

## Size Based Elemental Speciation of Airborne Particles by Field-Flow Fractionation-Inductively Coupled Plasma Mass Spectrometry

### Abstract

Field-flow fractionation (FFF) is a gentle size separation technique applicable to both macromolecules and particles. Field-flow fractionation family comprises several sub-techniques, *i.e.*, flow-, sedimentation-, thermal-, and electrical-FFF. Two most commonly used FFF sub-techniques are flow-FFF (FIFFF) and sedimentation-FFF (SdFFF). Both FIFFF and SdFFF have been reported for environmental studies with the applicable size range of 2 nm-100  $\mu\text{m}$ . The techniques provide wide range of information, including size and molecular weight distributions, diffusion coefficient, and polydispersity. In this study, SdFFF has been used to characterize size distribution of air particulate collected on the PM10 filter, and FIFFF has been employed to characterize size distribution of humic substances. In SdFFF experiment, various dispersing agents were tested and a 0.1% FL-70 with pH 8 was chosen as both dispersing agent and carrier liquid. The developed SdFFF method provided satisfactory separation efficiency and reproducibility (<3% RSD). Broad size distributions were obtained for air particulate samples collected from five locations. Nonetheless, peak maxima and distribution ranges of air particulates collected from one location were different from the others. Further, a hyphenated technique of SdFFF and inductively coupled plasma optical emission spectrometry (ICP-OES) was employed to study size-based elemental distribution of air particles. Aluminum, Fe, and Ti were detected across the whole size range of air particulate sample. With FIFFF, information on diffusion coefficient, size and molecular weight of humic substances was obtained. Moreover, aggregation of humic substances in  $\text{Ca}^{2+}$  and seawater was examined over suitable time interval. The aggregation was demonstrated by change of humic size distribution profile at a given pH value. With FIFFF-ICP-mass spectrometry (FIFFF-ICP-MS), associations of Cd, Cu, and Pb with humic aggregates were examined.

## การวิเคราะห์ปริมาณธาตุในอนุภาคที่แขวนลอยในอากาศแยกตามขนาดอนุภาค

### บทคัดย่อ

เทคนิค field-flow fractionation (FFF) เป็นเทคนิคที่สามารถใช้ในการแยกขนาดอนุภาคของมหโมเลกุลและอนุภาคต่าง ๆ โดยเทคนิคนี้ สามารถแบ่งอยู่เป็น flow-, sedimentation-, thermal-, และ electrical-FFF ซึ่งเทคนิค flow-FFF (FIFFF) และ sedimentation-FFF (SdFFF) สามารถนำมาประยุกต์ใช้กับการแยกขนาดอนุภาคได้มากมาย โดยเฉพาะอย่างยิ่ง อนุภาคสีสันต์แวร์ลั่อม โดยสามารถแยกอนุภาคในระดับ 2 นาโนเมตร ถึง 100 ไมโครเมตรได้ สามารถให้ข้อมูลต่าง ๆ เช่น ขนาดและการกระจายตัวของอนุภาค น้ำหนักโมเลกุลและการกระจายตัวของน้ำหนักโมเลกุล ค่าสัมประสิทธิ์การแพร์และดัชนีการกระจายตัวของขนาด ในงานวิจัยนี้ ได้ประยุกต์ใช้เทคนิค SdFFF สำหรับการวิเคราะห์ขนาดอนุภาคแขวนลอยในอากาศที่เก็บบนกระดาษกรองขนาด PM10 และใช้เทคนิค FIFFF สำหรับการวิเคราะห์การกระจายตัวของสารอิมิคิว ในการวิเคราะห์อนุภาคแขวนลอยในอากาศโดยใช้เทคนิค ได้มีการทดลองเลือกสารกระจายตัวที่เหมาะสมสำหรับอนุภาคอากาศและพบว่า 0.1% FL-70 ที่ pH 8 มีความเหมาะสมในการนำไปใช้เป็นสารตัวพาและสารกระจายตัว โดยเทคนิค SdFFF ให้ค่าความแม่นยำในการวิเคราะห์ (มีค่า RSD น้อยกว่า 3%) ได้ทดลองวิเคราะห์อนุภาคแขวนลอยในอากาศ จำกัดด้วยตัวของขนาดอนุภาคกว้าง อย่างไรก็ได้อนุภาคอากาศจากแหล่งต่าง ๆ กันมีขนาดอนุภาคและการกระจายตัวของขนาดต่างกันนอกเหนือจากนั้น ได้ใช้เทคนิค SdFFF-inductively coupled plasma optical emission spectrometry (SdFFF-ICP-OES) ในการวิเคราะห์การกระจายตัวของธาตุต่าง ๆ ตามขนาดต่าง ๆ ของอนุภาคแขวนลอยในอากาศ สำหรับการใช้เทคนิค FIFFF สามารถให้ข้อมูลเกี่ยวกับค่าสัมประสิทธิ์การแพร์ ขนาดอนุภาคและน้ำหนักโมเลกุลของสารอิมิคิว นอกเหนือจากนั้นได้ประยุกต์ใช้เทคนิค FIFFF ในการศึกษาเกี่ยวกับปริมาณสารทั่วไปรวมตัวของสารอิมิคิวในสารละลายน้ำ  $\text{Ca}^{2+}$  และน้ำทะเล พบว่าสารอิมิคิวมีขนาดใหญ่ขึ้น และได้ใช้เทคนิค FIFFF-ICP-mass spectrometry (FIFFF-ICP-MS) ในการศึกษาการเกาะจับของ Cd, Cu และ Pb กับสารอิมิคิว