

Abstract

Project Code: MRG4580042

Project Title THE EFFECT OF THIN ADHESIVE LAYER TO THE DISTORTION AND
FATIGUE OF RIVETED LAP JOINT

Investigator: Thongchai Fongsamoot¹ Thawan Sucharitkul¹, and Carol Rubin²

¹Department of Mechanical Engineering, Chiang Mai University, Thailand 50200,

²Department of Mechanical Engineering, Vanderbilt University, 37202 USA,

E-Mail Address: thongchai@dome.eng.cmu.ac.th

Project Period: July 1st 2002 – Aug 31st 2004 (2 years and 2 months)

Introduction: Riveted lap joints are widely used to assemble complex structures, e.g. aircraft fuselages. In previous studies, it was showed that the stress concentration factor for single row riveted lap joints was found to be approximately 6.48. And the SCF was reduced to 5.12 when the thin sealant layer was applied to the interface surface of joints. Therefore, in this study, the effect of epoxy adhesive layers was been investigates. The adhesive stiffnesses were varied in FEA analyses to determine their affects on the joints. FEA results were compared with the experimental results to verify the results.

Methodology: 1 Testing for the adhesive properties. Two kinds of epoxy adhesive (Araldite "High performance" Standard Epoxy Adhesives and Araldite "High Strength" Epoxy Adhesives) were selected and tested. 2.FEM modeling. A 3-D finite element model of a single rivet row non-countersunk combined adhesive-riveted lap joint of riveted lap joints with and without adhesives was created. 3. Testing the adhesive riveted lap joints. Experiments were performed on combined adhesive-single row, 3-rivet lap joint test pieces with and without adhesives.

Results, Discussion and Conclusion: The results showed that the maximum tensile stress decreases with increases with adhesive stiffness. From the results, the SCFs increase when the adhesive stiffness is decreased. Decreases in SCFs may be caused by a reduction in bending stress due to the adhesive layer holding the panels close together. The end separation is the distance between the panels at the end of the overlap. When the end separation is small, the bending angle is small; this causes the bending stress to be small as well. With a stronger adhesive, (Araldite Standard) the end separation is very small and so is the minimum peak tensile stress. The agreement between the experimental results and the finite element analyses values provides validation for the finite element and TALA analyses. Finally, the results show that the SCFs were related to the fatigue life of the combined adhesive-riveted lap joints. If the SCFs were increased, the fatigue life of the joints was decreased.

Keywords: Riveted lap joints, Adhesive lap joints, FEM

บทคัดย่อ

รหัสโครงการ: MRG4580042

ชื่อโครงการ ผลของขั้นความบางต่อการเสียรูปและการลักษณะของรอยเชื่อมต่อแบบหมุดข้าม

ชื่อนักวิจัย: นางชัย ฟ่องสมทร¹ ตะวัน สุจิติกุล¹ และ คาร์ล รูบิน²

¹ ภาควิชาบริหารธุรกิจ คณะบริหารศาสตร์ มหาวิทยาลัยเชียงใหม่ 50200

² ภาควิชาวิศวกรรมเครื่องกล คณะวิศวกรรมศาสตร์, Vanderbilt University, 37202 USA,

E-Mail Address: thongchai@dome.eng.cmu.ac.th

Project Period: 1 กรกฎาคม 2545 – 31 สิงหาคม 2547 (2 ปี 2เดือน)

บทนำ: การเชื่อมต่อด้วยวิธีหมุดข้าม เป็นที่นิยมอย่างแพร่หลายในการประกอบชิ้นส่วนโครงสร้าง เช่น ในงานประกอบเครื่องบิน ในงานก่อหนาแน่น ค่าความหนาแน่นของความเค้นสำหรับรอยต่อแบบใช้หมุดข้ามอยู่ที่ประมาณ 6.48 และ ค่า ค่าความหนาแน่นของความเค้นลดลงเหลือ 5.12 เมื่อมีการทาด้วยสารอุดรอยร้าวทางที่บริเวณผิวสัมผัสทึบหมุด ดังนั้นในงานนี้ ผลของชั้นการอีพอกซี่บางจะถูกทำการศึกษา ค่าความเบ่งแรงของการถูกเปลี่ยนและใช้ระเบียบวิธีไฟฟ้าในตัวอิเล็กทรอนิกส์ทำการวิเคราะห์ผลของชั้นการต่อรอยต่อ ผลจากการวิเคราะห์โดยใช้ระเบียบวิธีไฟฟ้าในตัวอิเล็กทรอนิกส์จะถูกนำไปทำการทวนสอบกับผลที่ได้จากการทดลอง

วิธีทดสอบ 1. ทดสอบคุณสมบัติของการอีพ็อกซี่ส่องชนิด (อารัลไดท์แสตนดาร์ท และ อารัลไดท์สตีล) ถูกเลือกในการทดสอบนี้ 2. แบบจำลองไฟไนต์อิลิเม้นต์ แบบจำลอง 3 มิติ ของรอยต่อใช้หมุดขี้ม้า แบบหัวธรรมาร่วมกับขั้นการจะถูกสร้างขึ้น 3. ทดสอบชิ้นงานตัวอย่าง การทดสอบจะทำการทดสอบชิ้นงานทดสอบที่ประกอบด้วยหมุดขี้ม้า กับมีขั้นการ และ ไม่มีขั้นการ

ผลการทดสอบ วิจารณ์ผล และสรุปผล จากผลลัพธ์แสดงให้เห็นว่าค่าความเค้นสูงสุดมีค่าลดลงเมื่อมีการเพิ่มความแข็งแรงของชั้นกาว ผลลัพธ์ยังแสดงให้เห็นว่าค่าสัมประสิทธิ์ความหนาแน่นของความเค้นจะมีค่าเพิ่มขึ้นเมื่อค่าความแข็งแรงของการลดลง การลดลงของค่าสัมประสิทธิ์ความหนาแน่นของความเค้นอาจเกิดจากการลดลงของความเค้นด้วย เนื่องจากแผ่นแนวตั้งกันมากขึ้น คุณระยะเปิดที่ขอบ เมื่อระยะเปิดที่ขอบมีน้อยลงบิดกันน้อยลง ทำให้ค่าความเค้นดันน้อยลง และเมื่อมีการเพิ่มความแข็งแรงของชั้นกาว (ารัล ไดท์สแตนดาร์ท) ระยะเปิดที่ขอบน้อยลง ทำให้ค่าความเค้นมีค่าขึ้นเมื่อยิ่งที่สุด ผลการเปรียบเทียบแสดงถึงความสอดคล้องกันระหว่างผลที่ได้จากการทดสอบและจากวิธีไฟโนต์อีลิเมนต์ สุดท้ายผลลัพธ์แสดงให้เห็นว่าค่า สัมประสิทธิ์ความหนาแน่นของความเค้นมีค่าสัมพันธ์กับอายุการใช้งานของรอยต่อ โดยถ้าค่าสัมประสิทธิ์ความหนาแน่นของความเค้นมีค่าสูงขึ้น อายุการใช้งานจะลดลง

Keywords: Riveted lap joints, Adhesive lap joints, FEM