บทคัดย่อ

รหัสโครงการ

MRG4580039

ชื่อโครงการ

การพัฒนาแบบจำลองโดยใช้ Damage Mechanic เพื่อทำนายพฤติกรรมของ คอนกรีตภายใต้แรงกดทั้งแบบคงที่ (Static) และ แบบอัดกระแทก (Impact)

ชื่อนักวิจัยและสถาบัน ดร. ปิติ สุคนชสุขกุล

ภาควิชาวิศวกรรมโยชา สถาบันเทคโนโลยีพระจอมเกล้าพระนครเหนือ

Email address

piti@kmitnb.ac.th, piti sk@hotmail.com

ระยะเวลาโครงการ

1 ปี

การศึกษาครั้งนี้เป็นการนำทฤษฎี Damage Mechanics มาประยุกต์ใช้ในการหาค่าความเสียหาย (Damage) ที่เกิดขึ้น เพื่อนำมาสร้างแบบจำลองใช้ในการทำนายพฤติกรรมของคอนกรีตภายใต้แรง กระทำแบบคงที่ (Static) และแบบอัตกระแทก (Impact) ทฤษฎี Damage Mechanics เป็นทฤษฎีที่ ค่อนข้างง่ายและไม่ซับซ้อน มีความสามารถในการอธิบายพฤติกรรมของคอนกรีตโดยอาศัยตัวแปรเพียง หนึ่งตัวที่เรียกว่าความเสียหาย (D) แนวทางในการหาความเสียหายของคอนกรีตนั้นมีมากมายหลายวิธี ที่นำมาใช้ในการศึกษาครั้งนี้มี 2 แนวทางขึ้นกับประเภทของแรงกระทำ ในกรณีของคอนกรีตรับแรง กระทำแบบคงที่ เราใช้แนวทางที่เรียกว่าการเปลี่ยนแปลงของค่าโมดูลัสยึดหยุ่น (Variations of E) ส่วนในกรณีของคอนกรีตรับแรงกระทำแบบกระแทก แนวทางที่นำมาใช้คือการเปลี่ยนแปลงของอัตรา การเครียด (Variations of Strain Rate)

เราพบว่าระดับความเสียหายของคอนกรีตที่จุดสูงสุดนั้นสัมพันธ์โดยตรงกับอัตราการเค้น (Stress Rate) โดยเราพบว่าระดับความเสียหายของคอนกรีตจะสูงขึ้นตามการเพิ่มขึ้นของอัตราการเค้น นอกจากนี้ แบบจำลองที่ได้ในทั้งสองกรณีสามารถทำนายพฤติกรรมของคอนกรีตได้ในระดับหนึ่ง เปรียบเทียบกับพฤติกรรมจริงของคอนกรีตที่ได้จากการทดลองจะมีความแม่นยำช่วงต้นและช่วงปลาย ส่วนในช่วงกลางจะทำนายได้ต่ำกว่าความเป็นจริง ทั้งนี้เชื่อว่าสาเหตุน่าจะมาจากการที่ทฤษฎีของ Damage Mechanics นั่นเองที่ละเลยและไม่สามารถจับพฤติกรรมของคอนกรีตที่ความซับซ้อนในระดับ อนุภาคได้

ABSTRACT

Project Code

MRG4580039

Project Title

Development of Damage Mechanics Model to Predict Compressive

Response of Concrete under both Static and Impact Loading

Investigator

Dr. Piti Sukontasukkul

Department of Civil Engineering,

King Mongkut's Institute of Technology-North Bangkok

Email address

piti@kmitnb.ac.th, piti sk@hotmail.com

Project Period

1 year

In this study, the theory of Damage Mechanics was used to determine the damage and create a model to predict the behaviour of concrete under both static and impact loading. The theory of Damage Mechanics is known to its simplicity to describe the behaviour of loaded concrete using a single dimensionless parameter called D (Damage). There are several ways to determine damage. In this study, depending on the type of loading, damage was determined using two different approaches: in the case of static loading, the approach called 'Variation of Elastic Modulus (E)' was used, and in the case of impact loading, the 'Variation of Strain Rate' approach was used.

Results indicated that the damage of concrete was, in fact, a rate of loading dependent. The level of damage at the peak was found to increase with increasing rate of loading. The responses of concrete obtained from the proposed models were found to agree fairly well to the actual responses. However, the models seemed to under-predict the response of concrete in the mid-range. One reason is believed to be because of the fundamental of the theory of Damage Mechanics itself that ignore the complexity of the microstructures of concrete during loading.