รหัสโครงการ : MRG4580019

ชื่อโครงการ: การประเมินศักยภาพของพื้นที่ป่าไม้ในประเทศไทยในการออกชีไดซ์ก๊าชมีเทน

นักวิจัย: อำนาจ ชิดไธสง บัณฑิตวิทยาลัยร่วมด้านพลังงานและสิ่งแวดล้อม ม.เทคโนโลยีพระจอมเกล้าธนบุรี

E-mail: amnat_c@jgsee.kmutt.ac.th , ระยะเวลาโครงการ: กรกฎาคม 2545 – มิถุนายน 2547

ก้ารมีเทนเป็นการเรือนกระจาที่ลำคัญและการออกจิไดร์มีเทนโดยแบคทีเรียในดินถือเป็นแหล่งดูดกลับก๊ารมีเทนจากอากาศที่ ลำคัญแหล่งหนึ่ง ประเทศไทย ได้มีการประมาณการปลดปล่อยก๊ารมีเทนจากแหล่งต่างๆไว้ค่อนข้างมาก แต่ที่ผ่านมายังไม่มีการศึกษาเกี่ยว กับแหล่งดูดกลับและปริมาณการดูดกลับโดยแหล่งต่างๆเหล่านั้น การศึกษาครั้งนี้จึงได้วัดอัตราการออกจิไดร์มีเทนโดยเปรียบเทียบในดินที่มี การใช้ประโยรน์แตกต่างกันในจังหวัดนครรารสีมา ได้แก่ ดินป่าธรรมชาติดิบแล้ง ดินป่าปลูกกระถินเทพา และดินที่ใช้ทำการเกษตร (ปลูก ข้าวโพด) ชัตราการออกจิไดร์วัดโดยวิธี Close chamber method โดยทำการวัดทุกเดือนระหว่างมกราคม ถึง ธันวาคม 2546 นอกจากนี้ได้ เก็บตัวอย่างดินเพื่อศึกษาลักษณะทางจลศาสตร์ของการออกจิไดร์ก็ารมีเทนและลักษณะโครงสร้างประชากรของ methanotrophic bacteria โดยวิธี denaturing gradient gel electrophoresis (DGGE) จากขึ้นส่วนของขึ้นที่ควบคุมการทำงานของเอนไรม์มีเทนโมโนออกซิจิเนส ผล การศึกษาพบว่า ดินทั้งสามแห่งสามารถออกจิไดร์ก๊ารมีเทนระดับความเริ่มขั้นตามธรรมชาติได้ แต่อัตราการออกจิไดร์แตกต่างกันไป ขึ้นอยู่ กับปัจจัยต่างๆ เช่น ฤดูกาล ลักษณะการใช้ที่ดิน และจุดที่ทำการเก็บตัวอย่าง ในฤดูแล้งอัตราการออกจิไดร์ก๊ารมีเทนจะสูงกว่าในฤดูผ่น นอกจากนี้ในฤดูฝนบางครั้งยังมีการปลดปล่อยก๊ารมีเทนออกมา แสดงว่าความชื้นของดินเป็นปัจจัยหลักอันหนึ่งในการควบคุมอัตราการออก จิไดร์ก๊ารมีเทน จากการเปรียบเทียบ พบว่าการออกจิไดร์ก๊าซมีเทนในปำธรรมชาติและปาปลูกในประเทศไทยอยู่ในระดับที่พบในดินแถบอบ ชุ่น จากค่าเฉลี่ยต่อปีพบว่า ดินปาเป็นแหล่งดูดกลับก็ารมีเทนสุทธิ (1.50 และ 1.17 มิลลิกรัมต่อตารางเมตรต่อวัน ในปาธรรมชาติและปาปลูก ตามลำดับ) สำหรับในดินที่ทำการเกษตร การปลดปล่อยก็ารมีเทนโดยเฉพาะในช่วงฤดูผนทำให้เลลี่ยทั้งปิดินนี้เป็นแหล่งปลดปล่อยสุทธิ

ในดินป่าทั้งสองแห่ง พบว่าขึ้นดินระหว่าง 15-40 รม เป็นขึ้นที่มีอัตราการออกชีโดร์มีเทนสูงสุด ในขณะที่ในดินที่ทำการเกษตร
ความแตกต่างในการออกชีโดร์มีเทนตามความลึกไม่รัดเจนนัก ความเริ่มรันที่สูงรองในเตรท ในโตรท์และแอมโมเนียมในดินขึ้นบนอาจมีผล
ยับยั้งการเจริญรองแบคทีเรียที่ออกชีโดร์มีเทน ทำให้ไม่พบการออกชีโดร์ในดินขึ้นบนนี้ จากการศึกษาทางจลศาสตร์ของการออกชีโดร์มีเทน
พบว่าดินป่าธรรมชาติมีความจำเพาะต่อมีเทนสูง (ค่า K_m = 52 ppmv) แต่ศักยภาพในการออกชีโดร์ด้า (ค่า V_{ma} = 0.82 นาในโมลต่อกรัมดิน
ต่อรั่งโมง) ในขณะที่ดินจากปาปลูกมีความจำเพาะต่อมีเทนสูงรองลงมา (K_m = 723 ppmv) และดินจากพื้นที่เกษตรมีความจำเพาะต่อมีเทน
ต่ำสุด (K_m = 1454-2362 ppmv) จะนั้น ดินปาสามารถออกชีโดร์มีเทนที่ความเริ่มรันต่ำได้ดีกว่าดินที่ใช้ทำการเกษตร ลักษณะทางจลศาสตร์
นี้สัมพันธ์กับลักษณะโดรงสร้างประชากรของแบคทีเรียในดิน กล่าวคือผลของ DGGE ชี้ว่าโดรงสร้างประชากรของ methanotroph ในดินปา
ทั้งสองแห่งมีความคล้ายคลึงกัน และแตกต่างดินที่ทำการเกษตร ทั้ง Methylobacter spp. และ Methylocystis spp เป็นกลุ่มแบคทีเรียหลัก
นอกจากนี้ ยังพบ methanotroph ที่จัดอยู่ใน cluster α (USC α) ซึ่งเชื่อว่าเป็นกลุ่มหลักที่สามารถออกชีโดร์มีเทนที่ระดับความเริ่มขันตาม
ธรรมชาติ ในดินปาทั้งสองแห่ง และพบลำดับเบสของกลุ่มแบคทีเรียที่ยังไม่เคยพบมาก่อนที่อาจมีความสัมพันธ์กับแบคทีเรียในกลุ่ม
Gammaproteobacteria หรือกลุ่มอื่นๆที่มียนควบคุมการทำงานของเอ็นเร่ม์แอมโมเนียโมโนออกชีจิเนส ของแบคที่เรียที่ออกชีโดร์
แขมโมเนีย จากผลที่กล่าวมาแสดงให้เห็นว่า นอกจากปัจจัยแวดล้อมเช่นความขึ้นแล้ว ความแตกต่างด้านโครงสร้างประชากรของ
methanotroph ที่พบในดินที่มีการใช้ประโยชน์ต่างกัน ก็เป็นเหตุผลที่สำคัญประการหนึ่ง อันนำไปสู่ความแตกต่างในศักยภาพและจลศาสตร์
การออกชีโดร์มีเทนดังที่กล่าวมาแล้ว

ผลการศึกษาครั้งนี้ แสดงให้เห็นว่าลักษณะการใช้ประโยชน์ที่ดินมีผลอย่างมากต่ออัตราการออกชิไดช์มีเทน การเปลี่ยนจากปาไป เป็นพื้นที่เกษตรส่งผลให้ดินสูญเสียคุณสมบัติการออกชิไดช์มีเทน อย่างไรก็ตาม การปลูกปาก็ช่วยทำให้ดินกลับมาออกชิไดช์มีเทนได้อีก ครั้ง การสูญเสียความสามารถในการออกชิไดช์มีเทนนี้มีผลมาจากการเปลี่ยนแปลงโครงสร้างประชากรของ methanotroph และคุณ สมบัติทางจลศาสตร์ของการออกชิไดช์มีเทนของแบคทีเรียเหล่านั้น จาการประมาณการในเบื้องต้นพบว่า ดินปาไม้ในประเทศไทยมีศักยภาพ สูงในการออกชิไดช์มีเทนที่ความเข้มข้นระดับธรรมชาติ การช่วยรักษาพื้นที่ปาจึงมีความสำคัญในการรักษาลักษณะที่เป็นแหล่งดูดกลับมีเทน สุทธิของปานเอาไว้

คำหลัก: มีเทนออกจิเดชัน ดินป่าไม้ในประเทศไทย การเปลี่ยนแปลงการใช้ประโยชน์ที่ดิน แบดทีเรียกลุ่ม methanotroph, DGGE

Abstract

Project Code: MRG4580019

Project Title: Estimate of Methanotrophic Capacity of Tropical Forests of Thailand

Investigator: Amnat Chidthaisong E-Mail:amnat_c@jgsee.kmutt.ac.th Project Period: July 2002-June 2004

Methane is an important greenhouse gas and oxidation in soils represents a significant sink. In Thailand, estimate of methane emission is well established but there has been no estimate available for methane sink. In this study, methane oxidation fluxes were measured with the closed chamber method in different land use types; natural forest (dry evergreenforest; SK site), re-grown forest (Acacia mangium, AC site) and corn cultivation (CF site). Monthly in situ fluxes were monitored during January - December 2003 in Nakornratchasrima Province, Northeast Thailand. Soil samples were taken for kinetic study in the laboratory and for analysis of methanotrophic bacteria (MB) community by denaturing gradient gel electrophoresis (DGGE) of pmoA gene fragments (encoding for a subunit of particulate methane monooxygenase) that were PCR-amplified from total soil DNA extracts. Results reveal that methane oxidation occurred in all land use types but oxidation rate varied according to season, land use types, and sampling spots. Both SK and AC forests showed the oxidation rates comparable to that found in temperate forests. High rate of methane oxidation was found during the summer months. In raining season, net methane emission was occasionally observed, indicating the importance of soil moisture as the controlling factor. On one-year average basis, soil at both SK and AC forests were the net methane sinks (1.50 and 1.17 mg CH₄ m⁻² day⁻¹, respectively). On the other hand, high methane emission during raining season made soil at CF site became a net methane source on annual average basis.

In SK and AC soil a clear zonation for active oxidation layer was between 15-40 cm while in CF soil no clear active layer was observed. This was possibly due to high concentration of inorganic nitrogen compounds (NO₃, NO₂ and NH₄) in the topsoil that inhibited the activity of methane oxidizing bacteria. Examining kinetic coefficients of these active layers revealed that soil at SK site had low methanotrophic capacity (V_{max} of 0.82 nmol·g soil⁻¹ · h⁻¹) but relatively high affinity for methane (K_m of 52 ppmv). Soil at AC and CF sites showed low affinity for methane (K_m of 724 ppmv and 1454-2362 ppmv, respectively). However, soils at these two sites were capable of oxidizing high concentration of methane while soil at SK site it was not. Difference in kinetic characteristics among these three sites is also reflected in structure of methanotrophic community. Cluster analysis based on the DGGE banding patterns indicated that the MB community of SK and AC sites were similar to each other but different from that of the CF site. Sequence analysis of excised DGGE bands indicated that Methylobacter spp. and Methylocystis spp represented genera of cultivated MB at the sampling sites. Sequences of upland soil cluster α (USC α), that has been suggested to represent organisms involved in atmospheric methane consumption in diverse soils, were detected in the native forest and reforested site. Such sequences formed a separate branch related to USC α. Other sequences that indicated the uncultivated groups of potential MB were related to methanotrophic Gammaproteobacteria or an unknown sequence cluster that may represent either pmoA or amoA (coding for a subunit of the ammonia monooxygenase of ammonia oxidizing bacteria). It is thus concluded that besides the environmental factors such as water content, different community composition of methanotrophic bacteria under different land use is one of the important factors leading to different in methanotrophic capacity and kinetic characteristics of methane oxidation.

In conclusion, the results obtained in this study indicate that land use change from forest to agriculture significantly reduces methanotrophic capacity of soils. However, conversion of agriculture back to forest and preserving the natural forest conditions can maintain high methane oxidation capacity. Loss of methanogenic capacity upon changing land use is associated with altering bacteria community and their characteristics of kinetic methane uptake. Preliminary estimate indicates that Thai forest soils have high capacity for atmospheric methane sink and thus maintaining forest area is important if their sink characteristics are to be preserved.

Keywords: Methane oxidation, Thai forest soil, Land use, Methanotroph, DGGE