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Abstract

The similitude theory is employed to buckling of composite plate problems by
applying a similitude transformation directly to the differential governing equations.
Rectangular laminated composite plates and polar orthotropic annular plates are
investigated in this study. The scaling laws for each problem along with similarity
requirements between model and prototype specimens are obtained. The derived
scaling laws are theoretical verified with available solutions. The theoretical buckling
load of a model is substituted into the scaling law to determine the scaling buckling
load of a prototype, which is then compared to the theoretical solutions to determine
the accuracy of the scaling law. In case of complete similitude, predictions from the
derived scaling laws are identical to the theoretical buckling load. Small percent of
discrepancy is observed for cases of recommended partial similitude. Experimental
verification was also performed on a custom-made compression test frame. Specimens
used in the study are rectangular composite plates with a combination of simple and
free boundary conditions and stacking sequences of [0/90],s, [02/902]2s, and [0/90]4s.
The distribution of percent discrepancy between scaling and experimental buckling
loads for both complete and partial similitude cases is considered as a normal
distribution. The average percent discrepancy of complete similitude and partial
similitude are -4.75 and 10.7%, respectively. A moderate deviation of the percent
discrepancy is observed from the study. Out of thirty pairs, twenty-three pairs of
model-prototype specimens have percent discrepancy within +10% for complete
similitude case. In case of partial similitude, 30 out of 40 model-prototype pairs have
percent discrepancy in the range of 0 to +30%. Therefore, the derived scaling laws are
confirmed theoretically and experimentally. They are useful to estimate buckling of

plates with complicate boundary conditions which full-scaled test is not preferred.

Keywords: buckling, composite material, similitude, scaling law, experiment



Executive Summary

Several studies devoted to buckling of composite plate are available in the
literatures. Some experimental studies found a moderately high degree of discrepancy
of experimental buckling loads compared with theoretical solutions. Imperfection of
plate and boundary condition of the specimens are frequently mentioned as sources of
the inconsistency. So there is a need for a better approach to predict the buckling load
of plates with imperfections or plates with complicated configurations. This research
project studies similitude theory as applied to buckling of composite plate problems.
The project classifies into three sections; deriving the scaling law, verifying the
scaling law with the theoretical solutions, and verifying the scaling law with the

experiment.

In the first part, the similitude theory is employed to buckling of composite
plate problems. It is different from the previous studied by other researchers for the
reason that, in this study, a similitude transformation was applied directly to the
differential governing equations, not to the solutions of the equations as before. In the
present study, rectangular laminated composite plates and polar orthotropic annular
plates were investigated. The scaling laws for each problem along with similarity
requirements between model and prototype specimens are obtained. The complete
similitude requirements include geometric similarity, identical load ratio, and identical
stiffness scaling factor. The scaling laws are independent of boundary conditions, i.e.

they are applicable providing that boundary conditions of both systems are identical.

The second part of the project is to verify the derived scaling laws with

available theoretical solutions. For rectangular plates, the available theoretical



solutions are analytical solutions in form of closed-form solutions and the semi-
analytical-numerical Ritz solutions. Only the Ritz method is applicable for annular
plate problem. The theoretical buckling load of a model is substituted into the scaling
law to determine the scaling buckling load of the prototype. Then, the scaling buckling
load is compared to the theoretical solution to determine the accuracy of the scaling
law. For complete similitude case, predictions from the derived scaling laws are
identical to the theoretical buckling load. In practice, it might be difficult or costly to
set up a model experiment which is completely satisfied the similarity requirements
for a particular prototype. Some similarity requirements could be dropped to avoid
expensive experiment. Applying the scaling law in this fashion is called partial
similitude. From the numerical calculation, a small percent of discrepancy is observed

for cases of recommended partial similitude.

In the final part of the project, experimental verification was performed on a
custom-made compression test frame. The test setup is capable of applying a uniform
compression on a rectangular specimen, and supporting the specimen with simply
supported boundary conditions. Specimens used in the study are rectangular
composite plates with a combination of simple and free boundary conditions and
stacking sequences of [0/90]as, [02/902]2s, and [0/90]4. The distribution of percent
discrepancy between scaling and experimental buckling loads for both complete and
partial similitude cases is considered as a normal distribution. The average percent
discrepancy of complete similitude and partial similitude are -4.75 and 10.7%,
respectively. A moderate deviation of the percent discrepancy is observed from the
study. Out of thirty pairs, twenty-three pairs of model-prototype specimens have
percent discrepancy within +10% for complete similitude case. In case of partial

similitude, 30 out of 40 model-prototype pairs have percent discrepancy in the range



of 0 to +30%. Therefore, the derived scaling laws are confirmed theoretically and
experimentally. They are useful to estimate buckling of plates with complicate

boundary conditions where full-scaled test is not desirable.
The outputs of this research project up to now are:

1. Singhatahadgid, P. and, Ungbhakorn, V. “Scaling laws for buckling of polar
orthotropic annular plates subjected to compressive and torsional loading,”

Accepted for publication in Thin-Walled Structures.

2. Arunpitak, S., Singhatanadgid, P. and Ungbhakorn, V. “An experiment
verification of the scaling law for buckling of cross-ply composite plates,”
Proceedings of the 18th Conference of the Mechanical Engineering Network of
Thailand (ME-NETT 18). Sofitel Raja Orchid Hotel, Khon Kaen, 18-20 October

2004, code AMMA49.

3. Supasak, C. and Singhatanadgid, P. “A comparison of experimental buckling load
of rectangular plates determined from various measurement methods,”
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2004, code AMMA43.



Contents

Chapter 1. Introduction
Chapter 2. Literature review
2.1 Buckling of composite plate
2.2 Scaling law for buckling problem
Chapter 3. Scaling law applied to buckling problem
3.1 Similitude transformation
3.2 Scaling law for buckling of rectangular composite plates
3.3 Scaling law for buckling of annular orthotropic plates
Chapter 4. Theoretical verification.
4.1 Buckling of rectangular plates
4.2 Buckling of polar orthotropic annular plates
4.3. Theoretical verification of rectangular plates
4.4 Theoretical verification of annular plates
Chapter 5. Experimental verification.
5.1 Experiment setup
5.2 Specimens and boundary conditions
5.3 Experiment procedures and data reduction
5.4 Scaling law verification
Chapter 6. Discussions and conclusions
References

Appendix

12

12

13

16

22

24

26

30

44

44

45

46

48

61

64

68



Chapter 1. Introduction

A so-called “advanced” composite material is a material system which consists of
high strength and high modulus fibers embedded within a matrix material. Most of the
loads applied to the composite structure are carried by fibers which are held together by
the matrix. The matrix protects fibers from abrasion and transfers stresses from one fiber
to the next. Because of their high strength-to-weight and stiffness-to-weight ratios,
composite materials are extensively used in many applications in the aerospace,
automotive, and marine industries. A main benefit of composite material is an ability to
be tailored, which may not be obtained from conventional isotropic materials. Engineers
can design the fiber orientations within the composite so that the desired mechanical
properties are achieved.

In many applications, composites are manufactured in form of thin plate-like
structures. Consequently, failure of laminated plates arises not only from excessive
stresses but also from buckling. When a flat laminated plate is subjected to low in-plane
compressive loads, the plate remains flat and is in equilibrium. As the magnitude of the
in-plane compressive load increases, however, the equilibrium configuration of the plate
is eventually changed to a non-flat configuration and the plate becomes unstable. The
magnitude of the compressive load at which the plate becomes unstable is called the
“critical buckling load” and at that level of load (or above) the panel is in a buckled
condition. There are several studies in the past concerning the buckling problems of
composite plates. Buckling behavior of composite plates has been determined using
different approaches such as analytical methods, numerical methods, and experiment
method. Each approach has its own advantages and disadvantages. Analytical approach is

simple and straightforward for using in design of engineering structures since a closed



form solution is usually obtained. However, this method is limited to simple problems
only, i.e. it cannot solve complicated problems. The numerical approaches such as the
Ritz method, Galerkin method, and FEM are more versatile than the analytical method
but they are time-consuming because of the intensive calculation. Although both methods
may be used to predict the buckling behavior, however any new design usually requires
extensive experiment evaluation before going to production. Experiment on a prototype is
an ideal method for any new products since it is the best way to simulate every
parameter’s effect which might affect the specimen’s behaviors. Then again, this method
is very expensive and time consuming.

This is where the similitude method appears as an indispensable tool in order to be
able to design efficient experiments to save time and cost. Similitude theory can be
roughly stated to be a branch of science concerned with sufficient and necessary
conditions of similarity among phenomena. If such similarity conditions can be found
among parameters of the model and prototype, then the scaled replica can be built to
duplicate the behaviors of the full-scaled system and the results from the model
experiments can be employed to predict the behavior of the prototype which has complete
similitude with the test model.

Simitses, et. al [1-4] have published several papers on cross-ply laminated plates
that deal with the establishment of the similarity conditions between the two phenomena,
the model and the prototype. Then they use these similarity conditions or “scaling laws”
to design scaled-down models and employ the model data from theoretical calculation to
predict the behavior of the prototypes from the scaling laws. However, they have applied
the similitude theory to the solutions of the governing differential equations (GDE)
instead of to the GDE directly. This procedure puts serious limitation on the applicability

of the concept of similitude theory because some forms of exact or approximate analytical



solutions must be obtained before they can apply the similitude transformation. The main
objective of this study is to derive the similitude invariants for buckling loads of the
laminated composite plates subjected to in-plane loads by applying the similitude
transformation to the governing differential equations directly. The derived similitude
invariants are non-dimensional and applicable to both the models and the prototypes,
hence “scaling laws” have been established. The validity of the scaling laws is then
verified theoretically and experimentally. The buckling loads of the model and prototype
are theoretically calculated from the available solutions. The theoretical results of the
model are then substituted into the scaling laws to predict the buckling loads of the
prototype. The results from the scaling law are finally compared with the theoretical
solutions to determine the validity of the scaling law. Experimental verification is also
employed by grouping specimens as models and prototypes before experimentally
determine buckling of all specimens. Similar to the theoretical verification, buckling
loads of the models are substituted into the scaling law to determine the similitude
buckling loads of the prototypes. These similitude buckling loads are compared to the
experimental buckling loads to determine the accuracy of the scaling law.
In summary, objectives of this study may be itemized as follows:
1. Derive scaling law for buckling of rectangular and annular composite plates from
the governing differential equations
2. Verify the derived scaling law with the theoretical solutions
3. Perform an experiment on rectangular composite plates to verify the derived

scaling law

In this report, buckling of composite plate and similitude theory are outlined and
reviewed in the first two chapters. The discrepancy of experimental buckling load

compared to the theoretical solution and the advantages of the similitude theory are



pointed out. Similitude transformation is applied to buckling problem of rectangular
composite plates and polar orthotropic annular plates in Chapter 3. The scaling laws for
both problems and the similarity requirements are obtained. The obtained scaling laws are
verified with available theoretical and numerical solutions in Chapter 4. The experimental
verification was performed on rectangular composite plates and is described in Chapter 5.
The experiment setup, testing procedure, and verification of the scaling law are explained,
thoroughly. This report concludes in the last chapter with some discussions and

conclusions of the present study and recommendations for future studies.



Chapter 2. Literature Review

This chapter gives a review of previous studies on buckling of anisotropic plates.
The general buckling behaviors of thin plate are described in the first part of this chapter.
Buckling behavior of flat composite plates is then reviewed with an emphasis on
rectangular and annular composite plates. Both analytical and experimental studies that
have appeared in the literatures are included. Finally, the similitude theory is reviewed in

the last part of the chapter

2.1 Buckling of composite plate

Besides tensile or compression failures, buckling is another mode of failure that
involves stability of structures. It usually happens in slender elements such as beams,
columns, or plates. This study focuses on buckling of composite plates; so only plate
structures are of interest herein. A panel subjected to uniaxial or biaxial compressive
loading will buckle if compressive stress at any point is sufficiently high. A plate under
compression-tension biaxial loading may also buckle. Buckling phenomenon may even
arise from more complicated loading conditions such as non-uniform tensile loading,

shear loading, moisture, or exposure to elevated temperatures.

The buckling phenomenon can be described from a plot of the out-of-plane
displacement (w) at a specific point, usually at the point of maximum out-of-plane
displacement, against in-plane load (P), as shown in Fig. 2.1. In classical linear buckling
theory, when in-plane load (P) increases from zero, out-of-plane displacements are
assured to remain zero, and a load-displacement curve follows Path I until load P, is

reached. At this point, which is called a bifurcation point, the load-displacement curve



may follow Path II or Path III. If the in-plane load is perfectly applied at the mid-plane of
a perfect plate, compressive failure of material could be reached by following Path II.
There is no buckling in this case. Path III is a theoretical buckling path and can be
obtained from classical linear buckling theory. The critical buckling load is defined on
this horizontal line. In a nonlinear theory, the curve follows Path IV, the “postbuckling”
curve. This curve is important in the study of plate behavior beyond the buckling load,
P,,. For a real plate with initial imperfections, the curve will not follow Path I, i.e. an out-
of-plane displacement occurs as soon as load P is applied. In this case, the load-

displacement curve will resemble Path V.

Although laminated composite plates have been successfully used in a wide range
of applications, a complete understanding of the mechanical behavior exhibited by
composites has not been accomplished, and new research results appear continuously.
Studies concerning anisotropic plates began to appear in the 1950’s and early 1960’s. A
textbook devoted to mechanics of anisotropic plate by Lekhnitskii [5] appeared in 1956.
These early publications lay the foundation for later studies of the bending, buckling, and
vibration of composite plates, which began to appear with increasing frequency in the late

1960’s.

There are several texts devoted to buckling of composite plates and very well-
known to researchers. A text book by Whitney [6] published in 1987 covers several topics
from mechanics of composite material to analysis of anisotropic structures. The buckling
problem of composite plates also appears in several textbooks devoted to fundamental
mechanics of composite [7-9]. A textbook by Turvey and Marshall [10] released in 1995
devotes specifically to buckling and postbuckling of composite plates. This book covers
several methods used in buckling analysis such as the Ritz method, finite element

analysis, and finite strip method. Besides several available textbooks, summaries of



advanced topics and recent developments in laminated plates are appeared in the review

papers by Leissa [11,12], and Kapania et al. [13].

Buckling of composite plates can be investigated using analytical and numerical
analysis. Analytical solution of the buckling of composite plates requires a solution of the
governing equations. These equations are only solvable in a few simple cases, such as a
specially orthotropic rectangular plate with simply supported boundary conditions. In
more general problems an analytical closed form solution is generally not available,
primarily due to the bending-twisting coupling terms, D;s and D, In these cases a
numerical method, usually based on an energy principle, is employed to obtain an
approximate solution. The Ritz and Galerkin methods are two common techniques used
to obtain the solutions approximately. These approximation techniques can be performed
easily and give reasonable results with minimal computational efforts; that is, these
methods are less computationally intense than another numerical method, the finite
element technique. The finite element method is based on either an incremental approach
or asymptotic method. It enables an engineer to solve plate problems with complex
geometry, complicated boundary condition, or even nonlinear problem. However, lengthy
calculations are involved in this approach. Although a modern computation tools such as
supercomputers are now available, the versatility of finite element analysis is still
somewhat restricted by computation time and memory needed, at least during the

preliminary design process.

A closed-form solution for a specially orthotropic plate, i.e. either unidirectional
or a symmetric cross-ply panels, is thoroughly derived by Whitney [6]. Mode shape
transitions are also graphically presented. Several studies on buckling of composite plates
using the Ritz method are available. In 1986, Lagace et al. [14] employed the Ritz method

to study the effect of mechanical couplings on buckling behavior. They concluded that



those mechanical couplings, especially stretching-bending couplings, cause out-of-plane
displacement prior to buckling in unsymmetric laminates. This phenomenon significantly
reduces the critical buckling load. An experimental verification was also performed. The
Ritz method was demonstrated, by Narita and Leissa [15], to be accurate for symmetric
laminates if enough number of terms (more than 100 terms) were used. A double sine
series was used to approximate the out-of-plane displacement. Convergence studies and
contour plots of buckling mode shape were also presented. However, the in-plane
displacements were ignored in the strain energy function. Similar approximate function
and analysis method were used by Chai and Hoon [16] to study the buckling of generally
laminated plates. The results agreed with the exact solution for symmetric crossply,
antisymmetric crossply, and antisymmetric angle-ply. The effect of mechanical couplings,

D ;s and D4, on buckling load was shown to be an important factor in the analysis.

Buckling studies of composite plates have not only been limited to simple
rectangular plates, but irregular plates such as elliptical plates, triangular plates, or
annular plates have also been explored. Ramaiah [17] used the Rayleigh-Ritz method to
determine the critical buckling load of polar orthotropic annular plates with various load
ratios and rigidity ratios. The numerical solutions in form of buckling load parameters are
tabulated for direct used in design process. Doki and Tani [18] studied the buckling of
similar annular plates under a combination of internal radial pressure and torsion using
the Galerkin method. Asymmetric buckling modes were also considered in addition to
axisymmetric buckling mode. Besides buckling load, buckling mode is also investigated.
There are several other researches which are relevant to the present study. For example,
Ye [19] studied axisymmetric buckling of laminated annular plate by considering the
problem as a fully three-dimensional elasticity problem. Buckling of moderately thick

polar orthotropic annular plates was investigated by Chang [20]. Dumar et al.[21]



included the shear deformation theory to study the postbuckling of thick laminated

annular plates.

There have been several experimental studies on buckling of composite plates
using different measurement techniques appeared during the past two decades. Chai,
Hoon, and Chin [22] experimentally confirmed the buckling behavior determined from
the Ritz method using laser-based holography and strain gauges. Chai, Banks, and
Rhodes [23] used a linear variable differential transformer (LVDT) to measure the out-of-
plane deflection to study the buckling of simply supported plates under uniaxial loading.
The results correlated well with finite element solutions and other available studies
[24,25]. Discrepancies between -7% and 11% of experimentally determined buckling
loads were reported. Another experimental method for monitoring out-of-plane
displacement is the shadow moiré technique. This experiment method was used by Tuttle,
Singhatanadgid, and Hinds [26] to observe the whole-field out-of-plane deflections of
composite plates under tension-compression biaxial loading. Experimental buckling
modes were well compared with predictions obtained numerically based on the Galerkin
method. As expected, buckling loads increased as the transverse tensile loads were
increased. Almost all of the previous studies indicated several difficulties in setting up the
experimental conditions, such as loading conditions and boundary conditions, which are
comparable to the conditions assumed in the analysis. These factors are the common

sources of discrepancy between measurement and prediction.

2.2 Scaling law for buckling problem

From a brief literature review in the previous section, buckling problems of

composite plates can be examined using a variety of approaches. Each method has
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advantages and disadvantages. The analytical approach is the simplest method to
determine buckling load and mode, but it is applicable to only a group of problems. The
semi-analytical-numerical methods such as the Ritz and Galerkin methods are more
general and capable to solve problems which do not have a closed-form solution.
Certainly, these methods required more calculation than the analytical approach. The last
approaches are the fully numerical method which is the most powerful, but requires the
most resources compared to other methods. This calculation category includes finite
element, finite strip, and boundary element methods. Although there are several analytical
and numerical methods available, several experimental studies have also been performed.
The percent discrepancy of £20% between experiment results and available analytical or
numerical solutions is usually reported. The likely sources of discrepancy are
imperfections of the specimen and boundary conditions. To be specific, the prediction of
buckling load and mode using available approaches is not accurate because the
imperfections of the real structure are not included in the mathematical model. There is a
need to predict the buckling of composite plate containing imperfections.

Rezaeepazhand, et. al [3] employed similitude theory to buckling of laminated
composite plate problems. The scaling laws shown the relationship between buckling load
of a prototype structure and its models were obtained. Rezaeepazhand, et. al [27] also
applied similitude theory to the free vibration of laminated plates. The relationship
between structural geometric parameters and frequency parameters were obtained from
the scaling laws. Both cross-ply and angle-ply symmetric plates were included in the
study. The similar approach was also employed to bending, buckling, and vibration of flat
laminated surfaces by Simitses [28]. In the similitude studies mentioned so far, the
authors have applied the similitude transformation to the solutions of the governing

differential equations instead of to the governing differential equations directly. This
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procedure puts serious limitation on the applicability of the concept of similitude theory
because some forms of exact or approximate analytical solutions must be obtained before
they can apply the similitude transformation. Singhatanadgid et. a/ [29] and Ungbhakorn
et. al [30] proposed a new similitude approach which applies the similitude
transformation to the buckling governing differential equations directly. They showed
numerically that the buckling loads of the model and the prototype are related via the
scaling law if the model-prototype pair has complete similarity.

In this study, the scaling laws for buckling of rectangular cross-ply plates derived
by Singhatandgid et. al [29] were experimentally verified. The composite specimens were
classified into two groups, i.e. model and prototype. Both specimens were tested on a
compression test frame for buckling loads which were then used to verify the derived
scaling laws. The similitude transformation was also applied to a more complicated

buckling problem, i.e. buckling of polar orthotropic annular plates.

In-Plane Load (P)

II v
11

Out-of-Plane Displacement (w)

Fig. 2.1 Buckling phenomenon represented by a plot of P vs. w



Chapter 3. Scaling law applied to buckling problem

In this chapter, similitude theory is applied to buckling of composite plate
problems. The similitude theory and similitude invariant are first illustrated by applying
the similitude transformation to the governing equations. The concept is then applied to
buckling of rectangular plate and annular plate problems. The similitude invariants and
scaling laws are obtained for both problems. Both scaling laws are verified analytically

and experimentally in the next chapters.

3.1 Similitude transformation

Similitude theory is extensively described in a few textbooks [31-33]. Only a brief
summary which is relevant to this study will be presented as follows. The essence of
similitude theorem relevant to this research can be stated as: the sufficient and necessary
condition of similitude between two systems is that the mathematical model of the one be
related by a bi-unique transformation to that of the other [33]. The two systems refer to a
model and a prototype. Usually, the prototype is the system of the real structure which is
not convenient or too expensive to conduct an experiment on. The model system is a
replica of the prototype with particular scaling factors. Thus, this system can be resized to
fit the experiment setup and budget. Considering all variables, geometric and physical, of
the prototype and the model denoted by X,; and X,,; respectively, where i = 1,2,... n. The

two systems or phenomena are similar if

X, =CXn, and Xu=C'X,



13

Since the mathematical models of two similar systems are invariable under
similitude transformation, hence, the differential equations of any two similar systems

must be the same, therefore

LXw) = LX) (3.1
Let the model and prototype variables be related to each other by the equations:

X, = CXoi (3.2)
Substitute eq(3.2) into (3.1) , the relation yields

LX) = L(CiXw) 3.3)
From the above theorem, it is necessary that

LX) = @(C) LX) (3.4)

where ¢(C;) is the functional relationship among the transformation parameters. If both

systems have similarity according to the similitude conditions, it is compulsory that

PpC) =1 (3.5)

Hence, the condition for the two systems to be similar is that the function linking the
transformation parameters equals to unity. The equation ¢(C;) = 1, is accordingly called
the similitude invariant. From the similitude invariant, the scaling law relating a particular
parameter of both systems can be derived. Next, this similitude concept is applied to

buckling problems of rectangular plates and polar orthotropic annular plates.

3.2 Scaling law for buckling of rectangular composite plates

The similitude theory will be applied to the governing differential equation for

buckling of the symmetrically laminated plates subjected to combined normal in-plane
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loads. A rectangular composite plate is loaded in the x and y directions as shown in Fig

3.1. The transverse tensile load N,, is related to the compressive load Ny, by the in-plane

load ratio defined by P :N—yy. The specimen is buckled due to the compressive load in

XX

the x direction. The classical buckling differential equation is simplified to [6]

Dyw, .. +4Dw

> Xxxx

+2(Dy, + 2Dy ) W, .,
+N_, (w +PW,”) 0

dxx

S Xxxy

(3.6)

+4D,w +D,,w

2xyyy yyyy

Let the variables of the prototype be related to those of the model through the similitude

scaling factors (Cy, Cy, Cy,...) as follows.

C Xons yp nym’ Wp = wam’

X" 'm

( ) Dy( ), P, =C,bB,, and (N"x)p:CNxx(Nxx)m (3.7)

where subscripted “p” refers to “prototype” and subscripted “m” refers to “model”

The governing equation for a model can be written from eq(3.6) with a subscript

“m” for every parameter. The equation for the model is;

(D] 1 )m (W’xxxx )m + 4(Dl6 )m (W’xxxy )m +2 {(D]2 )m +2 (D66 )m } (W’xxyy )m

(3.8)
+4(D26 )m (W’mw )m + D22 (W’yyyy )m + (Nxx )m {(W’xx )m + Pm (W’yy )m} =0

Similarly, the governing equation for the prototype can be represented by an

13 2

equation similar to eq(3.8), only substituting the subscript “m” with subscript “p.” This
governing equation can be written in term of the parameters of the model using the

scaling factors in eq(3.7). The equation is represented by
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C C
Con C_}::(Dll )m (w’xxxx )m +4C ?&)(Dls )m (w’xxxy )m

+2 {sz (D12 )m +2C) (D66 )m } %(W’xxyy )m
X Ty

c (3.9)

+4C5 C—E}}(DZG )m (W’xyyy )m +Ch %Dzz (W’y}yy )m

X"y y

C C
+CNxx (Nxx )m {C_‘;(W’xx )m + CP C; Pm (W’yy )m} - 0

y

The governing equations of the model and the prototype are similar if all groups of the
scaling factors in each term of the prototype’s governing equation are identical. The
following necessary conditions for the models to behave exactly as the prototype are

obtained:

Cpiy — Chie — Cpi — Ches — Chas — Cpy — Cre — CreCop (3.10)
c cc ¢ et e oo

Let the prototype and model be related with complete geometric similarity, therefore C, =
C,= C, = Cp, where a and b are plate height and width, respectively. Thus, eq(3.10) is

true only if Cp equals to unity, hence, it can be rewritten as:

— CDll — CDIG — CDIZ — CD66 — CD26 — CDZZ (3 11)
Nxx C2 C2 C2 C2 C2 CZ :
b b b b b b

For complete similarity between the prototype and its model, it is required that the scaling

factors of all laminate flexural stiffnesses must be equal, i.e.
Coi = Cpie = Cpiy = Cpyy = Cpg = Cpg (3.12)
Let the scaling factors of the flexural stiffnesses be equal to Cy; then the above

equations yield the following similitude invariant for the symmetric laminated plates

subjected to combined in-plane loads:
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CNxx C[f —

Cstiﬁ

1 (3.13)

which gives the following scaling law:
B>
(M), =(N..), Coy b—%’ (3.14)
The derived scaling law is valid for both symmetric cross-ply and angle-ply
laminates. For cross-ply laminated plates, the complete similitude requirement of the
stiffness scaling factor in eq(3.12) is simplified by excluding the terms containing Cps
and Cpys because those stiffnesses are zero automatically. In conclusion, the complete
similitude is achieved when the prototype and model have complete geometric similarity,
that is C, = C} and they are subjected to the same load ratio, Cp = 1. It is also required that

the scaling factors of all non-zero laminate flexural stiffnesses must be equal.

3.3 Scaling law for buckling of annular orthotropic plates

In this section, the similitude transformation is applied to a more complicated
buckling problem, i.e. a buckling problem of polar orthotropic annular plates. A thin
annular plate of uniform thickness 4 is composed of a polar orthotropic material with
inner and outer radii of a and b, respectively. The plate is clamped on both internal and

external edges. Two cases of buckling conditions considered in this study are in-plane

2
radial compressive loads, P; and P,, and torsional shearing load of Q, and 0, (éj , as
a

shown in Fig 3.2. The buckling governing equation for both cases is [18]
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2 2 D
+_(D1 +Dr9)W,rr99 +r_4(De +D, + Dr)W,aa +r_fw,9900 (3.15)

o o 1 1 b ? Wr@ Wé’
“Nw,, = NG| —w, 4w, |—20,| 2| | 2L -—2 =0
r

r r r

where N’ =h(p.rk—1+Q,r—k_1)

Q: b2k _a2k = b2k _a2k
D :E"'—h3 D =E9—h3 D :G_h3 D =v.D =v D
T R0-vy,) Y 12(-vy,) P e 7 e e

For buckling caused by radial compressive load only, the torsional shearing load

QO shown in eq(3.15) vanishes. Similarly, radial compressive loads are zero for the case

of torsional buckling only, i.e. N7 and N, are absent from the governing equation.

Now, the similitude transformation is applied to the governing equation, eq(3.15).
Let call two systems of interest a “model” and a “prototype” and let the parameters of the
model be related to those of the prototype through the similitude scaling factors as

follows:

0,=0,,r,=Cr,,w,=Cw,, h,=Ch,,q,=Cgq,,

r'm?

(Dre)p = CDI‘H(DI'H)W;’ (Dl)p = CDI(Dl)m’ and kp =Ck, =k, (3.16)
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1
. . . Cpo |2 .
where C; is the scaling factor of the i parameter, and C;, =| ——= | according to the
Dr

definition of k. It should be noted that coordinates & of the model and the prototype are

identical or the scaling factor of @is 1. In addition, the scaling factor Cy which is equal to

1

Cpp )2
(—CDH ] is also set to be unity. This implies that Cpy = Cp,, which will be shown later
Dr

that this is the condition for complete similitude.

The similitude transformation can be accomplished by writing the governing

equations for the model and the prototype. The governing equation of the model is written
from eq(3.15) by substituting the variables N7 and N, with the appropriated values
shown previously. Most of the parameters are subscripted by “m” to indicate that the
equation is the governing equation of the model. The only two non-subscripted
parameters are € and k, since they are set to be identical for both systems. For example,
the first four terms of the governing equation of the model can be written as:

o'w Z(D,) o’w

( ) m oy m m
Tm ot v or’ o ror

m m m m m m

The governing equation for the prototype can be written in term of the model
parameters by substituting appropriate similitude scaling factors from eq(3.16). Again,

the first four terms of the equation are written as

C &( ) 84M}m +CDr &2(D’)m 83M}m _CDQ &(De)m 82‘/Vm
et tmen ¢ ¢, o GG o
(3.18)

CDG’ Cw ( D0 )m 6‘/Vm
+ T T T e =
c C. r or

r m m




19

To obtain the similarity between both systems according to the similitude concept,
governing equations for the model and prototype, eq(3.17) and eq(3.18), must be
identical. Specifically, groups of scaling factors in each term of the eq(3.18) must be
equal so that they are canceled out. Thus, the requirements of similarity or conditional

equations for both systems to behave similarly are:

Co_ConC _CwC CwC CpCu_ CpyCy
ctoc ot C¢c o c¢c ¢
c,C, C,,C, C C C,, Cpy
Go g ¢ eTEGgaTaa
Ck+1 C B C Ckarl C . Ck 1 C
=C,C, CH1 = e =Gl ket Z’b“ : =C,C,,CH2C b e (3.19)
ccH C, cHC, c,c C,
= C'hC'PuCVIJNCHC’;]F1 qc,zz CQ ChCPoCrk : Czk Cz C CPqu : sz Cz
b r b r b r
cc, CcC™c C> C
2k+2 k— 2k+2 k— b w w
=C,C,, C7C; lczk & =C,C,, Cr ! qc,f" o =Ca b

Note that the geometric similarity is assumed in the similarity requirements so that
C,, C, and Cj are identical and represented by Cp. It is further assumed that the load ratio
of both systems are identical, i.e. C, =1. Therefore, the similarity requirements in eq(3.19)

are simplified as:

CDr _ CDH _ CD] _ CDr9 _ ChCPa _ CQs (3_20)
G G G G G G

which imply that C,,, = C,,, = C,,, = Cp,, for complete similitude.

In summary, the requirements for complete similarity between the model and the
prototype include a) the complete geometric similarity, b) identical load ratio ¢ and
rigidity ratio k&, and c) identical stiffness scaling factors. By representing all of the
stiffness scaling factors by Cyy; €q(3.20) can be rearranged in term of similitude invariant

for the buckling problem caused by internal and external compressive loads as:
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Ch CPo th2 _

Cstiﬁ"

1 (3.21)

The scaling law for buckling of polar orthotropic annulus plates under internal and

external compressive loads is then obtained as:

hob
(B), = Cuy 355 (R), (3.22)
p “p

For buckling caused by torsional shear load, the similitude invariant and the scaling law

are written as:

C,C?
& (3.23)
Cstiﬁ"
b2
and (Qv )p = Cvt;'[}" b;;(Qv )m (324)
P

It is notice that the scaling laws derived for both buckling cases are independent of
the plate boundary conditions. It implies that the scaling law can be used to predict the
behavior of the prototype, provided that both model and prototype have the same

boundary conditions and all the similarity requirements are satisfied.

In conclusion, similitude transformation is employed to buckling problems of
composite plates. Both symmetrical rectangular plates and polar orthotropic plates are
included in this study. Along with the scaling laws, the conditions for complete similarity
between two systems are also obtained. The derived scaling laws, i.e. eq(3.14), eq(3.22),
and eq(3.24), will be verified in the next two chapters. In chapter 4, the derived scaling
laws are verified using available analytical or numerical solutions. The buckling loads
and modes of prototypes are determined from the available solutions. They are then

compared to those of determined from the scaling laws which are calculated using
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buckling load of the corresponding models. The experimental verification of rectangular

specimens is presented in chapter 5.

S|

Fig 3.1 Rectangular plate subjected to in-plane load N,., and N,,

L 2a L 2a
2b 26

Fig. 3.2. Annular plate under compressive radial and torsional loading



Chapter 4. Theoretical Verification

The scaling laws for both buckling problems are derived in the previous chapter
along with their similarity requirements. In this chapter, the derived scaling law will be
verified with the theoretical or numerical solutions. The buckling solutions for
symmetrical rectangular plates and polar orthotropic annular plates are outlined in the
first two sections. Then, the accuracy of the scaling law is determined using available

solutions. Both complete and partial similitude cases are investigated.

4.1 Buckling of rectangular plates

For the case of symmetric cross-ply laminated plates subjected to biaxial loading,
as shown in Fig 3.1, with classical simply-supported boundary condition the buckling

load can be derived from the governing equation, eq(3.1) as [6]

ol a3 o]

T AT

But due to terms with odd number of derivatives in the governing equation, the

solution for symmetric angle-ply laminated plates subjected to biaxial loading with
simply-supported boundary condition will be calculated from an approximate solution by

the Ritz method [6].

The Ritz method begins with selecting the mid-plane displacement functions
which satisfy the geometrical boundary conditions. In case of a simply supported plate the

out-of-plane displacement is approximated in form of a double sine series as
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w(x,y) = Zi/lmn sin(mﬂxjsin(m[:yj (4.2)

where A4,,, are unknown coefficients to be determined, M and N indicate numbers of terms
used in the series. This approximate function is then used to calculate the total potential
energy of a plate subjected to in-plane loading. The total potential energy (IT) can be

written in term of the sum of strain energy (U) and potential energy of in-plane loads (V)
nm=u+v (4.3)

where

U= %J.I I (axxgxx +0,6,+0,7, )dxdydz

2 2
V:lﬂ er(a—wj N [ +2N, W ey
2 " ox P oy Y Ox Oy

After performing the integrations the total potential energy can be written in terms
of the unknown coefficients 4,,, and the in-plane normal load N_ . Other in-plane loads,
ie. N, and N, , can prescribe as the multiplication of N, and load ratio. According to

the minimum total potential energy :

oIl
—=0 4.4
aAmn ( )
A set of equations may be rearranged in a form of an eigenvalue problem as
[4][€]-N..[B][€]=0 (4.5)

where [A] and [B] are square matrices whose elements are determined from the plate

properties. [C] is a column matrix containing unknown eigenvectors, 4,,,. N__ represents

XX

the unknown eigenvalue or the buckling load.
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A number of eigenvalues will be obtained after the generalized eigenvalue
problem shown in eq(4.5) is solved. The lowest eigenvalue is selected as the buckling
load. The corresponding eigenvector representing the buckling mode, however, is not of

interest in this study.

4.2 Buckling of polar orthotropic annular plates

For polar orthotropic annular plates, either closed-form solutions or experimental
results are not available due to the orthotropic property of material. Therefore, the Ritz
method is employed to determine the numerical solution. The Ritz method begins with
selecting the mid-plane displacement functions which satisfy the geometrical boundary
conditions. In case of a clamped annular plate, the out-of-plane displacement which

satisfies all boundary conditions is approximated in form of a trigonometric series as

2 2
w(r,0) = G - 1j G - 1) i)r (A4, sinnd+ B, cosnf) (4.6)
where A4,, and B, are unknown coefficients to be determined, n is a positive integer
indicating the number of full sine wave in the circumferential direction. The integer n also
indicates the buckling mode of the plate. Theoretically, it is desirable to have as many
terms as possible in the approximate function, i.e. M approaches infinity, however only a
number of terms are used due to the numerical limitation. This approximate function is
then used to calculate the total potential energy of a plate subjected to in-plane loads. The
total potential energy (I1) can be written in term of the sum of strain energy (U) and

potential energy due to in-plane loads (¥), as represent in eq(4.3), where

1778 2 1 1
U=3 j I{Dr [w... ] +2Dyw,,, (—zwaae +;War]
0 r
‘ (4.7)

1 1Y 1 ?
+D9 (_2 W,00 +_W’rj + 2Dr0 {(_ W’@J’V j| rdrd 6
r r

r
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2
[wo] + ZQSZb W, w,g}drdé’ (4.8)

r

(0
2N,9

NO
{ Jrw,. ]+ p

127[
V=E£

|

After substituting the approximate displacement function and performing the
integrations, the total potential energy can be written in terms of the unknown coefficients
Am, Bn, and the applied load. In case of buckling from radial compressive load, the
applied load is the in-plane radial load P,, while Qs is the applied load for torsional
buckling. According to the concept of minimum total potential energy, the structure is in
stable equilibrium if

My ana Ly (4.9)
o4, o

m

A convergence study on buckling of graphite-epoxy annular plate with a = 50
mm, b =200 mm, ~ =2 mm and a load ratio of 0.5 was performed. Both compressive and
torsional buckling loads are plotted as a function of M used in the approximate function
as shown in Fig. 4.1. The buckling load is conversed to the theoretical value as the value
of M is increased. In this study, the value of M in the approximate function w(r, §) are
selected as 6, so eq(4.9) is a set of 14 linear functions. The set of equations may be

rearranged in a form of a generalized eigenvalue problem as

[4][c]-L]B][c]=0 (4.10)
where [4] and [B] are square matrices whose elements are determined from plate
dimensions and material properties. [C] is a column matrix containing unknown
eigenvectors, 4,, and B,,. L represents the unknown eigenvalue which is the compressive
buckling load (P,) or torsional buckling load (Qs) depending on types of buckling of

interest. Fourteen eigenvalues are obtained after the generalized eigenvalue problem

shown in eq(4.10) is solved. The lowest eigenvalue is the buckling load for buckling
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mode n. The corresponding eigenvector can be substituted into the approximate
displacement function which is then plotted for buckling mode. The calculation is
repeated for other buckling modes, i.e. other values of n. The lowest eigenvalue from
each buckling mode is the theoretical buckling load of the annular plate and its
corresponding value 7 is the buckling mode. Fig. 4.2 shows contour plots for buckling

mode 4 and mode 7 of the compressive and torsional buckling.

4.3. Theoretical verification of rectangular plates
In this section, the scaling laws of symmetrical rectangular composite plates are

verified using the solutions derived in the previous sections. The buckling load of a model

is analytically or numerically determined and used as (N, )m in the scaling law to predict
the buckling load of the corresponding prototype, (Nxx )p. The scaling buckling load is

then compared to the theoretical solution to determine the accuracy of the scaling law.

Both complete similitude and partial similitude cases are included.

Complete similitude

The scaling law shown in eq(3.14) was examined by applying to the buckling
problem of cross-ply laminated plates studied by Tuttle et al. [26]. Suppose the [0/90],s
specimens used in that study were chosen as models in the present study. The buckling
loads were theoretically determined from eq(4.1) and verified with the previous
experimental study as shown in the 3™ and 4™ column of Table 4.1, respectively. The next
column compares theoretical and experimental results in term of percentage of
discrepancy. In the current study, a prototype was selected as plates with the same
stacking sequence and thickness as those of the model but have bigger dimensions.

Specifically, the width of the model is 152.4 mm and the width of the prototype is 762
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mm. Thus, the length and width of the prototype are five times larger than those of the
model. Buckling loads for various plate configurations are illustrated in the last two
columns of Table 4.1. Buckling loads determined from closed-form solution, eq(4.1), are
shown in the “Theory” column and buckling loads obtained from similitude invariant or
scaling law are shown in the last column entitled “Similitude.” Since the stacking
sequences of the models and the prototypes are identical, i.e. Cp; = Cyy = 1, the scaling

law is simplified to

(V) =(V,), 2= L v,

m _2 Py
b, 25
It should be emphasized that (N)ax )m was a buckling load of the model based on

XX

the closed-form solution. For example, (N )p for a plate with aspect ratio of 1.5 without

transverse tension was predicted from the scaling law as (Nm )p :%x24.220.968

which is the same as that of calculated from theory. Also, the buckling loads of all other

prototypes determined from the scaling law agree exactly with the results from theory. If

buckling loads of prototypes (N )p were calculated from the test model data shown in

XX

the 4™ column, the percent discrepancies would have been equal to those of the
experiment in Ref [26].

Although D;s and D,s are not vanished for angle-ply laminates, complete
similarity requirement can be achieved if the scaling factors of all laminate flexural
stiffnesses are equal. Table 4.2. shows identical buckling loads determined from the
scaling law and from theory for prototypes with 762-mm width. The models have
identical stacking sequence, [£45],s, with five times smaller than the prototypes.

As mentioned before that similarity conditions are independent of ply thickness,

therefore similitude invariant applied to plates with different ply thicknesses shall be
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investigated. Let select an eight-ply-[0/90],s laminate as a model and consider two
sixteen-ply laminates i.e. [0,/90,]»s and [0/90]4s as prototypes. The [0,/90;],s prototype
can be considered having the same stacking sequence as the model with twice ply
thickness. All laminate flexural stiffnesses of [0,/90,],s are eight times higher than their
respective model stiffnesses, i.e. Cp;; = 8 as shown in Table 4.3. But the stiffnesses of the
[0/90]4s prototype do not increase proportionally comparing with stiffnesses of the model.
It was indicated in the previous section that constant Cp; is required for complete
similarity. In Table 4.4, buckling loads of the prototypes [0,/90,],s and [0/90]4s laminates
were determined from the scaling law using theoretical solution of [0/90],s as models.
They were then compared to the theoretical solutions. The "% Dis" column indicates
discrepancies in percents between results from the scaling law and from theory. The
similitude concept predicts buckling loads that exactly match the theoretical solution for
[02/90,]>s. However, the [0/90]4s prototypes do have discrepancies because all Cp,; are not
equal. Therefore the average value of Cp; is used as Cyyr. It 1s seen that the variations of
percent discrepancy are up to 13%.

In conclusion the complete similitude is obtained if two requirements, namely
geometrical similarity and equality of all flexural stiffness scaling factors, are fulfilled.
The buckling loads obtained from similitude theory for complete similarity cases show
exact agreement to the solutions from analytical analysis. If any of similitude
requirements is violated, the presented theory may be applied with some degree of

discrepancies. The theory is then called approximate or partial similitude.

Partial similitude
Similitude invariant gives perfect solution for complete similitude cases, as

previously mentioned. However, in some cases only partial similarity may be achieved
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using distorted models as shown in Table 4.4 where [0/90]4s prototype are modeled from
[0/90],s laminates. Because the scaling factors for all stiffnesses are not identical, scaling
law cannot be directly applied. If the equality of scaling factor is relaxed and the average
of the stiffness scaling factors is used as Cyp, the buckling load of [0/90]4s prototype
could be determined. The discrepancies compared to the closed-form solution still show
good agreement within +13% as shown in Table 4.4.

Another examples of distorted model in number of plies are demonstrated in Table
4.5(a) and 4.5(b). The buckling loads of 304.8x152.4 mm? plates with [+45],s stacking
sequences are determined from the Ritz method and compared to the similitude model.
Stacking sequences of models were selected as [£45]4s and [145]7 as shown in Table 4.5
(a) and 4.5(b) respectively. In both cases, scaling factors of all stiffnesses are not
identical, however, they are divided into two groups. A group of Cp;;, Cp;z, Cps2 and
Cpess has the same value but different from the other group of Cp;4, and Cpys. By using the
value of the first group as Cyy; the predicted buckling loads using the scaling laws show
very good agreement with discrepancies less than 6%, except the first prototype with four
plies. Hence, it can be concluded that as the number of plies exceeds eight, the effect of
twisting coupling stiffness, D4, and Dy, dies out rapidly and the approximate similitude
calculation can consider only Cp;; (= Cps2 = Cpz2 = Cpes) as Cagr:

Modeling a prototype from a model with different material is also possible by
using the distorted model. This concept of distortion in material is very useful in
minimizing cost of the test models. The possibility of this modeling is shown in Table
4.6-4,8. In Table 4.6., [0/90],s graphite/epoxy prototype laminates were modeled from E-
Glass/Epoxy laminates with the same stacking sequences and plate geometries using
average value of Cp;. The discrepancies of similitude model as compared to the

theoretical solution are in the range of —13.5% to —27.2%. These discrepancies are fairly
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high because the four values of Cp; are quite different. Specifically Cp;; and Cp;, are
approximately three times higher than Cp;> and Cpss. In order to minimize the
discrepancy, material of the model should be selected such that the differences in value of
Cpj are at minimum. Mechanical ply properties of both laminates used in this study are
shown in Table 4.9.

Table 4.7 shows a more complicated study than that of in Table 4.6. Instead of
having identical dimension of model and prototype as the previous study, the same
models were employed to predicted prototypes with a larger size. Thus differences
between the model and the prototype were not only types of material but also specimen
dimensions. Discrepancies in this study are exactly the same as the case of different
materials with the same plate dimension. A further study, which includes a change of
stacking sequence, is shown in Table 4.8. Using the same [0/90],s E-Glass/epoxy
laminates with b = 152.4 mm, the buckling loads of [0,/90;],s graphite/epoxy laminates
with b = 762mm were predicted. The differences between model and prototype include
material, dimension, and stacking sequence. However, only the distortion in material
properties violate the scaling law, thus, the percent discrepancies remain the same as in

Table 4.6 and 4.7.

4.4 Theoretical verification of annular plates
Similar to the rectangular plate, the scaling law for annular plate is also verified
with the known solution. Both complete similitude and partial similitude are investigated

using the same approach as that of the previous section.
Complete similitude

In this section, the scaling laws shown in eq(3.22) and eq(3.24) are verified using

the theoretical solution discussed in the previous chapter. Solutions of both model and
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prototype are determined from the Ritz method and considered as theoretical solutions.
The theoretical solution of the model is then substituted into the scaling law to predict the
similitude buckling load of the prototype. The accuracy of the scaling law is determined
by comparing the similitude buckling load of the prototype to that of the theoretical
solution. Table 4.10 shows mechanical properties of materials used in this study which
include both composite materials and isotropic materials. The accuracy of the scaling law
for compressive buckling is demonstrated in Table 4.11. A set of 6-mm thick annular
plates with 400-mm outside diameter is selected as prototypes. Their buckling behaviors
are predicted by the derived scaling law using theoretical solutions of the models. The
thickness of the models is 3 mm which is a half of the prototype thickness, while other
dimensions are the same. The first column of Table 4.11 shows the ratio of the inner
radius to the outer radius. The ratio of inner pressure to outer pressure for each case of
study is presented in the next column. Load ratio of 0, 0.5, 1, and 1.5 are used in this
study. The 3" and 4™ columns are theoretical buckling load and mode of the models
determined from the Ritz method. Similarly, the next two columns demonstrate the
theoretical buckling behaviors of the prototypes. The last column labeled as “Similitude
buckling load” is the buckling load of the prototypes (P,), calculated from the scaling law
by substituting the theoretical buckling load of the model (P,),, into the scaling law. Since
both model and prototype are made from the same materials, all of the stiffness scaling
factors are identical and equal to 8. Along with the complete geometric similarity and
identical load ratio between the model and the prototype, both systems have complete
similarity. Thus, the derived scaling law is applicable and is confirmed by the numerical
comparison in Table 4.11. The similitude buckling loads in the last column agree exactly
with the theoretical solutions. For buckling mode, similitude transformation implies that

the buckling modes of the model and the prototype with complete similarity are identical.
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Thus, similitude buckling modes of the prototype is not shown in the table because they
are identical to those of shown in column 4. It is seen that the buckling mode is also well

predicted using the similitude transformation.

Another study for model-prototype pairs with different size and thickness is
presented in Table 4.12. Prototypes are selected as 5-mm-thick graphite-epoxy annular
plates with 400-mm diameter. The buckling behaviors of the prototypes are modeled
using smaller and thinner models with a diameter of 200 mm and a thickness of 3 mm.
Complete similitude requirements are also satisfied, i.e. the scaling law is applicable. The
numerical result shown in the table confirms the accuracy of the scaling law. Both

buckling load and mode of the prototypes are accurately predicted.

The scaling for torsional buckling is verified in Table 4.13 with a similar
approach. The complete similitude case is considered similar to the compressive buckling
case. Material properties of graphite-epoxy are used in this case of study. Smaller and
thinner annular plates are used to model the prototype plates. The theoretical torsional
buckling loads of the model (Q;),, are substituted in the torsional buckling scaling law, eq
(3.24). The scaling law predicts the similitude buckling load which is very well matched
the theoretical solutions. Like the compressive buckling case, the buckling mode is very

well predicted using the derived scaling law.

In conclusion, the scaling laws for both compressive and torsional buckling of
polar orthotropic annular plates are verified using the Ritz solution as a theoretical
solution. Both buckling load and mode of the model-prototype pair are studied. For
complete similitude cases, the derived scaling laws predict the buckling behaviors of the

prototype very well.
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Partial similitude

As shown, scaling law is very powerful and accurate for problems with complete
similarity. However, it is not always practical or economical to set an experiment on the
model such that the prototype is modeled with complete similarity. The scaling law would
be more versatile if it could be applied to problems which some of the similarity
requirements can be relaxed. This approach is called the “partial similitude” which is very
practical, provided that the error caused by disregarding the similarity criterions can be
assessed in advance. In this section, the partial similitude model is tested by selecting the
model/prototype pairs such that the complete similitude is not fulfilled. The similarity
requirements, which might be ignored, include the geometric similarity, identical load
ratio, and identical stiffness scaling factor. It can be shown that the first two requirements
are very essential for the similitude transformation. Numerical studies confirmed that
partial similitude model ignoring either geometric similarity or load ratio requirement
results in erroneous scaling law. Thus, disregarding those two similarity conditions is not

recommended.

The partial similitude in stiffness scaling factor is the last similarity requirement
which could possibly be neglected. The scaling law applied to a set of models and
prototypes with non-uniform stiffness scaling factors is presented in Table 4.14. From the
definitions of flexural stiffness, all the stiffness scaling factors are not identical if the ratio
of radial modulus, tangential modulus, and shear modulus of the model to those of the
prototype are different. In this study, E-glass/epoxy annular plates are employed as
models to predict graphite/epoxy prototypes. Dimensions of the models and prototypes
are selected to be the same so that the geometric similarity is satisfied. Only the
uniqueness requirement among all the stiffness scaling factors is not achieved. The

stiffness scaling factors are as followed: C, =3.386,C,, =1.293,C, , =1.364,
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C,, =1.194. By neglecting that requirement, the theoretical buckling load and mode are

substituted into the scaling law to determine the similitude buckling load and mode of the
prototype. The value of Cyy in the scaling law is determined from the average value of
the entire stiffness scaling factors which is 1.809. The similitude buckling load of the
prototype is significantly different when compared with the theoretical solution. The
percent discrepancy between the theoretical and similitude solutions ranges from -8 to -27
which is not only high but scattered. It would be difficult to indicate the accuracy of the
scaling law in this case of partial similitude because of the scattering percent of
discrepancy. Similarly, the buckling mode is not well predicted by the scaling law, as
shown in the table. Therefore, the partial similitude model in material properties is not
recommended similar to the partial similitude models in geometric similarity or load
ratio. Further analysis shows that stiffness scaling factors are different from each other
because of the anisotropic properties of material, i.e. difference of modulus in the » and &

direction.

It is interesting to apply the scaling law to an isotropic model/prototype pair since
the modulus of elasticity is identical in all directions for isotropic material. The scaling
law is applied to isotropic annular plates as shown in Table 4.15. The stainless steel
prototype plates are modeled by aluminum plates. The material properties of both
samples are shown in Table 4.10. The scaling law is proved to be accurate for this case of
study. The similitude buckling loads are very well compared with the theoretical solution,
1.e. percent discrepancy of less than 1%. The buckling modes determined from both
approaches are identical. The partial similitude in this case results in an accurate scaling
law because all the stiffness scaling factors are very close to each other. They are

C, =C,,=C,, =2.877, and C,,, =2.857 which are more uniform than those of the

orthotropic material. It should be noted that a pair of isotropic model and prototype could



35

be modeled with complete similitude if their Poisson’s ratios are the same and the shear

modulus G is related to the Young’s modulus £ according to

4.11)

The exact agreement between similitude and theoretical solutions is not obtained in this
case because the shear modulus employed in the study is not related to other mechanical
properties according to eq(4.11). The scaling factor of D,y is different for those of the

other stiffnesses.

In this chapter, the derived scaling laws for rectangular and annular plates are
verified with available solutions. For all cases of complete similitude, the predicted
buckling loads of the prototypes determined from the theoretical buckling loads of the
models and the derived scaling law are identical to the theoretical solutions. It is observed
that the experimental buckling loads of rectangular plates performed by Tuttle et al. [26]
showed rather large discrepancies. One of the main causes of discrepancies is probably
due to the fact that the experiment setup could not simulate the theoretical boundary
conditions with sufficient accuracy. But the scaling laws will allow us to design
experiments to simulate the condition of real application of the prototype without having
to stick to the classical boundary conditions from theory. Hence, the application of the
similitude theory appropriately can help cost and time savings in designing experiments
of the complex unknown phenomena without the need for the solutions of the complicate
differential equations while at the same time can predict the results according to the actual

condition.
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Buckling load (Py or Qs)
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Value of M used in the approximate function

Fig 4.1. Convergence study for compressive and torsional buckling

Mode 7 compressive buckling Mode 7 torsional buckling

Fig 4.2. Out-of-plane displacement contour of buckling mode 4 and 7
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Table 4.1 Buckling loads of [0/90],s laminated plates determined from theory and scaling

law.
Configuration Model Prototype,
(b=152.4 mm) (b =762 mm)
Aspect | Load | Theory, Ny, | Experiment | %Dis. in | Theory Similitude,
Ratio | Ratio (kN/m) (kN/m) Exp (kN/m) Nyo™® (kKN/m)
0 233 36.2 -35.6 0.935 0.935
-0.384 37.9 49.8 -23.9 1.52 1.52
1 -0.587 56.5 58.0 -2.59 2.26 2.26
-0.688 71.8 N/A N/A 2.87 2.87
0 24.2 28.2 -14.2 0.968 0.968
-0.384 39.6 42.4 -6.60 1.59 1.59
1.5 -0.587 46.3 47.3 -2.11 1.86 1.86
-0.688 50.6 48.9 3.48 2.03 2.03
0 233 21.2 9.91 0.935 0.935
-0.384 37.9 42.9 -11.7 1.52 1.52
2 -0.587 49.7 54.1 -8.13 2.00 2.00
-0.688 52.9 553 -4.34 2.12 2.12

Table 4.2 Buckling loads of [£45],s laminated plates determined from theory and
similitude

Configuration Model Prototype (b = 762 mm)
Aspect | Load | (b=152.4 mm) Theory Similitude
Ratio Ratio (kN/m) (kKN/m) (kKN/m)

0 39.32 1.57 1.57

-0.3 55.78 2.23 2.23

1 -0.6 60.99 2.44 2.44

0 40.71 1.63 1.63

-0.3 49.31 1.97 1.97

1.5 -0.6 60.97 2.44 2.44
0 38.87 1.55 1.55

-0.3 49.53 1.98 1.98

2 -0.6 58.92 2.36 2.36




Table 4.3 Cp;; of [0,/90,]»s and [0/90]4s plates having [0/90], as a model

Model Prototype
[02/902]23 [0/90]43
[0/90]2s Dy Dy
(Gpa-r';im3 ) Coj (Gpa-film3 ) Coj

Dy 32.34 258.7 8 225.9 6.985
Dj» 0.7649 6.119 8 6.119 8
Dy, 15.93 127.4 8 160.2 10.06
Des 1.302 10.41 8 10.41 8

Table 4.4 Scaling law applied to laminated plates having different ply thickness and

stacking sequences.

Buckling
load Buckling load of prototype (kN/m)
[0/90]5
Aspect| Load
ral‘zio ratio Model [02/905]as % [0/90]as %
(kN/m) | Theory |Similitude Dios. Theory | Similitude* Di(;.
0 4.09 32.75 32.75 |10.00 | 32.75 33.79 3.17
1 -0.384 6.65 53.16 53.16 | 0.00 | 53.16 54.94 3.34
-0.587 9.91 79.29 79.29 | 0.00 | 79.29 81.87 3.25
0 4.24 33.90 33.90 | 0.00 | 38.31 35.03 -8.57
L5 -0.384 6.95 55.58 55.58 | 0.00 | 51.79 57.42 10.9
' -0.587 8.13 65.05 65.05 | 0.00 | 60.62 67.16 10.8
0 4.09 32.75 32.75 | 0.00 | 32.75 33.79 3.17
5 -0.384 6.65 53.16 53.16 | 0.00 | 53.16 54.94 3.34
-0.587 8.72 69.74 69.74 | 0.00 | 63.77 72.04 13.0
* Calculated base on C,,, = Con ¥ Ciy ZCD” *Coss _ 8.261
Table 4.5(a) Buckling loads of [+45],s having [+45]4s as a model
Value of n Scaling Factor Buckling load (kN/m)
in [£45]as | Cpi115CpiasCpans Cogs - Cpis» Cpas| Ritz Method Similitude | % Dis.
(Csuyr= Cp11)
1 0.015625 : 0.0625 3.887 5.062 30.2
2 0.125:0.25 38.87 40.50 4.20
3 0.421875 : 0.5625 135.3 136.7 1.03
4(model) - 324.0 - -
5 1.953125: 1.5625 635.7 632.8 -0.47
6 3.375:2.25 1101 1093 -0.72
7 5.359375 :3.0625 1751 1736 -0.87
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Table 4.5(b) Buckling loads of [+45],s having [+45];5 as a model

Value of n Scaling Factor Buckling load (kN/m)
in [245]s | Cpi15ChiasCrarsCres - Cpie> Cros| Ritz Method Similitude % Dis.
(Csnﬁf= Cpir)

1 0.0029 : 0.0204 3.887 5.107 314
2 0.0233 : 0.0816 38.87 40.85 5.11
3 0.07872 : 0.1837 135.3 137.9 1.92
4 0.1866 : 0.3265 324.0 326.8 0.875
5 0.3644 : 0.5102 635.7 638.3 0.404
6 0.6297 : 0.7347 1101 1103 0.151

7(model) - 1752 - -

Note : a =304.8 mm, b = 152.4 mm. Load ratio =0

Table 4.6 Buckling loads of [0/90], graphite/epoxy laminates(b = 152.4 mm) modeled
from E-glass/epoxy laminates (b=152.4 mm )

Configuration (E- GIIZIS (;jilgi)oxy) Prototype (Graphite/Epoxy)

Aspect | Load Theory, Nxxm Theory | Similitude* 9% Dis.*

Ratio | Ratio (kN/m) (kN/m) (kN/m) '

0 8.584 23.37 19.23 -17.7

-0.3 12.26 33.39 27.47 -17.7

1 -0.6 21.18 58.43 47.46 -18.8

0 9.349 24.20 20.94 -13.5

-0.3 12.61 37.42 28.24 -24.5

1.5 -0.6 15.82 46.95 35.43 -24.5

0 8.584 23.37 19.23 -17.7

-0.3 12.26 33.39 27.47 -17.7

2 -0.6 16.31 50.17 36.54 -27.2

* Calculated base on C —(

Coii+Cpiy +Cppy +Cpoe ) (3.7141.1943.00+1.07
= = =224

4 4
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Table 4.7 Buckling loads of [0/90], graphite/epoxy (b=762mm) laminates modeled from
E-glass/epoxy laminates (h=152.4 mm)

Configuration (E- GIIZIS (;jilg)oxy) Prototype (Graphite/Epoxy)

Aspect | Load Theory, Nxxm Theory Similitude* 9 Dis.*

Ratio | Ratio (kN/m) (kN/m) (kN/m) '

0 8.584 0.9350 0.7693 -17.7

-0.3 12.26 1.336 1.099 -17.7

1 -0.6 21.18 2.337 1.898 -18.8

0 9.349 0.9680 0.8378 -13.5

-0.3 12.61 1.497 1.130 -24.5

1.5 -0.6 15.82 1.878 1.417 -24.5

0 8.584 0.9350 0.7693 -17.7

-0.3 12.26 1.336 1.099 -17.7

2 -0.6 16.31 2.007 1.462 -27.2

* Calculated base on Cmﬁ =

(CD“ +Cpyy +Cpy +CD66]_[3.71+1.19+3.00+1.07j o4
4 4 '

Table 4.8 Buckling load of [0,/90;],s graphite/epoxy prototype (b=762mm) and [0/90]s
E-glass/epoxy model (h=152.4 mm)

Configuration (E-GIIZIS (;?]S;oxy) Prototype (Graphite/Epoxy)
Aspect | Load Theory, Nxxm Theory Similitude* 9 Dig.*
Ratio | Ratio (kN/m) (kN/m) (kN/m) '

0 8.584 7.480 6.154 -17.7

-0.3 12.26 10.69 8.792 -17.7

1 -0.6 21.18 18.70 15.19 -18.8
0 9.349 7.744 6.702 -13.5

-0.3 12.61 11.97 9.037 -24.5

1.5 -0.6 15.82 15.02 11.34 -24.5
0 8.584 7.480 6.154 -17.7

-0.3 12.26 10.69 8.792 -17.7

2 -0.6 16.31 16.05 11.69 -27.2

* Calculated base on
co- ( Cp+Cpy +Chyy +Cp j 3 (29.67+9.505+23.98+8.533j 179

stiff — 4 4
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Table 4.9 Ply properties of composites used in buckling of rectangular plate problems

En E2» G2 Vi2
GPa (Msi) Gpa (Msi) | GPa (Msi)
Graphite/Epoxy | 155 (22.5) | 7.6(1.1) | 4.4(0.64) | 034
E-Glass/Epoxy | 38.6(5.6) | 8.27(12) | #.14(0.6) | 026

Table 4.10 Ply properties of composites used in analysis of annular plates

Eq E»» G2 Vi
(GPa) (GPa) (GPa)
Graphite/Epoxy 132 10.8 5.65 0.24
E-Glass/Epoxy 38.6 8.27 4.14 0.26
2014-T6 Al 73 73 28 0.3
Stainless steal 210 210 80 0.3

Table 4.11 Compressive buckling of 6-mm thick Graphite/epoxy annular plates
determined from theory and from similitude (b =200 mm)

Configuration Model (& =3 mm) Prototype, (h = 6 mm)
Ratio | Load Theoretical |Theoretical | Theoretical | Theoretical | Similitude
of a/b| Ratio, | buckling load, | buckling | buckling load, | buckling | buckling
q (Po)m, (MPa) | mode (n) (MPa) mode(n) | load, (P,),
(MPa)
0 38.36 4 153.5 4 153.5
0.1 0.5 39.62 4 158.5 4 158.5
1 40.96 4 163.8 4 163.8
1.5 42.39 4 169.6 4 169.6
0 50.90 7 203.6 7 203.6
0.3 0.5 57.81 7 231.3 7 231.3
1 66.90 7 267.6 7 267.6
1.5 78.85 6 3154 6 3154
0 73.16 12 292.6 12 292.6
0.5 0.5 93.85 12 375.4 12 375.4
1 130.8 12 523.2 12 523.2
1.5 208.3 10 833.4 10 833.4
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Table 4.12 Compressive buckling of Graphite/epoxy annular plates determined from
model plates with different size and thickness

Configuration Model Prototype
(b=100 mm, 2 =3 mm) (b =200 mm, A =5 mm)
Ratio | Load Theoretical | Theoretical | Theoretical | Theoretical | Similitude
of a/b | ratio, | buckling load, | buckling |bucklingload,| buckling | buckling
q (Py)m, (MPa) mode (n) (MPa) mode (n) | load, (P,),
(MPa)
0 153.5 4 106.6 4 106.6
0.1 0.5 158.5 4 110.1 4 110.1
1 163.8 4 113.8 4 113.8
1.5 169.6 4 117.7 4 117.7
0 203.6 7 141.4 7 141.4
0.3 0.5 231.3 7 160.6 7 160.6
1 267.6 7 185.8 7 185.8
1.5 3154 6 219.0 6 219.0
0 292.6 12 203.2 12 203.2
0.5 0.5 3754 12 260.7 12 260.7
1 523.2 12 363.4 12 363.4
1.5 833.4 10 578.7 10 578.7

Table 4.13 Torsional buckling of Graphite/epoxy annular plates determined from model
plates with different size and thickness

Ratio Model Prototype
of a/b (b =200 mm, 2 =3 mm) (b=1000 mm, 2 =15 mm)
Theoretical Theoretical | Theoretical | Theoretical Similitude
buckling load, buckling buckling buckling buckling load,
(Os)m, (KN/m) mode (n) load, (kN/m) mode (n) (Q5), (kKN/m)
0.1 56.32 4 281.6 4 281.6
0.2 111.6 5 558.2 5 558.2
0.3 198.5 7 992.7 7 992.7
0.4 340.9 9 1704 9 1704
0.5 594.6 11 2973 11 2973
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Table 4.14 Compressive buckling of Graphite/epoxy annular plates determined from E-

Glass/Epoxy model.
Configuration Model Prototype
(E-Glass/Epoxy) (Graphite/epoxy)
Ratio| Load | Theoretical |[Theoreticall Theoretical |Theoretical| Similitude |%Disc.
of a/bRatio, g |buckling load,| buckling | buckling | buckling [buckling load,
(P,)m, (MPa) | mode (n) |load, (MPa)| mode(n) | (P,), (MPa)
0 17.20 3 38.36 4 31.13 -18.9
0.1 | 0.5 17.58 3 39.62 4 31.82 -19.7
1 17.98 3 40.96 4 32.54 -20.6
1.5 18.40 3 42.39 4 33.29 -21.5
0 24.90 5 50.90 7 45.05 -11.5
03| 0.5 27.54 5 57.81 7 49.83 -13.8
1 30.80 5 66.90 7 55.73 -16.7
1.5 34.65 4 78.85 6 62.70 -20.5
0 36.94 10 73.16 12 66.83 -8.64
05| 0.5 46.20 9 93.85 12 83.60 -10.9
1 61.31 8 130.8 12 110.9 -15.2
1.5 84.27 6 208.3 10 152.5 -26.8

Note: b =200 mm, 42 =3 mm

Table 4.15 Buckling of stainless steel annular plates determined from 2014-T6 Al model.

Configuration| Model (2014-T6 Al) Prototype (Stainless steel)
Ratio | Load | Theoretical |Theoretical| Theoretical Theoretical] Similitude |%Disc.
of a/b | Ratio, |buckling load,| buckling | buckling | buckling |[buckling load,
q | (Po)m, (MPa) | mode (n) | load (MPa) | mode (n) | (P,), (MPa)
0 66.93 2 192.3 2 192.2 -0.021
0.1 0.5 67.36 2 193.5 2 193.5 -0.021
1 67.71 1 194.7 1 194.4 -0.104
1.5 66.99 1 192.6 1 192.4 -0.104
0 105.6 3 303.3 3 303.2 -0.025
03 | 0.5 110.0 3 316.1 3 316.0 -0.025
1 112.2 2 3224 2 322.1 -0.078
1.5 110.8 1 318.6 1 318.1 -0.142
0 171.1 6 491.3 6 491.2 -0.009
0.5 | 05 198.3 5 569.6 5 569.5 -0.023
1 222.1 4 638.2 4 637.9 -0.052
1.5 208.4 1 599.4 1 598.4 -0.159

Note: b =200 mm, ~ =3 mm
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