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Abstract

This research report presents new experimental data on water flow on stepped
chutes with upward inclined steps. The slopes of the chutes are 30°, 45°, and 60°
while the upward angles of the inclined steps are 10°, 20°, and 30°, respectively.
Classifications of flow patterns oy empirical correlations are presented. Based on
dimensional analysis, the important parameters are analyzed and the relevant
dimensionless parameters are formed. The energy loss and outlet velocity are strongly
influenced by the Drop number and the slope of the stepped chutes. As the Drop
number increases the energy loss ratio decreases. At identical Drop number the
energy loss ratio on the milder slope is greater than on the steeper. The adverse slope
of the inclined stéps increases the energy loss ratio and decreases the outlet velocity
by less than 10 %. To estimate kinetic energy ratio, an empirical correlation is
proposed.
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Executive Summary

Stepped chutes are useful in civil engineering applications such as drainage
systems in mountainous areas and emergency spillways over downstream faces of
embankment dams. Over the last two decades, steppad chutes have regained
popularity due to the evolution of roller compacted concrete (RCC) dams. Besides the
ease of construction and maintenance, one of the advantages over the plain-bed chute
is enhanced energy dissipation. As a result the flow leaves the stepped chute at a iower
velocity and a smaller energy dissipator is required.

The objective of this study is to conduct experiments on stepped chutes with
inclined steps. The results include the prediction of the onset of skimming flow, the
evaluation of the energy dissipation- and outlet velocity in dimensionless form. These
results are compared with other researches relating to stepped chutes with horizontal
steps.

In the experiments, water was pumped from a laboratory sump to a V-notched
weir tank from which water entered the stepped chute through an approach channel. At
the bottom of the stepped chute, a horizontal outlet carried the water back to the sump.
The discharge, which varied from 4 to 68 I/s (0.01 to 0.17 mzls), was measured by the
V-notch. The stepped chutes made of plexiglass had a width of 0.40 m and consisted of
20 steps. The slopes of the stepped chutes from the horizontal, &, were 30°, 45°, and
60°. The total drop heights of the stepped chutes, H,, were 1.50, 2.12, and 2.60 m,
respectively. The dimensions of the step can be defined as M/, wherein h is the step
height and / is its horizontal step length. To investigate the effect of step inclination,
three upward angles of inclined steps (8) were tested, i.e. 10°, 20°, and 30°.

The flow regimes on stepped chutes with inclined steps can be classified as
those found in horizontal stepped chutes (Chanson 2002). For small discharge, free-
falling nappe was found at the brink of the inclined step while hydraulic jump was
cbserved on the inclined step face. For intermediate discharge, the succession of free-
jet was disappeared. The free surface of the flow was wavy with spray. For large
discharge, the free surface of the flow was smooth and air entrainment was small.

Comparison between flow on horizontal steps and inclined steps shows that the
upward angle of the inclined step has no effect on the upper limit of nappe flow, but
gives a small increment of the lower limit of skimming flow. When the angle of the
inclined steps increases, the lower limit of skimming flow slightly increases. This is

caused by the relative increase of the elevation of the outer step edge. This resuits in



an increase of the space of the pool height and the air pocket under the falling jet of
nappe flow. Therefore, more discharge is needed to establish the onset of skimming
flow. This result is opposed to the data of Essery and Horner (1978) for inclined steps
due to a different assumption of the onset of skimming flow.

By empirical correlation, the maximum discharge for nappe flow regime and the

minimum discharge required for the onset of the skimming flow regime are as follows:

' % = 0.927 -0.005 8 —0.388(?} (1)
=0.153+0.00482
fihi =(0.844 +0.003 9) [—‘?J (2)

where @is the angle of upward inclined step (0.1<4//<1.73).

The energy loss ratio E,/H, decreases as the drop number increases. According
to the criteria for nappe flow and skimming flow regimes on stepped chutes, the
variations of E,/H, with qung in different flow regimes are distinctively different. It
should be noted that the range of transition flow on stepped chutes of 60° is large. This
is because the flowing water splashes and streamlines are not parallel due to the water
impact along the outer edge of the steps.

in the nappe flow regime where the drop number is very low, E,/H, decreases
rapidly as qZ/gHra increases and the angle of the inclined step has a little effect upon
E/H,, especially for chutes with milder slopes. The angle of inclined step increases the
energy dissipation by less than 3 % as most of the flow energy is dissipated due to jet
breakup and jet mixing on the step and the formation of hydraulic jump on the step.

In the skimming flow regime, E,/H, gradually decreases toward a constant value
as qz)/ng,a increases. It can be observed that a higher angle 8 increases E/H,. An
inclined step increases the energy dissipation by about 6 % of H, (depending on &). As
the upward angle of the inclined steps increases, the energy loss increases due to the
obstruction of the steps to the flow direction producing more spray and the recirculation
vortices being trapped on the chute steps. Larger flow circulations are found and they
are more stable than those in the smaller angles of inclined steps. More energy is

therefore dissipated on this kind of structure.



The effect of the chute slope, «, for the same qZ/gHra, the milder chute slope
gives a greater energy loss ratio. At the highest g”/gH,’, the value of E/H, for 8 = 0°
(horizontal step) to & = 30° (30 degree angle of inclined step) for o = 30° varies from
0.71 to 0.74, while for o = 45" and 60" this ratio varies from 0.68 to 0.74 and from 0.67
to 0.73, respectively.

Another approach to estimate the energy loss on chutes is the comparison
between the ratio of energy loss to the total head (£,/E,) and the ratio of the critical
flow depth to the‘ step height (d/h) (Christodoulou 1993). It is found that the energy
ratio decreases when the discharge increases which is in the same trend when the drop
number is applied.

The flow velocity V.. at the end of the chute can be expressed in dimensionless
form. it was found that the velocity ratio (VT/ gHT] increases with increasing drop
number for every chute slope and angle of inclined step. The observed data can be

represented by the following logarithmic correlation

2
Ve =0.1311n[ 9 3J+0.O36—0.OOO99 )
VeH, gH;

As compared with the horizontal steps, the (VT! gH, ) ratio is smaller
because of higher energy loss on the stepped chutes with inclined steps. The kinetic
energy ratio increases almost linearly with c)zf’gHrai and agrees reasonably well with the
variation of E/H, with qz/gHTS. As the energy loss decreases when qugH: increases,
the remaining kinstic energy at the chute outlet increases. In the nappe flow regime, the
kinetic energy at the outfet for all cases is small and almost the same because most of
the flow energy is dissipated along the stepped chutes. In the skimming flow regime,
the kinetic energy at the chute outlet with inclined steps is less than for the horizontal

stepped chutes because more flow energy is dissipated.
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Introduction

Stepped chutes are useful in civil engineering applications such as drainage
systems in mounfainous areas and emergency spillways over downstream faces of
embankment dams. Over the last two decades, stepped chutes have regained
popularity due to the evoiution of roller compacted concrete (RCC) dams. Besides the
ease of construction and maintenance, one of the advantages over the plain-bed chute
is enhanced energy dissipation. As a result the flow leaves the stepped chute at a lower
velocity and a smaller energy dissipator is required.

The step geometry can be classified as horizontal, pooled, inclined, or of
gabion-type. A number of experimental studies on the flow behavior of horizontal
stepped chutes have been conducted (Chanson 2002). Hydraulic design guidance of
horizontal stepped spillways was developed by Boes and Hager (2003b). Other
stepped-like structures, such as drop structures, were investigated by Moore (1943),
Rand (1955), Rajaratnam and Chamani (1995), and Chanson and Toombes (1998).

Although a number of researches have been conducted on the hydraulics of
drops and horizontal stepped chutes, the hydraulics of inclined steps have received less
attention. A few research works on flow over stepped chutes with inclined steps were
carried out by Essery and Horner (1978). They provided simple relationships for the

energy number (specific energy-to-step length ratio) and flow number (critical depth-to-

step length ratio) for step inclinations between 5° and 20° and compared with the
results of horizontal steps. However, the loss of hydraulic energy over a stepped chute
with inclined steps and the outlet velocity downstream were not reported.

Concerning with the scale effect, Boes and Hager (2003a) investigated the
aeration characteristics of skimming flows on stepped spillways. The minimum Reynolds
and Weber numbers of around 105 and 100, respectively, were presented to minimize
scale effects in physical modeling of two-phase air-water flows on stepped spillways.
Moreover, they found that, different from clear water, highly turbulent two-phase air-
water flow in open channel could not be modeled without scale effect resulting from the
variation of viscosity and surface tension. Pegram et al. (1989) conducted two sets of
modeled stepped spillways on the 1:10 and 1:20 scale models. Based on the results of
the sequent depth of the hydraulic jump at the toe of the spillways, they reported that
models with scales of 1:20 and larger could represent the prototype behavior of stepped

spillways.



The objective of this study is therefore to conduct experiments on stepped
chutes with inclined steps. The results include the prediction of the onset of skimming
flow, the evaluation of the energy dissipation and outlet velocity in dimensionless form.
These results are compared with other researches relating to stepped chutes with

horizontal steps.

Experimental apparatus and procedure

A deﬁnitio'n sketch of the experimental arrangement is shown in Fig. 1. Water
was pumped from a laboratory sump to a V-notched weir tank from which water entered
the stepped chute through an approach channel. At the bottom of the stepped chute, a
horizontal outlet carried the water back to the sump. The discharge, which varied from 4

to 68 I/s (0.01 to 0.17 mzfs). was measured by the V-notch.

V-Notched Approach Stepped chute Outlet
weir tank  channel channel
— |
Q wd—p

of) T

Total drop height (Hr)

) Chute slope, o e o Al‘

T}

From sump

Fig. 1 Schematic diagram of experimental set-up

The stepped chutes made of plexiglass had a width of 0.40 m and consisted of
20 steps. The slopes of the stepped chutes from the horizontal, &, were 30°, 45°, and
60°. These angles are classified as steep channel slopes (Chanson 1994). The total
drop heights of the stepped chutes, H,, were 1.50, 2.12, and 2.60 m, respectively. The
dimensions of the step can be defined as A4, whereln h is the step height and / is its
horizontal step length. To investigate the effect of step inclination, three upward angles

of inclined steps (&) were tested, i.e. 10°, 20°, and 30°. The method of construction and



construction cost of the inclined steps were not found significantly different as compared

to the horizontal steps. Figure 2 shows the dimensions of the inclined steps.

8 =10°,20°,8 3¢

o b

8=10°20" & 30°

Fig. 2 Dimension of inclined steps in millimeters

The depth and velocity in the outist channel were measured at a location where
air entrainment was significantly diminished. It was about 3-4 times the step length
away from the lowest step face. The depths across the chute width were measured by
a vernier-depth gage. The velocities were measured by two methods, first by a pitot
tube and second by dividing discharge by the measured flow area. The values obtained
were within 10%. In calculating the energy dissipation the velocity obtained from the first
method was used. Details of the experiments are summarized in Tables 1 - 3.

In the present study, which the flow depth and flow velocity were measured at a
location where air entrainment was significantly diminished, the results can also
represent the prototype behavior of stepped chutes with a limit of scale model. By
Froude similitude, therefore, the presented results are limited for the height or length of
the prototype spillways not greater than 20 times the modeled tests and the prototype

discharges per unit width are in the range of 0.9 to 15.1 mzls.

Classifications of stepped chute flow with inclined steps

Based on literature reviews, the flow regime on a horizontal stepped chute can
be divided into three flow regimes: nappe flow, transition flow, and skimming flow. In
nappe flow, the steps act as a series of overfalls with the water plunging from ¢ne step
to another. Nappe flow is found for low discharges and large step lengths. In contrast,
skimming flow results for farge discharges and small step lengths. Water flows as a
coherent stream without air pockets under the jets on the pseudo-hottom formed by the

outer step edges.
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Table 1. Details of experimental set A {chute slope = 30°, Hr= 1.50 m, h = 0.075 m).

Inclined Energy
step angle, 6 q Vr Observed d, foss
(degree) Runno. (m%s/m) (m/s) flow type h (m)
0 1 0.010 0.63 NA 0.29 1.49
3 0.031 1.78 NA 0.61 1.39
5 0.052 243 TRA 0.89 1.27
7 0.071 2.79 SK 1.07 1.20
9 0.050 2.95 SK 1.25 1.17
IS 0.111 3.13 SK 1.44 1.13
13 0.128 324 SK 1.58 1.11
15 0.147 3.35 SK 1.74 1.08
17 0.170 343 SK 1.91 1.06
10 1 0.010 0.77 NA 0.29 1.48
3 0.030 1.57 NA/TRA 0.60 1.42
5 0.043 2.21 TRA 0.83 1.32
7 0.069 2.60 SK 1.05 1.25
9 0.089 2,78 SK 1.24 1.22
11 0.109 2.95 SK 1.42 1.19
13 0.129 3.14 SK 1.59 1.14
15 0.149 328 SK 1.75 1.t
17 0.170 3.35 SK 1.91 1.10
20 1 0.010 0.89 NA 0.29 1.49
3 0.030 1.71 NA/TRA 0.60 1.41
5 0.050 217 TRA 0.84 1.34
7 0.070 251 SK 1.06 1.28
9 0.090 2.7 SK 1.25 1.23
It 0.109 292 SK 1.42 1.20
13 0.128 312 SK 1.58 1.15
15 0.147 3.28 SK 1.73 1.12
17 0.166 337 SK 1.88 1.10
30 1 0.010 0.64 NA 0.29 1.49
3 0.030 1.59 NA/TRA 0.60 1.42
5 0.050 2.03 TRA 0.85 1.36
7 0.070 2.34 SK 1.06 1.32
9 0.090 2.63 SK 1.25 1.25
11 0.111 2.83 SK 1.44 172
13 0.129 3.02 SK 1.59 1.17
15 0.152 3.20 SK 1.77 1.13
17 0.167 332 SK 1.89 1.11

(NA = nappe flow regime; TRA = transition; and SK = skimming flow regime)
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Table 2, Details of experimental set B (chute slope =45°, Hy =2.12 m, h = 0.106 m).

Inclined step Energy
angle, 0 q Vr Observed d; loss
(degree) Run no. (m’/s/m) {m/s) flow type —i;_ (m)

0 1 0.010 1.00 NA 0.20 2.09
3 0.029 2.19 NA 0.42 1.93

5 0.050 2.75 TRA 0.60 1.81

7 0.071 3.30 TRA 0.76 1.66

9 0.091 3.43 SK 0.89 1.63

11 0.111 3.62 SK 1.02 1.58

13 0.128 3.80 SK 112 1.52

15 0.146 390 SK 122 1.49

17 0.170 4.05 SK 1.35 1.45

10 1 0.010 1.1 NA .20 2.07
3 0.030 2.08 TRA 0.43 .94

5 0.050 2.71 TRA 0.60 1.81

7 0.070 3.13 TRA 0.75 1.71

9 0.089 3.31 TRA/SK 0.88 1.67

11 0.110 3.47 SK 1.01 1.63

13 0.129 3.69 SK 1.13 1.56

15 0.151 3.85 SK 1.25 1.52

17 0.162 391 SK 1.31 1.51

20 1 0.010 1.11 NA 0.20 208
3 0.030 1.98 TRA 0.43 1.97

5 0.050 2.68 TRA 0.60 1.81

7 0.070 3.05 TRA 0.75 1.74

9 0.090 326 TRA/SK 0.89 1.69

i1 0.110 341 SK 1.01 1.65

13 0.130 3.60 Sk 1.13 1.59

15 0.152 3.70 SK 1.26 1.57

17 0.169 3.84 SK 1.35 £.53

30 1 0.010 1.05 NA 0.20 2.09
3 0.030 1.98 TRA 0.43 1.98

5 0.050 2.70 TRA 0.60 1.82

7 0.070 3.00 TRA 0.75 1.77

9 0.090 3.16 TRA/SK (.89 1.73

11 0.110 3.36 SK 1.01 1.68

13 0.130 3.52 SK 1.13 1.64

15 0.148 3.66 SK 1.23 1.61

17 0.164 378 SK 1.32 1.58

(NA = nappe flow regime; TRA = transition; and SK = skimming flow regime}
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Table 3. Details of experimental set C (chute slope = 60°, Hr = 2.60 m, h = 0.130 m).

Inclined step’ Energy
angle, 6 q Vr Observed de loss
(egree)  pinno.  (m¥sm)  (ms) oW Pe n (m)

0 1 0.011 1.21 NA/TRA 0.18 2.55
3 0.030 2.37 TRA 0.35 2.37

5 0.051 3.16 TRA 0.49 217

7 0.070 3.54 TRA 0.61 2.06

g 0.090 3.83 TRA 0.72 1.97

i 0.108 4.11 SK 0.81 1.87

13 0.130 4.22 SK 0.92 1.83

15 0.147 439 SK 1.00 1.77

17 0.170 4.49 SK .10 1.74

10 1 0.010 112 NA/TRA 0.17 2.56
3 0.030 1.89 TRA 0.35 246

5 0.050 2.66 TRA 0.49% 231

7 0.070 332 TRA 0.61 2.12

9 0.089 3.65 TRA 0.72 2.01

11 0.109 39 TRA (.52 192

13 0.128 4.00 SK 0.91 1.80

15 0.148 4.14 SK 1.01 1.84

17 0.170 4.24 SK 1.10 1.84

20 1 0.011 1.10 NA/TRA 0.18 2.55
3 0.031 1.73 TRA 035 2.49

5 0.050 2.30 TRA 0.49 2.39

7 0.070 3.30 TRA 0.61 2.12

9 0.089 3.60 TRA 0.72 2.03

11 0.111 388 TRA 0.83 1.93

13 0.128 3.9 SK 0.91 1.91

15 0.149 4.09 SK .01 1.86

17 0.170 4.13 SK 1.10 1.85

30 1 0.010 1.05 NA/TRA 0.17 2.57
3 0.03¢ 1.81 TRA 0.35 2.49

5 0.050 2.59 TRA 0.49 233

7 0.070 3.09 TRA 0.61 2.20

9 0.089 3.40 TRA 0.72 2.1

11 0.112 3.68 TRA 0.83 2.02

13 0.129 3.84 SK 0.92 1.97

15 0.149 399 SK 1.01 1.92

17 0.170 4.03 SK 1.10 1.90

{NA = nappe flow regime; TRA = transition; and SK = skimming flow regime)

13



The transition flow is characterized by a pool of recirculating water with or
without a small air pocket. This does not present the appearance of skimming flows or
the succession of free jets. Due to the changes of streamline direction in the transition
flow, this implies a different pressure distribution and induces vibration of the chute
(Chanson 2002). '

For engineering purposes, skimming flow is more relevant than nappe flow.
Researches on skimming fiow on horizontal stepped chutes were made by Rajaratnam
{1990), Chanson (1994}, Chamani and Rajaratnam (1999), and Chinnarasri (2002).

In this study, the flow regimes on stepped chutes with inclined steps can be
classified as those found in horizontal stepped chutes (Chanson 2002). Examples of
flow regimes observed from 30° chute slope and 20° upward inclined step are shown in
Fig. 3. For small discharge, free-falling nappe was found at the brink of the inclined step
while hydraulic jump was observed on the inclined step face (Fig. 3(a)). For
intermediate discharge, the succession of free-jet was disappeared. The free surface of
the flow was wavy with spray (Fig. 3(b)). For large discharge, the free surface of the
flow was smooth and air entrainment was smali {Fig. 3(c}).

In 1990, Rajaratnam re-analyzed Essery and Horner's data and proposed the
onset of skimming flow on horizental stepped chutes using d/h and h4. For the range of
h/ from 0.4 to 0.9, at the onset of skimming flow, d/h was approximately equal to 0.8.
Chanson (1994) suggested the critical value for the occurrence of skimming flow as the

straight line

e _1057-0.465" )
p ;

Chinnarasri (2002} compared his experimental results on horizontal stepped
chutes with those of Essery and Horner (1878), Beitz and Lawless (1992}, and Yasuda
and Chtsu (1999), and defined for h/ from 0.1 to 1.4 the onset of skimming flow as

~-0.22
% >0.80 {-’}J @)
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(a) ] q = 0.010m¥s
Free-falingnappe h = 0075m
R al® = 30%20°
d/h = 0289

Hydraulic jump

0.040 m*/s
0.075m
30°/20°
0.728

(b)

ot nn

¢.165 m¥/s
0.075m
300200
1.874

(c)

nodon

Fig. 3 Flow regimes on a 30° chute with upward inclined steps
(a) Nappe flow; (b} Transition flow; and (¢} Skimming flow
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Effect of step angie

To investigate the onset of skimming flow on stepped chutes, the experimental
data obtained in this study were compared with other experiments on horizontal steps.
The re'ation between d/h and h4 are shown in Fig. 4 and lines for the lower limit of
skimming flow and upper limit for nappe flow can be drawn. In this study, the lower limit
of skimming flow is defined by the disappearance of the air cavity beneath the free
falling nappes and the water flowing as a quasi-homogeneous stream (Chanson 1996).
The upper limit of nappe flow is defined by no succession of free jets on the chute. In
Fig. 4, the transition flow regime between nappe flow and skimming flow is clearly
separated. For large step lengths, e.g. &« = 30° {(/h = 1.73), the flowing water proceeds
in a series of plunges from one step to another. For smaller step lengths, e.g. a = 60°
(¥h = 0.577), the water falls over the outer edge of the downstream steps with a pool of

recircuiating water was observed.

20

T

Beitz and Lawless {1992); Horizotal staps (NA-SK)
Boas and Mager (2003b): Horzontal steps (WA-SK)
Charmani and Rajarstnam (1999) Horizantal steps (NA&-TRA)

18

e Changon (2002): Horizontal staps (NA-TRA)
14 * Chanson (2002): Horizonta! sleps (TRA-SK)

i Chinnarasfi (2002): Hotizontal steps (NA-TRA)
23 % = SKIMMING FLOW Fd  Chinnarsarl (2002): Hoiizontal steps. (TRA-5K)

N 3 Ebiro and Mateos (1895) Ho fizortal ataps (NA-TRA)
EQ (4)0=20 ENirn and Mataos {{955): Horizontal steps (TRA-SK)

k]

Critical Depth/Step Height
5

~ E - - _ \ Essary and Homer (1878): Honzontal steps (NA-SK)
08 0wt ¢ ¢ s TE T Tt L - i .
= = ¥ - \‘\ A Essary and Homer (1978): 20 degree incined slaps {NA-SK)
08 -7 . EQ.() 81 Yasuda and Ohtsu (1999} Horizontal steps (NA-TRA)
’ = E,mmmw FLow 3 Yasuda and Ohtsu (1999): Horizontal steps {TRA-SK)
a4 Tl e EQ.(3),8=0 <+ Presentinvesigaton: Horizontal steps (NA-TRA)
NAPPE FLOW ‘ T - - Presant investigation. 20 degree inclined steps (NA-TRA)
02 £Q. ()8 capeT T - % Presentinvestigation: Horizontal steps (TRA-SK)
+ Present investigation. 20 degree inckned steps (TRA-SK}
a0 [ rrap Tyt =~ — = EQ (3) Upper §mi of nappe flow regime: Horizontal steps
a.0 4.5 1.0 1.5 20 ——— EQ (3} Upper imit of nappe flow regime: 20 degres indined steps
Step Height! Step Length

— = = EQ [4) Lower mit of skimming fkew regime: Horizontal steps
——  EQ.{4) Lower lim of skimming flow regime. 20 degree inciined steps

Fig. 4 Comparison of experimental data with empirical correlation for flow
classifications on chutes with upward inclined steps

Comparison between flow on horizontal steps and inclined steps shows that the
upward angle of the inclined step has no effect on the upper limit of nappe flow, but
gives a small increment of the lower limit of skimming flow. When the angle of the
inclined steps increases, the lower limit of skimming flow slightly increases. This is

caused by the relative increase of the elevation of the outer step edge. This results in
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an increasa of the space of the pool height and the air pocket under the falling jet of
nappe flow. Therefore, more discharge is needed to establish the onset of skimming
flow. This result is opposed to the data of Essery and Horner (1978) for inclined steps

due to a different assumption of the onset of skimming flow.

By empirical correlation, the maximum discharge for nappe flow regime is

(0.1<h/1<1.73)

%=0.927—0.005 6’~—0.388{?J (3)

where 8 is the angle of upward inclined step.

Likewise the minimum discharge required for the onset of the skimming flow

regime is, as shown in Fig. 4, (0.1<Ak// <1.73)

d h -0.153+0.0048
—hi=(0.844+0.003 6)(}-} 4)
Energy dissipation of flow an stepped chutes with inclined steps

In skimming flow, most energy is dissipated to maintain stable horizontal
vortices beneath the pseudo-bottom formed by the exterpal edges of the steps.
Generally, the energy loss of flow on an inclined stepped chute £, depends on the total
discharge per unit width of spillway q, the chute drop height H,, the step height h, the
step length /, the slope of the spillway ¢ or tan'1(h/l). the slope of the step inclination &,
and the gravitation acceleration g. These variables are shown in Fig. 5 and can be

expressed functionally as
E =f{gH, h1 0 gl 5)

Using the Buckingham Pi theorem, the variables in eq. [5] can be expressed in

non-dimensional form as:

g’ h

Ef?’ 7 d] (6)
3

EL —
E—fz [
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q2
gH;
the chute slope @, and ¢ is the angle of the upward inclined step.

: h
where the dimensionless term is the “Drop number”, the ratio —1- is referred to as

Total energy line

Approach channel

4L

Hr T}’_l_,

Fig. 5 Variables in dimensional analysis

The relationships between the energy loss ratio on stepped chutes and the drop

number are shown in Fig. 6 for 30° chute slopes.
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Fig. 6 Energy dissipation and drop number of 30° stepped chutes
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It can be seen that the energy loss ratio £,/H, decreases as the drop number
increases. According to the criteria for nappe flow and skimming flow regimes on
stepped chutes as proposed in egs. [3] and [4] with & = 0°, the variations of E/H, with
qz/gHra in different flow regimes are distinctively different. It should be noted that the
range of transition flow on stepped chutes of 60° is large. This is because the‘ flowing
water splashes and streamlines are not parallel due to the water impact along the outer
edge of the steps.

in the nappe flow regime where the drop number is very low, E,/H, decreases
rapidly as qZ/gHra increases and the angle of the inclined step has a little effect upon
E,/H,, especially for chutes with milder slopes. The angle of inclined step increases the
energy dissipation by less than 3 % as most of the flow energy is dissipated due to jet
breakup and jet mixing on the step and the formation of hydraulic jump on the step.

in the skimming flow regime, E,/H; gradually decreases toward a constant value
as qZ/gHTE increases. It can be observed that a higher angle & increases £/H, An
inclined step increases the energy dissipation by about 6 % of H, (depending on &). As
the upward angle of the inclined steps increases, the energy loss increases due to the
obstruction of the steps to the flow direction producing more spray and the recircuiation
vortices being trapped on the chute steps. Larger flow circulations are found and they
are more stable than those in the smaller angles of inclined steps. More energy is
therefore dissipated on this kind of structure.

The effect of the chute slope, «, for the same g*/gH,’, the milder chute slope
gives a greater energy loss ratio. At the highest qz/gHra, the value of £E/H, for & = 0°
(horizontal step) to & = 30° (30 degree angle of inclined step) for a = 30° varies from
0.71 to 0.74, while for o = 45° and 60" this ratio varies from 0.68 to 0.74 and from 0.67
to 0.73, respectively.

Another approach to estimate the energy loss on chutes is the comparison
between the ratio of energy loss to the total head (E/E,) and the ratio of the critical
flow depth to the step height (d/h) (Christodoulou 1993). in this study, the relation of
these parameters with d/h in the range of 1 to 2 are shown in Fig. 7. It is found that
the energy ratio decreases when the discharge increases which is in the same trend

when the drop number is applied.
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Fig. 7 Energy dissipation and ratio of critical flow depth to step height

Flow velocity at outlet

The flow velocity V, at the end of the chute can be expressed as

vy h
= -, 8
7, fj[le, ] (7)

g

As shown in Fig. 8, the velocity ratio (VT/ ,/_gET_) increases with increasing
drop number for every chute slope and angle of inclined step. These data can be

represented by the following logarithmic correlation

=0.1311n| -L |+0.036-0.0009 6 )
gH;

As compared with the horizontal steps, the (V,. /\jgH ) ratio is smaller
because of higher energy loss on the stepped chutes with inclined steps. The regions of
nappe and skimming flow regimes are presented based on the drop number in Fig. 6.

The kinetic energy ratio increases almost linearly with qzlgHTS and agrees reasonably
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well with the variation of E,/H; with qZ/gHTS. As the energy loss decreases when tf/gHr:7
increases, the remaining kinetic energy at the chute outlet increases.

In the nappe flow regime, the kinetic energy at the outlet for all cases is small
and almost the same because most of the flow energy is dissipated along the stepped
chutes. [n the skimming flow regime, the kinetic energy at the chute outlet with inclined

steps is less than for the horizontal stepped chutes because more flow energy is

dissipated.
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Fig. 8 Flow velocity at outlet and drop number of 30° stepped chutes

Conclusions

Flow regimes on chutes with upward inclined steps were considered and
classified as nappe flow, transition flow, and skimming flow regimes. The onset of
skimming flow is characterized by the relation of critical depth/step height (d/h) and
step height/step length (h/). The onset of skimming flow con stepped chutes with inclined
steps is predicted by empirical correlations, which are good for (0.1<A/7/<1.73).

Under identical flow conditions and step geometries, an upward inclined step
causes more energy loss than horizontal steps, especially in the skimming flow regime,

i.e. about 6% of H, (depending on &). As the upward angle of the inclined steps
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increases, the energy loss increases due to the obstruction of the steps to the flow
direction producing more spray. Stepped chutes with upward inclined steps at milder
slopes yield an energy loss ratio £,/H; greater than steeper. In the nappe flow regime,
the energy loss decreases rapidly when the drop number increases. However, this
decreasing rate become less and approaches a constant value when the flow is in the
skimming flow regime.

The velocity ratio (VT /\/E ] increases with increasing drop number for every
chute slope and angle of inclined step. To estimate kinetic energy ratio, an empirical
equaticon is propos;ed in [8].

As the method of construction and construction cost of the inclined steps were
not found significantly different compared to the horizontal steps, the inclined step is an

alternative for energy dissipater along spillway face.
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ABSTRACT

Gabions are useful for building small retaining structures and have increased the interest in
stepped spillways. However, less attention has received for these kinds of structures. This
paper presents the new results of the experimental studies on the hydraulics of skimming flow
on gabion stepped spillways. The slopes of the gabion spillways are of 30°, 45°, and 60° with
total drop heights 1.50, 2.12, and 2.60 m, respectively. Based on dimensional analysis, the
important parameters are analyzed and the relevant dimensionless parameters are formed.
These data are analyzed and compared with other investigator’s results to evaluate the onset
of skimming flows on gabion stepped spillways. The energy loss ratios in the gabion stepped
spillways are greater than those in the corresponding horizontal stepped spillways by 10%
approximately for all spillway slopes. As a result, the velocity at the outlet is less. The
pressure acting on the step face for the gabion stepped spillways is less than the pressure for
the horizontal steeped spillways. The averaged pressure difference is about 27% owning to
the absorption of energy from filled stones. The friction factor of gabion stepped spillways is

found higher than that of the horizontal stepped spillways about 3.6 times.

Keywords: Skimming flow, gabions, stepped spillways, laboratory.



1 Introduction

Stepped spillway is a hydraulic structure, which its floor is built up of a series of steps.
Besides the ease of construction and maintenance, one of its advantages over the plain-bed
spillway is that more of the flow energy can be dissipated through it. As a result the flow
leaves the stepped spillway at a lower velocity and a smaller size of energy dissipator can be
used.

Recently, new construction materials e.g. gabions and design techniques have increased
the interest in stepped chutes and spillways. Generally, gabions are used for building small
retaining structures SL;Ch as small gabion weirs, channel linings, and supporting parts of small
earth dams. Gabions are hexagonal mesh boxes filled with small sizes of stones. Their
advantages as construction materials are: 1} their stability, 2) low cost, 3) {lexibility, and 4)
porosity. The porosity of gabions is an important characteristic preventing the building up of
uplift pressures (Chanson, 2002).

Although a lot of research has been conducted on hydraulics of flow over stepped
chutes and spillways, the hydraulics of flow over gabions has received less attention. Few
research works on energy dissipation over gabion stepped structures was made by Stephenson
(1979&1988) and Peyras et al. (1992) and simple relationships of energy loss and spillway
drop number were provided. However, no comparison of characteristics of flow between
horizontal stepped spillways and gabion stepped spillways was reported.

To understand the characteristics of flow over gabion stepped spillway, therefore, the
objective of the study is to conduct a new experimental test in order to investigate the rate of
energy dissipation and to compare the energy loss between the horizontal stepped spillways
and gabion stepped spillways. The effect of filled stones on the energy loss ratio is presented.
In addition, the time-averaged pressure on the step face and the flow resistance under
equilibrium condition are proposed and discussed.

2 Experimental apparatus and procedure

An outline of the experimental arrangement is shown in Figure 1. Water was pumped from a
laboratory sump to the V-notched weir tank from which water entered the stepped spillway
through an approach channel. At the bottom of the stepped channel, a horizontal outlet carried
the water back to the sump. The discharge was measured by the V-notched weir tank. The
discharge was varied from 4 — 68 1/s (0.01 to 0.17 m’/s).

The stepped spillways are made of plexiglass having widths of 0.40 m and consist of 20
steps. The slope of the stepped channel, «, are 30°, 45°, and 60°. The total drop heights of the

stepped channel, Ay, are 1.5, 2,12, and 2.60 m, respectively. The dimensions of the step can



be defined as A/, wherein / is the step height and / s its horizontal length. Each step, gabion
boxes filled with stones are placed on the step face. The volume of the gabion boxes are (#) x
(D x (spillway width}).

To investigate the effect of filled stones three types of stones are used, i.e. i) crushed
stone of 25-35 mm diameter, ii) rounded stone of 25-35 mm diamelter, and iii) crushed stone
of 50-70 mm diameter. The average void ratios of gabions are 0.27, 0.30, and 0.39,
respectively. Figure 2 shows gabion dimension.

The measurements of depth and velocities in the spillway outlet were measured at about
3-4 times of the step length away from the lowest step face where turbulence and air
entrainment effect became significantly diminished. The depths across the chute width were
measured by a vernier-depth gauge. The velocities were measured by two methods, first by a
pitot tube and second by dividing the measured flow area. The values obtained were within
10% differences. In calculating the energy loss the velocity obtained from the first method
was used.

The pressure on step face was measured by U-tube manometers tapping at the holes on
the face of the odd number steps. Five locations of pressure taps were provided on the step
face. When the flow through the spillways reached steady condition, the pressure at each
point on the step face was observed and was recorded for a certain period. Four sets of
experimental conditions were investigated, i.e. set A: horizontal stepped spillways, set B:
gabion stepped spillways with stone I, set C: gabion stepped spillways with stone I, and set
D: gabion stepped spillways with stone [Il. Primary details of experiments were summarized
in Tables 1 - 4.

3. Results and discussion

In the present study, which the flow depth and flow velocity were measured at a location
where air entrainment was significantly diminished, the results can also represent the
prototype behavior of stepped chutes with a limit of scale model. As mentioned by Pegram et
al. (1999) who conducted two sets of modeled stepped spillways on the 1:10 and 1:20 scale
models. Based on the results of the sequent depth of the hydraulic jump at the toe of the
spillways, they reported that models with scales of 1:20 and larger could represent the
prototype behavior of stepped spillways.

By Froude similitude, therefore, the presented results are limited for the height or length
of the prototype spillways not greater than 20 times the modeled tests and the prototype

discharges per unit width are in the range of 0.9 to 15.1 m%s.
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3.1 Onset of skimming flow

When water flows over a gabion structure, the flowing water can be divided into two parts,
i.e. base flow through the void between the filled stones and overtlow on the gabion structure.
The amount of base flow depends on the dimensions of gabions, the porosity, and the type of
flow regime. Typically the step height equals the height of the gabion. The stone size of the
rockfill is equal to at least 1 to 1.5 times the mesh size but should not be larger than 2/3 of the
minimum dimension of the gabion. With these dimensions, the flow pattern may be either
nappe flow at low flow rates or skimming flow at larger flow rates. Due to the occurrence of
the base flow, the dil;lension of the air cavity beneath the free-falling nappes of the flow on
gabion stepped spillways is smaller than that of the flow on horizontal stepped spillways. As
the air cavity beneath the free-falling nappes disappears. the skimming flow begins. Flow
regimes observed in the study are shown in Figure 3.

The study of onset of skimming flow was initiated by Essery and Horner (1978) who
proposed the occurrence of skimming flow as the function of d// and 4/, wherein 4. is the
critical depth of flow, % is the step height and / is its horizontal length. Rajaratnam (1960} re-
analyzed Essery and Horner’s data and proposed the onset of skimming flow on horizontal
stepped spillways as a new function of d/h and A/l. For the range of A/ from 0.4 to (.9, at the
onset of skimming flow d/# was approximately equal to 0.8. Chanson (1994) suggested a
critical value for occurrence of skimming flow as

i:l.057r—0.465£ (N
h !

Chamani and Rajaratnam (1999) developed an equation to predict the onset of
skimming flow on horizontal steps. Their equation is based on the assumption that skimming
flow begins when the jet leaving a step has a slope equal to that of the stepped chutes when it
impinges on the pool behind the jet on the next step. The main difference with Chanson’s
assumptions is that the air pockets under the jet still exist. Their equation for the onset of

skimming flow is

-1 -0 34
hu\/o.s{[-‘i) —[fi] +1.5}1 (2)
! 2 h

While Chinnarasri (2002) compared his experimental results on horizontal stepped

spillways with the data of other researchers and found that for the range of 4/ from 0.1 to 1.4,

the onset of skimming flow occurred when
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LA o_so(?] (3)

To investigate the onset of skimming flow on gabion stepped spillways the experimental data
obtained in the study are compared with the experimental results on gabion stepped spillways
conducted by Stephenson (1988) and Peyras et al. (1992). Summary of characteristics of
experimental studies are shown in Table 5. The relation between d/h and A/l are shown in
Figure 4. With a limited experimental data, a transition line between nappe flow and

skimming flow can be drawn and the equation of onset of skimming flow can be expressed as

—0.26
C;: > 0.61(?} (4)

3.2 Energy dissipation

In a skimming flow regime, the steps act as a large roughness channel. Most of the energy is
dissipated to maintain stable horizontal vortices beneath the pseudo-bottom formed by the
external edges of the steps. Generally, the energy loss through a stepped spiliway £; depends
on the total discharge per unit width of spillway g, the spillway drop height Hr, the step or
gabion height 4, the step length /, the stone diameter D, the slope of the spillway e, and the
gravitation acceleration g. These variables are shown in Figure 5 and can be expressed

functionally as
E, =~ fila. Hy b1 D g] (5)

Using Buckingham Pi theorem, the variables in Eq. (5) can be expressed in non-dimensional

form as
E 2 ‘
E_pl 4 H D (6)
i, gH, h h

The dimensionless term qu’( g’ ) is named as “spillway drop number”, the ratioc H, /A
is actually the number of steps in the spiliway and the ratio D/A is the relative stone height.
To include the effect of spillway slope the term qzl( gH ;) is multiplied by the dimensionless
term 4, whereas A is the spillway slope (i.e. 4 = tana = A7). It becomes a new dimensionless

term named as “modified spillway drop number, D, = qQAZ/( gH ;)

The relationships between measured energy loss on gabion stepped spillways and

modified spillway drop number are shown in Figure 6. The correlations between E,/H, and

D, Tor horizontal stepped spillways and gabion stepped spillways can be expressed as



E!

For horizontal stepped spillways: s 039D (7)
a
. . E, -0.05
For gabion stepped spillways: F =0.50D" (8)

T

[t is found that the flow energy is more dissipated in the gabion stepped spillways than
in the horizontal stepped spillways. As the water flows over the gabion stepped spillways, the
water is divided into two parts, i.e. flow over gabion boxes and flow through the gabion boxes
(base flow). In the base flow, the water can flow through the void between filled stones,
which results in reduc;tion of the impact of the mass of the water on the face of the spillway
steps. Small unstable vortices behind stones are observed, while more energy is required due
to the interference of wake and step face.

Generally, the energy loss ratios in the gabion stepped spillways are greater than those
in the corresponding horizontal stepped spillways by 10% approximately for all spillway
slopes. For low flow, the nape flow regime is observed while at high flow the skimming flow
occurs. The energy loss ratio varies inversely with the modified spillway drop number (D,,).
The energy loss ratio decreases sharply at small value of the modified spillway drop number.
The skimming flow pattern is observed as the modified spillway drop number increases
further, the rate of decrease of energy loss ratio is reduced and shows the trend to approach a
constant value.

In skimming flow regime, it is found that the flow energy is more dissipated in the
spillway of milder slope than the steeper one at the same drop number. For spillway of milder
slope, the step length (/) is longer than the step height (/) therefore the recirculating vortices
can not fill the entire cavity between the step edges and the wake from one edge interferes
with the next step. For steep slope, a stable recirculation in the cavities between adjacent steps
is observed. The energy loss is due to the circulation of these vortices.

To study the effect of the size of filled stone it is found that the flow energy can be more
dissipated by the bigger stone size than by the smaller one, within the range of this study. The
crushed stone could dissipate more energy than the rounded one. The gabion filled with
bigger stones has higher void ratio than the one filled with smaller stones. As some energy of
flow is dissipated in the void in the gabion, therefore the higher void ratio produces higher
rate of energy dissipation. However, the effect of stone size and shape seems to have little
influence on the energy loss as compared with increasing effect of spillway slope.

Similar to the energy dissipation, the flow velocity at the spillway outlet V¢ can be

expressed in dimensionless form as
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The velocity ratio (VT/ gH; ) increases directly with increasing spillway drop number

H.
=J; D,——[;,

|t

gH,

for every slopes and every gabion type as shown in Figure 7. As compared with the horizontai

stepped spillways, this ratio is smaller, which is the result of higher energy loss on the gabion.

The correlations between (VT/ gH;,.) and D, for horizontal stepped spillways and gabion

stepped spillways can be expressed as
VT

For horizontal stepped spillways:
gH,

:0.121n(Dm)+1.90 (10)

v,

JeH,

For gabion stepped spillways: =0.121n (Dm )+1.78 (1)

3.3 Pressure on the step face
In the uniform flow condition, the pressure on the step face should be influenced by the
impact force of the flowing water on the step face and the recirculating fluid trapped between
the step lips. Neglecting the effects of flow aeration, skin roughness. and the viscosity of the
fluid, dimensional analysis yields

}fi’ :ﬂ[gfj; ,a,?} (12)

{ l

where P is the pressure at a point on a slep, y is the specific weight of fluid, g is the
acceleration due to gravity, H; is the drop height measured from the spillway approach to the
step being considered, % is the step height, / is the step length, a is the slope of the spillway,

and x is the distance from the upstream end of the step to the point being considered. Term
Py H,) represents relative pressure on the step face and term qu[ gfl’ ) represents step drop

number.
Consider the maximum pressure at any distance, x, on a step face, the term

P/( yH ,.) becomes the relative maximum pressure on the step face. Hence Eq. (12) becomes:

‘Zr:n{ ‘Z!j (17)
yii, 841,

The relation of the maximum pressure on step face and step drop number of both

horizontal stepped spillways and gabion stepped spillways is good as shown in Figure §. The

sptllway slope is given in legend. The coefficients m and # for the case of horizontal stepped



spillways are 1.36 and 0.31 while the coefficients m and n for the case of gabion stepped
spillways are 0.85 and 0.29. The pressure acting on the step face for the gabion stepped
spillways is less than the pressure for the horizontal stepped spillways. The averaged pressure
difference is about 27%. It is due to the fact that the filled stones in thie gabions absorb the
fluid force acting on the step face by the seepage of fluid to the lower void of the mesh boxes.
As the void ratio of gabion boxes is correspondence to the size of filled stone, therefore
the impact of flowing water hitting the step face is higher for the case of bigger size of filled
stone. However, the rpagnitude of pressure is not much different.
3.4 Flow resistance of skimming flows under equilibrium condition
For the large roughness elements, there are two types of hydraulic resistance, i.e. skin
resistance and form resistance of the steps. In a stepped spillway, the skin roughness is less
compared to the form roughness of the steps. With gabion meshes, the rough surface of filled
stones and mesh boxes increase the flow resistance. In order to investigate the flow resistance
of skimming flows under uniform flow condition, the average shear stress that exists between
the skimming stream and the trapped recirculating fluid underneath can be expressed as
T:dﬂysina—g“p%'z (14)
where 7 is the average shear stress, d, is the normal flow depth, y is the specific weight of the
fluid, & is the slope of the step = tan’(/7), ¢ is the Darcy-Weisbach friction factor, p is the

density of the fluid, ¥V, is the constant mean flow velocity. Rearranging, Eq.(14) becomes,

- Rgshzadj (15)

q
where g is the acceleration due to gravity and ¢ is the discharge per unit width of the spillway.
Considering the concerning variables to the resistance to flow and by neglecting the effects of
flow aeration, the correlation of friction factor and tmportance parameters can be expressed in
dimensionless form as
1K, K ,

ngj[é,i,,a,}e,} (16)
where K is the form roughness, K is the skin roughness, and R. is the Reynolds number. The
dimensionless term K /d, is the relative roughness of the step dimension, K /d, is the
relative skin roughness. and / is the spillway slope (i.e. 4 = tana =4//7). Tt is found that at

high Reynolds number the friction factor is independent of the Reynolds number and the

spillway acts as a wholly rough channel. Therefore, Eq. (16) becomes



'k
¢ =7 [ai.d} (17)

The relation of friction factor and relative roughness of the spillway floor, K,/d,, where K=

h cosa, may be expressed in general form as:

i d
——a+b log| Lo (18)
sl

The relation between friction factor and relative roughness is plotted as shown in Figure 9.

The friction factors are quite scattered but show trend to increase when relative roughness
(K¢d,) and spillway slope increase. The Reynolds number R, = V,d/v, with v being the
kinematic viscosity of the fluid, was in the range of 6.2x10" to 1.5x10°. For the range of the
experiments in this study, the average friction factors of the horizontal stepped spillways,
for @ = 307, 45", and 60° are 0.63, 0.52, and 0.33, respectively. While the average friction
factors of the gabion stepped spillways, ¢, for ¢ = 307, 45°, and 60° are 2.07, 1.73, and 1.51,
respectively For the case of gabion stepped spillways, the friction factor is found higher than
that of the horizontal stepped spillways about 3.6 times.

Chinnarasri (2002) combined his experimental results of skimming flow over horizontal
stepped spillways and others researcher results and suggested that the coefticients @ and b in
Eq. (18) are 2.00 and 1.19, for the range of spillway slope from 15° to 59° and valid for 0.1 <
Kid, < 2.1 (the dash line in Figure 9). The experimental results of the present study on
horizontal stepped spillways are found somewhat higher than Chinnarasri (2002) results.
Based on the present experimental data, the correlations between friction factor and K/d, for

gabion stepped spillways can be expressed as:

4. 7.50+l.85[0g[;§" 1 (19)

V& )

4 Conclusions

Flow regimes on gabion stepped spillways are observed and can be classified as nappe flow
and skimming flow regimes. The onset of skimming flow is characterized by the relation of
critical depth/step height (d./h) and step height/step length (A/). The nature of step face
influences the cnergy dissipation process. Generally, the energy loss ratios in the gabion
stepped spillways are greater than those in the corresponding horizontal stepped spillways by
10%. As a result, the velocity at the outlet is less. The size and shape of filled stone have

small effects on the energy dissipation, within the range of investigation. The other

10



parameters, i.e. spillway slope and spillway drop number have been found to effect the encrgy

dissipation in the same manner as found in the horizontal stepped spillways.

The relationship among the maximum time-averaged pressure on step face and the step
drop number is proposed. The pressure acting on the step face for the gabion stepped
spillways is less than the pressure for the horizontal stepped spillways. The averaged pressure
difference is about 27%. It is due to the fact that the filled stones in the gabions absorb the
fluid force acting on the step face by the seepage of fluid to the lower void of the mesh boxes.

The average frif:tion factors of the gabion stepped spillways, £, for a = 30°, 45°, and 60°
are 2.07, 1.73, and 1.51, respectively. For the case of gabion stepped spillways, the friction
factor is found higher than that of the horizontal stepped spillways about 3.6 times.
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Lists of symbols

D stone diameter

D, modified spillway drop number

d.  critical depth of flow

d, normal flow depth

E; flow energy loss

g gravitation acceleration

H,  drop height measured from the spillway approach to the step being considered

Hr  total drop heights of the stepped channel

h step height

{ horizontal length

Ky form roughness

K;  skin roughness

£ pressure at a point on a step

g discharge per unit width of spillway

R, Reynolds number

¥,  constant mean flow velocity

V¢ flow velocity at the spillway outlet

a  slope of the stepped channel

Y specific weight of fluid

x distance from the upstream end of the step to the point being considered

T average shear stress

¢ Darcy-Weisbach friction factor

p density of the fluid

4 spillway slope (i.e. 4 =tana =h/1)
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Table 1. Primary details of experimental set A.

Experimental a Hr h 1 Run Q VT ds Maximum pressure head T%‘;‘:’:f
set (degree)  (m) {m} (m) MNo. /sy {m/sy (cm}) {cm)
H/h H/h H/h Hih
8 12 16 18
A-1 30 1.50 0075 0130 1 408 063 * * * * * Nappe
3 1229  1.7% * * * * * Nappe
5 2060 243 * * * * * Transition

7 2849 279 451 1260 1333 1330 1500 Skimming
9 3585 295 547 1460 1490 1500 1560 Skimming
1t 4421 313 579 1495 1630 16400 1690 Skimming
13 sL16 324 628 1570 1730 17.00 1790 Skimming
15 5899 335 682 1885 1908 1835 195 Skhimming

17 6804 343 716 2210 2090 2175 2120 Skimming

A-2 45 212 0106 0106 i 419 1.00 * * * * * Nappe
3 11.67 219 * * * * * Nappe
5 19.82 275 ¥ * * * * Transition
7 2849 330 * * * * * Trans:tion

9 3624 343 445 1760 1550 1590  15.05 Skimming
11 4421 362 476 18390 1690 169G 1693 Skimming
13 S5L16 380 525 1990 1850 1820 1755 Skimming
15 5846 390 588 2075 2020 2020 1960 Skimming

17 6804 405 639 2250 2210 2130 2030 Skimming

A-3 60 260 0130 0075 i 441 1.21 ¥ * * * * Nappe
3 11.88 237 * * ¥ ¥ * I'ransiticn
5 2038 3.le * * * * * Transition
7 27.81 354 * * * * * Transition
9 36.04 383 * * * * * Transition

11 4333 4101 401 b 1916 1840 1950 Skimming
13 5214 422 422 rE 2190 2030 2150 Skimming
15 5872 439 469 b 2310 2150 2200 Skhimming

17 6804 449 516 ** 2430 2260 2310 Skimming

* The flow is not in skimming flow regimes.

** The flow in skimming flow regimes but not uniform flow.



Table 2. Primary details of experimental set B.

Experimental o Hr h | Run Q VT dy Maximum pressure head r%‘::wm
set {degrze) (M) (m) (m) No. (/)  {mfs) (cm} {cm)
H/h H./h H,/h H/h
8 12 14 18
B-1 30 1.5¢ 0075  0.130 1 408 054 * * * * * Nappe
3 [2.2¢ 137 * * * * * Nappe
5 2066 203 * * * * * Transition

7 2849 245 7.21 [2.30 1030 950 10.50 Skiunming
9 3585 262 785 1310 1080 980 1080 Skimming
b1 4421 282 862 1430 1120 1650  L1.t0 Skimming
13 5116 29% 937 1480 1160 1120 1140 Skimming
15 5899 312 987 1550 1190 1160 1210 Skimnung

17 6804 3.9 1019 1610 12,10 1210 1280 Skimming

B-2 43 212 0106 0106 1 424 (66 * * * * * Nappe
3 1147 1.55 * * * * * Nappe
5 1954 235 * * * * * Transition
7 2071 286 * * * * * Transition

9 3684 313 682 1370 1270 1320 1260 Skimming
11 4377 3328 7.53 1440 1330 1370 13.60 Skimming
13 5092 344 814 §5.30 1360 1420 1410 Skimming
15 6004 354 836 1590  1:10 1570 1540 Skimming

17 6BO4 3.0l 897 1650 1540 1620 15390 Skimming

B-3 60 260 0130 0075 | %7 077 * * * * * Nappe
3 §2.29 200 * * * * * Transition
3 20,10 273 * * * * * Transution
7 2815 310 * * * * * Transition
9 36.04 338 * * * * * ‘Transition

Il 4465 358 6.88 ** 1230 1190 1170 Skimming
13 5214 370 734 b 1290 1260 1260 Skimming
13 6031 384 7.69 x 1320 13.40 1380 Skimming

17 6804 394 831 A 1400 1420 1430 Skimming

* The flow is not in skimming flow regimes.

** The flow in skimming flow regimes but not uniform flow.
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Table 3. Primary details of experimental set C.

Experimental o Hr h | Run Q VT do Maximum pressure head [;]I;;“f
set (depree)  (m} (m) (m} No. I8y (mfs} (cm) {cm)

Hi/h {I/h Iith H/h
8 12 16 18

C-1 30 1.50 0075 0.130 1 408 036 * * * * * Nappe

301229 149 * * * ¢ * Nappe

5 2095 215 * * * * * Transition

7 2849 250 715 1410 1050 1100 10.00 Sktmming

°] 3624 269 7.76 1490 1160 §1L50 1070 Skimming

11 4510 289 837 1590 1250 1170 1140 Skimming

13 sLe 3061 9.00 16.50 12.70 12.00 1180 Skimming

15 5625 312 9.74 12.50 1310 1250 1260 Sktmming

17 68.04  3.20 1048 18.20 13.60 13.10 13.10 Skimming

o C-2 45 212 loa  0.106 1 4.08 0.64 * * * * ® Nappe

3 1240 1.65 * * * * * Nappe

3 1038 243 * * * * * Transition

7 2936 289 * * ¥ * * Transiton

9 3565 3146 667 1190 1280 1370 1240
11 4333 329 7.45 1540 1340 1450 1380
13 5116 343 8.03 16,10 1420 1480 L5108
15 5978 3.60 8.41 1680 1510 1530 Inl0

17 68.04 372 8.87 18.00 1620 1590  17.80

Skimming
Skimming
Skimnung
Skimming

Skimming

C-3 60 260 0130 0075 1 441 0.89 * * * * *
3 1167 205 * * * * *
5 20010 281 * * * * *
7 2815 312 * * * * *
q 3624 341 * * * ¥ *

It 4421 363 651 ** L1110 1250 1290

13 5238 374 723 ¥ 1290 13.50 1360

15 60.04 388 7061 ¥+ 1420 £550  le.lb

17 6804 396 827 **® 16,30 [6.00 1650

Nappe
Transition
Transition
Transitzon
Transition
Skimming
Skimming
Skimming

Skimming

* The flow is not in skimming flow regimes.

** The flow in skimming flow regimes but not uniform flow.
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Table 4. Primary details of experimental set D.

Experimental a Liy h | Run Q vy da Maximum pressure head T};’;‘:’f
sgf {degrecy  {mi} (m) {m) No. {Usy  {mfsy {cm} (em)
Hi/h Hi/h H./h Hi'h
8 12 16 18
D-1 30 1.50 0075 0130 [ 419 049 * & * = * Nappe
3 1208 128 * * * * ? Nappe
5 1996 193 * * * * * Transition

7 2849 237 735 210 1020 1100 1210 Skimming
9 3624 2060 787 1330 1190 1160 1290 Skimming
1y 442y 277 857 1410 1320 1220 13386 Skimming
13 5068 287 940 14460 1460 E510 1530 Skimming
1§ 5872 302 989  i340 1520 1590 151D Skimming

i7 6804 312 1079 1610 1600 1660 16.60 Skimming

D-2 43 2,12 0106 0106 ] 4.08 0.63 * * * * « Nappe
3 1240 171 * * * * * Nappe
3 2038 232 * * * * * Transition
7 2936 275 * * * * * Transition

g 3565 295 476 1230 1360 1440 1360 Skimming
1 4333 315 743 1450 1320 1470 1470 Skimming
13 S1i6 335 783 1556 1600 1540 1590 Skimming
15 5078 347 838 1420 1760 1670 1630 Skimming

17 6804 358 853 1670 1790 1740 1820 Skimming

D-3 60 2,60 0.130 0.07% 1 4.08 0.80 * * * * hd Nappe
3 1229 2.06¢ * * = - * Transition
5 1927 275 * * * * * Transition
7 2798 308 * * * * * Transivon
9 3644 329 * * * * * Transition

11 4421 350 668 ** 1460 140 1440 Skimming
13 5165 362 718 ** 1570 1460  15.00 SKkimming
15 3951 382 774 b 1630 1540 1560 Skimming

17 6804 387 8§54 i 1760 1740 17.10 Skimming

* The flow is not in skimming flow regimes.

** The flow in skimming flow regimes but not uniform flow.
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Table 5. Summary of characteristics of experimental studies.

Ref. Flume  Slope Step Remarks
width  (deg.} height
{m} b (m)
Stephenson {1988) 0.38 18.4 0.15 1. Nuniber of steps = 4
26.6 0.15 2. Type of transition: Nappe to Skimming flow
45 0.15
Peyras et al. (1992) 0.80 184 0.20 1. Number of steps =3, 4, and 5
26.6 0.20 2. Discharge = 0.04 to 0.27 m*/s
45 0.20 3. Type of transition: Nappe to Skimming flow
Present study 0.40 30 0.075 1. Number of steps = 20
43 0.106 2. Type of ransition: Nappe to Transition flow aind
60 0.130 Transition to Skimming flow

17



Figure captions:

Figure 1 Schematic diagram of experimental set-up

Figure 2 Gabion dimension in millimeters

Figure 3 Flow regimes; a) nappe flow regime and b) skimming flow regime

Figure 4 Onset of skimming flow on gabion stepped spillways

Figure 5 Variabies in dimensional analysis

Figure 6 Relationship between energy dissipation on gabion stepped spillways and
modified spillway drop number

Figure 7 Flow velocity at spillway outlet and modified spillway drop number

Figure 8 Relationship between maximum pressure on steps and step drop number

Figure 9 Friction factor of skimming flows under equilibrium condition
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Abstract

Stepped chute is the important hydraulic structure for
drainage system of mountainous roads. It increases the efficiency of
energy dissipation and reduces outflow velocity causing a smaller
energy dissipation basin before water is released to the natural streams.
This paper presents the resulis of the experimental studies on the
hydraulics of flow on gabion stepped chutes. Gabions consist of rockfill
material enlaced by a mesh. They are local available, high stability and
low cost. The results of the study include type of flow on the structure,
pressure on step, and flow depth on the structure. It was found that the
pressure on step was less to 27 percent. Due to base flow through the
filled stones, the flow depth on gabion stepped chute was less than that

of horizontat stepped chutes. These result data are useful for the future

research and fundamentst design of gabion stepped chutes.
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Abstract

This paper presents the results of the cxperimental study on
the energy dissipation and outlet velocity on stepped channels with end
sills. The channels are 0.40 m wide and 3.0 m long with the slopes of
30", 45° and 60°, respectively. The step height is 5% of the channel
height.
respectively. It was found that the imporant variables affecting the

The heights of the end sill are 0.0, 0.5, 1.0 and 1.5 cm,

energy dissipation and outlet velocity were channel slope, Drop
number, and end sill. The energy dissipation decreased when Drop
number and the slope of the channel increased but increased when the

height of end sill increased. In contrast, the outlet velocity increased

when Drop number and the siope of channel increased. From these
results, the relations of energy dissipation and outlet velocity on stepped
channel and the important variables were formed with the R’ in the

ranges of 0.895 and 0.996.
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Flow through Gabion Stepped Spillways
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Abstract

This paper presents the results of the exberimenta! studies on the flow through the gabion stepped
spillways. The width of the gabion stepped spiliways is 0.40 m and the slopes of the gabion stepped spillways are
30°. 45", and 60° with total spillway drop height 1.50. 2.12. and 2,60 m. respectively. The step height is 5 percent
of the total spillway drop height. The discharge through the gabion stepped spiliwavs was varied from 4 10 68 /5. It
was found that nappe flow occurred at low flow rates, transition flow at intermediate discharges and skimming
flow at larger flow rates. The regimes of flow could be identified by the ratio of critical flow depth and step
height. The energy loss varied inversely with the modified drop number, i.e. energy loss increased when ﬁmdiﬁed
drop number decreased. As the energy loss of flow increased, the velocity of low at the spillway outlet decreased.
The energy of flow was dissipated more in the gabion stepped spillways than in the horizontal stepped spillways
about 10 percent. The velocity of flow at the outlet of the gabion stepped spillways was less than that of the

horizontal stepped spillways by about 14 percent.

Keywords : Stepped spillways / Gabions / Energy loss / Outlet velocity
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ABSTRACT

This paper presents the results of the experimental studies on the energy loss through
the stepped spillways with end sill. The slopes of the spillways are 30°, 45°, and 60°, with
total drop height 1.50, 2.12, and 2.60 m, respectively. The height of the end sill varies Tom
0 — 20% of the height of the step. As observed, the flow regime on a stepped spillway cun be
either a nappe flow or skimming flow regime. Nappe flow occurs at relatively small discharge
whereas at larger discharge skimming flow is found. Based on dimensional analysis, the
important parameters are analyzed and the relevant dimensionless parameters are formed. It
is found that the energy loss is strongly influenced by the spillway drop number and the slope
of the stepped spillways. As the spillway drop number increases the energy loss decreascs. In
addition, at the same spillway drop number the.energy loss in the milder stope is greater than
that in the steeper one.

KEYWORDS: Energy dissipation, stepped spillways, end sill

INTRODUCTION

Stepped spillway is an energy dissipator having profile made up of steps. These steps
significantly increase the rate of energy dissipation of the flow on the spillway face.
Therefore, the size of the energy dissipation basin at the spillway toe can greatly be reduced.

The first comprehensive work on stepped channels was made by Essery and H.ymor
(1978) and a numerous graphs useful for design were provided. A number of experinentai
studies on energy dissipation by stepped spillways were made (Sorensen, 1985, Rajaratnam,
1990, Diez-Cascon et al., 1991, Stephenson, 1991, Peyras et al., 1992, Christodoulou, 993,
Israngkura and Chinnarasri, 1994, and Pegram et al., 1999.)

For a given chute geometry, the flow pattern may be either nappe flow at low flow
rates, transition for intermediate discharge or skimming flow at larger flow rates. In the nappe
flow regime, the flow from each step hits the step below as a falling jet. The energy
dissipation is caused by the impact of the nappe on the step surface and by the turbu ence
created by dispersal of the nappe. A comparative study of energy dissipation between r appe
and skimmimg flow regimes on stepped chutes was made by Chanson (1994) and equstions
for estimating the energy loss of both nappe and skimming flow were introduced.

In the skimming flow regime, the water flow down the stepped face as a coherent
stream skimming over the step lips and cushioned by the recirculating fluid trapped between
them. Air entrainment generally occurs and enhances the flow turbulence. The energy
dissipation appears to be resulted mainly from the momentum transfer from the air entriined
stream to the recirculating fluid trapped undemneath.
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It was reported by Chinnarasri (2002) that the nappe flow would occur when

d L]
T" < 0.98(0.55)! (1)
and the skimming flow would occur when
Q.22
9 5 0.80(2 (2)
h I

*

where d, is the critical depth, 4 is the step height, and / is the step length. Generally, re ative
energy loss may be calculated based on the flow depths or flow velocities and it was not less
than about 40%. This information may be applied to determine the proper dimensions of a
stepped spillway and its energy dissipator to accommodate the design flow rate.

An experimental study on the energy dissipation comparison among the steped
channel, drop, and block ramp structures was reported by Peruginelli and Pagliara (2000). For
the case of stepped channels different step types were used: plain steel steps, rough step:, and
plain step with end sills of 0.025x0.025 m. The total drop height was 1.574 m with channel
slope of 1V:2H. It was found that the presence of the end sill increases the energy dissipation
process about 0 — 4 % for the case of nappe flow but the rate of cnergy dissipation of both
nappe and skimming flow was not mentioned.

As the knowledge of how much the stepped spillway with end sill increases the eiergy
dissipation is still limited, therefore, it is the objective of this study to investigate thrugh
experiments on the rate of energy dissipation of flow through the stepped spillways with
varied height of end sill.

DIMENSIONAL ANALYSIS
In any flow regime, the energy loss through a stepped spillway E; depends on the
discharge per unit width of spillway g, the spillway drop height Ay, the step height A, the end

sifl height a, the slope of the spillway ?, and the gravitation acceleration g. These variables
are shown in Fig. 1. They could be expressed functionally as:

E = flq.H; ha,a,g] ) 3)

Erengy he

Fig. 1 Variables in dimensional analysis
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Using Buckingham Pi theory, the variables in Equation (3) can be expressed in non
dimensional form as:

E, qz H,

a
- T ooar T, 1 s 44 4
H, g’ h Tk | )

Similarly, the remaining kinetic energy at the spillway outlet can be expressed in
dimensionless velocity ratio as:

=j;[

Vr q H,
gH, gH?  h

, % o] (5)

where Vr is the flow velocity at the spillway outlet. The dimensionless term ¢° /(gH;) is
named as “Spiilway Drop Number”, the ratio H,/h is actually the number of steps in the
spillway, and the ratio a/ 4 is the relative height of end sill.

EXPERIMENTS

The experimental setup is as shown in Fig. 2 Water was pumped from a laboratory
sump to the V-Notched weir tank from which water entered the stepped spillway through an
approach channel. At the bottom of the stepped channel, a horizontal outlet conveyed the
water back to the sump. The discharge, measured by the V-Notched weir tank, was varied
from 4 — 68 Vs.

\V-Notched Approach Outtet
weir tank channel channel

I | | \faried

Stepped spilvay

" l
Q =
a | _/ I
See detxils Tatal drap height(H)
Varied
|
9?]) Spilway slape, & =~
Fromsump
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e

ool

Fig. 3 Step dimension in millimeters

The measurements of depth and velocities in the spillway outlet were made at about 3-
4 times of the step length away from the lowest step face where turbulence and air
entrainment effect became less violent. The depths across the chute width were measured by a
vernier-depth gauge. The velocities were measured by two methods, first by a pitot tube and
second by dividing the flow rate by the-measured flow area. The values obtained were within
10% differences. In calculating the energy loss the velocity obtained from the first method
was used.

The depths in the chute were measured vertically from the step tips to the water
surface by a vernier-depth gauge and by a scale attached on the side wall at each step. For
conditions where skimming flow occurred, these depth included air entrainment effects. For
nappe flow condition, the flow normally appeared as a free jet falling from upper step to hit
on the adjacent lower step successively but at some locations the jet went far beyond the
adjacent lower step. The depths as measured by this method thus indicated the upper nappe
profiles or the apparent water surface profiles instead of the true depth of flow.

RESULTS AND DISCUSSION

The appearances of nappe flow (NF) and skimming flow (SF) in the experiments are
as shown in Fig. 4. The relationships between the energy loss ratio E;/Hr and the spiliway
drop number g*/gHy’ at different spillway slope o and different end sill height ratios a/ are
shown in Fig. 5.

Fig.4 Nappe fiow (feft) and skimming flow (right} on stepped spillway with end sitl
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It could be seen that in every case the energy loss ratio decreases as the spillway drop
number increases. According to the criteria for nappe flow and skimming flow regimes on
plain bed stepped spillways as proposed by Chinnarasri (2002), it could be observed th:t the
variations of £;/Hr with ¢°/gHy’ in different flow regimes are distinctively different.

In the nappe flow regime where the spillway -drop number is very low, Fy/Hr
decreases rapidly as ¢’/gHy’ increases and the ratio a/ has very little effects upon F1/Hr
especially for the spillway of milder slope. The presence of the end sill increases the erergy
dissipation less than 3 %. As most of the flow energy is dissipated due to jet breakup ard jel
mixing on the step and the formation of hydraulic jump on the step. However, it is obsurved
that the appearance of end sill is not much influence to the characteristics of jet and hydraulic
jump on the step.

In the skimming flow regime, E;/Hr gradually decreases toward a constant value as
q"/gHrj increases. In this regime the effect of a/h on E;/Hr can evidently be observed th:t the
higher a/h produced the greater E/Hr. The presence of the end sill increases the ensigy
dissipation about 8 %. It is due to the fact that as a/h increases, the recirculation vortices are
well trapped on the spillway steps. They are more stable than those in the smaller a/h ratio.
More energy is therefore required to maintain these stable recirculation vortices.

As for the effect of spillway slope, it could be observed that at the same value of a/h
and the same ¢*/gHy’, the milder slope spillway produced greater energy loss. At the hishest
g*/gHy’ being observed which skimming flow was fully established, the value of Ey/Hr for
a/h = 0 (no sill) to a/k = 0.20 for 30° slope varied from 0.67 to 0.7G while at 45° anc. 60°
slopes this ratio varied from 0.66 to 0.74 and from 0.68 to 0.77 respectively.

The relationships between the kinetic energy at the spillway outlet V;/(gHr)o‘j and the
spillway drop number g’/gH;’ are as shown in Fig. 6. The region of nappe flow and
skimming flow regimes are presented based on the spillway drop number correspondirg to
Fig. 5. The kinetic encrgy ratio increases almost linearly with ¢’/gHy’ and agrees reasorably
well with the variation of £,/Hr with ¢”/gHy’. As the energy loss decreases when ¢”/gHy
increases, the remaining kinetic energy at the spillway outlet increases.

In the nappe flow regime, the kinetic energy at the spillway outlet for all case:. are
small and they are almost the same because most of the flow erergy are dissipated alon;; the
stepped spillway. In the skimming flow regime, the kinetic energy at the spillway outlet for
the presence of the end sill is less than that for the plain stepped spillway because more flow
energy is dissipated.
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CONCLUSIONS

The conclusions from this investigation can be made as follows:

1) Flow occurrences on stepped spillway with end sill, as well as the plain bed stepped
spillway, can be categorized into two main flow regimes, i.e., the nappe flow and
the skimming flow regimes.

2} Under the same flow conditions and the same step geometry, the stepped spillway
with end sill could produce more energy loss than the plain bed one especially in
the skimming flow regime. As the end sill height increases, the energy loss
increases.

3) Stepped spillway with end sill which laid at a milder slope yields the energy loss
greater than the steeper one.

4) The spillway drop number ¢°/gHy’ has a very strong influence on the energy loss.
In the nappe flow regime, the energy loss decreases rapidly when drop number
increases. However, this decreasing rate is less and approaches a constant value
when the flow is in the skimming flow regime.
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Abstract

This paper presents the results of the experimental studies on the energy loss
through the stepped gabion spillways. The slopes of the gabion spillways are of
30°, 45°, and 60° with total drop heights 1.50, 2.12, and 2.60 m, respectively.
Based on dimensional analysis, the important parameters are analyzed and the
relevant dimensionless parameters are formed. It is found that the energy of flow
is more dissipated in the stepped gabion spillways than in the plain stepped
spillways. The energy loss is influenced by the spillway drop number, the slope of
the stepped spillways, and the size of filled stones. At the same spillway drop
number, the energy loss in the milder slope is greater than that in the steeper one.

Keywords: Energy loss, stepped spillways, gabion.

Introduction

Stepped spillway is a steep channel, which its floor is built up of a series of steps.
Besides the ease of construction and maintenance, one of its advantages over the
plain bed spillway is that more of the flow energy could be dissipate through it.
As a result the flow leaves the stepped spillway at a lower velocity and a smaller
size of energy dissipator could be used. The first comprehensive work on plain
stepped channels was made by Essery and Hornor [1] and a numerous graphs
useful for design were provided. A number of experimental studies on energy
dissipation stepped spillways were made [2-8].

Recently, new construction materials e.g. gabions and design techniques
have increased the interest in stepped chutes and spillways. Generally, gabions are
used for building small retaining structures such as small gabion weirs, channel
linings, and supporting parts of small earth dams.

Although a lot of research has been conducted on hydraulics of flow
through stepped chutes and spillways, the hydraulics of flow through gabions has
received less attention. Few research works on energy dissipation over stepped
gabion structures was made by [9-10] and simple relationships of energy loss and
drop number were provided. However, no comparison between plain stepped
spillways and stepped gabion spillways was reported.

Therefore, the objective of the study is to conduct a new experimental test
on the stepped gabion spillways in order to investigate the rate of energy
dissipation of flow and to compare the energy loss between the plain stepped
spillways and steppe 1 gabion spillways.
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Data Reduction

Gabions are hexagonal mesh boxes filled with small sizes of stones. Their
advantages as construction materials are: 1) their stability, 2) low cost, 3)
flexibility, and 4) porosity. The porosity of gabions is an important characteristic
preventing the building up of uplift pressures.

When water flows over a gabion structure, the flowing water can be divided
into two parts, i.e. base flow through the void between the filled stones and
overflow on the gabion structure. The amount of base flow depends on the
dimensions of gabions, the porosity, and the type of flow regime. Typically the
step height equals the height of the gabion. The stone size of the rockfill is equal
at least 1 to 1.5 times the mesh size but should not be larger than 2/3 of the
minimum dimension of the gabion. With these dimensions, the flow pattern may
be either nappe flow at low flow rates, transition for intermediate discharge or
skimming flow at larger flow rates.

In any flow regime and by neglecting the effect of base flow, the energy loss
through a stepped spillway £; depends on the total discharge per unit width of
spillway ¢, the spillway drop height Hr, the step or gabion height /4, the stone
diameter D, the slope of the spillway «, and the gravitation acceleration g. These
variables are shown in Figure 1. They could be expressed functionally as:

EL=.f1[q5HT=h’Dalsg] (1)
Energy line
_'——"‘7'-"-'_:________ ________________ g——="
\-.
\\
\~G’Js,

fillag stones

dr —»q, VT

Impervious layer - T

Figure 1. Variables in dimensional analysis

Using Buckingham Pi theory, the variables in Equation (1) can be expressed in
non-dimensional form as:

2

E
'_L=f2 [L

H. D
3 Ts_sa] (2)
H, gH, h h

in which a is the tan™ (4/)
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Similarly, the flow velocity at the spillway outlet ¥r could be expressed as:
Vy gt H, D

= T, T, s &
gh; fs{gHJ:1 h " h

] €)

2
q
3
T

The dimensionless term is named as “Spillway Drop Number”, the ratio

H . . . .
TT is actually the number of steps in the spillway, and the ratio % 1s the relative

stone height. °

Experiments

An outline of the experimental arrangement is shown in Figure 2. Water was
pumped from a laboratory sump to the V-notched weir tank from which water
entered the stepped spillway through an approach channel. At the bottom of the
stepped channel, a horizontal outlet carried the water back to the sump. The
discharge was measured by the V-notched weir tank. The discharge was varied
from 4 — 68 I/s.

V-Notched Approach Stepped gabion Outlet
weir tank  channel spillway channel
’ I Varied » l < .l
Q —-

T

Total drop height (H 1)
Varied

> L

; T S
See details

( P ) Spiliway slope, o

From sump

Figure 2. Experimental set-up

The stepped spillways are made of plexiglass having widths of 0.40 m and
consist of 20 steps. The slope of the stepped channel, «, are 30°, 45°, and 60°. The
total drop height of the stepped channel, Hy, are 1.5, 2.12, and 2.60, respectively.
The dimensions of the step can be defined as 4/, where 4 is the step height and /
is its horizontal length. Each step, gabion boxes filled with stones are placed on
the step face. The volume of the gabion boxes are (A} x ({} x (spillway width).

To investigate the effect of filled stones, three types of stones are used, i.e.
i) crushed stone of 25-35 mm diameter, ii) rounded stone of 25-35 mm diameter,
and iii) crushed stone of 50-70 mm diameter, The average void ratios of gabions
are 0.27, 0.30, and 0.39, respectively. Figure 3 shows gabion dimension.
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Figure 3. Gabion dimension in millimeters

The measurements of depth and velocities in the spillway outlet were
measured at about 3-4 times of the step length away from the lowest step face
where turbulence and air entrainment effect became less violent. The depths
across the chute width were measured by a vernier-depth gauge. The velocities
were measured by two methods, first by a pitot tube and second by dividing the
measured flow area. The value obtained were within 10% differences. In
calculating the energy loss the velocity obtained from the first method was used.

Results and Discussion

The relationships between measured energy loss on stepped gabion spillways and
spillway drop number at various spillway slopes are shown in Figure 4. It is found
that the energy of flow is more dissipated in the stepped gabion spillways than in
the plain stepped spillways. As the water flows over the stepped gabion spillways,
the water is divided into two parts, i.e. flow over gabion boxes and flow through
the gabion boxes (base flow). In the base flow, the water can flow through the
void between filled stones, which results in reduction of the impact of the mass of
the water on the face of the spillway steps. Small unstable vortices behind stones
are observed, while more energy is required due to the interference of wake and
step face.

Generally, the energy loss ratios in the stepped gabion spillways are greater
than those in the corresponding plain stepped spillways by 10% approximately for
all spillway slopes.

For low flow, the nape flow regime is observed while at high flow the
skimming flow occurs. As spillway drop number approaches zero, the flow
pattern is of nappe regime and the energy loss ratio approaches unity. Most of the
flow energy is dissipated in the nappe flow regime because of jet breakup and jet
mixing on the step and the formation of hydraulic jump on the step.

The energy loss ratioc (E, /H,) varies inversely with the spillway drop

number (q2 / gH,’. ) The energy loss ratio decreases sharply at small value of the

spillway drop number. The skimming flow pattern is observed as the spillway
drop number increases further, the rate of decrease of energy loss ratio is reduced
and shows the trend to approach a constant value.

For high flow, it is found that the flow energy is more dissipated in the
spillway of milder slope than the steeper one at the same drop number. For
spillway of milder slope, the step length (/) is longer than the step height (/)
therefore the recirculating vortices can not fill the entire cavity between the step
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edges and the wake from one edge interferes with the the next step. For steep
slope, a stable recirculation in the cavities between adjacent steps is observed. The
energy loss is due to the circulation of these vortices.

Within the range of this study, it is found that the flow energy could be
more dissipated by the bigger stone size than by the smaller one. The crushed
stone could dissipate more energy than the rounded one. The gabion filled with
bigger stones has higher void ratio than the one filled with smaller stones. As
some energy of flow is dissipated in the void in the gabion, therefore the higher
void ratio, the higher rate of energy dissipation. However, the effect of stone size
and shape seems to have little influence on the energy loss as compared with
increasing effe:ct of spillway slope.

The velocity ratio (Vr /JegH T) increases directly with increasing spillway
drop number for every slopes and every gabion type as shown in Figure 5. As
compared with the plain stepped spillways, this ratio is smaller, which is the result
of higher energy loss on the gabion.
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Figure 4. Relationship between energy dissipation on stepped gabion spillways
and spillway drop number at various spillway slopes

0
o »
- 30° "::',' L/ 60° ‘,/
or o ,"f 0y .‘/
- + "" o F e
‘e
gHr o . ‘! + .‘ !
™ .
@ o ) : ¢ M
w2 ' l +
wf ¢ ' "
w —_—
it e [ b T o g il s L g o o' o
-]
4 Plain m Gabion | A Gabton I[ & Gabion I'{

Figure 5. Flow Velocity at spillway outlet and spillway drop number
at various spillway slopes
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Conclusions

This paper presents the new experimental data to investigate the energy loss
through stepped gabion spillways. From the study, the following conclusions are
obtained:

1. Generally, the energy loss ratios in the stepped gabion spillways are
greater than those in the corresponding plain stepped spillways by 10%
approximately for all spillway slopes. As a result, the velocity at the outlet
is less.

2. The size and shape of filled stone have small effects on the energy
dissipation, within the range of investigation.

3. The other parameters, i.e. spillway slope and spillway drop number have
been found to effect the energy dissipation in the same manner as found in
the plain stepped spillways.
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