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บทคัดยอ

ทฤษฎีความคลายถูกนํามาใชกับปญหาการโกงงอของแผนคอมโพสิตบางโดยทําการเปลี่ยน
รูปดานความคลายของสมการครอบคลุมเชิงอนุพันธโดยตรง   การศึกษานี้ศึกษาแผนลามิเนตคอม
โพสิตรูปสี่เหล่ียมผืนผาและแผนรูปวงแหวนออโธโทรปคแบบขั้ว   โดยจะไดกฎสัดสวนสําหรับแต
ละปญหาพรอมทั้งขอกําหนดความคลายระหวางแบบจําลองและตนแบบ   กฎสัดสวนที่ไดมาถูก
ตรวจสอบความถูกตองกับคําตอบที่มีอยู   โดยการแทนคาภาระการโกงงอของแบบจําลองลงในกฎ
สัดสวนเพื่อหาภาระการโกงงอสัดสวนของตนแบบซึ่งจะนําไปเปรียบเทียบกับคําตอบทางทฤษฎี
เพื่อหาความแมนยําของกฎสัดสวนในที่สุด   การทํานายโดยใชกฎสัดสวนใหผลตรงกับคาภาระการ
โกงงอทางทฤษฎีสําหรับกรณีคลายสมบูรณ   พบความคลาดเคลื่อนเล็กนอยสําหรับกรณีของคลาย
บางสวนที่แนะนําใหใชได   มีการตรวจสอบโดยการทดลองบนชุดทดลองการกดที่สรางขึ้นเอง
ช้ินงานที่ใชในการศึกษาเปนแผนคอมโพสิตรูปสี่เหล่ียมผืนผาที่มีเงื่อนไขขอบเขตรวมกันของแบบ
ธรรมดาหรือแบบอิสระ  และมีการวางเรียงแบบ [0/90]2s [02/902]2s และ [0/90]4s การกระจายของ
เปอรเซ็นตความแตกตางของภาระการโกงงอจากกฎสัดสวนและจากการทดลองสําหรับกรณีคลาย
สมบูรณและคลายบางสวนพิจารณาไดวามีการกระจายแบบปรกติ    เปอรเซ็นตความแตกตางเฉลี่ย
สําหรับกรณีคลายสมบูรณและคลายบางสวนมีคาเปน –4.75 และ 10.7% ตามลําดับ   พบวามีคา
ความเบี่ยงเบนของเปอรเซ็นตความแตกตางอยูในระดับปานกลาง   จากการศึกษากรณีคลายสมบูรณ
30 คูพบวา 23 คูของชิ้นงานแบบจําลองและตนแบบมีเปอรเซ็นตความแตกตางอยูในชวง ±10%
สําหรับกรณีของคลายบางสวนชิ้นงานแบบจําลองและตนแบบ 30 จาก 40 คูมีเปอรเซ็นตความแตก
ตางอยูในชวง 0 ถึง +30%   ดังนั้นกฎสัดสวนที่พิสูจนมาไดรับการยืนยันดวยทฤษฎีและการทดลอง
กฎสัดสวนนี้มีประโยชนสําหรับการประเมินภาระการโกงงอของแผนชิ้นงานที่มีเงื่อนไขขอบเขต
ซับซอนและไมตองการทดสอบบนชิ้นงานขนาดจริง



Abstract

The similitude theory is employed to buckling of composite plate problems by

applying a similitude transformation directly to the differential governing equations.

Rectangular laminated composite plates and polar orthotropic annular plates are

investigated in this study. The scaling laws for each problem along with similarity

requirements between model and prototype specimens are obtained. The derived

scaling laws are theoretical verified with available solutions. The theoretical buckling

load of a model is substituted into the scaling law to determine the scaling buckling

load of a prototype, which is then compared to the theoretical solutions to determine

the accuracy of the scaling law. In case of complete similitude, predictions from the

derived scaling laws are identical to the theoretical buckling load. Small percent of

discrepancy is observed for cases of recommended partial similitude. Experimental

verification was also performed on a custom-made compression test frame. Specimens

used in the study are rectangular composite plates with a combination of simple and

free boundary conditions and stacking sequences of [0/90]2s, [02/902]2s, and [0/90]4s.

The distribution of percent discrepancy between scaling and experimental buckling

loads for both complete and partial similitude cases is considered as a normal

distribution. The average percent discrepancy of complete similitude and partial

similitude are -4.75 and 10.7%, respectively. A moderate deviation of the percent

discrepancy is observed from the study. Out of thirty pairs, twenty-three pairs of

model-prototype specimens have percent discrepancy within ±10% for complete

similitude case. In case of partial similitude, 30 out of 40 model-prototype pairs have

percent discrepancy in the range of 0 to +30%. Therefore, the derived scaling laws are

confirmed theoretically and experimentally. They are useful to estimate buckling of

plates with complicate boundary conditions which full-scaled test is not preferred.

Keywords: buckling, composite material, similitude, scaling law, experiment



Executive Summary

Several studies devoted to buckling of composite plate are available in the

literatures. Some experimental studies found a moderately high degree of discrepancy

of experimental buckling loads compared with theoretical solutions. Imperfection of

plate and boundary condition of the specimens are frequently mentioned as sources of

the inconsistency. So there is a need for a better approach to predict the buckling load

of plates with imperfections or plates with complicated configurations. This research

project studies similitude theory as applied to buckling of composite plate problems.

The project classifies into three sections; deriving the scaling law, verifying the

scaling law with the theoretical solutions, and verifying the scaling law with the

experiment.

In the first part, the similitude theory is employed to buckling of composite

plate problems. It is different from the previous studied by other researchers for the

reason that, in this study, a similitude transformation was applied directly to the

differential governing equations, not to the solutions of the equations as before. In the

present study, rectangular laminated composite plates and polar orthotropic annular

plates were investigated. The scaling laws for each problem along with similarity

requirements between model and prototype specimens are obtained. The complete

similitude requirements include geometric similarity, identical load ratio, and identical

stiffness scaling factor. The scaling laws are independent of boundary conditions, i.e.

they are applicable providing that boundary conditions of both systems are identical.

The second part of the project is to verify the derived scaling laws with

available theoretical solutions. For rectangular plates, the available theoretical



solutions are analytical solutions in form of closed-form solutions and the semi-

analytical-numerical Ritz solutions. Only the Ritz method is applicable for annular

plate problem. The theoretical buckling load of a model is substituted into the scaling

law to determine the scaling buckling load of the prototype. Then, the scaling buckling

load is compared to the theoretical solution to determine the accuracy of the scaling

law. For complete similitude case, predictions from the derived scaling laws are

identical to the theoretical buckling load. In practice, it might be difficult or costly to

set up a model experiment which is completely satisfied the similarity requirements

for a particular prototype. Some similarity requirements could be dropped to avoid

expensive experiment. Applying the scaling law in this fashion is called partial

similitude. From the numerical calculation, a small percent of discrepancy is observed

for cases of recommended partial similitude.

In the final part of the project, experimental verification was performed on a

custom-made compression test frame. The test setup is capable of applying a uniform

compression on a rectangular specimen, and supporting the specimen with simply

supported boundary conditions. Specimens used in the study are rectangular

composite plates with a combination of simple and free boundary conditions and

stacking sequences of [0/90]2s, [02/902]2s, and [0/90]4s. The distribution of percent

discrepancy between scaling and experimental buckling loads for both complete and

partial similitude cases is considered as a normal distribution. The average percent

discrepancy of complete similitude and partial similitude are -4.75 and 10.7%,

respectively. A moderate deviation of the percent discrepancy is observed from the

study. Out of thirty pairs, twenty-three pairs of model-prototype specimens have

percent discrepancy within ±10% for complete similitude case. In case of partial

similitude, 30 out of 40 model-prototype pairs have percent discrepancy in the range



of 0 to +30%. Therefore, the derived scaling laws are confirmed theoretically and

experimentally. They are useful to estimate buckling of plates with complicate

boundary conditions where full-scaled test is not desirable.

The outputs of this research project up to now are:

1. Singhatahadgid, P. and, Ungbhakorn, V. “Scaling laws for buckling of polar

orthotropic annular plates subjected to compressive and torsional loading,”

Accepted for publication in Thin-Walled Structures.

2. Arunpitak, S., Singhatanadgid, P. and Ungbhakorn, V. “An experiment

verification of the scaling law for buckling of cross-ply composite plates,”

Proceedings of the 18th Conference of the Mechanical Engineering Network of

Thailand (ME-NETT 18). Sofitel Raja Orchid Hotel, Khon Kaen, 18-20 October

2004, code AMM49.

3. Supasak, C. and Singhatanadgid, P. “A comparison of experimental buckling load

of rectangular plates determined from various measurement methods,”

Proceedings of the 18th Conference of the Mechanical Engineering Network of

Thailand (ME-NETT 18). Sofitel Raja Orchid Hotel, Khon Kaen, 18-20 October

2004, code AMM43.
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Chapter 1. Introduction

A so-called “advanced” composite material is a material system which consists of

high strength and high modulus fibers embedded within a matrix material. Most of the

loads applied to the composite structure are carried by fibers which are held together by

the matrix. The matrix protects fibers from abrasion and transfers stresses from one fiber

to the next. Because of their high strength-to-weight and stiffness-to-weight ratios,

composite materials are extensively used in many applications in the aerospace,

automotive, and marine industries. A main benefit of composite material is an ability to

be tailored, which may not be obtained from conventional isotropic materials. Engineers

can design the fiber orientations within the composite so that the desired mechanical

properties are achieved.

In many applications, composites are manufactured in form of thin plate-like

structures. Consequently, failure of laminated plates arises not only from excessive

stresses but also from buckling. When a flat laminated plate is subjected to low in-plane

compressive loads, the plate remains flat and is in equilibrium. As the magnitude of the

in-plane compressive load increases, however, the equilibrium configuration of the plate

is eventually changed to a non-flat configuration and the plate becomes unstable. The

magnitude of the compressive load at which the plate becomes unstable is called the

“critical buckling load” and at that level of load (or above) the panel is in a buckled

condition. There are several studies in the past concerning the buckling problems of

composite plates. Buckling behavior of composite plates has been determined using

different approaches such as analytical methods, numerical methods, and experiment

method. Each approach has its own advantages and disadvantages. Analytical approach is

simple and straightforward for using in design of engineering structures since a closed
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form solution is usually obtained. However, this method is limited to simple problems

only, i.e. it cannot solve complicated problems. The numerical approaches such as the

Ritz method, Galerkin method, and FEM are more versatile than the analytical method

but they are time-consuming because of the intensive calculation. Although both methods

may be used to predict the buckling behavior, however any new design usually requires

extensive experiment evaluation before going to production. Experiment on a prototype is

an ideal method for any new products since it is the best way to simulate every

parameter’s effect which might affect the specimen’s behaviors. Then again, this method

is very expensive and time consuming.

This is where the similitude method appears as an indispensable tool in order to be

able to design efficient experiments to save time and cost. Similitude theory can be

roughly stated to be a branch of science concerned with sufficient and necessary

conditions of similarity among phenomena. If such similarity conditions can be found

among parameters of the model and prototype, then the scaled replica can be built to

duplicate the behaviors of the full-scaled system and the results from the model

experiments can be employed to predict the behavior of the prototype which has complete

similitude with the test model.

Simitses, et. al [1-4] have published several papers on cross-ply laminated plates

that deal with the establishment of the similarity conditions between the two phenomena,

the model and the prototype. Then they use these similarity conditions or “scaling laws”

to design scaled-down models and employ the model data from theoretical calculation to

predict the behavior of the prototypes from the scaling laws. However, they have applied

the similitude theory to the solutions of the governing differential equations (GDE)

instead of to the GDE directly. This procedure puts serious limitation on the applicability

of the concept of similitude theory because some forms of exact or approximate analytical
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solutions must be obtained before they can apply the similitude transformation. The main

objective of this study is to derive the similitude invariants for buckling loads of the

laminated composite plates subjected to in-plane loads by applying the similitude

transformation to the governing differential equations directly. The derived similitude

invariants are non-dimensional and applicable to both the models and the prototypes,

hence “scaling laws” have been established. The validity of the scaling laws is then

verified theoretically and experimentally. The buckling loads of the model and prototype

are theoretically calculated from the available solutions. The theoretical results of the

model are then substituted into the scaling laws to predict the buckling loads of the

prototype. The results from the scaling law are finally compared with the theoretical

solutions to determine the validity of the scaling law. Experimental verification is also

employed by grouping specimens as models and prototypes before experimentally

determine buckling of all specimens. Similar to the theoretical verification, buckling

loads of the models are substituted into the scaling law to determine the similitude

buckling loads of the prototypes. These similitude buckling loads are compared to the

experimental buckling loads to determine the accuracy of the scaling law.

In summary, objectives of this study may be itemized as follows:

1. Derive scaling law for buckling of rectangular and annular composite plates from

the governing differential equations

2. Verify the derived scaling law with the theoretical solutions

3. Perform an experiment on rectangular composite plates to verify the derived

scaling law

In this report, buckling of composite plate and similitude theory are outlined and

reviewed in the first two chapters. The discrepancy of experimental buckling load

compared to the theoretical solution and the advantages of the similitude theory are
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pointed out. Similitude transformation is applied to buckling problem of rectangular

composite plates and polar orthotropic annular plates in Chapter 3. The scaling laws for

both problems and the similarity requirements are obtained. The obtained scaling laws are

verified with available theoretical and numerical solutions in Chapter 4. The experimental

verification was performed on rectangular composite plates and is described in Chapter 5.

The experiment setup, testing procedure, and verification of the scaling law are explained,

thoroughly. This report concludes in the last chapter with some discussions and

conclusions of the present study and recommendations for future studies.



Chapter 2. Literature Review

This chapter gives a review of previous studies on buckling of anisotropic plates.

The general buckling behaviors of thin plate are described in the first part of this chapter.

Buckling behavior of flat composite plates is then reviewed with an emphasis on

rectangular and annular composite plates. Both analytical and experimental studies that

have appeared in the literatures are included. Finally, the similitude theory is reviewed in

the last part of the chapter

2.1 Buckling of composite plate

Besides tensile or compression failures, buckling is another mode of failure that

involves stability of structures. It usually happens in slender elements such as beams,

columns, or plates. This study focuses on buckling of composite plates; so only plate

structures are of interest herein. A panel subjected to uniaxial or biaxial compressive

loading will buckle if compressive stress at any point is sufficiently high. A plate under

compression-tension biaxial loading may also buckle. Buckling phenomenon may even

arise from more complicated loading conditions such as non-uniform tensile loading,

shear loading, moisture, or exposure to elevated temperatures.

The buckling phenomenon can be described from a plot of the out-of-plane

displacement (w) at a specific point, usually at the point of maximum out-of-plane

displacement, against in-plane load (P), as shown in Fig. 2.1. In classical linear buckling

theory, when in-plane load (P) increases from zero, out-of-plane displacements are

assured to remain zero, and a load-displacement curve follows Path I until load Pcr is

reached. At this point, which is called a bifurcation point, the load-displacement curve
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may follow Path II or Path III. If the in-plane load is perfectly applied at the mid-plane of

a perfect plate, compressive failure of material could be reached by following Path II.

There is no buckling in this case. Path III is a theoretical buckling path and can be

obtained from classical linear buckling theory. The critical buckling load is defined on

this horizontal line. In a nonlinear theory, the curve follows Path IV, the “postbuckling”

curve. This curve is important in the study of plate behavior beyond the buckling load,

Pcr. For a real plate with initial imperfections, the curve will not follow Path I, i.e. an out-

of-plane displacement occurs as soon as load P is applied. In this case, the load-

displacement curve will resemble Path V.

Although laminated composite plates have been successfully used in a wide range

of applications, a complete understanding of the mechanical behavior exhibited by

composites has not been accomplished, and new research results appear continuously.

Studies concerning anisotropic plates began to appear in the 1950’s and early 1960’s.  A

textbook devoted to mechanics of anisotropic plate by Lekhnitskii [5] appeared in 1956.

These early publications lay the foundation for later studies of the bending, buckling, and

vibration of composite plates, which began to appear with increasing frequency in the late

1960’s.

There are several texts devoted to buckling of composite plates and very well-

known to researchers. A text book by Whitney [6] published in 1987 covers several topics

from mechanics of composite material to analysis of anisotropic structures. The buckling

problem of composite plates also appears in several textbooks devoted to fundamental

mechanics of composite [7-9]. A textbook by Turvey and Marshall [10] released in 1995

devotes specifically to buckling and postbuckling of composite plates. This book covers

several methods used in buckling analysis such as the Ritz method, finite element

analysis, and finite strip method. Besides several available textbooks, summaries of
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advanced topics and recent developments in laminated plates are appeared in the review

papers by Leissa [11,12], and Kapania et al. [13].

Buckling of composite plates can be investigated using analytical and numerical

analysis. Analytical solution of the buckling of composite plates requires a solution of the

governing equations. These equations are only solvable in a few simple cases, such as a

specially orthotropic rectangular plate with simply supported boundary conditions. In

more general problems an analytical closed form solution is generally not available,

primarily due to the bending-twisting coupling terms, D16 and D26. In these cases a

numerical method, usually based on an energy principle, is employed to obtain an

approximate solution. The Ritz and Galerkin methods are two common techniques used

to obtain the solutions approximately. These approximation techniques can be performed

easily and give reasonable results with minimal computational efforts; that is, these

methods are less computationally intense than another numerical method, the finite

element technique. The finite element method is based on either an incremental approach

or asymptotic method. It enables an engineer to solve plate problems with complex

geometry, complicated boundary condition, or even nonlinear problem. However, lengthy

calculations are involved in this approach. Although a modern computation tools such as

supercomputers are now available, the versatility of finite element analysis is still

somewhat restricted by computation time and memory needed, at least during the

preliminary design process.

A closed-form solution for a specially orthotropic plate, i.e. either unidirectional

or a symmetric cross-ply panels, is thoroughly derived by Whitney [6]. Mode shape

transitions are also graphically presented. Several studies on buckling of composite plates

using the Ritz method are available. In 1986, Lagace et al. [14] employed the Ritz method

to study the effect of mechanical couplings on buckling behavior. They concluded that
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those mechanical couplings, especially stretching-bending couplings, cause out-of-plane

displacement prior to buckling in unsymmetric laminates. This phenomenon significantly

reduces the critical buckling load. An experimental verification was also performed. The

Ritz method was demonstrated, by Narita and Leissa [15], to be accurate for symmetric

laminates if enough number of terms (more than 100 terms) were used. A double sine

series was used to approximate the out-of-plane displacement. Convergence studies and

contour plots of buckling mode shape were also presented. However, the in-plane

displacements were ignored in the strain energy function. Similar approximate function

and analysis method were used by Chai and Hoon [16] to study the buckling of generally

laminated plates. The results agreed with the exact solution for symmetric crossply,

antisymmetric crossply, and antisymmetric angle-ply. The effect of mechanical couplings,

D16 and D26, on buckling load was shown to be an important factor in the analysis.

Buckling studies of composite plates have not only been limited to simple

rectangular plates, but irregular plates such as elliptical plates, triangular plates, or

annular plates have also been explored. Ramaiah [17] used the Rayleigh-Ritz method to

determine the critical buckling load of polar orthotropic annular plates with various load

ratios and rigidity ratios. The numerical solutions in form of buckling load parameters are

tabulated for direct used in design process. Doki and Tani [18] studied the buckling of

similar annular plates under a combination of internal radial pressure and torsion using

the Galerkin method. Asymmetric buckling modes were also considered in addition to

axisymmetric buckling mode. Besides buckling load, buckling mode is also investigated.

There are several other researches which are relevant to the present study. For example,

Ye [19] studied axisymmetric buckling of laminated annular plate by considering the

problem as a fully three-dimensional elasticity problem. Buckling of moderately thick

polar orthotropic annular plates was investigated by Chang [20]. Dumar et al.[21]
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included the shear deformation theory to study the postbuckling of thick laminated

annular plates.

There have been several experimental studies on buckling of composite plates

using different measurement techniques appeared during the past two decades. Chai,

Hoon, and Chin [22] experimentally confirmed the buckling behavior determined from

the Ritz method using laser-based holography and strain gauges. Chai, Banks, and

Rhodes [23] used a linear variable differential transformer (LVDT) to measure the out-of-

plane deflection to study the buckling of simply supported plates under uniaxial loading.

The results correlated well with finite element solutions and other available studies

[24,25]. Discrepancies between -7% and 11% of experimentally determined buckling

loads were reported. Another experimental method for monitoring out-of-plane

displacement is the shadow moiré technique. This experiment method was used by Tuttle,

Singhatanadgid, and Hinds [26] to observe the whole-field out-of-plane deflections of

composite plates under tension-compression biaxial loading. Experimental buckling

modes were well compared with predictions obtained numerically based on the Galerkin

method. As expected, buckling loads increased as the transverse tensile loads were

increased. Almost all of the previous studies indicated several difficulties in setting up the

experimental conditions, such as loading conditions and boundary conditions, which are

comparable to the conditions assumed in the analysis. These factors are the common

sources of discrepancy between measurement and prediction.

2.2 Scaling law for buckling problem

From a brief literature review in the previous section, buckling problems of

composite plates can be examined using a variety of approaches. Each method has
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advantages and disadvantages. The analytical approach is the simplest method to

determine buckling load and mode, but it is applicable to only a group of problems. The

semi-analytical-numerical methods such as the Ritz and Galerkin methods are more

general and capable to solve problems which do not have a closed-form solution.

Certainly, these methods required more calculation than the analytical approach. The last

approaches are the fully numerical method which is the most powerful, but requires the

most resources compared to other methods. This calculation category includes finite

element, finite strip, and boundary element methods. Although there are several analytical

and numerical methods available, several experimental studies have also been performed.

The percent discrepancy of ±20% between experiment results and available analytical or

numerical solutions is usually reported. The likely sources of discrepancy are

imperfections of the specimen and boundary conditions. To be specific, the prediction of

buckling load and mode using available approaches is not accurate because the

imperfections of the real structure are not included in the mathematical model. There is a

need to predict the buckling of composite plate containing imperfections.

Rezaeepazhand, et. al [3] employed similitude theory to buckling of laminated

composite plate problems. The scaling laws shown the relationship between buckling load

of a prototype structure and its models were obtained.  Rezaeepazhand, et. al [27] also

applied similitude theory to the free vibration of laminated plates. The relationship

between structural geometric parameters and frequency parameters were obtained from

the scaling laws. Both cross-ply and angle-ply symmetric plates were included in the

study. The similar approach was also employed to bending, buckling, and vibration of flat

laminated surfaces by Simitses [28]. In the similitude studies mentioned so far, the

authors have applied the similitude transformation to the solutions of the governing

differential equations instead of to the governing differential equations directly. This
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procedure puts serious limitation on the applicability of the concept of similitude theory

because some forms of exact or approximate analytical solutions must be obtained before

they can apply the similitude transformation. Singhatanadgid et. al [29] and Ungbhakorn

et. al [30] proposed a new similitude approach which applies the similitude

transformation to the buckling governing differential equations directly. They showed

numerically that the buckling loads of the model and the prototype are related via the

scaling law if the model-prototype pair has complete similarity.

In this study, the scaling laws for buckling of rectangular cross-ply plates derived

by Singhatandgid et. al [29] were experimentally verified. The composite specimens were

classified into two groups, i.e. model and prototype. Both specimens were tested on a

compression test frame for buckling loads which were then used to verify the derived

scaling laws. The similitude transformation was also applied to a more complicated

buckling problem, i.e. buckling of polar orthotropic annular plates.

Out-of-Plane Displacement (w)

In-Plane Load (P)

I

II

III

IV

V
Pcr

Fig. 2.1 Buckling phenomenon represented by a plot of P vs. w



Chapter 3. Scaling law applied to buckling problem

In this chapter, similitude theory is applied to buckling of composite plate

problems. The similitude theory and similitude invariant are first illustrated by applying

the similitude transformation to the governing equations. The concept is then applied to

buckling of rectangular plate and annular plate problems. The similitude invariants and

scaling laws are obtained for both problems. Both scaling laws are verified analytically

and experimentally in the next chapters.

3.1 Similitude transformation

Similitude theory is extensively described in a few textbooks [31-33]. Only a brief

summary which is relevant to this study will be presented as follows. The essence of

similitude theorem relevant to this research can be stated as: the sufficient and necessary

condition of similitude between two systems is that the mathematical model of the one be

related by a bi-unique transformation to that of the other [33]. The two systems refer to a

model and a prototype. Usually, the prototype is the system of the real structure which is

not convenient or too expensive to conduct an experiment on. The model system is a

replica of the prototype with particular scaling factors. Thus, this system can be resized to

fit the experiment setup and budget. Considering all variables, geometric and physical, of

the prototype and the model denoted by Xpi and Xmi respectively, where i = 1,2,… n. The

two systems or phenomena are similar if

Xp  = CXm  and Xm = C-1 Xp
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Since the mathematical models of two similar systems are invariable under

similitude transformation, hence, the differential equations of any two similar systems

must be the same, therefore

L(Xmi)   =    L(Xpi)       (3.1)

Let the model and prototype variables be related to each other by the equations:

Xpi   =   CiXmi       (3.2)

Substitute eq(3.2) into (3.1) , the relation yields

L(Xmi)   =   L(CiXmi) (3.3)

From the above theorem, it is necessary that

L(Xmi)   =   ϕ(Ci) L(Xmi) (3.4)

where ϕ(Ci) is the functional relationship among the transformation parameters. If both

systems have similarity according to the similitude conditions, it is compulsory that

ϕ(Ci) = 1 (3.5)

Hence, the condition for the two systems to be similar is that the function linking the

transformation parameters equals to unity. The equation ϕ(Ci) = 1, is accordingly called

the similitude invariant. From the similitude invariant, the scaling law relating a particular

parameter of both systems can be derived. Next, this similitude concept is applied to

buckling problems of rectangular plates and polar orthotropic annular plates.

3.2 Scaling law for buckling of rectangular composite plates

The similitude theory will be applied to the governing differential equation for

buckling of the symmetrically laminated plates subjected to combined normal in-plane
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loads. A rectangular composite plate is loaded in the x and y directions as shown in Fig

3.1. The transverse tensile load Nyy is related to the compressive load Nxx by the in-plane

load ratio defined by yy

xx

N
P

N
= . The specimen is buckled due to the compressive load in

the x direction. The classical buckling differential equation is simplified to [6]

( )
( )

11 16 12 66

26 22

, 4 , 2 2 ,

4 , , , , 0
xxxx xxxy xxyy

xyyy yyyy xx xx yy

D w D w D D w

D w D w N w Pw

+ + +

+ + + + =
(3.6)

Let the variables of the prototype be related to those of the model through the similitude

scaling factors (Cx, Cy, Cw….) as follows.

( ) ( ) ( ) ( )
, , ,

, , and  
p x m p y m p w m

ij Dij ij p P m xx Nxx xxp mp m

x C x y C y w C w

D C D P C P N C N

= = =

= = =
(3.7)

where subscripted “p” refers to “prototype” and subscripted “m” refers to “model”

The governing equation for a model can be written from eq(3.6) with a subscript

“m” for every parameter. The equation for the model is;

 
( ) ( ) ( ) ( ) ( ) ( ){ }( )

( ) ( ) ( ) ( ) ( ) ( ){ }
11 16 12 66

26 22

, 4 , 2 2 ,

4 , , , , 0

xxxx xxxy xxyym m m m mm m

xyyy yyyy xx xx m yym m mm m m

D w D w D D w

D w D w N w P w

+ + +

+ + + + =
(3.8)

Similarly, the governing equation for the prototype can be represented by an

equation similar to eq(3.8), only substituting the subscript “m” with subscript “p.” This

governing equation can be written in term of the parameters of the model using the

scaling factors in eq(3.7). The equation is represented by
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( ) ( ) ( ) ( )

( ) ( ){ } ( )

( ) ( ) ( )

( ) ( ) ( )

11 11 16 164 3

12 12 66 66 2 2

26 26 22 223 4
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, 4 ,

2 2 ,
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w w
D xxxx D xxxym m m m

x x y

w
D D xxyym m m

x y

w w
D xyyy D yyyym m m

x y y

w w
Nxx xx xx P m yym m m

x y

C CC D w C D w
C C C

CC D C D w
C C

C CC D w C D w
C C C

C CC N w C P w
C C

+

+ +

+ +

  + + = 
  

(3.9)

The governing equations of the model and the prototype are similar if all groups of the

scaling factors in each term of the prototype’s governing equation are identical. The

following necessary conditions for the models to behave exactly as the prototype are

obtained:

16 66 2611 12 22
4 3 2 2 2 2 3 4 2 2

D D D Nxx Nxx PD D D

x x y x y x y x y y x y

C C C C C CC C C
C C C C C C C C C C C C

= = = = = = = (3.10)

Let the prototype and model be related with complete geometric similarity, therefore Cx =

Cy = Ca = Cb, where a and b are plate height and width, respectively. Thus, eq(3.10) is

true only if CP equals to unity, hence, it can be rewritten as:

16 66 2611 12 22
2 2 2 2 2 2

D D DD D D
Nxx

b b b b b b

C C CC C CC
C C C C C C

= = = = = = (3.11)

For complete similarity between the prototype and its model, it is required that the scaling

factors of all laminate flexural stiffnesses must be equal, i.e.

11 16 12 22 26 66D D D D D DC C C C C C= = = = = (3.12)

Let the scaling factors of the flexural stiffnesses be equal to Cstiff, then the above

equations yield the following similitude invariant for the symmetric laminated plates

subjected to combined in-plane loads:
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2

1Nxx b

stiff

C C
C

= (3.13)

which gives the following scaling law:

( ) ( )
2

2
m

xx xx stiffp m
p

bN N C
b

= (3.14)

The derived scaling law is valid for both symmetric cross-ply and angle-ply

laminates. For cross-ply laminated plates, the complete similitude requirement of the

stiffness scaling factor in eq(3.12) is simplified by excluding the terms containing CD16

and CD26 because those stiffnesses are zero automatically. In conclusion, the complete

similitude is achieved when the prototype and model have complete geometric similarity,

that is Ca = Cb and they are subjected to the same load ratio, CP = 1. It is also required that

the scaling factors of all non-zero laminate flexural stiffnesses must be equal.

3.3 Scaling law for buckling of annular orthotropic plates

In this section, the similitude transformation is applied to a more complicated

buckling problem, i.e. a buckling problem of polar orthotropic annular plates. A thin

annular plate of uniform thickness h is composed of a polar orthotropic material with

inner and outer radii of a and b, respectively. The plate is clamped on both internal and

external edges. Two cases of buckling conditions considered in this study are in-plane

radial compressive loads, Pi and Po, and torsional shearing load of Qs and 
2

s
bQ
a

 
 
 

, as

shown in Fig 3.2. The buckling governing equation for both cases is [18]
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(3.15)

where ( )1 1o k k
rN h P r Q r− − −= ⋅ + ⋅

( )1 1o k kN hk P r Q rθ
− − −= ⋅ − ⋅
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For buckling caused by radial compressive load only, the torsional shearing load

Qs shown in eq(3.15) vanishes. Similarly, radial compressive loads are zero for the case

of torsional buckling only, i.e. o
rN and oNθ are absent from the governing equation.

 Now, the similitude transformation is applied to the governing equation, eq(3.15).

Let call two systems of interest a “model” and a “prototype” and let the parameters of the

model be related to those of the prototype through the similitude scaling factors as

follows:

mp θθ = , mrp rCr = , mwp wCw = , mhp hCh = , mqp qCq = ,

( ) ( )moPopo PCP = , ( ) ( )mrDrpr DCD = , ( ) ( )mDp DCD θθθ = ,

( ) ( )mrDrpr DCD θθθ = , ( ) ( )mDp DCD 111 = , and mmkp kkCk ==   (3.16)
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where Ci is the scaling factor of the i parameter, and 

1
2D

k
Dr

C
C

C
θ 

=  
 

according to the

definition of k. It should be noted that coordinates θ of the model and the prototype are

identical or the scaling factor of θ is 1. In addition, the scaling factor Ck which is equal to

1
2D

Dr

C
C

θ 
 
 

 is also set to be unity. This implies that D DrC Cθ =  which will be shown later

that this is the condition for complete similitude.

The similitude transformation can be accomplished by writing the governing

equations for the model and the prototype. The governing equation of the model is written

from eq(3.15) by substituting the variables o
rN  and oNθ  with the appropriated values

shown previously. Most of the parameters are subscripted by “m” to indicate that the

equation is the governing equation of the model. The only two non-subscripted

parameters are θ and k, since they are set to be identical for both systems. For example,

the first four terms of the governing equation of the model can be written as:

( )
( ) ( ) ( )4 3 2

4 3 2 2 3

2
.......... 0rm m m m m m m

r m
m mm m m m m

D D Dw w w w
D

r rr r r r r
θ θ∂ ∂ ∂ ∂

+ − + − =
∂∂ ∂ ∂

(3.17)

The governing equation for the prototype can be written in term of the model

parameters by substituting appropriate similitude scaling factors from eq(3.16). Again,

the first four terms of the equation are written as

( )
( ) ( )

( )

4 3 2

4 4 3 3 2 2 2 2

3 3

2

....... 0

rw m w m m D w m mDr
Dr r m

r mr m r m r r m m

D w m m

r mr m

D DC w C w C C wCC D
C rC r C r C C r r

DC C w
C rC r

θθ

θθ

∂ ∂ ∂
+ −
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∂
+ =

∂

(3.18)
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To obtain the similarity between both systems according to the similitude concept,

governing equations for the model and prototype, eq(3.17) and eq(3.18), must be

identical. Specifically, groups of scaling factors in each term of the eq(3.18) must be

equal so that they are canceled out. Thus, the requirements of similarity or conditional

equations for both systems to behave similarly are:

1
4 3 2 2 3 3 3

1 1
2 2 2 2 4 4 4 4

11
1 1 2 2 1

2 2 2 2

w w D w D w w Dr wDr D
Dr
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= = =

(3.19)

Note that the geometric similarity is assumed in the similarity requirements so that

Cr, Ca and Cb are identical and represented by Cb. It is further assumed that the load ratio

of both systems are identical, i.e. Cq =1. Therefore, the similarity requirements in eq(3.19)

are simplified as:

1
4 4 4 4 2 2

QsD Dr h PoDr D

b b b b b b

CC C C CC C
C C C C C C

θ θ= = = = =    (3.20)

which imply that 1Dr D D DrC C C Cθ θ= = =  for complete similitude.

In summary, the requirements for complete similarity between the model and the

prototype include a) the complete geometric similarity, b) identical load ratio q and

rigidity ratio k, and c) identical stiffness scaling factors. By representing all of the

stiffness scaling factors by Cstiff, eq(3.20) can be rearranged in term of similitude invariant

for the buckling problem caused by internal and external compressive loads as:
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2

1h Po b

stiff

C C C
C

=     (3.21)

The scaling law for buckling of polar orthotropic annulus plates under internal and

external compressive loads is then obtained as:

( ) ( )
2

2
m m

o stiff op m
p p

h bP C P
h b

=   (3.22)

For buckling caused by torsional shear load, the similitude invariant and the scaling law

are written as:

2

1Qs b

stiff

C C
C

=     (3.23)

and ( ) ( )
2

2
m

s stiff sp m
p

b
Q C Q

b
=            (3.24)

It is notice that the scaling laws derived for both buckling cases are independent of

the plate boundary conditions. It implies that the scaling law can be used to predict the

behavior of the prototype, provided that both model and prototype have the same

boundary conditions and all the similarity requirements are satisfied.

In conclusion, similitude transformation is employed to buckling problems of

composite plates. Both symmetrical rectangular plates and polar orthotropic plates are

included in this study. Along with the scaling laws, the conditions for complete similarity

between two systems are also obtained. The derived scaling laws, i.e. eq(3.14), eq(3.22),

and eq(3.24), will be verified in the next two chapters. In chapter 4, the derived scaling

laws are verified using available analytical or numerical solutions. The buckling loads

and modes of prototypes are determined from the available solutions. They are then

compared to those of determined from the scaling laws which are calculated using
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buckling load of the corresponding models. The experimental verification of rectangular

specimens is presented in chapter 5.

 x 

 y 

 a 

 Nxx 
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Fig 3.1 Rectangular plate subjected to in-plane load Nxx, and Nyy
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Fig. 3.2. Annular plate under compressive radial and torsional loading



 Chapter 4. Theoretical Verification

The scaling laws for both buckling problems are derived in the previous chapter

along with their similarity requirements. In this chapter, the derived scaling law will be

verified with the theoretical or numerical solutions. The buckling solutions for

symmetrical rectangular plates and polar orthotropic annular plates are outlined in the

first two sections. Then, the accuracy of the scaling law is determined using available

solutions. Both complete and partial similitude cases are investigated.

4.1 Buckling of rectangular plates

For the case of symmetric cross-ply laminated plates subjected to biaxial loading,

as shown in Fig 3.1, with classical simply-supported boundary condition the buckling

load can be derived from the governing equation, eq(3.1) as [6]

( )
4 2 4

2
11 12 66 22

2 2

2 2

xx

m mn nD D D D
a ab b

N
m nP
a b

π
      + + +      

       =
    +    
     

(4.1)

But due to terms with odd number of derivatives in the governing equation, the

solution for symmetric angle-ply laminated plates subjected to biaxial loading with

simply-supported boundary condition will be calculated from an approximate solution by

the Ritz method [6].

The Ritz method begins with selecting the mid-plane displacement functions

which satisfy the geometrical boundary conditions. In case of a simply supported plate the

out-of-plane displacement is approximated in form of a double sine series as
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∑∑ (4.2)

where Amn are unknown coefficients to be determined, M and N indicate numbers of terms

used in the series. This approximate function is then used to calculate the total potential

energy of a plate subjected to in-plane loading. The total potential energy (Π) can be

written in term of the sum of strain energy (U) and potential energy of in-plane loads (V)

Π = U+ V       (4.3)

where

( )1
2 xx xx yy yy xy xyU dxdydzσ ε σ ε σ γ= + +∫∫∫

221 2
2 xx yy xy

w w w wV N N N dxdy
x y x y

  ∂ ∂ ∂ ∂  = + +   ∂ ∂ ∂ ∂     
∫∫

After performing the integrations the total potential energy can be written in terms

of the unknown coefficients Amn and the in-plane normal load xxN . Other in-plane loads,

i.e. yyN  and xyN , can prescribe as the multiplication of xxN  and load ratio. According to

the minimum total potential energy :

0
mnA

∂Π
=

∂
       (4.4)

A set of equations may be rearranged in a form of an eigenvalue problem as

[ ][ ] [ ][ ] 0xxA C N B C− =                    (4.5)

where [A] and [B] are square matrices whose elements are determined from the plate

properties. [C] is a column matrix containing unknown eigenvectors, Amn. xxN  represents

the unknown eigenvalue or the buckling load.
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A number of eigenvalues will be obtained after the generalized eigenvalue

problem shown in eq(4.5) is solved. The lowest eigenvalue is selected as the buckling

load. The corresponding eigenvector representing the buckling mode, however, is not of

interest in this study.

4.2 Buckling of polar orthotropic annular plates

For polar orthotropic annular plates, either closed-form solutions or experimental

results are not available due to the orthotropic property of material. Therefore, the Ritz

method is employed to determine the numerical solution. The Ritz method begins with

selecting the mid-plane displacement functions which satisfy the geometrical boundary

conditions. In case of a clamped annular plate, the out-of-plane displacement which

satisfies all boundary conditions is approximated in form of a trigonometric series as

( ) ( )
2 2

0
, 1 1 sin cos

M
m

m m
m

r rw r r A n B n
a b

θ θ θ
=

   = − − +   
   

∑     (4.6)

where Am and Bm are unknown coefficients to be determined, n is a positive integer

indicating the number of full sine wave in the circumferential direction. The integer n also

indicates the buckling mode of the plate. Theoretically, it is desirable to have as many

terms as possible in the approximate function, i.e. M approaches infinity, however only a

number of terms are used due to the numerical limitation. This approximate function is

then used to calculate the total potential energy of a plate subjected to in-plane loads. The

total potential energy (Π) can be written in term of the sum of strain energy (U) and

potential energy due to in-plane loads (V), as represent in eq(4.3), where
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1 2
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 

    + + +          

∫ ∫
(4.7)
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After substituting the approximate displacement function and performing the

integrations, the total potential energy can be written in terms of the unknown coefficients

Am, Bm, and the applied load. In case of buckling from radial compressive load, the

applied load is the in-plane radial load Po, while Qs is the applied load for torsional

buckling. According to the concept of minimum total potential energy, the structure is in

stable equilibrium if

0     and    0
m mA B

∂Π ∂Π
= =

∂ ∂
       (4.9)

A convergence study on buckling of graphite-epoxy annular plate with a = 50

mm, b = 200 mm, h = 2 mm and a load ratio of 0.5 was performed. Both compressive and

torsional buckling loads are plotted as a function of M used in the approximate function

as shown in Fig. 4.1. The buckling load is conversed to the theoretical value as the value

of M is increased. In this study, the value of M in the approximate function w(r,θ) are

selected as 6, so eq(4.9) is a set of 14 linear functions. The set of equations may be

rearranged in a form of a generalized eigenvalue problem as

[ ][ ] [ ][ ] 0A C L B C− =  (4.10)

where [A] and [B] are square matrices whose elements are determined from plate

dimensions and material properties. [C] is a column matrix containing unknown

eigenvectors, Am and Bm. L represents the unknown eigenvalue which is the compressive

buckling load (Po) or torsional buckling load (Qs) depending on types of buckling of

interest. Fourteen eigenvalues are obtained after the generalized eigenvalue problem

shown in eq(4.10) is solved. The lowest eigenvalue is the buckling load for buckling
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mode n. The corresponding eigenvector can be substituted into the approximate

displacement function which is then plotted for buckling mode. The calculation is

repeated for other buckling modes, i.e. other values of n. The lowest eigenvalue from

each buckling mode is the theoretical buckling load of the annular plate and its

corresponding value n is the buckling mode. Fig. 4.2 shows contour plots for buckling

mode 4 and mode 7 of the compressive and torsional buckling.

4.3. Theoretical verification of rectangular plates

In this section, the scaling laws of symmetrical rectangular composite plates are

verified using the solutions derived in the previous sections. The buckling load of a model

is analytically or numerically determined and used as ( )xx m
N  in the scaling law to predict

the buckling load of the corresponding prototype, ( )xx p
N . The scaling buckling load is

then compared to the theoretical solution to determine the accuracy of the scaling law.

Both complete similitude and partial similitude cases are included.

Complete similitude

The scaling law shown in eq(3.14) was examined by applying to the buckling

problem of cross-ply laminated plates studied by Tuttle et al. [26]. Suppose the [0/90]2s

specimens used in that study were chosen as models in the present study. The buckling

loads were theoretically determined from eq(4.1) and verified with the previous

experimental study as shown in the 3rd and 4th column of Table 4.1, respectively. The next

column compares theoretical and experimental results in term of percentage of

discrepancy. In the current study, a prototype was selected as plates with the same

stacking sequence and thickness as those of the model but have bigger dimensions.

Specifically, the width of the model is 152.4 mm and the width of the prototype is 762
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mm. Thus, the length and width of the prototype are five times larger than those of the

model. Buckling loads for various plate configurations are illustrated in the last two

columns of Table 4.1. Buckling loads determined from closed-form solution, eq(4.1), are

shown in the “Theory” column and buckling loads obtained from similitude invariant or

scaling law are shown in the last column entitled “Similitude.” Since the stacking

sequences of the models and the prototypes are identical, i.e. CDij = Cstiff = 1, the scaling

law is simplified to

( ) ( ) ( )
2

2

1
25

m
xx xx xxp m m

p

bN N N
b

= =

It should be emphasized that ( )xx m
N was a buckling load of the model based on

the closed-form solution. For example, ( )xx p
N  for a plate with aspect ratio of 1.5 without

transverse tension was predicted from the scaling law as ( ) 1 24.2 0.968
25xx p

N = × =

which is the same as that of calculated from theory. Also, the buckling loads of all other

prototypes determined from the scaling law agree exactly with the results from theory. If

buckling loads of prototypes ( )xx p
N  were calculated from the test model data shown in

the 4th column, the percent discrepancies would have been equal to those of the

experiment in Ref [26].

Although D16 and D26 are not vanished for angle-ply laminates, complete

similarity requirement can be achieved if the scaling factors of all laminate flexural

stiffnesses are equal. Table 4.2. shows identical buckling loads determined from the

scaling law and from theory for prototypes with 762-mm width. The models have

identical stacking sequence, [±45]2s, with five times smaller than the prototypes.

As mentioned before that similarity conditions are independent of ply thickness,

therefore similitude invariant applied to plates with different ply thicknesses shall be
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investigated. Let select an eight-ply-[0/90]2s laminate as a model and consider two

sixteen-ply laminates i.e. [02/902]2s and [0/90]4s as prototypes. The [02/902]2s prototype

can be considered having the same stacking sequence as the model with twice ply

thickness. All laminate flexural stiffnesses of [02/902]2s are eight times higher than their

respective model stiffnesses, i.e. CDij = 8 as shown in Table 4.3. But the stiffnesses of the

[0/90]4s prototype do not increase proportionally comparing with stiffnesses of the model.

It was indicated in the previous section that constant CDij is required for complete

similarity. In Table 4.4, buckling loads of the prototypes [02/902]2s and [0/90]4s laminates

were determined from the scaling law using theoretical solution of [0/90]2s as models.

They were then compared to the theoretical solutions. The "% Dis" column indicates

discrepancies in percents between results from the scaling law and from theory. The

similitude concept predicts buckling loads that exactly match the theoretical solution for

[02/902]2s. However, the [0/90]4s prototypes do have discrepancies because all CDij are not

equal. Therefore the average value of  CDij  is used as Cstiff . It is seen that the variations of

percent discrepancy are up to 13%.

In conclusion the complete similitude is obtained if two requirements, namely

geometrical similarity and equality of all flexural stiffness scaling factors, are fulfilled.

The buckling loads obtained from similitude theory for complete similarity cases show

exact agreement to the solutions from analytical analysis. If any of similitude

requirements is violated, the presented theory may be applied with some degree of

discrepancies. The theory is then called approximate or partial similitude.

Partial similitude

Similitude invariant gives perfect solution for complete similitude cases, as

previously mentioned. However, in some cases only partial similarity may be achieved
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using distorted models as shown in Table 4.4 where [0/90]4s prototype are modeled from

[0/90]2s laminates. Because the scaling factors for all stiffnesses are not identical, scaling

law cannot be directly applied. If the equality of scaling factor is relaxed and the average

of the stiffness scaling factors is used as Cstiff, the buckling load of [0/90]4s prototype

could be determined. The discrepancies compared to the closed-form solution still show

good agreement within ±13% as shown in Table 4.4.

Another examples of distorted model in number of plies are demonstrated in Table

4.5(a) and 4.5(b). The buckling loads of 304.8×152.4 mm2 plates with [±45]ns stacking

sequences are determined from the Ritz method and compared to the similitude model.

Stacking sequences of models were selected as [±45]4s and [±45]7s as shown in Table 4.5

(a) and 4.5(b) respectively. In both cases, scaling factors of all stiffnesses are not

identical, however, they are divided into two groups. A group of CD11, CD12, CD22 and

CD66 has the same value but different from the other group of CD16, and CD26. By using the

value of the first group as Cstiff, the predicted buckling loads using the scaling laws show

very good agreement with discrepancies less than 6%, except the first prototype with four

plies. Hence, it can be concluded that as the number of plies exceeds eight, the effect of

twisting coupling stiffness, D16, and  D26, dies out rapidly and the approximate similitude

calculation can consider only CD11 (= CD12 = CD22 = CD66) as Cstiff.

Modeling a prototype from a model with different material is also possible by

using the distorted model. This concept of distortion in material is very useful in

minimizing cost of the test models. The possibility of this modeling is shown in Table

4.6-4,8. In Table 4.6., [0/90]2s graphite/epoxy prototype laminates were modeled from E-

Glass/Epoxy laminates with the same stacking sequences and plate geometries using

average value of CDij. The discrepancies of similitude model as compared to the

theoretical solution are in the range of –13.5% to –27.2%. These discrepancies are fairly
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high because the four values of CDij are quite different. Specifically CD11 and CD22 are

approximately three times higher than CD12 and CD66. In order to minimize the

discrepancy, material of the model should be selected such that the differences in value of

CDij are at minimum. Mechanical ply properties of both laminates used in this study are

shown in Table 4.9.

Table 4.7 shows a more complicated study than that of in Table 4.6. Instead of

having identical dimension of model and prototype as the previous study, the same

models were employed to predicted prototypes with a larger size. Thus differences

between the model and the prototype were not only types of material but also specimen

dimensions. Discrepancies in this study are exactly the same as the case of different

materials with the same plate dimension. A further study, which includes a change of

stacking sequence, is shown in Table 4.8. Using the same [0/90]2s E-Glass/epoxy

laminates with b = 152.4 mm, the buckling loads of [02/902]2s graphite/epoxy laminates

with b = 762mm were predicted. The differences between model and prototype include

material, dimension, and stacking sequence. However, only the distortion in material

properties violate the scaling law, thus, the percent discrepancies remain the same as in

Table 4.6 and 4.7.

4.4 Theoretical verification of annular plates

Similar to the rectangular plate, the scaling law for annular plate is also verified

with the known solution. Both complete similitude and partial similitude are investigated

using the same approach as that of the previous section.

Complete similitude

In this section, the scaling laws shown in eq(3.22) and eq(3.24) are verified using

the theoretical solution discussed in the previous chapter. Solutions of both model and
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prototype are determined from the Ritz method and considered as theoretical solutions.

The theoretical solution of the model is then substituted into the scaling law to predict the

similitude buckling load of the prototype. The accuracy of the scaling law is determined

by comparing the similitude buckling load of the prototype to that of the theoretical

solution. Table 4.10 shows mechanical properties of materials used in this study which

include both composite materials and isotropic materials. The accuracy of the scaling law

for compressive buckling is demonstrated in Table 4.11. A set of 6-mm thick annular

plates with 400-mm outside diameter is selected as prototypes. Their buckling behaviors

are predicted by the derived scaling law using theoretical solutions of the models. The

thickness of the models is 3 mm which is a half of the prototype thickness, while other

dimensions are the same. The first column of Table 4.11 shows the ratio of the inner

radius to the outer radius. The ratio of inner pressure to outer pressure for each case of

study is presented in the next column. Load ratio of 0, 0.5, 1, and 1.5 are used in this

study. The 3rd and 4th columns are theoretical buckling load and mode of the models

determined from the Ritz method. Similarly, the next two columns demonstrate the

theoretical buckling behaviors of the prototypes. The last column labeled as “Similitude

buckling load” is the buckling load of the prototypes (Po)p calculated from the scaling law

by substituting the theoretical buckling load of the model (Po)m into the scaling law. Since

both model and prototype are made from the same materials, all of the stiffness scaling

factors are identical and equal to 8. Along with the complete geometric similarity and

identical load ratio between the model and the prototype, both systems have complete

similarity. Thus, the derived scaling law is applicable and is confirmed by the numerical

comparison in Table 4.11. The similitude buckling loads in the last column agree exactly

with the theoretical solutions. For buckling mode, similitude transformation implies that

the buckling modes of the model and the prototype with complete similarity are identical.
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Thus, similitude buckling modes of the prototype is not shown in the table because they

are identical to those of shown in column 4. It is seen that the buckling mode is also well

predicted using the similitude transformation.

Another study for model-prototype pairs with different size and thickness is

presented in Table 4.12. Prototypes are selected as 5-mm-thick graphite-epoxy annular

plates with 400-mm diameter. The buckling behaviors of the prototypes are modeled

using smaller and thinner models with a diameter of 200 mm and a thickness of 3 mm.

Complete similitude requirements are also satisfied, i.e. the scaling law is applicable. The

numerical result shown in the table confirms the accuracy of the scaling law. Both

buckling load and mode of the prototypes are accurately predicted.

The scaling for torsional buckling is verified in Table 4.13 with a similar

approach. The complete similitude case is considered similar to the compressive buckling

case. Material properties of graphite-epoxy are used in this case of study. Smaller and

thinner annular plates are used to model the prototype plates. The theoretical torsional

buckling loads of the model (Qs)m are substituted in the torsional buckling scaling law, eq

(3.24). The scaling law predicts the similitude buckling load which is very well matched

the theoretical solutions. Like the compressive buckling case, the buckling mode is very

well predicted using the derived scaling law.

In conclusion, the scaling laws for both compressive and torsional buckling of

polar orthotropic annular plates are verified using the Ritz solution as a theoretical

solution. Both buckling load and mode of the model-prototype pair are studied. For

complete similitude cases, the derived scaling laws predict the buckling behaviors of the

prototype very well.
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Partial similitude

As shown, scaling law is very powerful and accurate for problems with complete

similarity. However, it is not always practical or economical to set an experiment on the

model such that the prototype is modeled with complete similarity. The scaling law would

be more versatile if it could be applied to problems which some of the similarity

requirements can be relaxed. This approach is called the “partial similitude” which is very

practical, provided that the error caused by disregarding the similarity criterions can be

assessed in advance. In this section, the partial similitude model is tested by selecting the

model/prototype pairs such that the complete similitude is not fulfilled. The similarity

requirements, which might be ignored, include the geometric similarity, identical load

ratio, and identical stiffness scaling factor. It can be shown that the first two requirements

are very essential for the similitude transformation. Numerical studies confirmed that

partial similitude model ignoring either geometric similarity or load ratio requirement

results in erroneous scaling law. Thus, disregarding those two similarity conditions is not

recommended.

The partial similitude in stiffness scaling factor is the last similarity requirement

which could possibly be neglected. The scaling law applied to a set of models and

prototypes with non-uniform stiffness scaling factors is presented in Table 4.14. From the

definitions of flexural stiffness, all the stiffness scaling factors are not identical if the ratio

of radial modulus, tangential modulus, and shear modulus of the model to those of the

prototype are different. In this study, E-glass/epoxy annular plates are employed as

models to predict graphite/epoxy prototypes. Dimensions of the models and prototypes

are selected to be the same so that the geometric similarity is satisfied. Only the

uniqueness requirement among all the stiffness scaling factors is not achieved. The

stiffness scaling factors are as followed: 3.386,DrC = 1.293,DC θ = 1.364,DrC θ =
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1 1.194DC = . By neglecting that requirement, the theoretical buckling load and mode are

substituted into the scaling law to determine the similitude buckling load and mode of the

prototype. The value of Cstiff in the scaling law is determined from the average value of

the entire stiffness scaling factors which is 1.809. The similitude buckling load of the

prototype is significantly different when compared with the theoretical solution. The

percent discrepancy between the theoretical and similitude solutions ranges from -8 to -27

which is not only high but scattered. It would be difficult to indicate the accuracy of the

scaling law in this case of partial similitude because of the scattering percent of

discrepancy. Similarly, the buckling mode is not well predicted by the scaling law, as

shown in the table. Therefore, the partial similitude model in material properties is not

recommended similar to the partial similitude models in geometric similarity or load

ratio. Further analysis shows that stiffness scaling factors are different from each other

because of the anisotropic properties of material, i.e. difference of modulus in the r and θ

direction.

It is interesting to apply the scaling law to an isotropic model/prototype pair since

the modulus of elasticity is identical in all directions for isotropic material. The scaling

law is applied to isotropic annular plates as shown in Table 4.15. The stainless steel

prototype plates are modeled by aluminum plates. The material properties of both

samples are shown in Table 4.10. The scaling law is proved to be accurate for this case of

study. The similitude buckling loads are very well compared with the theoretical solution,

i.e. percent discrepancy of less than 1%. The buckling modes determined from both

approaches are identical. The partial similitude in this case results in an accurate scaling

law because all the stiffness scaling factors are very close to each other. They are

1 2.877,Dr D DC C Cθ= = =  and 2.857DrC θ =  which are more uniform than those of the

orthotropic material. It should be noted that a pair of isotropic model and prototype could
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be modeled with complete similitude if their Poisson’s ratios are the same and the shear

modulus G is related to the Young’s modulus E according to

( )2 1
EG

v
=

+
           (4.11)

The exact agreement between similitude and theoretical solutions is not obtained in this

case because the shear modulus employed in the study is not related to other mechanical

properties according to eq(4.11). The scaling factor of Drθ is different for those of the

other stiffnesses.

In this chapter, the derived scaling laws for rectangular and annular plates are

verified with available solutions. For all cases of complete similitude, the predicted

buckling loads of the prototypes determined from the theoretical buckling loads of the

models and the derived scaling law are identical to the theoretical solutions. It is observed

that the experimental buckling loads of rectangular plates performed by Tuttle et al. [26]

showed rather large discrepancies. One of the main causes of discrepancies is probably

due to the fact that the experiment setup could not simulate the theoretical boundary

conditions with sufficient accuracy. But the scaling laws will allow us to design

experiments to simulate the condition of real application of the prototype without having

to stick to the classical boundary conditions from theory. Hence, the application of the

similitude theory appropriately can help cost and time savings in designing experiments

of the complex unknown phenomena without the need for the solutions of the complicate

differential equations while at the same time can predict the results according to the actual

condition.



36

 

20
25

30
35
40

45
50
55

60
65

0 2 4 6 8
 Value of M used in the approximate function 

Buckling load (P0 or QS) 

Torsional Buckling (QS , kN/m) 

Compressive Buckling (P0, MPa) 

Fig 4.1. Convergence study for compressive and torsional buckling
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Fig 4.2. Out-of-plane displacement contour of buckling mode 4 and 7
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Table 4.1 Buckling loads of [0/90]2s laminated plates determined from theory and scaling
law.

Configuration Model
(b = 152.4 mm)

Prototype,
(b = 762 mm)

Aspect
Ratio

Load
Ratio

Theory, Nxxm
(kN/m)

Experiment
(kN/m)

%Dis. in
Exp

Theory
(kN/m)

Similitude,
 Nxxp* (kN/m)

0 23.3 36.2 -35.6 0.935 0.935
-0.384 37.9 49.8 -23.9 1.52 1.52
-0.587 56.5 58.0 -2.59 2.26 2.261
-0.688 71.8 N/A N/A 2.87 2.87

0 24.2 28.2 -14.2 0.968 0.968
-0.384 39.6 42.4 -6.60 1.59 1.59
-0.587 46.3 47.3 -2.11 1.86 1.861.5
-0.688 50.6 48.9 3.48 2.03 2.03

0 23.3 21.2 9.91 0.935 0.935
-0.384 37.9 42.9 -11.7 1.52 1.52
-0.587 49.7 54.1 -8.13 2.00 2.002
-0.688 52.9 55.3 -4.34 2.12 2.12

* 
2

m
xxp xxm

p

bN N
b

 
=   

 

Table 4.2 Buckling loads of [±45]2s laminated plates determined from theory and
similitude

Configuration Prototype (b = 762 mm)
Aspect
Ratio

Load
Ratio

Model
(b = 152.4 mm)

(kN/m)
Theory
(kN/m)

Similitude
(kN/m)

0 39.32 1.57 1.57
-0.3 55.78 2.23 2.23

1 -0.6 60.99 2.44 2.44
0 40.71 1.63 1.63

-0.3 49.31 1.97 1.97
1.5 -0.6 60.97 2.44 2.44

0 38.87 1.55 1.55
-0.3 49.53 1.98 1.98

2 -0.6 58.92 2.36 2.36
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Table 4.3 CDij of  [02/902]2s and [0/90]4s plates having [0/90]2s as a model

Model Prototype
[02/902]2s [0/90]4s

[0/90]2s Dij
(Gpa-mm3) CDij

Dij
(Gpa-mm3) CDij

D11 32.34 258.7 8 225.9 6.985
D12 0.7649 6.119 8 6.119 8
D22 15.93 127.4 8 160.2 10.06
D66 1.302 10.41 8 10.41 8

Table 4.4 Scaling law applied to laminated plates having different ply thickness and

stacking sequences.

Buckling
load

[0/90]2s

Buckling load of prototype (kN/m)

[02/902]2s [0/90]4s
Aspect
ratio

Load
ratio Model

(kN/m) Theory Similitude %
Dis. Theory Similitude* %

Dis.
0 4.09 32.75 32.75 0.00 32.75 33.79 3.17

-0.384 6.65 53.16 53.16 0.00 53.16 54.94 3.341 -0.587 9.91 79.29 79.29 0.00 79.29 81.87 3.25
0 4.24 33.90 33.90 0.00 38.31 35.03 -8.57

-0.384 6.95 55.58 55.58 0.00 51.79 57.42 10.91.5 -0.587 8.13 65.05 65.05 0.00 60.62 67.16 10.8
0 4.09 32.75 32.75 0.00 32.75 33.79 3.17

-0.384 6.65 53.16 53.16 0.00 53.16 54.94 3.342 -0.587 8.72 69.74 69.74 0.00 63.77 72.04 13.0

* Calculated base on 11 12 22 66 8.261
4

D D D D
stiff

C C C CC + + +
= =

Table 4.5(a) Buckling loads of [±45]ns having [±45]4s as a model

Buckling load (kN/m)Value of n
in [±45]ns

Scaling Factor
11 12 22 66 16 26, , , : ,D D D D D DC C C C C C Ritz Method Similitude

(Cstiff = CD11)
% Dis.

1 0.015625 : 0.0625 3.887 5.062 30.2
2 0.125 : 0.25 38.87 40.50 4.20
3 0.421875 : 0.5625 135.3 136.7 1.03

4(model) - 324.0 - -
5 1.953125 : 1.5625 635.7 632.8 -0.47
6 3.375 : 2.25 1101 1093 -0.72
7 5.359375 : 3.0625 1751 1736 -0.87
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Table 4.5(b) Buckling loads of [±45]ns having [±45]7s as a model

Buckling load (kN/m)Value of n
in [±45]ns

Scaling Factor
11 12 22 66 16 26, , , : ,D D D D D DC C C C C C Ritz Method Similitude

(Cstiff = CD11)
% Dis.

1 0.0029 : 0.0204 3.887 5.107 31.4
2 0.0233 : 0.0816 38.87 40.85 5.11
3 0.07872 : 0.1837 135.3 137.9 1.92
4 0.1866 : 0.3265 324.0 326.8 0.875
5 0.3644 : 0.5102 635.7 638.3 0.404
6 0.6297 : 0.7347 1101 1103 0.151

7(model) - 1752 - -
Note : a = 304.8 mm, b = 152.4 mm. Load ratio = 0

Table 4.6 Buckling loads of [0/90]2s graphite/epoxy laminates(b = 152.4 mm) modeled
from E-glass/epoxy laminates (b=152.4 mm )

Configuration Model
(E-Glass/Epoxy) Prototype (Graphite/Epoxy)

Aspect
Ratio

Load
Ratio

Theory, Nxxm
(kN/m)

Theory
(kN/m)

Similitude*
(kN/m) % Dis.*

0 8.584 23.37 19.23 -17.7
-0.3 12.26 33.39 27.47 -17.7

1 -0.6 21.18 58.43 47.46 -18.8
0 9.349 24.20 20.94 -13.5

-0.3 12.61 37.42 28.24 -24.5
1.5 -0.6 15.82 46.95 35.43 -24.5

0 8.584 23.37 19.23 -17.7
-0.3 12.26 33.39 27.47 -17.7

2 -0.6 16.31 50.17 36.54 -27.2

* Calculated base on 11 12 22 66 3.71+1.19+3.00+1.07 2.24
4 4

D D D D
stiff

C C C CC + + +   = = =  
  
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Table 4.7 Buckling loads of [0/90]2s graphite/epoxy (b=762mm) laminates modeled from
E-glass/epoxy laminates (b=152.4 mm)

Configuration Model
(E-Glass/Epoxy) Prototype (Graphite/Epoxy)

Aspect
Ratio

Load
Ratio

Theory, Nxxm
(kN/m)

Theory
(kN/m)

Similitude*
(kN/m) % Dis.*

0 8.584 0.9350 0.7693 -17.7
-0.3 12.26 1.336 1.099 -17.7

1 -0.6 21.18 2.337 1.898 -18.8
0 9.349 0.9680 0.8378 -13.5

-0.3 12.61 1.497 1.130 -24.5
1.5 -0.6 15.82 1.878 1.417 -24.5

0 8.584 0.9350 0.7693 -17.7
-0.3 12.26 1.336 1.099 -17.7

2 -0.6 16.31 2.007 1.462 -27.2

* Calculated base on 11 12 22 66 3.71+1.19+3.00+1.07 2.24
4 4

D D D D
stiff

C C C CC + + +   = = =  
  

Table 4.8 Buckling load of [02/902]2s graphite/epoxy prototype (b=762mm) and [0/90]2s
E-glass/epoxy model (b=152.4 mm)

Configuration Model
(E-Glass/Epoxy) Prototype (Graphite/Epoxy)

Aspect
Ratio

Load
Ratio

Theory, Nxxm
(kN/m)

Theory
(kN/m)

Similitude*
(kN/m) % Dis.*

0 8.584 7.480 6.154 -17.7
-0.3 12.26 10.69 8.792 -17.7

1 -0.6 21.18 18.70 15.19 -18.8
0 9.349 7.744 6.702 -13.5

-0.3 12.61 11.97 9.037 -24.5
1.5 -0.6 15.82 15.02 11.34 -24.5

0 8.584 7.480 6.154 -17.7
-0.3 12.26 10.69 8.792 -17.7

2 -0.6 16.31 16.05 11.69 -27.2
* Calculated base on

11 12 22 66 29.67+9.505+23.98+8.533 17.9
4 4

D D D D
stiff

C C C CC + + +   = = =  
  
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Table 4.9 Ply properties of composites used in buckling of rectangular plate problems

E11
GPa (Msi)

E22
Gpa (Msi)

G12
GPa (Msi)

v12

Graphite/Epoxy 155 (22.5)  7.6 (1.1)  4.4 (0.64) 0.34
E-Glass/Epoxy 38.6 (5.6) 8.27 (1.2) 4.14 (0.6) 0.26

Table 4.10 Ply properties of composites used in analysis of annular plates

E11
(GPa)

E22
(GPa)

G12
(GPa)

v12

Graphite/Epoxy 132 10.8 5.65 0.24
E-Glass/Epoxy 38.6 8.27 4.14 0.26

2014-T6 Al 73 73 28 0.3
Stainless steal 210 210 80 0.3

Table 4.11 Compressive buckling of 6-mm thick Graphite/epoxy annular plates
determined from theory and from similitude (b = 200 mm)

Configuration Model (h = 3 mm) Prototype, (h = 6 mm)
Ratio
of a/b

Load
Ratio,

q

Theoretical
buckling load,
(Po)m, (MPa)

Theoretical
buckling
mode (n)

Theoretical
buckling load,

(MPa)

Theoretical
buckling
mode(n)

Similitude
buckling

load, (Po)p
(MPa)

0 38.36 4 153.5 4 153.5
0.5 39.62 4 158.5 4 158.5
1 40.96 4 163.8 4 163.8

0.1

1.5 42.39 4 169.6 4 169.6
0 50.90 7 203.6 7 203.6

0.5 57.81 7 231.3 7 231.3
1 66.90 7 267.6 7 267.6

0.3

1.5 78.85 6 315.4 6 315.4
0 73.16 12 292.6 12 292.6

0.5 93.85 12 375.4 12 375.4
1 130.8 12 523.2 12 523.2

0.5

1.5 208.3 10 833.4 10 833.4
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Table 4.12 Compressive buckling of Graphite/epoxy annular plates determined from
model plates with different size and thickness

Configuration Model
(b = 100 mm, h = 3 mm)

Prototype
(b = 200 mm, h = 5 mm)

Ratio
of a/b

Load
ratio,

q

Theoretical
buckling load,
(Po)m, (MPa)

Theoretical
buckling
mode (n)

Theoretical
buckling load,

(MPa)

Theoretical
buckling
mode (n)

Similitude
buckling

load, (Po)p
(MPa)

0 153.5 4 106.6 4 106.6
0.5 158.5 4 110.1 4 110.1
1 163.8 4 113.8 4 113.8

0.1

1.5 169.6 4 117.7 4 117.7
0 203.6 7 141.4 7 141.4

0.5 231.3 7 160.6 7 160.6
1 267.6 7 185.8 7 185.8

0.3

1.5 315.4 6 219.0 6 219.0
0 292.6 12 203.2 12 203.2

0.5 375.4 12 260.7 12 260.7
1 523.2 12 363.4 12 363.4

0.5

1.5 833.4 10 578.7 10 578.7

Table 4.13 Torsional buckling of Graphite/epoxy annular plates determined from model
plates with different size and thickness

Model
(b = 200 mm, h = 3 mm)

Prototype
(b = 1000 mm, h = 15 mm)

Ratio
of a/b

Theoretical
buckling load,
(Qs)m, (kN/m)

Theoretical
buckling
mode (n)

Theoretical
buckling

load, (kN/m)

Theoretical
buckling
mode (n)

Similitude
buckling load,
(Qs)p (kN/m)

0.1 56.32 4 281.6 4 281.6
0.2 111.6 5 558.2 5 558.2
0.3 198.5 7 992.7 7 992.7
0.4 340.9 9 1704 9 1704
0.5 594.6 11 2973 11 2973
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Table 4.14 Compressive buckling of Graphite/epoxy annular plates determined from E-
Glass/Epoxy model.

Configuration Model
(E-Glass/Epoxy)

Prototype
(Graphite/epoxy)

Ratio
of a/b

Load
Ratio, q

Theoretical
buckling load,
(Po)m, (MPa)

Theoretical
buckling
mode (n)

Theoretical
buckling

load, (MPa)

Theoretical
buckling
mode(n)

Similitude
buckling load,
(Po)p (MPa)

%Disc.

0 17.20 3 38.36 4 31.13 -18.9
0.5 17.58 3 39.62 4 31.82 -19.7
1 17.98 3 40.96 4 32.54 -20.6

0.1

1.5 18.40 3 42.39 4 33.29 -21.5
0 24.90 5 50.90 7 45.05 -11.5

0.5 27.54 5 57.81 7 49.83 -13.8
1 30.80 5 66.90 7 55.73 -16.7

0.3

1.5 34.65 4 78.85 6 62.70 -20.5
0 36.94 10 73.16 12 66.83 -8.64

0.5 46.20 9 93.85 12 83.60 -10.9
1 61.31 8 130.8 12 110.9 -15.2

0.5

1.5 84.27 6 208.3 10 152.5 -26.8
Note: b = 200 mm,  h = 3 mm

Table 4.15 Buckling of stainless steel annular plates determined from 2014-T6 Al model.

Configuration Model (2014-T6 Al) Prototype (Stainless steel)
Ratio
of a/b

Load
Ratio,

q

Theoretical
buckling load,
(Po)m, (MPa)

Theoretical
buckling
mode (n)

Theoretical
buckling

load (MPa)

Theoretical
buckling
mode (n)

Similitude
buckling load,
(Po)p (MPa)

%Disc.

0 66.93 2 192.3 2 192.2 -0.021
0.5 67.36 2 193.5 2 193.5 -0.021
1 67.71 1 194.7 1 194.4 -0.104

0.1

1.5 66.99 1 192.6 1 192.4 -0.104
0 105.6 3 303.3 3 303.2 -0.025

0.5 110.0 3 316.1 3 316.0 -0.025
1 112.2 2 322.4 2 322.1 -0.078

0.3

1.5 110.8 1 318.6 1 318.1 -0.142
0 171.1 6 491.3 6 491.2 -0.009

0.5 198.3 5 569.6 5 569.5 -0.023
1 222.1 4 638.2 4 637.9 -0.052

0.5

1.5 208.4 1 599.4 1 598.4 -0.159
Note: b = 200 mm, h = 3 mm


	º·¤Ñ´ÂèÍ
	Abstract
	The similitude theory is employed to buckling of composite plate problems by applying a similitude transformation directly to the differential governing equations. Rectangular laminated composite plates and polar orthotropic annular plates are investigat
	Executive Summary

	Contents
	
	Chapter 1. Introduction1
	Chapter 2. Literature review5
	5.1 Experiment setup44



