โครงการ การใช้ระบบสับเปลี่ยนหน้าที่ในการทำงานเพื่อลดอัตราการเจ็บที่หลังของคนงาน

(Apply Job Rotation to Minimize Worker Low Back Injuries)

าเทคัดย่อ

จากสถิติพบว่าคนงานจำนวนมากได้รับบาดเจ็บจากการทำงานในระบบการขนถ่ายสินค้าด้วยกำลัง คน และระดับการบาดเจ็บของคนงานอยู่ในขั้นรุนแรง งานวิจัยชิ้นนี้เสนอวิธีการใช้หลักการสับ เปลี่ยนหน้าที่ในการทำงานเพื่อลดอัตราการเจ็บของคนงาน งานวิจัยได้ถูกแบ่งออกเป็น 2 ส่วน กล่าวคือ ในส่วนที่ 1 เป็นการศึกษาเทคนิครีคอร์สเพื่อพัฒนาตารางการทำงานของคนงานเพื่อลด อัตราการเจ็บที่หลังของคนงาน และพิจารณาประโยชน์ที่ได้รับจากการรู้ข้อมูล ในระดับต่างๆ 3 ระดับเพื่อช่วยในการตัดสินใจ คือ 1) รู้ข้อมูลปริมาณงานในอดีตเท่านั้น 2) รู้ข้อมูลปริมาณงานที่เกิด ้ขึ้นทันทีที่งานนั้นเกิดขึ้น 3) รู้ข้อมูลปริมาณงานที่จะเกิดขึ้นล่วงหน้า ผลการวิจัยพบว่าการรู้ข้อมูล ปริมาณงานที่เกิดขึ้นทันทีและรู้ข้อมูลปริมาณงานที่จะเกิดขึ้นล่วงหน้า จะช่วยลดจำนวนวันที่คน งานหยุดงานเนื่องจากการบาดเจ็บได้ และประโยชน์จากการรู้ข้อมูลจะเพิ่มขึ้นอย่างมากเมื่อปริมาณ งานที่เกิดขึ้นในระหว่างวันมีความแตกต่างกันมากเมื่อเปรียบเทียบกับเมื่อปริมาณงานที่เกิดขึ้นใน ระหว่างวันมีความแตกต่างกันน้อย ในส่วนที่ 2 เป็นการพัฒนาตารางการทำงานของคนงาน ที่ทำให้ เกิดค่าแรงรวมและค่าความสูญเสียรวมจากการบาดเจ็บต่ำที่สุด โดยพิจารณากรณีที่จำนวนคนงาน น้อยกว่าหรือเท่ากับจำนวนงาน ผู้วิจัยได้พัฒนาวิธีการสร้างรูปแบบทางคณิตศาสตร์ชนิดมิกซ์อินที เจอร์ แบบ 2 ขั้นตอนขึ้น เพื่อสร้างตารางการทำงานของคนงาน ด้วยวิธีการนี้ ตารางการทำงานของ คนงานที่ได้จะทำให้เกิดค่าแรงรวมต่ำที่สุด และความสูญสียจากการบาดเจ็บของคนงานน้อย

Abstract

In manual material-handling environments, a large number of workforce injuries are sustained each year and the injuries are often of a severe nature. This research investigates a job rotation methodology to reduce the potential for workforce injuries. Two aspects of the research have been done. The first aspect is to study a recourse technique and develop worker schedules using a heuristic method to minimize low back injuries and evaluate the value of information based upon 3 levels of information including 1) only historical task demand information is known, 2) task demand information is known in real-time as the tasks are completed, and 3) where task demands are known in advance. The results show that real-time and advance task demand information can provide significant benefits with regard to reducing the maximum number of worker lost days due to low back injuries. When task demands have high variability, utilizing task demand information to generate worker schedules is more helpful as compared to the case where task demands do not vary significantly. The second aspect develops worker schedule to minimize the total labor cost and the total injury loss when the number of worker is less than or equals to the number of tasks. This research also considers worker skill requirement to perform tasks. A two-stage mixed integer programming is proposed as a solution methodology. With this two-stage MIP model, worker schedule with the lowest total cost and less total injury loss can be developed.