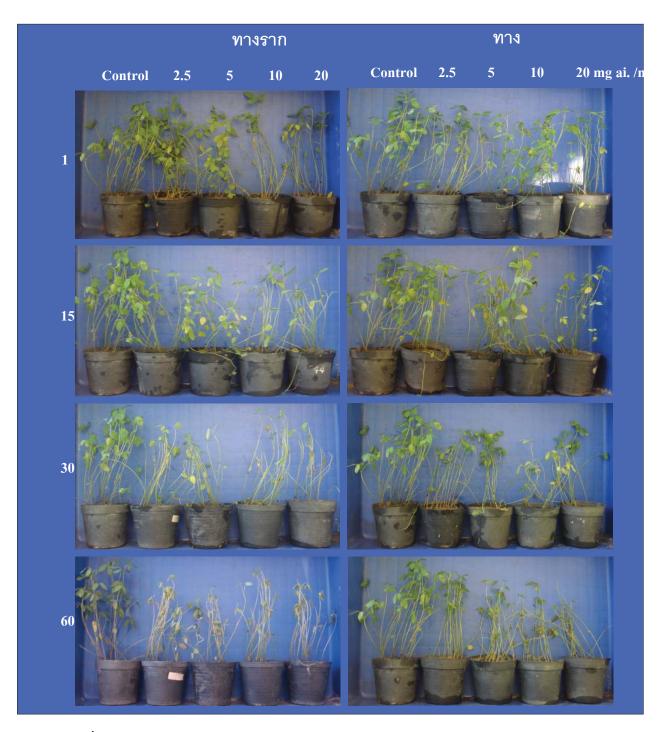

์ ค่าเฉลียที่อยู่ในคอลัมน์เดียวกันที่ตามด้วยตัวอักษรเหมือนกันแสดงว่าใม่มีความแตกต่างกันทางสถิติ จากการวิเคราะท์โดย Turkey's Studentized Range Test (p=0.05)


ภาพที่ 4.4.1 กลไกการทำลายวัชพืชหญ้าข้าวนกทางรากและทางใบ จากผลิตภัณฑ์ NHSJ ที่ความ เข้มข้นและระยะเวลาที่ต่างกัน (วันที่ 1)


ภาพที่ 4.4.2 กล ใกการทำลายวัชพืชหญ้าข้าวนกทางราก และทางใบ จากผลิตภัณฑ์ NHSJ ที่ความ เข้มข้นและระยะเวลาที่ต่างกัน (วันที่ 3)


ภาพที่ 4.4.3 กล ใกการทำลายวัชพืชหญ้าข้าวนกทางราก และทางใบ จากผลิตภัณฑ์ NHSJ ที่ความ เข้มข้นและระยะเวลาที่ต่างกัน (วันที่ 5)


ภาพที่ 4.4.4 กลใกการทำลายวัชพืชหญ้าข้าวนกทางราก และทางใบ จากผลิตภัณฑ์ NHSJ ที่ความ เข้มข้นและระยะเวลาที่ต่างกัน (วันที่ 7)


ภาพที่ 4.4.5 กลไกการทำลายวัชพืชถั่วผีทางราก และทางใบ จากผลิตภัณฑ์ NHSJ ที่ความเข้มข้น และระยะเวลาที่ต่างกัน (วันที่ 1)

ภาพที่ 4.4.6 กลไกการทำลายวัชพืชถั่วผีทางราก และทางใบ จากผลิตภัณฑ์ NHSJ ที่ความเข้มข้น และระยะเวลาที่ต่างกัน (วันที่ 3)

ภาพที่ 4.4.7 กลไกการทำลายวัชพืชถั่วผีทางราก และทางใบ จากผลิตภัณฑ์ NHSJ ที่ความเข้มข้น และระยะเวลาที่ต่างกัน (วันที่ 5)

ภาพที่ 4.4.8 กลไกการทำลายวัชพืชถั่วผีทางราก และทางใบ จากผลิตภัณฑ์ NHSJ ที่ความเข้มข้น และระยะเวลาที่ต่างกัน (วันที่ 7)

การทดลองที่ 4.5 การตรวจสอบฤทธิ์ของสารในการทำลายผนังเซลล์และการเปลี่ยนแปลงการซึม ผ่านของเยื่อเมมเบรน (permeable membrane)

วิธีทดลอง

การวางแผนการทดลอง

วางแผนการทดลองแบบสุ่มสมบูรณ์ 5 กรรมวิธีการทดลอง วิธีการทดลองละ 4 ซ้ำ ดังนี้ แช่ รากพืชทดสอบในสารผลิตภัณฑ์ NHSJ ในรูป SC เป็นเวลา 1 นาที ที่ระดับความเข้มข้น 2.5, 5, 10, และ 20 มิลลิกรัม สารออกฤทธิ์/มิลลิลิตร โดยมีน้ำกลั่นเป็นวิธีการควบคุม

เตรียมสารผลิตภัณฑ์รูปแบบสารละลายเข้มข้น

เตรียมได้จาก สารสกัดหยาบจากพุทธชาติก้านแดงผสมกับ ทวีน 80 และ โซเคียมรอลิ ซัลเฟต ในอัตราส่วน 30:10:60 โดยน้ำหนัก ตามลำดับ ผสมให้เข้ากัน ก็จะได้ผลิตภัณฑ์ NHSJ ที่อยู่ ในรูป SC ที่มีสารออกฤทธิ์ 30 เปอร์เซ็นต์

การเตรียมพืชทดสอบ

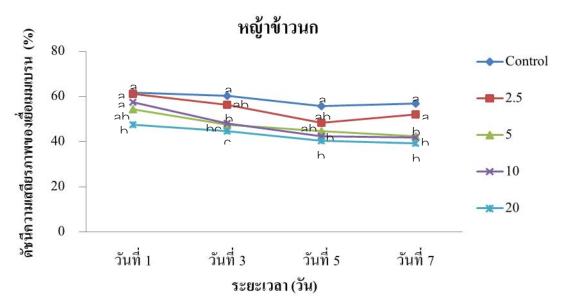
เพาะเมล็ดหญ้าข้าวนกและถั่วฝีในกระถางขนาด 6 นิ้ว เมื่อต้นพืชมีอายุ 20 วัน ทำการ treated สารผลิตภัณฑ์ตามวิธีการที่เหมาะ เพื่อศึกษาพฤติกรรมของสารออกฤทธิ์จากพุทธชาติก้าน แดงที่มีผลต่อกระบวนการทางสรีรและชีวเคมีต่างๆ ภายในต้นพืชดังต่อไปนี้ เก็บใบพืชทดสอบทั้ง สองชนิดหลังจากได้รับสาร 1, 3, 5, 10, และ 15 วัน และนำมาล้างให้สะอาด จากนั้นตัดใบพืชให้มี ขนาดเล็กประมาณ 0.5 ซม. แช่ในน้ำกลั่นเป็นเวลา 10, 30 และ 60 นาที กรองกากพืชออก นำ สารละลายในน้ำกลั่นไปวัดค่าการนำไฟฟ้าด้วยเครื่อง Conductivity meter

การทคสอบ

เลือกผลิตภัณฑ์ NHSJ ในรูป SC ที่มีผลต่อกลไกการทำลายพืชทดสอบทางรากที่ดีที่สุด และระยะเวลาในการแช่ คือ 1 นาที ทดสอบกับหญ้าข้าวนกและถั่วผี ที่ระดับความเข้มข้นต่าง ๆ ระยะเวลา 1, 3, 5 และ 7 วัน หลังจากการแช่ผลิตภัณฑ์ NHSJ ในรูป SC ทางรากกับพืชทดสอบ จากนั้นตัดใบของหญ้าข้าวนกและถั่วผีเป็นวงกลม ขนาดเส้นผ่านศูนย์กลาง 0.6 เซนติเมตร โดยตัด ใบตำแหน่งที่สองลงมาจำนวน 13 ใบ ใส่ในหลอดทดลองขนาด 15 มิลลิลิตร และใส่น้ำกลั่นลงไป 5 มิลลิลิตร นำไปบ่มที่อุณหภูมิ 40 องศาเซลเซียส เป็นเวลา 30 นาที และต้มที่อุณหภูมิ 100 องศา เซลเซียส เป็นเวลา 15 นาที จากนั้นนำไปกรองเอากากออก แล้วนำไปวัดค่าความเสลียรภาพของเยื่อ หุ้มเมมเบรนจากเซลล์พืชด้วยเครื่องวัดค่าการนำไฟฟ้า เป็นวิธีดัดแปลงมาจาก Ngayila et al. (2009)

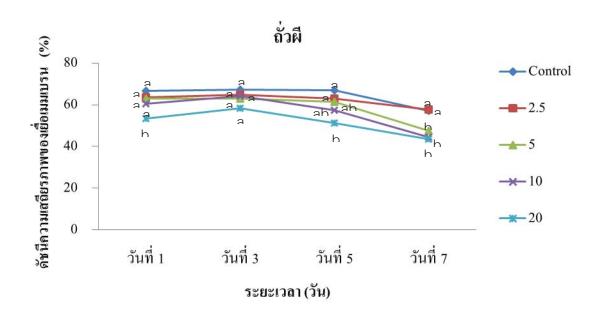
นำค่าความเสถียรภาพของเยื่อหุ้มเมมเบรนมาคำนวณหาค่าคัชนีความเสถียรภาพของเยื่อ หุ้มเมมเบรนโดยใช้สูตร (Ngayila *et al.* 2009)

membrane stability index = $[1 - (C1/C2)] \times 100$


โดยกำหนดให้ C1 คือ ใบที่ด้มที่อุณหภูมิ 40 องศาเซลเซียส C2 คือ ใบที่ด้มที่อุณหภูมิ 100 องศาเซลเซียส

การบันทึกผล และการวิเคราะห์ผลการทดลอง

ทำการบันทึกข้อมูล และนำข้อมูลค่าความเสถียรภาพของเยื่อหุ้มเมมเบรน มาวิเคราะห์ ความแปรปรวนทางสถิติ และเปรียบเทียบความแตกต่างของค่าเฉลี่ยโดยวิธี Turkey's Studentized Range Test ที่ระดับความเชื่อมั่น 95 เปอร์เซ็นต์


ผลการทดลอง

หญ้าข้าวนก จากการศึกษาผลของผลิตภัณฑ์ NHSJ ต่อความเสถียรภาพของเยื่อหุ้มเมม เบรนโดยการแช่กระถางลงพืชทดสอบในผลิตภัณฑ์ NHSJ นาน 1 นาที ทดสอบที่ระดับความ เข้มข้น 2.5, 5, 10 และ 20 มิลลิกรัม (สารออกฤทธิ์)/มิลลิลิตร วัดผลความเสถียรภาพของเยื่อหุ้มเมม เบรนหลังจากทดสอบสารเป็นเวลา 1, 3, 5 และ 7 วัน โดยใช้น้ำกลั่นเป็นวิธีการควบคุม พบว่า ค่า ดัชนีความเสถียรภาพของเยื่อหุ้มเมมเบรนของหญ้าข้าวนกลดลง ตามความเข้มข้นของผลิตภัณฑ์ NHSJ ที่เพิ่มขึ้น และลดลงตามระยะเวลาในการวัดผลที่เพิ่มขึ้นด้วย มีความแตกต่างกันทางสถิติ เมื่อ เปรียบเทียบกับวิธีการควบคุม ตั้งแต่ระดับความเข้มข้น 5-20 มิลลิกรัม (สารออกฤทธิ์)/มิลลิลิตร วันที่ 3, 5 และ 7 วันของการวัดผล และวันที่ 7 มีค่าดัชนีความเสถียรภาพของเยื่อหุ้มเมมเบรนน้อย ที่สุดของแต่ละความเข้มข้น คือ 42.43, 41.71 และ 39.15 เปอร์เซ็นต์ ในขณะที่ชุดควบคุมมีค่าดัชนี ความเสถียรภาพของเยื่อหุ้มเมมเบรนเท่ากับ 56.71 เปอร์เซ็นต์ (กราฟที่ 4.5.1)

กราฟที่ 4.5.1 การเปรียบเทียบผลของผลิตภัณฑ์ NHSJ ต่อความเสถียรภาพของเยื่อหุ้มเมมเบรน ใน ใบหญ้าข้าวนก หลังจากทดสอบสารที่ระยะ เวลา 1, 3, 5 และ7 วัน ค่าเฉลี่ยที่อยู่ในวันที่ เคียวกันที่ตามด้วยตัวอักษรเหมือนกัน แสดงว่าไม่มีความแตกต่างกันทางสถิติ จากการ วิเคราะห์ค่าเฉลี่ยแบบ Turkey's Studentized Range Test (p=0.05)

ถั่วฝื จากการศึกษาผลของผลิตภัณฑ์ NHSJ ต่อดัชนีความเสถียรภาพของเยื่อหุ้มเมมเบรน โดยการแช่กระถางลงพืชทดสอบในผลิตภัณฑ์ NHSJ นาน 1 นาที ทดสอบที่ระดับความเข้มข้น 2.5, 5, 10 และ 20 มิลลิกรัม (สารออกฤทธิ์)/มิลลิลิตร วัดผลความเสถียรภาพของเยื่อหุ้มเมมเบรนหลัง จากทดสอบสารเป็นเวลา 1, 3, 5 และ 7 วัน โดยใช้น้ำกลั่นเป็นวิธีการควบคุม พบว่า ค่าดัชนีความ เสถียรภาพของเยื่อหุ้มเมมเบรนของถั่วผีลดลง ตามความเข้มข้นของผลิตภัณฑ์ NHSJ ที่เพิ่มขึ้น และ ลดลงตามระยะเวลาในการวัดผลที่เพิ่มขึ้นด้วย มีความแตกต่างกันทางสถิติ เมื่อเปรียบเทียบกับ วิธีการควบคุม ตั้งแต่ระดับความเข้มข้น 5-20 มิลลิกรัม (สารออกฤทธิ์)/มิลลิลิตร ในวันที่ 7 วันของ การวัดผล มีค่าดัชนีความเสถียรภาพของเยื่อหุ้มเมมเบรนน้อยที่สุดของแต่ละความเข้มข้น คือ 47.36, 44.40 และ 43.63 เปอร์เซ็นต์ ในขณะที่ชุดควบคุมมีค่าดัชนีความเสถียรภาพของเยื่อหุ้มเมมเบรน เท่ากับ 56.92 เปอร์เซ็นต์ (กราฟที่ 4.5.2)

กราฟที่ 4.5.2 การเปรียบเทียบผลของผลิตภัณฑ์ NHSJ ต่อความเสถียรภาพของเยื่อหุ้มเมมเบรน ใน ใบถั่วผี หลังจากทดสอบสารที่ระยะ เวลา 1, 3, 5 และ 7 วัน ค่าเฉลี่ยที่อยู่ในวันที่ เดียวกันที่ตามด้วยตัวอักษรเหมือนกัน แสดงว่าไม่มีความแตกต่างกันทางสถิติ จากการ วิเคราะห์ค่าเฉลี่ยแบบ Turkey's Studentized Range Test (p=0.05)

การทดลองที่ 4.6 การตรวจสอบฤทธิ์ของสารในการยับยั้ง chlorophyll synthesis

การวางแผนการทดลอง

วางแผนการทดลองแบบสุ่มสมบูรณ์ 5 กรรมวิธีการทดลอง วิธีการทดลองละ 4 ซ้ำ ดังนี้ แช่ รากพืชทดสอบในสารผลิตภัณฑ์ NHSJ ในรูป SC เป็นเวลา 1 นาที ที่ระดับความเข้มข้น 2.5, 5, 10, และ 20 มิลลิกรัม สารออกฤทธิ์/มิลลิลิตร โดยมีน้ำกลั่นเป็นวิธีการควบคุม

เตรียมสารผลิตภัณฑ์รูปแบบสารละลายเข้มข้น

เตรียมได้จาก สารสกัดหยาบจากพุทธชาติก้านแดงผสมกับ ทวีน 80 และ โซเคียมรอลิ ซัลเฟต ในอัตราส่วน 30:10:60 โดยน้ำหนัก ตามลำดับ ผสมให้เข้ากัน ก็จะได้ผลิตภัณฑ์ NHSJ ที่อยู่ ในรูป SC ที่มีสารออกฤทธิ์ 30 เปอร์เซ็นต์

การเตรียมพืชและทคสอบ

เพาะเมล็ดหญ้าข้าวนกและถั่วผีในกระถางขนาด 6 นิ้ว เมื่อต้นพืชมีอายุ 20 วัน ทำการ treated สารผลิตภัณฑทางรากเป็นระยะเวลา 1 นาที เก็บกระถางพืชทดสอบไว้ในโรงเรือนทดลอง ดูแลรดน้ำอย่างเพียงพอ เก็บใบพืชทดสอบทั้งสองชนิดหลังจากได้รับสาร 1, 3, 5 และ 7 วัน และ นำมาล้างให้สะอาด จากนั้นตัดใบพืชให้มีขนาดเล็กประมาณ 0.5 ซม. นำมาสกัดคลอโรฟิลล์ โดยตัด ใบของหญ้าข้าวนกและถั่วผีเป็นวงกลมขนาดเส้นผ่านสูนย์กลาง 0.6 เซนติเมตร โดยตัดใบตำแหน่ง ที่สองลงมาจำนวน 13 ใบ ใส่ในโกร่งบด และเติมอะซีโตน 80 เปอร์เซ็นต์ ปริมาตร 5 มิลลิลิตร เพื่อ สกัดคลอโรฟิลล์จากใบพืชทดสอบ ทำการบดจนละเอียดแล้วเปลี่ยนใส่หลอดทดลองขนาด 15 มิลลิลิตร ทึ้งไว้เป็นระยะเวลา 3 ชั่วโมง จากนั้นนำไปกรองด้วยกระดาษกรองเบอร์ 1 และนำไปวัด ค่าการดูดกลืนแสงที่ความยาวคลื่น 470, 647 และ 663 นาโนเมตร เป็นวิธีดัดแปลงมาจาก Ngayila et al. (2009)

จากนั้นนำไปคำนวณหาค่า คลอโรฟิลล์เอ คลอโรฟิลล์บี และแคโรทีนอยค์ โดยใช้สูตร (Ngayila *et al.* 2009)

คลอโรฟิลล์เอ (มิลลิกรัม/ลิตร) = $12.25 \times A663 - 2.79 \times A647$

คลอโรฟิลล์์บี (มิลลิกรัม/ลิตร) = $21.50 \times A647 - 5.10 \times A663$

แกโรทีนอยค์ (มิลลิกรัม/ลิตร) = (1000 × A470 - 1.82 × Chl a - 85.02 × Chl b)/198

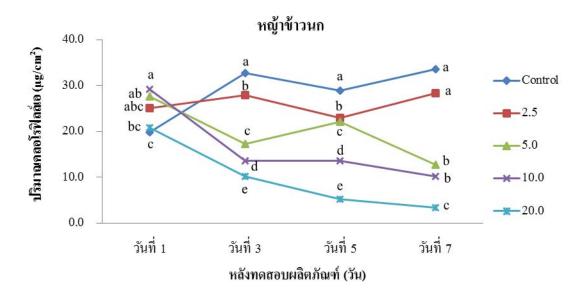
จากนั้นนำไปคำนวณหาค่า ปริมาณคลอโรฟิลล์เอ คลอโรฟิลล์บี และแคโรทีนอยค์ โดยใช้ สูตร ปริมาณคลอโรฟิลล์ (ไมโครกรัม/ตารางเซนติเมตร) = (ค่าคลอโรฟิลล์ \times 5 ml) / $\pi r^2 \times$ 13

การบันทึกผล และการวิเคราะห์ผลการทดลอง

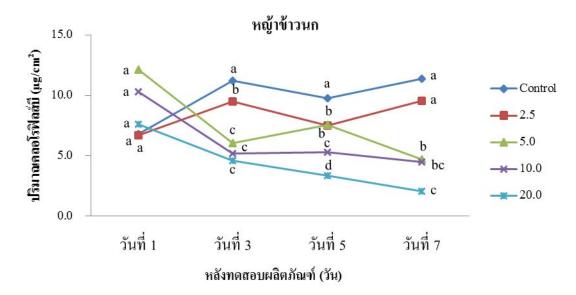
ทำการบันทึกข้อมูล และนำข้อมูลปริมาณคลอโรฟิลล์ และแคโรทีนอยค์มาวิเคราะห์ความ แปรปรวนทางสถิติ และเปรียบเทียบความแตกต่างของค่าเฉลี่ยโดยวิธี Turkey's Studentized Range Test ที่ระดับความเชื่อมั่น 95 เปอร์เซ็นต์

ผลการทดลอง

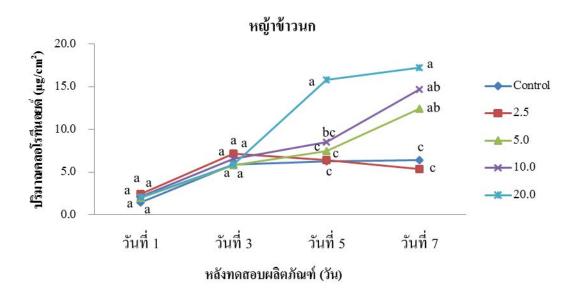
หญ้าข้าวนก


กลอโรฟิลล์เอ (chlorophyll a) จากการศึกษาผลของผลิตภัณฑ์ NHSJ ต่อการยับยั้งปริมาณ ของคลอโรฟิลล์เอ ในใบหญ้าข้าวนก ทดสอบที่ความเข้มข้น 2.5, 5, 10 และ 20 มิลลิกรัม (สารออก ฤทธิ์)/มิลลิลิตร หลังจากทดสอบสารเป็นเวลา 1, 3, 5 และ 7 วัน โดยใช้น้ำกลั่นเป็นวิธีการควบคุม พบว่าวันที่ 3 ปริมาณคลอโรฟิลล์เอลดลงอย่างชัดเจนตามความเข้มข้นของผลิตภัณฑ์ NHSJ ที่ เพิ่มขึ้น คือ 27.91, 17.28, 13.63 และ10.14 μg/cm² ตามลำดับ ในขณะที่ชุดควบคุมมีปริมาณ คลอโรฟิลล์ 32.68 μg/cm² วันที่ 5 ปริมาณคลอโรฟิลล์ของหญ้าข้าวนกลดลง ที่ระดับความเข้มข้น 20 มิลลิกรัม (สารออกฤทธิ์)/มิลลิลิตร มีปริมาณคลอโรฟิลล์เอเต่ากับ 5.26 μg/cm² และวันที่ 7 พบว่า หญ้าข้าวนก ปริมาณคลอโรฟิลล์เอลดลง ที่ระดับความเข้มข้น 5-20 มิลลิกรัม (สารออกฤทธิ์)/มิลลิลิตร มีค่าเท่ากับ 12.77, 10.17 และ 3.39 μg/cm² ตามลำดับ ส่วนที่ระดับความเข้มข้น 2.5 μg/cm² ลดลงไม่มากคือมีปริมาณคลอโรฟิลล์เอเท่ากับ 28.37 μg/cm² ขณะที่ชุดควบคุมมีค่าเท่ากับ 33.53 μg/cm² (กราฟที่ 4.6.1)

คลอโรฟิลล์บี (chlorophyll b) จากการศึกษาผลของผลิตภัณฑ์ NHSJ ต่อการขับขั้งปริมาณ ของคลอโรฟิลล์บี ในใบหญ้าข้าวนก ทคสอบที่ความเข้มข้น 2.5, 5, 10 และ 20 มิลลิกรัม (สารออก ฤทธิ์)/มิลลิลิตร หลังจากทคสอบสารเป็นเวลา 1, 3, 5 และ 7 วัน โดยใช้น้ำกลั่นเป็นวิธีการควบคุม พบว่า วันที่ 1 ยังไม่เห็นถึงความแตกต่าง แต่วันที่ 3 ปริมาณคลอโรฟิลล์บีเริ่มลดลงตามความเข้มข้น ของผลิตภัณฑ์ NHSJ ที่เพิ่มขึ้น คือมีปริมาณคลอโรฟิลล์บีเท่ากับ 9.50, 6.06, 5.20 และ 4.57 μg/cm² ตามลำดับ ในขณะที่ชุดควบคุมมีปริมาณคลอโรฟิลล์ 11.24 μg/cm² วันที่ 5 ปริมาณคลอโรฟิลล์บี ของหญ้าข้าวนกลดลงมาไม่มาก เท่ากับ 7.49, 7.55,5.32 และ 3.33 μg/cm² ตามลำดับ ในขณะที่ชุด ควบคุมมีปริมาณคลอโรฟิลล์บีงของหญ้า ข้าวนกลดลงมาก ที่ระดับความเข้มข้น 5-20 มิลลิกรัม (สารออกฤทธิ์)/มิลลิลิตร มีค่าเท่ากับ 4.68, 4.48 และ 2.08 μg/cm² ตามลำดับ ส่วนที่ระดับความเข้มข้น 2.5 มิลลิกรัม (สารออกฤทธิ์)/มิลลิลิตร ลดลงไม่มาก คือมีปริมาณคลอโรฟิลล์บีเท่ากับ 9.57 μg/cm² ขณะที่ชุดควบคุมมีค่าเท่ากับ 11.36 μg/cm² (กราฟที่ 4.6.2)

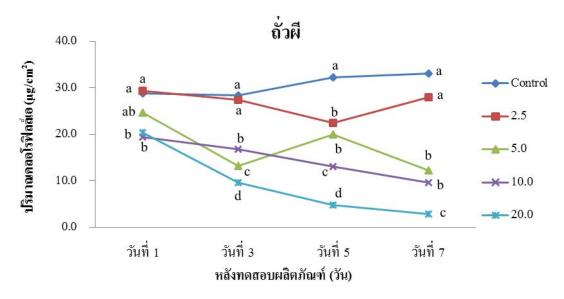

<u>แคโรทีนอยด์ (carotenoid)</u> จากการศึกษาผลของผลิตภัณฑ์ NHSJ ต่อการยับยั้งปริมาณ ของแคโรทีนอยด์ จากใบหญ้าข้าวนก ทดสอบที่ความเข้มข้น 2.5, 5, 10 และ 20 มิลลิกรัม (สาร ออกฤทธิ์)/มิลลิลิตร หลังจากทดสอบสารเป็นเวลา 1, 3, 5 และ 7 วัน โดยใช้น้ำกลั่นเป็นวิธีการ ควบคุม พบว่าปริมาณของแคโรทีนอยด์ของหญ้าข้าวนก วันที่ 1 และวันที่ 3 ยังไม่เห็นถึงความ แตกต่าง แต่วันที่ 5 พบว่าปริมาณแคโรทีนอยค์เพิ่มขึ้นตามความเข้มข้นของผลิตภัณฑ์ NHSJ ที่ เพิ่มขึ้น ตั้งแต่ที่ระดับความเข้มข้น 5-20 มิลลิกรัม (สารออกฤทธิ์)/มิลลิลิตร คือมีปริมาณของแคโรทีนอยค์ เท่ากับ 7.46, 8.56 และ 15.79 μ g/cm² ตามลำดับ ในขณะที่ชุดควบคุมและผลิตภัณฑ์ NHSJ ที่ระดับความเข้มข้น 2.5 มิลลิกรัม (สารออกฤทธิ์)/มิลลิลิตร มีปริมาณของแคโรทีนอยค์เท่ากับ 6.29 และ 6.44 μ g/cm² วันที่ 7 ปริมาณของแคโรทีนอยค์ ของหญ้าข้าวนกเพิ่มขึ้นที่ระดับความ เข้มข้น 5-20 มิลลิกรัม (สารออกฤทธิ์)/มิลลิลิตร มีค่าเท่ากับ 12.41, 14.67 และ 17.23 μ g/cm² ตามลำดับ ในขณะที่วิธีการควบคุมและผลิตภัณฑ์ NHSJ ที่ระดับความเข้มข้น 2.5 มิลลิกรัม (สารออกฤทธิ์)/มิลลิลิตร มีปริมาณแคโรทีนอยค์ เท่ากับ 6.40 และ 5.38 μ g/cm² (กราฟที่ 4.6.3)

ถั่วฝื

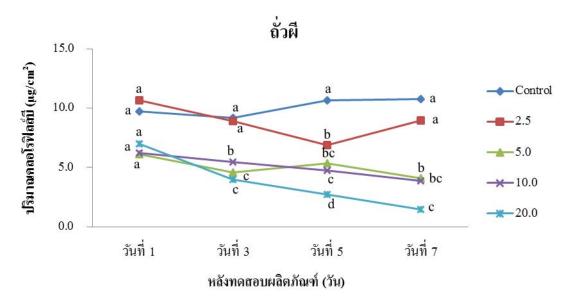

กลอโรฟิลล์เอ (chlorophyll a) จากการศึกษาผลของผลิตภัณฑ์ NHSJ ต่อการยับยั้ง ปริมาณของคลอโรฟิลล์เอ ในใบถั่วผี ทดสอบที่ความเข้มข้น 2.5, 5, 10 และ 20 มิลลิกรัม (สารออก ฤทธิ์)/มิลลิลิตร หลังจากทดสอบสารเป็นเวลา 1, 3, 5 และ 7 วัน โดยใช้น้ำกลั่นเป็นวิธีการควบคุม พบว่าตั้งแต่วันที่ 3 ปริมาณคลอโรฟิลล์เอลดลงอย่างชัดเจนตามความเข้มข้นของผลิตภัณฑ์ NHSJ ที่ เพิ่มขึ้นมีค่าปริมาณคลอโรฟิลล์เอเท่ากับ 27.46, 13.18, 16.83 และ 9.69 μg/cm² ตามลำดับ ในขณะที่ ชุดควบคุมมีปริมาณคลอโรฟิลล์ 28.43 μg/cm² หลังจากทดสอบสารวันที่ 5 และ 7 ปริมาณ คลอโรฟิลล์เอของถั่วผีให้ผลไปในทางเดียวกัน คือมีปริมาณคลอโรฟิลล์เอลดลงตามความเข้มข้น ของผลิตภัณฑ์ NHSJ ที่เพิ่มขึ้นและลดลงต่ำที่สุดในวันที่ 7 ของการทดสอบผลิตภัณฑ์ ที่ระดับความ เข้มข้น 5-20 มิลลิกรัม (สารออกฤทธิ์)/มิลลิลิตร มีค่าเท่ากับ 12.32, 9.71 และ 2.94 μg/cm² ตามลำดับ ส่วนที่ระดับความเข้มข้น 2.5 μg/cm² มีปริมาณคลอโรฟิลล์เอของถั่วผีเพิ่มขึ้นเท่ากับ 27.92 μg/cm² ขณะที่ชุดควบคุมมีค่าเท่ากับ 33.07 μg/cm² (กราฟที่ 4.6.4)

กราฟที่ 4.6.1 ปริมาณคลอโรฟิลล์เอ ในใบหญ้าข้าวนก ที่วัดได้หลังจากทดสอบสารเป็นเวลา 1, 3, 5 และ 7 วัน ค่าเฉลี่ยที่อยู่ในวันที่เดียวกันที่ตามด้วยตัวอักษรเหมือนกัน แสดงว่าไม่มี ความแตกต่างกันทางสถิติ จากการวิเคราะห์ค่าเฉลี่ยแบบ Turkey's Studentized Range Test (p=0.05)

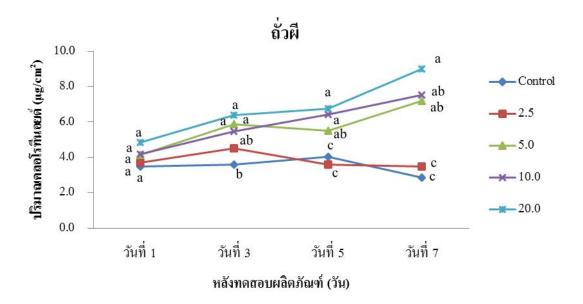
ภาพที่ 4.6.2 ปริมาณของคลอ โรฟิลล์บี ในใบหญ้าข้าวนก ที่วัดได้หลังจากทดสอบสารเป็นเวลา 1, 3, 5 และ 7 วัน ค่าเฉลี่ยที่อยู่ในวันที่เคียวกันที่ตามด้วยตัวอักษรเหมือนกัน แสดงว่าไม่มี ความแตกต่างกันทางสถิติ จากการวิเคราะห์ค่าเฉลี่ยแบบ Turkey's Studentized Range Test (p=0.05)



กราฟที่ 4.6.3 ปริมาณของแคโรทีนอยด์ ในใบหญ้าข้าวนก ที่วัดได้หลังจากแช่สารเป็นเวลา 1, 3, 5 และ 7 วัน ค่าเฉลี่ยที่อยู่ในวันที่เคียวกันที่ตามด้วยตัวอักษรเหมือนกัน แสดงว่าไม่มี ความแตกต่างกันทางสถิติ จากการวิเคราะห์ค่าเฉลี่ยแบบ Turkey's Studentized Range Test (p=0.05)


กลอโรฟิลล์บี (chlorophyll b) จากการศึกษาผลของผลิตภัณฑ์ NHSJ ต่อการยับยั้งปริมาณ ของคลอโรฟิลล์บี ในใบถั่วผีทดสอบที่ความเข้มข้น 2.5, 5, 10 และ 20 มิลลิกรัม (สารออกฤทธิ์)/ มิลลิลิตร หลังจากทดสอบสารเป็นเวลา 1, 3, 5 และ 7 วัน โดยใช้น้ำกลั่นเป็นวิธีการควบคุม พบว่า วันที่ 1 และ 3 ยังไม่เห็นถึงความแตกต่าง แต่วันที่ 5 ปริมาณคลอโรฟิลล์บีเริ่มลดลงตามความเข้มข้น ของผลิตภัณฑ์ NHSJ ที่เพิ่มขึ้น คือมีปริมาณคลอโรฟิลล์บีเท่ากับ 6.89, 5.32, 4.71 และ 2.73 μg/cm² ตามลำดับ ในขณะที่ชุดควบคุมมีปริมาณคลอโรฟิลล์ 10.63 μg/cm² และวันที่ 7 พบว่าปริมาณ คลอโรฟิลล์บีของถั่วผีลดลงมากที่สุด ที่ระดับความเข้มข้น 20 มิลลิกรัม (สารออกฤทธิ์)/มิลลิลิตร มี ปริมาณคลอโรฟิลล์บีเท่ากับ 10.35 μg/cm² (กราฟที่ 4.6.5)

แกโรทีนอยค์ (carotenoid) จากการศึกษาผลของผลิตภัณฑ์ NHSJ ต่อการยับยั้งปริมาณ ของแกโรทีนอยค์ จากใบถั่วผี ทคสอบที่ความเข้มข้น 2.5, 5, 10 และ 20 มิลลิกรัม (สารออกฤทธิ์)/มิลลิลิตร หลังจากทคสอบสารเป็นเวลา 1, 3, 5 และ 7 วัน โคยใช้น้ำกลั่นเป็นวิธีการควบคุม พบว่า ปริมาณของแกโรทีนอยค์ของถั่วผี ที่ระดับความเข้มข้น 2.5 มิลลิกรัม/มิลลิลิตร มีปริมาณแกโรทีนอยค์ปม่มีความแตกต่างทางสถิติ เมื่อเปรียบเทียบกับวิธีการควบคุม ส่วนที่ระดับความเข้มข้น 5-20 มิลลิกรัม/มิลลิลิตร ให้ผลไปในแนวทางเดียวกันคือ มีปริมาณแกโรทีนอยค์ของถั่วผีเพิ่มขึ้นตาม ความเข้มข้นของผลิตภัณฑ์ NHSJ ที่เพิ่มขึ้น และเพิ่มขึ้นสูงสุดในวันที่ 7 คือมีปริมาณแกโรทีนอยค์


เท่ากับ 7.21, 7.54 และ 8.99 $\mu g/cm^2$ ตามลำดับ ขณะที่ชุดควบคุมมีค่าเท่ากับ 2.87 $\mu g/cm^2$ มีความ แตกต่างทางสถิติเมื่อเปรียบเทียบกับวิธีการควบคุม (กราฟที่ 4.6.6)

กราฟที่ 4.6.4 ปริมาณของคลอ โรฟิลล์เอ ในใบถั่วผีที่วัดได้ หลังจากทดสอบสารเป็นเวลา 1, 3, 5
และ 7 วัน ค่าเฉลี่ยที่อยู่ในวันที่เดียวกันที่ตามด้วยตัวอักษรเหมือนกัน แสดงว่าไม่มี
ความแตกต่างกัน ทางสถิติ จากการวิเคราะห์ค่าเฉลี่ยแบบ Turkey's Studentized
Range Test (p=0.05)

กราฟที่ 4.6.5 ปริมาณของคลอโรฟิลล์บีในใบถั่วผี ที่วัดได้หลังจากทดสอบสารเป็นเวลา 1, 3, 5 และ 7 วัน ค่าเฉลี่ยที่อยู่ในวันที่เคียวกันที่ตามด้วยตัวอักษรเหมือนกัน แสดงว่าไม่มีความ แตกต่างกันทางสถิติ จากการวิเคราะห์ค่าเฉลี่ยแบบ Turkey's Studentized Range Test (p=0.05)

ภาพที่ 4.6.6 ปริมาณของแก โรทีนอยด์ในใบถั่วผี ที่วัดได้หลังจากแช่สารเป็นเวลา 1, 3, 5 และ 7 วัน ค่าเฉลี่ยที่อยู่ในวันที่เดียวกันที่ตามด้วยตัวอักษรเหมือนกัน แสดงว่าไม่มีความแตกต่าง กันทางสถิติ จากการวิเคราะห์ค่าเฉลี่ยแบบ Turkey's Studentized Range Test (p=0.05)

การทดลองที่ 4.7 การตรวจสอบความเสียหายของของถั่วฝีและลักษณะทางสัณฐานวิทยา วิธีการทดลอง

<u>การเตรียมผลิตภัณฑ์สารสกัดวัชพืชจากพุทธชาติก้านแดงรูปแบบผงเปียกน้ำ</u>

นำสารสกัดหยาบจากเอทานอลผสมกับผงเปียกน้ำในอัตราส่วน 30:70 โดยมีอะซิโตนเป็น ตัวทำละลาย บคจนอะซีโตนระเหยหมด จะได้ NHSJ รูปแบบ WP ที่มีสารออกฤทธิ์ 30 เปอร์เซ็นต์

การเตรียมเมล็ดพืชทดสอบ

แช่เมล็ดถั่วฝีในสารละลายโซเดียมไฮโปรคลอไรด์ ความเข้มข้น 1 เปอร์เซ็นต์ นาน 20 นาที เพื่อฆ่าเชื้อที่ติดมากับผิวของเมล็ด ล้างด้วยน้ำกลั่น 2-3 ครั้ง แล้วแช่เมล็ดในน้ำร้อนนาน 10 นาที เพื่อทำลายการพักตัว

ศึกษาการเจริญเติบโตของถั่วผีและลักษณะทางสัณฐานวิทยา

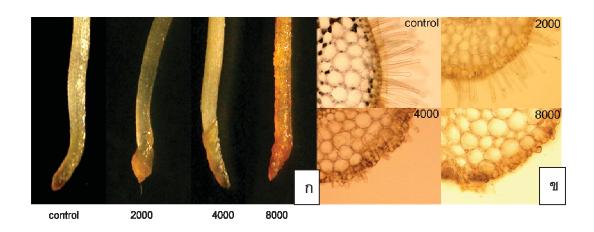
เตรียมสารละลายผลิตภัณฑ์ NHSJ ที่ความเข้มข้น 2,000, 4,000 และ 8,000 ppm และใช้น้ำ กลั่นเป็นวิธีการควบคุม เติม NHSJ รูปแบบ WP ที่ความเข้มข้นต่าง ๆ ในปริมาตร 5 มิลลิลิตร ใส่ จานทดลองขนาดเส้นผ่านศูนย์กลาง 9 เซนติเมตร ที่รองด้วยกระดาษเพาะเมล็ด 2 ชั้น จากนั้นวาง เมล็ดถั่วผีในจานทดลอง จานทดลองละ 10 เมล็ด นำไปวางในตู้ควบคุมการเจริญเติบโตที่มีแสง 12 ชั่วโมง อุณหภูมิ 32 องศาเซลเซียส ความชื้นสัมพัทธ์ 80 เปอร์เซ็นต์ เป็นเวลา 3 วัน บันทึกผลความ ยาวต้นและความยาวราก นำต้นกล้าที่อายุ 3 วันหลังการทดสอบ NHSJ รูปแบบ WP ที่ความเข้มข้น ต่าง ๆ มาศึกษาใต้กล้องสเตอริโอและกล้องจุลทรรศน์ เพื่อศึกษาความผิดปกติที่เกิดขึ้นกับรากของ ถั่วผี พร้อมบันทึกภาพ

ผลการทดลอง

การเจริญเติบโตของถั่วฝีและลักษณะทางสัณฐานวิทยา หลังจากเพาะเมล็ดถั่วฝี 3 วัน ทุก ความเข้มข้นของ NHSJ เมล็ดสามารถงอกได้ แต่จากการวัดความยาวต้นและความยาวราก พบว่า มี ผลให้ความยาวต้นและความยาวรากลดลงและมีความแตกต่างในทางสถิติกับชุดควบคุม (ตารางที่ 4.7.1 และภาพที่ 4.7.1) จากการศึกษาใต้กล้องจุลทรรศน์ พบว่า ปลายรากของถั่วผีที่ทดสอบสารที่ ความเข้มข้น 2,000 - 8,000 ppm มีลักษณะผิดปกติ คือ ที่ระดับความเข้มข้น 2,000 ppm ปลายรากมี ลักษณะบวม ความเข้มข้น 4,000 ppm รากแสดงอาการเหี่ยว หมวกรากมีสีน้ำตาล และที่ระดับความ เข้มข้น 8,000 ppm รากมีลักษณะกุดสั้นและมีสีน้ำตาลคล้ำ (ภาพที่ 4.7.2 ก) ซึ่งจากรายงานของ Pan et al. พบว่าความผิดปกติของรากเมื่อพืชได้รับสารพิษจะส่งผลให้ปลายรากมีลักษณะบวม ชั้นของ เนื้อเยื่อถูกทำลาย ทำให้เกิดอาการ necrosis และ browning นอกจากนี้ NHSJ ยังมีส่งผลยับยั้งการ พัฒนาและความหนาแน่นของขนรากถั่วผีด้วย (ภาพที่ 4.7.2 ข) ความผิดปกติของลักษณะทาง สัณฐานวิทยาเกิดกับราก เนื่องจากเซลล์ที่อยู่บริเวณปลายรากเป็นเนื้อเยื่อเจริญและเป็นส่วนที่โผล่

พ้นออกมาจากเปลือกหุ้มเมล็ดเป็นส่วนแรก ทำให้บริเวณดังกล่าวเป็นบริเวณที่ไวต่อสาร (Kopittke et al., 2009)

ตารางที่ 4.7.1 ความยาวต้นและความยาวรากของถั่วผีที่ทดสอบในผลิตภัณฑ์ NHSJ รูปแบบ WP ที่ ความเข้มข้นแตกต่างกัน


 ความเข้มข้น	ความยาวต้น	ความยาวราก
(ppm)	(AN)	(AN)
0	5.96±0.33 ¹ / _a ² /	2.56±0.27 a
2000	4.64±0.12 b	1.88±0.15 b
4000	4.02±0.15 b	1.60±0.38 bc
8000	2.94±0.49 c	1.16±0.19 c

หมายเหตุ $^{^{1/}}$ ค่าเฉลี่ย \pm ค่าเบี่ยงเบนมาตรฐาน

^{2'} ค่าเฉลี่ยที่ตามหลังด้วยตัวอักษรที่เหมือนกันในแนวตั้งไม่มีความแตกต่างกันทางสถิติ เมื่อเปรียบเทียบค่าเฉลี่ยโดยวิธี Duncant's new multiple range test ที่ระดับความ เชื่อมั่น 95 %

ภาพที่ 4.7.1 เปรียบเทียบความยาวต้นและรากของถั่วผีที่ทดสอบในผลิตภัณฑ์ NHSJ รูปแบบ WP ที่ ความเข้มข้นแตกต่างกัน

ภาพที่ 4.7.2 ลักษณะความผิดปกติของปลายราก (ก) และความหนาแน่นของขนราก (ข) เมื่อใด้รับ สารผลิตภัณฑ์ NHSJ รูปแบบ WP ที่ความเข้มข้นแตกต่างกัน

การทดลองที่ 4.8 การตรวจสอบฤทธิ์ของสารที่มีผลต่อการแบ่งเซลล์พืชและนิวคลีโอลัส วิธีการทดลอง

การวางแผนการทดลอง

วางแผนการทดลองแบบสุ่มสมบูรณ์ 6 กรรมวิธีการทดลอง วิธีการทดลองละ 4 ซ้ำ ดังนี้ ผลิตภัณฑ์ NHSJ ในรูป SC ที่ระดับความเข้มข้น 6.25, 12.5, 25, 50 และ 100 ppm สารออกฤทธิ์ โดย มีน้ำกลั่นเป็นวิธีการควบคุม

การเตรียมสารผลิตภัณฑ์ NHSJ

เก็บใบพุทธชาติก้านแดงที่มีความอุดมสมบูรณ์ ไม่มีโรคและแมลง อบให้แห้งที่อุณหภูมิ 45 องศาเซลเซียส เป็นระยะเวลา 72 ชั่วโมง ตัดใบเป็นชิ้นเล็ก ๆ สกัดด้วยเอทานอล โดยชั่งใบพุทธชาติ ก้านแดง 100 กรัมต่อเอทานอล 1 ลิตร สกัดทิ้งไว้อย่างน้อย 72 ชั่วโมง จากนั้นกรองสารละลายเอทา นอลผ่านกระดาษกรองเบอร์ 1 แยกส่วนกาก สกัดด้วยเอทานอลอีก 4 รอบ แล้วนำสารสกัดที่ได้ ระเหยเอทานอลออกให้แห้งด้วยเครื่องระเหยสูญญากาศ จะได้สารสกัดหยาบ (crude ethanol extract) จากนั้นนำมาแปรรูปเป็นผลิตภัณฑ์ NHSJ

การเตรียมปลายรากหอมหัวใหญ่

เลือกหอมหัวใหญ่ที่มีขนาดเท่า ๆ กัน แล้วตัดบริเวณโคนรากออก นำไปล้างน้ำทำความ สะอาด ผึ่งลมให้แห้ง แล้วแช่ในน้ำกลั่นให้เกิดรากเป็นระยะเวลา 2-3 วัน ความยาวประมาณ 1.5-2 เซนติเมตร แล้วนำไปแช่ต่อในผลิตภัณฑ์ NHSJ รูป SC ที่ระดับความเข้มข้นต่าง ๆ เป็นระยะเวลา 24 ชั่วโมง โดยมีหอมหัวใหญ่ที่แช่ในน้ำกลั่นเป็นวิธีการเปรียบเทียบ แล้วตัดรากหอมหัวใหญ่หัวละ 3-5 ราก โดยตัดรากช่วงระยะเวลา 8.00-8.30 น. และแช่ในสารเคมีเพื่อคงสภาพเซลล์ประกอบด้วยเอทา นอล 95 เปอร์เซ็นต์ และอะติกแอซิคในอัตราส่วน 3:1 เก็บในอุณหภูมิ ห้อง 12 ชั่วโมง ล้างด้วย70 เปอร์เซ็นต์ เอทานอล และแช่ปลายรากหอมหัวใหญ่ที่ได้ใน 70 เปอร์เซ็นต์ เอทานอล แล้วเก็บรักษา ไว้ในตู้เย็น เพื่อใช้ศึกษาต่อไป (Radic et al. 2005)

<u>การเตรียมสไลด์ศึกษากิจกรรมการแบ่งเซลล์</u>

นำปลายรากหอมหัวใหญ่ที่เก็บไว้ในตู้เย็นมาล้างด้วยน้ำกลั่น ซับน้ำให้แห้ง ทำการตัดปลาย รากหอมหัวใหญ่ให้มีความยาวประมาณ 0.5 เซนติเมตร นำมาย่อยผนังเซลล์ ด้วยเอนไซม์ ซึ่ง ประกอบด้วย เซลลูโลส 8 เปอร์เซ็นต์ เอนไซม์เพคติเนส 6 เปอร์เซ็นต์ ละลายในบัฟเฟอร์ที่ ประกอบด้วย กรดซิตริก 0.01 โมล และ sodium citrate 0.01 มิลลิโมล จากนั้นนำหลอดที่มีปลายราก หอมหัวใหญ่ไปบ่มที่อุณหภูมิ 37 องสาเซลเซียส เป็นระยะเวลา 60 นาที เมื่อครบตามเวลาที่กำหนด ดูดเอนไซม์ออกจากหลอดทดลอง และแช่ปลายรากในน้ำกลั่น ใช้ปากคีบปลายแหลมคีบปลายราก หอมออกจากหลอดทดลอง ซับน้ำออกให้แห้งแล้ววางบนสไลด์ ตัดเอาเฉพาะส่วนที่เป็นเนื้อเยื่อ เจริญปลายราก หยดน้ำยา fixation ที่แช่เย็นลงบนสไลด์ จากนั้นขยี้เซลล์ปลายรากหอมให้ทั่วแผ่น สไลด์ด้วยปากคีบปลายแหลม ทิ้งไว้ให้แห้ง เมื่อสไลด์แห้งนำมาย้อมด้วยสีจิบซา 2 เปอร์เซ็นต์ นาน

10 นาที นำสไลด์ไปล้างผ่านน้ำสะอาดโดยเปิดน้ำไหลผ่านเบา ๆ จากนั้นผึ่งสไลด์ทิ้งไว้ให้แห้ง เป็น วิธีคัดแปลงมาจาก สมศักดิ์ อภิสิทธิวานิช และ สุมน มาสุธน (2543) นำสไลด์มาศึกษาพฤติกรรม การแบ่งเซลล์แบบไมโทซีส ภายใต้กล้องจุลทรรศน์ และบันทึกภาพ ทำการนับเซลล์ในระยะต่าง ๆ ของการแบ่งเซลล์แบบไมโทซีส ไม่น้อยกว่า 4000 เซลล์ นำมาคิดคำนวณค่าดัชนีการแบ่งเซลล์ดัชนี การแบ่งเซลล์ในระยะต่าง ๆ ของไมโทติกประกอบด้วย ระยะโพรเฟส เมทาเฟส แอนนาเฟส และ เทโลเฟส รวมถึงลักษณะความผิดปกติของเซลล์โดยสูตรดังต่อไปนี้

ดัชนีการแบ่งเซลล์ (เปอร์เซ็นต์) = <u>จำนวนเซลล์ทั้งหมดในระยะไมโทติก</u> X 100 จำนวนเซลล์ทั้งหมดที่นับได้

คัชนีการแบ่งเซลล์ในระยะต่าง ๆ ของไมโทติก (เปอร์เซ็นต์) เช่น คัชนีการแบ่งเซลล์ระยะ โพรเฟสเปอร์เซ็นต์คัชนีการแบ่งเซลล์ระยะโพรเฟส

> = <u>จำนวนเซลล์ในระยะโพรเฟส</u> X 100 จำนวนเซลล์ที่แบ่งตัวปกติในระยะไมโทติก

ความผิดปกติของเซลล์ เช่น ลักษณะความผิดปกติ spindle disturbance ที่พบในระยะ โพรเฟส เปอร์เซ็นต์ความผิดปกติของเซลล์ เช่น ชนิด spindle disturbance

= <u>จำนวนเซลล์ผิดปกติ spindle disturbance</u> X 100 จำนวนเซลล์ทั้งหมดที่นับได้

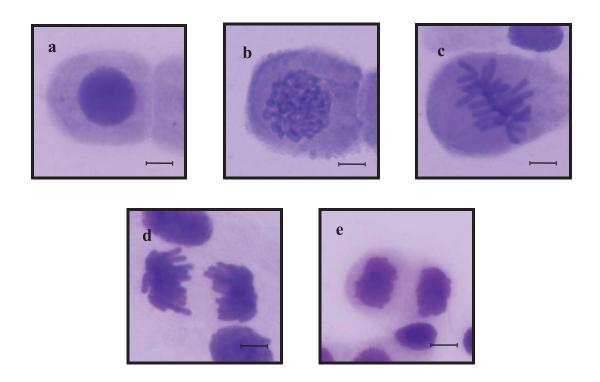
<u>การเตรียมสไลค์ศึกษานิวคลีโอลัส</u>

เตรียมสไลด์เช่นเตรียมกับการทดลองด้านบน แต่ย้อมสีสไลด์ด้วยสีซิลเวอร์ ในเตรทความ เข้มข้น 1 เปอร์เซ็นต์ แล้วบ่มในตู้อบความร้อน อุณหภูมิ 60 องศาเซลเซียส เป็นเวลา 2 ชั่วโมง เมื่อ ครบตามเวลาที่กำหนด นำสไลด์ไปล้างผ่านน้ำสะอาด โดยเปิดน้ำใหลผ่านเบา ๆ จากนั้นผึ่งสไลด์ทิ้ง ไว้ให้แห้ง ศึกษาภายใต้กล้องจุลทรรศน์ นับเซลล์นิวคลีโอลัส 150 เซลล์ต่อทรีทเมนท์ และวัดเส้น ผ่านศูนย์กลางสองเส้นตัดกันของนิวคลีโอลัสมาคำนวณหาพื้นที่ (Gabara et al. 1995)

พื้นที่นิวคลีโอลัส (μm)²= $\Box r^2$

เมื่อ π คือ ค่าคงตัว มีค่าเท่ากับ 3.14

r คือ รัศมีของวงกลม


การบันทึกผล และการวิเคราะห์ผลการทดลอง

ทำการบันทึกผล และนำข้อมูลค่าดัชนีการแบ่งเซลล์ ดัชนีการแบ่งเซลล์ในระยะต่าง ๆ ของ ใมโทติก ลักษณะความผิดปกติของเซลล์ จำนวนนิวคลีโอลัสที่นับได้ และพื้นที่นิวคลีโอลัส มา วิเคราะห์ค่าความแปรปรวนทางสถิติ และเปรียบเทียบความแตกต่างของค่าเฉลี่ยโดยวิธี Turkey's Studentized Range Test ที่ระดับความเชื่อมั่น 95 เปอร์เซ็นต์

ผลการทดลอง

การศึกษาผลของผลิดภัณฑ์ NHSJ รูปแบบ SC ต่อกิจกรรมการแบ่งเซลล์ ในปลายราก หอมหัวใหญ่ที่ระดับความเข้มข้น 6.25, 12.5, 25, 50 และ 100 ppm เป็นระยะเวลา 24 ชั่วโมง พบว่า ปลายรากของหอมหัวใหญ่ มีลักษณะผิดปกติ คือ มีสีขาวขุ่นบริเวณปลายราก และรากมีลักษณะยุ่ย กลุ่มรากมีขนาดเส้นเล็ก และสีบ เมื่อเทียบกับหอมหัวใหญ่ที่แช่ในน้ำกลั่น (วิธีการควบคุม) ซึ่งมี ลักษณะเรียวยาว สีขาว กลุ่มรากไม่ลีบ และการศึกษาลักษณะของโครโมโซมจากการนับจำนวน เซลล์ ท่อสไลด์ รวมเป็น 4000 เซลล์ต่อทรีทเมนต์ พบว่าค่าดัชนีการแบ่งเซลล์ของราก หอมหัวใหญ่ที่แช่ในน้ำกลั่น มีความแตกต่างกันทางสถิติ เปรียบเทียบกับเซลล์จากปลายราก หอมหัวใหญ่ที่แช่ในผลิตภัณฑ์ NHSJ ซึ่งพบว่าค่าดัชนีการแบ่งเซลล์ลดลงตามความเข้มข้นของสาร ที่สูงขึ้น โดยมีค่าเท่ากับ 8.67, 8.61, 6.82, 5.48 และ 4.44 ตามลำดับ ในขณะที่วิธีการควบกุมมีค่า ดัชนีการแบ่งเซลล์ 11.10 เปอร์เซ็นต์ การแบ่งเชลล์ระยะไมโทซีสของระยะโพรเฟส (ภาพที่ 4.8.1 b) มีเปอร์เซ็นต์การแบ่งเซลล์ในระยะนี้สูงกว่าวิธีการควบกุม โดยที่ระดับความเข้มข้น 100 ppm มีเปอร์เซ็นต์การแบ่งเซลล์ในระยะนี้สูงกว่าวิธีการควบกุม โดยที่ระดับความเข้มข้น 100 ppm มีเปอร์เซ็นต์การแบ่งเซลล์ในระยะโพรเฟสสูงที่สุด คือ 94.68 เปอร์เซ็นต์ เมื่อเซลล์เข้าสู่ระยะเมทาเฟส (ภาพที่ 4.8.1 c) แอนาเฟส (ภาพที่ 4.8.1 d) และเทโลเฟส (ภาพที่ 4.8.1 e) มีสัดส่วนของอัตราการแบ่งเซลล์ลดลง ตามความเข้มข้นของผลิตภัณฑ์ NHSJ ที่เพิ่มขึ้น (ดารางที่ 4.8.1)

เมื่อศึกษาลักษณะความผิดปกติของโครโมโซม บริเวณปลายรากหอมหัวใหญ่ที่ได้รับ ผลิตภัณฑ์ NHSJ พบว่ามีรูปแบบความผิดปกติในรูปแบบต่าง ๆ คือ เกิดลักษณะการขดตัวของโคร มาติน ในระยะโพรเฟสผิดปกติ เนื่องจากความผิดปกติของสาย spindle (spindle distribution at prophase ภาพที่ 4.8.2 a), โครโมโซมไม่จัดเรียงตัวบริเวณกลางเซลล์ในระยะเมทาเฟส (c-metaphase ภาพที่ 4.8.2 b), การขดตัวกันแน่นของโครโมโซมในระยะแอนาเฟส (sticky metaphase ภาพที่ 4.8.2 c), การขดตัวกันแน่นของโครโมโซมในระยะแอนาเฟส (sticky anaphase ภาพที่ 4.8.2 d), กลุ่มของโครโมโซม 2 กลุ่มในระยะแอนาเฟสไม่ได้จัดเรียงตัวอยู่ในแนวเดียวกัน (diagonal at anaphase ภาพที่ 4.8.2 e), กลุ่มของโครโมโซม 2 กลุ่มในระยะเทโลเฟสไม่ได้จัดเรียงตัวอยู่ในแนวเดียวกัน (diagonal at telophase ภาพที่ 4.8.2 f) และการเข้าสู่ขั้วเซลล์ของกลุ่มโครโมโซมในระยะแอนาเฟส ช้ากว่าปกติ (delay anaphase ภาพที่ 4.8.2 g) ลักษณะความผิดปกติที่พบในทุกระดับความเข้มข้น

ภาพที่ 4.8.1 ลักษณะโครโมโซมปกติของรากหอมหัวใหญ่ที่แช่ในน้ำกลั่น ที่กำลังขยาย 400 เท่า

 $(Bar = 10 \mu m.)$

a. interphase

b. prophase

c. metaphase

d. anaphase

e. telophase

กือ spindle distribution at prophase, sticky anaphase, sticky metaphase และ c-metaphase เมื่อศึกษา จำนวนเซลล์ที่ผิดปกติทั้งหมด พบว่าเซลล์ปลายรากหอมหัวใหญ่ที่ได้รับสารผลิตภัณฑ์ NHSJ ที่ ระดับความเข้มข้น 6.25 ppm เกิดความผิดปกติของเซลล์มากที่สุด และรูปแบบลักษณะเปอร์เซ็นต์ ความผิดปกติของเซลล์ที่พบมากที่สุดคือ spindle disturbance at late prophase เท่ากับ 1.56 เปอร์เซ็นต์ และลดลงเรื่อย ๆ ตามความเข้มข้นที่เพิ่มสูงขึ้น มีเปอร์เซ็นต์ความผิดปกติรวมทั้งหมด 0.73-5.12 เปอร์เซ็นต์ (ตารางที่ 4.8.2) ในขณะที่ปลายรากหอมหัวใหญ่ที่ไม่ได้รับสารผลิตภัณฑ์ NHSJ ไม่พบลักษณะความผิดปกติของเซลล์ และมีลักษณะการแบ่งเซลล์เป็นไปอย่างปกติ

ลักษณะของนิวคลี โอลัส เมื่อย้อมด้วยสีซิลเวอร์ในเตรทในเซลล์ปลายรากหอมหัวใหญ่ มี ลักษณะค่อนข้างกลม จะเห็นนิวคลี โอลัสเป็นก้อนหนาทึบเค่นชัคอยู่บริเวณตรงกลางของเซลล์ และ ชิดขอบด้านใดด้านหนึ่งของเซลล์ และมีจำนวนนิวคลี โอลัส 1-4 ต่อเซลล์ โดยสามารถพบได้ใน ระยะอินเทอร์เฟส (ภาพที่ 4.8.3) จำนวนนิวคลี โอลัส 1 และ 2 นิวคลี โอลัส มีจำนวนลดลงตามระดับ ความเข้มข้นของผลิตภัณฑ์ NHSJ ที่สูงขึ้น ต่างจากจำนวนนิวคลี โอลัส 3 และ 4 มีจำนวนเพิ่มขึ้น ตามระดับความเข้มข้นของสารผลิตภัณฑ์ NHSJ ที่สูงขึ้น เมื่อเปรียบเทียบกับวิธีการควบคุม (ตาราง ที่ 4.8.3) ส่วนพื้นที่ของนิวคลีโอลัสเฉลี่ยมีขนาดลดลงตามจำนวนของนิวคลีโอลัสที่เพิ่มขึ้นในทุก ระดับความเข้มข้นของสารผลิตภัณฑ์ NHSJ ที่สูงขึ้น คือใน 1 นิวคลีโอลัส จะมีขนาดใหญ่กว่า 2-4 นิวคลีโอลัส ตามลำดับ และจะมีขนาดเล็กลงทุกระดับความเข้มข้นของสารผลิตภัณฑ์ NHSJ ที่ สูงขึ้น เช่น ใน 1 นิวคลีโอลัสมีพื้นที่เฉลี่ยเท่ากับ 21.53, 16.84, 17.57, 12.94 และ 6.27 ไมโครตาราง เมตร ตามลำดับ ในขณะที่วิธีการควบคุมมีค่าเท่ากับ 36.88 ไมโครตารางเมตร ส่วนพื้นที่รวมของนิ วคลีโอลัสในแต่ละเซลล์ ให้ผลไปในแนวทางเดียวกันกับพื้นที่เฉลี่ยคือจะมีขนาดเล็กลงตามความ เข้มข้นของผลิตภัณฑ์ NHSJ ที่สูงขึ้น แต่นิวคลีโอลัส 2 และ 3 นิวคลีโอลัส มีพื้นที่รวมมากกว่า 1 และ 4 นิวคลีโอลัสที่มากขึ้น คือ 1-4 นิวคลีโอลัส นีพื้นที่รวมเท่ากับ 36.88, 48.39, 54.57 และ 54.84 ไมโครตารางเมตร ตามลำดับ และพื้นที่รวมที่มีขนาดน้อยที่สุด คือ ที่ระดับความเข้มข้นของ ผลิตภัณฑ์ NHSJ 100 ppm มีขนาดพื้นที่รวมเท่ากับ 6.27, 8.36, 9.30 และ 7.48 ไมโครตารางเมตร ตามลำดับ มีความแตกต่างกันทางสถิติ (ตารางที่ 4.8.4)

ตารางที่ 4.8.1 ค่าคัชนิการแบ่งเซลล์และสัดส่วนของเซลล์ที่เข้าสู่ใมโทติกในระยะต่าง ๆ ของรากหอมหัวใหญ่ ที่แช่ในผลิตภัณฑ์ NHSJ รูปแบบ SC เป็น ระยะเวลา 24 ชั่วโมง

<u>ه</u>	ความเข้มข้น จำนวนเซลด้	แซลล์ ผลรวมเซลล์ใน	ดัชนิการแบ่งเซลด์	เปอร์เซ็นต์	เปอร์เซ็นต์	เปอร์เซ็นต์	เปอร์เซ็นต์
4,587 $509 \pm 10.79a$ $11.10 \pm 0.93a$ $78.68b$ $7.36a$ 4,971 $431 \pm 9.04b$ $8.67 \pm 0.58b$ $81.15b$ $5.70ab$ 4,469 $385 \pm 10.04c$ $8.61 \pm 0.93c$ $83.72b$ $4.27ab$ 4,588 $313 \pm 2.99cd$ $6.82 \pm 0.26d$ $86.76ab$ $3.54ab$ 4,816 $264 \pm 4.83d$ $5.48 \pm 0.45d$ $89.35ab$ $2.36ab$ 4,793 $213 \pm 2.38e$ $4.44 \pm 0.23e$ $94.68a$ $0.09b$			(mean + S.E.)	ระยะโพรเฟส	ระยะเมทาเฟส	ระยะแอนาเฟส	ระยะเทโลเฟส
4,971 431 ± 9.04b 8.67 ± 0.58b 81.15b 5.70ab 4,469 385 ± 10.04c 8.61 ± 0.93c 83.72b 4.27ab 4,588 313 ± 2.99cd 6.82 ± 0.26d 86.76ab 3.54ab 4,816 264 ± 4.83d 5.48 ± 0.45d 89.35ab 2.36ab 4,793 213 ± 2.38e 4.44 ± 0.23e 94.68a 0.09b			$11.10\pm0.93a$	78.68b	7.36a	5.50a	8.46a
$4,469$ $385 \pm 10.04c$ $8.61 \pm 0.93c$ $83.72b$ $4.27ab$ $4,588$ $313 \pm 2.99cd$ $6.82 \pm 0.26d$ $86.76ab$ $3.54ab$ $4,816$ $264 \pm 4.83d$ $5.48 \pm 0.45d$ $89.35ab$ $2.36ab$ $4,793$ $213 \pm 2.38e$ $4.44 \pm 0.23e$ $94.68a$ $0.09b$			$8.67 \pm 0.58b$	81.15b	5.70ab	5.29a	7.86a
4,588 313 ± 2.99 cd 6.82 ± 0.26 d 86.76 ab 3.54 ab4,816 264 ± 4.83 d 5.48 ± 0.45 d 89.35 ab 2.36 ab4,793 213 ± 2.38 e 4.44 ± 0.23 e 94.68 a 0.09 b			$8.61 \pm 0.93c$	83.72b	4.27ab	5.07ab	6.94ab
4,816 $264 \pm 4.83d$ $5.48 \pm 0.45d$ $89.35ab$ $2.36ab$ 4,793 $213 \pm 2.38e$ $4.44 \pm 0.23e$ $94.68a$ $0.09b$			$6.82 \pm 0.26d$	86.76ab	3.54ab	4.67ab	5.03ab
4,793 $213 \pm 2.38e$ $4.44 \pm 0.23e$ $94.68a$ $0.09b$			$5.48 \pm 0.45d$	89.35ab	2.36ab	4.03ab	4.26ab
			$4.44 \pm 0.23e$	94.68a	0.09b	2.36b	2.87b

ค่าเกลี่ยที่อยู่ในคอลัมน์เดียวกันที่ตามด้วยตัวอักษรเหมือนกันแสดงว่าไม่มีความแตกต่างกันทางสถิติ จากการวิเคราะห์ค่าเกลี่ยแบบ Turkey's Studentized Range Test (p=0.05)

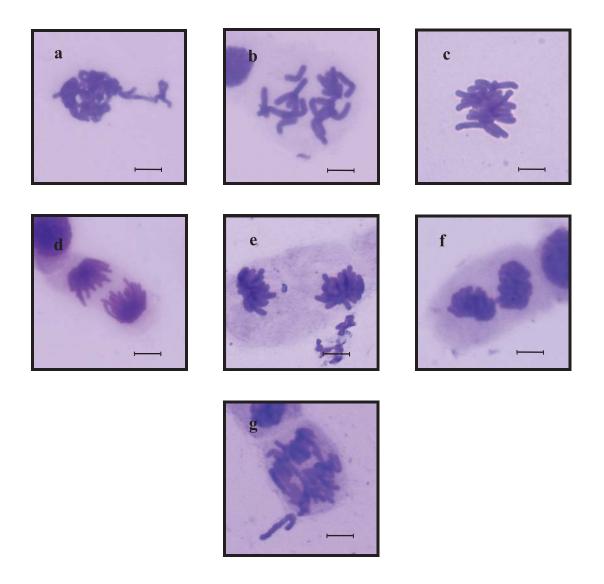
ตารางที่ 4.8.2 ลักษณะและสัดส่วนความผิดปกติของเซลล์บริเวณรากหอมหัวใหญ่ ที่เช่ในผลิตภัณฑ์ NHSJ รูปแบบ SC เป็นระยะเวลา 24 ชั่วโมง

00 + 1.220	00.00	00.0			11. 0	-7	70	ال ا	00.001
$0.73 \pm 1.22c$	0.00	0.00	0.05	0.00	0.11	0.11	0.19	4,793	100.00
$2.24 \pm 0.58 bc$	0.16	0.00	0.11	0.11	0.24	0.42	99.0	4,816	50.00
$2.83 \pm 1.52b$	0.20	0.00	0.16	0.13	0.42	0.47	0.91	4,588	25.00
$3.65 \pm 0.51ab$	0.32	0.00	0.23	0.16	0.38	69.0	1.33	4,469	12.50
$5.12 \pm \mathbf{0.33a}$	0.49	0.15	0.28	0.24	0.74	0.91	1.56	4,971	6.25
$0.00\pm0.00\mathrm{c}$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4,587	Control
เปอร์เซ็นต์ ผลรวมเซลล์ ที่ผิดปกติ	เปอร์เซ้นต์ delay anaphase	រៀទវិធើបត់ diagonal at telophase	เปอร์เซ็นต์ diagonal at anaphase	เปอร์เซ็นด์ sticky anaphase	រៀចវ៍ទើបតាំ រៀចវ៍ទើបតាំ sticky sticky metaphase anaphase	เปอร์เซ็นต์ c- metaphase	រៀខទីទើបទី spindle disturbance at late prophase	จำนวนเซลล์ รั้งหมดที่นับใด้	กามเข้มข้น (ppm)

ค่าเฉลี่ยที่อยู่ในคอลัมน์ เปอร์เซ็นต์ผลรวมเซลล์ที่ผิดปกติ ที่ตามค้ายตัวอักษรเหมือนกันแสดงว่าไม่มีความแตกต่างกันทางสถิติ จากการวิเคราะห์ค่าเฉลี่ยแบบ Turkey's Studentized Range Test (p=0.05)

ตารางที่ 4.8.3 เปอร์เซ็นต์นิวคลิโอลัสที่นับใด้ในเซลล์บริเวณปลายรากหอมหัวใหญ่ ที่แช่ในผลิตภัณฑ์ NHSJ รูปแบบ SC เป็นระยะเวลา 24 ชั่วโมง

	จำนวนนิวคลีโอลัส		เปอร์เซ็นต์นิวคลีโอลัสที่นับให้	โอลัสที่นับใค้	
ri 3 1885 083 0 th (pp.m.)		1 นิวคลีโอลัส	2 นิวคลีโอลัส	3 นิวคลีโอลัส	4 นิวคลีโอลัส
Control	520	$15.51\pm1.07a$	$27.15\pm1.52a$	$32.62\pm1.58d$	$24.72 \pm 0.74b$
6.25	493	$13.01 \pm 1.25 ab$	$25.99 \pm 2.61b$	$33.06 \pm 1.62cd$	$29.52 \pm 1.84b$
12.50	489	$12.11 \pm 2.08b$	$25.98 \pm 1.49b$	$35.31 \pm 2.15 bc$	$26.60 \pm 1.36b$
25.00	525	$5.46\pm2.64c$	$19.60 \pm 2.68c$	$40.75\pm2.99ab$	$34.19\pm1.67a$
50.00	531	$4.51\pm1.33c$	$16.81 \pm 1.84c$	$43.80 \pm 3.11a$	$34.88\pm0.18a$
100.00	545	$3.39 \pm 2.77d$	$14.26\pm1.24c$	$47.13 \pm 0.76a$	$35.22\pm0.94a$


ค่าเฉลี่ยที่อยู่ในคอลัมน์ เปอร์เซ็นต์นิวคลีโอลัสที่นับใต้ ที่ตามด้วยตัวอักษรเหมือนกันแสดงว่าไม่มีความแตกต่างกันทางสถิติ จากการวิเคราะห์ค่าเฉลี่ยแบบ Turkey's Studentized Range Test (p=0.05)

ดารางที่ 4.8.4 ขนาดพื้นที่ของนิวคลีโอลัสของเซลล์บริเวณรากหอมหัวใหญ่ ที่แช่ในผลิตภัณฑ์ NHSJ รูปแบบ SC เป็นระยะเวลา 24 ชั่วโมง

1) y y	้ำนวนนิวคลี		ฟ้นที่นิวคลีโอลัสเฉลี่ย (ไมโครตารางเมตร)	ย (ไมโครตารางเ	:1882)	ั้ พื้นที่นิว	คลิโอลัสรามทั้	ฟ้นที่นิวคลีโอลัสรวมทั้งหมด (ไมโครตารางเมตร)	ารางเมตร)
multural i	โอกิส์ รู้	-	C		~	-	C		7
	MANNW MANNW		7	c	4	T	7	c	4
Control	520	$36.88\pm2.19a$	$36.88 \pm 2.19a$ $24.05 \pm 1.88a$	$18.01 \pm 2.01a$ $13.49 \pm 1.62a$	$13.49 \pm 1.62a$	$36.88 \pm 0.84a$ $48.39 \pm 3.07a$ $54.57 \pm 4.66a$	$48.39 \pm 3.07a$	$54.57\pm4.66a$	$54.84 \pm \mathbf{4.41a}$
6.25	493	$21.53\pm2.09b$	$21.53 \pm 2.09b$ $13.48 \pm 2.03b$	$9.35\pm1.33b$	$3.68 \pm 1.06b$	$21.60 \pm 0.83b \ \ 27.24 \pm 3.38b \ \ 27.59 \pm 2.62b$	$27.24 \pm 3.38b$	$27.59 \pm 2.62b$	$15.59 \pm 2.17b$
12.50	489	17.57 ± 3.09 bc	17.57 ± 3.09 bc 11.74 ± 1.95 b	$7.08 \pm 1.26c$	$2.83 \pm 0.97 bc$	$17.57 \pm 0.93 bc \ 23.76 \pm 3.24 b$	$23.76 \pm 3.24b$	$21.83 \pm 2.43c$	$12.19 \pm 1.79bc$
25.00	525	$16.84 \pm 1.97cd$	16.84 ± 1.97 cd 8.69 ± 1.78 c	$5.56 \pm 1.29cd$	$5.56 \pm 1.29cd \ 2.88 \pm 1.03bc$	$16.83 \pm 0.87cd \ 17.67 \pm 2.87c \ \ 17.25 \pm 2.52c$	$17.67 \pm 2.87c$	$17.25 \pm 2.52c$	$12.41 \pm 2.06bc$
50.00	531	$12.94 \pm 2.92d$	$12.94 \pm 2.92d$ $7.68 \pm 1.71c$	$5.14 \pm 1.18d$	$2.58 \pm 1.01 cd$	$12.95 \pm 2.97d$	$15.64 \pm 2.74c$	$15.99 \pm 4.19cd$	$12.95 \pm 2.97d$ $15.64 \pm 2.74c$ $15.99 \pm 4.19cd$ $11.17 \pm 1.99cd$
100.00	545	$6.27 \pm 2.55e$	$6.27 \pm 2.55e$ $4.04 \pm 1.74d$		$2.91 \pm 1.03e$ $1.65 \pm 0.93d$	$6.27 \pm 0.88e$	$8.36 \pm 2.71d$	$8.36 \pm 2.71d$ $9.30 \pm 1.72d$	$7.48 \pm 1.53 \mathrm{d}$
- t	े र े	2 2 3 4 3 4 3 7 7 7	- 7	₹	· ·		(- 7	

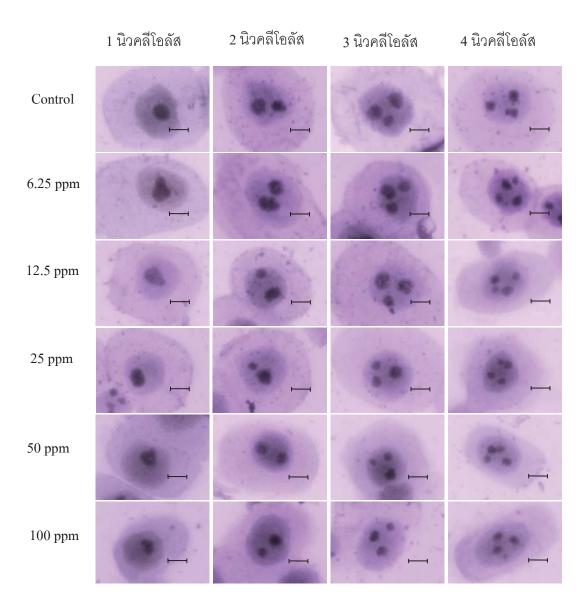
ค่านลื่ยที่อยู่ในคอลัมน์ พื้นที่นิวคลีโอลัส ที่ตามด้วยตัวอักษรเหมือนกันแสคงว่าใม่มีความแตกต่างกันทางสถิติ จากการวิเคราะห์ค่าเฉลี่ยแบบ Turkey's Studentized

Range Test (p=0.05)

ภาพที่ 4.8.2 ลักษณะความผิดปกติของโครโมโซมของปลายรากหอมหัวใหญ่ที่แช่ในผลิตภัณฑ์ NHSJ รูปแบบ SC ที่กำลังขยาย 400 เท่า (Bar = $10~\mu m$.)

a. spindle distribution at prophase

b. c-metaphase


c. sticky metaphase

d. sticky anaphase

e. diagonal at anaphase

f. diagonal at telophase

g. delay anaphase

ภาพที่ 4.8.3 ลักษณะนิวคลีโอลัสในระยะอินเทอร์เฟสในปลายรากหอมหัวใหญ่ที่แช่ผลิตภัณฑ์ NHSJ รูปแบบ SC กำลังขยาย 400 เท่า (Bar = $10~\mu m$.)

โครงการที่ 5

การเปรียบเทียบประสิทธิภาพของสารผลิตภัณฑ์ธรรมชาติควบคุมวัชพืชจากพุทธชาติก้านแดงกับ สารเคมีป้องกันควบคุมวัชพืช

การทดลองที่ 5.1 ศึกษาเปรียบเทียบประสิทธิภาพของสารผลิตภัณฑ์ที่พัฒนาได้กับสารป้องกันควบคุม วัชพืชมาตรฐาน

วิธีการทดลอง

การวางแผนการทดลอง

ทำการทดลองโดยใช้แผนการทดลองแบบ Completely Randomized Design (CRD) วิธีการ ทดลองละ 4 ซ้ำ ดังนี้

- 1.1 น้ำกลั่น (วิธีการเปรียบเทียบ)
- 1.2 สารกำจัดวัชพืชจากพุทธชาดก้านแคงในรูป WP ที่ความเข้มข้น 0.5, 1 และ 2 เปอร์เซ็นต์
- 1.3 สารกำจัดวัชพืชจากพุทธชาดก้านแดงในรูป SC ที่ความเข้มข้น 0.5, 1 และ 2 เปอร์เซ็นต์
- 1.4 สารเคมีกำจัดวัชพืชอาทราซีน 0.25 กรัม/ตารางเมตร

การเตรียมผลิตภัณฑ์สารกำจัดวัชพืชจากพุทธชาดก้านแดง

นำใบพุทธชาดก้านแดงมาผึ่งและอบให้แห้งด้วยอุณหภูมิ 45 องศาเซลเซียส เป็นเวลา 72 ชั่วโมง แล้วตัดเป็นชิ้นเล็กๆ นำไปสกัดด้วยสารละลายเอทานอล โดยการแช่ใบพุทธชาติก้านแดง 100 กรัม ต่อ เอ ทานอล 1 ลิตร ในภาชนะปิด ตั้งไว้ที่อุณหภูมิเป็นเวลา 48 ชั่วโมง กรองสารละลายด้วยผ้ากรอง สำลี และ กระดาษกรองเบอร์ 1 (whatman no.1) แยกส่วนกาก (residue) จากนั้นนำกากไป สกัดด้วยเอทานอลอีก 3 รอบ นำสารละลายเอทานอลที่ผ่านการกรองทั้ง 4 รอบมาผสมรวมกัน จากนั้นระเหยเอทานอลออกด้วย เครื่องระเหยสุญญากาศ (vacuum rotary evaporator) จะได้สารสกัดหยาบจากเอทานอล (crude methanol extract)วัชพืชพุทธชาติก้านแดง สารกำจัดวัชพืชจากพุทธชาดก้านแดงเตรียมได้จากการผสมของสารสกัด หยาบจากใบพุทธชาดก้านแดงกับ surfactant ในอัตราส่วน 30 : 70 ตามลำดับ ได้สารออกฤทธิ์ที่ความ เข้มข้น 30 เปอร์เซ็นต์ ในรูปสารละลาย ทดสอบประสิทธิภาพของสารกำจัดวัชพืชจากพุทธชาติก้านแดง ที่ระดับความเข้มข้น 0.5, 1, 2 และ 4 เปอร์เซ็นต์ของสารออกฤทธิ์

การเตรียมแปลงทคสอบ

เตรียมแปลงทคลอบ โคยแปลงทคลอบออกเป็น 2 แปลง ความยาวของแปลง 5 เมตร กว้าง 2 เมตรสูง 40 เซนติเมตร ผสมคินกับปุ๋ยคอกให้มีความสม่ำเสมอทั่วกันทั้งแปลง รคน้ำเป็นประจำเช้าเย็น จนวัชพืชมีอายุ 14 วัน และแบ่งแปลงให้มีขนาคกว้าง 1 เมตร ยาว 1 เมตร ทั้งสองแปลงใหญ่ ตามแผนผัง ค้านล่าง พร้อมทำการทคสอบ

T1R4	T4R1
T4R2	T3R3
T2R2	T5R4
T4R3	T2R4
T1R2	T5R3

T2R1	T3R2
T5R1	T1R1
T4R4	T2R3
T3R1	T5R2
T1R3	T3R4

การทคสอบ

ผลของสารผลิตภัณฑ์สารกำจัดวัชพืชจากพุทธชาดก้านแคงต่อ การเจริญเติบโต และน้ำหนักของ วัชพืช ทำการทคสอบโดยเมื่อวัชพืชมีอายุ 14 วัน มีความสม่ำเสมอทั่วกันทั้งแปลง ฉีดพ่นสารกำจัดวัชพืช จากพุทธชาคก้านแคงที่อัตรา 100 ลิตรต่อไร่ ระดับความเข้มข้นที่ต้องการทคสอบคือ 0.5, 1 และ 2 เปอร์เซ็นต์ เทียบกับสารกำจัดวัชพืชอาทราซีน 0.25 กรัมต่อตารางเมตร และเทียบกับแปลงที่ไม่มีการใช้ สารกำจัดวัชพืช

<u>การบันทึกผลการทคลอง</u>

การให้คะแนนโดยในระดับสายตา ชนิดและจำนวนของต้นวัชพืช ความสูง น้ำหนักแห้ง การวิเคราะห์ผลการทดลอง

นำข้อมูลการงอกของวัชพืช ชนิดของวัชพืช ความสูงของวัชพืช และน้ำหนักแห้งของวัชพืช มา วิเคราะห์ความแปรปรวนทางสถิติ (ANOVA) และเปรียบเทียบความแตกต่างของค่าเฉลี่ยโดยวิธี Tukey's Studentized Range Test ที่ระดับความเชื่อมั่น 95 %

ผลการทดลอง

จากผลการทดลองพบว่า รูปผลิตภัณฑ์ของสารธรรมชาติกำจัดวัชพืชจากพุทธชาติก้านแดงที่อยู่ ในรูป wettable powder และ soluble concentrate และระดับความเข้มข้นของสารมีความเป็นพิษต่อวัชพืช ทดสอบแตกต่างกัน โดยสารในรูป soluble concentrate มีความเป็นพิษต่อวัชพืชทดสอบสูงกว่าสารในรูป wettable powder (ภาพที่ 5.1.1) เมื่อเพิ่มความเข้มข้นของสาร ความเป็นพิษต่อพืชทดสอบเพิ่มขึ้น ตาม ความเข้มข้น เมื่อเปรียบเทียบกับการใช้สารแอทราซีนที่ปริมาณ 0.25 กรัมต่อตารางเมตร พบว่า สาร ธรรมชาติกำจัดวัชพืชจากพุทธชาติก้านแดงที่อยู่ใน wettable powder มีความเป็นพิษต่อวัชพืชทดสอบ น้อยกว่าสารแอทราซีน แต่สารในรูป soluble concentrate ที่ระดับความเข้มข้น 2 เปอร์เซ็นต์ มีความเป็น พิษสูงกว่าแอทราซีน

ภาพที่ 5.1.1 แสดงความเป็นพิษต่อวัชพืชหลังจากได้รับสารเป็นระยะเวลา 7 วัน

เอกสารอ้างอิง

- คารารัตน์ มณีจันทร์ วิรัตน์ ภูวิวัฒน์ และจำรูญ เล้าสินวัฒนา. 2546. การเปรียบเทียบผลของสารสกัดค้วย น้ำจากส่วนต่างๆ ของพุทธชาติก้านแคงต่อการงอกและการเจริญเติบ โตของวัชพืชทคสอบ. เรื่อง เต็มการประชุมทางวิชาการ ครั้งที่ 41 มหาวิทยาลัยเกษตรศาสตร์ (สาขาพืช สาขาส่งเสริมและนิเทศ ศาสตร์เกษตร), 3-7 ก.พ., มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตบางเขน, กรุงเทพมหานคร. หน้า 304-310.
- ดารารัตน์ มณีจันทร์. 2546. "ผลทางอัลลีโลพาที่ของสารสกัดด้วยน้ำจากใบพืชสกุลมะลิ." ปัญหาพิเศษ ปริญญาโท สาขาวิชาพืชสวน บัณฑิตวิทยาลัย, สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหาร ลาดกระบัง.
- คารารัตน์ มณีจันทร์. 2547. "ผลทางอัลลี โลพาที่ของพุทธชาติก้านแคง." วิทยานิพนธ์วิทยาศาสตร มหาบัณฑิต สาขาวิชาพืชสวน บัณฑิตวิทยาลัย, สถาบันเทค โนโลยีพระจอมเกล้าเจ้าคุณทหาร ลาคกระบัง.
- ทศพล พรพรหม. 2545. สารกำจัดวัชพืช: หลักการและกลใกการเข้าทำลาย. สำนักพิมพ์ มหาวิทยาลัยเกษตรศาสตร์, กรุงเทพฯ
- ชวัชชัย รัตน์ชเลช. 2540. เทคโนโลยีสารกำจัดวัชพืช. พิมพ์ครั้งที่ 1. กรุงเทพฯ : สำนักพิมพ์รั้วเขียว. ปียะ เฉลิมกลิ่น. 2541. ไม้คอกหอมเล่ม 2. สำนักพิมพ์บ้านและสวน, กรุงเทพฯ.
- พัชนี เจริญยิ่ง จำรูญ เล้าสินวัฒนา และวิรัตน์ ภูวิวัฒน์. 2551. การแยกสารอัลลี โลพาทีจากใบพุทธชาติ ก้านแดง.การประชุมวิชาการพืชสวนแห่งชาติ ครั้งที่ 7 26–30 พ.ค., โรงแรมอัมรินทร์ลากูน, พิษณุ โลก.

- วิรัตน์ ภูวิวัฒน์ จำรูญ เล้าสินวัฒนา และคารารัตน์ มณีจันทร์. 2547. ผลทางอัลลีโลพาทีของสารสกัคที่ แยกด้วยวิธี Solvent Partitioning จากใบพุทธชาติก้านแคงต่อการงอกและการเจริญเติบโตของต้น กล้าหญ้าข้าวนก. วารสารวิทยาศาสตร์เกษตร 35(5-6) ฉบับพิเศษ : 223-226.
- วีระณีย์ ทองศรี วิรัตน์ ภูวิวัฒน์ และจำรูญ เล้าสินวัฒนา. 2548. การควบคุมเชื้อรา Colletotrichum โดยใช้ สารสกัดเมทานอลจากใบพุทธชาติก้านแดง. การประชุมวิชาการพืชสวนแห่งชาติ ครั้งที่ 5 26–29 เม.ย., โรงแรมเวลคัมจอมเทียนบีช พัทยา, ชลบุรี.
- Akinboro, A. and A. A. Bakare. 2007. "Cytotoxic and Genotoxic Effects of Aqueous Extracts of Five Medicinal Plants on *Allium cepa* Linn." Journal of Ethnopharmacology 112: 470–475.
- Cornes, D. 2005. "Callisto: a very successful maize herbicide inspired by allelochemistry." In:

 Proceedings of the 4th World Congress on Allelopathy, "Establishing the Scientific Base",
 Wagga Wagga, 21-26 Aug. Australia: New South Wales.
- Derenzini, M. 2000. The AgNORs. Micron 31: 117-120.
- Dervan, P.A., L.G. Gilmartin, B.M. Loftus and D.N. Carney. 1989. Argyrophilic nucleolar organizer region counts correlate with Ki67 scores. American Journal Clinical Pathology 92: 401–407.
- Dyer, W.E. and S.C. Weller. 2005. Plant response to herbicides, pp. 171-214. *In* M. A. Jenks and P.M. Hasegawa (eds.). Plant Abiotic Stress. Blackwell Publishing, United Kingdom.
- Fernandes, T.C.C., D. Elisa, C. Mazzeo and M.A. Marin. 2007. Mechanism of micronuclei Formation in polyploidizated cells of *Allium cepa* exposed to trifluralin herbicide. Pesticide Biochemistry and Physiology 88:252-259.
- Granier, C., S.J. Cookson, F. Tardieu and B. Muller. 2007. Cell cycle and environmental stresses, pp. 335-348. *In* D. Inzé (ed.). Cell Cycle Control and Plant Development. Blackwell Publishing, United Kingdom.
- Han, C.M., K.W. Pan, N. Wu, J.C. Wang and W. Li. 2008. Allelopathic Effect of Ginger on Seed Germination and Seedling Growth of Soybean and Chive." Scientia Horticulturae 116: 330 336.
- Havey, M.J. 2002. Genome organization in Allium. pp. 59-79. *In* H.D. Rabinowitch and L. Currah. (eds.). Allium Crop Science: Recent Advances, CABI publishing, United Kingdom.
- Inderijit, S.K. 2006. Phytotoxicity of selected herbicides to mung bean (*Phaseolus aureus* Roxb.). Environment and Experimental Botany 55: 41-48.
- Jefferson, L.V. and M. Pennacchio. 2003. "Allelopathic Effects of Foliage Extracts from Four Chenopodiaceae Species on Seed Germination." Arid Environments. 55:275-285.

- Kobayashi, K., D. Itaya, P. Mahatamnuchoke and T. Pornprom. 2008. "Allelopathic Potential of Itchgrass (*Rottboellia exaltata* L. f.) Powder Incorporated into Soil." Weed Biology and Management 8: 64–68.
- Kong, C.H., Wang, P. and Xu, X.H. 2007. Allelopathic interference of *Ambrosia trifida* with wheat (*Triticum aestivum*). Agriculture, *Ecosystem and Environment* 119 : 416 420.
- Laosinwattana, C., W. Phuwiwat and P. Chareonying. 2007. "Assessment of Allelopathic Potential of Vetivergrass (*Vetiveria* spp.) Ecotypes. Allelopathy Journal 19: 469 478.
- Mao, J., L. Yanb, Y. Shi, J. Hu, Z. Piao, L. Mei and S. Yin. 2006. "Crude Extract of Astragalus mongholicus Root Inhibits Crop Seed Germination and Soil Nitrifying Activity." Soil Biology and Biochemistry. 38:201-208.
- Marcano, L., I. Carruyo, A.D. Campo and X. Montiel. 2004. Cytotoxicity and mode ofaction of Maleic hydrazide in root tips of *Allium cepa* L. Environmental Research 94:221-226.
- Mehta, R. 1995. The potential for the use of cell-proliferation and oncogene expression as intermediate markers during liver carcinogenesis. Cancer Letters 93: 85–102.
- Oliva, A., R. M. Moraes, S.B. Watson, S.O. Duke and F.E. Dayan. 2002. Aryltetralin lignans inhibit plant growth by affecting the formation of mitotic microtubular organizing centers. Pesticide Biochemistry and Physiology 72: 45-54.
- Phuwiwat, W., Loasinwattana, C. and Maneejan, D. 2004. Allelopathic effects of leaf extracts from spanish jasmine on desmanthus seed germination and growth. In: Proceedings of the 1st KMITL International Conference on Integration of Science and Technology for Sustainable Development. Vol.2, 25-26 Aug., Bangkok, Thailand. p. 276-278.
- Ploton, D., M. Menager, P. Jeannesson, G. Himber, F. Pigeon and J.J. Adnet. 1986. Improvement in the staining and visualization of the argyrophilic proteins of the nucleolar organizer region at the optical level. Histochemical Journal 18: 5–14.
- Rice, E.L. 1984. Allelopathy. 2nd ed. Academic Press, Inc., Orlando, U.S.A. 422 p.
- Rizvi, S.J.H. and V. Rizvi. 1992. Allelopathy: Basic and Applied Aspects. London: Chapman & Hall. Singh, R.J. 2002. Plant Cytogenetics, CRC Press, London.
- Sumner, A.T. 2003. Chromosomes Organization and Function. Blackwell Publishing, North Berwick, United Kingdom.
- Tefera, T. 2002. "Allelpothic Effects of *Parthenium hysterophorus* Extracts on Seed Germination and Seedling Growth of *Eragrostis tef.*" J. Agronomy and Crop Science 188: 306 310.

- Turk, M.A. and A.M. Tawaha. 2003. "Allelopathic Effect of Black Mustard (*Brassica nigra* L.) on Germination and Growth of Wild Oat (*Avena fatua* L.)." Crop Protection 22: 673 677.
- Ulm, R. 2004. Molecular genetics of genotoxic stress signalling in plants, pp. 217-240. In H. Hirt and K. Shinozaki (eds.). Plant Responses to Abiotic Stress. Springer-Verlag, Berlin Heidelberg.
- Xuan, T.D., S. Tawata, T.D. Khanh, and I.M. Chung. 2005. "Decomposition of Allelopathic Plants in Soil." Agronomy & Crop Science. 191:162-171.

Output ที่ได้จากโครงการ

- 1. นักศึกษาร่วมโครงการ จบการศึกษาระดับปริญญาโท 1 คน ภายใต้การสนับสนุนงบประมาณ จากโครงการ
- 2. ได้ผลงานวิชาการเพื่อตีพิมพ์ในวารสารวิชาการนานาชาติ ในวารสาร Afican Journal of Biotechnology จำนวน 1 เรื่อง ได้แก่ Allelopathic activities of *Jasminum officinale* f. var. *grandiflorum* (Linn.) Kob.: Inhibition effects on germination, seed imbibition, and **C**-amylase activity induction of *Echinochloa crus-galli* (L.) Beauv.
- 3. ได้ผลงานวิชาการเพื่อเสนอผลงานในการประชุมวิชาการนานาชาติ ในการประชุม The 6th-World Congress on Allelopathy จำนวน 1 เรื่อง ได้แก่ Different interphase silver-stained nucleolar organizer region (AgNOR) parameters as cytogenetic toxicity indicators in roots of *Allium cepa* L. exposed to crude extract from *Jasminum officinale*

ภาคผนวก

Allelopathic activities of *Jasminum officinale* f. var. *grandiflorum* (Linn.) Kob.: Inhibition effects on germination, seed imbibition, and α-amylase activity induction of *Echinochloa crus-galli* (L.) Beauv.

Montinee Teerarak¹, Chamroon Laosinwattana^{1*}, Patchanee Charoenying² and Hisashi Kato-Noguchi³

ABSTRACT

A methanolic extract in wettable powder from the leaves of *Jasminum officinale* f. var. *grandiflorum* (Linn.) Kob. (JWP) was inhibitory to germination and seedling growth of *Echinochloa crus-galli* (L.) Beauv. weeds. The inhibition percentages on *E. crus-galli* seed germination treated with 500 to 8,000 ppm for 7 days was about 0 to 70%, respectively, whereas shoot length was inhibited 19.04 to 71.82% and root length was 76.31 to 100% inhibition, respectively. The imbibition and α -amylase activities in the treated *E. crus-galli* seeds were progressively depressed with increasing JWP concentrations. The obtained results suggest that JWP inhibited imbibition and α -amylase activity in *E. crus-galli* seeds during germination.

Key words: allelopathy, α-amylase, *Echinochloa crus-galli, Jasminum officinale*, seed imbibition

INTRODUCTION

Higher plants are a rich source of valuable allelopathic compounds used for weed control technologies based on natural products. Allelopathic potential present in the extraction of many higher plants and in many plant organs can be accomplished with bioassays under laboratory conditions. The initial laboratory assays of allelochemicals have focused on seed germination and seedling growth (Vyvyan 2002). The bioassay chosen for studying the mode of action of these natural compounds is an important consideration. Gibberellin synthesis, seed imbibition and activity of α -amylase enzyme (EC 3.2.1.1) are consistently linked with the seed germination process. Seeds begin to germinate after imbibition of an adequate moisture level and become metabolically active. These hydrolytic enzymes are involved in the hydrolysis and transformation of the endosperm starch into soluble sugars to provide nutrition or energy during early seed germination and seedling growth. Principal among these is α -amylase which catalyzes endohydrolysis of α -1-4 glucosidic linkages in starch and any related oligosaccharides to make oligosaccharides and glucose (Taiz & Zeiger 2006). The measurement of seed imbibition and α - amylase activity can be used to assess changes in germination efficiency

¹Department of Plant Production Technology, Faculty of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang Bangkok 10520, Thailand.

² Department of Chemistry, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang Bangkok 10520, Thailand.

³ Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa761-0795, Japan

^{*}Corresponding author. laosinwattana@yahoo.com Tel: +66817330554 Fax: +6623298515

of the seeds treated with allelochemical substances. In our previous report, the leaves of *Jasminum officinale* f. var. *grandiflorum* (L.) Kob. had allelopathic activity. The main active compound was isolated and determined by spectral data as a secoiridoid glucoside named oleuropein. However, bioassay results from different fractions during the isolation process indicated that methanolic extract is responsible for inhibitory growth effects on *Echinochloa crus-galli* (L.) Beauv., with a vast number of chemical constituents as mixtures, and the observed activities could be related to synergistic effects (Teerarak *et al.* 2010). To explore the potential of allelochemicals from a crude methanolic extract in wettable powder (JWP) for use as a natural herbicide, the present study was designed to examine allelopathic activities on germination of *E. crus-galli* seeds.

MATERIALS AND METHODS

Plant materials

One-year-old *J. officinale* plants growing around an experimental field at King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand were collected. Mature and healthy leaves were harvested, immediately cleaned of soil with running tap water, dried in a hot-air oven at 45°C for 3 days, and ground to powder (100 mesh) in an electric blender. The *E. crus-galli* was selected for bioassay plant because it is a major weed in paddy rice field. The seeds of *E. crus-galli* were collected from paddy fields in the Ladkrabang district, Thailand. *E. crus-galli* seeds were placed in the shade at room temperature for 3 months, and then incubated at 60°C in a hot-air oven for 48 h to break their dormancy.

Preparation of wettable powder formulation and bioassay

One kilogram of 100 mesh J. officinale leaf powder was extracted (ratio 1 kg: 10 L), with methanol at 25°C constant temperature. After 24 hours of extraction, the brown supernatants were filtered through four layers of cheesecloth and re-filtered through Whatman no. 1 filter paper (Whatman Inc. Clifton, NI, USA.). After that the residue was re-extracted 2 times with the same extraction solvent at the same conditions as the first extraction procedure, a crude extract of extraction number 1, 2 and 3 were pooled. Following filtration, the brown supernatants were dried by evaporation of the solvent using a rotary evaporator (BUCHI Rotavapor R255), BUCHI, Lausanne, Switzerland), under a partial vacuum at 45°C until a constant crude extract weight was reached. Wettable powder formulation of crude extract (JWP) was prepared by dissolving sticky crude extract with acetone in a mortar jar and then wettable powder (kaolinite:anionic surfactant; 97:3 (w/w)) was added into the mortar jar in a 3:7 ratio (crude extract:wettable powder). The mixture was slowly pulverized until completely dry. Acetone was added three times and kept in the dark at a low temperature until used. The JWP was dissolved in distilled water to contain five concentrations of 500, 1000, 2000, 4000 and 8000 ppm. Five milliliters of each treatment was added to germination paper placed in each 9 cm diameter glass Petri dish. Twenty healthy seeds of E. cruss-galli were placed in each Petri dish. Four replicates were maintained per treatment in a completely randomized manner in a growth chamber with a temperature of 25-32°C, a 14-hour photoperiod, with light intensity (Cool White 840) of 100 μmol m⁻² s⁻¹ and relative humidity of around 80%. Treatments with distilled water were used as the control. Germination was deemed to have occurred only after the radicle had protruded beyond the seed coat by at least the dimension of the seed at seven days after treatment. Seedling growth was measured as the root and shoot lengths at seven days

after treatment. The value of the germination expresses the percentage of germinating seeds related to number of planted seeds.

Seed imbibition

Measurement of seed imbibition was done by following the method of Turk and Tawaha (2003). Four replicates of $100 \, E. \, crus\text{-}galli$ seeds were weighed and recorded as the original seed weight (W₁). These seeds were separately germinated in 7 ml of JWP (500–8000 ppm), with distilled water as the control. Seed weights were recorded as the final seed weight (W₂) for each concentration and exposure time. The imbibition percentage was calculated from the following equation:

Seed imbibition (%) = $[(W_2-W_1)/W_1] \times 100$

Extract and assay α-amylase activity

Extraction and measurement of activity of α -amylase was done by following the method of Bernfield (1955) and Sadasivam and Manickam (1996). After measuring imbibition, seeds (100 seeds for one determination) were homogenized with a 4 ml ice-cold solution of 0.1 M CaCl₂ and centrifuged at 9600 × g for 10 min. Supernatant was used as the enzyme extract. The α -amylase was then assayed by measuring the rate of generation of reducing sugars from soluble starch. The reaction medium (3 ml) contained 1 ml of 1% soluble starch in acetate buffer solution at pH 5.5 and 1 ml of the enzyme. The assay medium was incubated for 15 min at 37°C. The reaction was terminated by addition of 1 ml DNS reagent (40 mM 3,5 dinitrosalicylic acid, 0.4 N NaOH and 1M K-Na tartrate), and immediately heated in a boiling water bath for 5 min. The mixture was cooled under running tap water. A total volume was made up to 7 ml with distilled water. The intensity of color was measured as absorption at 560 nm in a spectronic GENESYS 20 spectrophotometer (Thermo Electron Corporation, USA). A standard graph was prepared using maltose, and the amount of α -amylase present in the sample was calculated from the standard curve and expressed as μ mol maltose min $^{-1}$ g⁻¹ (FW).

Statistical analysis

Each treatment consisted of four replications in completely randomized design. Analysis of variance was calculated for all data and comparisons between treatments were made at probability level $p \le 0.05$ using Tukey's test.

RESULTS

The results showed that JWP had significant allelopathic effects against *E. crus-galli* (Fig. 1). At 2000 ppm dose, germination of *E. crus-galli* was inhibited by 12.5%. By increasing the dose of application at 4000 and 8000 ppm, the inhibition magnitude was increased to 40 and 70%, respectively. Shoot and root length of *E. crus-galli* was significantly reduced in response to JWP and the effect was concentration dependent. In general, the inhibitory effect was more on root length than on shoot length. At the highest concentration of 8000 ppm, root length was completely inhibited, whereas shoot length decreased by 71.82%. However, at the lowest concentration of 500 ppm there were a promotory effects on shoot and root length. These results indicated that JWP contains some inhibitory principles upon inhibited germination and seedling growth. However, the nature of inhibitory principles contained in JWP is unknown. Thus, further studies were extended to explore the impact of JWP on imbibition and α -amylase activities of *E. crus-galli* seeds. Data further showed that the differences in the percentage of imbibition between control

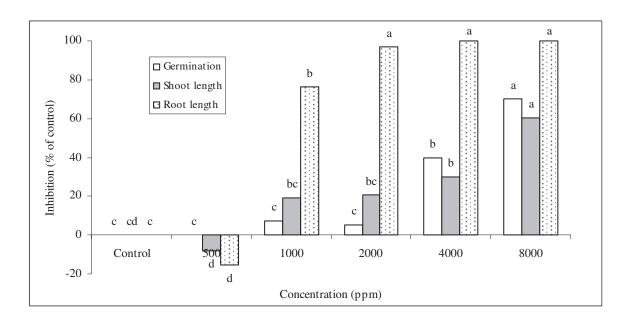
and treated E. cruss-galli seeds with concentration application of JWP at different imbibition periods are presented in Fig. 2. The percentages of imbibition in the control seeds exhibited a marked increase by prolonging the imbibition periods. The time required for 32.84%, 45.11% and 79.54% of imbibition was about 12, 24 and 48 h, respectively. Under the same concentration of JWP, the percentage of imbibition in treated seeds increased by prolonging the imbibition period. For all treatment concentrations, no significant differences in imbibition after the 12 and 24 h imbibiton time were observed. After the 48 h imbibition period, the percentage of imbibition caused marked changes for all concentrations used. The activities of α -amylase in E. cruss-galli seeds were also investigated and the results are shown in Fig. 3. Under the same extract concentration, αamylase activity increased by prolonging the imbibition period. Application of 500 ppm JWP had a stimulatory activity of α-amylase on E. cruss-galli. An increased concentration of JWP inhibited α -amylase activity. However, the activity of α -amylase was not significantly inhibited at concentrations of 1000 and 2000 ppm crude metanolic extract in wettable powder during whole experiment. It was significantly inhibited when imbibing the seeds in JWP at concentrations of 4000 and 8000 ppm for a period of 12 h, 24 h and 48 h.

DISCUSSION

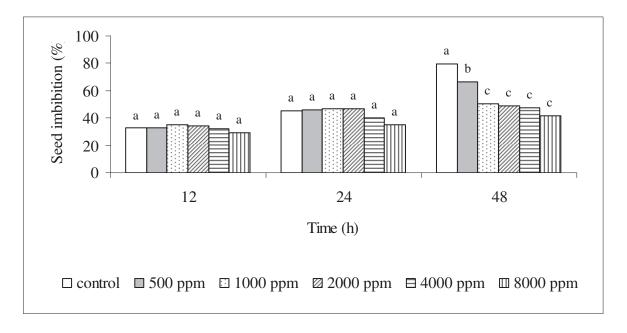
In the present study, it was clearly shown that JWP inhibited E. crus-galli seed germination. Exposure of dry E. crus-galli seeds to JWP, in general, inhibited the imbibition of *E. crus-galli* seeds, compared to control seeds. Other studies have also shown inhibition of seed imbibition by the presence of allelochemicals. Aqueous extracts of ginger, especially stem and leaf, inhibited imbibition for chive and soybean seeds (Han et al., 2008), and leaf aqueous extract of Brassica nigra L. inhibited imbibition of Avena fatua L. seeds (Turk and Tawaha, 2003). Most seeds require an adequate moisture level for activation of metabolism within seed (Chong et al., 2002). On the other hand, seed which inhibited imbibition may be limited in specific enzymes required for metabolism of reserved food and hence have poor seed germination. In this study, the activity of α amylase tended to decrease as the JWP concentration increase. The α-amylase enzyme catalyze endosperm starch hydrolysis and transformation into soluble sugars and hence its utilization for providing energy during seed germination (Chong et al. 2002). Inversely, the decrease in α- amylase activity as a result of exposure to JWP could suggest that the retardation of substrate production for respiration and consequently limited energy production. For this reason, JWP may adversely affect seed germination. It was shown that the activity of α-amylase was inhibited by the presence of allelochemicals. Kato-Noguchi and Macías (2005) previously reported that lettuce (*Lactuca sativa* L. cv. Grand Rapids) seeds treated with 6-methoxy-2- benzoxazolinone (MBOA) inhibited seed germination by impeding induction of α-amylase activity. A different sensitivity of the roots and shoot to the presence of JWP was evident in our experiments. E. crus-galli root length was found to be more sensitive to the allelochemicals than that observed for shoot growth. These results are similar to that observed in several reports that noted that roots are more sensitive to allelochemicals than shoots (Laosinwattana et al. 2010; Meksawat & Pornprom 2010). The obtained data resulted from the over accumulation of JWP in tissue which effectively was toxic. E. crus-galli root length was found to be more sensitive to the allelochemicals than that observed for shoot growth. The accumulation of allelochemicals in the JWP may be higher in root than in shoot.

CONCLUSIONS

Phytotoxic substances presented in *J. officinale* adversely affected seed germination and seedling growth of *E. crus-galli*. *E. crus-galli* seeds treated with JWP inhibited seed germination by impeding seed imbibition and induction of α -amylase activity.


ACKNOWNLEDGEMENTS

The authors want to thank the Thailand Research Found (TRF; Grant number IUG5280011) for financial support.


REFERENCES

- Bernfeld P (1955). Amylases α and β. In: *Method in Enzymology*. (eds. By Colowick S.P. and Kaplan N.O.). Academic Press, New York, 149-158.
- Chong C, Bible BB, Ju HY (2002). Germination and Emergence..In: *Handbook of Plant and Crop Physiology*, Second edition. (ed. by Pessarakli M.). Marcel Deckker, Inc.New York, 57-115.
- Han CM, Pan KW, Wu N, Wang JC, Li W (2008). Allelopathic effect of ginger on seed germination and seedling growth of soybean and chive. Sci. Hortic. 116: 330–336.
- Kato-Noguchi H, Macías FA (2005) Effects of 6-methoxy-2-benzoxazolinone on the germination and α-amylase activity in lettuce seeds. *J. Plant Physiol.* 162: 1304–1307.
- Laosinwattana C, Boonleom C, Teerarak M, Thitavasanta S, Charoenying P (2010)

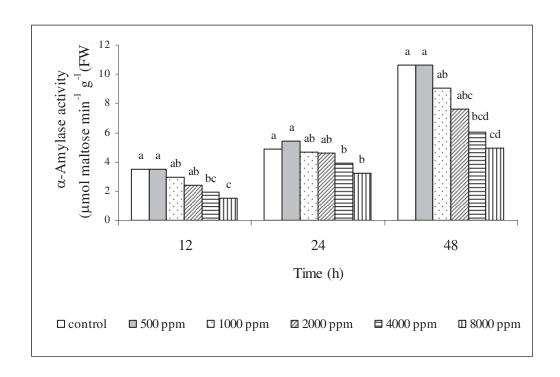

 Potential allelopathic effects of *Suregada multiflorum* and the influence of soil type on its residue's efficacy. Weed Biol. Manag. 10: 153-159.
- Meksawat S, Pornprom T (2010). Allelopathic effect of itchgrass (*Rottboellia cochinchinensis*) on seed germination and plant growth. Weed Biol. Manag. 10: 16-24.
- Sadasivam S, Manickam A (1996). *Biochemical Mmethods*. New Age International (P) Ltdimited., New Delhi.
- Taiz L, Zeiger E (2006). *Plant Physiology*, fourth edition. Sinauer Associates, Massachusetts.
- Teerarak M, Laosinwattana C, Charoenying P (2010). Evaluation of allelopathic, decomposition and cytogenetic activities of *Jasminum officinale* L. f. var. *grandiflorum* (L.) Kob. on bioassay plants. Bioresour. Technol. 101: 5677-5684.
- Turk MA, Tawaha AM (2003). Allelopathic effect of black mustard (*Brassica nigra* L.) on germination and growth of wild oat (*Avena fatua* L.). Crop Prot. 22: 673–677.
- Vyvyan JR (2002). Allelochemicals as leads for new herbicides and agrochemicals. Tetrahedron 58: 1631-1646.

Fig. 1. Effects of crude metanolic extract from *J. officinale* in wettable powder form (JWP) on seed germination and seedling growth of *E. crus-galli* seeds. The values represent the means. Different letters indicate significance differences (p<0.05) between treatments.

Fig. 2. Effects of crude metanolic extract from *J. officinale* in wettable powder form (JWP) on imbibition of *E. crus-galli* seeds at different imbibition periods. The values represent the means. Different letters indicate significance differences (p<0.05) between treatments.

Fig. 3. Effects of crude metanolic extract from *J. officinale* in wettable powder form (JWP) on α -amylase activity of *E. crus-galli* seeds at different imbibition periods. The values represent the means. Different letters indicate significance differences (p<0.05) between treatments.

Different interphase silver-stained nucleolar organizer region (AgNOR) parameters as cytogenetic toxicity indicators in roots of *Allium cepa* L. exposed to crude extract from *Jasminum officinale*

Montinee Teerarak¹ and Chamroon Laosinwattana¹

¹Department of Plant Production Technology, Faculty of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang Bangkok 10520, Thailand.

e-mail: ktmontin@kmitl.ac.th

Abstract: The interphase nucleolar organizer region is a structural–functional unit for the synthesis of rRNA necessary for all cellular protein synthesis. After silver staining, interphase nucleolar organizer regions (AgNORs) appeared as black or dark brown granules. Interphase AgNOR is related to ribosomal gene activity and it is an indicator for assessment of cell proliferation activity. The crude extract from *Jasminum officinale* at different concentrations on AgNOR parameters in root tip cells of *A. cepa* L. was investigated using the silver staining technique. Interphase cells of root tips of *A. cepa* L. contained 1–4 AgNORs per nucleus. Treatment with crude extract from *J. officinale* caused a decrease in number of cell with 1 and 2 AgNORs and an increase number of cells with 3 and 4 AgNORs within a nucleus. The singular AgNOR (average area of 1, 2, 3 or 4 AgNORs) and whole AgNOR area (total area of 1, 2, 3 or 4 AgNORs) per nucleus treated with *J. officinale* extract displayed smaller AgNOR sizes. The results of repression of interphase AgNOR parameters indicate that *J. officinale* extract is cytogenetic toxicity on meristematic cells of the *A. cepa* L.

Keywords: AgNOR parameters, Allium cepa, crude extract, Jasminum officinale

Introduction

The nucleolus is the largest and most conspicuous within nuclear organelle and it is specific site called nucleolus organizer regions (NORs) where rDNA transcription, rRNA processing, and ribosomal biogenesis take place. Ribosomal RNAs are necessary for all cellular protein synthesis (Sumner, 2003). NORs are closely associated with argyrophilic proteins, and a silver staining technique allows NORs to be visualized in conventional histologic sections, where they are called argyrophilic nucleolar organizer regions (AgNORs) (Ploton et al., 1986). After silver staining, interphase AgNORs appeared as black or dark brown granules. AgNOR size is proportional to the activity of rRNA genes (Flavell 1986). Previous investigations have shown that the amount of AgNOR protein is a good marker of cell proliferation activity (Trere' et al., 1989; Derenzini et al., 1990, 1994; Pession et al., 1991). Therefore, each silver-stained dot corresponds to ribosomal gene activity and the amount of silver stained proteins. Research with important applications includes the application of interphase AgNOR measurement to assess cancer prognosis. Research shows that the interphase AgNOR value represents a valuable parameter for information about the progression of tumor disease in the host and on patient survival (Derenzini, 2000). Alteration in interphase AgNOR parameters in fish after cytotoxic substances treatment (Çavaş and Ergene-Gözükara, 2003) was also investigated. Our previous work has shown that the leaf of Jasminum officinale L. f. var. grandiflorum (L.) Kob. was inhibitory to germination and seedling growth of *Echinochloa crusgalli* (L.) Beauv. and Phaseolus lathyroides L. weeds. Our further findings confirmed the detrimental impact of the extract within normal functioning plant cells. Exposure to J. officinale crude extract prevents cells from properly entering into cell division. In addition, exposure to the crude extracts altered cells in particular mitotic phases. Significantly higher

frequencies of cells with mitotic aberrations indicated the primary action of Spanish jasmine extract to involve chromatin organization and mitotic spindles, leading to the induction of several abnormalities (Teerarak et al., 2010). There is limit information regarding with cytotoxic effects on nucleolus in root of *J. officinale* extract. Therefore, the aim of this study was to investigate the cytogenetic toxicity damages in *Alium cepa* L. exposed to different concentrations of crude extract from *J. officinale*, using interphase AgNOR characteristics (number of AgNOR per cell, singular AgNOR area and whole AgNOR area). Results from research will be beneficial in a better understanding the mechanism of cytogenetic damage.

1. Materials and methods

1.1 Plant extraction preparation

J. officinale was planted in the Supan Buri province of Thailand, in a production field. After 1 year of normal growth, the leaves were harvested, well cleaned with tap water, chopped into1-cm-long pieces and oven-dried at 45 °C for 5 days. A hundred grams of dried leaves were used to make methanol extractions by soaking in 1 L of methanol at 12 °C for 48 h to yield a final concentration of 100 g dry leaf per liter (g/L). The resultant extract was filtered through four layers of cheesecloth to remove any fiber debris, followed by a second filtration through Whatman No. 1 filter paper, and set as original concentration (100 g/L). This original stock extract was kept at 5 °C until used.

1.2 AgNOR staining

For AgNOR analysis the bulbs of A. cepa L. were pre-exposed to distilled water, for root emergence, and later submitted to *J. officinale* extract for 24 h. After exposure, the A. cepa L. root tips were cut, washed in distilled water and subsequently fixed in a freshly prepared mixture of absolute ethanol and acetic acid (3:1, v/v). To remove the fixative solution, the fixed root tips were washed in distilled water three times and macerated in an enzyme mixture containing 8% cellulose (Fluka) and 6% pectinase (Fluka) in a buffer containing 0.01 mM sodium citrate and 0.01 mM citrate incubated at 37 °C for 50 min. The root tips squashed in absolute ethanol and acetic acid were stained with 50% silver nitrate and incubated in a moist chamber at 60 °C for 2 h to study AgNOR parameters. Finally, the slides were rinsed thoroughly in distilled water and dried. For AgNOR parameters, the frequencies of AgNOR number within different number of AgNORs and average number of AgNORs in nucleus were estimated on 1000 random nuclei per treatment. The area of AgNORs was measured in 300 cells per treatment using a micrometer and subsequently calculated with the formula A (mm²) = π r². The statistical significance of the differences among values of AgNOR parameters in the treated samples and the control was evaluated by means of the Tukey's Studentized Range Test at P < 0.05level.

2. Results and discussion

The crude extract from *J. officinale* at different concentrations (6.25-100 ppm) for 24 h on AgNOR parameters in root tip cells of *A. cepa* were investigated using the silver staining technique. Interphase cells of root tips of *A. cepa* growing in distilled water and *J. officinale* extract contained 1 to 4 AgNOR per cell. The frequencies of AgNOR number within a nucleus of controls in the experiment were 15.51% for one AgNOR, 27.15% for two AgNORs, 32.62% for three AgNORs and 24.72% for four AgNORs (Table 1). Three AgNORs per nucleus were the most numerous number in roots growing in distilled water. Treatment with crude extract from *J. officinale* exhibited a decrease in number of cell with 1 and 2 AgNORs and an increase number of cells with 3 and 4 AgNORs within a nucleus.

The average number of AgNORs in nucleus is listed in Table 1. The average number of AgNORs per nucleus was higher in root tip cells of *A. cepa* treated with *J. officinale* extract than in control. This approach includes not only the number, but also the area of AgNORs. AgNORs in the interphase nuclei differed in size. The singular AgNOR area (average area of 1, 2, 3 or 4 AgNORs) per nucleus of control was 36.88 µm² in one AgNOR, 24.05 µm² in two AgNORs, 18.01µm² in three AgNORs and 13.49 µm² in four AgNORs while the whole AgNOR area (total area of 1, 2, 3 or 4 AgNORs) per nucleus was 36.88, 48.39, 54.57 and 54.84 µm², respectively (Table 2). In *A. cepa*, after treatment with *J. officinale*, the singular and whole AgNOR areas were found to be lower than those of the control values (Table 2 and Figure 1). The singular and whole AgNOR areas were remarkably reduced in roots treated with 6.25 ppm of *J. officinale* extract.

Silver staining has the potential to provide powerful method to reveal the position and number of nucleoli and nucleolus organizer regions (NORs) in interphase nuclei from eukaryote tissues (Derenzini, 2000; Trerè, 2000). The results showed that *J. officinale* extract displayed more AgNORs per nucleus (Table 1) with smaller AgNORs dots (Figure 1). An inverse relationship between AgNOR number and size was observed in this study. Our observations are consistent with the data from Hao et al. (2000) in that highly malignant neoplasms have AgNORs which are numerous and smaller than those which are benign or less malignant. The increase number of AgNORs is the result of more active cellular proliferation, distored nucleolar association (Underwood and Giri, 1988) or increased number of anueploid cell (Schwarzacher et al., 1988).

3. Conclusion

The crude extract from *J. officinale* had impact on AgNOR parameters in root tip cells of *A. cepa*. The presence of *J. officinale* extract decreased the number of cell with 1 and 2 AgNORs and increased the cell number with 3 and 4 AgNORs within nucleus. Additionally, cells treated with all concentrations of *J. officinale* extract displayed more average number of AgNORs per nucleus. The singular and whole AgNOR areas in the nucleus decreased with increasing with *J. officinale* extract concentrations. This study indicated that crude extract from *J. officinale* has a cytotoxic potential on meristematic cells of the *A. cepa*.

Acknowledgements

The authors wish to thank The Thailand Research Found (TRF; Grant No. IUG5280011) for providing financial support for this research.

Table 1. Frequencies of AgNOR number per nucleus in Allium root tips exposed to crude extract from *J. officinale*.


Concentrations of J. officinale extract	Frequencie	es of AgNOR number of A	number withingNORs (%)	n different	Average number of AgNORs per nucleus
(ppm)	1	2	3	4	
Control	15.51a	27.15a	32.62 d	24.72 b	2.66 b
6.25	13.01ab	25.99 b	33.06cd	27.94 b	2.76 b
12.50	12.11 b	25.98b	35.31bc	26.60 b	2.76 b
25.00	5.46c	19.60c	40.75ab	34.19 a	3.04 a
50.00	4.51c	16.81c	43.80a	34.88 a	3.09 a
100.00	3.39d	14.26c	47.13a	35.22 a	3.14 a

Mean within a column for each *J. officinale* concentration followed by different letters (a–d) is significantly different according to Tukey's Studentized Range Test at P < 0.05 level.

Table 2. Singular AgNOR area and whole AgNOR area within different number of AgNORs per nucleus in Allium root tips exposed to crude extract from *J. officinale*.

Concentration of <i>J. officinale</i>		_	rea within di Rs per cell (Whole A		within differe s per cell (µm	
extract (ppm)	1	2	3	4	1	2	3	4
Control	36.88 a	24.05 a	18.01 a	13.49 a	36.88 a	48.39 a	54.57 a	54.84 a
6.25	21.53 b	13.48 b	9.35 b	3.68 b	21.60 b	27.24 b	27.59 b	15.59 b
12.50	17.57 bc	11.74 b	7.08 c	2.83 bc	17.57 bc	23.76 b	21.83 с	12.19 bc
25.00	16.83 cd	8.69 c	5.56 cd	2.88 bc	16.83 cd	17.67 c	17.25 c	12.41 bc
50.00	12.94 d	7.68 c	5.14 d	2.58 cd	12.95 d	15.64 c	15.99 cd	11.17 cd
100.00	6.27 e	4.04 d	2.91 e	1.65 d	6.27 e	8.36 d	9.30 d	7.48 d

Mean within a column for each *J. officinale* concentration followed by different letters (a– e) is significantly different according to Tukey's Studentized Range Test at P < 0.05 level.

Figure 1. Silver-stained AgNORs in interphase nuclei of root tips of *Allium cepa* L. exposed to crude extract from *J. officinale*. Bar represents 10 mm ().

References

- Çavaş, T., Ergene-Gözükara, S. (2003) Micronuclei, nuclear lesions and interphase silverstained nucleolar organizer regions (AgNORs) as cyto-genotoxicity indicators in *Oreochromis niloticus* exposed to textile mill effluent. Mutat. Res. 538, 81-91.
- Derenzini, M.(2000) The AgNORs. Micron 31, 117-120.
- Derenzini, M., Pession, A., Trerè, D. (1990) The quantity of nucleolar silver-stained proteins is related to proliferating activity in cancer cells. Lab Invest. 63, 137-140.
- Derenzini, M., Sirri, V., Trere`, D. (1994) Nucleolar organizer regions in tumor cancer cells. Cancer J., 71–77.
- Flavell, R.B. (1986) The structure and control of expression of ribosomal RNA genes. Ox. Surv. Plant Mol. Cell Biol. 3, 251-274.
- Hao, C.F., Wang, Z.H., Yun, J.P., Li, H.K., Ng C.C., To, K.F., Chew-Cheng S.B. and Chew E.C. (2000) The measurement of AgNORs in human glioma cells. Anticancer Res. 20, 1599–1602.
- Pession, A., Farabegoli, F., Trere`, D., Novello, F., Montanaro, L., Sperti, S., Rambelli, F., Derenzini, M. (1991) The Ag-NOR proteins transcription and duplication of ribosomal genes in mammalian cell nucleoli. Chromosoma 100, 242–250.
- Ploton, D., Menager, M., Jeannesson, P., Himber, G., Pigeon, F., Adnet, J.J. (1986) Improvement in the staining and visualization of the argyrophilic proteins of the nucleolar organizer region at the optical level. Histochemistry J. 18, 5-14.
- Schwarzacher, R.T., Kraemer, P.M., Cram, L.S. (1988) Spontaneous *in vitro* neoplastic evolution of cultured Chinese hamster cells: Nucleolus organizing region activity. Cancer Genet. Cytogenet. 35, 119-128.
- Sumner, A.T. (2003) Chromosomes Organization and Function. Blackwell Publishing, North Berwick, United Kingdom. Visintin R, Hwang ES, Amon A. Cfi1 prevents premature exit from mitosis by anchoring Cdc14 phosphatase in the nucleolus. Nature 1999; 398(6730):818-823.
- Teerarak, M., Laosinwattana C., Charoenying, P. (2010) Evaluation of allelopathic, decomposition and cytogenetic activities of *Jasminum officinale* L. f. var. *grandiflorum* (L.) Kob. on bioassay plants. Bioresour. Technol. 101, 5677–5684.
- Trerè, D. (2000) AgNOR staining and quantification. Micron 31, 127-131.
- Trerè, D., Pession, A., Derenzini, M. (1989) The silver-stained proteins of interphasic nucleolar organizer regions as a parameter of cell duplication rate. Exp. Cell Res. 184, 131–137.
- Underwood, J.C.E., Giri, D.D. (1988) Nucleolar organizer regions as diagnostic discriminants for malignancy. J. Pathol. 155, 95-96