

รายงานวิจัยฉบับสมบูรณ์

โครงการ: การศึกษาจากการทดลองของสภากาชาดไทยในร่างขั้นบันได^๑
แบบความชันข้อนกลับ

โดย รศ. ดร. ชัยยุทธ ชินณรงค์ และคณะ

สัญญาเลขที่ MRG4580020

รายงานวิจัยฉบับสมบูรณ์

โครงการ: การศึกษาจากการทดลองของสภาพการไฟลในร่างขั้นบันได¹
แบบความชันย้อนกลับ

รศ. ดร. ชัยยุทธ ชินณะราศรี มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี
ศ. ดร. สมชาย วงศ์วิเศษ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี

สนับสนุนโดย สำนักงานคณะกรรมการการอุดมศึกษา และสำนักงานกองทุนสนับสนุนการวิจัย

(ความเห็นในรายงานนี้เป็นของผู้วิจัย ศกอ.และสกอ. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

Abstract

This research report presents new experimental data on water flow on stepped chutes with upward inclined steps. The slopes of the chutes are 30°, 45°, and 60° while the upward angles of the inclined steps are 10°, 20°, and 30°, respectively. Classifications of flow patterns by empirical correlations are presented. Based on dimensional analysis, the important parameters are analyzed and the relevant dimensionless parameters are formed. The energy loss and outlet velocity are strongly influenced by the Drop number and the slope of the stepped chutes. As the Drop number increases the energy loss ratio decreases. At identical Drop number the energy loss ratio on the milder slope is greater than on the steeper. The adverse slope of the inclined steps increases the energy loss ratio and decreases the outlet velocity by less than 10 %. To estimate kinetic energy ratio, an empirical correlation is proposed.

บทคัดย่อ

รายงานวิจัยฉบับนี้ได้นำเสนอข้อมูลของผลการทดลองใหม่ของการไฟล บนรางขันบัน-ไดที่มีความลาดชันแบบย้อนกลับ ความลาดเอียงของรางคือ 30° , 45° , และ 60° ขณะที่มุมลาดเอียงของขันบันไดคือ 10° , 20° , และ 30° ตามลำดับ การแบ่งประเภทของการไฟลด้วยสมการแบบ empirical correlations ได้ถูกนำเสนอ ตัวแปรที่สำคัญได้ถูกวิเคราะห์ด้วยวิธีมิติทำให้เกิดเทอมไวร์ดิที่เกี่ยวข้องกับลักษณะการไฟล การสูญเสียพลังงานและความเร็วการไฟลที่ท้ายราง ถูกกำหนดโดยปัจจัยจาก Drop number และความลาดเอียงของรางขันบันได เมื่อ Drop number เพิ่มขึ้น สัดส่วนการสูญเสียลดลง ที่ค่า Drop number หนึ่งๆ พนิจว่าสัดส่วนการสูญเสีย พลังงานบนรางลาดเอียงน้อยจะมากกว่าที่พนบนรางลาดเอียงที่มากกว่า ความลาดเอียงย้อนกลับของขันบันไดทำให้สัดส่วนการสูญเสียพลังงานเพิ่ม และลดความเร็วท้ายรางลง 10% เพื่อการประมาณสัดส่วนพลังงานจน สำหรับพันธุ์ได้ถูกนำเสนอ

Executive Summary

Stepped chutes are useful in civil engineering applications such as drainage systems in mountainous areas and emergency spillways over downstream faces of embankment dams. Over the last two decades, stepped chutes have regained popularity due to the evolution of roller compacted concrete (RCC) dams. Besides the ease of construction and maintenance, one of the advantages over the plain-bed chute is enhanced energy dissipation. As a result the flow leaves the stepped chute at a lower velocity and a smaller energy dissipator is required.

The objective of this study is to conduct experiments on stepped chutes with inclined steps. The results include the prediction of the onset of skimming flow, the evaluation of the energy dissipation and outlet velocity in dimensionless form. These results are compared with other researches relating to stepped chutes with horizontal steps.

In the experiments, water was pumped from a laboratory sump to a V-notched weir tank from which water entered the stepped chute through an approach channel. At the bottom of the stepped chute, a horizontal outlet carried the water back to the sump. The discharge, which varied from 4 to 68 l/s (0.01 to 0.17 m^2/s), was measured by the V-notch. The stepped chutes made of plexiglass had a width of 0.40 m and consisted of 20 steps. The slopes of the stepped chutes from the horizontal, α , were 30° , 45° , and 60° . The total drop heights of the stepped chutes, H_T , were 1.50, 2.12, and 2.60 m, respectively. The dimensions of the step can be defined as h/l , wherein h is the step height and l is its horizontal step length. To investigate the effect of step inclination, three upward angles of inclined steps (θ) were tested, i.e. 10° , 20° , and 30° .

The flow regimes on stepped chutes with inclined steps can be classified as those found in horizontal stepped chutes (Chanson 2002). For small discharge, free-falling nappe was found at the brink of the inclined step while hydraulic jump was observed on the inclined step face. For intermediate discharge, the succession of free-jet was disappeared. The free surface of the flow was wavy with spray. For large discharge, the free surface of the flow was smooth and air entrainment was small.

Comparison between flow on horizontal steps and inclined steps shows that the upward angle of the inclined step has no effect on the upper limit of nappe flow, but gives a small increment of the lower limit of skimming flow. When the angle of the inclined steps increases, the lower limit of skimming flow slightly increases. This is caused by the relative increase of the elevation of the outer step edge. This results in

an increase of the space of the pool height and the air pocket under the falling jet of nappe flow. Therefore, more discharge is needed to establish the onset of skimming flow. This result is opposed to the data of Essery and Horner (1978) for inclined steps due to a different assumption of the onset of skimming flow.

By empirical correlation, the maximum discharge for nappe flow regime and the minimum discharge required for the onset of the skimming flow regime are as follows:

$$\frac{d_c}{h} = 0.927 - 0.005\theta - 0.388\left(\frac{h}{l}\right) \quad (1)$$

$$\frac{d_c}{h} = (0.844 + 0.003\theta)\left(\frac{h}{l}\right)^{-0.153+0.004\theta} \quad (2)$$

where θ is the angle of upward inclined step ($0.1 \leq h/l \leq 1.73$).

The energy loss ratio E_L/H_T decreases as the drop number increases. According to the criteria for nappe flow and skimming flow regimes on stepped chutes, the variations of E_L/H_T with q^2/gH_T^3 in different flow regimes are distinctively different. It should be noted that the range of transition flow on stepped chutes of 60° is large. This is because the flowing water splashes and streamlines are not parallel due to the water impact along the outer edge of the steps.

In the nappe flow regime where the drop number is very low, E_L/H_T decreases rapidly as q^2/gH_T^3 increases and the angle of the inclined step has a little effect upon E_L/H_T , especially for chutes with milder slopes. The angle of inclined step increases the energy dissipation by less than 3 % as most of the flow energy is dissipated due to jet breakup and jet mixing on the step and the formation of hydraulic jump on the step.

In the skimming flow regime, E_L/H_T gradually decreases toward a constant value as q^2/gH_T^3 increases. It can be observed that a higher angle θ increases E_L/H_T . An inclined step increases the energy dissipation by about 6 % of H_T (depending on θ). As the upward angle of the inclined steps increases, the energy loss increases due to the obstruction of the steps to the flow direction producing more spray and the recirculation vortices being trapped on the chute steps. Larger flow circulations are found and they are more stable than those in the smaller angles of inclined steps. More energy is therefore dissipated on this kind of structure.

The effect of the chute slope, α , for the same q^2/gH_T^3 , the milder chute slope gives a greater energy loss ratio. At the highest q^2/gH_T^3 , the value of E_L/H_T for $\theta = 0^\circ$ (horizontal step) to $\theta = 30^\circ$ (30 degree angle of inclined step) for $\alpha = 30^\circ$ varies from 0.71 to 0.74, while for $\alpha = 45^\circ$ and 60° this ratio varies from 0.68 to 0.74 and from 0.67 to 0.73, respectively.

Another approach to estimate the energy loss on chutes is the comparison between the ratio of energy loss to the total head (E_L/E_0) and the ratio of the critical flow depth to the step height (d/h) (Christodoulou 1993). It is found that the energy ratio decreases when the discharge increases which is in the same trend when the drop number is applied.

The flow velocity V_T at the end of the chute can be expressed in dimensionless form. It was found that the velocity ratio $(V_T / \sqrt{gH_T})$ increases with increasing drop number for every chute slope and angle of inclined step. The observed data can be represented by the following logarithmic correlation

$$\frac{V_T}{\sqrt{gH_T}} = 0.131 \ln \left(\frac{q^2}{gH_T^3} \right) + 0.036 - 0.0009 \theta \quad (3)$$

As compared with the horizontal steps, the $(V_T / \sqrt{gH_T})$ ratio is smaller because of higher energy loss on the stepped chutes with inclined steps. The kinetic energy ratio increases almost linearly with q^2/gH_T^3 and agrees reasonably well with the variation of E_L/H_T with q^2/gH_T^3 . As the energy loss decreases when q^2/gH_T^3 increases, the remaining kinetic energy at the chute outlet increases. In the nappe flow regime, the kinetic energy at the outlet for all cases is small and almost the same because most of the flow energy is dissipated along the stepped chutes. In the skimming flow regime, the kinetic energy at the chute outlet with inclined steps is less than for the horizontal stepped chutes because more flow energy is dissipated.

เนื้อหางานวิจัย

Introduction

Stepped chutes are useful in civil engineering applications such as drainage systems in mountainous areas and emergency spillways over downstream faces of embankment dams. Over the last two decades, stepped chutes have regained popularity due to the evolution of roller compacted concrete (RCC) dams. Besides the ease of construction and maintenance, one of the advantages over the plain-bed chute is enhanced energy dissipation. As a result the flow leaves the stepped chute at a lower velocity and a smaller energy dissipator is required.

The step geometry can be classified as horizontal, pooled, inclined, or of gabion-type. A number of experimental studies on the flow behavior of horizontal stepped chutes have been conducted (Chanson 2002). Hydraulic design guidance of horizontal stepped spillways was developed by Boes and Hager (2003b). Other stepped-like structures, such as drop structures, were investigated by Moore (1943), Rand (1955), Rajarathnam and Chamani (1995), and Chanson and Toombes (1998).

Although a number of researches have been conducted on the hydraulics of drops and horizontal stepped chutes, the hydraulics of inclined steps have received less attention. A few research works on flow over stepped chutes with inclined steps were carried out by Essery and Horner (1978). They provided simple relationships for the energy number (specific energy-to-step length ratio) and flow number (critical depth-to-step length ratio) for step inclinations between 5° and 20° and compared with the results of horizontal steps. However, the loss of hydraulic energy over a stepped chute with inclined steps and the outlet velocity downstream were not reported.

Concerning with the scale effect, Boes and Hager (2003a) investigated the aeration characteristics of skimming flows on stepped spillways. The minimum Reynolds and Weber numbers of around 10^5 and 100, respectively, were presented to minimize scale effects in physical modeling of two-phase air-water flows on stepped spillways. Moreover, they found that, different from clear water, highly turbulent two-phase air-water flow in open channel could not be modeled without scale effect resulting from the variation of viscosity and surface tension. Pegram et al. (1999) conducted two sets of modeled stepped spillways on the 1:10 and 1:20 scale models. Based on the results of the sequent depth of the hydraulic jump at the toe of the spillways, they reported that models with scales of 1:20 and larger could represent the prototype behavior of stepped spillways.

The objective of this study is therefore to conduct experiments on stepped chutes with inclined steps. The results include the prediction of the onset of skimming flow, the evaluation of the energy dissipation and outlet velocity in dimensionless form. These results are compared with other researches relating to stepped chutes with horizontal steps.

Experimental apparatus and procedure

A definition sketch of the experimental arrangement is shown in Fig. 1. Water was pumped from a laboratory sump to a V-notched weir tank from which water entered the stepped chute through an approach channel. At the bottom of the stepped chute, a horizontal outlet carried the water back to the sump. The discharge, which varied from 4 to 68 l/s (0.01 to 0.17 m^3/s), was measured by the V-notch.

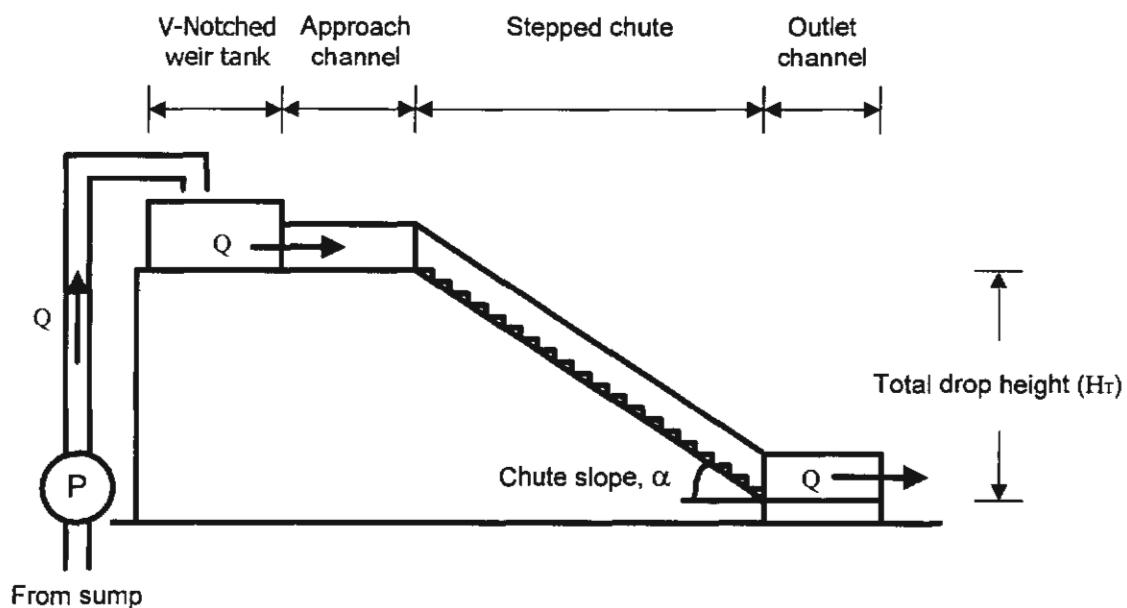
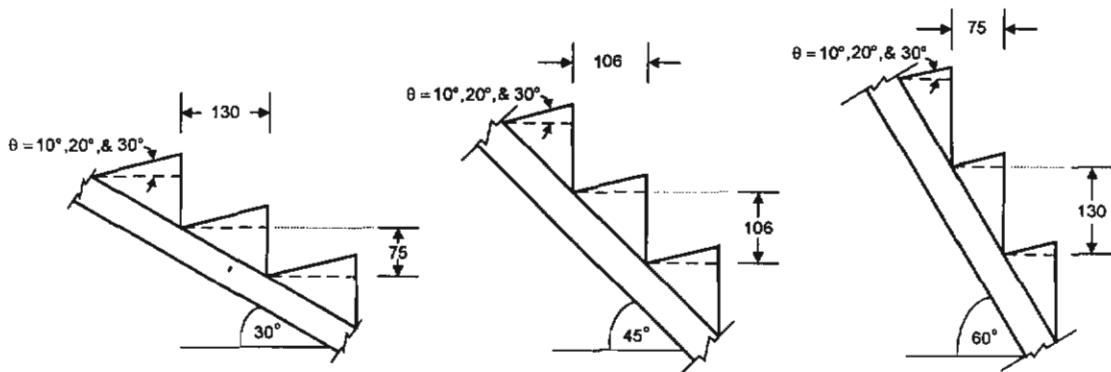



Fig. 1 Schematic diagram of experimental set-up

The stepped chutes made of plexiglass had a width of 0.40 m and consisted of 20 steps. The slopes of the stepped chutes from the horizontal, α , were 30° , 45° , and 60° . These angles are classified as steep channel slopes (Chanson 1994). The total drop heights of the stepped chutes, H_T , were 1.50, 2.12, and 2.60 m, respectively. The dimensions of the step can be defined as h/l , wherein h is the step height and l is its horizontal step length. To investigate the effect of step inclination, three upward angles of inclined steps (θ) were tested, i.e. 10° , 20° , and 30° . The method of construction and

construction cost of the inclined steps were not found significantly different as compared to the horizontal steps. Figure 2 shows the dimensions of the inclined steps.

Fig. 2 Dimension of inclined steps in millimeters

The depth and velocity in the outlet channel were measured at a location where air entrainment was significantly diminished. It was about 3-4 times the step length away from the lowest step face. The depths across the chute width were measured by a vernier-depth gage. The velocities were measured by two methods, first by a pitot tube and second by dividing discharge by the measured flow area. The values obtained were within 10%. In calculating the energy dissipation the velocity obtained from the first method was used. Details of the experiments are summarized in Tables 1 - 3.

In the present study, which the flow depth and flow velocity were measured at a location where air entrainment was significantly diminished, the results can also represent the prototype behavior of stepped chutes with a limit of scale model. By Froude similitude, therefore, the presented results are limited for the height or length of the prototype spillways not greater than 20 times the modeled tests and the prototype discharges per unit width are in the range of 0.9 to $15.1 \text{ m}^2/\text{s}$.

Classifications of stepped chute flow with inclined steps

Based on literature reviews, the flow regime on a horizontal stepped chute can be divided into three flow regimes: nappe flow, transition flow, and skimming flow. In nappe flow, the steps act as a series of overfalls with the water plunging from one step to another. Nappe flow is found for low discharges and large step lengths. In contrast, skimming flow results for large discharges and small step lengths. Water flows as a coherent stream without air pockets under the jets on the pseudo-bottom formed by the outer step edges.

Table 1. Details of experimental set A (chute slope = 30°, H_T = 1.50 m, h = 0.075 m).

Inclined step angle, θ (degree)	Run no.	q (m ³ /s/m)	V_T (m/s)	Observed flow type	$\frac{d_c}{h}$	Energy loss (m)
0	1	0.010	0.63	NA	0.29	1.49
	3	0.031	1.78	NA	0.61	1.39
	5	0.052	2.43	TRA	0.89	1.27
	7	0.071	2.79	SK	1.07	1.20
	9	0.090	2.95	SK	1.25	1.17
	11	0.111	3.13	SK	1.44	1.13
	13	0.128	3.24	SK	1.58	1.11
	15	0.147	3.35	SK	1.74	1.08
	17	0.170	3.43	SK	1.91	1.06
10	1	0.010	0.77	NA	0.29	1.48
	3	0.030	1.57	NA/TRA	0.60	1.42
	5	0.049	2.21	TRA	0.83	1.32
	7	0.069	2.60	SK	1.05	1.25
	9	0.089	2.78	SK	1.24	1.22
	11	0.109	2.95	SK	1.42	1.19
	13	0.129	3.14	SK	1.59	1.14
	15	0.149	3.28	SK	1.75	1.11
	17	0.170	3.35	SK	1.91	1.10
20	1	0.010	0.89	NA	0.29	1.49
	3	0.030	1.71	NA/TRA	0.60	1.41
	5	0.050	2.17	TRA	0.84	1.34
	7	0.070	2.51	SK	1.06	1.28
	9	0.090	2.77	SK	1.25	1.23
	11	0.109	2.92	SK	1.42	1.20
	13	0.128	3.12	SK	1.58	1.15
	15	0.147	3.28	SK	1.73	1.12
	17	0.166	3.37	SK	1.88	1.10
30	1	0.010	0.64	NA	0.29	1.49
	3	0.030	1.59	NA/TRA	0.60	1.42
	5	0.050	2.03	TRA	0.85	1.36
	7	0.070	2.34	SK	1.06	1.32
	9	0.090	2.63	SK	1.25	1.25
	11	0.111	2.83	SK	1.44	1.22
	13	0.129	3.02	SK	1.59	1.17
	15	0.152	3.20	SK	1.77	1.13
	17	0.167	3.32	SK	1.89	1.11

(NA = nappe flow regime; TRA = transition; and SK = skimming flow regime)

Table 2. Details of experimental set B (chute slope = 45°, H_T = 2.12 m, h = 0.106 m).

Inclined step angle, θ (degree)	Run no.	q ($m^3/s/m$)	V_T (m/s)	Observed flow type	$\frac{d_C}{h}$	Energy loss (m)
0	1	0.010	1.00	NA	0.20	2.09
	3	0.029	2.19	NA	0.42	1.93
	5	0.050	2.75	TRA	0.60	1.81
	7	0.071	3.30	TRA	0.76	1.66
	9	0.091	3.43	SK	0.89	1.63
	11	0.111	3.62	SK	1.02	1.58
	13	0.128	3.80	SK	1.12	1.52
	15	0.146	3.90	SK	1.22	1.49
	17	0.170	4.05	SK	1.35	1.45
10	1	0.010	1.11	NA	0.20	2.07
	3	0.030	2.08	TRA	0.43	1.94
	5	0.050	2.71	TRA	0.60	1.81
	7	0.070	3.13	TRA	0.75	1.71
	9	0.089	3.31	TRA/SK	0.88	1.67
	11	0.110	3.47	SK	1.01	1.63
	13	0.129	3.69	SK	1.13	1.56
	15	0.151	3.85	SK	1.25	1.52
	17	0.162	3.91	SK	1.31	1.51
20	1	0.010	1.11	NA	0.20	2.08
	3	0.030	1.98	TRA	0.43	1.97
	5	0.050	2.68	TRA	0.60	1.81
	7	0.070	3.05	TRA	0.75	1.74
	9	0.090	3.26	TRA/SK	0.89	1.69
	11	0.110	3.41	SK	1.01	1.65
	13	0.130	3.60	SK	1.13	1.59
	15	0.152	3.70	SK	1.26	1.57
	17	0.169	3.84	SK	1.35	1.53
30	1	0.010	1.05	NA	0.20	2.09
	3	0.030	1.98	TRA	0.43	1.98
	5	0.050	2.70	TRA	0.60	1.82
	7	0.070	3.00	TRA	0.75	1.77
	9	0.090	3.16	TRA/SK	0.89	1.73
	11	0.110	3.36	SK	1.01	1.68
	13	0.130	3.52	SK	1.13	1.64
	15	0.148	3.66	SK	1.23	1.61
	17	0.164	3.78	SK	1.32	1.58

(NA = nappe flow regime; TRA = transition; and SK = skimming flow regime)

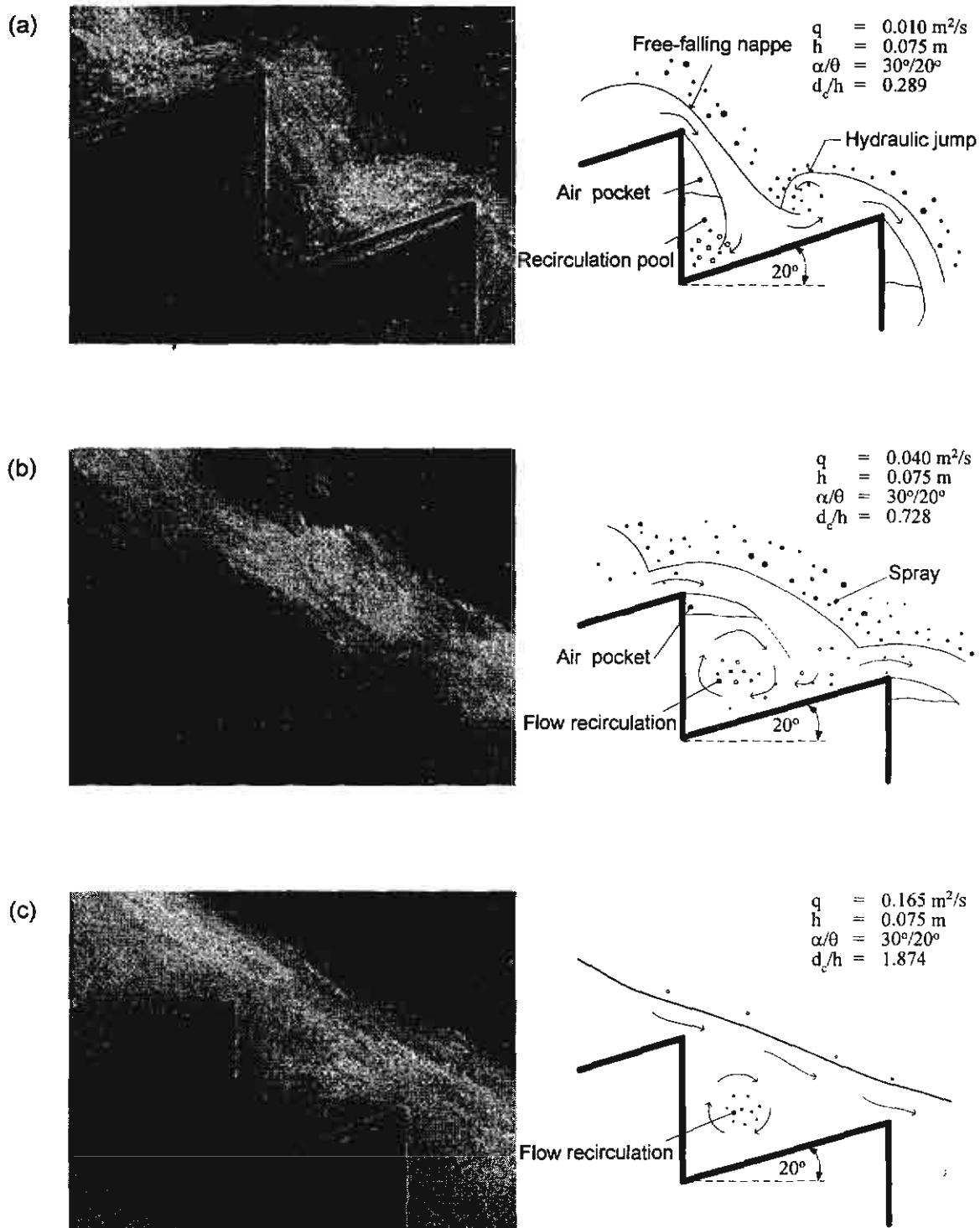
Table 3. Details of experimental set C (chute slope = 60°, H_T = 2.60 m, h = 0.130 m).

Inclined step angle, θ (degree)	Run no.	q ($\text{m}^3/\text{s}/\text{m}$)	V_T (m/s)	Observed flow type	$\frac{d_c}{h}$	Energy loss (m)
0	1	0.011	1.21	NA/TRA	0.18	2.55
	3	0.030	2.37	TRA	0.35	2.37
	5	0.051	3.16	TRA	0.49	2.17
	7	0.070	3.54	TRA	0.61	2.06
	9	0.090	3.83	TRA	0.72	1.97
	11	0.108	4.11	SK	0.81	1.87
	13	0.130	4.22	SK	0.92	1.83
	15	0.147	4.39	SK	1.00	1.77
	17	0.170	4.49	SK	1.10	1.74
10	1	0.010	1.12	NA/TRA	0.17	2.56
	3	0.030	1.89	TRA	0.35	2.46
	5	0.050	2.66	TRA	0.49	2.31
	7	0.070	3.32	TRA	0.61	2.12
	9	0.089	3.65	TRA	0.72	2.01
	11	0.109	3.91	TRA	0.82	1.92
	13	0.128	4.00	SK	0.91	1.90
	15	0.148	4.14	SK	1.01	1.84
	17	0.170	4.24	SK	1.10	1.84
20	1	0.011	1.10	NA/TRA	0.18	2.55
	3	0.031	1.73	TRA	0.35	2.49
	5	0.050	2.30	TRA	0.49	2.39
	7	0.070	3.30	TRA	0.61	2.12
	9	0.089	3.60	TRA	0.72	2.03
	11	0.111	3.88	TRA	0.83	1.93
	13	0.128	3.96	SK	0.91	1.91
	15	0.149	4.09	SK	1.01	1.86
	17	0.170	4.13	SK	1.10	1.85
30	1	0.010	1.05	NA/TRA	0.17	2.57
	3	0.030	1.81	TRA	0.35	2.49
	5	0.050	2.59	TRA	0.49	2.33
	7	0.070	3.09	TRA	0.61	2.20
	9	0.089	3.40	TRA	0.72	2.11
	11	0.112	3.68	TRA	0.83	2.02
	13	0.129	3.84	SK	0.92	1.97
	15	0.149	3.99	SK	1.01	1.92
	17	0.170	4.03	SK	1.10	1.90

(NA = nappe flow regime; TRA = transition; and SK = skimming flow regime)

The transition flow is characterized by a pool of recirculating water with or without a small air pocket. This does not present the appearance of skimming flows or the succession of free jets. Due to the changes of streamline direction in the transition flow, this implies a different pressure distribution and induces vibration of the chute (Chanson 2002).

For engineering purposes, skimming flow is more relevant than nappe flow. Researches on skimming flow on horizontal stepped chutes were made by Rajaratnam (1990), Chanson (1994), Chamani and Rajaratnam (1999), and Chinnarasri (2002).


In this study, the flow regimes on stepped chutes with inclined steps can be classified as those found in horizontal stepped chutes (Chanson 2002). Examples of flow regimes observed from 30° chute slope and 20° upward inclined step are shown in Fig. 3. For small discharge, free-falling nappe was found at the brink of the inclined step while hydraulic jump was observed on the inclined step face (Fig. 3(a)). For intermediate discharge, the succession of free-jet was disappeared. The free surface of the flow was wavy with spray (Fig. 3(b)). For large discharge, the free surface of the flow was smooth and air entrainment was small (Fig. 3(c)).

In 1990, Rajaratnam re-analyzed Essery and Horner's data and proposed the onset of skimming flow on horizontal stepped chutes using d_c/h and h/l . For the range of h/l from 0.4 to 0.9, at the onset of skimming flow, d_c/h was approximately equal to 0.8. Chanson (1994) suggested the critical value for the occurrence of skimming flow as the straight line

$$\frac{d_c}{h} = 1.057 - 0.465 \frac{h}{l} \quad (1)$$

Chinnarasri (2002) compared his experimental results on horizontal stepped chutes with those of Essery and Horner (1978), Beitz and Lawless (1992), and Yasuda and Ohtsu (1999), and defined for h/l from 0.1 to 1.4 the onset of skimming flow as

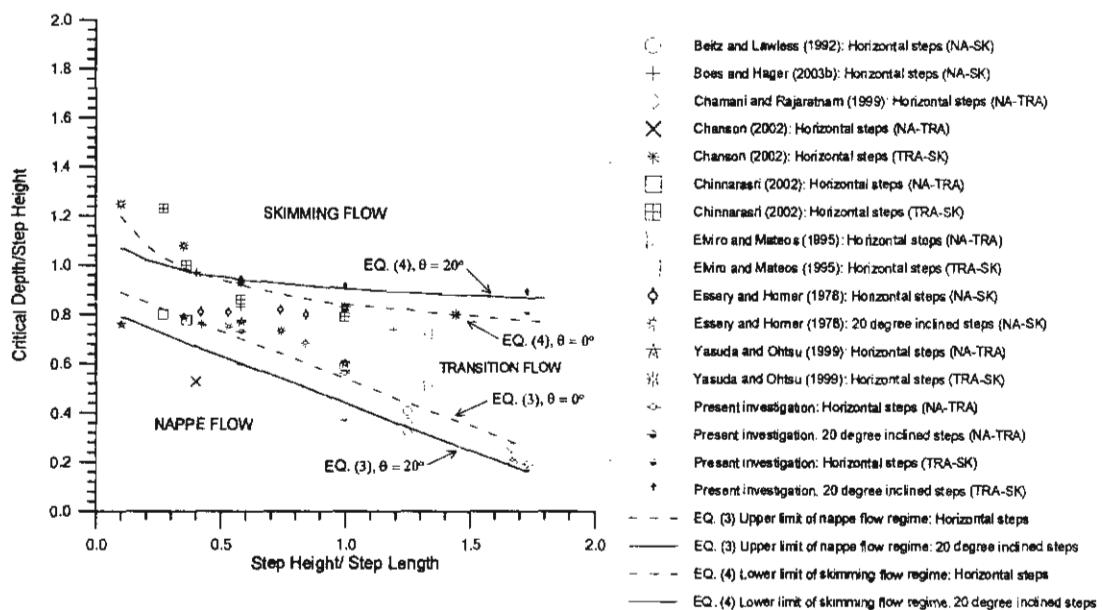

$$\frac{d_c}{h} \geq 0.80 \left(\frac{h}{l} \right)^{-0.22} \quad (2)$$

Fig. 3 Flow regimes on a 30° chute with upward inclined steps
(a) Nappe flow; (b) Transition flow; and (c) Skimming flow

Effect of step angle

To investigate the onset of skimming flow on stepped chutes, the experimental data obtained in this study were compared with other experiments on horizontal steps. The relation between d/h and h/l are shown in Fig. 4 and lines for the lower limit of skimming flow and upper limit for nappe flow can be drawn. In this study, the lower limit of skimming flow is defined by the disappearance of the air cavity beneath the free falling nappes and the water flowing as a quasi-homogeneous stream (Chanson 1996). The upper limit of nappe flow is defined by no succession of free jets on the chute. In Fig. 4, the transition flow regime between nappe flow and skimming flow is clearly separated. For large step lengths, e.g. $\alpha = 30^\circ$ ($l/h = 1.73$), the flowing water proceeds in a series of plunges from one step to another. For smaller step lengths, e.g. $\alpha = 60^\circ$ ($l/h = 0.577$), the water falls over the outer edge of the downstream steps with a pool of recirculating water was observed.

Fig. 4 Comparison of experimental data with empirical correlation for flow classifications on chutes with upward inclined steps

Comparison between flow on horizontal steps and inclined steps shows that the upward angle of the inclined step has no effect on the upper limit of nappe flow, but gives a small increment of the lower limit of skimming flow. When the angle of the inclined steps increases, the lower limit of skimming flow slightly increases. This is caused by the relative increase of the elevation of the outer step edge. This results in

an increase of the space of the pool height and the air pocket under the falling jet of nappe flow. Therefore, more discharge is needed to establish the onset of skimming flow. This result is opposed to the data of Essery and Horner (1978) for inclined steps due to a different assumption of the onset of skimming flow.

By empirical correlation, the maximum discharge for nappe flow regime is ($0.1 \leq h/l \leq 1.73$)

$$\frac{d_c}{h} = 0.927 - 0.005\theta - 0.388\left(\frac{h}{l}\right) \quad (3)$$

where θ is the angle of upward inclined step.

Likewise the minimum discharge required for the onset of the skimming flow regime is, as shown in Fig. 4, ($0.1 \leq h/l \leq 1.73$)

$$\frac{d_c}{h} = (0.844 + 0.003\theta)\left(\frac{h}{l}\right)^{-0.153+0.004\theta} \quad (4)$$

Energy dissipation of flow on stepped chutes with inclined steps

In skimming flow, most energy is dissipated to maintain stable horizontal vortices beneath the pseudo-bottom formed by the external edges of the steps. Generally, the energy loss of flow on an inclined stepped chute E_L depends on the total discharge per unit width of spillway q , the chute drop height H_T , the step height h , the step length l , the slope of the spillway α or $\tan^{-1}(h/l)$, the slope of the step inclination θ , and the gravitation acceleration g . These variables are shown in Fig. 5 and can be expressed functionally as

$$E_L = f_1[q, H_T, h, l, \theta, g] \quad (5)$$

Using the Buckingham Pi theorem, the variables in eq. [5] can be expressed in non-dimensional form as:

$$\frac{E_L}{H_T} = f_2 \left[\frac{q^2}{gH_T^3}, \frac{h}{l}, \theta \right] \quad (6)$$

where the dimensionless term $\frac{q^2}{gH_T^3}$ is the "Drop number", the ratio $\frac{h}{l}$ is referred to as the chute slope α , and θ is the angle of the upward inclined step.

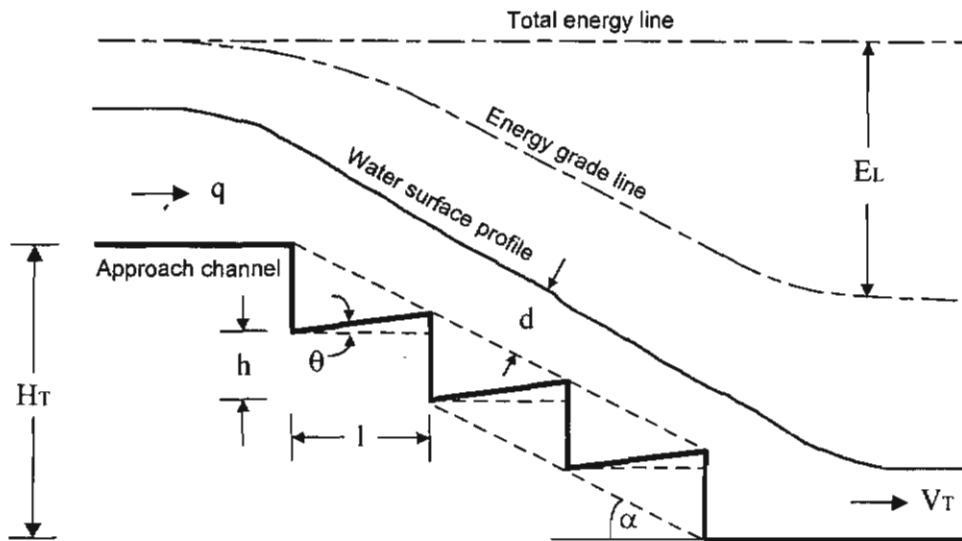


Fig. 5 Variables in dimensional analysis

The relationships between the energy loss ratio on stepped chutes and the drop number are shown in Fig. 6 for 30° chute slopes.

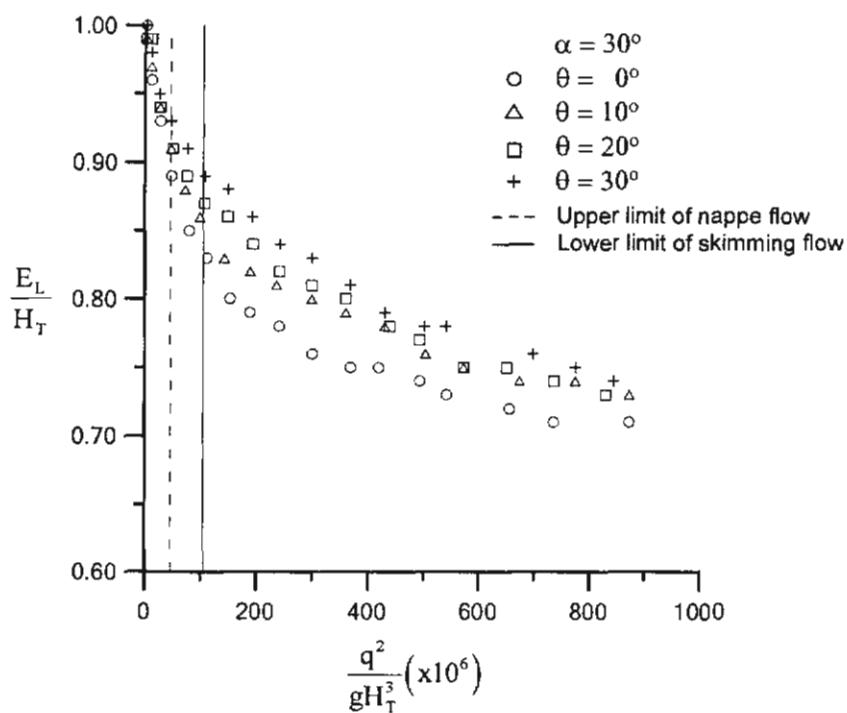
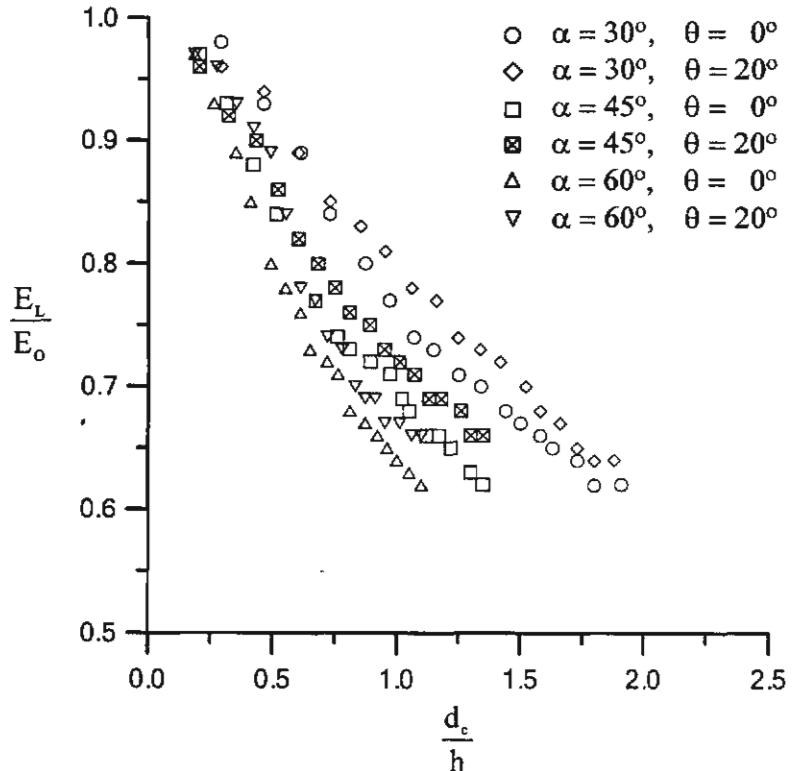


Fig. 6 Energy dissipation and drop number of 30° stepped chutes


It can be seen that the energy loss ratio E_L/H_T decreases as the drop number increases. According to the criteria for nappe flow and skimming flow regimes on stepped chutes as proposed in eqs. [3] and [4] with $\theta = 0^\circ$, the variations of E_L/H_T with q^2/gH_T^3 in different flow regimes are distinctively different. It should be noted that the range of transition flow on stepped chutes of 60° is large. This is because the flowing water splashes and streamlines are not parallel due to the water impact along the outer edge of the steps.

In the nappe flow regime where the drop number is very low, E_L/H_T decreases rapidly as q^2/gH_T^3 increases and the angle of the inclined step has a little effect upon E_L/H_T , especially for chutes with milder slopes. The angle of inclined step increases the energy dissipation by less than 3 % as most of the flow energy is dissipated due to jet breakup and jet mixing on the step and the formation of hydraulic jump on the step.

In the skimming flow regime, E_L/H_T gradually decreases toward a constant value as q^2/gH_T^3 increases. It can be observed that a higher angle θ increases E_L/H_T . An inclined step increases the energy dissipation by about 6 % of H_T (depending on θ). As the upward angle of the inclined steps increases, the energy loss increases due to the obstruction of the steps to the flow direction producing more spray and the recirculation vortices being trapped on the chute steps. Larger flow circulations are found and they are more stable than those in the smaller angles of inclined steps. More energy is therefore dissipated on this kind of structure.

The effect of the chute slope, α , for the same q^2/gH_T^3 , the milder chute slope gives a greater energy loss ratio. At the highest q^2/gH_T^3 , the value of E_L/H_T for $\theta = 0^\circ$ (horizontal step) to $\theta = 30^\circ$ (30 degree angle of inclined step) for $\alpha = 30^\circ$ varies from 0.71 to 0.74, while for $\alpha = 45^\circ$ and 60° this ratio varies from 0.68 to 0.74 and from 0.67 to 0.73, respectively.

Another approach to estimate the energy loss on chutes is the comparison between the ratio of energy loss to the total head (E_L/E_0) and the ratio of the critical flow depth to the step height (d_c/h) (Christodoulou 1993). In this study, the relation of these parameters with d_c/h in the range of 1 to 2 are shown in Fig. 7. It is found that the energy ratio decreases when the discharge increases which is in the same trend when the drop number is applied.

Fig. 7 Energy dissipation and ratio of critical flow depth to step height

Flow velocity at outlet

The flow velocity V_T at the end of the chute can be expressed as

$$\frac{V_T}{\sqrt{gH_T}} = f_3 \left[\frac{q^2}{gH_T^3}, \frac{h}{l}, \theta \right] \quad (7)$$

As shown in Fig. 8, the velocity ratio $(V_T / \sqrt{gH_T})$ increases with increasing drop number for every chute slope and angle of inclined step. These data can be represented by the following logarithmic correlation

$$\frac{V_T}{\sqrt{gH_T}} = 0.131 \ln \left(\frac{q^2}{gH_T^3} \right) + 0.036 - 0.0009 \theta \quad (8)$$

As compared with the horizontal steps, the $(V_T / \sqrt{gH_T})$ ratio is smaller because of higher energy loss on the stepped chutes with inclined steps. The regions of nappe and skimming flow regimes are presented based on the drop number in Fig. 6. The kinetic energy ratio increases almost linearly with q^2/gH_T^3 and agrees reasonably

well with the variation of E_L/H_T with q^2/gH_T^3 . As the energy loss decreases when q^2/gH_T^3 increases, the remaining kinetic energy at the chute outlet increases.

In the nappe flow regime, the kinetic energy at the outlet for all cases is small and almost the same because most of the flow energy is dissipated along the stepped chutes. In the skimming flow regime, the kinetic energy at the chute outlet with inclined steps is less than for the horizontal stepped chutes because more flow energy is dissipated.

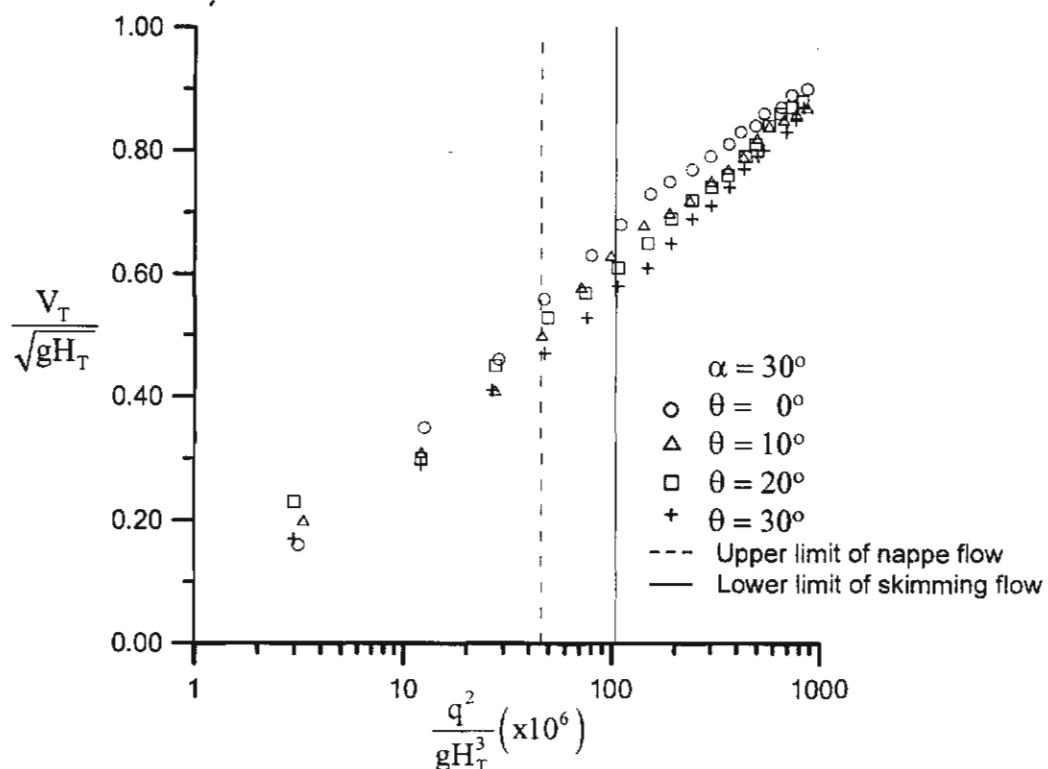


Fig. 8 Flow velocity at outlet and drop number of 30° stepped chutes

Conclusions

Flow regimes on chutes with upward inclined steps were considered and classified as nappe flow, transition flow, and skimming flow regimes. The onset of skimming flow is characterized by the relation of critical depth/step height (d_s/h) and step height/step length (h/l). The onset of skimming flow on stepped chutes with inclined steps is predicted by empirical correlations, which are good for $(0.1 \leq h/l \leq 1.73)$.

Under identical flow conditions and step geometries, an upward inclined step causes more energy loss than horizontal steps, especially in the skimming flow regime, i.e. about 6% of H_T (depending on θ). As the upward angle of the inclined steps

increases, the energy loss increases due to the obstruction of the steps to the flow direction producing more spray. Stepped chutes with upward inclined steps at milder slopes yield an energy loss ratio E_L/H_T greater than steeper. In the nappe flow regime, the energy loss decreases rapidly when the drop number increases. However, this decreasing rate become less and approaches a constant value when the flow is in the skimming flow regime.

The velocity ratio $(V_T / \sqrt{gH_T})$ increases with increasing drop number for every chute slope and angle of inclined step. To estimate kinetic energy ratio, an empirical equation is proposed in [8].

As the method of construction and construction cost of the inclined steps were not found significantly different compared to the horizontal steps, the inclined step is an alternative for energy dissipater along spillway face.

References

- Beitz, E., Lawless, M. 1992. Hydraulic model study for dam on GHFL 3791 Issac River at Burton Gorge. Water Resources Commission Report, Rep 24.1, Brisbane, Australia.
- Boes, R. M., Hager, W. H. 2003a. Two-phase flow characteristics of stepped spillways. *Journal of Hydraulic Engineering* **129**(9): 661-670.
- Boes, R. M., Hager, W. H. 2003b. Hydraulic design of stepped spillways. *Journal of Hydraulic Engineering* **129**(9): 671-679.
- Chamani, M. R., Rajaratnam, N. 1999. Onset of skimming flow on stepped spillways. *Journal of Hydraulic Engineering* **125**(9): 969-971.
- Chanson, H. 1994. Hydraulics of skimming flows over stepped channels and spillways. *Journal of Hydraulic Research* **32**(3): 445-460.
- Chanson, H. 1996. Prediction of the transition nappe/skimming flow on a stepped channel. *Journal of Hydraulic Research* **34**(3): 421-429.
- Chanson, H. 2002. The hydraulics of stepped chutes and spillways. Balkema, Rotterdam.
- Chanson, H. and Toombes, L. 1998. Supercritical flow at an abrupt drop: Flow patterns and aeration. *Canadian Journal of Civil Engineering* **25**(5): 956-966.
- Chinnarasri, C. 2002. Assessing the flow resistance of skimming flow on the step faces of stepped spillways. *Dam Engineering* **12**(4): 303-321.

- Christodoulou, G. C. 1993. Energy dissipation on stepped spillways. *Journal of Hydraulic Engineering* **119**(5): 644-650.
- Elviro, V., Mateos, C. 1995. Spanish research into stepped spillways. *International Journal of Hydropower and Dams*. **2**(5): 61-65.
- Essery, I.T.S., Horner, M.W. 1978. The hydraulic design of stepped spillway. CIRIA Report No. 33, London, UK.
- Moore, W.L. 1943. Energy loss at the base of a free overfall. *Transactions, ASCE*, **108**: 1343-1360.
- Rajaratnam, N. 1990. Skimming flow in stepped spillway. *Journal of Hydraulic Engineering* **116**(4): 587-691.
- Rajaratnam, N., Chamani, M.R. 1995. Energy loss at drops. *Journal of Hydraulic Research* **33**(3): 373-384.
- Pegram, G. S., Officer, A. K., Mottram, S. R. 1999. Hydraulics of skimming flow on modeled stepped spillways. *Journal of Hydraulic Engineering* **125**(5): 500-510.
- Rand, W. 1955. Flow geometry at straight drop spillways. *Proceedings, ASCE*, **81**(791):1-13.
- Yasuda, Y. and Ohtsu, I. 1999. Flow resistance of skimming flow in stepped channels. *Proceedings, XXVII, IAHR Congress, Graz, CD-Rom*.

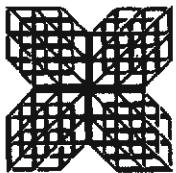
Output ที่ได้จากการทดลอง

จากการศึกษา การทดลองของสภาพการไหลในร่างขั้นบันไดแบบความชันย้อนกลับ ทำให้มีการสร้างชุดอุปกรณ์ประกอบการทดลอง ได้แก่ ร่างขั้นบันไดแบบความชันย้อนกลับ หอดัง หน้าเข้าร่าง ทางระบายน้ำออกจากร่าง ทางระบายน้ำเดินเพื่อการหมุนเวียน ระบบสูบน้ำและห่อและเครื่องมือวัดต่างๆที่จำเป็น เพื่อใช้ในการวิจัยและเป็น Output ที่ได้จากการทดลองทางตรง บทความที่ได้จากการวิจัยทางตรง ได้ตอบรับการตีพิมพ์แล้ว 1 เรื่อง ดังนี้ (สำเนาจดหมายตอบรับแสดงดังภาคผนวก ก)

1. Chinnarasri, C. and Wongwises, S. (2004), Flow regimes and energy loss on chutes with upward inclined steps, Canadian Journal of Civil Engineering (accepted for publication).

นอกจากนี้ ยังมีบทความหนึ่งเรื่องที่อยู่ในระหว่างการจัดทำ โดยใช้ชื่อเรื่องว่า Flow patterns and energy loss on various stepped structures ซึ่งเป็นการเขียนร่วมกันระหว่าง Chinnarasri, C. and Wongwises, S. และคาดว่าจะส่งไปลงที่ Journal of Irrigation and Drainage Engineering

นอกจากนั้นแบบประเมินที่ได้จากทุนวิจัยยังได้นำไปสร้างร่างทดลองรูปแบบอื่นอีก ได้แก่ ร่างขั้นบันไดแบบพื้นราบ ร่างขั้นบันไดแบบมีรั้นที่ปลายขั้น และร่างขั้นบันไดแบบกล่อง Gabions ทำให้ได้ผลการทดลองของลักษณะการไหลผ่านร่างขั้นบันไดในลักษณะต่างๆกัน เพื่อใช้ในการวิจัยของนักศึกษาระดับปริญญาโทของผู้รับทุนวิจัย ผลงานที่ได้เป็น Output ที่ได้จากการทดลองทางอ้อม


ผลการศึกษาเหล่านี้ ได้นำมาเขียนเป็นบทความและได้รับการตีพิมพ์ (กล่าวขอบคุณ สำนักงานคณะกรรมการการอุดมศึกษาและสำนักงานกองทุนสนับสนุนการวิจัย ในกิตติกรรม-ประกาศ) ดังต่อไปนี้ (รายละเอียดของบทความแสดงดังภาคผนวก ข)

1. Chinnarasri, C. and Donjadee, S., Characteristics of flows over gabion stepped spillways, submitted for possible accept for publication in Journal of Hydraulic Research.
2. Chinnarasri, C., Israngkura, U. and Donjadee, S. (2004), Pressure on step and flow depth on gabion stepped chutes, Research and Development Journal of the Engineering Institute of Thailand, Vol. 15(2), pp. 1-7 (in Thai).
3. Chaturabul, T., Chinnarasri, C., and Israngkura, U. (2004), Energy dissipation and outlet velocity on stepped channels with end sills, Research and Development Journal of the Engineering Institute of Thailand, Vol. 15(1), pp. 25-32 (in Thai).

4. Donjadee, S., *Chinnarasri, C.*, Israngkura, U., and Chaturabul, T. (2004), Flow through gabion stepped spillways, KMUTT Research and Development Journal, Vol. 27(1), pp. 81-93 (in Thai).
5. *Chinnarasri, C.*, Israngkura, U., and Chaturabul, T. (2003), Energy Dissipation on Stepped Spillways with End Sill, The 4th Regional Symposium on Infrastructure Development in Civil Engineering (RSID4), Bangkok, Thailand, April 3-5, pp. B6-9-B6-16.
6. *Chinnarasri, C.*, Israngkura, U., and Donjadee, S. (2003), Energy Loss through Stepped Gabion Spillways, Regional Conference on energy Technology towards a Clean Environment, 12-14 February, Phuket, Thailand, pp. 436-441.

ภาคผนวก ก

จดหมายจากนิตยสาร Canadian Journal of Civil Engineering ตอบรับการ
ตีพิมพ์ บทความเรื่อง Flow regimes and energy loss on chutes with upward
inclined steps

Canadian Journal of
Civil Engineering

Revue canadienne de
génie civil

27 May 2004

Dr. C. Chinnarasri
Water Resources Engineering Research Lab
Dept. of Civil Engineering
King Mongkut's University of Technology
Thonburi Bangkok 10140
Thailand

Dear Dr. Chinnarasri:

File: 03164 – Chinnarasri & Wongwises
Title: Flow regimes and energy loss on chutes with upward inclined steps

I am pleased to inform you that the above-mentioned paper has been accepted for publication in the next available issue of the Canadian Journal of Civil Engineering.

The National Research Council will contact you about two months prior to the publication date with respect to publishing details.

Thank you for your contribution to the Journal.

Sincerely,

D. Mavinic
Editor

D. Mavinic, Editor
Department of Civil Engineering
The University of British Columbia
2324 Main Mall
Vancouver, BC, Canada V6T 1Z4

Tel: (604) 822-2523
Fax: (604) 822-0568
E-mail: clee@civil.ubc.ca

ภาคผนวก ช1

สำเนาบทความและจดหมายจากผู้ช่วยบรรณาธิการ Journal of Hydraulic Research
แจ้งว่าได้รับต้นฉบับนักความเรื่อง Characteristics of flows over gabion stepped
spillways

chaiyuth.chi

From: "JRH Editor" <jhreditor@cee-dsm1.cee.uiuc.edu>
To: "chaiyuth.chi" <chaiyuth.chi@kmutt.ac.th>
Sent: 21 พฤษภาคม 2547 3:05
Subject: Re: Paper for J. of Hydraulic Research

*

We have received your paper for the IAHR Journal.

Your paper number is P2717. Please use this number when inquiring about your paper.

Your paper will now go out for review and we will get back to you as soon as we have the reviews back.

Sincerely,

Robin J. Ray

Assistant to the Editor

On Fri, 16 Apr 2004 16:03:53 +0700

"chaiyuth.chi" <chaiyuth.chi@kmutt.ac.th> wrote:

>16th April 2004

>

>Prof. Garcia,

>

>Ven Te Chow Hydroystems Laboratory

>

>University of Illinois at Urbana-Champaign

>

>205 North Mathews Avenue

>

>Urbana, Illinois 61801, USA

>

>Dear Prof. Garcia,

>

>I'd like to submit you the manuscript entitled "Characteristics of flows over

*

>gabion stepped spillways", which is expected to be published in Journal of

>Hydraulic Research.

>

>Please keep me posted on your decision. Your kind attention to my article
>will be greatly appreciated. I am looking forward to hearing from you in the
>near future.

>

>Sincerely yours,

>

>Dr. Chaiyuth Chinnarasri

>

>Corresponding author

>

>Tel: +662-470-9135-7, Fax: +662-427-9063

>

>Email: chaiyuth.chi@kmutt.ac.th

>

Characteristics of flows over gabion stepped spillways

CHAIYUTH CHINNARASRI^{1*}

¹*Water Resources Engineering Research Lab. (WAREE),*

Department of Civil Engineering,

King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand.

**Corresponding author. Tel: +662-470-9135-7; Fax: +662-427-9063;*

E-mail address: chaiyuth.chi@kmutt.ac.th

SOMCHAI DONJADEE²

²*Department of Irrigation Engineering,*

Kasetsart University, Kampaeng Saen Campus,

Nakorn Pathom 71340, Thailand.

Formerly Graduate Student, Department of Civil Engineering,

King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand.

ABSTRACT

Gabions are useful for building small retaining structures and have increased the interest in stepped spillways. However, less attention has received for these kinds of structures. This paper presents the new results of the experimental studies on the hydraulics of skimming flow on gabion stepped spillways. The slopes of the gabion spillways are of 30°, 45°, and 60° with total drop heights 1.50, 2.12, and 2.60 m, respectively. Based on dimensional analysis, the important parameters are analyzed and the relevant dimensionless parameters are formed. These data are analyzed and compared with other investigator's results to evaluate the onset of skimming flows on gabion stepped spillways. The energy loss ratios in the gabion stepped spillways are greater than those in the corresponding horizontal stepped spillways by 10% approximately for all spillway slopes. As a result, the velocity at the outlet is less. The pressure acting on the step face for the gabion stepped spillways is less than the pressure for the horizontal steeped spillways. The averaged pressure difference is about 27% owing to the absorption of energy from filled stones. The friction factor of gabion stepped spillways is found higher than that of the horizontal stepped spillways about 3.6 times.

Keywords: Skimming flow, gabions, stepped spillways, laboratory.

1 Introduction

Stepped spillway is a hydraulic structure, which its floor is built up of a series of steps. Besides the ease of construction and maintenance, one of its advantages over the plain-bed spillway is that more of the flow energy can be dissipated through it. As a result the flow leaves the stepped spillway at a lower velocity and a smaller size of energy dissipator can be used.

Recently, new construction materials e.g. gabions and design techniques have increased the interest in stepped chutes and spillways. Generally, gabions are used for building small retaining structures such as small gabion weirs, channel linings, and supporting parts of small earth dams. Gabions are hexagonal mesh boxes filled with small sizes of stones. Their advantages as construction materials are: 1) their stability, 2) low cost, 3) flexibility, and 4) porosity. The porosity of gabions is an important characteristic preventing the building up of uplift pressures (Chanson, 2002).

Although a lot of research has been conducted on hydraulics of flow over stepped chutes and spillways, the hydraulics of flow over gabions has received less attention. Few research works on energy dissipation over gabion stepped structures was made by Stephenson (1979&1988) and Peyras et al. (1992) and simple relationships of energy loss and spillway drop number were provided. However, no comparison of characteristics of flow between horizontal stepped spillways and gabion stepped spillways was reported.

To understand the characteristics of flow over gabion stepped spillway, therefore, the objective of the study is to conduct a new experimental test in order to investigate the rate of energy dissipation and to compare the energy loss between the horizontal stepped spillways and gabion stepped spillways. The effect of filled stones on the energy loss ratio is presented. In addition, the time-averaged pressure on the step face and the flow resistance under equilibrium condition are proposed and discussed.

2 Experimental apparatus and procedure

An outline of the experimental arrangement is shown in Figure 1. Water was pumped from a laboratory sump to the V-notched weir tank from which water entered the stepped spillway through an approach channel. At the bottom of the stepped channel, a horizontal outlet carried the water back to the sump. The discharge was measured by the V-notched weir tank. The discharge was varied from 4 – 68 l/s (0.01 to 0.17 m²/s).

The stepped spillways are made of plexiglass having widths of 0.40 m and consist of 20 steps. The slope of the stepped channel, α , are 30°, 45°, and 60°. The total drop heights of the stepped channel, H_T , are 1.5, 2.12, and 2.60 m, respectively. The dimensions of the step can

be defined as h/l , wherein h is the step height and l is its horizontal length. Each step, gabion boxes filled with stones are placed on the step face. The volume of the gabion boxes are $(h) \times (l) \times$ (spillway width).

To investigate the effect of filled stones three types of stones are used, i.e. i) crushed stone of 25-35 mm diameter, ii) rounded stone of 25-35 mm diameter, and iii) crushed stone of 50-70 mm diameter. The average void ratios of gabions are 0.27, 0.30, and 0.39, respectively. Figure 2 shows gabion dimension.

The measurements of depth and velocities in the spillway outlet were measured at about 3-4 times of the step length away from the lowest step face where turbulence and air entrainment effect became significantly diminished. The depths across the chute width were measured by a vernier-depth gauge. The velocities were measured by two methods, first by a pitot tube and second by dividing the measured flow area. The values obtained were within 10% differences. In calculating the energy loss the velocity obtained from the first method was used.

The pressure on step face was measured by U-tube manometers tapping at the holes on the face of the odd number steps. Five locations of pressure taps were provided on the step face. When the flow through the spillways reached steady condition, the pressure at each point on the step face was observed and was recorded for a certain period. Four sets of experimental conditions were investigated, i.e. set A: horizontal stepped spillways, set B: gabion stepped spillways with stone I, set C: gabion stepped spillways with stone II, and set D: gabion stepped spillways with stone III. Primary details of experiments were summarized in Tables 1 - 4.

3. Results and discussion

In the present study, which the flow depth and flow velocity were measured at a location where air entrainment was significantly diminished, the results can also represent the prototype behavior of stepped chutes with a limit of scale model. As mentioned by Pegram et al. (1999) who conducted two sets of modeled stepped spillways on the 1:10 and 1:20 scale models. Based on the results of the sequent depth of the hydraulic jump at the toe of the spillways, they reported that models with scales of 1:20 and larger could represent the prototype behavior of stepped spillways.

By Froude similitude, therefore, the presented results are limited for the height or length of the prototype spillways not greater than 20 times the modeled tests and the prototype discharges per unit width are in the range of 0.9 to 15.1 m^2/s .

3.1 Onset of skimming flow

When water flows over a gabion structure, the flowing water can be divided into two parts, i.e. base flow through the void between the filled stones and overflow on the gabion structure. The amount of base flow depends on the dimensions of gabions, the porosity, and the type of flow regime. Typically the step height equals the height of the gabion. The stone size of the rockfill is equal to at least 1 to 1.5 times the mesh size but should not be larger than 2/3 of the minimum dimension of the gabion. With these dimensions, the flow pattern may be either nappe flow at low flow rates or skimming flow at larger flow rates. Due to the occurrence of the base flow, the dimension of the air cavity beneath the free-falling nappes of the flow on gabion stepped spillways is smaller than that of the flow on horizontal stepped spillways. As the air cavity beneath the free-falling nappes disappears, the skimming flow begins. Flow regimes observed in the study are shown in Figure 3.

The study of onset of skimming flow was initiated by Essery and Horner (1978) who proposed the occurrence of skimming flow as the function of d_c/l and h/l , wherein d_c is the critical depth of flow, h is the step height and l is its horizontal length. Rajaratnam (1990) re-analyzed Essery and Horner's data and proposed the onset of skimming flow on horizontal stepped spillways as a new function of d_c/h and h/l . For the range of h/l from 0.4 to 0.9, at the onset of skimming flow d_c/h was approximately equal to 0.8. Chanson (1994) suggested a critical value for occurrence of skimming flow as

$$\frac{d_c}{h} = 1.057 - 0.465 \frac{h}{l} \quad (1)$$

Chamani and Rajaratnam (1999) developed an equation to predict the onset of skimming flow on horizontal steps. Their equation is based on the assumption that skimming flow begins when the jet leaving a step has a slope equal to that of the stepped chutes when it impinges on the pool behind the jet on the next step. The main difference with Chanson's assumptions is that the air pockets under the jet still exist. Their equation for the onset of skimming flow is

$$\frac{h}{l} = \sqrt{0.89 \left[\left(\frac{d_c}{h} \right)^{-1} - \left(\frac{d_c}{h} \right)^{-0.34} + 1.5 \right] - 1} \quad (2)$$

While Chinnarasri (2002) compared his experimental results on horizontal stepped spillways with the data of other researchers and found that for the range of h/l from 0.1 to 1.4, the onset of skimming flow occurred when

$$\frac{d_c}{h} \geq 0.80 \left(\frac{h}{l} \right)^{-0.22} \quad (3)$$

To investigate the onset of skimming flow on gabion stepped spillways the experimental data obtained in the study are compared with the experimental results on gabion stepped spillways conducted by Stephenson (1988) and Peyras et al. (1992). Summary of characteristics of experimental studies are shown in Table 5. The relation between d_c/h and h/l are shown in Figure 4. With a limited experimental data, a transition line between nappe flow and skimming flow can be drawn and the equation of onset of skimming flow can be expressed as

$$\frac{d_c}{h} \geq 0.61 \left(\frac{h}{l} \right)^{-0.26} \quad (4)$$

3.2 Energy dissipation

In a skimming flow regime, the steps act as a large roughness channel. Most of the energy is dissipated to maintain stable horizontal vortices beneath the pseudo-bottom formed by the external edges of the steps. Generally, the energy loss through a stepped spillway E_L depends on the total discharge per unit width of spillway q , the spillway drop height H_T , the step or gabion height h , the step length l , the stone diameter D , the slope of the spillway α , and the gravitation acceleration g . These variables are shown in Figure 5 and can be expressed functionally as

$$E_L = f_1 [q, H_T, h, l, D, g] \quad (5)$$

Using Buckingham Pi theorem, the variables in Eq. (5) can be expressed in non-dimensional form as

$$\frac{E_L}{H_T} = f_2 \left[\frac{q^2}{gH_T^3}, \frac{H_T}{h}, \frac{D}{h} \right] \quad (6)$$

The dimensionless term $q^2/(gH_T^3)$ is named as “spillway drop number”, the ratio H_T/h is actually the number of steps in the spillway and the ratio D/h is the relative stone height. To include the effect of spillway slope the term $q^2/(gH_T^3)$ is multiplied by the dimensionless term Δ , whereas Δ is the spillway slope (i.e. $\Delta = \tan\alpha = h/l$). It becomes a new dimensionless term named as “modified spillway drop number, $D_m = q^2 \Delta^2/(gH_T^3)$ ”.

The relationships between measured energy loss on gabion stepped spillways and modified spillway drop number are shown in Figure 6. The correlations between E_L/H_T and D_m for horizontal stepped spillways and gabion stepped spillways can be expressed as

For horizontal stepped spillways:
$$\frac{E_L}{H_T} = 0.39 D_m^{-0.07} \quad (7)$$

For gabion stepped spillways:
$$\frac{E_L}{H_T} = 0.50 D_m^{-0.05} \quad (8)$$

It is found that the flow energy is more dissipated in the gabion stepped spillways than in the horizontal stepped spillways. As the water flows over the gabion stepped spillways, the water is divided into two parts, i.e. flow over gabion boxes and flow through the gabion boxes (base flow). In the base flow, the water can flow through the void between filled stones, which results in reduction of the impact of the mass of the water on the face of the spillway steps. Small unstable vortices behind stones are observed, while more energy is required due to the interference of wake and step face.

Generally, the energy loss ratios in the gabion stepped spillways are greater than those in the corresponding horizontal stepped spillways by 10% approximately for all spillway slopes. For low flow, the nape flow regime is observed while at high flow the skimming flow occurs. The energy loss ratio varies inversely with the modified spillway drop number (D_m). The energy loss ratio decreases sharply at small value of the modified spillway drop number. The skimming flow pattern is observed as the modified spillway drop number increases further, the rate of decrease of energy loss ratio is reduced and shows the trend to approach a constant value.

In skimming flow regime, it is found that the flow energy is more dissipated in the spillway of milder slope than the steeper one at the same drop number. For spillway of milder slope, the step length (l) is longer than the step height (h) therefore the recirculating vortices can not fill the entire cavity between the step edges and the wake from one edge interferes with the next step. For steep slope, a stable recirculation in the cavities between adjacent steps is observed. The energy loss is due to the circulation of these vortices.

To study the effect of the size of filled stone it is found that the flow energy can be more dissipated by the bigger stone size than by the smaller one, within the range of this study. The crushed stone could dissipate more energy than the rounded one. The gabion filled with bigger stones has higher void ratio than the one filled with smaller stones. As some energy of flow is dissipated in the void in the gabion, therefore the higher void ratio produces higher rate of energy dissipation. However, the effect of stone size and shape seems to have little influence on the energy loss as compared with increasing effect of spillway slope.

Similar to the energy dissipation, the flow velocity at the spillway outlet V_T can be expressed in dimensionless form as

$$\frac{V_r}{\sqrt{gH_r}} = f_3 \left[D_m, \frac{H_r}{h}, \frac{D}{h} \right] \quad (9)$$

The velocity ratio $(V_r/\sqrt{gH_r})$ increases directly with increasing spillway drop number for every slopes and every gabion type as shown in Figure 7. As compared with the horizontal stepped spillways, this ratio is smaller, which is the result of higher energy loss on the gabion. The correlations between $(V_r/\sqrt{gH_r})$ and D_m for horizontal stepped spillways and gabion stepped spillways can be expressed as

$$\text{For horizontal stepped spillways: } \frac{V_r}{\sqrt{gH_r}} = 0.12 \ln(D_m) + 1.90 \quad (10)$$

$$\text{For gabion stepped spillways: } \frac{V_r}{\sqrt{gH_r}} = 0.12 \ln(D_m) + 1.78 \quad (11)$$

3.3 Pressure on the step face

In the uniform flow condition, the pressure on the step face should be influenced by the impact force of the flowing water on the step face and the recirculating fluid trapped between the step lips. Neglecting the effects of flow aeration, skin roughness, and the viscosity of the fluid, dimensional analysis yields

$$\frac{P}{\gamma H_i} = f_4 \left(\frac{q^2}{gH_i^3}, \alpha, \frac{x}{l} \right) \quad (12)$$

where P is the pressure at a point on a step, γ is the specific weight of fluid, g is the acceleration due to gravity, H_i is the drop height measured from the spillway approach to the step being considered, h is the step height, l is the step length, α is the slope of the spillway, and x is the distance from the upstream end of the step to the point being considered. Term $P/(\gamma H_i)$ represents relative pressure on the step face and term $q^2/(gH_i^3)$ represents step drop number.

Consider the maximum pressure at any distance, x , on a step face, the term $P/(\gamma H_i)$ becomes the relative maximum pressure on the step face. Hence Eq. (12) becomes:

$$\frac{P}{\gamma H_i} = m \left(\frac{q^2}{gH_i^3} \right)^n \quad (13)$$

The relation of the maximum pressure on step face and step drop number of both horizontal stepped spillways and gabion stepped spillways is good as shown in Figure 8. The spillway slope is given in legend. The coefficients m and n for the case of horizontal stepped

spillways are 1.36 and 0.31 while the coefficients m and n for the case of gabion stepped spillways are 0.85 and 0.29. The pressure acting on the step face for the gabion stepped spillways is less than the pressure for the horizontal stepped spillways. The averaged pressure difference is about 27%. It is due to the fact that the filled stones in the gabions absorb the fluid force acting on the step face by the seepage of fluid to the lower void of the mesh boxes.

As the void ratio of gabion boxes is correspondence to the size of filled stone, therefore the impact of flowing water hitting the step face is higher for the case of bigger size of filled stone. However, the magnitude of pressure is not much different.

3.4 Flow resistance of skimming flows under equilibrium condition

For the large roughness elements, there are two types of hydraulic resistance, i.e. skin resistance and form resistance of the steps. In a stepped spillway, the skin roughness is less compared to the form roughness of the steps. With gabion meshes, the rough surface of filled stones and mesh boxes increase the flow resistance. In order to investigate the flow resistance of skimming flows under uniform flow condition, the average shear stress that exists between the skimming stream and the trapped recirculating fluid underneath can be expressed as

$$\tau = d_o \gamma \sin \alpha = \zeta \rho \frac{V_o^2}{8} \quad (14)$$

where τ is the average shear stress, d_o is the normal flow depth, γ is the specific weight of the fluid, α is the slope of the step $= \tan^{-1}(h/l)$, ζ is the Darcy-Weisbach friction factor, ρ is the density of the fluid, V_o is the constant mean flow velocity. Rearranging, Eq.(14) becomes,

$$\zeta = \frac{8g \sin \alpha d_o^3}{q^2} \quad (15)$$

where g is the acceleration due to gravity and q is the discharge per unit width of the spillway. Considering the concerning variables to the resistance to flow and by neglecting the effects of flow aeration, the correlation of friction factor and importance parameters can be expressed in dimensionless form as

$$\zeta = f_s \left[\frac{K_f}{d_o}, \frac{K_s}{d_o}, \Delta, R_e \right] \quad (16)$$

where K_f is the form roughness, K_s is the skin roughness, and R_e is the Reynolds number. The dimensionless term K_f/d_o is the relative roughness of the step dimension, K_s/d_o is the relative skin roughness, and Δ is the spillway slope (i.e. $\Delta = \tan \alpha = h/l$). It is found that at high Reynolds number the friction factor is independent of the Reynolds number and the spillway acts as a wholly rough channel. Therefore, Eq. (16) becomes

$$\zeta = f_o \left[\frac{K_f}{d_o}, \Delta \right] \quad (17)$$

The relation of friction factor and relative roughness of the spillway floor, K_f/d_o , where $K_f = h \cos \alpha$, may be expressed in general form as:

$$\frac{I}{\sqrt{\zeta}} = a + b \log \left(\frac{d_o}{K_f} \right) \quad (18)$$

The relation between friction factor and relative roughness is plotted as shown in Figure 9. The friction factors are quite scattered but show trend to increase when relative roughness (K_f/d_o) and spillway slope increase. The Reynolds number $R_e = V_o d_o / v$, with v being the kinematic viscosity of the fluid, was in the range of 6.2×10^4 to 1.5×10^5 . For the range of the experiments in this study, the average friction factors of the horizontal stepped spillways, ζ , for $\alpha = 30^\circ$, 45° , and 60° are 0.63, 0.52, and 0.33, respectively. While the average friction factors of the gabion stepped spillways, ζ , for $\alpha = 30^\circ$, 45° , and 60° are 2.07, 1.73, and 1.51, respectively. For the case of gabion stepped spillways, the friction factor is found higher than that of the horizontal stepped spillways about 3.6 times.

Chinnarasri (2002) combined his experimental results of skimming flow over horizontal stepped spillways and others researcher results and suggested that the coefficients a and b in Eq. (18) are 2.00 and 1.19, for the range of spillway slope from 15° to 59° and valid for $0.1 \leq K/d_o \leq 2.1$ (the dash line in Figure 9). The experimental results of the present study on horizontal stepped spillways are found somewhat higher than Chinnarasri (2002) results. Based on the present experimental data, the correlations between friction factor and K_f/d_o for gabion stepped spillways can be expressed as:

$$\frac{I}{\sqrt{\zeta}} = 7.50 + 1.85 \log \left(\frac{d_o}{K_f} \right) \quad (19)$$

4 Conclusions

Flow regimes on gabion stepped spillways are observed and can be classified as nappe flow and skimming flow regimes. The onset of skimming flow is characterized by the relation of critical depth/step height (d_c/h) and step height/step length (h/l). The nature of step face influences the energy dissipation process. Generally, the energy loss ratios in the gabion stepped spillways are greater than those in the corresponding horizontal stepped spillways by 10%. As a result, the velocity at the outlet is less. The size and shape of filled stone have small effects on the energy dissipation, within the range of investigation. The other

parameters, i.e. spillway slope and spillway drop number have been found to effect the energy dissipation in the same manner as found in the horizontal stepped spillways.

The relationship among the maximum time-averaged pressure on step face and the step drop number is proposed. The pressure acting on the step face for the gabion stepped spillways is less than the pressure for the horizontal stepped spillways. The averaged pressure difference is about 27%. It is due to the fact that the filled stones in the gabions absorb the fluid force acting on the step face by the seepage of fluid to the lower void of the mesh boxes.

The average friction factors of the gabion stepped spillways, ζ , for $\alpha = 30^\circ, 45^\circ$, and 60° are 2.07, 1.73, and 1.51, respectively. For the case of gabion stepped spillways, the friction factor is found higher than that of the horizontal stepped spillways about 3.6 times.

Acknowledgement

The authors would like to thank Faculty of Engineering, KMUTT, the Commission on Higher Education (CHE), and the Thailand Research Fund (TRF) for providing partially financial support in the study. Valuable guidance and encouragement from Prof. Somchai Wongwises and Asst. Prof. Udomsak Israngkura are appreciated.

References

1. Chamani, M. R. and Rajaratnam, N., 1999. Characteristics of skimming flow over stepped spillways. *Journal of Hydraulic Engineering*, **125** (HY 4), 361-368.
2. Chanson, H., 1994. Hydraulics of skimming flows over stepped channels and spillways. *Journal of Hydraulic Research*, **32**(3), 445-460.
3. Chanson, H., 2002. The hydraulics of stepped chutes and spillways. Balkema, pp. 384.
4. Chinnarasri, C., 2002. Assessing the flow resistance of skimming flow on the step faces of stepped spillways. *Dam Engineering*, **12**(4), pp. 303-321.
5. Essery, I.T.S. and Horner, M.W., 1978. The hydraulic design of stepped spillway. CIRIA report no. 33, Jan., London, UK.
6. Pegram, G. G. S., Officer, A. K., and Mottram, S. R., 1999. Hydraulics of skimming flow on modelled stepped spillways, *Journal of Hydraulic Engineering*, **125** (HY5), 500-510.
7. Peyras, L., Royet, P., and Degoutte, G., 1992. Flow and energy dissipation over stepped gabion weirs, *Journal of Hydraulic Engineering*, **118** (HY5), 707-717.
8. Rajaratnam, N., 1990. Skimming flow in stepped spillway. *Journal of Hydraulic Engineering*, **116** (HY4). 587-691.
9. Stephenson, D., 1979. Gabion energy dissipators, Proceedings of the 13th ICOLD Congress, Q5R3, CIGB, Paris, France, 33-43.

10. Stephenson, D., 1988. Stepped energy dissipators. Proc. Intl Symp. On Hydraulics for High Dams, IAHR, Beijing, China, 1228-1235.

Lists of symbols

D	stone diameter
D_m	modified spillway drop number
d_c	critical depth of flow
d_o	normal flow depth
E_L	flow energy loss
g	gravitation acceleration
H_i	drop height measured from the spillway approach to the step being considered
H_T	total drop heights of the stepped channel
h	step height
l	horizontal length
K_f	form roughness
K_s	skin roughness
P	pressure at a point on a step
q	discharge per unit width of spillway
R_e	Reynolds number
V_o	constant mean flow velocity
V_T	flow velocity at the spillway outlet
α	slope of the stepped channel
γ	specific weight of fluid
x	distance from the upstream end of the step to the point being considered
τ	average shear stress
ζ	Darcy-Weisbach friction factor
ρ	density of the fluid
Δ	spillway slope (i.e. $\Delta = \tan\alpha = h/l$)

Table 1. Primary details of experimental set A.

Experimental set	α (degree)	H_T (m)	h (m)	l (m)	Run No.	Q (l/s)	v_T (m/s)	d_0 (cm)	Maximum pressure head (cm)				Type of flow	
									H_l/h	H_r/h	H_s/h	H_d/h		
A-1	30	1.50	0.075	0.130	1	4.08	0.63	*	8	12	16	18	Nappe	
									3	12.29	1.78	*	*	
									5	20.66	2.43	*	*	Transition
									7	28.49	2.79	4.51	12.60	
									9	35.85	2.95	5.47	14.60	Skimming
									11	44.21	3.13	5.79	14.95	16.50
									13	51.16	3.24	6.28	15.70	16.00
									15	58.99	3.35	6.82	18.85	15.00
A-2	45	2.12	0.106	0.106	1	4.19	1.00	*	8	12	16	18	Nappe	
									3	11.67	2.19	*	*	Transition
									5	19.82	2.75	*	*	
									7	28.49	3.30	*	*	Transition
									9	36.24	3.43	4.45	17.60	Skimming
									11	44.21	3.62	4.76	18.90	
									13	51.16	3.80	5.25	19.90	16.90
									15	58.46	3.90	5.88	20.75	18.20
A-3	60	2.60	0.130	0.075	1	4.41	1.21	*	8	12	16	18	Nappe	
									3	11.88	2.37	*	*	Transition
									5	20.38	3.16	*	*	
									7	27.81	3.54	*	*	Transition
									9	36.04	3.83	*	*	
									11	43.33	4.11	4.01	**	19.10
									13	52.14	4.22	4.22	**	18.40
									15	58.72	4.39	4.69	**	19.50

* The flow is not in skimming flow regimes.

** The flow in skimming flow regimes but not uniform flow.

Table 2. Primary details of experimental set B.

Experimental set	α (degree)	H_T (m)	h (m)	l (m)	Run No.	Q (l/s)	v_T (m/s)	d_0 (cm)	Maximum pressure head (cm)				Type of flow	
									H/h	H_1/h	H_2/h	H_3/h		
B-1	30	1.50	0.075	0.130	1	4.08	0.54	*	*	*	*	*	Nappe	
						12.29	1.37	*	*	*	*	*	Nappe	
						20.66	2.05	*	*	*	*	*	Transition	
						28.49	2.45	7.21	12.30	10.30	9.50	10.50	Skimming	
						35.85	2.62	7.85	13.10	10.80	9.80	10.80	Skimming	
						44.21	2.82	8.62	14.30	11.20	10.50	11.10	Skimming	
						51.16	2.99	9.37	14.80	11.60	11.20	11.40	Skimming	
						58.99	3.12	9.87	15.50	11.90	11.60	12.10	Skimming	
B-2	45	2.12	0.106	0.106	1	4.24	0.66	*	*	*	*	*	Nappe	
						11.47	1.55	*	*	*	*	*	Nappe	
						19.54	2.35	*	*	*	*	*	Transition	
						29.71	2.86	*	*	*	*	*	Transition	
						36.84	3.13	6.82	13.70	12.70	13.20	12.60	Skimming	
						43.77	3.25	7.53	14.40	13.30	13.70	13.60	Skimming	
						50.92	3.44	8.14	15.30	13.60	14.20	14.10	Skimming	
						60.04	3.54	8.56	15.90	15.10	15.70	15.40	Skimming	
B-3	60	2.60	0.130	0.075	1	3.97	0.77	*	*	*	*	*	Nappe	
						12.29	2.00	*	*	*	*	*	Transition	
						20.10	2.75	*	*	*	*	*	Transition	
						28.15	3.10	*	*	*	*	*	Transition	
						36.04	3.38	*	*	*	*	*	Transition	
						44.65	3.58	6.88	**	12.30	11.90	11.70	Skimming	
						52.14	3.70	7.34	**	12.90	12.60	12.60	Skimming	
						60.31	3.84	7.69	**	13.20	13.40	13.80	Skimming	
B-4	75	3.12	0.130	0.075	1	3.97	0.77	*	*	*	*	*	Nappe	
						12.29	2.00	*	*	*	*	*	Transition	
						20.10	2.75	*	*	*	*	*	Transition	
						28.15	3.10	*	*	*	*	*	Transition	
						36.04	3.38	*	*	*	*	*	Transition	
						44.65	3.58	6.88	**	12.30	11.90	11.70	Skimming	
						52.14	3.70	7.34	**	12.90	12.60	12.60	Skimming	
						60.31	3.84	7.69	**	13.20	13.40	13.80	Skimming	

* The flow is not in skimming flow regimes.

** The flow in skimming flow regimes but not uniform flow.

Table 3. Primary details of experimental set C.

Experimental set	α (degree)	H_T (m)	h (m)	l (m)	Run No.	Q (l/s)	v_T (m/s)	d_0 (cm)	Maximum pressure head (cm)				Type of flow	
									H_1/h	H_2/h	H_3/h	H_4/h		
												8 12 16 18		
C-1	30	1.50	0.075	0.130	1	4.08	0.56	*	*	*	*	*	Nappe	
					3	12.29	1.49	*	*	*	*	*	Nappe	
					5	20.95	2.15	*	*	*	*	*	Transition	
					7	28.49	2.50	7.15	14.10	10.50	11.00	10.00	Skimming	
					9	36.24	2.69	7.76	14.90	11.60	11.50	10.70	Skimming	
					11	45.10	2.89	8.37	15.90	12.50	11.70	11.40	Skimming	
					13	51.16	3.01	9.00	16.50	12.70	12.00	11.80	Skimming	
					15	59.25	3.12	9.74	17.50	13.10	12.50	12.60	Skimming	
					17	68.04	3.20	10.48	18.20	13.60	13.10	13.10	Skimming	
C-2	45	2.12	0.106	0.106	1	4.08	0.64	*	*	*	*	*	Nappe	
					3	12.40	1.65	*	*	*	*	*	Nappe	
					5	20.38	2.43	*	*	*	*	*	Transition	
					7	29.36	2.89	*	*	*	*	*	Transition	
					9	35.65	3.16	6.67	13.90	12.80	13.70	12.60	Skimming	
					11	43.33	3.29	7.45	15.40	13.40	14.50	13.80	Skimming	
					13	51.16	3.43	8.03	16.10	14.20	14.80	15.10	Skimming	
					15	59.78	3.60	8.41	16.80	15.10	15.30	16.10	Skimming	
					17	68.04	3.72	8.87	18.00	16.20	15.90	17.80	Skimming	
C-3	60	2.60	0.130	0.075	1	4.41	0.89	*	*	*	*	*	Nappe	
					3	11.67	2.05	*	*	*	*	*	Transition	
					5	20.10	2.81	*	*	*	*	*	Transition	
					7	28.15	3.12	*	*	*	*	*	Transition	
					9	36.24	3.41	*	*	*	*	*	Transition	
					11	44.21	3.63	6.51	**	11.10	12.50	12.90	Skimming	
					13	52.38	3.74	7.23	**	12.90	13.50	13.90	Skimming	
					15	60.04	3.88	7.61	**	14.20	15.50	16.10	Skimming	
					17	68.04	3.96	8.27	**	16.30	16.00	16.50	Skimming	

* The flow is not in skimming flow regimes.

** The flow in skimming flow regimes but not uniform flow.

Table 4. Primary details of experimental set D.

Experimental set	α (degree)	H_T (m)	h (m)	l (m)	Run No.	Q (l/s)	v_T (m/s)	d_0 (cm)	Maximum pressure head (cm)				Type of flow	
									H_0/h	H_1/h	H_2/h	H_3/h		
D-1	30	1.50	0.075	0.130	1	4.19	0.49	*	*	*	*	*	Nappe	
					3	12.08	1.28	*	*	*	*	*	Nappe	
					5	19.96	1.93	*	*	*	*	*	Transition	
					7	28.49	2.37	7.35	12.10	10.20	11.10	12.10	Skimming	
					9	36.24	2.60	7.87	13.30	11.90	11.60	12.90	Skimming	
					11	44.21	2.77	8.57	14.10	13.20	12.20	13.80	Skimming	
					13	50.68	2.87	9.40	14.60	14.60	15.10	15.30	Skimming	
					15	58.72	3.02	9.89	15.40	15.20	15.90	15.10	Skimming	
D-2	45	2.12	0.106	0.106	1	4.08	0.63	*	*	*	*	*	Nappe	
					3	12.40	1.71	*	*	*	*	*	Nappe	
					5	20.38	2.32	*	*	*	*	*	Transition	
					7	29.36	2.75	*	*	*	*	*	Transition	
					9	35.65	2.95	6.76	12.30	13.60	14.40	13.60	Skimming	
					11	43.33	3.15	7.43	14.50	15.20	14.70	14.70	Skimming	
					13	51.16	3.35	7.93	15.50	16.00	15.40	15.90	Skimming	
					15	59.78	3.47	8.38	16.20	17.60	16.70	16.50	Skimming	
D-3	60	2.60	0.130	0.075	1	4.08	0.80	*	*	*	*	*	Nappe	
					3	12.29	2.00	*	*	*	*	*	Transition	
					5	19.27	2.75	*	*	*	*	*	Transition	
					7	27.98	3.08	*	*	*	*	*	Transition	
					9	36.44	3.29	*	*	*	*	*	Transition	
					11	44.21	3.50	6.68	**	14.60	14.10	14.40	Skimming	
					13	51.65	3.62	7.18	**	15.70	14.60	15.00	Skimming	
					15	59.51	3.82	7.74	**	16.30	15.40	15.60	Skimming	
					17	68.04	3.87	8.54	**	17.60	17.40	17.10	Skimming	

* The flow is not in skimming flow regimes.

** The flow in skimming flow regimes but not uniform flow.

Table 5. Summary of characteristics of experimental studies.

Ref.	Flume	Slope		Step	Remarks
		width (m)	(deg.)		
Stephenson (1988)	0.38	18.4	0.15	1. Number of steps = 4	
		26.6	0.15	2. Type of transition: Nappe to Skimming flow	
		45	0.15		
Peyras et al. (1992)	0.80	18.4	0.20	1. Number of steps = 3, 4, and 5	
		26.6	0.20	2. Discharge = 0.04 to 0.27 m ³ /s	
		45	0.20	3. Type of transition: Nappe to Skimming flow	
Present study	0.40	30	0.075	1. Number of steps = 20	
		45	0.106	2. Type of transition: Nappe to Transition flow and	
		60	0.130	Transition to Skimming flow	

Figure captions:

Figure 1 Schematic diagram of experimental set-up

Figure 2 Gabion dimension in millimeters

Figure 3 Flow regimes; a) nappe flow regime and b) skimming flow regime

Figure 4 Onset of skimming flow on gabion stepped spillways

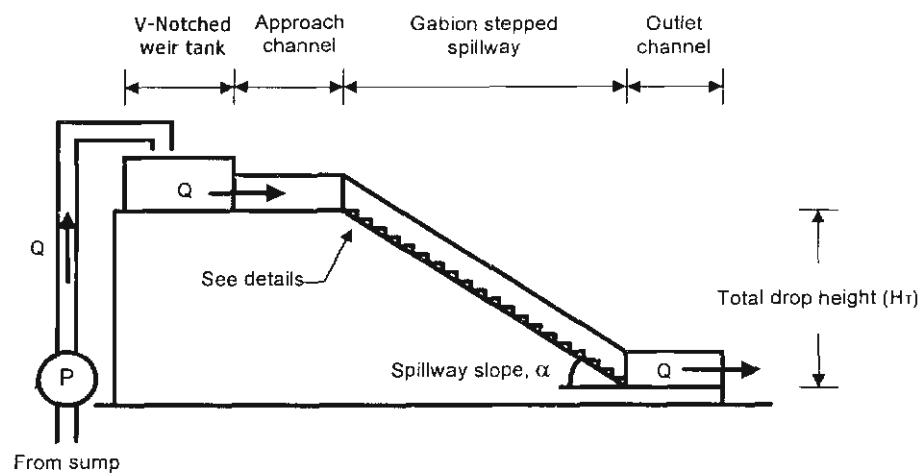

Figure 5 Variables in dimensional analysis

Figure 6 Relationship between energy dissipation on gabion stepped spillways and modified spillway drop number

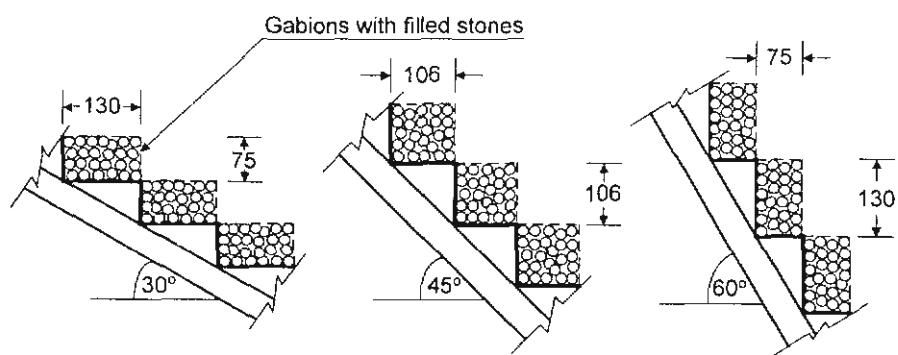
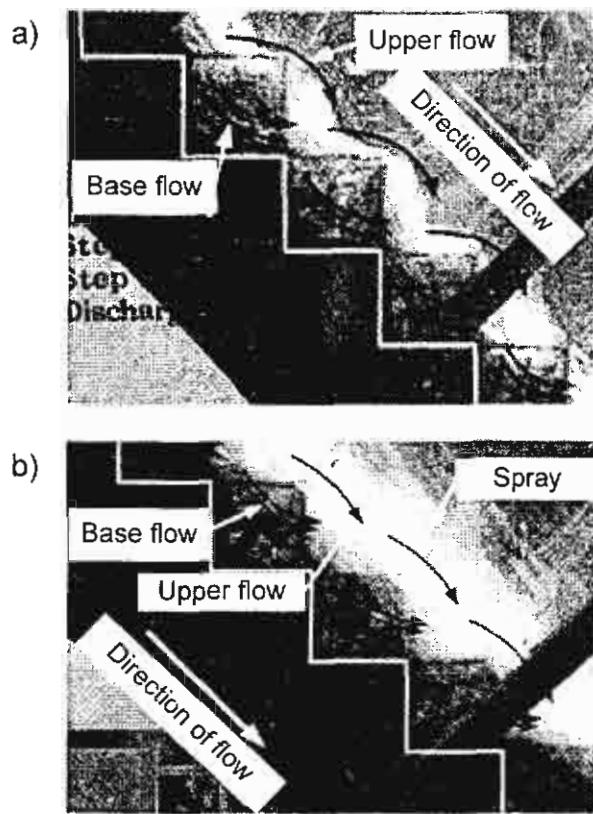
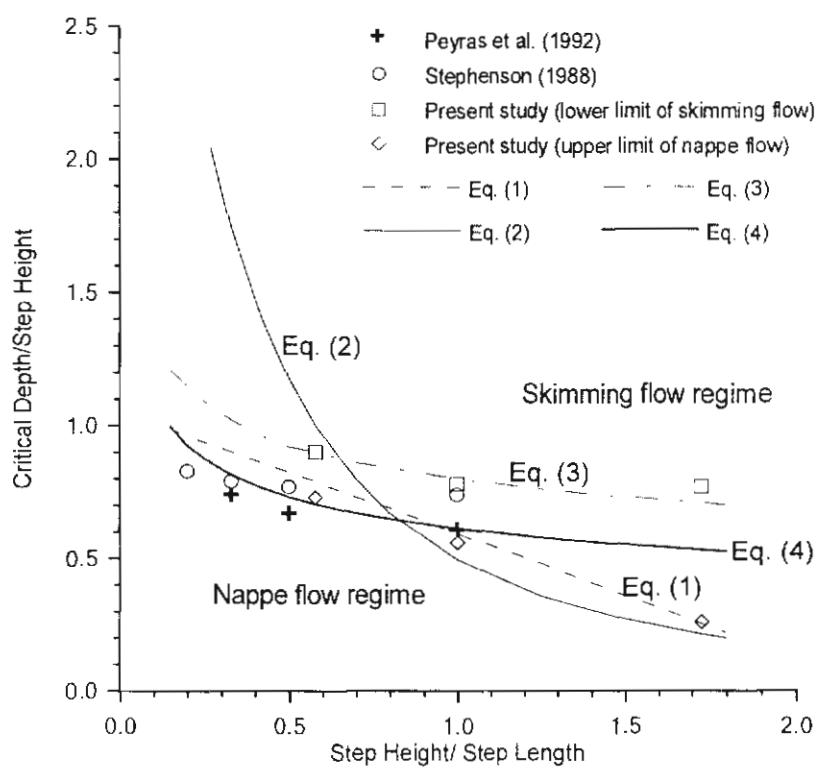
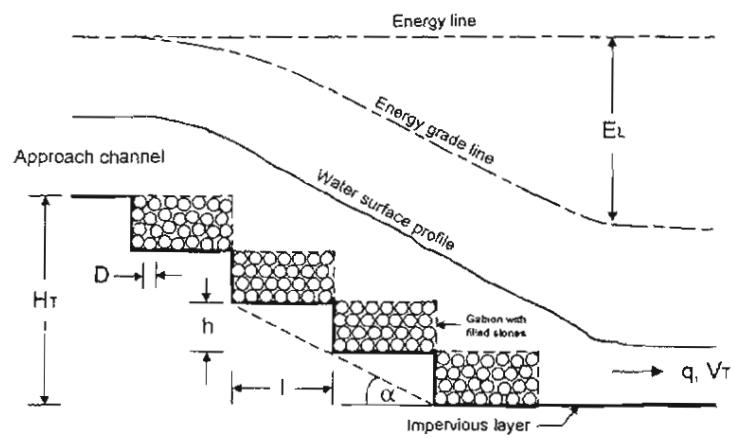
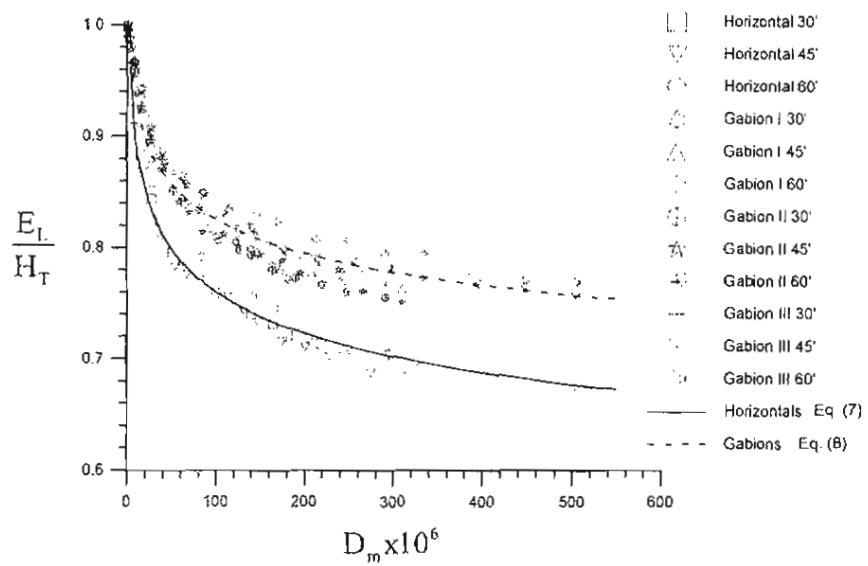

Figure 7 Flow velocity at spillway outlet and modified spillway drop number

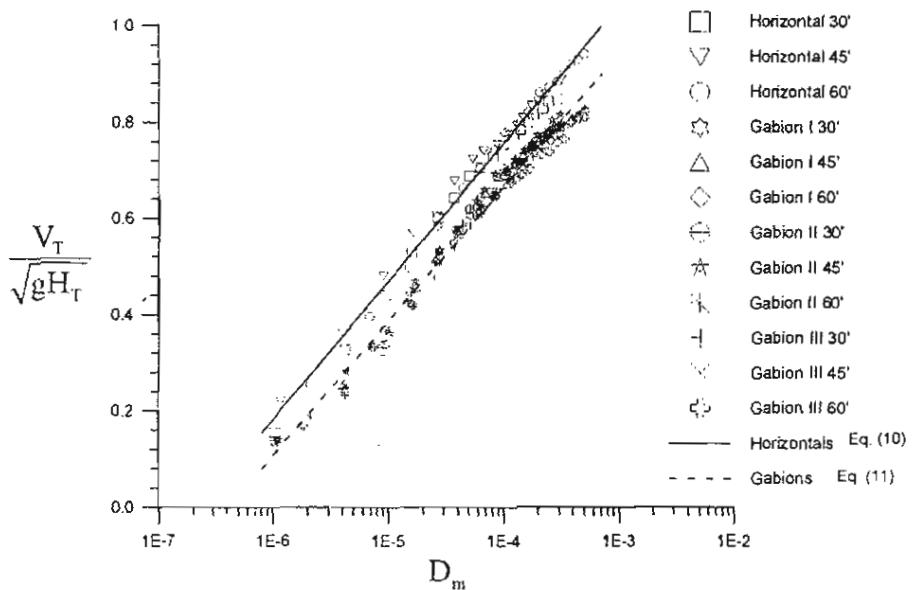
Figure 8 Relationship between maximum pressure on steps and step drop number

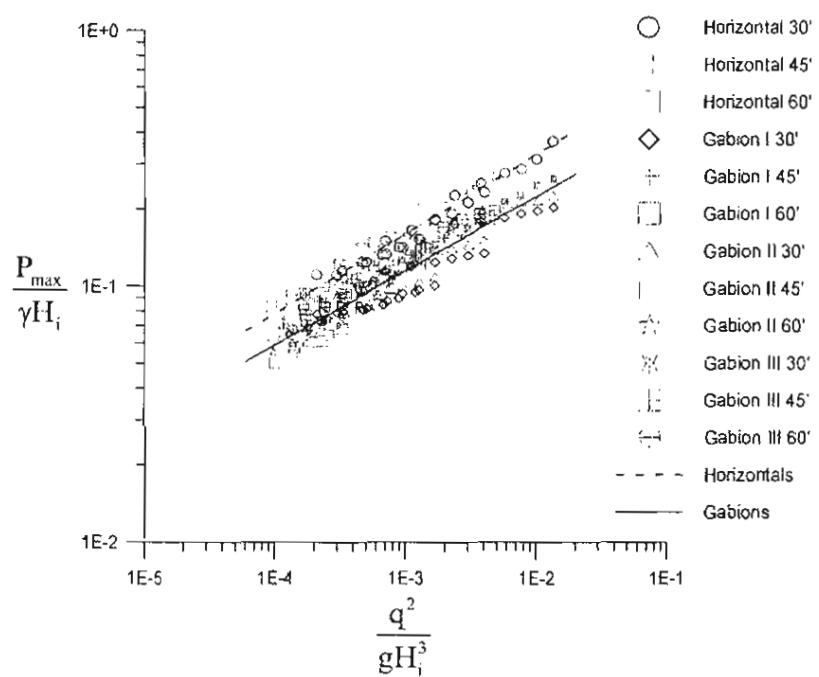

Figure 9 Friction factor of skimming flows under equilibrium condition


Figure 1 Schematic diagram of experimental set-up


Figure 2 Gabion dimension in millimeters


Figure 3 Flow regimes; a) nappe flow regime and b) skimming flow regime


Figure 4 Onset of skimming flow on gabion stepped spillways


Figure 5 Variables in dimensional analysis

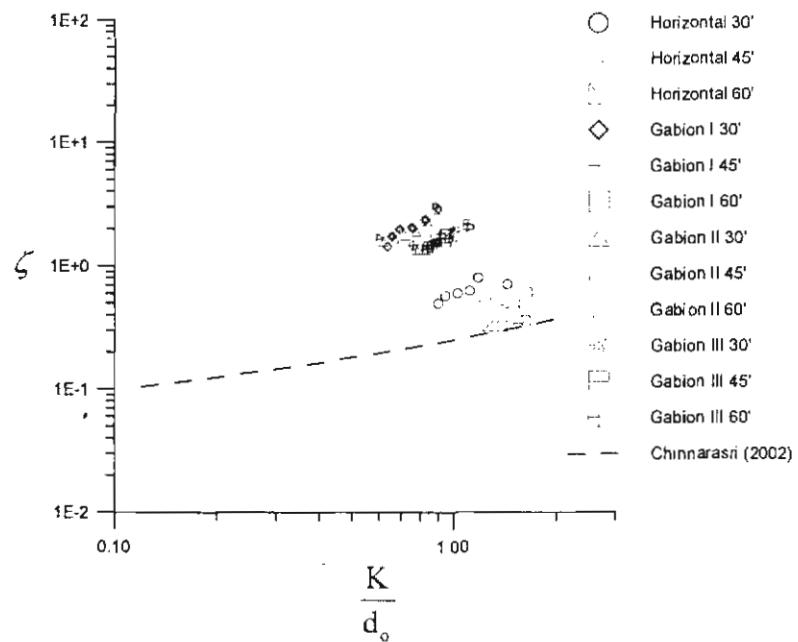

Figure 6 Relationship between energy dissipation on gabion stepped spillways and modified spillway drop number

Figure 7 Flow velocity at spillway outlet and modified spillway drop number

Figure 8 Relationship between maximum pressure on steps and step drop number

Figure 9 Friction factor of skimming flows under equilibrium condition

ภาคผนวก ข2

สำเนาบทความเรื่อง Pressure on step and flow depth on gabion stepped chutes, Research and Development Journal of the Engineering Institute of Thailand, Vol. 15(2), pp. 1-7

ความดันบนพื้นทรายและความลึกของการไหลบนพื้นทรายขึ้นบันไดแบบกล่องตามที่

Pressure on Step and Flow Depth on Gabion Stepped Chutes

ຮ້ອງທັກ ຂົນພະວາກເຮົາ¹ ສາມພາບ ຄອນເອົາເຈົ້າ² ແລະ ອຸປະກັດກົດ ອິກາຮງອູນ ແລະ ອຸດຫາ³

‘ห้องปฏิบัติการวิจัยพิพารณ์แหล่งน้ำ ภาควิชาพิพารณ์ไทย มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี กรุงเทพฯ 10140’

²ภาควิชาภิการนชลประทาน มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตกำแพงแสน นครปฐม 71340

Chaiyuth Chinnarasri¹, Somchai Donjadee^{1&2}, and Udonsak Israngkura¹

Water Resour. Eng. Res. Lab. (WAREE), Dept. Civil Eng., King Mongkut's University of Technology Thonburi, Bangkok 10140

¹Department of Irrigation Engineering, Kasetsart University, Kampaeng Saen Campus, Nakorn Pathom 71340

E-mail: chaiyuth.chi@kmutt.ac.th, t_donjadee@yahoo.com

บทคัดย่อ

ร่างขึ้นบันไดเป็นโครงสร้างทางชลศาสตร์ที่สำคัญสำหรับระบบระบายน้ำของดอนนี้ที่ตัดผ่านบริเวณที่ออกเป็น ชั้วตัดพังงาและ ความเร็วของกระแทกน้ำทางด้านปลาระงัน ท้าให้ตัดขาดของชั้วตัดพังงาและ หลังงานที่ปลาระงันจะระบายน้ำลงถู่ทางน้ำที่ธรรมชาติลงให้บกความ นี้ได้นำเสนอผลการศึกษาจากการทดลองเกี่ยวกับชลศาสตร์การไหลบน ร่างขึ้นบันไดแบบกล่องตามคาดข่ายบรรจุหิน ซึ่งเป็นรัศมุกที่หาได้ง่าย ทันทัน และราคาถูก ผลการศึกษาประกอบในปีค.ศ. 2550 แบบการไหลบนร่าง ความ ดันบนพื้นร่าง และความลึกของการไหลบนร่าง ซึ่งพบว่าร่างขึ้นบันได แบบกล่องตามคาดข่ายชั้วตัดแรงดันของน้ำบนร่างขึ้นบันได ได้ร้อยละ 27 เมื่อ เมริชันเทียบกับร่างขึ้นบันไดแบบพื้นร่าง ความลึกในร่างแบบกล่องตาม คาดนี้แย่ในมัมมอยกว่าเดิมของการที่กล่องตามคาดข่ายได้ดีขึ้นให้มีการไหล ผ่านช่องพินได้บางส่วน ข้อมูลจากผลการศึกษานี้จะเป็นที่นิยมในการ วิจัยและออกแบบร่างขึ้นบันไดแบบกล่องตามคาดข่ายต่อไป

Abstract

Stepped chute is the important hydraulic structure for drainage system of mountainous roads. It increases the efficiency of energy dissipation and reduces outflow velocity causing a smaller energy dissipation basin before water is released to the natural streams. This paper presents the results of the experimental studies on the hydraulics of flow on gabion stepped chutes. Gabions consist of rockfill material enlaced by a mesh. They are local available, high stability and low cost. The results of the study include type of flow on the structure, pressure on step, and flow depth on the structure. It was found that the pressure on step was less to 27 percent. Due to base flow through the filled stones, the flow depth on gabion stepped chute was less than that

of horizontal stepped chutes. These result data are useful for the future research and fundamental design of gabion stepped chutes.

1. ឧបនា

การลดความเร็วทางค้านท้ายน้ำจากการให้ผลของน้ำในระบบ
ระบายน้ำน้ำที่ถูกดักชั้นสูงก่อนที่น้ำจะไหลเข้าสู่ถังน้ำธรรมชาติเป็น
แนวทางหนึ่งในการลดปัจจัยการถดเชื้อที่อาจเกิดขึ้นกับถังน้ำธรรมชาติ
ได้ ที่ค้านน้ำได้มีผู้ที่ทำการทดลองและออกแบบอ่างสแตนเลสจังงานเพื่อ
ลดความเร็วของน้ำไว้หลาชูปแบบ [1] ซึ่งเดลลารูปแบบเหมือนกับ
ถังที่และสภาวะการไหลแตกต่างกันของดีป แต่ตัวถุงประทังค์หลักที่
เหมือนกันคือเพื่อลดความเร็วของอ่างสแตนเลสจังงานและความเร็วของน้ำที่
ปลดระบายน้ำในเกลียวที่ข้อมรับได้ก่อนที่จะปล่อยให้ไหลออกสู่ถังน้ำ
ธรรมชาติ

รายงานนี้ขึ้นบันไดเป็นโครงสร้างทางคณิตศาสตร์ที่สำคัญช่วยเพิ่มประสิทธิภาพการสอนพัฒนา และลดความเร็วการให้ทางศัลย์ที่ต้องการรับความนิยมใช้กันอย่างมาก [2] สำหรับตัวอย่างของงานวิจัยที่เกี่ยวข้องได้แก่ การทดลองเกี่ยวกับการสอนพัฒนาของรายงานนี้บันไดแบบพื้นฐาน ([3], [4], [5]) และสามารถสรุปได้ว่าการสอนพัฒนาขึ้นอยู่กับความต้องการของแรงและอัตราการให้โดยมีอิทธิพลต่อความต้องการที่เพิ่มขึ้นการสอนพัฒนาลดลง และที่ความต้องการเพิ่มขึ้นกับการสอนพัฒนาลดลงเมื่ออัตราการให้ลดมากขึ้น

เมื่อพิจารณาถึงรูปแบบการไหลบนร่างกายบันได ได้มีนักวิจัย
หลายท่าน นำเสนอผลงานไว้ ([6], [7], [8]) และสามารถถูกรูปได้ว่า
รูปแบบการไหลบนร่างกายบันไดแบบพื้นฐาน แบ่งออกได้เป็น 3 แบบคือ¹
ที่อธิบายไว้ในนักวิจัย ([6], [7], [8]) ได้แก่แบบ Nappe flow, เมื่อ

RECEIVED 16 September 2003

ACCEPTED 17 May 2004

ขั้นตอนการให้ผลเพิ่มมากขึ้นการให้ผลเป็นแบบ Transition flow และเป็นแบบ Skimming flow สำหรับอัตราการให้ผลที่สูงมาก

นอกเหนือจากการขันบันไดแบบพื้นร่วนแล้วังไห่มีการศึกษาดึงร่วงขันบันไดประเภทอื่นบ้างเหมือนกัน เช่นร่างขันบันไดแบบกล่องคางข่าย ซึ่งภายในบรรทัดที่ เป็นวัสดุที่หาได้ง่าย ทนทาน และราคาถูก สามารถนำมาระบุกตัวไว้ในงานด้านวิศวกรรมไทยได้เป็นอย่างดี อย่างไรก็ตาม ผลการศึกษาที่ผ่านมา ([9], [10], [11]) เป็นการเน้นถึงประสิทธิภาพการถabilis งานและตักษณะการให้อดเท่านั้น ซึ่งขาดคุณสมบัติที่สำคัญที่จะใช้ประกอบในการออกแบบร่างขันบันไดอย่างมาก

ดังนั้นการศึกษาถึงสักษณะการให้ถอนรองขั้นบันไดแบบก่อตั้งค่าข่ายชี้งั้นเป็นต่อการการวิจัยเพิ่มเติมให้มีความละเอียดมากขึ้น เพื่อประโยชน์ในการออกแบบและนำไปใช้งาน งานวิจัยครั้งนี้จึงมีวัตถุประสงค์เพื่อศึกษาถึง รูปแบบการให้ส ความดันบนพื้นรองขั้นบันได และความถึกการให้ส ในการรองขั้นบันได พร้อมทั้งเปรียบเทียบสักษณะการให้ส ดังกันถ้วน การให้ถอนรองขั้นบันไดแบบพื้นราน ข้อมูลจากผลการศึกษานี้จะเป็นพื้นฐานในการวิจัยและออกแบบรองขั้นบันไดแบบก่อตั้งค่าข่ายต่อไป

2. วิธีการศึกษา

การศึกษาลักษณะการให้คะแนนร่างขั้นบันไดแบบกล่องตามที่เขียนไว้ແປงของอกเป็น 4 ส่วนคือ 1) การวิเคราะห์มิติ 2) การทดสอบ 3) การวิเคราะห์ผลการทดสอบ และ 4) การสรุปผล โดยมีรายละเอียดดังต่อไปนี้

2.1 ការវិករាយមិនិត្ត

การหาความสัมพันธ์ระหว่างตัวแปรที่มีอิทธิพลต่อสักยะของการให้ผลผ่านร่างขั้นบันน์แบบบกต่องค่าเข้าไปได้ใช้วิธีวิเคราะห์มิติของ Buckingham-π ตัวแปรที่มีอิทธิพลต่อการให้ผลແsteadดังรูปที่ 1 และสามารถสรุปตัวแปรไว้มิติที่สำคัญได้ดังนี้

$$\text{ความดันบนพื้นวางขันบันได} \quad \frac{P_{i_{\text{max}}}}{\gamma H_i} = f_i \left(\frac{q^2}{g H_i^2}, \frac{D}{h}, a \right) \quad (1)$$

$$\text{ความถึกของการไฟฟ้า} \quad \frac{d_1}{gH} = f_2 \left(\frac{q^2}{gH^3}, \frac{D}{h}, a \right) \quad (2)$$

เมื่อ ๙ คือ อัตราการ ให้สัดส่วนนี้จะความกร้าง (น.%/วินาที)

V_T คือ ความเร็วทางค้านที่ด้านน้ำ (ม./วินาที)

E. คือ การสูญเสียผลลัพธ์ (ม.)

H_T คือ ความสูงของรังขั้นบันได (m.)

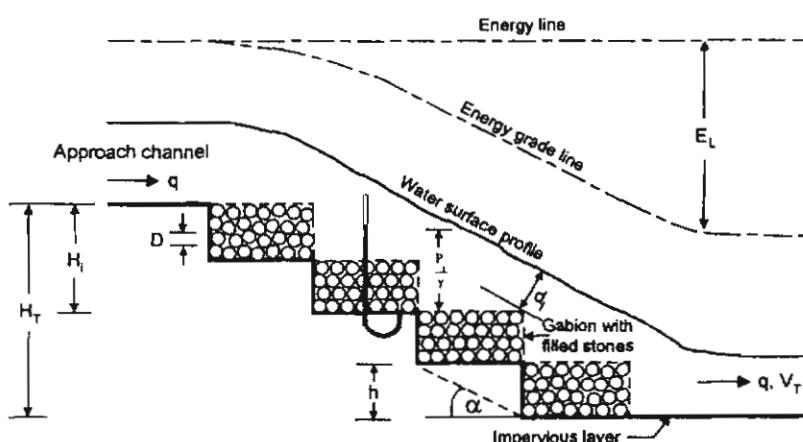
h គីវ ការណ៍ស្តុងខែងខ្លួនប៉ុណ្ណោះ (n.)

H₁ ถือ ความต่างระดับระหว่างปกทางเข้าร่างกับพื้นขันบันไดที่
ถ้าดึงพิจารณา (m.)

ด. คือ ความต้องการให้สิน่างชั้นบันได (n.)

D គីម ឯការកម្មង់អិន (អ.)

P_{max} คือ ความดันมากที่สุดบนขั้นบันได (นิวตัน/ม.²)


g คือ ความเร่งเนื่องจากแรงโน้มถ่วงของโลก (ม./วินาที²)

α คือ ความถูกต้องของร่างขั้นบัน្ត

จากการวิเคราะห์จะได้ความหมายของเทอม \liminf ดังนี้ ที่เกี่ยวข้อง คือ \underline{P}_{\max} หมายถึงสัดส่วนความดันที่น้ำกระทำท่อขันบันได

$\frac{q^2}{gH^3}$ หมายถึง Step drop number ของการไหลบนขั้นที่กำลังพิจารณา $\frac{D}{h}$

หมายถึงสัดส่วนของขนาดหิน และ $\frac{d}{\gamma H}$ หมายถึงสัดส่วนความถึกของ
การให้หิน

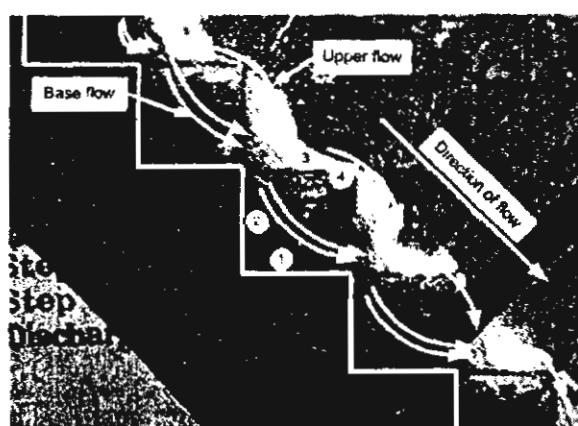
รูปที่ ๑ ตัวแปรที่มีอิทธิพลต่อลักษณะการให้คะแนนรังขันบันไดแบบกล่องตามที่ระบุ

2.2 ឧបករណ៍នៃវិធីការអគល់

ในการศึกษาครั้งนี้ใช้หินที่บริเวณด้านหลังของข้าราชการคลาสต์อร์ ภาควิชาภิควัตกรรม โซนรา มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี โดยมีน้ำดูบม้าจากบ่อพักน้ำเข้าสู่ชั้งวัดอัตราการไหล กระแสขึ้นบันไดโดยผ่านปากทางเข้าร่างซึ่งทำหน้าที่ปรับสภาพการไหลให้มีระดับความสูงต่ำกว่าชั้นราบเรียบ ดังวัดอัตราการไหลที่มีฝ่าชูปัตวี (V-notched weir) คือตั้งของถุบริเวณด้านหน้าเพื่อทำหน้าที่วัดอัตราการไหล [12] จากการสอบถามเที่ยงฝ่ายวัดน้ำสามารถเด่นอสมการสำหรับค่าน้ำที่อัตราการไหลได้ดังนี้คือ $Q = 0.02h^{2.42}$ เมื่อ Q คือ อัตราการไหล (ลิตร/วินาที), h คือ ความสูงในทดสอบวัดคันบัวโดยวัดจากระดับต่ำสุดของปากฝาย (เมตร) ซึ่งอัตราการไหลที่ใช้ในการทดสอบมีค่าระหว่าง 4 ถึง 68 ลิตรต่อวินาที

รายงานนี้บันทึกแบบพื้นฐาน ที่ใช้สำหรับสังเกตผลติดกรองการไหลน้ำที่เกี่ยวกับแรงก่อต่องด้วย น้ำ 3 แรงซึ่งมีความถี่ต่อวัน 30° 45° และ 60° และมีความสูง 1.50, 2.12 และ 2.60 เมตร ตามลำดับ แต่ละแรงมีความก่อต่อง 0.40 น.และมีจำนวนขั้นบันได 20 ขั้น แรงเหล่านี้นำมาประยุกต์ใช้ที่ท่าเป็นรายงานนี้บันทึกแบบพื้นฐาน ด้วยการนำก่อต่องด้วยซึ่งบรรทุกหินไว้ในโครงสร้าง (Gabions) นาว่างบนขั้นบันได ในการทดสอบครั้งนี้ใช้หิน 3 ชนิดคือ 1) Gabions I หินที่มีคิวบิกซูรัมมีขนาด 25-35 มิลลิเมตร 2) Gabions II หินที่มีคิวบิกลูมนขนาด 25-35 มิลลิเมตร และ 3) Gabions III หินที่มีคิวบิกซูรัมมีขนาด 50-70 มิลลิเมตร ซึ่งมีอัตราส่วนความพรุนเท่ากับ 0.27, 0.30 และ 0.39 ตามลำดับ

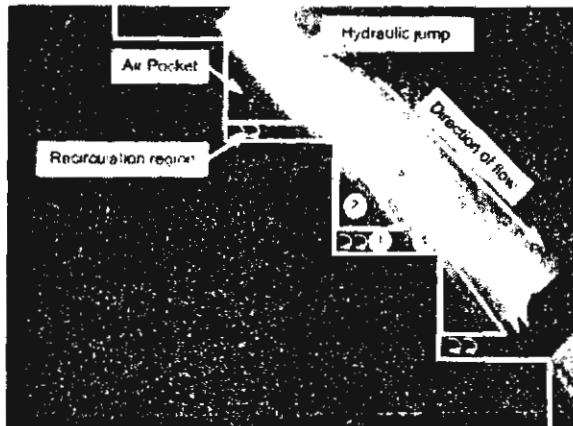
การวัดความเร็วของการไหล ทำการวัดที่บ่อบำบัดน้ำเสีย ณ. ตัวแทนงดก่อนที่น้ำไหลเข้าร่างขั้นบันได และที่บริเวณท้ายน้ำ ณ. ตัวแทนงดที่น้ำออกจากร่างขั้นบันได โดยทำการวัด 2 วิช คือ 1) วัดความสูงของน้ำที่หัวตัวดักการไหล และสามารถคำนวณความเร็วของกมการ $v = Q/(Bd)$ และ 2) ใช้ชี้วัดของปีกตอ สามารถคำนวณความเร็วของกมการ $v = c_v \sqrt{2gh_p}$ เมื่อ v คือ ความเร็ว (ม./วินาที) Q คือ อัตราการไหล (ม.³/วินาที) B คือ ความกว้างของหัวตัวดักการไหล (ม.) d คือ ความลึกการไหล (ม.) c_v คือ สามประสิทธิ์ปรับแก้ของเครื่องมือวัด g คือ ความเร่งเนื่องจากแรงโน้มถ่วงของโลก (ม./วินาที) h_p คือ ความสูงของน้ำในหอดของปีกตอหนึ่งระดับคิวหน้า (ม.) สำหรับการวัดความลึกได้ใช้หอดลดพิโซมิเตอร์ ทำการวัดที่ขั้นบันไดทั้งถูกดึงและถูกนอน ส่วนการวัดความสูงได้ทำการวัดที่ผนังของร่างที่ขั้นบันไดทุกขั้น บริเวณทางด้านหนึ่ง ณ. ตัวแทนงดก่อนที่น้ำเข้าร่างขั้นบันได และบริเวณทางด้านท้ายน้ำ ณ. ตัวแทนงดที่น้ำออกจากร่างขั้นบันได


3. អាជ្ញារទមន់

- ในการศึกษาครั้งนี้ ได้นำเสนอผลการทดลอง ออกเป็น 1) รูปแบบการให้ผลในร่างขันบันได 2) ความดันบนพื้นร่างขันบันได และ 3) ความถูกของผลการให้ผลในร่างขันบันได โดยมีรายละเอียดดังต่อไปนี้

3.1 รูปแบบการให้สินรางขั้นบันได

การไหลในร่างขั้นบันไดแบบปกติองค่าปัจจัยสามารถเปลี่ยนช่วงการไหลได้ 3 แบบเรียงตามลำดับค่าอัตราไหลจากน้อยไปมาก เช่นเดียวกับการไหลในร่างขั้นบันไดแบบพื้นฐาน คือ การไหลแบบ Nappe flow, Transition flow และ Skimming flow ตามลำดับ แต่ในกรณีของร่างขั้นบันไดแบบปกติองค่าปัจจัยการไหลจะแยกออกเป็น 2 ส่วนคือ ส่วนที่ไหลผ่านชั้นพื้นที่บรรทัดฐานในกติองค่าปัจจัย (Base flow) และส่วนที่ไหลบนพื้นของกติองค่าปัจจัย (Upper flow) จากการที่การไหลได้ถูกแบ่งออกเป็นสองส่วนนี้เอง ทำให้หลังจากนการไหลบนกติองค่าปัจจัยได้ถูกสถาปัตย์ไปมากก่อตัวการไหลบนร่างขั้นบันไดแบบพื้นฐาน


ในการไหลแบบ Nappe flow อัตราไหลบนผิวน้ำอย่าง การไหลที่ทั้งหมดจะไม่หล่อผ่านกันส่องทางข่ายน้ำทั้งเมื่ออัตราไหลเพิ่มขึ้นถึงก้าหนึ่งการไหลจะแบ่งออกเป็น 2 ส่วน คือส่วนที่ไหลผ่านพินที่บรรจุอยู่ในกล่องทางข่าย และส่วนที่ไหลบนผิวน้ำของกล่องทางข่าย ซึ่งจะมีการผสานของน้ำกับอากาศบริเวณผิวน้ำ แบ่งเมื่ออัตราไหลเพิ่มมากขึ้นจะพบว่าเกิดไชโตรลิกซ์ซึ่งบนผิวน้ำได้บางขึ้นแต่ไม่ถูกระงมมากเมื่อเทียบกับการเกิดไชโตรลิกซ์ซึ่งบนผิวน้ำได้แบบพื้นรวม จนกระทั่งเมื่ออัตราไหลเพิ่มสูงขึ้นอีกการไหลจะพัฒนาไปเป็นการไหลเข้าสู่ช่วง Transition flow สำหรับด้านซ้ายของการไหลแบบ Nappe flow ของการไหลบนผิวน้ำขึ้นบันไดแบบกล่องทางข่ายได้แก่คงดังรูปที่ 2 ส่วนด้านซ้ายของการไหลบนผิวน้ำขึ้นบันไดแบบพื้นรวมคงดังรูปที่ 3 จากการสังเกตุได้พบความแตกต่างของลักษณะการไหลแบบ Nappe flow บนผิวน้ำขึ้นบันไดทั้งสองชนิด ดังแสดงไว้ในตารางที่ 1

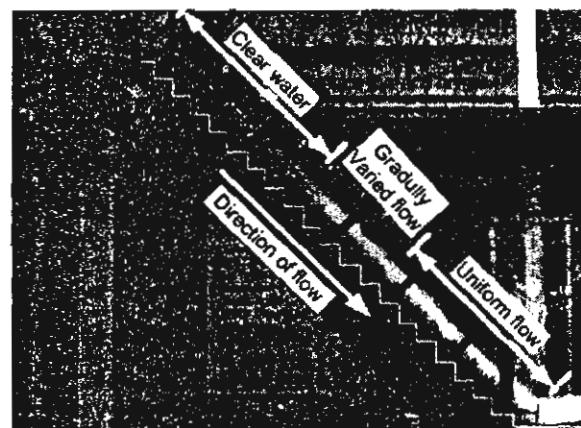
รูปที่ 2 การไล่ตัวแบบ Nappe flow บนร่างขั้นบันไดแบบบกต่องค่าเข่า

สำหรับการแบบจำลองแบบ Transition flow และ Skimming flow บนร่างเข็นบันไดแบบกล่องค่าข่ายและแบบพื้นฐาน พนวจมีผลติดรวมที่เหมือนกัน เนื่องจาก การให้ผลที่ถูกต้องผ่านกล่องค่าข่ายมีปริมาณที่น้อยกว่าส่วนที่ให้ผลบนกล่องค่าข่ายเป็นอย่างมาก ผลติดรวมการให้ผลจึงถูกควบคุมด้วยปริมาณน้ำที่ให้บนร่างเข็นบันได โดยการให้ผล

ขั้นบันไดที่ทำด้วยก้อนหินด้วยกันจะเปรียบเสมือนเป็นการไหลบนผิวน้ำของน้ำที่มีความหนาแน่นมากกว่าการไหลบนขั้นบันไดแบบพื้นราบ

รูปที่ 3 การไหลแบบ Nappe flow บนร่างขั้นบันไดแบบพื้นราบ

ตารางที่ 1 เปรียบเทียบลักษณะการไหลแบบ Nappe flow ของร่างขั้นบันไดแบบพื้นราบกับร่างขั้นบันไดแบบก้อนหินด้วยกัน


บริเวณที่	แบบพื้นราบ	แบบก้อนหินด้วยกัน
1	เกิดการหมุนวนของน้ำ	ไม่เกิดการหมุนวนของน้ำ
2	มีโพรงอากาศ	ไม่มีโพรงอากาศ
	เกิดความดันติดลบ	
3	เกิดการกระเดื่องด้วยน้ำ	ไม่มีการกระเดื่องด้วยน้ำ
	เนื่องจากน้ำคักกระแทบพื้นราบ	เนื่องจากช่องว่างระหว่างหิน
4	แรงดันที่คักกระแทบสูง	แรงดันที่เกิดขึ้นน้อย

หมายเหตุ

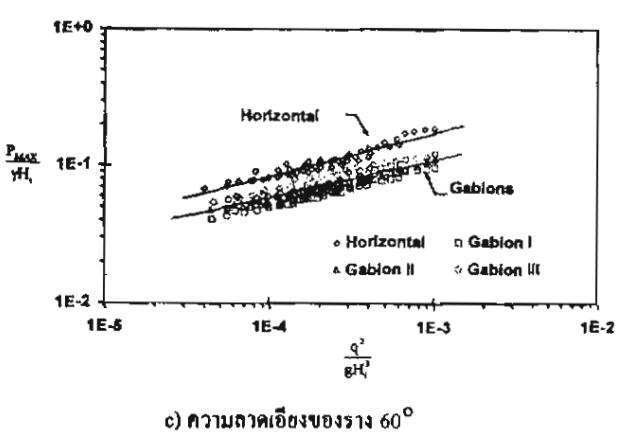
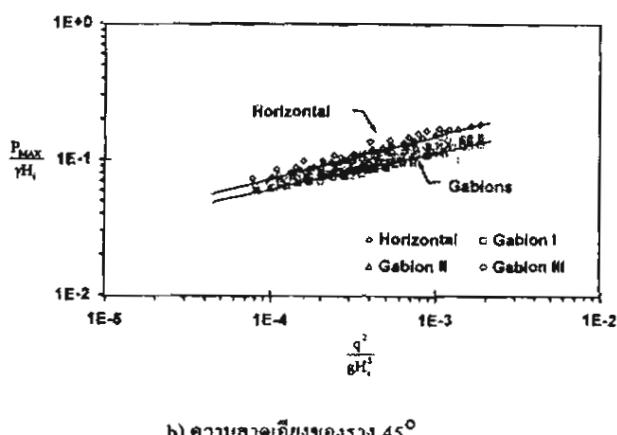
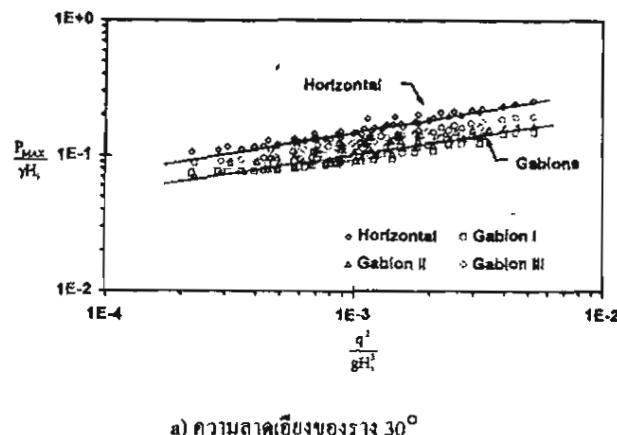
- การหมุนวนของน้ำ ความดันติดลบ และแรงกระแทกของน้ำมีผลทำให้พื้นร่างถูกทำลายได้
- การกระเดื่องด้วยน้ำส่งผลให้ต้องสร้างผนังด้านข้างของร่างสูงขึ้น

การไหลของน้ำบนร่างขั้นบันไดแบบพื้นราบ พบว่า ในส่วนที่เป็น Upper flow การไหลเป็นการซั่นผิดปกติของก้อนหินด้วยกันซึ่งมีความเสียดทานสูง ทำให้การสูญเสียพลังงานการไหลสูงกว่าการพิจารณาไหลบนร่างขั้นบันไดแบบพื้นราบ

ด้วยร่างของน้ำ Skimming flow บนร่างขั้นบันได ก้อนหินด้วยกันซึ่งแสดงดังรูปที่ 4

รูปที่ 4 การไหลแบบ Skimming flow บนร่างขั้นบันไดก้อนหินด้วยกัน

จากการที่ร่างขั้นบันไดแบบพื้นราบ ช่วยสลายพลังงานการไหลได้สูงกว่าร่างขั้นบันไดแบบพื้นราบ ดังนั้นความเร็วของการไหลที่ปลายทางของร่างขั้นบันไดแบบก้อนหินด้วยกัน จึงน้อยกว่าการพิจารณาไหลของร่างขั้นบันไดแบบพื้นราบเสมอ




3.2 ความดันบนพื้นร่างขั้นบันได

จากลักษณะการไหลของน้ำที่มีปะทะกับร่างขั้นบันไดแต่ละขั้น ทำให้เกิดแรงดันที่น้ำกระทำกับพื้นร่างขั้นบันได อาจส่งผลต่อเสถียรภาพของโครงสร้างร่างขั้นบันได ดังนั้นการศึกษาในครั้งนี้จึงได้พิจารณาความสัมพันธ์ระหว่างความดันสูงสุดที่กระทำบนพื้นร่างขั้นบันได กับ Drop number ของขั้นบันไดขั้นดังกล่าวซึ่งจะเรียกชื่อเป็น Step drop number $\frac{q^2}{gH^2}$

การเปรียบเทียบแรงดันที่การไหลกระทำกับร่างขั้นบันไดแบบก้อนหินด้วยกัน กับพื้นร่างขั้นบันไดแบบพื้นราบแสดงไว้ในรูปที่ 5 ซึ่งจะเห็นได้ว่าการพิจารณาความสัมพันธ์มีลักษณะเป็นเส้นตรง และมีความสัมพันธ์กับค่า Step drop number อย่างชัดเจน โดยเมื่อค่า Step drop number มากขึ้น ความดันบนพื้นร่างขั้นบันไดจะมากขึ้นด้วย และความดันที่การไหลกระทำกับพื้นร่างของร่างขั้นบันไดแบบก้อนหินด้วยกันกว่าร่างพื้นราบทุกค่าของ Step drop number ทั้งนี้เนื่องจากร่างขั้นบันไดแบบก้อนหินด้วยกันซึ่งมีพื้นที่ในการรับแรงกระแทกที่กว้างตันกว่าร่างพื้นราบ

จากการเปรียบเทียบแรงดันที่กระทำกับพื้นร่างขั้นบันไดแบบพื้นราบ กับพื้นร่างขั้นบันไดแบบพื้นราบ พบว่าร่างขั้นบันไดแบบพื้นราบสามารถลด

แรงดันน้ำคงได้ประมาณร้อยละ 27 ของแรงขันบันไดแบบพื้นราบ และเพื่อท่าการประเมินที่ขบเคี้ยวตันที่น้ำกระท่ำกับพื้นราบขันบันไดแบบก่อต่องค่าข่ายที่ไม่ใช้ขนาดพื้นที่ความพุ่นท่ามกลางกันหนาท่ามกลางกัน แรงดันที่น้ำกระท่ำกับพื้นราบขันบันไดแบบก่อต่องค่าข่ายที่มีความพุ่นน้อยกว่าสามารถลดแรงดันน้ำได้มากกว่าการผึ้งองค์ต่องค่าข่ายที่มีความพุ่นมากกว่าโดยเด่นชัดที่สุดที่ค่า Step drop number สูงๆ

รูปที่ 5 ความสัมพันธ์ระหว่างความคันซุงสูดบนขันบันได กับ ค่า Step drop number

โดยสรุปความสัมพันธ์ระหว่าง ความดันและค่า Step drop number ในรูปของสมการได้ดังนี้

$$\frac{P_{\max}}{gH_i} = m \left(\frac{q^2}{gH_i^3} \right)^n \quad (3)$$

เมื่อ P_{\max} คือ ความดันที่มากที่สุดของบันไดขันที่ i (มิลลิบาร์)

H_i คือ ความสูงในแนวตั้งตั้งจากทางเข้าดึงบันไดขันที่ i (ม.)

q คือ อัตราการไหลต่อหน่วยห่วงความกว้าง (ม./วินาที)

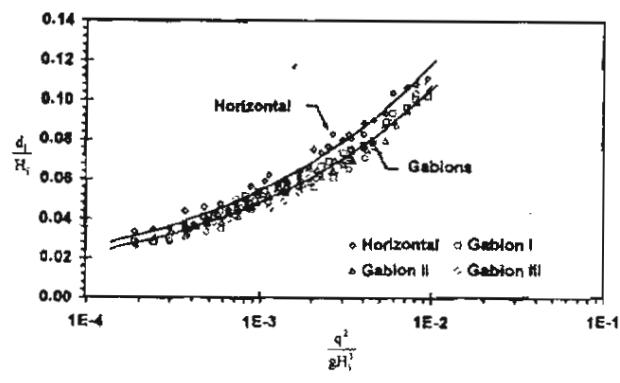
g คือ ความเร่งเนื่องจากแรงโน้มถ่วงในลักษณะโลก (ม./วินาที)

m และ n คือ สัมประสิทธิ์ของสมการซึ่งศูนย์ไว้ในตารางที่ 2

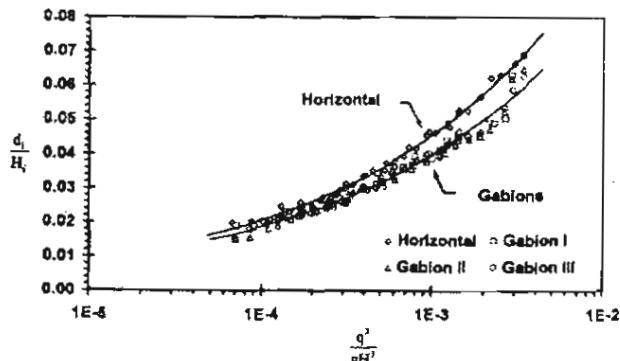
ตารางที่ 2 ค่าสัมประสิทธิ์ของสมการ (3)

α	แรงขันบันไดแบบพื้นราบ			แรงขันบันไดแบบก่อต่องค่าข่าย		
	m	n	r^2	m	n	r^2
30	1.218	0.299	0.946	0.740	0.276	0.739
45	1.348	0.312	0.946	0.785	0.271	0.887
60	1.520	0.314	0.915	0.764	0.283	0.821

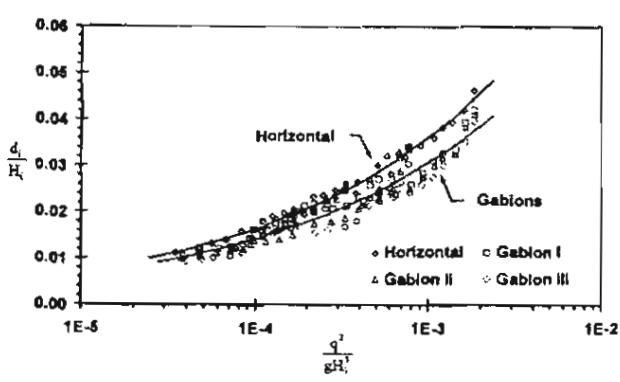
จากการที่กระแตน้ำที่ไหลบนก่อต่องค่าข่าย มีความเร็วและแรงดันต่ำกว่าร่องสูง ส่งผลให้ก่อต่องค่าข่ายของร่องสูงหายใจได้ ดังนั้นในการประเมินค่าข่ายจึงจำเป็นต้องพิจารณาถึง แนวทางเพื่อเพิ่มประสิทธิภาพ ความมั่นคงของขันบันไดแบบก่อต่องค่าข่าย ซึ่งท้าให้ล้าชากการออกแบบก่อต่องค่าข่ายให้มีการเชื่อมต่อระหว่างก่อต่องค่าข่ายกันเอง การเรียงตัวของก่อต่องค่าข่ายให้ได้ด้วยการวางค่าข่ายซ้อนกันทั้งในแนวราบและแนวตั้งเพื่อเพิ่มแรงต้านที่จากแรงเสียดทานก็ได้ รวมถึงการเชื่อมต่อระหว่างก่อต่องค่าข่ายกับสถานที่ก่อสร้าง ล้วนเหลือเชื่อว่าที่มีปริมาณมากเพียงพอ


3.3 ความลึกของการไหลบนร่องขันบันได

ในการออกแบบความสูงของผนังร่องขันบันได จำเป็นต้องรู้ความลึกของการไหลรวมถึงห้องอากาศที่ปะปนกับการไหล จึงจะทำให้ผนังร่องมีความสูงเพียงพอที่การไหลจะไม่กระชีนออกมานอกผนัง การทดสอบพบว่าความลึกของการไหลบนร่องขันบันได จะมีส่วนหกของห้องอากาศปะปนอยู่ที่บริเวณผิวน้ำที่เป็นจานวนมาก เมื่อพิจารณาความลึกของการไหลที่รวมกับห้องอากาศ ที่ความสูงต้องมากเพื่อที่อัตราไหลเดียวกัน พบว่าความลึกของการไหลบนร่องขันบันไดแบบพื้นราบ และแบบก่อต่องค่าข่ายไม่ค่อยแตกต่างกันนัก


แต่เมื่อพิจารณาถึงความลึกของน้ำที่ไม่รวมส่วนที่มีการหกของห้องอากาศ พบว่าความลึกในร่องแบบก่อต่องค่าข่ายมีแนวโน้มที่จะต่ำกว่าทั้งน้ำที่มีการหักต่องค่าข่ายให้ยอมให้มีการไหลผ่านช่องหินได้

บางส่วน (Base flow) อย่างไรก็ตามความแอกต่างนี้ไม่เกินร้อยละ 10 ของความถี่การไหลรวม


ความสัมพันธ์ระหว่างความถี่กในทิศทางตั้งจากกับการไหล ไวรนิค และค่า Step drop number ของร่างขั้นบันไดแบบพื้นฐานและแบบ ก่อองค์ความสัมพันธ์อย่างไรในรูปที่ 6 โดยความถูกของความแอกต่างนี้ ไม่ใช่ความถูกของความแอก แต่เป็นความถูกของความแอกต่างๆ ที่ต้องการให้ดีมากขึ้น ความถูกนี้กับความถี่กในทิศทางตั้งจากก็ต้องดีด้วย

a) ความถูกของร่าง 30°

b) ความถูกของร่าง 45°

c) ความถูกของร่าง 60°

รูปที่ 6 ความสัมพันธ์ระหว่างความถี่กในทิศทางตั้งจากกับค่า Step drop number

จากผลการทดลองสามารถสรุปความสัมพันธ์ระหว่าง $\frac{d_i}{H_i}$ กับค่า Step drop number ของร่างขั้นบันไดแบบพื้นฐานและแบบ ก่อองค์ความสัมพันธ์ ให้ดังสมการดังไปนี้

$$\frac{d_i}{H_i} = p \left(\frac{q^2}{gH_i^3} \right)^s \quad (4)$$

เมื่อ
 d_i คือ ความถี่การไหลของร่างขั้นที่ i (ม.)
 H_i คือ ความสูงในแนวตั้งวัดจากทางเข้าดึงบันไดขั้นที่ i (ม.)
 q คือ อัตราการไหลต่อหน่วยหน่วงความกว้าง (ม.³/วินาที)
 g คือ ความเร่งเนื่องจากแรงโน้มถ่วงของโลก (ม./วินาที)
 p และ s คือ ตัวบ่งประดิษฐ์ของสมการซึ่งสรุปไว้ในตารางที่ 3

ตารางที่ 3 ค่าบ่งประดิษฐ์ของสมการ (4)

α	ร่างขั้นบันไดแบบพื้นฐาน			ร่างขั้นบันไดแบบก่อองค์ความสัมพันธ์		
	p	s	r^2	p	s	r^2
30	0.555	0.336	0.974	0.508	0.341	0.974
45	0.484	0.343	0.990	0.387	0.329	0.980
60	0.391	0.345	0.980	0.318	0.339	0.919

เมื่อพิจารณาดังนี้ความหนาของฟองอากาศ พบว่าขั้นตอนที่กับอัตราการไหลและความถูกตั้งของร่าง ถ้าตัวคือ เมื่อความถูกขั้นของร่างเพิ่มขึ้น ความหนาของฟองอากาศจะเพิ่มขึ้น แต่เมื่ออัตราการไหลเพิ่มขึ้น ความหนาของฟองอากาศจะลดลง แสดงเมื่อเปรียบเทียบระหว่างร่างขั้นบันไดแบบพื้นฐานกับก่อองค์ความสัมพันธ์ พบว่ามีความหนาของฟองอากาศใกล้เคียงกัน

4. สรุป

จากการศึกษาสามารถสรุปได้ว่า การไหลในร่างขั้นบันไดแบบก่อองค์ความสัมพันธ์สามารถแบ่งช่วงการไหลได้ 3 แบบเรียงตามลำดับค่า อัตราการไหลจากน้อยไปมาก ซึ่งเดียวกับการไหลในร่างขั้นบันไดแบบพื้นฐาน คือ การไหลแบบ Nappe flow, Transition flow และ Skimming flow ตามลำดับ แต่ในกรณีของร่างขั้นบันไดแบบก่อองค์ความสัมพันธ์ การไหลจะแบ่งออกเป็น 2 ส่วนคือ ส่วนที่ไหลผ่านชั้นหินที่บรรจุอยู่ในก่อองค์ความสัมพันธ์ (Base flow) และส่วนที่ไหลบนผิวของก่อองค์ความสัมพันธ์ (Upper flow) จากลักษณะการไหลแต่ละร่างเสียดทานที่เพิ่มขึ้น ทำให้ช่วงส่วนที่หินที่บรรจุอยู่ในก่อองค์ความสัมพันธ์ สามารถไหลได้ดีขึ้น

ร่างขั้นบันไดแบบก่อองค์ความสัมพันธ์สามารถลดแรงต้านที่น้ำกระทำ กับพื้นที่ P_{down} ได้ร้อยละ 27 เมื่อเปรียบเทียบกับร่างขั้นบันไดแบบพื้นฐาน P_{up} ร่าง โดยแรงต้านที่น้ำกระทำกับพื้นที่หินจะเพิ่มมากขึ้นเมื่ออัตราการไหล

หรือความต่ำต่ำของร่างเพิ่มน้ำขึ้น และแรงดันที่น้ำกระทำกับพื้นที่น้ำ ขึ้นบันไดแบบก่อต่อต่ำขึ้นที่มีความพุ่นน้อยกว่าสามารถลดแรงดันน้ำ ได้มากกว่ากรณีของก่อต่อต่ำขึ้นที่มีความพุ่นมากกว่า โดยเฉพาะช่วงที่ ก่อต่อต่ำ Step drop number ต่ำๆ

การให้กับขั้นบันไดพนั่นให้กับผู้ที่น้ำส่วนผ่านของพองอากาศปะปน อยู่ที่บริเวณพื้นที่เป็นจานวนมาก เมื่ออัตราให้กับพนั่น ความลึกบน ขั้นบันไดจะน้ำขึ้น เมื่อพิจารณาดึงความลึกของน้ำที่ไม่รวมส่วนที่มีการ ผ่านของพองอากาศ พบว่าความลึกในร่างแบบก่อต่อต่ำขึ้นนี้แนวโน้ม น้อยกว่าทั้งนี้เนื่องจากกรณีที่ก่อต่อต่ำขึ้นได้ยอมให้มีการให้กับผ่านช่องหิน ให้บางส่วน (Base flow) อย่างไรก็ตามความแตกต่างนี้ไม่เกินร้อยละ 10 ของความลึกการให้กับผ่าน

กิตติกรรมประการ

ผู้เขียนขอขอบคุณ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้า รัตนบุรี สำนักงานคณะกรรมการการอุดมศึกษา และสำนักงานกองทุน สนับสนุนการวิจัย ที่ได้สนับสนุนเงินทุนบางส่วนในการวิจัยครั้งนี้

เอกสารอ้างอิง

- 1 US Department of the Interior, "Design of Small Dams", Bureau of Reclamation, Denver (CO), USA, 1st edition, 1965.
- 2 Chanson, H., "Forum Article", Journal of Hydraulic Engineering, ASCE, Vol. 126, No. 9, 2000, pp. 636-637.
- 3 Stephenson, D., "Energy Dissipation down Stepped Spillways", International Water Power and Dam Construction, Vol. 43, No. 9, 1991, pp. 27-30.
- 4 Christodoulou, G.C., "Energy Dissipation on Stepped Spillways", Journal of Hydraulic Engineering, ASCE, Vol. 119, No. 5, 1993, pp. 644-650.
- 5 Israngkura, U. and Chinnarasri, C., "Flow Depth and Energy Losses through Stepped Chutes", Proceedings of the 9th Congress of Asian and Pacific Division of the International Association for Hydraulic Research (APD-IAHR Congress), Singapore, 1994, pp. 156-163.
- 6 Chanson, H., "Prediction of the Transition Nappe/Skimming Flow on a Stepped Channel" Journal of Hydraulics Research, IAHR, Vol. 34, No. 3, 1996, pp. 421-429.
- 7 Chamani, M.R. and Rajaratnam, N., "Onset of Skimming Flow on Stepped Spillway", Journal of Hydraulic Engineering, ASCE, Vol. 125, No. 9, 1999, pp. 969-971.
- 8 Chinnarasri, C., "Assessing the Flow Resistance of Skimming Flow on the Step Faces of Stepped Spillways", Dam Engineering, Vol. 12, No. 4, 2002, pp. 303-321.
- 9 Stephenson, D., "Gabion Energy Dissipators", Proceeding 13th ICOLD Congress, New Delhi, Q. 50, R. 3, 1979, pp. 33-43.
- 10 Peyras, L., Royet, P., & Degoutte, G., "Flow and Energy Dissipation over Stepped Gabion Weirs", Journal of Hydraulic Engineering, ASCE, Vol. 118, No. 5, 1992, pp. 707-717.
- 11 Donjadee, S., Chinnarasri, C., Israngkura, U., and Chaturabul, T., "Flow Through Gabion Stepped Spillways", KMUTT Research and Development Journal, Vol. 27, No. 1, pp. 81-93. (in Thai)
- 12 Bos, M.G., "Discharge Measurement Structures", International Institute for Land Reclamation and Improvement, Wageningen, The Netherlands, 1976, pp. 23-32.

ภาคผนวก ข3

สำเนาบทความเรื่อง Energy dissipation and outlet velocity on stepped channels with end sills, Research and Development Journal of the Engineering Institute of Thailand, Vol. 15(1), pp. 25-32

การสลายพลังงานและความเร็วท้ายร Lange บนร Lange ขั้นบันไดแบบนีชาร์ฟที่ปลายขั้นบันได

ທກພລ ຈຕຣະບູດ ຂັ້ນບູກ ຂົນພະຮາກົງ ແກະ ອຸດນສັກຕິ ອິກາວງງຽ ແລ້ວ ອຸດຫຼາມ

ห้องปฏิบัติการวิจัยวิทยากรรูมแห่งสังกัดน้ำ (WAREE)

ภาควิชาวิศวกรรมโยธา มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี กรุงเทพฯ 10140

Thodsapol Chaturabul, Chaiyuth Chinnarasri and Udomsak Israngkura

Water Resources Engineering Research Lab. (WAREE)

Department of Civil Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140

Tel: 0-2470-9137 E-Mail: chaiyuth.chi@kmutt.ac.th

បាក់គុណយោទេ

บทความนีน่าสนใจอุดมการศึกษาจากการทดลองเพื่อหารการ
ถดถอยพัฒนาและความเร็วการไหลท้ายร่างขั้นบันไดแบบมีชาร์พที่ปลาย
ขั้น ตัวร่างกว้าง 0.40 ม. ยาวข้า 3.0 ม. โดยมีความลาดชัน 30° 45° และ
 60° ตามลำดับ ขั้นบันไดมีความสูงร้อยละ 5 ของความสูงร่าง ความสูง
ของชาร์พที่ปลายขั้นคือ 0.0, 0.5, 1.0 และ 1.5 ชน. ความลาดับ ผลการศึกษา
พบว่า ตัวแปรสำคัญที่มีอิทธิพลต่อการถดถอยพัฒนาและความเร็วท้าย
ร่างคือ ความลาดาดีของร่าง Drop number และชาร์พที่ปลายขั้น การ
ถดถอยพัฒนาของร่างขั้นบันไดจะลดลง เมื่อค่า Drop number
และความลาดาดีของร่างเพิ่มขึ้น แต่เพิ่มขึ้นเมื่อความสูงของชาร์พ
ที่ปลายขั้นเพิ่มขึ้น ในทางตรงกันข้ามความเร็วท้ายร่างขั้นบันไดจะ
เพิ่มขึ้น เมื่อค่า Drop number และความลาดาดีของร่างเพิ่มขึ้น แต่ลดลง
เมื่อความสูงของชาร์พที่ปลายขั้นเพิ่มขึ้น ความสัมพันธ์ของการถดถอย
พัฒนาของร่างขั้นบันไดและความเร็วการไหลท้ายร่างกัน
ตัวแปรที่สำคัญได้แสดงในรูปสมการ ซึ่งมีค่าสัมประสิทธิ์การตัดสินใจ
(R²) ระหว่าง 0.895 ถึง 0.996

Abstract

This paper presents the results of the experimental study on the energy dissipation and outlet velocity on stepped channels with end sills. The channels are 0.40 m wide and 3.0 m long with the slopes of 30°, 45° and 60°, respectively. The step height is 5% of the channel height. The heights of the end sill are 0.0, 0.5, 1.0 and 1.5 cm, respectively. It was found that the important variables affecting the energy dissipation and outlet velocity were channel slope, Drop number, and end sill. The energy dissipation decreased when Drop number and the slope of the channel increased but increased when the height of end sill increased. In contrast, the outlet velocity increased

when Drop number and the slope of channel increased. From these results, the relations of energy dissipation and outlet velocity on stepped channel and the important variables were formed with the R^2 in the ranges of 0.895 and 0.996.

1. บทนำ

รางขันบันไดเป็นทางน้ำปิดซึ่งมีพื้นรองเป็นขันบันได รางประเกทน้ำได้ถูกนำมาใช้เป็นระบบอ่อนๆ ผ่านบริเวท์ที่มีความถูกต้อง เช่น ทางระบายน้ำด้านของเขื่อน หรือระบบระบายน้ำของถนนที่ต้องผ่าน ภูเขา ในช่วง 2-3 ทศวรรษที่ผ่านมา การออกแบบและก่อสร้างรางขันบันไดได้รับความนิยมอย่างมาก อันเป็นผลมาจากการประดูกค์ใช้วัสดุประเกท Roller-compacted concrete และ Polymer-coated gabion wire ใน การ ก่อ สร้าง เขื่อน และ ทาง น้ำ ด้าน ซึ่ง วัสดุ ดัง กล่าว มี วิธี การ ก่อ สร้าง ที่ หล่อ ถูก ต้อง กับ ราง ขัน บัน ได

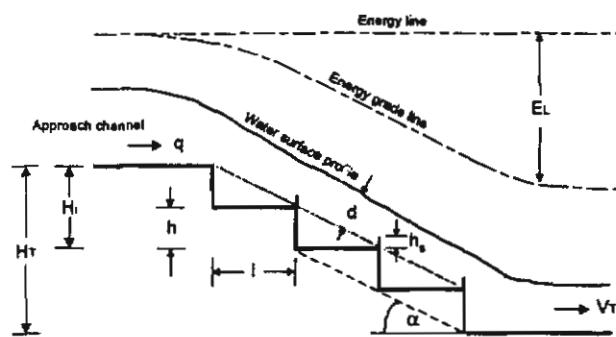
Essery และ Horner [1] เป็นบุคคลแรกที่ทำการทดลองเช่นเดียวกันกับการให้คนร่างเข้าบันไดทั้งแบบพื้นฐานและแบบพื้นอิฐ พร้อมทั้งเสนอกราฟสำหรับอัตราการหันตัวของคนร่างเข้าบันได สำหรับการศึกษาเกี่ยวกับการพยายามหลบดังงานของร่างเข้าบันได มีผู้คนໄอ่าทำการทดลองมา กานาย เช่น Stephenson [2] Rajaratnam [3] Diez-Cascon และคณิต [4] Peyras และคณิต [5] Christodoulou [6] Israngkura และ Chinnarastri [7] Fratino และคณิต [8] และ Pinheiro และ Facl [9] เป็นต้น

ในปี พ.ศ. 2537 Chamani และ Rajaratnam [10] ได้เสนอ
สมการคำนวณการหล่อเหลี่ยงงานบนรยางค์ขั้นบันไดแบบพื้นราบขั้นเป็น¹
ครึ่งวงกลม และในปีเดียวกัน Chanson [11] ที่เสนอสมการคำนวณการหล่อเหลี่ยง
พัลส์งานในการไหลแบบ Nappe flow และ Skimming flow ทั้งแบบมี
ประดู่บังคับน้ำและไม่มี ผลจากการรายงานของ Chanson [11] ทำให้เกิดบท
วิเคราะห์และวิจารณ์ความน่าเชื่อถือของ Chanson [11] ที่ทำให้เกิดบท
Kells [13] และ Matos และ Quintela [14] หัดจากน้ำ Chanson และ

RECEIVED 16 September, 2003

ACCEPTED 25 November, 2003

Toombes [15] กล่าวเด่นอย่างการศึกษาเพิ่มเติมเกี่ยวกับการสถาปัตยกรรมงานในร่างที่มีความคาดเดาขั้นน้อย


สำหรับรายงานการศึกษาเกี่ยวกับร่างขั้นบันไดแบบมีรัฐพื้นที่ปลายขั้น พบว่า Poggi [16-17] เป็นบุคคลแรกที่ทำการรายงานการศึกษาเกี่ยวกับการไฟกับการไฟกับการถอดกระดับที่มีรัฐพื้นที่ปะทะ ได้ศึกษาเกี่ยวกับการไฟแบบ Nappe flow ที่มีการกระโจนด้วยความเร็วสูงน้ำตก แต่พบว่าถอดกระดับที่มีรัฐพื้นที่ปะทะสามารถลดเวลาลงได้มากกว่าถอดกระดับที่ต้องใช้เวลามากกว่า ต่อมา Vitali และ Porey [18] ได้ทำการศึกษาเพื่อออกแบบทางน้ำสันทิ้งบันไดแบบมีรัฐพื้นที่ปะทะขั้น โครงสร้างแบบ Ogee ของเขื่อน Tehri ในประเทศไทยถูกติดตั้งใช้ปัจจุบัน และเมื่อไม่นานมานี้ Peruginelli และ Pagliara [19] ได้ศึกษาการลดเวลาลงของร่างขั้นบันไดแบบมีรัฐพื้นที่ปะทะขั้นที่เขยับกับร่างขั้นบันไดแบบพื้นฐาน ผลที่ได้พบว่าร่างขั้นบันไดแบบมีรัฐพื้นที่ปะทะขั้นสามารถลดเวลาลงได้มากกว่าร่างขั้นบันไดแบบพื้นฐานเดิมมากอีก 10% ในขณะที่ Aigner [20] ได้สร้างสมการที่นิยูเคลียร์ในการวิเคราะห์ที่ต้องแบ่งที่ส่วนต่างๆ เพื่อให้เป็นแนวทางการออกแบบร่างขั้นบันไดแบบอื่น

ถึงแม้ว่าการศึกษาเกี่ยวกับการให้คะแนนรางวัลขั้นบันไดมีการศึกษามานานกว่า 10 ปี แต่คิดว่าอยู่ในวงจำกัด ส่วนใหญ่เป็นการศึกษาชั้นกลางคร่าวๆ การให้คะแนนรางวัลขั้นบันไดแบบที่นิรบาน งานศึกษาหลายฉบับยังต้องการการศึกษาเพิ่มเติม โดยเฉพาะอย่างอื่นของการศึกษาเกี่ยวกับชั้นกลางคร่าวๆ การให้คะแนนรางวัลขั้นบันไดแบบมีชาร์ฟที่ปิดขั้นหรือแบบมีอ่าง และรางวัลขั้นบันไดรูปแบบอื่นซึ่งมีผู้ที่ทำการศึกษาน้อยมาก ด้วยเหตุผลดังกล่าว วัดถูกประสิทธิภาพของการศึกษานี้จึงเป็นการทดสอบเกี่ยวกับการให้คะแนนน้ำหนักของขั้นบันไดแบบมีชาร์ฟที่ปิดขั้น เพื่อหาความถูกต้องพันธุ์ระหว่างการศึกษาทั้งงาน และความเร็วการให้ผลท้ายรางวัลขั้นบันไดที่ใช้กับตัวประเมินของแบบบรรจุอื่นๆ ในรูปด้านไปริบิเพื่อให้เป็นข้อมูลพื้นฐานในการออกแบบบรรจุขั้นบันไดแบบมีชาร์ฟที่ปิดขั้นรวมถึงของการศึกษาหลังงานที่ปิดขั้นต่อไป

2. การวิเคราะห์มิคิ

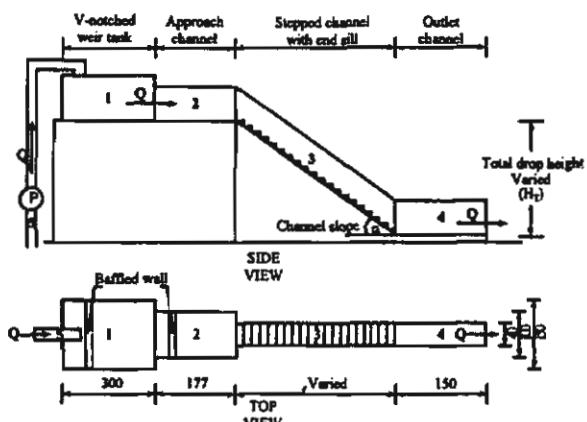
ในทักษะการให้ผลประโยชน์ การศักยภาพดังงานของร่างขั้นบันไดแบบมีร่องรอยที่ปลายขั้น (E) จะชี้ให้เห็นอย่างถูกต้องว่า การให้ผลประโยชน์ที่ดีที่สุดนั้นหมายความในสิ่งที่ต้องการให้ได้มากที่สุด คือ ความสูงรวมของร่างขั้นบันได (H_s) ความลาดชันของร่าง (α) ความสูงลูกตักทั้งสองขั้นบันได (h) ความสูงของช่องที่ปลายขั้น (h_s) และความเร่งเมื่อลงจากแรงโน้มถ่วงของโลก (g) ซึ่งตัวแปรต่างๆ นี้แสดงไว้ดังรูปที่ 1 และจะอธิบายในรูปของสมการได้เป็น

$$E_{L_i} = f_n(q, H_i, \alpha, h, h_s, g) \quad (1)$$

รูปที่ 1 ตัวเปรียที่เกี่ยวข้องกับการพัฒนาของแรงขันบันไดแบบมีชาร์จที่ปัลยาขัน

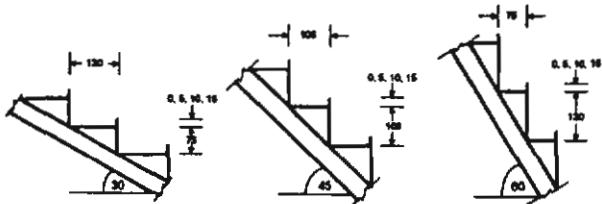
การศึกษาครั้งนี้ได้วิเคราะห์ความสัมพันธ์ของตัวแปรที่สำคัญที่เกี่ยวข้องกับการให้ผลบันรังขันบันไกแบบมีชาร์จที่ป้ำขันให้อู่ยู่ในรูปของตัวแปร ไวรัสติดเชื้อไวรัสตัวแปรที่ดุษฎีของ Buckingham-P ซึ่งจากสมการที่ ๑ สามารถวิเคราะห์ตัวแปรไวรัสได้เป็น

$$\frac{E_L}{H_r} = f_L \left(\frac{q^2}{gH_r^3}, \frac{h_r}{h}, \alpha \right) \quad (2)$$


ในทำนองเดิมกัน หลังงานที่เหลืออยู่บริเวณท้ายร่าง
ขึ้นบันไดในรูปของความเร็วซึ่งพากษ์จะเขียนได้เป็น

$$\frac{V}{\sqrt{gH_s}} = f_2 \left(\frac{q^2}{gH_s^3}, \frac{h_s}{h}, \alpha \right) \quad (3)$$

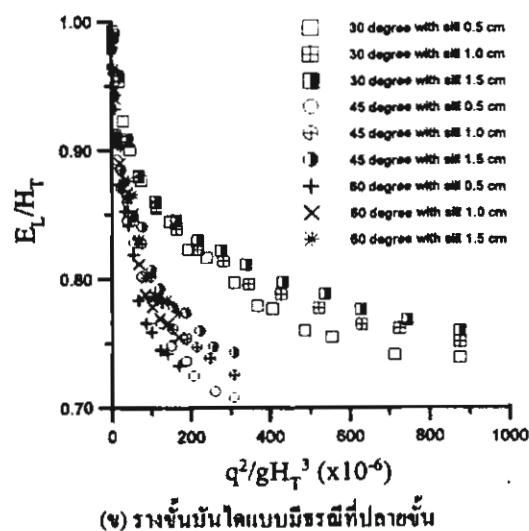
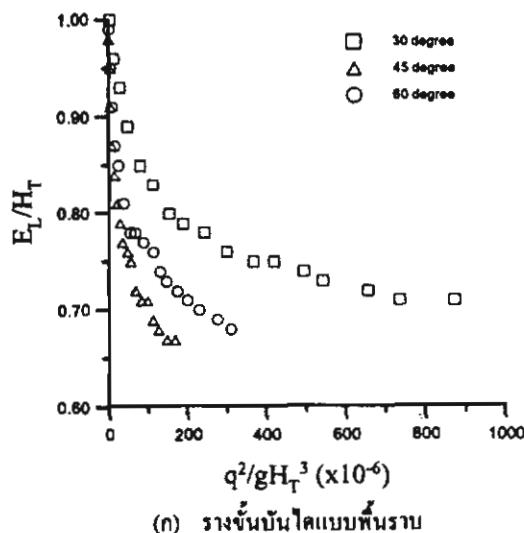
เมื่อ E_L/H_L เป็นอัตราส่วนการถูกละเทียบเพดังงานของการไหลบนร่างขันบันไดต่อความสูงร่าง $V_t / \sqrt{gH_L}$ เป็นความเร็วการไหลไอลรินิตีที่ท้ายร่างขันบันได V_t เป็นความเร็วการไหลที่ท้ายร่างขันบันได q^2/gH_L^2 เป็นค่า Drop number h_L/h_0 เป็นความสูงสัมพัทธ์ของระบบที่ปลายขัน และ α เป็นความลาดชันของร่างขันบันได


3. อาชญากรรมและวิธีการ

ผังการจัดวางอุปกรณ์การทดสอบ โภชสารเบปัลังรูปที่ 2
อุปกรณ์ดังกล่าวประกอบด้วย ตั้งรับน้ำซึ่งติดตั้งฝาหัวขวดอัคราภาระ ไวนิลเป็น
รูปสามเหลี่ยม ปากทางเข้าร่าง ร่างขันนับน้ำ และร่างระบายน้ำซึ่งออก ชั่ง
ทดสอบไว้ดังหน้าที่ที่ 1 ทึ้ง 4 ในรูปที่ 2 ตามอิ่งด้าน

รูปที่ 2 ผังการจัดความอุปกรณ์ทุกดอย

ร่างขั้นบันไดที่ใช้ในการศึกษาเป็นร่างขั้นบันไดแบบมีช่องที่ปลายขั้น ด้วยร่างสร้างด้วยแผ่นพลาสติกใส มีความกว้าง 0.40 เมตร สูง 3.0 เมตร มีความลาดชัน 30° 45° และ 60° และมีความสูงในแนวดิ่งเท่ากับ 1.50, 2.12, และ 2.60 เมตร ตามลำดับ ขั้นบันไดมีความสูงของละ 5 ของ ความสูงรวม และมีความสูงของช่องที่ปลายขั้นบันไดเท่ากับ 0.0, 0.5, 1.0, และ 1.5 ซม. ตามลำดับ มิติของขั้นบันไดและช่องที่ปลายขั้นแสดง ไว้ในรูปที่ 3



รูปที่ 3 มิติของขั้นบันไดและธรณีที่ปักษาขั้นในหน่วยนิติดิบกร

การวัดความลึกและความเร็วการไหลกระทำท่า 2 ชุด คือ บริเวณปากทางเข้าร่าง ห่างจากขันบันไดขันแรกประมาณ 1 เท่าของความยาวกันอน เพื่อทดสอบของการไหลอ่อนกลับ และบริเวณท้าช่องระหว่างน้ำออก ห่างจากขันบันไดขันสุดท้ายประมาณ 3-4 เท่าของความยาวกันอน ของขันบันได เพื่อทดสอบของการไหลแบบปั่นป่วนและการหมุนกัน ของน้ำและอากาศ ความลึกการไหลในหน้าดีดของแรงดึงโดยรี Vernier-depth gauge ส่วนความเร็วการไหลของการศึกษาครั้งนี้ได้วัด 2 วิช คือ ค่านิวเคลียกความลึกของน้ำในหลอดปีกหด และค่านิวเคลียก สมการต่อเนื่อง ผลการค่านิวเคลียกทั้งสองวิชมีความแตกต่างกันไม่เกิน ร้อยละ 10 ดังนั้นการค่านิวเคลียกการทดสอบงานและความเร็วการไหลของ การศึกษาครั้งนี้ จึงถือว่าใช้ผลของการวัด โดยตรงทั้งหมดปีกหด

การทดสอบที่โดยชั้นต่อชั้นเข้าสู่ร่างขั้นบันได ผ่านดังวัดอัตราการไหลและปักทางเข้าร่าง เข้าสู่ร่างขั้นบันได แล้วไหทดสอบทางระบบหน้าของ เมื่อการไหทดสอบทางเข้าสู่สภาวะการไหแบบปกติ จึงท้าการวัดอัตราการไหด้ ความสูง และความเร็วการไหด้

4. การถ่ายพลังงานของการไฟฟ้าบนรางขันบันได

การศึกษาครั้งนี้ได้วิเคราะห์ความสัมพันธ์ระหว่างอัตราส่วนการสูญเสียพังงานการให้ดูบันรงชั้นบันได (E_b/H_d) กับค่า Drop number (q^2/gH_T^2) ของรังชั้นบันไดแบบพื้นราบ ($h_1 = 0.0$ ซม.) และแบบมีร่องผิวที่ปลายชั้น ($h_1 = 0.5, 1.0$ และ 1.5 ซม.) ให้กับความสัมพันธ์ดังกล่าวที่ความถูกต้องของชั้นบันไดค่อนข้างได้ผลลัพธ์ไว้ในรูปที่ 4

รูปที่ 4 การแสดงผลลัพธ์งานกันค่า Drop number

จากรูปที่ 4 จะเห็นได้ว่า ความถูกต้องของร่างขั้นบันได รวมถึง Drop number และระบบที่ป้องขั้นบันไดที่พิสูจน์แล้วว่า ให้ร่างขั้นบันไดที่มีความถูกต้องมาก ซึ่งในช่วงที่ Drop number มีค่าเท่ากับ การถลายผลลัพธ์งานของร่างขั้นบันไดที่มีความถูกต้องกันจะได้รีบุรุษ แต่เมื่อค่า Drop number มากขึ้น ความแตกต่างของการถลายผลลัพธ์งานของร่างขั้นบันไดที่มีความถูกต้องกันก็จะมากขึ้นด้วย และเมื่อถูกต้อง ให้ในร่างมีค่ามาก การถลายผลลัพธ์งานของการให้แบบร่างขั้นบันไดแบบพื้นฐานที่มีความถูกต้อง 45° และ 60° (รูปที่ 4 ก) จะน้อยกว่าร่างขั้นบันไดแบบพื้นฐานที่มีความถูกต้อง 30° ประมาณร้อยละ 7 และ 12 ตามลำดับ ในขณะที่การถลายผลลัพธ์งานของการให้แบบร่างขั้นบันไดแบบมีชาร์ตที่ป้องขั้นบันไดที่มีความถูกต้อง 45° และ 60° (รูปที่ 4 ข) จะน้อยกว่าร่างขั้นบันไดแบบพื้นฐานที่มีความถูกต้อง 30° ประมาณร้อยละ 9 ของหลังงานทั้งหมด

เมื่อพิจารณาแล้ววิธีพอกของ Drop number พบว่าการพอก
พังผืดงานจะลดลงเมื่อค่า Drop number เพิ่มขึ้น โดยในช่วงที่ Drop
number มีค่าน้อย การถลางพังผืดงานจะลดลงอย่างรวดเร็วเมื่อค่า Drop
number เพิ่มขึ้น แต่เมื่อ Drop number มีค่าสูง การถลางพังผืดงานจะค่อยๆ
ลดลงและมีแนวโน้มข้ามค่าคงที่เมื่อค่า Drop number มากขึ้น

ทำให้รับอิทธิพลของความสูงของระบบที่ปล่อยขันบันว่า ร่างขันบันใดที่มีความสูงของระบบที่ปล่อยขันมากจะมีการถลายพังงานมากกว่า ร่างขันบันใดที่มีความสูงของระบบที่ปล่อยขันน้อย ซึ่งรวมถึงร่างขันบันใด แบบพื้นราบศักดิ์ โดยในช่วงที่ Drop number มีค่าน้อย การถลายพังงาน ของร่างขันบันไดแบบพื้นราบจะแบบมีอิทธิพลที่ปล่อยขันจะไปสักศิษย์กัน การถลายพังงานส่วนใหญ่เกิดจากการให้ทดสอบและการกระโน้นด้วยของ น้ำบนขันบันได แต่เมื่อ Drop number มีค่านานาจัง ความสูงของระบบที่ ปล่อยขันจะมีอิทธิพลต่อการถลายพังงานอย่างเห็นได้ชัด เมื่อ Jong จากความ สูงของระบบที่ปล่อยขันได้ช่วยเพิ่มขนาดของอ่างบนขันบันได ทำให้การ ให้ถอนของน้ำที่ต้องการพังงานในการสร้างเสือกระภานกันน้ำ

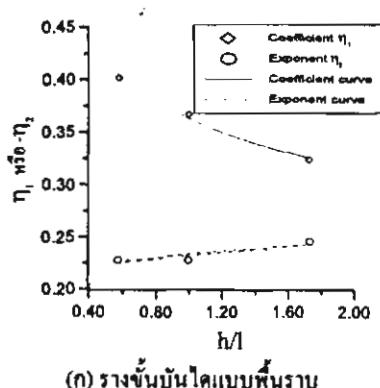
ในร่างขั้นบันไดที่มีความสูงชั้น 30° การถอยหลังจะเป็นไปอย่างไรเมื่อจากกราฟให้ลงบนร่างขั้นบันไดแบบพื้นราบและแบบมีช่องที่ปิดชั้นที่มีความสูงของช่อง $0.5, 1.0$ และ 1.5 ซม. ($h/h = 0, 0.07, 0.13$ และ

0.20) จะเข้าใกล้ค่าคงที่ประมาณ 0.68, 0.74, 0.75 และ 0.76 ตามลำดับ ในขณะที่ร่างขั้นบันไดที่มีความลาดชัน 45° การถ่ายทอดงานเนื่องจาก การให้ผลบันทุณร่างขั้นบันไดแบบพื้นรำนและแบบมีรัฐพิที่ปลายขั้นที่มีความ ถูงของรัฐพิท 0.5, 1.0 และ 1.5 ซม. ($h_1/h = 0, 0.05, 0.09$ และ 0.14) จะเข้า ใกล้ค่าคงที่ประมาณ 0.66, 0.71, 0.73 และ 0.74 ตามลำดับ ส่วนร่าง ขั้นบันไดที่มีความลาดชัน 60° การถ่ายทอดงานเนื่องจาก การให้ผลบัน ทุณร่างขั้นบันไดแบบพื้นรำนและแบบมีรัฐพิที่ปลายขั้นที่มีความ ถูงของรัฐพิท 0.5, 1.0 และ 1.5 ซม. ($h_1/h = 0, 0.04, 0.08$ และ 0.12) จะเข้าใกล้ค่าคงที่ ประมาณ 0.65, 0.73, 0.75 และ 0.77 ตามลำดับ และเมื่อมองภาพรวม เปรียบเทียบระหว่างการถ่ายทอดงานเนื่องจาก การให้ผลบันทุณร่างขั้นบันได แบบพื้นรำนและแบบมีรัฐพิทที่ปลายขั้น พบว่าร่างขั้นบันไดแบบมีรัฐพิทที่ ปลายขั้นสามารถลดถ่ายทอดงานไดมากกว่าร่างขั้นบันไดแบบพื้นรำน ประมาณร้อยละ 8

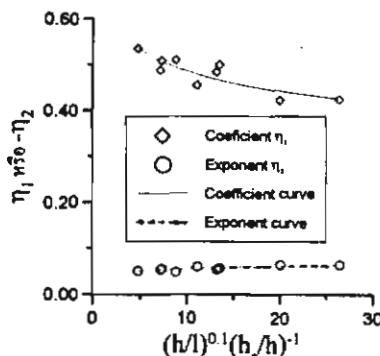
จากໄດ້ກວ່າມສັນພັນໃນຢູ່ປີ 4 ເມື່ອນ້າມວິເຄຣະໜ້າການກວ່າມສັນພັນຂອງກວ່າມສັນພັນກັບດັ່ງນັ້ນ ດັ່ງກ່າວ

$$\frac{E_L}{H_T} = \eta_1 \left(\frac{q^2}{g H_T^3} \right)^{\eta_2} \quad (4)$$

เมื่อ ท. ฉลอง ท. เป็นสันประสีกธีและตัวเลขบอกกำลังของสมการ


จากผลการศึกษาจะได้ค่าสัมประสิทธิ์ที่ ๑ ตัวเลขยกกำลังที่ ๒ และค่าสหสัมพันธ์ของชุดข้อมูล (R^2) ของร่างขั้นบันนไดทั้งแบบพื้นฐานและแบบเพิ่มประสิทธิ์ที่ไปมาทั้งนี้ ได้แสดงไว้ในตารางที่ ๑

ទទួលទៅ សង្គមជីវិតទៅទីតាំងរបស់ខ្លួន


ความสูงชั้น (เมตร)	h/l	h/h	η_1	η_2	R^2
30	0.577	0.00	0.402	-0.076	0.977
		0.07	0.501	-0.057	0.961
		0.13	0.510	-0.056	0.991
		0.20	0.536	-0.051	0.982
45	1.000	0.00	0.367	-0.076	0.975
		0.05	0.423	-0.066	0.958
		0.09	0.456	-0.06	0.946
		0.14	0.489	-0.054	0.949
60	1.732	0.00	0.324	-0.082	0.969
		0.04	0.426	-0.065	0.933
		0.08	0.485	-0.054	0.898
		0.12	0.511	-0.050	0.895

เนื่องจากสมการการถลอกหัวลงของร่างไหอบนร่างขั้นบันไดที่ได้มีความหลากหลาย และไม่ถูกគุกในการใช้งาน การศึกษาครั้งนี้จึงได้นำค่าสัมประสิทธิ์ η_1 และค่าเลขยกกำลัง η_2 ที่แสดงไว้ในตารางที่ 1 มาถืออคติความสัมพันธ์กับค่าแปรที่ใช้ออกแบบร่างขั้นบันได ให้ได้ความสัมพันธ์ดังแสดงในรูปที่ 5 ให้รูปที่ 5 เป็นได้ ความสัมพันธ์ของค่าสัมประสิทธิ์ η_1 และค่าเลขยกกำลัง η_2 ซึ่งข้อถูกในรูปที่ 5 และ -1 , กับสัดส่วนความสูงของถูกต้องและความยาวถูกอนอนของร่างขั้นบันไดแบบพื้นฐาน (h/l) ส่วนรูปที่ 6 เป็นได้ ความสัมพันธ์ของค่าสัมประสิทธิ์ η_1 และค่าเลขยกกำลัง η_2 ซึ่งข้อถูกในรูปที่ 6 และ -1 , กับค่าแปรของร่างขั้นบันไดแบบมีชาร์พที่ปลางขั้น ซึ่งเป็นผลลัพธ์ของความถูกชั้นของร่างกับความสูงของชาร์พที่ปลางขั้น $[(h/l)^{0.1}(h_1/h)^{-1}]$

ให้ความสัมพันธ์ของค่าสัมประสิทธิ์ η_1 ในสมการการถลอกหัวลงของร่างขั้นบันไดแบบพื้นฐานและแบบมีชาร์พที่ปลางขั้น มีแนวโน้มลดลงเมื่อสัดส่วนความสูงถูกต้องและถูกอนอนของร่างขั้นบันไดเพิ่มขึ้น ในขณะที่ค่าเลขยกกำลัง η_2 มีค่าเพิ่มขึ้นเมื่อสัดส่วนความสูงถูกต้องและถูกอนอนของร่างขั้นบันไดเพิ่มขึ้น

(ก) ร่างขั้นบันไดแบบพื้นฐาน

(ข) ร่างขั้นบันไดแบบมีชาร์พที่ปลางขั้น

รูปที่ 5 ค่าสัมประสิทธิ์และเลขยกกำลัง ของสมการการถลอกหัวลงกับค่าแปรของร่างขั้นบันได

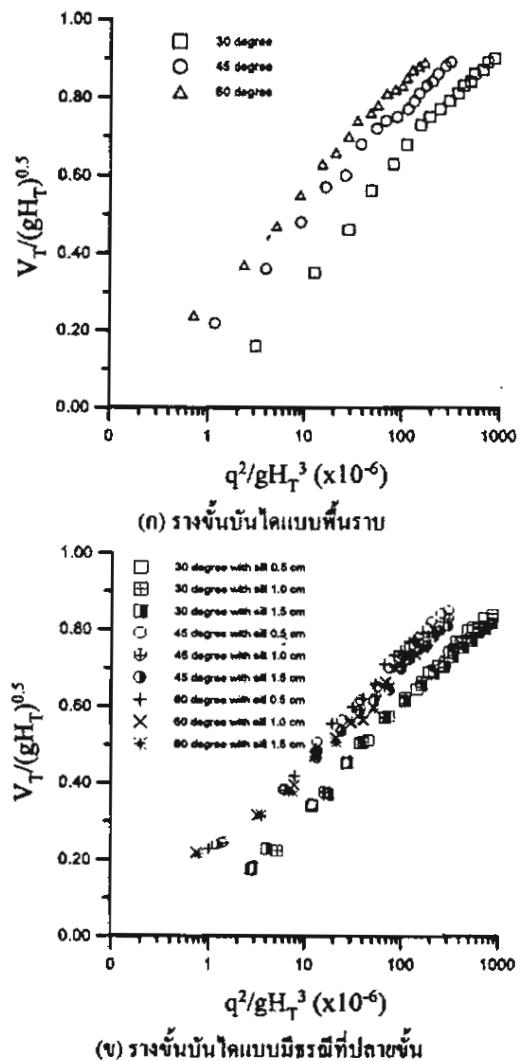
จากได้ ความสัมพันธ์ในรูปที่ 5 เมื่อนำมาวิเคราะห์หา ความสัมพันธ์ จะได้สมการความสัมพันธ์ของค่าสัมประสิทธิ์ η_1 และ ค่าเลขยกกำลัง η_2 , กับความถูกชั้นของร่างขั้นบันไดแบบพื้นฐาน คือ

$$\eta_{1,2} = a \left(\frac{h}{l} \right)^b \quad (5)$$

เมื่อ $\eta_{1,2}$ เป็นค่าสัมประสิทธิ์หรือค่าเลขยกกำลังของสมการ การถลอกหัวลงของร่างขั้นบันไดแบบพื้นฐาน a และ b เป็นค่าสัมประสิทธิ์และค่าเลขยกกำลัง ในการคำนวณหา η_1 , a และ b มีค่าเท่ากับ 0.363 และ -0.196 สำหรับการคำนวณหา η_2 , a และ b มีค่าเท่ากับ -0.078 และ 0.069 โดยที่สมการที่ 5 นี้ครอบคลุมช่วง h/l ระหว่าง 0.577 ถึง 1.732 และมีค่าสัมพันธ์ของสมการมากกว่า 0.750

ในท่านองเดียวกัน เมื่อนำรูปที่ 6 นำมาวิเคราะห์หา ความสัมพันธ์ในรูปสมการ จะได้สมการความสัมพันธ์ของค่า สัมประสิทธิ์ η_1 และค่าเลขยกกำลัง η_2 , กับค่าแปรของร่างขั้นบันได แบบมีชาร์พที่ปลางขั้น คือ

$$\eta_{1,2} = c \left[\left(\frac{h}{l} \right)^{0.1} \left(\frac{h_1}{h} \right)^{-1} \right]^d \quad (6)$$


เมื่อ $\eta_{1,2}$ เป็นค่าสัมประสิทธิ์หรือค่าเลขยกกำลังของสมการ การถลอกหัวลงของร่างขั้นบันไดแบบพื้นฐานมีชาร์พที่ปลางขั้น ค และ d เป็นค่าสัมประสิทธิ์และค่าเลขยกกำลัง ในการคำนวณหา η_1 , c และ d มีค่าเท่ากับ 0.662 และ -0.134 สำหรับการคำนวณหา η_2 , c และ d มีค่าเท่ากับ -0.040 และ 0.141 โดยที่สมการที่ 6 นี้ครอบคลุมช่วง h/l ระหว่าง 0.577 ถึง 1.732 และช่วง h_1/h ระหว่าง 0.07 ถึง 0.20 มีค่า สัมพันธ์ของสมการมากกว่า 0.675

5. ความเร็วการไหอบร่างขั้นบันได

การศึกษาครั้งนี้ได้วิเคราะห์ความสัมพันธ์ระหว่างความเร็ว การไหอบร่างขั้นบันได ($V_T / \sqrt{gH_T}$) กับค่า Drop number ของ ร่างขั้นบันไดทั้งแบบพื้นฐาน ($h_1 = 0.0$ ซม.) และแบบมีชาร์พที่ปลางขั้น ($h_1 = 0.5, 1.0$ และ 1.5 ซม.) โดยความสัมพันธ์ดังกล่าวแสดงไว้ดังรูปที่ 6

จากรูปที่ 6 จะเห็นได้ว่าความสัมพันธ์ที่ได้มีลักษณะเป็น เส้นตรง โดยที่ความถูกชั้นของร่างขั้นบันได รวมถึง Drop number และชาร์พที่ปลางขั้นมีอิทธิพลต่อความเร็วการไหอบร่างขั้นบันได โดย ร่างที่มีความถูกชั้นน้อยจะมีความเร็วที่มากกว่าร่างที่มีความถูกชั้นมาก เนื่องจากว่าร่างที่มีความถูกชั้นน้อยมีสัดส่วนการถลอกหัวลงมาก กากกว่าร่างที่มีความถูกชั้นมาก ทำให้หัวลงงานจะถูกที่เหลืออยู่ที่ร่าง

น้อยกว่าร่างขั้นบันไดที่มีความถ่วงมาก และส่งผลให้ความเร็วการไหลที่ท้าทายร่างขั้นบันไดน้อยลงไปได้ด้วย

รูปที่ 6 ความเร็วการไหลท้าทายร่างขั้นบันไดกับค่า Drop number

ในร่างขั้นบันไดแบบพื้นราบที่มีความถ่วง 30° และ 45° จะมีความเร็วท้าทายร่างน้อยกว่าร่างขั้นบันไดแบบพื้นราบที่มีความถ่วง 60° ประมาณร้อยละ 15 และ 8 ตามลำดับ (รูปที่ 6) ในขณะที่ความเร็วท้าทายร่างขั้นบันไดแบบมีรัฐวิที่ปลางขั้นที่มีความถ่วง 30° จะน้อยกว่าร่างขั้นบันไดแบบมีรัฐวิที่ปลางขั้นที่มีความถ่วง 45° และ 60° ประมาณร้อยละ 9 (รูปที่ 6) โดยความเร็วการไหลท้าทายร่างขั้นบันไดแบบมีรัฐวิที่ปลางขั้นที่มีความถ่วง 45° จะใกล้เคียงกับร่างขั้นบันไดแบบมีรัฐวิที่ปลางขั้นที่มีความถ่วง 60° ซึ่งสอดคล้องกับการสถาปัตยกรรมในรูปที่ 4.2 ที่มีสัดส่วนใกล้เคียงกัน

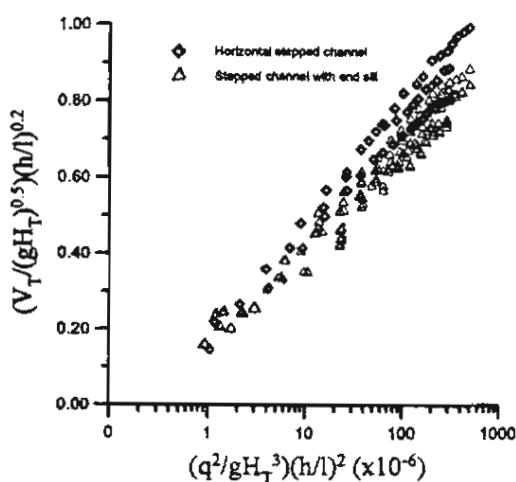
เมื่อพิจารณาอิทธิพลของ Drop number พบว่าความเร็วการไหลท้าทายร่างขั้นบันไดจะเพิ่มขึ้นเมื่อค่า Drop number เพิ่มขึ้น และ

หากค่าต้องการสถาปัตยกรรมซึ่งสอดคล้องเมื่อค่า Drop number เพิ่มขึ้น เนื่องจากเมื่อการสถาปัตยกรรมลดลง หลังงานจะน้ำที่เหลืออยู่ที่ท้าทายร่างขั้นบันไดจะเพิ่มขึ้น และส่งผลให้ความเร็วการไหลท้าทายร่างขั้นบันไดเพิ่มขึ้นตามไปด้วย

สำหรับอิทธิพลของความถ่วงของรัฐวิที่ปลางขั้นพบว่า ร่างขั้นบันไดที่มีรัฐวิที่ปลางขั้นสูง จะมีความเร็วการไหลท้าทายร่างน้อยกว่า ร่างขั้นบันไดที่มีรัฐวิที่ปลางขั้นต่ำ ซึ่งรวมถึงร่างขั้นบันไดแบบพื้นราบ ลักษณะของร่างขั้นบันไดที่มีรัฐวิที่ปลางขั้นสูง จะมีการสถาปัตยกรรมที่สูงกว่าร่างขั้นบันไดที่มีรัฐวิที่ปลางขั้นต่ำ ในช่วง Drop number มีค่า น้อย ความเร็วการไหลท้าทายร่างขั้นบันไดทั้งแบบพื้นราบและแบบมีรัฐวิที่ปลางจะใกล้เคียงกัน เนื่องจากพื้นที่ส่วนใหญ่ถูกสถาปัตย์บนร่างขั้นบันได ทำให้หลังงานลดลงที่ท้าทายร่างขั้นบันไดนิ่วานอช แต่เมื่อ Drop number มีค่ามาก รัฐวิที่ปลางขั้นจะมีผลต่อความเร็วการไหลท้าทายร่างขั้นบันไดอย่างเห็นได้ชัด แต่การเปลี่ยนแปลงความถ่วงของรัฐวิที่ปลางขั้นจะมีผลต่อความเร็วการไหลท้าทายร่างขั้นบันไดเพียงเล็กน้อย

ในร่างขั้นบันไดที่มีความถ่วง 30° ความเร็วการไหลท้าทายร่างขั้นบันไดแบบพื้นราบมีรัฐวิที่ปลางขั้นซึ่งมีความถ่วงของรัฐวิทเท่ากับ 0.5, 1.0 และ 1.5 ซม. ($h/h = 0.07, 0.13$ และ 0.20) จะน้อยกว่าความเร็วการไหลท้าทายร่างขั้นบันไดแบบพื้นราบ ($h/h = 0$) ประมาณร้อยละ 5, 6 และ 7 ตามลำดับ ในขณะที่ความเร็วท้าทายร่างบันไดแบบมีรัฐวิที่ปลางขั้นที่มีความถ่วง 45° และมีความถ่วงของรัฐวิทเท่ากับ 0.5, 1.0 และ 1.5 ซม. ($h/h = 0.05, 0.09$ และ 0.14) จะน้อยกว่าร่างขั้นบันไดแบบพื้นราบที่ความถ่วง 30° ที่มีความถ่วง 45° และ 60° ตามลำดับ ผ่านความเร็วการไหลท้าทายร่างขั้นบันไดแบบพื้นราบที่มีรัฐวิที่ปลางขั้นที่มีความถ่วง 60° และมีความถ่วงของรัฐวิทเท่ากับ 0.5, 1.0 และ 1.5 ซม. ($h/h = 0.04, 0.08$ และ 0.12) จะน้อยกว่าร่างขั้นบันไดแบบพื้นราบที่มีความถ่วง 60° ประมาณร้อยละ 10, 11 และ 12 ตามลำดับ

จากໄสั่งความสัมพันธ์ในรูปที่ 6 เมื่อนำมาวิเคราะห์หาสมการความสัมพันธ์ของความเร็วการไหลท้าทายร่างขั้นบันไดกับค่า Drop number จะได้ความสัมพันธ์ในรูปของสมการดังนี้ คือ


$$\frac{V_T}{\sqrt{gH_T}} = \eta_b \ln \left(\frac{q^2}{gH_T^3} \right) + \eta_a \quad (7)$$

เมื่อ η_b และ η_a เป็นสัมประสิทธิ์และค่าคงที่ของสมการและรากในตารางที่ 2 สำหรับร่างขั้นบันไดแบบมีรัฐวิที่ปลางขั้นสมการตัวแทนสามารถแสดงให้ด้วยสมการเดียวในแต่ละความถ่วง (h/h) นีองจาก การเปลี่ยนแปลงความถ่วงของรัฐวิที่ปลางขั้นมีอิทธิพลต่อความเร็วท้าทายร่างขั้นบันไดน้อยมาก

ตารางที่ 2 ค่าสัมประสิทธิ์และค่าเท徂ณ์ก้าวสัมของท่านการความเร็วการไหลที่ท่าเรือขึ้นบันได

ความ คาดคะ น	แบบพื้นฐาน			แบบมีรัฐพีที่ปลายขึ้น		
	(องค์)	η_1	η_4	R^2	η_1	η_4
30	0.132	1.859	0.993	0.115	1.659	0.993
45	0.120	1.872	0.994	0.112	1.738	0.990
60	0.122	1.970	0.996	0.111	1.730	0.974

เนื่องจากท่านการความเร็วการไหลที่ท่าเรือขึ้นบันไดที่ได้มีความหลากหลายและไม่ถูกควบคุมในการน้ำไปใช้งาน การศึกษาครั้นนี้จึงได้ปรับปรุงให้กับความสัมพันธ์ในรูปที่ 6 ขึ้นใหม่ เพื่อให้ได้ถูกกับความสัมพันธ์เดิม 2 เส้น ซึ่งเป็นตัวแทนของท่านการความเร็วที่ท่าเรือขึ้นบันไดแบบพื้นฐาน และแบบมีรัฐพีที่ปลายขึ้น สำหรับทุกความคาดคะนองของเรือขึ้นบันได ให้คำนว่าสัดส่วนความสูงของถูกต้องกับความถูกอกนอนของเรือขึ้นบันได (h/l) ไปรุ่งกับค่าเพริวีนิติในแนวเดียวกันบนแบบแทนดังของรูปที่ 6 ได้ด้วยเพริวีนิติเป็น $[(q^2/gH_T^3)(h/l)^2]$ และ $[(V_T/\sqrt{gH_T})(h/l)^2]$ โดยด้วย $[(q^2/gH_T^3)(h/l)^2]$ จะเรียกเป็นค่า Modified drop number และได้แสดงความสัมพันธ์ไว้ในรูปที่ 7

รูปที่ 7 ความเร็วการไหลที่ท่าเรือขึ้นบันไดกับค่า Modified drop number สำหรับทุกความคาดคะนองของเรือขึ้นบันได

จากได้ความสัมพันธ์ที่ได้มีน้ำมันวิเคราะห์ความสัมพันธ์ในรูปแบบการถอดการที่นี่ จะได้สมการความสัมพันธ์ของความเร็วที่ท่าเรือขึ้นบันไดแบบพื้นฐานกับค่า Modified drop number สำหรับทุกความคาดคะนอง ซึ่งมีค่าสัดส่วนพันธ์ (R^2) เท่ากับ 0.960 ดังสมการที่ 8

$$\left(\frac{V_T}{\sqrt{gH_T}} \right) \left(\frac{h}{l} \right)^2 = 0.13 \ln \left[\left(\frac{q^2}{gH_T^3} \right) \left(\frac{h}{l} \right)^2 \right] + 1.93 \quad (8)$$

สมการความสัมพันธ์ของความเร็วที่ท่าเรือขึ้นบันไดแบบพื้นฐานมีรัฐพีที่ปลายขึ้นกับค่า Modified drop number สำหรับทุกความคาดคะนอง ซึ่งมีค่าสัดส่วนพันธ์ (R^2) เท่ากับ 0.960 ดังสมการที่ 9

$$\left(\frac{V_T}{\sqrt{gH_T}} \right) \left(\frac{h}{l} \right)^2 = 0.11 \ln \left[\left(\frac{q^2}{gH_T^3} \right) \left(\frac{h}{l} \right)^2 \right] + 1.70 \quad (9)$$

6. สรุป

การศึกษาพัฒนาของท่านการไหลบนเรือขึ้นบันไดแบบพื้นฐาน แบบแบบมีรัฐพีที่ปลายขึ้น มีแนวโน้มเหมือนกัน โดยจะลดลงเมื่อค่า Drop number เพิ่มขึ้น และมีแนวโน้มเข้าสู่ค่าคงที่เมื่อ Drop number มีค่ามาก นอกจากนี้ การศึกษาพัฒนาจะมีค่ามากรึมีอีกความคาดคะนองของเรือขึ้นบันไดมากขึ้น และที่ค่า Drop number สูงๆ ความแตกต่างระหว่างการศึกษาพัฒนาของท่านการไหลบนเรือขึ้นบันไดจะมากขึ้นด้วย ที่สากล ความเร็วการไหลเดิมกัน รวมขึ้นบันไดที่มีรัฐพีที่ปลายขึ้นจะลดลงมากขึ้นด้วย ที่สากล ความเร็วการไหลเดิมกัน รวมขึ้นบันไดที่มีรัฐพีที่ปลายขึ้นน้อยลง โดยเมื่อ Drop number เพิ่มสูงขึ้น การศึกษาพัฒนาของเรือขึ้นบันไดแบบพื้นฐานและแบบมีรัฐพีที่ปลายขึ้นจะแตกต่างกันอย่างเห็นได้ชัดประมาณร้อยละ 8 และการเพิ่มความสูงของรัฐพีที่ปลายขึ้นจะเพิ่มการพัฒนาให้เดลี่ร้อยละ 3 จากผลการทดลองที่ได้ สามารถสรุปความสัมพันธ์ไว้ในรูปแบบการถอดค่าเดิมได้ โดยมีค่าสัดส่วนประสิทธิ์การถอดค่าเดิม (R^2) ระหว่าง 0.895 ถึง 0.977

ความเร็วการไหลที่ท่าเรือขึ้นบันไดแบบพื้นฐานและแบบมีรัฐพีที่ปลายขึ้น มีแนวโน้มเหมือน แต่จะลดลงเมื่อกับการศึกษาพัฒนา โดยจะเพิ่มขึ้นเมื่อค่า Drop number เพิ่มขึ้น การเพิ่มความคาดคะนองของเรือขึ้นบันไดที่มีรัฐพีที่ปลายขึ้นสามารถลดความเร็วที่ท่าเรือได้ประมาณร้อยละ 8-15 และที่สากล ความเร็วการไหลที่ท่าเรือน้อยกว่าเรือขึ้นบันไดที่มีรัฐพีที่ปลายขึ้นค่า โดยเรือขึ้นบันไดแบบมีรัฐพีที่ปลายขึ้น จะมีความเร็วการไหลน้อยกว่าเรือขึ้นบันไดแบบพื้นฐานประมาณร้อยละ 7-12 และการเพิ่มความสูงของรัฐพีที่ปลายขึ้นจะลดความเร็วการไหลที่ท่าเรือน้ำได้เดลี่ร้อยละ 2 จากผลการทดลองที่ได้สามารถสรุปความสัมพันธ์ไว้ในรูปแบบการถอดค่าเดิมได้ โดยมีค่าสัดส่วนประสิทธิ์การถอดค่าเดิม (R^2) ระหว่าง 0.974 ถึง 0.996

กติกาธรรมประการ

กติกาธรรมของอนุคณหวิทยาอัตโนมัติในไส้อัมรรถของเมืองที่นี่ ทบวงมหาวิทยาลัย และสำนักงานกองทุนสนับสนุนการวิจัย ที่ได้

กัน้ำที่มุ่งทุบลงส่วน และของบนคูด ศ.ดร.สมชาย วงศ์วิเศษ ที่ได้
ให้คำแนะนำและชี้เสนอแนะที่มีประโยชน์อย่างยิ่งต่อการศึกษา

เอกสารอ้างอิง

- [1] Essery, I.T.S. and Hornor, M.W., "The Hydraulics Design of Stepped Spillways", Construction Industry Research and Information Association (CIRIA), Report No. 33, London, 1971, 41 pages.
- [2] Stephenson, D., "Energy Dissipation down Stepped Spillways", International Water Power and Dam Construction, Vol. 43, No. 9, 1991, pp. 27-30.
- [3] Rajaratnam, N., "Skimming Flow in Stepped Spillway", Journal of Hydraulic Engineering, ASCE, Vol. 116, No. 4, 1990, pp. 587-591.
- [4] Diez-Cascon, et al., "Studies on the Hydraulic Behaviour of Stepped Spillways", International Water Power and Dam Construction, Vol. 43, No. 9, 1991, pp. 22-26.
- [5] Peyras, L., Royet, P. and Degoutte, G., "Flow and Energy Dissipation over Stepped Gabion Weirs", Journal of Hydraulic Engineering, ASCE, Vol. 118, No. 5, 1992, pp. 707-717.
- [6] Christodoulou, G.C., "Energy Dissipation on Stepped Spillways", Journal of Hydraulic Engineering, ASCE, Vol. 119, No. 5, 1993, pp. 644-650.
- [7] Israngkura, U. and Chinnarasri, C., "Flow Depth and Energy Losses through Stepped Chutes", Proceedings of the 9th Congress of Asian and Pacific Division of the International Association for Hydraulic Research (APD-IAHR Congress), Singapore, 1994, pp. 156-163.
- [8] Fratino, U., Piccinni, A.F. and Mainis, G.de, "Dissipation Efficiency of Stepped Spillways", in International Workshop on Hydraulics of Stepped Spillways, Minor, H.E. & Hager, W.H. (Eds.), Zurich, Switzerland, 2000, pp. 103-110.
- [9] Pinheiro, A.N. and Fael, C.S., "Nappe Flow in Stepped Channels-Occurrence and Energy Dissipation", in International Workshop on Hydraulics of Stepped Spillways, Minor, H.E. & Hager, W.H. (Eds.), Zurich, Switzerland, 2000, pp. 119-126.
- [10] Charnani, M.R. and Rajaratnam, N., "Jet Flow on Stepped Spillways" Journal of Hydraulic Engineering, ASCE, Vol. 120, No. 2, 1994, pp. 254-259.
- [11] Chanson, H., "Comparison of Energy Dissipation between Nappe and Skimming Flow Regimes on Stepped Chutes", Journal of Hydraulic Research, IAHR, Vol. 32, No. 2, 1994, pp. 213-218.
- [12] Ohtsu, I. and Yasuda, Y., "Discussion on Comparison of Energy Dissipation Between Nappe and Skimming Flow Regimes on Stepped Chutes", Journal of Hydraulic Research, IAHR, Vol. 33, No. 1, 1995, pp. 115-117.
- [13] Kells, J.A., "Discussion on Comparison of Energy Dissipation Between Nappe and Skimming Flow Regimes on Stepped Chutes", Journal of Hydraulics Research, IAHR, Vol. 33, No. 1, 1995, pp. 128-133.
- [14] Matos, J. and Quintela, A., "Discussion on Comparison of Energy Dissipation Between Nappe and Skimming Flow Regimes on Stepped Chutes", Journal of Hydraulic Research, IAHR, Vol. 33, No. 1, 1995, pp. 135-139.
- [15] Chanson, H. and Toombes, L., "Energy Dissipation in Stepped Waterway", Proceedings of 27th International Association for Hydraulic Research (IAHR)-Congress, Holly Jr., F.M. and Aasaffer, A. (Eds), San Francisco, USA, 1997, pp. 595-600 (Vol. D).
- [16] Poggi, B., "Sopra li Scaricatori a Scala di Stramazzi", L'energia elettrica, Milan, Oct., 1949, 26 pages.
- [17] Poggi, B., "Lo Scaricatore a Scala di Stramazzi", L'energia elettrica, Milan, Jan., 1956, 33 pages.
- [18] Vittal, N. and Porey P.D., "Design of Cascade Stilling Basins for High Dam Spillways", Journal of Hydraulic Engineering, ASCE, Vol. 113, No. 2, 1987, pp. 225-237.
- [19] Peruginelli, A. and Pagliara, S., "Energy Dissipation Comparison among Stepped Channel, Drop, and Ramp Structures", in International Workshop on Hydraulics of Stepped Spillways, Minor, H.E. & Hager, W.H. (Eds.), Zurich, Switzerland, 2000, pp. 111-118.
- [20] Aigner, D., "Hydraulic Design of Pooled Step Cascades", XXIX International Association for Hydraulic Research (IAHR)-Congress, 16-21 September, 2001, Beijing, China.

ภาคผนวก ข4

สั่งเนยาบทความเรื่อง Flow through gabion stepped spillways, KMUTT Research and Development Journal, Vol. 27(1), pp. 81-93 (in Thai)

การไหลผ่านทางระบายน้ำลั่นขันบันไดแบบกล่องด้าข่าย

สมชาย ดอนเจดีย์¹

มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตกำแพงแสน นครปฐม 71340

ชัยยุทธ ชินณะราครี² อุดมศักดิ์ อิศรางกูร ณ อยุธยา² และ ทศพล จตุรบุล³

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี บางมด ทุ่งครุ กรุงเทพฯ 10140

รับเมื่อ 29 สิงหาคม 2546 ตอบรับเมื่อ 4 ธันวาคม 2546

บทคัดย่อ

บทความนิ่นนำเสนอผลการศึกษาสภาพการไหลผ่านทางระบายน้ำลั่นขันบันไดแบบกล่องด้าข่ายจากการทดลองในทางระบายน้ำลั่นขันบันไดที่มีความกว้าง 0.40 เมตร มีความลึกชั้นของร่าง 30° , 45° และ 60° โดยมีความสูงของร่างเท่ากับ 1.50, 2.12, และ 2.60 เมตร ตามลำดับ ขันบันไดมีความสูงเป็นร้อยละ 5 ของความสูงร่าง อัตราไหลอยู่ในช่วงระหว่าง 4 ถึง 68 ลิตรต่อวินาที จากผลการศึกษาพบว่า ที่อัตราไหลน้อย การไหลผ่านขันบันไดจะเป็นแบบ Nappe flow แต่เมื่ออัตราไหลเพิ่มมากขึ้นการไหลจะเปลี่ยนเป็นแบบ Transition flow และ Skimming flow ตามลำดับ การแบ่งช่องเขตของการไหลแสดงได้ด้วยตัวเลขอัตราส่วนของความลึกกับกุศต่อความสูงขันบันได การสูญเสียพลังงานการไหลเปลี่ยนผกผันกับค่า Modified drop number โดยการสูญเสียพลังงานจะเพิ่มขึ้นเมื่อค่า Modified drop number ลดลง ในขณะที่การสูญเสียพลังงานเพิ่มขึ้น ความเร็วทางด้านท้ายน้ำจะลดลง ทางระบายน้ำลั่นขันบันไดแบบกล่องด้าข่าย สามารถเพิ่มประสิทธิภาพการสลายพลังงานได้ประมาณร้อยละ 10 และลดความเร็วทางด้านท้ายน้ำได้ร้อยละ 14 เมื่อเปรียบเทียบกับทางระบายน้ำลั่นขันบันไดแบบพื้นฐาน

คำสำคัญ : ทางระบายน้ำลั่นขันบันได / กล่องด้าข่าย / การสูญเสียพลังงาน / ความเร็วท้ายน้ำ

¹ อาจารย์ ภาควิชาวิศวกรรมชลประทาน (อดีตนักศึกษาระดับบัณฑิตศึกษา
ภาควิชาชลประทานโดยชาก มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี)

² ผู้ช่วยศาสตราจารย์ ห้องปฏิบัติการวิจัยวิศวกรรมแหล่งน้ำ (WAREE) ภาควิชาชลประทานโดยชาก

³ นักวิจัย ห้องปฏิบัติการวิจัยวิศวกรรมแหล่งน้ำ (WAREE) ภาควิชาชลประทานโดยชาก

Flow through Gabion Stepped Spillways

Somchai Donjadee¹

Kasetsart University, Kampaeng Saen Campus, Nakorn Pathom 71340

Chaiyuth Chinnarasri² Udomsak Israngkura² and Thodsapol Chaturabul³

King Mongkut's University of Technology Thonburi, Bangmod, Toongkru, Bangkok 10140

Received 29 August 2003; accepted 4 December 2003

Abstract

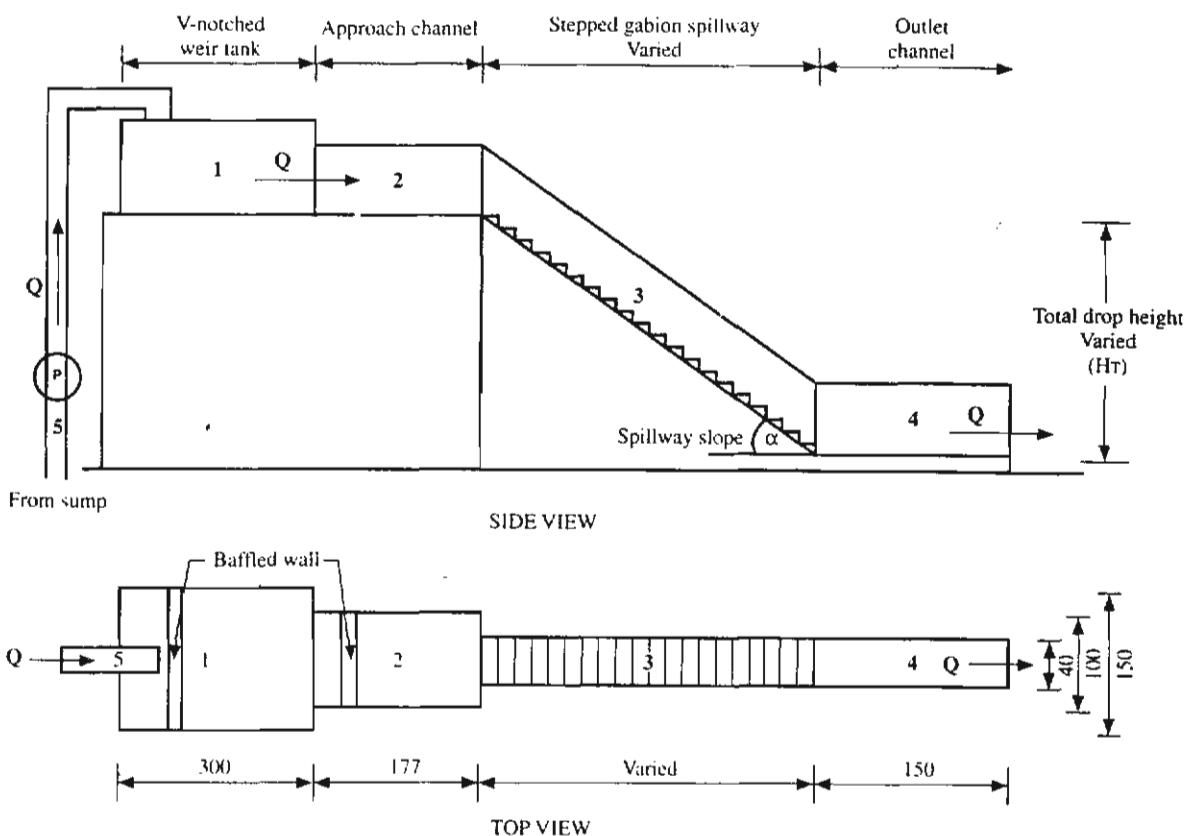
This paper presents the results of the experimental studies on the flow through the gabion stepped spillways. The width of the gabion stepped spillways is 0.40 m and the slopes of the gabion stepped spillways are 30°, 45°, and 60° with total spillway drop height 1.50, 2.12, and 2.60 m, respectively. The step height is 5 percent of the total spillway drop height. The discharge through the gabion stepped spillways was varied from 4 to 68 l/s. It was found that nappe flow occurred at low flow rates, transition flow at intermediate discharges and skimming flow at larger flow rates. The regimes of flow could be identified by the ratio of critical flow depth and step height. The energy loss varied inversely with the modified drop number, i.e. energy loss increased when modified drop number decreased. As the energy loss of flow increased, the velocity of flow at the spillway outlet decreased. The energy of flow was dissipated more in the gabion stepped spillways than in the horizontal stepped spillways about 10 percent. The velocity of flow at the outlet of the gabion stepped spillways was less than that of the horizontal stepped spillways by about 14 percent.

Keywords : Stepped spillways / Gabions / Energy loss / Outlet velocity

¹ Lecturer, Department of Irrigation Engineering (Former Graduate Student, Department of Civil Engineering, King Mongkut's University of Technology Thonburi).

² Assistant Professor, Water Resources Engineering Research Lab. (WAREE), Department of Civil Engineering.

³ Researcher, Water Resources Engineering Research Lab. (WAREE), Department of Civil Engineering.

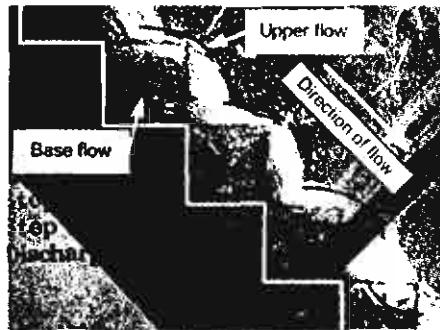

1. บทนำ

ทางระบายน้ำลั่นขั้นบันได (stepped spillway) เป็นโครงสร้างทางชลศาสตร์ที่สำคัญสำหรับการระบายน้ำออกจากอ่างเก็บน้ำ โดยสามารถช่วยเพิ่มประสิทธิภาพการสลายพลังงาน และลดความเร็วทางด้านท้ายน้ำ ทำให้ความยาวของการเกิดน้ำกระโดดบริเวณท้ายน้ำสั้นลง ส่งผลให้สามารถลดขนาดการก่อสร้างของอ่างสลายพลังงานลงได้ นอกจากนี้ทางระบายน้ำลั่นขั้นบันไดยังก่อให้เกิดการผสมกันของฟองอากาศได้ดี [1] และมีประสิทธิภาพในการสลายพลังงานของการไหลผ่านทางระบายน้ำลั่นดีกว่าทางระบายน้ำลั่นแบบพื้นเรียบ (plainbed spillway) [2]-[6] ที่ผ่านมา ได้มีการพัฒนาทางระบายน้ำลั่นแบบขั้นบันไดเพื่อเพิ่มประสิทธิภาพในการสลายพลังงานให้มากยิ่งขึ้น ด้วยการนำวัสดุที่หาได้ง่ายและราคาถูกอย่างเช่น หิน มาใช้ในกล่องด้ามข่ายแล้วนำห่วงเป็นขั้นบันได (Gabion steps) [7]-[8] แนวคิดนี้เป็นที่น่าสนใจและความมีการศึกษาทดลองเพื่อให้เข้าใจถึงพฤติกรรมการไหลผ่านทางระบายน้ำลั่นขั้นบันไดแบบกล่องด้ามข่ายเพิ่มมากขึ้น งานวิจัยครั้งนี้จึงมีวัตถุประสงค์เพื่อศึกษาพฤติกรรมการไหลผ่านทางระบายน้ำลั่นขั้นบันไดแบบกล่องด้ามข่าย ซึ่งรวมถึงการสลายพลังงานและความเร็วทางด้านท้ายน้ำ พร้อมทั้งเปรียบเทียบกับทางระบายน้ำลั่นขั้นบันไดแบบพื้นราบ (horizontal stepped spillway) เพื่อเป็นพื้นฐานในการออกแบบเมืองดันในการก่อสร้างทางระบายน้ำลั่นขั้นบันไดแบบกล่องด้ามข่ายและแบบพื้นราบต่อไป

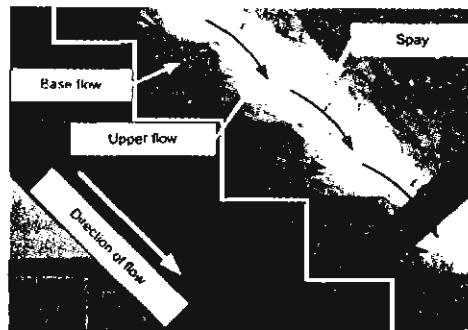
2. อุปกรณ์และวิธีการทดลอง

ในการศึกษาครั้งนี้ใช้พื้นที่ของอาคารชลศาสตร์ ภาควิชาชีวกรรมโยธา มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี อุปกรณ์ที่ใช้ในการศึกษาและทดลองแสดงดังรูปที่ 1 โดยเป็นจะสูบน้ำจากบ่อพักน้ำเข้าสู่ถังวัดอัตราไหล และไหลเข้าทางระบายน้ำลั่นขั้นบันไดโดยผ่านปากทางเข้าร่างซึ่งทำหน้าที่ปรับสภาพการไหลให้มีระดับผิวน้ำค่อนข้างราบรื่น ถังวัดอัตราไหลมีฝายรูปตัววี (V-notched weir) ติดตั้งอยู่บริเวณด้านหน้าเพื่อทำหน้าที่วัดอัตราไหล โดยออกแบบตามเกณฑ์ที่เสนอโดย Bos [9] จากการสอบถามเพียงฝายวัดน้ำสามารถเสนอสมการสำหรับคำนวณอัตราไหลได้ดังนี้คือ $Q = 0.02 h_w^{2.42}$ เมื่อ Q คือ อัตราไหล (ลิตร/วินาที) และ h_w คือ ความสูงของระดับน้ำหนึ่งสัมผาย โดยวัดจากระดับต่ำสุดของปากฝายรูปตัววี (เซนติเมตร) ซึ่งอัตราไหลที่ใช้ในการทดลองมีค่าระหว่าง 4 ถึง 68 ลิตรต่อวินาที

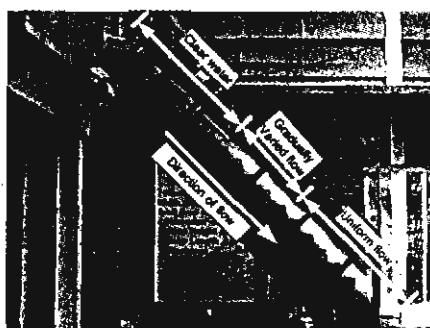
ทางระบายน้ำลั่นขั้นบันไดแบบพื้นราบที่ใช้สำหรับสังเกตพฤติกรรมการไหลมี 3 ร่องซึ่งมีความลาดชัน $30^\circ, 45^\circ$ และ 60° และมีความสูง 1.50, 2.12 และ 2.60 เมตร ตามลำดับ แต่ละร่องมีความกว้าง 0.40 เมตร ขั้นบันไดมีความสูงเป็นร้อยละ 5 ของความสูงรวม และนำมาประยุกต์ใช้ทำเป็นทางระบายน้ำลั่นขั้นบันไดแบบกล่องด้ามข่าย โดยการนำกล่องด้ามข่ายซึ่งบรรจุหินไว้เต็มกล่อง (Gabions) มาวางบนขั้นบันได ในการทดลองครั้งนี้ใช้หิน 3 ชนิดคือ 1) หินที่มีผิวเรียบมีขนาด 25-35 มิลลิเมตร (Gabion I) 2) หินที่มีผิวกลมมนขนาด 25-35 มิลลิเมตร (Gabion II) และ 3) หินที่มีผิวเรียบมีขนาด 50-70 มิลลิเมตร (Gabion III) ซึ่งมีอัตราส่วนความพรุนเท่ากับ 0.27, 0.30 และ 0.39 ตามลำดับ



รูปที่ 1 ผังการจัดวางอุปกรณ์การทดลอง (ชม.)


การวัดความเร็วได้ทำการวัดที่บันไดริเวณด้านเหนือน้ำ ณ ตำแหน่งก่อนที่น้ำไหลเข้าทางระบายน้ำลั่นขั้นบันได และที่บันไดริเวณท้ายน้ำ ณ ตำแหน่งที่น้ำออกจากการระบายน้ำลั่นขั้นบันได โดยทำการวัด 2 วิธี คือ 1) วัดความลึกของน้ำที่หน้าตัดการไหล และคำนวณความเร็วจากสมการ $v = \frac{Q}{Bd}$ และ 2) โดยใช้หลอดปิดต่อ และคำนวณความเร็วจากสมการ $v = c_v \sqrt{2gh_p}$ เมื่อ v คือ ความเร็ว (ม./วินาที) Q คือ อัตราไหล ($\text{ม}^3/\text{วินาที}$) B คือ ความกว้างของหน้าตัดการไหล และ d คือ ความลึกการไหล (ม.) c_v คือ สัมประสิทธิ์ปรับแก้ของเครื่องมือวัด (c_v เท่ากับ 0.98. [10]) g คือ ความเร่งเนื่องจากแรงโน้มถ่วงของโลก (ม./วินาที^2) และ h_p คือ ความสูงของน้ำในหลอดปิดต่อเหนือระดับผิวน้ำ (ม.)

3. ลักษณะทางกายภาพของการไหลในทางระบายน้ำลั่นขั้นบันได


การไหลในทางระบายน้ำลั่นขั้นบันไดแบบกล่องตากช่วยสามารถแบ่งช่วงการไหลได้ 3 แบบ เรียงตามลำดับ คือ อัตราไหลจากน้อยไปมาก เช่นเดียวกับการไหลในทางระบายน้ำลั่นขั้นบันไดแบบพื้นราบ คือ การไหลแบบ Nappe. Transition และ Skimming flow ตามลำดับ อย่างไรก็ตาม ในกรณีของทางระบายน้ำลั่นขั้นบันไดแบบกล่องตากช่วย การไหลแยกออกเป็น 2 ส่วน คือส่วนที่ไหลผ่านชั้นทินท์บริจูดูในกล่องตากช่วย (base flow) และส่วนที่ไหลบนผิวของกล่องตากช่วย (upper flow) ดังแสดงในรูปที่ 2

(f) Nappe flow

(v) Transition flow

(គ) Skimming flow

รูปที่ 2 ลักษณะการให้ผลผ่านทางระบบยาน้ำลันขันบันไดแบบกล่องตามที่ข่าย

(ก) Nappe flow (ข) Transition flow และ (ค) Skimming flow

สำหรับการไหลแบบ Nappe flow บนทางระบายน้ำล้นขันบันไดแบบกล่องตามที่ระบุไว้ น้ำจะเริ่มไหลผ่านกล่องตามที่ระบุไว้ จนถึงอัตราไหลค่าหนึ่งแล้วจึงเปลี่ยนไปเป็นการไหลแบบ Transition flow ในการไหลแบบ Nappe flow นี้ ปริมาณน้ำจะแบ่งเป็น 2 ส่วนคือส่วนที่ไหลผ่านกล่องตามที่ระบุไว้และส่วนที่ไหลบนกล่องตามที่ระบุไว้ ซึ่งส่วนที่ไหลผ่านกล่องตามที่ระบุไว้จะไหลในลักษณะเลี้ยงขันบันไดผ่านช่องว่างระหว่างหินที่บรรจุอยู่ในกล่องตามที่ระบุไว้ ส่วนที่ไหลบนกล่องตามที่ระบุไว้จะไหลแบบผิวกล้องตามที่ระบุไว้และมีการผสมของอากาศบริเวณผิวน้ำ เมื่ออัตราไหลมากขึ้นจะเริ่มเกิดน้ำกระโดดบนขันบันไดแล้วพัฒนาเข้าสู่ช่วง Transition flow ซึ่งพบว่าการไหลแบบ Transition flow บริเวณผิวน้ำจะมีการผสมของน้ำและอากาศ เกิดเป็นละอองน้ำในปริมาณที่สูงมาก และไม่สามารถกำหนดรูปแบบการไหลได้แน่นอน เพราะเป็นช่วงที่การไหลแบบ Nappe flow เปลี่ยนแปลงรูปแบบการไหลเข้าสู่การไหลแบบ Skimming flow

การไหลแบบ Skimming flow สามารถแบ่งการไหลได้ 3 ช่วงคือ 1) ช่วงน้ำไหลเข้าสู่ทางระบายน้ำล้น ซึ่งน้ำในช่วงนี้จะมีลักษณะเป็นน้ำใส (clear water) 2) ช่วงที่เป็นการไหลแบบเปลี่ยนแปลงทีละน้อย (gradually varied flow) และ 3) ช่วงที่เป็นการไหลแบบสม่ำเสมอ (uniform flow) การผลรวมของพองอากาศจะเริ่มจากจุดที่เปลี่ยนจากช่วงน้ำใสที่มีปริมาณน้ำไหลเต็มพื้นที่ภาคด้วยของ การไหลมาเป็นช่วงที่การไหลเปลี่ยนแปลงอย่างค่อยเป็นค่อยไป จด

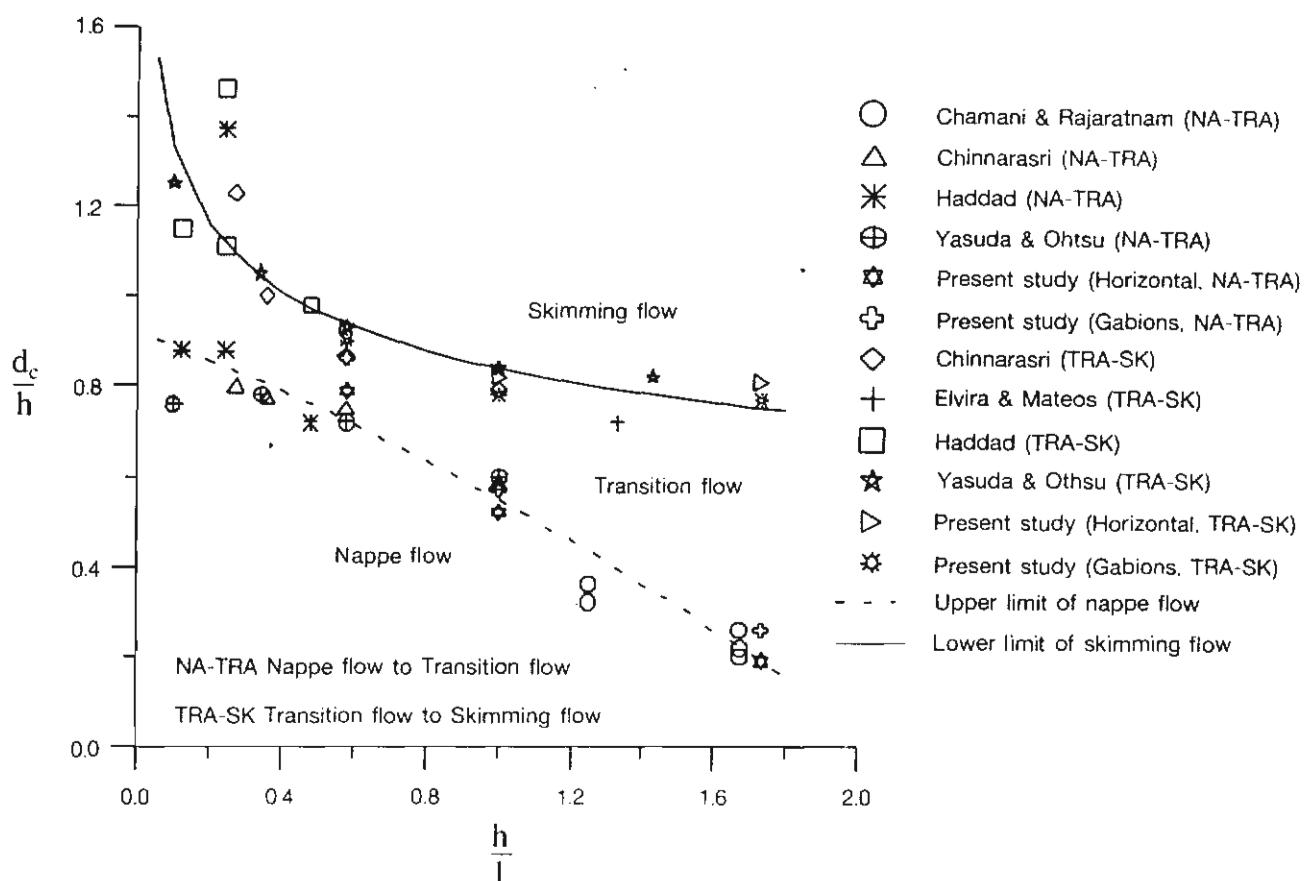
ที่เริ่มเกิดการผสมของฟองอากาศนี้ เรียกว่า “Inception point” จากการที่การไหลแบบ Skimming flow จะเกิดขึ้นเมื่ออัตราไหลสูงๆ ดังนั้นปริมาณน้ำที่ไหลผ่านกล่องด้าช้ายจึงมีสัดส่วนน้อยกว่าปริมาณน้ำที่ไหลบนกล่องด้าช้าย

สำหรับการแบ่งขอบเขตการไหลบนทางระบายน้ำลั่นขันบันได ได้มีผู้ทำการทดลองการไหลบนทางระบายน้ำลั่นขันบันไดแบบพื้นฐาน [1], [3]-[4], [11]-[16] และได้เสนอสมการไว้หลายรูปแบบดังตารางที่ 1 ซึ่งส่วนใหญ่จะวิเคราะห์และนำเสนอความสัมพันธ์ระหว่าง d_c/h กับ h/l เมื่อ d_c คือ ความลึกวิกฤติของการไหล (ม.) h คือ ความสูงของขันบันได (ม.) และ l คือ ความยาวของขันบันได (ม.)

ในการทดลองครั้งนี้ได้เสนอกราฟแสดงความสัมพันธ์ระหว่าง d_c/h กับ h/l จากผลการทดลองในครั้งนี้รวมกับผลการศึกษาของผู้อื่นซึ่งเป็นทางระบายน้ำลั่นขันบันไดแบบพื้นฐานดังรูปที่ 3 ซึ่งพบว่าการแบ่งขอบเขตการไหลของทั้งทางระบายน้ำลั่นขันบันไดแบบพื้นฐานและทางระบายน้ำลั่นขันไดแบบกล่องด้าช้าย สามารถใช้เกณฑ์เดียวกันได้โดยชิดจำากัดบนของกราฟแบบ Nappe flow และชิดจำากัดล่างของกราฟแบบ Skimming flow เป็นไปตามสมการที่ (1) และ (2) ตามลำดับ

$$\frac{d_c}{h} = 0.92 - 0.30 \left(\frac{h}{l} \right) - 0.07 \left(\frac{h}{l} \right)^2 \quad (1)$$

$$\frac{d_c}{h} = 0.84 \left(\frac{h}{l} \right)^{-0.20} \quad (2)$$


เมื่อ d_c คือ ความลึกวิกฤติของการไหล (ม.)

h คือ ความสูงของขันบันได (ม.)

l คือ ความยาวของขันบันได (ม.)

ตารางที่ 1 สมการเมื่อการเปลี่ยนรูปแบบการไหลของการไหลผ่านทางระบายน้ำล้นขันบันได

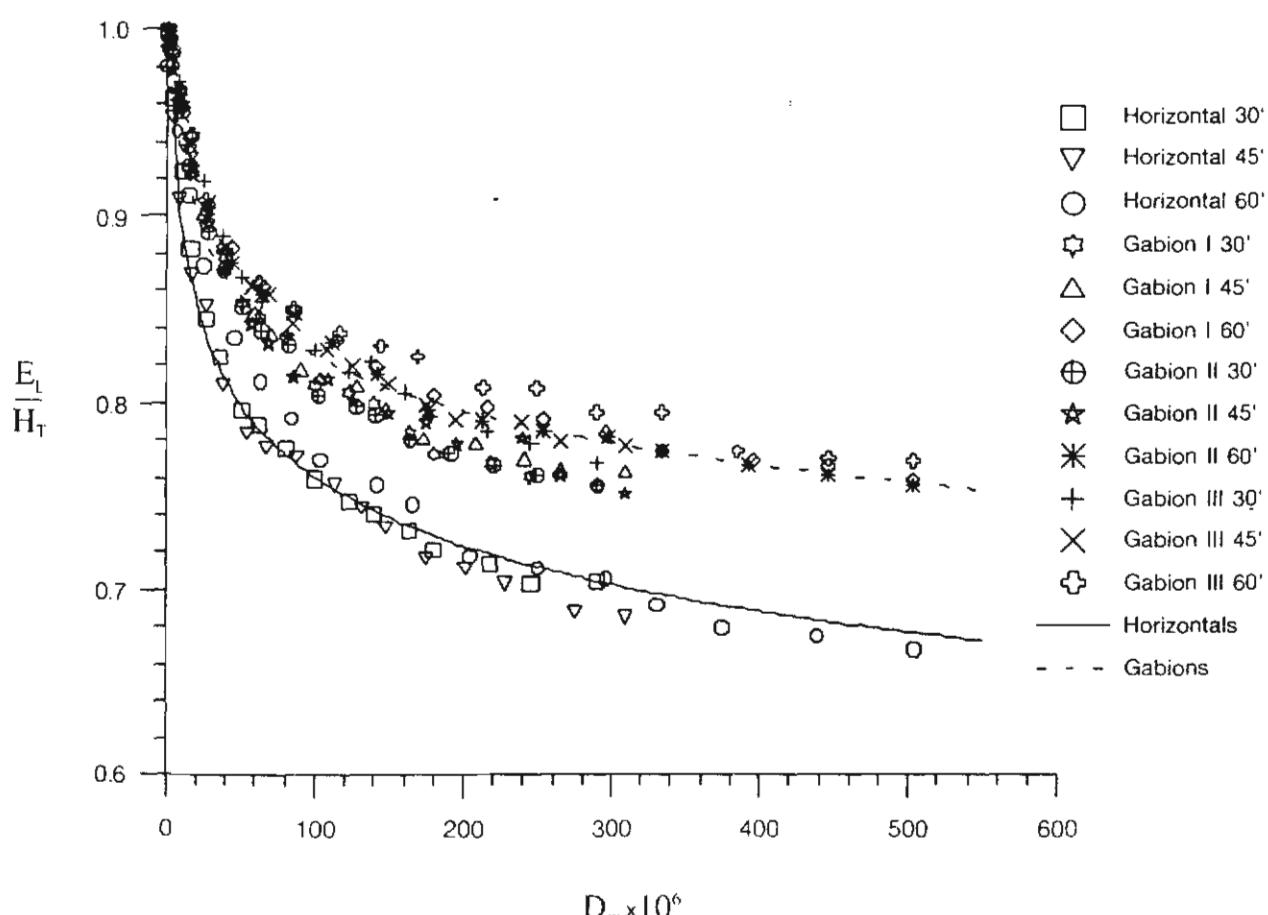
ผู้ศึกษา	สมการ	หมายเหตุ
● ขีดจำกัดบนของการไหลแบบ Nappe flow		
Chanson (1995) [11]	$\frac{d_c}{h} \leq 0.092 \left(\frac{h}{l}\right)^{-1.276}$	แบ่งภาวะการไหลแบบ Nappe flow ที่มีการกระโจนของน้ำ
Yasuda และ Ohtsu (1999) [12]	$\frac{d_c}{h} = \left(1.4 - \frac{h}{l}\right)^{0.26}$	-
Chanson (2001) [3]	$\frac{d_c}{h} = 0.89 - 0.4 \left(\frac{h}{l}\right)$	$0.5 < h/l \leq 1.7$ ความแม่นยำ $\pm 10\%$
Chinnarasri (2002) [4]	$\frac{d_c}{h} = 0.80 (0.55)^{h/l}$	$0.4 < h/l \leq 5.0$
● ขีดจำกัดล่างของการไหลแบบ Skimming flow		
Chanson (1994) [1]	$\frac{d_c}{h} = 1.057 - 0.465 \left(\frac{h}{l}\right)$	-
Mondardo และ Fabiani (1995) [13]	$\frac{d_c}{h} = 1.195 - 0.595 \left(\frac{h}{l}\right)$	สำหรับขันบันไดที่ก่อสร้างด้วย คอนกรีตหรือหิน
Chanson (1996) [14]	$\frac{(d_c)_{onset}}{h} = \frac{Fr_b^{2/3} \sqrt{1 + \frac{1}{Fr_b^2}}}{\sqrt{1 + 2Fr_b^{2/3} \left(1 + \frac{1}{Fr_b^2}\right)^{3/2} \left(1 - \frac{\cos\alpha_b}{1 + \frac{1}{Fr_b^2}}\right)}}$	ไดจากการวิเคราะห์ทางทฤษฎีของ การไหลตกอิสระ เมื่อ Fr_b เป็น Froude number ที่มุ่ง ของขันบันได และ α_b เป็นมุมของ การไหลผ่านมุ่งขันบันได (องศา)
James et al. (1999) [15]	$\frac{d_c}{h} = 0.541 \left(\frac{h}{l}\right)^{-1.07}$	$h/l \geq 0.3$
Yasuda และ Ohtsu (1999) [12]	$\frac{d_c}{h} = 0.862 \left(\frac{h}{l}\right)^{-0.165}$	-
Tatewar และ Ingle (1996) [16]	$\frac{d_c}{h} = -0.120 \left(\frac{h}{l}\right) - 0.004 \theta + 0.888$	สำหรับขันบันไดแบบพื้นเอียง $0.4 < h/l \leq 0.85$ เมื่อ θ เป็นมุมเอียง ของพื้นรองขันบันได
Chanson (2001) [3]	$\frac{d_c}{h} = 1.20 - 0.325 \left(\frac{h}{l}\right)$	$0.5 < h/l \leq 1.7$ ความแม่นยำ $\pm 10\%$
Chinnarasri (2002) [4]	$\frac{d_c}{h} = 0.80 \left(\frac{h}{l}\right)^{-0.22}$	$0.4 < h/l \leq 5.0$

รูปที่ 3 ขอบเขตการจำแนกประเภทของการไหลบนทางระบายน้ำล้นขันบันได

4. การ слایพลังงานและความเร็วทางด้านท้ายน้ำ

ในการศึกษารั้งนี้ได้หาความสัมพันธ์ระหว่างการ слัยพลังงานและความเร็วด้านท้ายน้ำกับตัวแปรที่สำคัญที่มีบทบาทต่อลักษณะการไหลผ่านทางระบายน้ำล้นขันบันไดแบบกล่องดาวข่าย โดยได้ใช้วิธีการวิเคราะห์มิติของ Buckingham-π สามารถสรุปความสัมพันธ์ของตัวแปรไว้ได้ดังนี้

$$\text{การ слัยพลังงาน} : \frac{E_L}{H_T} = f_1 \left(\frac{q^2}{qH_T^3}, \frac{D}{h}, \alpha \right) \quad (3)$$


$$\text{ความเร็วทางด้านท้ายน้ำ} : \frac{V_T}{\sqrt{gH_T}} = f_1 \left(\frac{q^2}{qH_T^3}, \frac{D}{h}, \alpha \right) \quad (4)$$

เมื่อ E_L คือ การสูญเสียพลังงาน (ม.) H_T คือ ความสูงทั้งหมดของทางระบายน้ำล้นขันบันได (ม.) q คือ อัตราไหลต่อหนึ่งหน่วยความกว้าง ($\text{ม.}^3/\text{วินาที}/\text{ม.}$) V_T คือ ความเร็วทางด้านท้ายน้ำ (ม./วินาที) h คือ ความสูงของขันบันได (ม.) D คือ ขนาดของหิน (ม.) g คือ ความเร่งเนื่องจากแรงโน้มถ่วงของโลก (ม./วินาที^2) α คือ ความ

ลดดัชนีของทางระบายน้ำล้น $\frac{E_L}{H_T}$ คืออัตราส่วนการสลายพลังงานต่อความสูงรวมของทางระบายน้ำล้น $\frac{q^2}{gH_T^3}$ เรียกว่า Spillway drop number และ $\frac{D}{h}$ หมายถึงอัตราส่วนของขนาดหินต่อความสูงขั้นบันได

จากการศึกษาพบว่า อิทธิพลของความลาดเอียงของร่างมีผลอย่างมากต่อการสลายพลังงานของการไหลบนทางระบายน้ำล้นขั้นบันไดทั้งแบบพื้นราบและแบบกอลองดาวข่าย โดยที่ค่า Spillway drop number เท่ากัน 朗 ที่มีความลาดชันน้อยกว่าสามารถสลายพลังงานได้ในอัตราที่สูงกว่า朗 ที่มีความลาดชันมากกว่า และที่朗 เดียวกัน การสูญเสียพลังงานจะเพิ่มมากขึ้นเมื่อ Spillway drop number ลดลง จากการที่ความลาดเอียงของร่างมีอิทธิพลอย่างมากกับการสลายพลังงาน ดังนั้นในการศึกษาครั้งนี้จึงได้นำค่า $(h/l)^2$ มาคูณเข้ากับ Spillway drop number แล้วเรียกใหม่ว่าเป็น Modified drop number ($D_M = [(h/l)^2(q^2/gH_T^3)]$) ซึ่งทำให้ความสัมพันธ์ระหว่างสัดส่วนส่วนการสูญเสียพลังงานกับ Modified drop number ของทุกความชันของ朗 เป็นเส้นโค้งต่อเนื่องกัน

การเปรียบเทียบ การสูญเสียพลังงานในการไหลผ่านทางระบายน้ำล้นขั้นบันไดแบบพื้นราบกับทางระบายน้ำล้นขั้นบันไดแบบกอลองดาวข่าย แสดงในรูปที่ 4

รูปที่ 4 ความสัมพันธ์ระหว่างปริมาณการสูญเสียพลังงานและ Modified drop number

จากผลการศึกษาพบว่า ในช่วงที่เป็นการไหลแบบ Nappe flow การสลายพลังงานจะเกิดขึ้นมากเนื่องจากมวลน้ำไหลลงมากระแทกกับชั้นบันได และการเกิดกระโดดของน้ำในบางส่วนของชั้นบันได สำหรับการไหลแบบ Skimming flow ซึ่งกระแสน้ำจะแตะสัมผัสถกับปลายชั้นบันไดในช่วงเวลาสั้นๆ ผิวสัมผัสระหว่างไหลกับปลายชั้นบันไดมีน้อย การสลายพลังงานที่เพิ่มขึ้นมาเกิดจากแรงเสียดทานของการไหล และการไหลวนของกระแสน้ำในช่องว่างระหว่างชั้นบันได

จะเห็นได้ว่าการสลายพลังงานของทางระบายน้ำล้นชั้นบันไดแบบกล่องตาก่อน จะสลายพลังงานได้มากกว่าทางระบายน้ำล้นชั้นบันไดแบบพื้นราบทุกค่าของ Modified drop number ($D_M = [(h/l)^2(q^2/gH_T^3)]$) โดยมีประสิทธิภาพในการสลายพลังงานมากกว่าทางระบายน้ำล้นชั้นบันไดแบบพื้นราบประมาณร้อยละ 10 จากการทดลองสามารถสรุปความสัมพันธ์ของการสลายพลังงาน กับค่า Modified drop number ดังสมการที่ (5) และ (6)

สำหรับทางระบายน้ำล้นชั้นบันไดแบบพื้นราบ

$$\frac{E_L}{H_T} = 0.392 D_M^{-0.072} \quad (5)$$

สำหรับทางระบายน้ำล้นชั้นบันไดแบบกล่องตาก่อน

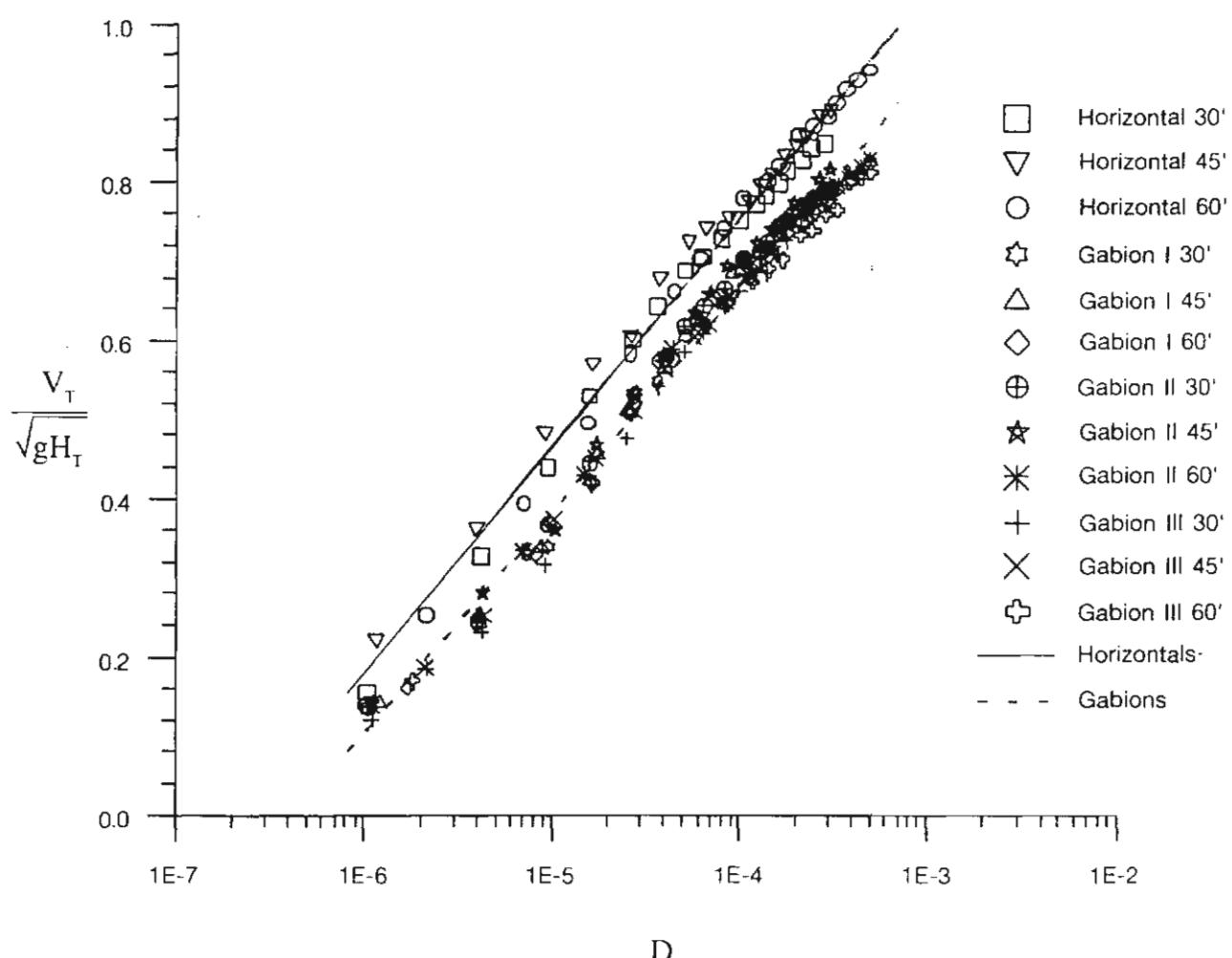
$$\frac{E_L}{H_T} = 0.502 D_M^{-0.054} \quad (6)$$

เนื่องจากการไหลในทางระบายน้ำล้นชั้นบันไดแบบกล่องตาก่อนการไหลจะแบ่งเป็น 2 ส่วน คือ ส่วนที่ไหลผ่านกล่องตาก่อนและส่วนที่ไหลบนกล่องตาก่อน เมื่ออัตราไหลน้อยจะเป็นการไหลผ่านกล่องตาก่อนทั้งหมด จะเห็นได้ว่าพลังงานการไหลจะถูกสลายไปได้เกือบทั้งหมด โดยดูได้จากสัดส่วน E_L/H_T ที่เข้าใกล้ศูนย์ เมื่ออัตราไหลมากขึ้นจะพบการไหลส่วนที่ไหลบนกล่องตาก่อน โดยปริมาณน้ำที่ไหลตกกระแทกผิวนกล่องตาก่อนจะถูกกล่องตาก่อนที่มีความพรุน (porosity) ช่วยในการดูดซับพลังงานอีกส่วนหนึ่งด้วย

เมื่อพิจารณาถึงอิทธิพลของขนาดหินที่บรรจุในกล่องตาก่อน พบร่วมกับทุกความลาดชันของร่อง หินผิวชุ่มร้อนขนาดใหญ่จะช่วยสลายพลังงานของการไหลได้ดีกว่าหินผิวชุ่มขนาดเล็กและหินผิวกลมมนตามลำดับ เมื่อเปรียบเทียบจากขนาดของหิน พบร่วมกับหินที่มีขนาดใหญ่กว่าสามารถสลายพลังงานได้มากกว่าหินที่มีขนาดเล็กกว่าประมาณร้อยละ 2 ถึง 3 หั้นนี้อาจเป็นเพราะหินขนาดใหญ่มีปริมาณช่องว่างระหว่างก้อนหินที่มากกว่า การไหลผ่านกล่องตาก่อนจะมีปริมาณมากกว่า และจากเหตุผลที่ว่า การสลายพลังงานในส่วนของการไหลผ่านกล่องตาก่อนสามารถสลายพลังงานได้เกือบทั้งหมด สำหรับหินชนิดเดียวที่หินที่มีขนาดใหญ่กว่าจะสามารถสลายพลังงานได้มากกว่า และเมื่อเปรียบเทียบระหว่างหินต่างชนิดกัน พบร่วมกับหินที่มีผิวชุ่มร้อน (crushed) สามารถสลายพลังงานได้มากกว่า หินที่มีผิวกลมมน (rounded) ประมาณร้อยละ 1 ถึง 2

ความสัมพันธ์ระหว่างความเร็วที่ปล่อยทางออกของทางระบายน้ำล้นชั้นบันไดกับค่า Modified drop number (D_M) ของทุกลักษณะการไหลมีลักษณะเป็นเส้นตรงต่อเนื่อง ดังรูปที่ 5 จะเห็นได้ว่า ความเร็วที่ปล่อยทางออกของทางระบายน้ำล้นชั้นบันไดแบบกล่องตาก่อนน้อยกว่าของทางระบายน้ำล้นชั้นบันไดแบบพื้นราบทุกค่าของ Modified

drop number ซึ่งสอดคล้องกับการที่การถ่ายพลงงานในการโหลดผ่านทางระบายน้ำลั่นขันบันไดแบบกล่องตามข่าย มีมากกว่าการโหลดผ่านทางระบายน้ำลั่นขันบันไดแบบพื้นราบ


จากการเปรียบเทียบระหว่างทางระบายน้ำลั่นขันบันไดแบบพื้นราบกับทางระบายน้ำลั่นขันบันไดแบบกล่องตามข่าย พนวจทางระบายน้ำลั่นขันบันไดแบบกล่องตามข่ายสามารถลดความเร็วทางด้านท้ายน้ำลงได้ประมาณร้อยละ 14 ของทางระบายน้ำลั่นขันบันไดแบบพื้นราบ ซึ่งสามารถถหาสมการตัวแทนได้ดังสมการที่ (7) และ (8)

สำหรับทางระบายน้ำลั่นขันบันไดแบบพื้นราบ

$$\frac{V_T}{\sqrt{gH_T}} = 0.124 \ln D_m + 1.901 \quad (7)$$

สำหรับทางระบายน้ำลั่นขันบันไดแบบกล่องตามข่าย

$$\frac{V_T}{\sqrt{gH_T}} = 0.121 \ln D_m + 1.777 \quad (8)$$

รูปที่ 5 ความสัมพันธ์ระหว่างความเร็วทางด้านท้ายน้ำและ Modified drop number

5. สรุปผลการวิจัย

จากการทดลองสามารถสรุปผลได้ว่า การไหลที่เกิดขึ้นบนทางระบายน้ำลันขั้นบันไดแบบก่อต่องตาข่ายและแบบพื้นราบแบ่งออกได้เป็น 3 แบบคือ Nappe flow, Transition flow และ Skimming flow ซึ่งการแบ่งขอบเขตของการไหลแสดงได้ด้วยตัวเลขอัตราส่วนของความลึกกับดูดต่อความสูงขั้นบันได (d_s/h) โดยที่สมการแสดงชี้ว่าจำกัดบนของการไหลแบบ Nappe flow และขึ้นจำกัดล่างของการไหลแบบ Skimming flow แสดงไว้ดังสมการที่ 1 และ 2

การสลายพลังงาน (E_L/H_T) ของทางระบายน้ำลั่นขันบันไดแบบกล่องตัวช่วยสามารถสลายพลังงานได้มากกว่าทางระบายน้ำลั่นขันบันไดแบบพื้นราบประมาณร้อยละ 10 โดยที่การสลายพลังงานจะเพิ่มมากขึ้นเมื่อ Modified drop number ($D_M = [(h/l)^2(q^2/gH_T^3)]$) ลดลง และที่ Modified drop number เท่ากัน ทางระบายน้ำลั่นที่มีความลาดชันน้อยกว่าสามารถสลายพลังงานได้มากกว่า ในขณะที่ความเร็วที่ปลายทางออกของทางระบายน้ำลั่นขันบันได จะเพิ่มมากขึ้นเมื่อความลาดชันของรางเพิ่มมากขึ้น โดยที่ทางระบายน้ำลั่นขันบันไดแบบกล่องตัวช่วยสามารถลดความเร็ว ($V_T/(gH_T)^{0.5}$) ได้ประมาณร้อยละ 14 เมื่อเปรียบเทียบกับทางระบายน้ำลั่นขันบันไดแบบพื้นราบ

6. กิตติกรรมประกาศ

ผู้เขียนขอขอบคุณ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี ทบวงมหาวิทยาลัย และสำนักงานกองทุนสนับสนุนการวิจัย ที่ได้สนับสนุนเงินทุนบางส่วนในการวิจัยครั้งนี้

7. เอกสารอ้างอิง

1. Chanson, H., 1994, "Hydraulics of Skimming Flow over Stepped Channels and Spillways". *Journal of Hydraulic Research, IAHR*, Vol. 32, No. 3, pp. 445-460.
 2. อุดมศักดิ์ อิศรารงษ์ ณ อุยธยา และ ชัยยุทธ ชินณะราศรี, 2535, "การสูญเสียพลังงานการไหลในร่างขั้นบันได", การประชุมใหญ่ทางวิชาการประจำปี วิศวกรรมสถานแห่งประเทศไทยในพระบรมราชูปถัมภ์, 26-29 พฤศจิกายน, กรุงเทพฯ, หน้า 209-221.
 3. Chanson, H., 2001, "Hydraulics Design of Stepped Spillway and Downstream Energy Dissipators", *Dam Engineering*, Vol. 11, No. 4, pp. 205-242.
 4. Chinnarasri, C., 2002, "Assessing the Flow Resistance of Skimming Flow on the Step Faces of Stepped Spillways", *Dam Engineering*, Vol. 12, No. 4, pp. 303-321.
 5. Frizell, K.H., 1992, "Hydraulics of Stepped Spillways for RCC Dams and Dam Rehabilitations", *Proceeding of the 3rd Specialty Conference on Roller Compacted Concrete*, ASCE, San Diego CA, pp. 423-439.

6. Sorensen, R.M., 1985, "Stepped Spillway Hydraulics Model Investigation", *Journal of Hydraulic Engineering, ASCE*, Vol. 111, No. 12, pp. 1461-1472.
7. Peyras, L., Royet, P., and Degoutte, G., 1992, "Flow and Energy Dissipation over Stepped Gabion Weirs", *Journal of Hydraulic Engineering, ASCE*, Vol. 118, No. 5, pp. 707-717.
8. Stephenson, D., 1979, "Gabion Energy Dissipators", *Proceeding of the 13th ICOLD Congress*, New Delhi, Q. 50, R. 3, pp. 33-43.
9. Bos, M.G., 1976. "Discharge Measurement Structures", *International Institute for Land Reclamation and Improvement*, Wageningen, The Netherlands, pp. 23-32.
10. Linsley, R.K., 1992, *Water Resources Engineering*, McGraw-Hill, New York, pp. 361-364.
11. Chanson, H., 1995, *Hydraulics Design of Stepped Cascades, Channel, Weirs and Spillways*, Pergamon, Oxford, UK, 292 p.
12. Yasuda, Y. and Ohtsu, I., 1999, "Flow Resistance of Skimming Flow in Stepped Channels". *Proceedings of the 28th International Association for Hydraulic Research (IAHR)-Congress*, Graz, Austria.
13. Mandardo, J. M. and Fabiani, A.L., 1995, "Comparison of Energy Dissipation between Nappe and Skimming Flow Regimes on Stepped Chutes", *Journal of Hydraulic Research, IAHR*, Vol. 33, No.1 pp.119-122.
14. Chanson, H., 1996, "Prediction of the Transition Nappe/Skimming Flow on a Stepped Channel", *Journal of Hydraulic Research, IAHR*, Vol. 34, No. 3, pp. 421-429.
15. James, C.S., Comninou, M., and Palmer, M.W., 1999, "Effects of Slope and Step Size on the Hydraulics of Stepped Chutes", *Journal of South African Institute of Civil Engineering*, Vol. 41, No. 2, pp. 1-6.
16. Tatewar, S.P. and Ingle, R.N., 1999, "Nappe Flow on Inclined Stepped Spillways", *Journal of Institute of Engineering*, India, Vol. 79, No. 2, pp. 175-179.
17. Haddad, A.A., 1998, *Water Flow over Stepped Spillway*, Master of Engineering Thesis, Polytechnic of Bari, Italy.
18. Chamani, M.R. and Rajaratnam, N., 1999, "Onset of Skimming Flow on Stepped Spillway", *Journal of Hydraulic Engineering, ASCE*, Vol. 125, No. 9, pp. 969-971.
19. Elviro, V. and Mateos, C., 1995, "Spanish Research into Stepped Spillways", *International Journal on Hydropower & Dams*, Vol. 2, No. 5, pp. 61-65.

ภาคผนวก ข5

สำเนาบทความเรื่อง Energy Dissipation on Stepped Spillways with End Sill,
The 4th Regional Symposium on Infrastructure Development in Civil
Engineering (RSID4), Bangkok, Thailand, April 3-5, pp. B6-9-B6-16

ENERGY DISSIPATION ON STEPPED SPILLWAYS WITH END SILL

Chaiyuth Chinnarasri, Udomsak Israngkura, Thodsapol Chaturabul

Water Resources Engineering Research Lab. (WAREE)

Department of Civil Engineering, King Mongkut's University of Technology Thonburi

Bangmod, Bangkok 10140, THAILAND

E-mail: Chaiyuth.chi@kmutt.ac.th

ABSTRACT

This paper presents the results of the experimental studies on the energy loss through the stepped spillways with end sill. The slopes of the spillways are 30° , 45° , and 60° , with total drop height 1.50, 2.12, and 2.60 m, respectively. The height of the end sill varies from 0 – 20% of the height of the step. As observed, the flow regime on a stepped spillway can be either a nappe flow or skimming flow regime. Nappe flow occurs at relatively small discharge whereas at larger discharge skimming flow is found. Based on dimensional analysis, the important parameters are analyzed and the relevant dimensionless parameters are formed. It is found that the energy loss is strongly influenced by the spillway drop number and the slope of the stepped spillways. As the spillway drop number increases the energy loss decreases. In addition, at the same spillway drop number the energy loss in the milder slope is greater than that in the steeper one.

KEYWORDS: Energy dissipation, stepped spillways, end sill

INTRODUCTION

Stepped spillway is an energy dissipator having profile made up of steps. These steps significantly increase the rate of energy dissipation of the flow on the spillway face. Therefore, the size of the energy dissipation basin at the spillway toe can greatly be reduced.

The first comprehensive work on stepped channels was made by Essery and Hornor (1978) and a numerous graphs useful for design were provided. A number of experimental studies on energy dissipation by stepped spillways were made (Sorensen, 1985, Rajaratnam, 1990, Diez-Cascon et al., 1991, Stephenson, 1991, Peyras et al., 1992, Christodoulou, 1993, Israngkura and Chinnarasri, 1994, and Pegram et al., 1999.)

For a given chute geometry, the flow pattern may be either nappe flow at low flow rates, transition for intermediate discharge or skimming flow at larger flow rates. In the nappe flow regime, the flow from each step hits the step below as a falling jet. The energy dissipation is caused by the impact of the nappe on the step surface and by the turbulence created by dispersal of the nappe. A comparative study of energy dissipation between nappe and skimming flow regimes on stepped chutes was made by Chanson (1994) and equations for estimating the energy loss of both nappe and skimming flow were introduced.

In the skimming flow regime, the water flow down the stepped face as a coherent stream skimming over the step lips and cushioned by the recirculating fluid trapped between them. Air entrainment generally occurs and enhances the flow turbulence. The energy dissipation appears to be resulted mainly from the momentum transfer from the air entrained stream to the recirculating fluid trapped underneath.

It was reported by Chinnarasri (2002) that the nappe flow would occur when

$$\frac{d_c}{h} \leq 0.98(0.55)^{\frac{h}{l}} \quad (1)$$

and the skimming flow would occur when

$$\frac{d_c}{h} \geq 0.80 \left(\frac{h}{l} \right)^{-0.22} \quad (2)$$

where d_c is the critical depth, h is the step height, and l is the step length. Generally, relative energy loss may be calculated based on the flow depths or flow velocities and it was not less than about 40%. This information may be applied to determine the proper dimensions of a stepped spillway and its energy dissipator to accommodate the design flow rate.

An experimental study on the energy dissipation comparison among the stepped channel, drop, and block ramp structures was reported by Peruginelli and Pagliara (2000). For the case of stepped channels different step types were used: plain steel steps, rough steps, and plain step with end sills of 0.025×0.025 m. The total drop height was 1.574 m with channel slope of 1V:2H. It was found that the presence of the end sill increases the energy dissipation process about 0 – 4 % for the case of nappe flow but the rate of energy dissipation of both nappe and skimming flow was not mentioned.

As the knowledge of how much the stepped spillway with end sill increases the energy dissipation is still limited, therefore, it is the objective of this study to investigate through experiments on the rate of energy dissipation of flow through the stepped spillways with varied height of end sill.

DIMENSIONAL ANALYSIS

In any flow regime, the energy loss through a stepped spillway E_L depends on the discharge per unit width of spillway q , the spillway drop height H_T , the step height h , the end sill height a , the slope of the spillway α , and the gravitation acceleration g . These variables are shown in Fig. 1. They could be expressed functionally as:

$$E_L = f_1[q, H_T, h, a, \alpha, g] \quad (3)$$

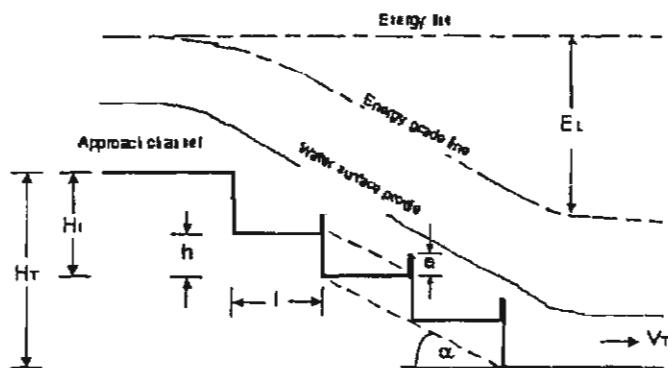
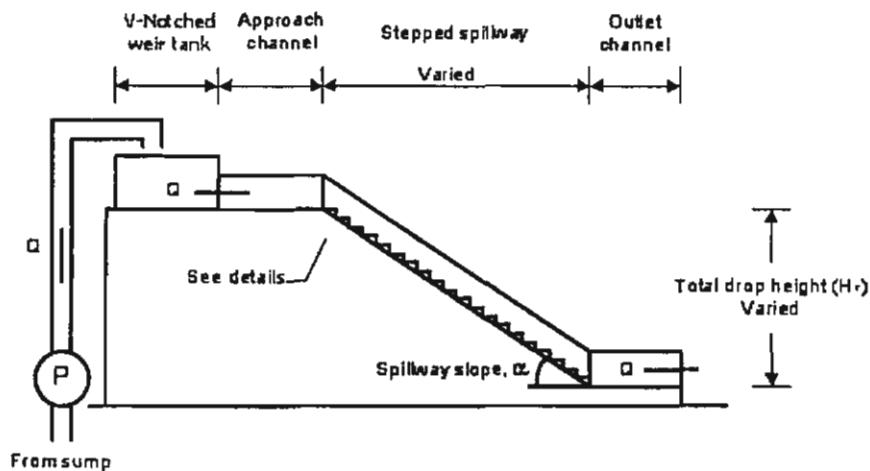


Fig. 1 Variables in dimensional analysis

Using Buckingham Pi theory, the variables in Equation (3) can be expressed in non-dimensional form as:

$$\frac{E_L}{H_T} = f_2 \left[\frac{q^2}{gH_T^3}, \frac{H_T}{h}, \frac{a}{h}, \alpha \right] \quad (4)$$


Similarly, the remaining kinetic energy at the spillway outlet can be expressed in dimensionless velocity ratio as:

$$\frac{V_T}{\sqrt{gH_T}} = f_3 \left[\frac{q^2}{gH_T^3}, \frac{H_T}{h}, \frac{a}{h}, \alpha \right] \quad (5)$$

where V_T is the flow velocity at the spillway outlet. The dimensionless term $q^2/(gH_T^3)$ is named as "Spillway Drop Number", the ratio H_T/h is actually the number of steps in the spillway, and the ratio a/h is the relative height of end sill.

EXPERIMENTS

The experimental setup is as shown in Fig. 2. Water was pumped from a laboratory sump to the V-Notched weir tank from which water entered the stepped spillway through an approach channel. At the bottom of the stepped channel, a horizontal outlet conveyed the water back to the sump. The discharge, measured by the V-Notched weir tank, was varied from 4 – 68 l/s.

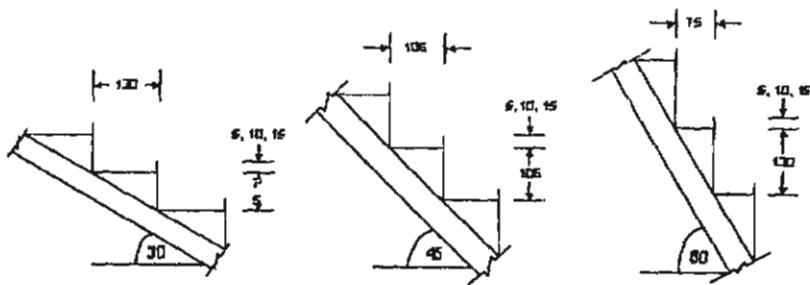


Fig. 3 Step dimension in millimeters

The measurements of depth and velocities in the spillway outlet were made at about 3-4 times of the step length away from the lowest step face where turbulence and air entrainment effect became less violent. The depths across the chute width were measured by a vernier-depth gauge. The velocities were measured by two methods, first by a pitot tube and second by dividing the flow rate by the measured flow area. The values obtained were within 10% differences. In calculating the energy loss the velocity obtained from the first method was used.

The depths in the chute were measured vertically from the step tips to the water surface by a vernier-depth gauge and by a scale attached on the side wall at each step. For conditions where skimming flow occurred, these depth included air entrainment effects. For nappe flow condition, the flow normally appeared as a free jet falling from upper step to hit on the adjacent lower step successively but at some locations the jet went far beyond the adjacent lower step. The depths as measured by this method thus indicated the upper nappe profiles or the apparent water surface profiles instead of the true depth of flow.

RESULTS AND DISCUSSION

The appearances of nappe flow (NF) and skimming flow (SF) in the experiments are as shown in Fig. 4. The relationships between the energy loss ratio E_L/H_T and the spillway drop number q^2/gH_T^3 at different spillway slope α and different end sill height ratios a/h are shown in Fig. 5.

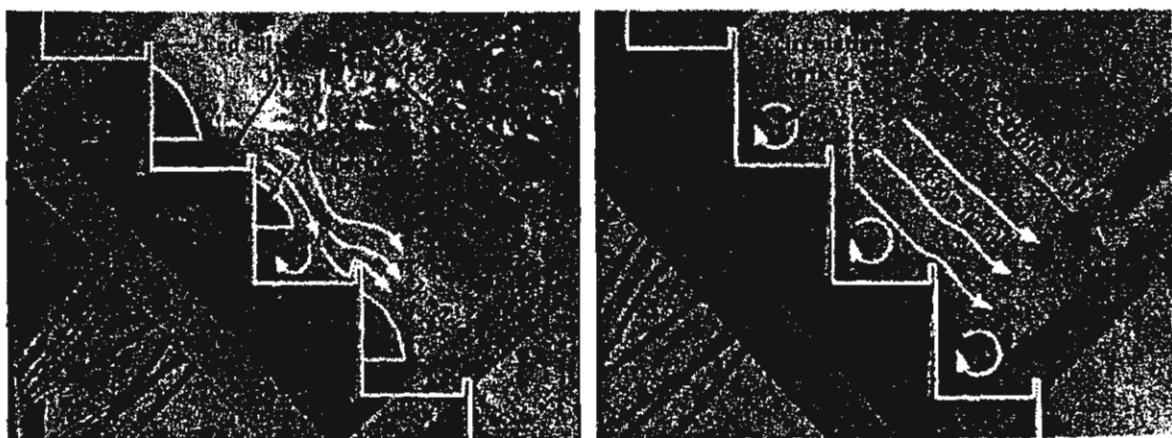


Fig. 4 Nappe flow (left) and skimming flow (right) on stepped spillway with end sill

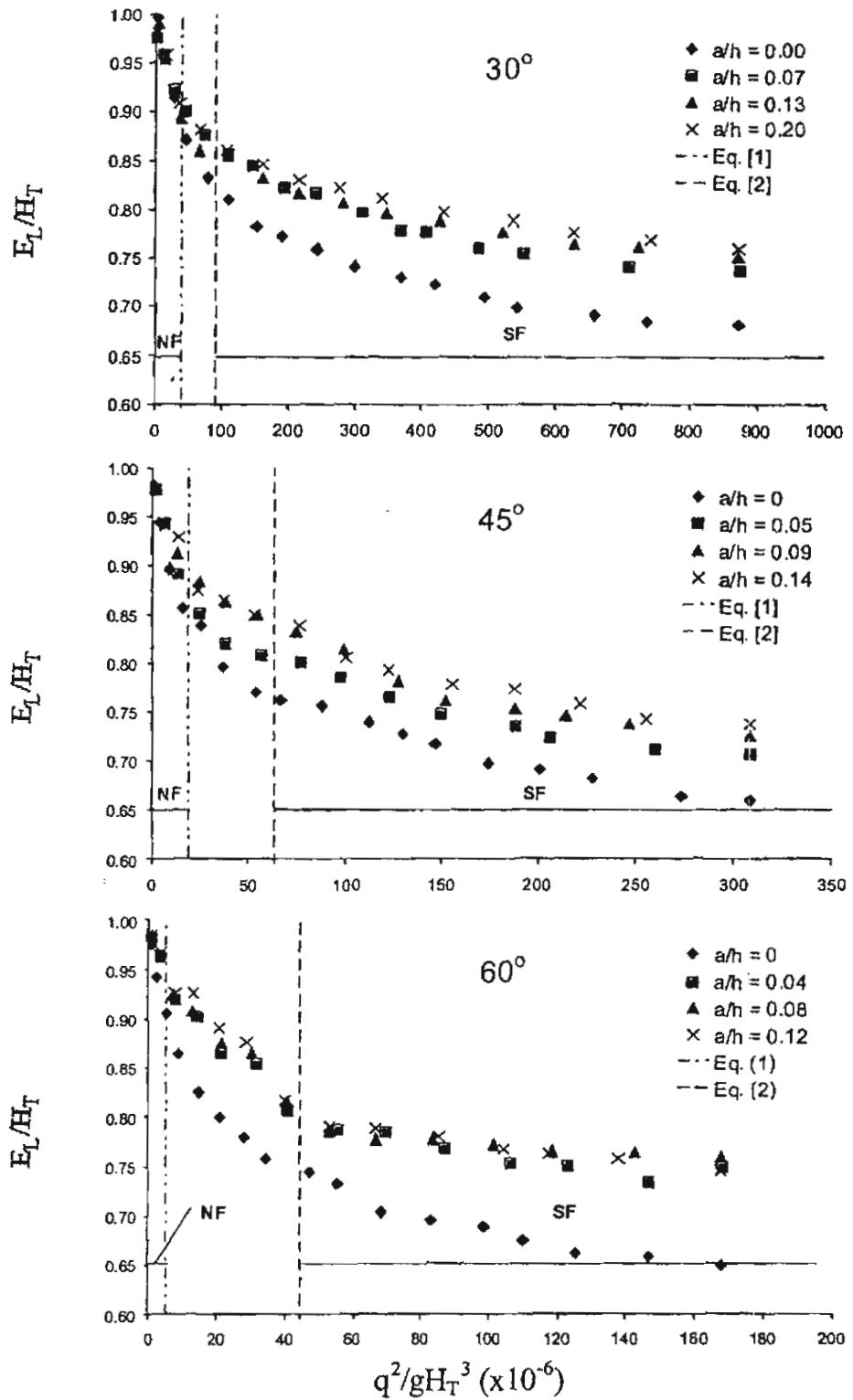


Fig. 5 Relationship between energy dissipation on stepped spillway with end sill and spillway drop number

It could be seen that in every case the energy loss ratio decreases as the spillway drop number increases. According to the criteria for nappe flow and skimming flow regimes on plain bed stepped spillways as proposed by Chinmarasri (2002), it could be observed that the variations of E_L/H_T with q^2/gH_T^3 in different flow regimes are distinctively different.

In the nappe flow regime where the spillway drop number is very low, E_L/H_T decreases rapidly as q^2/gH_T^3 increases and the ratio a/h has very little effects upon E_L/H_T especially for the spillway of milder slope. The presence of the end sill increases the energy dissipation less than 3 %. As most of the flow energy is dissipated due to jet breakup and jet mixing on the step and the formation of hydraulic jump on the step. However, it is observed that the appearance of end sill is not much influence to the characteristics of jet and hydraulic jump on the step.

In the skimming flow regime, E_L/H_T gradually decreases toward a constant value as q^2/gH_T^3 increases. In this regime the effect of a/h on E_L/H_T can evidently be observed that the higher a/h produced the greater E_L/H_T . The presence of the end sill increases the energy dissipation about 8 %. It is due to the fact that as a/h increases, the recirculation vortices are well trapped on the spillway steps. They are more stable than those in the smaller a/h ratio. More energy is therefore required to maintain these stable recirculation vortices.

As for the effect of spillway slope, it could be observed that at the same value of a/h and the same q^2/gH_T^3 , the milder slope spillway produced greater energy loss. At the highest q^2/gH_T^3 being observed which skimming flow was fully established, the value of E_L/H_T for $a/h = 0$ (no sill) to $a/h = 0.20$ for 30° slope varied from 0.67 to 0.76 while at 45° and 60° slopes this ratio varied from 0.66 to 0.74 and from 0.68 to 0.77 respectively.

The relationships between the kinetic energy at the spillway outlet $V_T/(gH_T)^{0.5}$ and the spillway drop number q^2/gH_T^3 are as shown in Fig. 6. The region of nappe flow and skimming flow regimes are presented based on the spillway drop number corresponding to Fig. 5. The kinetic energy ratio increases almost linearly with q^2/gH_T^3 and agrees reasonably well with the variation of E_L/H_T with q^2/gH_T^3 . As the energy loss decreases when q^2/gH_T^3 increases, the remaining kinetic energy at the spillway outlet increases.

In the nappe flow regime, the kinetic energy at the spillway outlet for all cases are small and they are almost the same because most of the flow energy are dissipated along the stepped spillway. In the skimming flow regime, the kinetic energy at the spillway outlet for the presence of the end sill is less than that for the plain stepped spillway because more flow energy is dissipated.

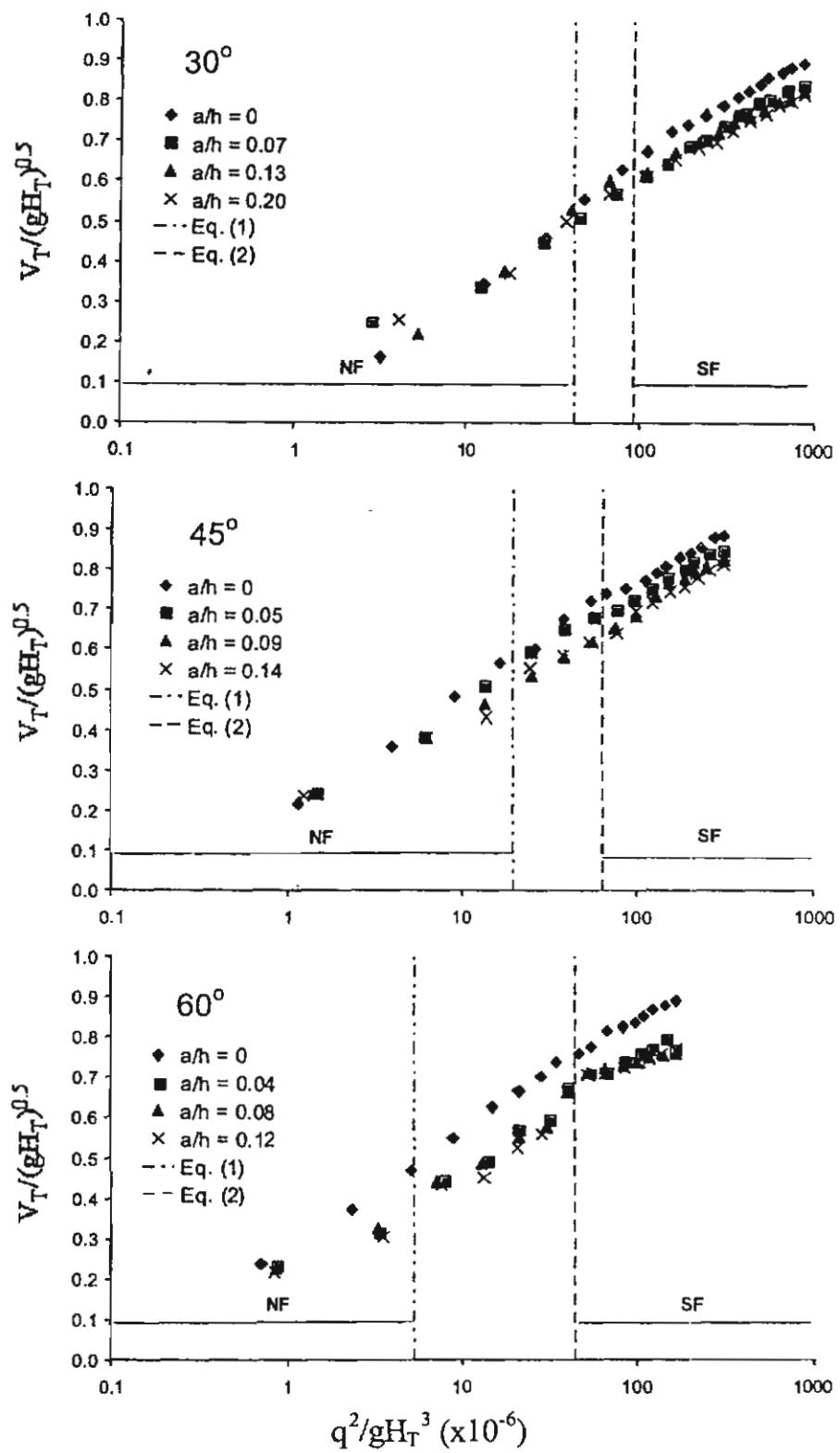


Fig. 6 Flow velocity at spillway outlet

CONCLUSIONS

The conclusions from this investigation can be made as follows:

- 1) Flow occurrences on stepped spillway with end sill, as well as the plain bed stepped spillway, can be categorized into two main flow regimes, i.e., the nappe flow and the skimming flow regimes.
- 2) Under the same flow conditions and the same step geometry, the stepped spillway with end sill could produce more energy loss than the plain bed one especially in the skimming flow regime. As the end sill height increases, the energy loss increases.
- 3) Stepped spillway with end sill which laid at a milder slope yields the energy loss greater than the steeper one.
- 4) The spillway drop number q^2/gHr^3 has a very strong influence on the energy loss. In the nappe flow regime, the energy loss decreases rapidly when drop number increases. However, this decreasing rate is less and approaches a constant value when the flow is in the skimming flow regime.

ACKNOWLEDGEMENT

The authors would like to thank King Mongkut's University of Technology Thonburi, Ministry of University Affairs, and Thailand Research Fund for providing partially financial support in the study. Valuable guidance and encouragement from Prof. Somchai Wongwises is appreciated.

REFERENCES

- Chanson, H. (1994) Comparison of energy dissipation between nappe and skimming flow regimes on stepped chutes. *Journal of Hydraulic Research*, IAHR, Vol.32, No.2, pp.213-218.
- Chinnarasri, C. (2002) Assessing the flow resistance of skimming flow on the step faces of stepped spillways. *Dam Engineering*, Vol.12, No.4, pp.303-321.
- Christodoulou, G.C. (1993) Energy dissipation on stepped spillways. *Journal of Hydraulic Engineering*, ASCE, Vol.119, No.5, pp.644-650.
- Diez-Cascon, J., Blanco, J.L., Revilla, J., and Garcia, R. (1991) Studies on the hydraulic behavior of stepped spillways. *Journal of Water Power and Dam Construction*, Vol.43, No.9, pp.22-26.
- Essery, I.T.S. and Hornor, M.W. (1978). The hydraulic design of stepped spillway. *CIRIA Report No. 33*, London, UK.
- Israngkura, U. and Chinnarasri, C. (1994) Flow depth and energy losses through stepped chutes. *Proceedings of the 9th Congress of Asian and Pacific Division of the IAHR*, Singapore, pp.156-163.
- Rajaratnam, N. (1990) Skimming flow in stepped spillway. *Journal of Hydraulic Engineering*, ASCE, Vol.116, No.4, pp.587-691.
- Pegram, G.G.S., Officer, A.K., and Mottram, S.R. (1999) Hydraulics of skimming flow on modelled stepped spillways. *Journal of Hydraulic Engineering*, ASCE, Vol.125, No.5, pp.500-510.
- Peruginelli, A. and Pagliara, S. (2000) Energy dissipation comparison among stepped channel, drop, and ramp structures. *Proceedings of the International Workshop on Hydraulics of Stepped Spillways*, Zurich, Switzerland., pp.111-118.
- Peyras, L., Royet, P., and Degoutte, G. (1992) Flow and energy dissipation over stepped gabion weirs. *Journal of Hydraulic Engineering*, ASCE, Vol.118, No.5, pp.707-717.
- Sorensen, R.M. (1985) Stepped spillway hydraulics model investigation. *Journal of Hydraulic Engineering*, ASCE, Vol.111, No.12, pp.1461-1472.
- Stephenson, D. (1991) Energy dissipation down stepped spillways. *Journal of Water Power and Dam Construction*, Vol.43, No.9, pp.27-30.

ภาคผนวก ช6

สَاเนบพกความเร็ง Energy Loss through Stepped Gabion Spillways, Regional Conference on energy Technology towards a Clean Environment, 12-14 February, Phuket, Thailand, pp. 436-441

Energy Loss through Stepped Gabion Spillways

C. Chinnarasri, U. Israngkura, and S. Donjadee

Water Resources Engineering Research Lab. (WAREE), Department of Civil Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand.

Abstract

This paper presents the results of the experimental studies on the energy loss through the stepped gabion spillways. The slopes of the gabion spillways are of 30°, 45°, and 60° with total drop heights 1.50, 2.12, and 2.60 m, respectively. Based on dimensional analysis, the important parameters are analyzed and the relevant dimensionless parameters are formed. It is found that the energy of flow is more dissipated in the stepped gabion spillways than in the plain stepped spillways. The energy loss is influenced by the spillway drop number, the slope of the stepped spillways, and the size of filled stones. At the same spillway drop number, the energy loss in the milder slope is greater than that in the steeper one.

Keywords: Energy loss, stepped spillways, gabion.

Introduction

Stepped spillway is a steep channel, which its floor is built up of a series of steps. Besides the ease of construction and maintenance, one of its advantages over the plain bed spillway is that more of the flow energy could be dissipate through it. As a result the flow leaves the stepped spillway at a lower velocity and a smaller size of energy dissipator could be used. The first comprehensive work on plain stepped channels was made by Essery and Hornor [1] and a numerous graphs useful for design were provided. A number of experimental studies on energy dissipation stepped spillways were made [2-8].

Recently, new construction materials e.g. gabions and design techniques have increased the interest in stepped chutes and spillways. Generally, gabions are used for building small retaining structures such as small gabion weirs, channel linings, and supporting parts of small earth dams.

Although a lot of research has been conducted on hydraulics of flow through stepped chutes and spillways, the hydraulics of flow through gabions has received less attention. Few research works on energy dissipation over stepped gabion structures was made by [9-10] and simple relationships of energy loss and drop number were provided. However, no comparison between plain stepped spillways and stepped gabion spillways was reported.

Therefore, the objective of the study is to conduct a new experimental test on the stepped gabion spillways in order to investigate the rate of energy dissipation of flow and to compare the energy loss between the plain stepped spillways and stepped gabion spillways.

Data Reduction

Gabions are hexagonal mesh boxes filled with small sizes of stones. Their advantages as construction materials are: 1) their stability, 2) low cost, 3) flexibility, and 4) porosity. The porosity of gabions is an important characteristic preventing the building up of uplift pressures.

When water flows over a gabion structure, the flowing water can be divided into two parts, i.e. base flow through the void between the filled stones and overflow on the gabion structure. The amount of base flow depends on the dimensions of gabions, the porosity, and the type of flow regime. Typically the step height equals the height of the gabion. The stone size of the rockfill is equal at least 1 to 1.5 times the mesh size but should not be larger than 2/3 of the minimum dimension of the gabion. With these dimensions, the flow pattern may be either nappe flow at low flow rates, transition for intermediate discharge or skimming flow at larger flow rates.

In any flow regime and by neglecting the effect of base flow, the energy loss through a stepped spillway E_L depends on the total discharge per unit width of spillway q , the spillway drop height H_T , the step or gabion height h , the stone diameter D , the slope of the spillway α , and the gravitation acceleration g . These variables are shown in Figure 1. They could be expressed functionally as:

$$E_L = f_1 [q, H_T, h, D, l, g] \quad (1)$$

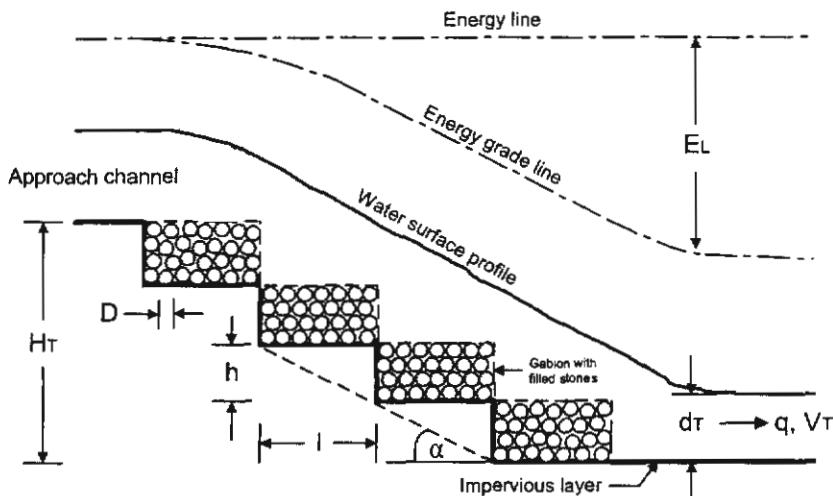


Figure 1. Variables in dimensional analysis

Using Buckingham Pi theory, the variables in Equation (1) can be expressed in non-dimensional form as:

$$\frac{E_L}{H_T} = f_2 \left[\frac{q^2}{gH_T^3}, \frac{H_T}{h}, \frac{D}{h}, \alpha \right] \quad (2)$$

in which α is the $\tan^{-1}(h/l)$

Similarly, the flow velocity at the spillway outlet V_T could be expressed as:

$$\frac{V_T}{\sqrt{gH_T}} = f_3 \left[\frac{q^2}{gH_T^3}, \frac{H_T}{h}, \frac{D}{h}, \alpha \right] \quad (3)$$

The dimensionless term $\frac{q^2}{gH_T^3}$ is named as "Spillway Drop Number", the ratio $\frac{H_T}{h}$ is actually the number of steps in the spillway, and the ratio $\frac{D}{h}$ is the relative stone height. '.

Experiments

An outline of the experimental arrangement is shown in Figure 2. Water was pumped from a laboratory sump to the V-notched weir tank from which water entered the stepped spillway through an approach channel. At the bottom of the stepped channel, a horizontal outlet carried the water back to the sump. The discharge was measured by the V-notched weir tank. The discharge was varied from 4 – 68 l/s.

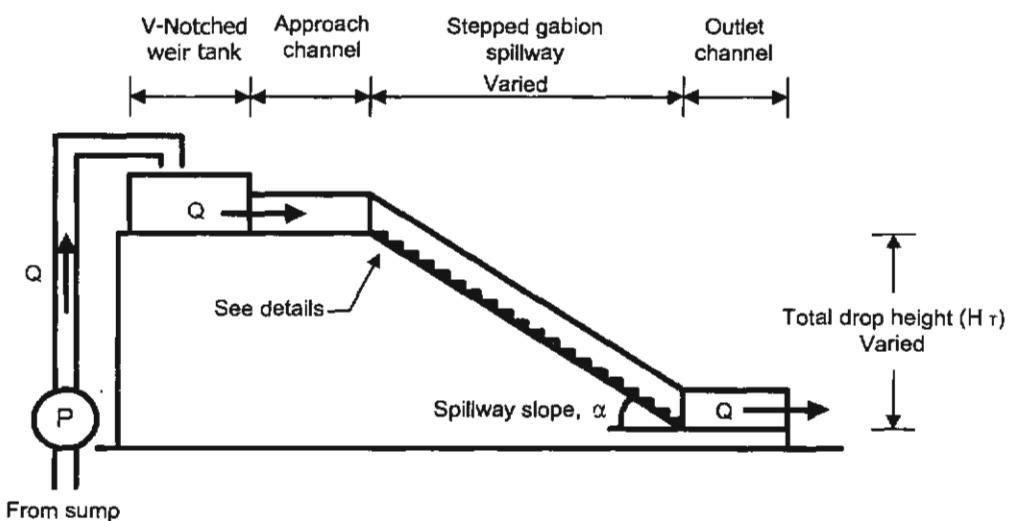


Figure 2. Experimental set-up

The stepped spillways are made of plexiglass having widths of 0.40 m and consist of 20 steps. The slope of the stepped channel, α , are 30° , 45° , and 60° . The total drop height of the stepped channel, H_T , are 1.5, 2.12, and 2.60, respectively. The dimensions of the step can be defined as h/l , where h is the step height and l is its horizontal length. Each step, gabion boxes filled with stones are placed on the step face. The volume of the gabion boxes are $(h) \times (l) \times (\text{spillway width})$.

To investigate the effect of filled stones, three types of stones are used, i.e. i) crushed stone of 25-35 mm diameter, ii) rounded stone of 25-35 mm diameter, and iii) crushed stone of 50-70 mm diameter. The average void ratios of gabions are 0.27, 0.30, and 0.39, respectively. Figure 3 shows gabion dimension.

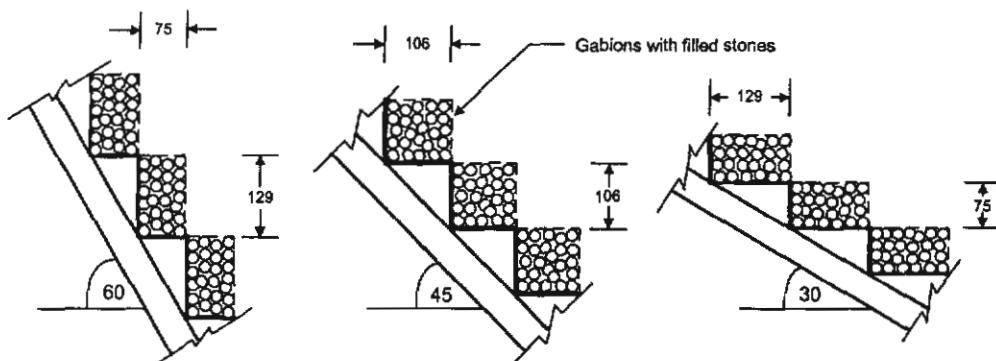


Figure 3. Gabion dimension in millimeters

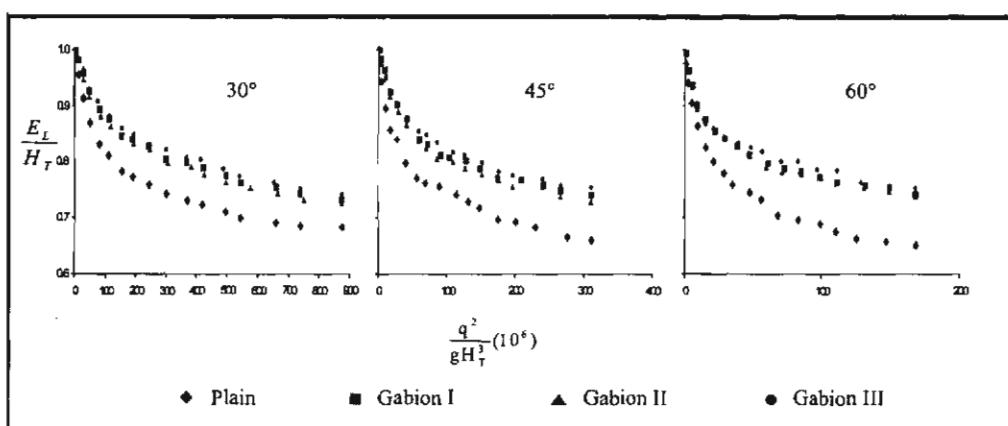
The measurements of depth and velocities in the spillway outlet were measured at about 3-4 times of the step length away from the lowest step face where turbulence and air entrainment effect became less violent. The depths across the chute width were measured by a vernier-depth gauge. The velocities were measured by two methods, first by a pitot tube and second by dividing the measured flow area. The value obtained were within 10% differences. In calculating the energy loss the velocity obtained from the first method was used.

Results and Discussion

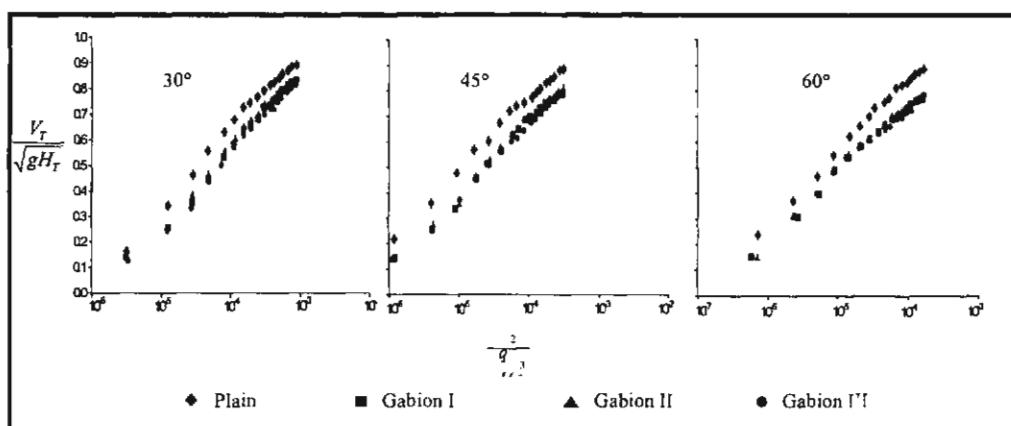
The relationships between measured energy loss on stepped gabion spillways and spillway drop number at various spillway slopes are shown in Figure 4. It is found that the energy of flow is more dissipated in the stepped gabion spillways than in the plain stepped spillways. As the water flows over the stepped gabion spillways, the water is divided into two parts, i.e. flow over gabion boxes and flow through the gabion boxes (base flow). In the base flow, the water can flow through the void between filled stones, which results in reduction of the impact of the mass of the water on the face of the spillway steps. Small unstable vortices behind stones are observed, while more energy is required due to the interference of wake and step face.

Generally, the energy loss ratios in the stepped gabion spillways are greater than those in the corresponding plain stepped spillways by 10% approximately for all spillway slopes.

For low flow, the nappe flow regime is observed while at high flow the skimming flow occurs. As spillway drop number approaches zero, the flow pattern is of nappe regime and the energy loss ratio approaches unity. Most of the flow energy is dissipated in the nappe flow regime because of jet breakup and jet mixing on the step and the formation of hydraulic jump on the step.


The energy loss ratio (E_L / H_T) varies inversely with the spillway drop number (q^2 / gH_T^3). The energy loss ratio decreases sharply at small value of the spillway drop number. The skimming flow pattern is observed as the spillway drop number increases further, the rate of decrease of energy loss ratio is reduced and shows the trend to approach a constant value.

For high flow, it is found that the flow energy is more dissipated in the spillway of milder slope than the steeper one at the same drop number. For spillway of milder slope, the step length (l) is longer than the step height (h) therefore the recirculating vortices can not fill the entire cavity between the step


edges and the wake from one edge interferes with the next step. For steep slope, a stable recirculation in the cavities between adjacent steps is observed. The energy loss is due to the circulation of these vortices.

Within the range of this study, it is found that the flow energy could be more dissipated by the bigger stone size than by the smaller one. The crushed stone could dissipate more energy than the rounded one. The gabion filled with bigger stones has higher void ratio than the one filled with smaller stones. As some energy of flow is dissipated in the void in the gabion, therefore the higher void ratio, the higher rate of energy dissipation. However, the effect of stone size and shape seems to have little influence on the energy loss as compared with increasing effect of spillway slope.

The velocity ratio ($V_T / \sqrt{gH_T}$) increases directly with increasing spillway drop number for every slopes and every gabion type as shown in Figure 5. As compared with the plain stepped spillways, this ratio is smaller, which is the result of higher energy loss on the gabion.

Figure 4. Relationship between energy dissipation on stepped gabion spillways and spillway drop number at various spillway slopes

Figure 5. Flow Velocity at spillway outlet and spillway drop number at various spillway slopes

Conclusions

This paper presents the new experimental data to investigate the energy loss through stepped gabion spillways. From the study, the following conclusions are obtained:

1. Generally, the energy loss ratios in the stepped gabion spillways are greater than those in the corresponding plain stepped spillways by 10% approximately for all spillway slopes. As a result, the velocity at the outlet is less.
2. The size and shape of filled stone have small effects on the energy dissipation, within the range of investigation.
3. The other parameters, i.e. spillway slope and spillway drop number have been found to effect the energy dissipation in the same manner as found in the plain stepped spillways.

Acknowledgement

The authors would like to thank Thailand Research Fund (TRF) for providing partially financial support in the study. Valuable guidance and encouragement from Prof. Somchai Wongwises is appreciated.

References

- [1] Essery I.T.S. and Hornor M.W. (1978) *CIRIA Report No. 33*, London, UK.
- [2] Sorensen R.M. (1985) *Journal of Hydraulic Engineering*, ASCE, 111: 12, 1461-1472.
- [3] Rajaratnam N. (1990) *Journal of Hydraulic Engineering*, ASCE, 116: 4, 587-691.
- [4] Diez-Cascon J., Blanco J.L., Revilla J., and Garcia R. (1991) *Journal of Water Power and Dam Construction*, 43: 9, 22-26.
- [5] Stephenson D. (1991) *Journal of Water Power and Dam Construction*, 43: 9, 27-30.
- [6] Christodoulou G.C. (1993) *Journal of Hydraulic Engineering*, ASCE, 119: 5, 644-650.
- [7] Israngkura U. and Chinnarasri C. (1994) *Proceedings of the 9th Congress of Asian and Pacific Division of the IAHR*, Singapore, 156-163.
- [8] Pegram G.G.S., Officer A.K., and Mottram S.R. (1999) *Journal of Hydraulic Engineering*, ASCE, 125: 5, 500-510.
- [9] Stephenson D. (1979) *Q5R3, Proceedings of the 13th ICOLD Congress*, CIGB, Paris, France, 33-43.
- [10] Peyras L., Royet P., and Degoutte G. (1992) *Journal of Hydraulic Engineering*, ASCE, 118: 5, 707-717.