Abstract

Project code:

MRG4580031

Project Title:

Investigation for the Role and Significance of Tandem Repeats within

Mycobacterium tuberculosis leuA Gene

Investigator:

Wimon Chanchaem ^a and Prasit Palittapongarnpi

^a Department of Biology, Faculty of Science, Ramkhamhaeng

University, Huamark, Bangkapi, Bangkok 10240, Thailand.

^b Department of Microbiology, Faculty of Science, Mahidol

University, RamaVI Rd, Phayathai, Bangkok 10400, Thailand.

E-mail Address: wimolc@hotmail.com

Project Period:

2 years

In order to investigate for the role and significance of tandem repeats within Mycobacterium tuberculosis leuA gene encoding alpha-isopropylmatate synthase (α -IPMS), we compared the properties of native α -IPMS and mutated α -IPMS of which the 2 copies of 57 bp repeats has been deleted. By using mutagenic PCR procedure, we successfully constructed a recombinant plasmid of pET15 b expression vector carrying the mutated gene. Optimum expression conditions were studied and properties of gene products were compared. Mutated gene was optimally amplified at 64°C annealing temperature and well expressed in Escherichia coli BL21(DE3) at 25° C for 3-6 hrs using isopropylthio - β galactoside at the final concentration of 0.5 mM as inducer. Properties of both native and mutated enzymes were compared. The results showed that with deletion of the 2 copies of 57 bp tandem repeats, the mutated leuA can well expressed to a functional mutated α -IPMS. The basic properties of mutated α -IPMS was similar to the native α -IPMS. Mutated α -IPMS was smaller, corresponding to the deleted 2 copies of 19 amino acids repeats and the native form of the enzyme was also dimer. The optimal temperature and optimal pH for enzyme activity was between 30°-50° C and 7.5 respectively. The stability of mutated α -IPMS also similar to the native α -IPMS. Upon the studies, significant differenes was not observed between the two types of enzyme. These results showed that the 2 copies of 57 bp tandem repeats may have no effect on leuA expression and α -IPMS basic properties.

Keywords: tandem repeats, alpha-isopropylmalate synthase, leuA, Mycobacterium tuberculosis

บทคัดย่อ

รหัสโครงการ: MRG4580031

ชื่อโครงการ: การศึกษาบทบาทและความสำคัญของ Tandem Repeats ภายในยืน *leuA* ของเชื้อ

วัณ โรค

ชื่อนักวิจัย: วิมล จันทร์แจ่ม 1 และ ประสิทธิ์ ผลิตผลการพิมพ์ 2

่ ภาควิชาชีววิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยรามคำแหง หัวหมาก

บางกะปี กรุงเทพฯ 10240

 2 ภาควิชาจุลชีววิทยา คณะวิทยาสาสตร์ มหาวิทยาลัยมหิคล ถนนพระราม 6

พญาไท กรุงเทพฯ 10400

ระยะเวลาโครงการ: 2ปี

ในการศึกษาบทบาทและความสำคัญของส่วน tandem repeats ในยืน leuA ซึ่งกำหนดการสร้าง เอนไซม์ alpha-isopropylmalate synthase (α -IPMS) ของเชื้อ Mycobacterium tuberculosis ได้ทำการ เปรียบเทียบคุณสมบัติเบื้องค้นของเอนไซม์คังกล่าวที่เตรียมจากยืน leuA ปกติและที่เตรียมจากยืน leuA ที่ได้คัด ส่วน tandem repeat ซึ่งยาวชุดละ 57 คู่เบสจำนวน 2 ชุด ออกโดยวิธี mutagenic PCR โดยยืน leuA ทั้ง 2 แบบได้ถูกเชื่อมต่อเข้ากับ expression vector pET15b และทำการสร้างเอนไซม์ในแบคทีเรีย Escherichia coli สายพันธุ์ B L 21(DE3) ซึ่งจากการปรับหาสภาวะที่เหมาะสม พบว่าเอนไซม์ทั้ง 2 แบบถูกสร้างได้ดี เมื่อใช้สาร isopropylthio- β -galactoside ที่ความเข้มข้น 0.5 มิลลิโมลาร์ ในการกระคุ้นการทำงานของยืน และใช้อุณหภูมิ 25° ช เป็นเวลา 3-6 ชั่วโมง ผลการศึกษาพบว่ายืน leuA ที่ถูกตัดส่วน tandem repeats ออก สามารถกำหนดการ สร้าง α -IPMS ที่มี activity เทียบเท่าเอนไซม์ที่สร้างจากยืนปกติ โดยที่ mutated α -IPMS มีคุณสมบัติพื้นฐาน ใกล้เคียงกับเอนไซม์ปกติ ซึ่งได้แก่ อุณหภูมิ และค่าพีเอชที่เหมาะสมในการทำงาน ความเสถียรในสภาพพีเอช ต่างๆ และจำนวนหน่วยย่อยของเอนไซม์ สำหรับค่าน้ำหนักโมเลกุลของหน่วยย่อยของเอนไซม์พบว่า mutated α -IPMS มีขนาดเล็กลง ซึ่งเป็นผลมาจากการตัดส่วนของ tandem repeats ออก ผลจากการศึกษาเบื้องด้นนี้แสดง ให้เห็นว่า tandem repeat ดังกล่าว อาจไม่มีความสัมพันธ์กับขึน leuA ในแง่การแสดงออกของขึนและคุณสมบัติ พื้นฐานของเอนไซม์

คำหลัก: tandem repeats, alpha-isopropylmalate synthase, leuA, Mycobacterium tuberculosis