for photodegradation of formaldehyde in all experiments under various conditions

were calculated and are described in the following sections.

3.2 Effect of the initial pH

The reactivity of hydrogen peroxide depends on the pH of the aqueous solution. The effect of pH on the degradation of formaldehyde was carried out in acidic conditions at pH 3 and 5, neutral at pH 7, and basic at pH 9. The residual fractions of formaldehyde with time for each condition are shown in Fig. 2 and the experimental values are well fitted with the pseudo-first-order kinetic model as shown in Fig. 3.

-From the results, it is clear that the process is highly efficient at neutral pH (pH 7). Obviously, there was no residual formaldehyde in the solution when it was irradiated for 240 min. At solution pH conditions lower than neutral less removal of formaldehyde is seen. When the solution pH was increased to basic values the formaldehyde oxidation efficiency was reduced. This is in agreement with previous research; the efficiency of the UV/H₂O₂ oxidation system deteriorates more by increasing the reaction pH value to alkaline (Alaton et al., 2002).

The reaction rate constants in reaction times t<150 min for formaldehyde degradation at each pH condition are given in Table 1. It can be observed that the formaldehyde photooxidation rate is highest under the neutral pH. As the pH increased from 3 to 7, the degradation rate constant of formaldehyde increased. Further increase from 7 to 9 caused a significant decrease of k_{ap} . The decrease of the removal rate in this pH region may be explained by the reduction of the hydroxyl radical concentration. In an alkaline medium the oxidizing species hydroperoxy anion

(HO₂) is formed. This HO₂ anion reacts with OH (Eq.(16)) and residual H₂O₂ (Eq.(17)) consequently lowering the removal rate.

$$^{\circ}OH + HO_2^{-} \longrightarrow H_2O + O_2^{-}$$
 (16)

$$H_2O_2 + HO_2^- \longrightarrow H_2O + O_2^- + OH$$
 (17)

3.3 Effect of initial molar ratio of formaldehyde to H2O2

The residual fraction of formaldehyde as a function of time at different molar ratios of formaldehyde to hydrogen of 1:0.1, 1:1, 1:2 and 1:3 were conducted. The results are shown in Fig. 4. As the hydrogen peroxide is increased, the formaldehyde removal efficiency increases. When the molar ratios of formaldehyde to hydrogen peroxide are 1:0.1, 1:1 and 1:2, the corresponding formaldehyde removal efficiencies are 30, 86, and 100%, respectively, at 300 min reaction period. This phenomena can be explained in that the increasing of hydrogen peroxide causes more hydroxyl radicals to be available to attack the formaldehyde. The destruction of formaldehyde is much more rapid. The plots of derivation of the residual fraction of formaldehyde are linear as seen in Fig. 5, suggesting that the rate law for formaldehyde oxidation might be a pseudo-first order pattern. The apparent rate constants, k_{ap} , were calculated from the linear portions and are shown in Table 2. These values were in good agreement with the formaldehyde removal efficiencies. The k_{ap} values increase with the increasing of hydrogen peroxide presented into the system.

Further increase of hydrogen peroxide at a molar ratio of formaldehyde to hydrogen peroxide of 1:3 exerted a decrease of formaldehyde reduction. The degradation of formaldehyde was reduced to 77% and the k_{ap} decreased. The main reason for this inhibition effect is that an excess hydrogen peroxide dose can reduce

the oxidation rate by acting as a hydroxyl radical scavenger itself (Eqs. (18), (19)),

2 consequently lowering the hydroxyl radical concentration (Muruganandham and

Swaminathan, 2004; Ku et al., 1998).

$$H_2O_2 + {}^{\bullet}OH \longrightarrow HO_2 + H_2O$$
 (18)

6
$$H_2O_2 + {}^{\bullet}OH \longrightarrow O_2^{\bullet-} + H^{+}$$
 (19)

3.4 Effect of initial formaldehyde concentration

The effect of various initial formaldehyde concentrations on the photochemical oxidation was investigated from 0.033 M to 0.999 M. The results are shown in Fig. 6. The molar ratio of formaldehyde to hydrogen peroxide was 1:2 for all experiments. The results show that the photooxidation of formaldehyde decreased as the initial formaldehyde concentration increased. This finding is conforms well to Arslan et al. (1999) who showed that the efficiency of the UV/H_2O_2 process decreased drastically with increasing amounts of pollutant. The plots of derivation of the residual fraction of formaldehyde are linear as seen in Fig. 7, providing the values of k_{ap} as shown in Table 3. These values also showed a good agreement with formaldehyde removal efficiencies in that these values decreased with higher formaldehyde concentrations.

3.5 Mineralization of formaldehyde and reaction intermediate

As shown in Fig 8, a substantial reduction of TOC concentration during the UV/H₂O₂ process was not achieved, despite attaining nearly 23% of TOC removal after 5 hours. Although the TOC removal was found to be enhanced when much higher H₂O₂ dosages were applied, the efficiency removal of TOC was not superior.

1 Apparently, degradation of formaldehyde does not reach complete mineralization.

This may result in the formation of reaction intermediates during the UV/H₂O₂ process.

The subject of intermediates requires further consideration. A peak of formic acid from GC chromatogram can be seen as the treatment underwent 15 min and its appearance was more pronounced with a longer reaction time. This finding suggests that the detected by-product of the UV/H₂O₂ process is predominantly formic acid, which is refractory to hydroxyl radical oxidation. The reduction of pH at the end of the reaction from alkaline or neutral pH to acidic pH also offers supporting evidence for the occurrence of organic acid during the treatment period. This observation is in good agreement with many studies published earlier (Murphy et al., 1989; Gonzalez and Braun, 1996; Stefan and Bolton, 1998; Heit et al., 1998). Formaldehyde itself reacts with hydroxyl radicals (OH) by way of hydrogen abstraction, resulting in the formation of formyl radicals (CHO) or their hydrated form. The latter are oxidized by dissolved molecular oxygen to yield formic acid and hydroperoxyl radicals (Gonzalez and Braun, 1996; Stefan and Bolton, 1998; Heit et al., 1998). The major contribution esult is to highlight the fact that significant quantities of intermediate product, formic acid as identified in this study, are formed and persist during the UV/H₂O₂ process.

3.6 Bioluminescence test

2

3

4

5

6

7

B

9

10

11

12

13

14

15

16

18

19

20

21

22

23

24

25

The bioluminescence test has been used for testing the progress of toxicity during the treatment. To indicate changes in toxicity, the data for percentage inhibition obtained in each experiment were converted to the relative toxicity index, where:

relative toxicity index = $\frac{\text{inhibition at t (\%)}}{\text{inhibition at t = 0 (\%)}}$

The results expressed as the relative toxicity index values versus reaction time are presented in Fig 9. A decrease of relative toxicity index values during UV/H₂O₂ oxidation reflects the disappearance of the toxic compounds. Based on the toxicity assay, it can be concluded that UV/H₂O₂ process is an appropriate method for detoxification of formaldehyde. The formic acid, identified as oxidation product of the investigated formaldehyde, does not pose any toxic effect on the treated solution.

4. Conclusion

This study employed UV/H₂O₂ advanced oxidation for the treatment of formaldehyde from contaminated water. The influence of operational parameters, which are pH, H₂O₂ dosage and initial concentration of formaldehyde, were investigated. UV/H₂O₂ treatment was capable of oxidizing the formaldehyde with the highest efficiency at neutral pH within a feasible treatment duration of 4 hr. Enhancement of formaldehyde degradation was achieved with the molar ratio of formaldehyde:H₂O₂ at 1:2.

The TOC removal indicated 23% mineralization of the initial organic matter. This inferred that the UV/H₂O₂ photodecomposition of formaldehyde did not attain total mineralization. The intermediate from formaldehyde transformation is identified as formic acid. Even though complete formaldehyde abatement was accomplished at the end of the reaction period, the formic acid byproduct remained and posed a significant degree of persistence in TOC removal.

Acknowledgement

- This research was supported by the Thailand Research Fund, Thailand under
- 3 grant no. MRG4680029.
- 5 Reference:

1

- 7 Alaton, I.A., Balcioglu, I.A. and Bahnemann, D.W., 2002, Advanced oxidation of a
- 8 resction dyebath effluent: comparison of O₃, H₂O₂/UV-C and TiO₂/UV-A
- 9 process. Water Res. 36, 1143-1154.
- 10 Andreozzi, R., Caprio, V., Insola, A. and Marotta, R., 1999, Advanced oxidation
- 11 processes (AOP) for water purification and recovery. Catal. Today 53, 51–59.
- 12 Arslan, I., Balcioglu, I.A. and Tuhkanen, T., 1999, Advance oxidation of synthetic
- dyehouse effluent by O₃, H₂O₂/O₃, and H₂O₂/UV processes. Environ. Technol.
- 20, 91-99.
- 15 Behnajady, M.A., Modirshahla, N. and Shokri, M., 2004, Photodestruction of Acid
- Orange 1 (AO7) in aqueous solutions by UV/H₂O₂: influence of operational
- parameters. Chemosphere 55, 129-134.
- 18 Gonzalez, M.C. and Braun, A.M., 1996, Vacuum UV photolysis of aqueous solution
- of nitrate effect of organic matter II. Methanol. J. Photochem. Photobiol. A 95,
- **20** 67-72.
- 21 Grafstrom, R.C., Curren, R.D. and Harris, C.C., 1985, Genotoxicity of Formaldehyde
- in ultured Human Bronchial Fibroblasts. Science 228, 89-91.
- Heit, G., Neuner, A., Saugy, P.Y. and Braun, A.M., 1998, Vacuum-UV (172nm)
- Actinometry-The quantum yield of the photolysis of water. J. Phys. Chem. A
- 25 102, 5551-5561.

- 1 Hickey, R.F., Vanderwilen, J. and Switzerbaum, M.S., 1987, The effects of organic
- 2 toxicants on methane production and hydrogen gas levels during the anaerobic
- digestion of waste activated sludge. Water Res. 21, 1417-1427.
- 4 Hoigné, J. (1998) The Handbook of Environmental Chemistry: Chemistry of Aqueous
- 5 Ozone and Advanced Oxidation Processes. Springer-Verlag, Berlin 5, Part C,
- 6 83-141.
- 7 Ku, Y., Wang, L.S. and Shen, Y.S., 1998, Decomposition of EDTA in aqueous
- solution by UV/H₂O₂ process. J. Hazard. Mater. 60, 41-45.
- 9 Legrini, O., Oliveros, E. and Braun, A.M., 1993, Photochemical processes for water
- 10 treatment. Chem. Rev. 93, 671-698.
- 11 Lofty, R.H. and Rashed, I.G., 2002, A method for treating wastewater containing
- formaldehyde. Water Res. 36, 633-637.
- 13 Lu, Z. and Hegemann, W., 1998, Anaerobic toxicity and biodegradation of
- formaldehyde in batch cultures. Water Res. 32, 209-215.
- 15 Murphy, A.P., Boegll, W.J., Price, K.V. and Moody, C.D., 1989, A Fenton-like
- reaction to neutralize formaldehyde waste solutions. Environ. Sci. Tehcnol. 23,
- 17 166-169.
- 18 Muruganandham, M. and Swaminathan, M., 2004 Photochemical oxidation of
- reactive azo dye with UV-H₂O₂ process. Dyes Pigments 62, 269-275.
- 20 Qu, M. and Bhattacharya, S.K., 1997, Toxicity and biodegradation of formaldehyde in
- 21 anaerobic methanogenic culture. Biotechnol. Bioeng. 55, 727-736.
- 22 Sharma, S., Ramakrishna, C., Dessai, J.D. and Bhatt, N.M., 1994, Anaerobic
- biodegradation of a petrochemical waste-water using biomass support particles.
- 24 Appl. Microbiol. Biotechnol. 40, 768-771.

1 Stefan, M.I. and Bolton, J.R., 1998, Mechanism of the degradation of 1,4-Dioxan in

dilute aqueous solution using the UV/H₂O₂ process. Environ. Sci. Technol. 32,

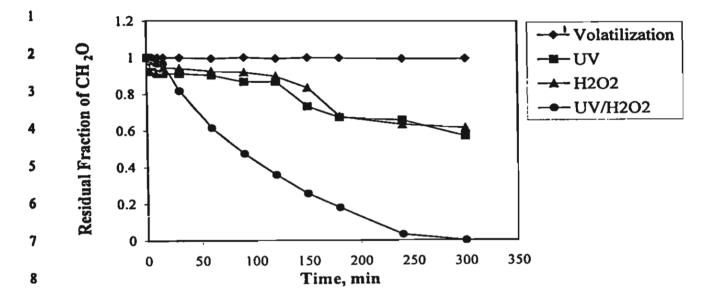
3 870-873.

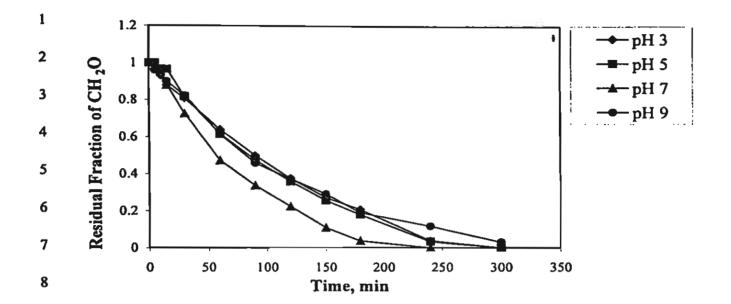
Table 1. Pseudo-first order rate constants for formaldehyde degradation by UV/H₂O₂
 process in the different pH.

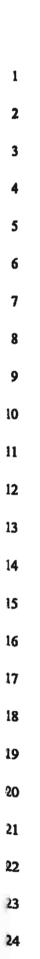
No.	[CH ₂ O]	[H ₂ O ₂]	pН	$k_{\rm ap}$	t _{1/2}	R ²
	(M)	(M)			(min ⁻¹)	(min)
1	0.33	0.66	3	0.0085	81.53	0.9954
2	0.33	0.66	5	0.0092	75.33	0.9960
3	0.33	0.66	7	0.0128	54.14	0.9977
4	0.33	0.66	9	0.0084	82.50	0.9976

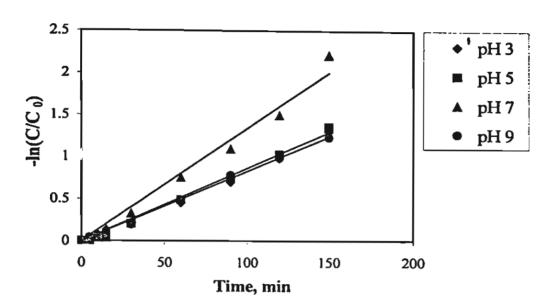
Table 2. Pseudo-first order rate constants for formaldehyde degradation by UV/H2O2

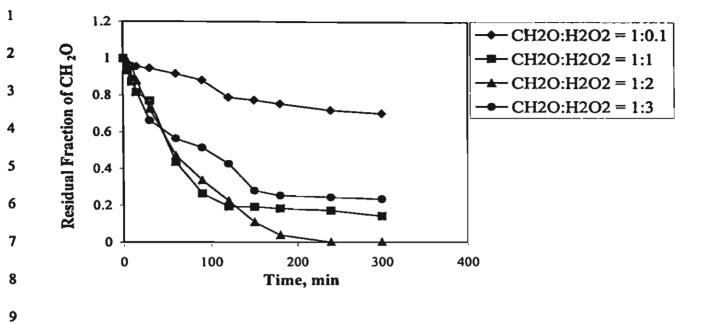
2 process in the different initial molar rations of CH₂O: H₂O₂.

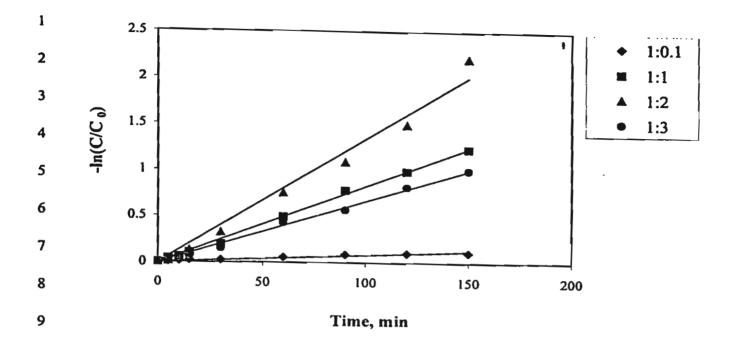

No.	CH ₂ O:H ₂ O ₂	pH	$k_{\rm ap}$	t _{1/2}	R ²
				(min ⁻¹)	(min)
1	1:0.1	7	0.0008	866.25	0.9798
2	1:1	7	0.0089	77.86	0.9960
3	1:2	7	0.0128	54.14	0.9977
4	1:3	7	0.0079	87.72	0.9976

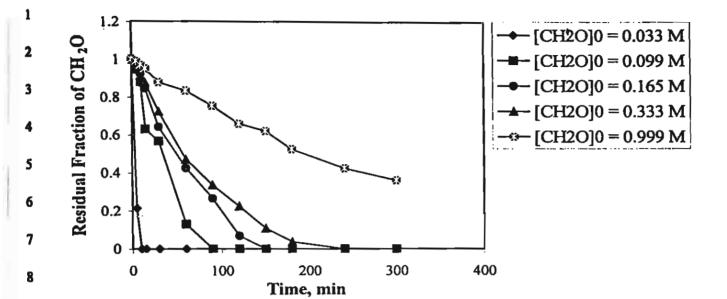

Table 3. Pseudo-first order rate constants for formaldehyde degradation by UV/H₂O₂

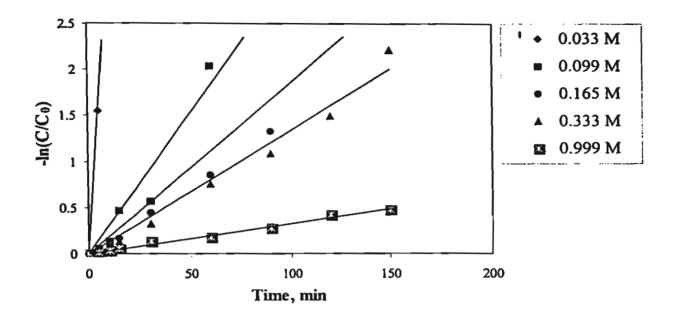

2 process in the different initial concentrations of CH₂O.

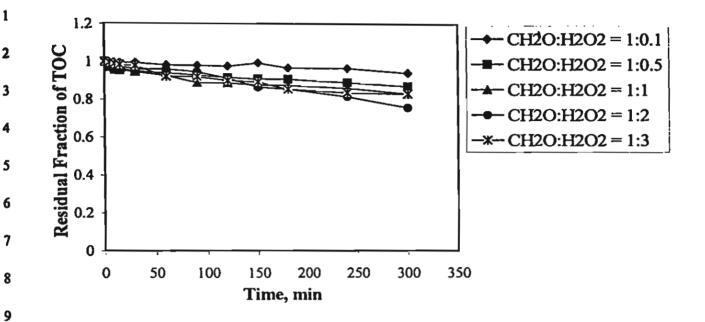

No.	[CH ₂ O] ₀	CH ₂ O:H ₂ O ₂	pН	$k_{\rm ap}$	t _{1/2}	R ²
	(M)	(molar ratio)			(min ⁻¹)	(min)
1	0.033	1:2	7	0.3087	2.245	1.0000
2	0.066	1:2	7	0.0338	20.50	0.9889
3	0.165	1:2	7	0.0149	46.51	0.9973
4	0.333	1:2	7	0.0128	54.14	0.9977
5	0.999	1:2	7	0.0034	203.8	0.99 59

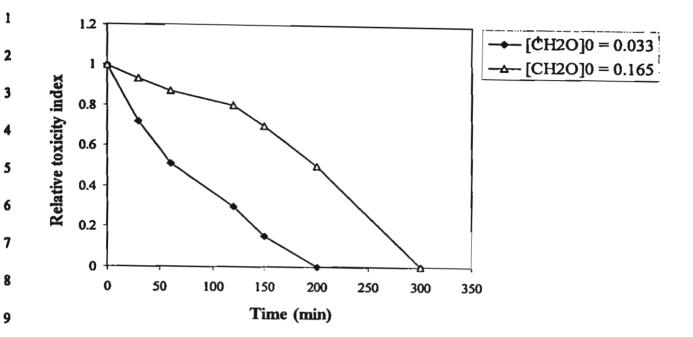

```
Figure caption
 1
     Fig. 1 Degradation of formaldehyde by volatilization, UV, UV/H<sub>2</sub>O<sub>2</sub> and H<sub>2</sub>O<sub>2</sub>
 2
             ([CH<sub>2</sub>O]<sub>0</sub> = 0.333 M, CH<sub>2</sub>O:H<sub>2</sub>O<sub>2</sub> = 1:2, initial pH = 5).
 3
 4
      Fig. 2 Degradation of formaldehyde by UV/H<sub>2</sub>O<sub>2</sub> process at different initial pHs.
             [CH_2O]_0 = 0.33 \text{ M}, CH_2O: H_2O_2 = 1:2.
 5
      Fig. 3 Derivation of the pseudo-first order rate constants of formaldehyde at different
 6
             pH by linear regression. [CH_2O]_0 = 0.33 M, CH_2O: H_2O_2 = 1:2.
 7
      Fig. 4 Degradation of formaldehyde by UV/H<sub>2</sub>O<sub>2</sub> process at different initial molar
 8
 9
              ratios of CH<sub>2</sub>O: H_2O_2. [CH_2O]_0 = 0.333 M, initial pH = 7.
10
      Fig. 5 Derivation of the pseudo-first order rate constants of formaldehyde at different
              initial molar rations of CH<sub>2</sub>O: H_2O_2 by linear regression. [CH_2O]_0 = 0.333 M,
11
12
              initial pH = 7.
      Fig. 6 Degradation of formaldehyde by UV/H<sub>2</sub>O<sub>2</sub> process at different initial
13
14
              concentrations of CH_2O. CH_2O:H_2O_2 = 1:2, initial pH = 7.
      Fig. 7 Derivation of the pseudo-first order rate constants of formaldehyde at different
15
              initial concentration of CH_2O. CH_2O: H_2O_2 = 1:2, initial pH = 7.
16
       Fig. 8 TOC of formaldehyde degradation during the UV/H<sub>2</sub>O<sub>2</sub> process at different
17
              initial concentrations of H_2O_2. [CH_2O]_0 = 0.333 M, initial pH = 7.
18
19
       Fig. 9 Toxicity assay using the bacterium Vibrio fasheri in LUI1INIStox 300.
20
21
22
23
```











FORMALDEHYDE DEGRADATION IN THE PRESENCE OF METHANOL
IN PHOTO-FENTON PROCESS
Puangrat Kajitvichyanukul ^{1,*} , Ming-Chun Lu ² , Aditsuda Jamroensan ³ ,
Wanpen Wirojanagud ⁴ and Thammarat Koottatep ⁵
¹ Department of Environmental Engineering, King Mongkut's University of
Technology Thonburi, 91 Pracha-Utid Rd., Tungkru, Bangkok, Thailand, 10140
² Department of Environmental Resources Management, Chai Nan University of
- Pharmacy and Science, Tainan, Taiwan
³ National Research Center in Environmental Hazardous Waste Management,
Chulalongkorn University, Bangkok, Thailand, 10330
⁴ Department of Environmental Engineering, Khonkaen University,
Khonkaen, Thailand, 40002
⁵ School of Environment, Resources and Development (SERD),
Asian Institute of Technology(AIT), Thailand,
Submitted to Chemical Engineering Journal
October 26, 2004
October 20, 2004

Abstract

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

In this study, the photo-Fenton process for the degradation of formaldehyde was investigated in lab-scale experiments. Results showed that methanol, the additive chemical in a commercial product of formaldehyde, was also decomposed during the formaldehyde oxidation reaction. The oxidation reaction was in three-stages. The first stage was the Fe2+/H2O2 reaction in which both formaldehyde and methanol were swiftly decomposed. The second and the third stages exerted a somewhat less rapid degradation of both chemicals. The first stage of the oxidation reaction can be discussed by means of the initial average rate and the third stage or Fe³⁺/H₂O₂ stage was found to follow the first order reaction rate. The reaction was influenced by the initial pH, the concentration of hydrogen peroxide, the amount of ferrous ions. The initial pH at 2.6 provided the highest removal efficiencies in this system. In addition, the competition between formaldehyde and methanol was investigated and described as r_m/r_f , where r_m and r_f were the initial rates of methanol and formaldehyde, respectively. The addition of methanol exhibited a competitive effect on formaldehyde degradation. The removal of formaldehyde decreased with increasing methanol concentration. At the high concentrations of methanol, the oxidation reaction of formaldehyde was repressed. It appears that all values of r_m/r_f obtained from the experiments are lower than the theoretical values.

20

21

Key Words: Photo-Fenton, advanced oxidation processes, irradiation process, formaldehyde, methanol,

33

22

24

1. Introduction

The widespread use of formaldehyde in many industries (pharmacy, perfumery and cosmetics, organic synthesis, resin and colors manufacturing, etc.) has led to public health concerns due to its toxicity to the environment [1, 2]. Formaldehyde is frequently found in industrial waste-streams. Its concentration in wastewaters from chemical industries can be as high as 5-10 g/l [3]. Besides, it is also widely used in hospitals as an embalming solution at high concentrations. Formaldehyde was found to critically damage DNA and to mutate in mammalian cells and microorganisms [2]. Consequentially, direct discharges of formaldehyde can threaten life in the receiving waters. In many hospitals in Thailand, the batch discharging of the large volumes of this chemical substance to biological wastewater treatment plant causes a shock load of high toxicity to the microorganisms in the wastewater treatment system. Failures of biological processes in many local areas can be expected. Many wastewater treatment plants in Thailand have suffered from this serious problem for several years. This indicates that it is necessary to find a suitable solution for the handling of this chemical waste.

Many elegant researches in advanced oxidation processes (AOPs) for the destruction of organic contaminants in an aqueous medium have been extensively conducted in recent years [4, 5, 6]. Fenton or photo-Fenton reaction is one type of AOP that has treatment potential for the degradation of many organic species [7, 8, 9, 10]. The mechanism of the Fenton reaction has been known for a long time. The photo-Fenton reaction uses ferrous ions to react with hydrogen peroxide under irradiation of UV light, producing hydroxyl radicals with powerful oxidizing abilities to degrade certain toxic contaminants. Accordingly, the photo-Fenton reaction was

introduced as a very promising water treatment method to treat formaldehyde from wastewater in this study.

In our work, we investigated the photo-Fenton reaction for its ability to decompose formaldehyde under various conditions. In addition, the oxidation of methanol, the additive chemical in formaldehyde solutions, was studied. In general, methanol of approximately 10% by concentration is added in the commercial product of formaldehyde to limit the extent of polymerization. Thus, attention must be paid to the possible competition in hydroxyl radical receiving between formaldehyde and methanol. However, the research focusing on the competition of formaldehyde and methanol degradation is limited. The main objective of this paper is to provide information about formaldehyde decomposition under influence of several factors, such as pH, hydrogen peroxide and ferrous ions, while the exidation of methanol in identical experimental conditions is also reported.

2. Material and methods

Formaldehyde solution (37%) containing 10% methanol as a stabilizer, hydrogen peroxide (35%), and heptahydrated ferrous sulfate were purchased from Merck. The rest of the used reagents were at least reagent grade. Aqueous solutions used for oxidation reactions were prepared with Millipore Milli-Q water.

Formaldehyde studies were performed in a 1.1 L cylindrical quartz reactor. All experiments were carried out in a batch photoreactor. The photochemical reactor was purchased from ACE Glass Co. A 10 W low-pressure mercury lamp with a principal wavelength of 254 nm was used as the light source in all experiments. The UV lamp was inserted into a double-walled quartz immersion-well located at the center of the reactor. The UV lamp was kept on during the experiment. Fresh tap water was flushed

through the immersion-well to prevent the lamp from overheating. The solution was fully stirred with a magnetic stirrer to ensure sufficient mixing. The reaction temperature was kept constant at 25°C.

For every experiment conducted, the reactor was filled with 1 L of formaldehyde solution (initial concentration of formaldehyde and methanol were 0.333 M and 0.0079 M, respectively). Formaldehyde was prepared by stirring an excess amount of solution in pure water at room temperature. Reaction mixtures were obtained by mixing a stock solution with pure water, followed by taking an appropriate amount of formaldehyde solution, and adding ferrous ions with a concentration of 6.67×10^{-3} to 8.33×10^{-2} M. The reactions were initiated after adding hydrogen peroxide with concentrations ranging from 0.333 M to 1.0 M. As presented in literature [11], the photo-Fenton reaction cannot occur at pH>10. Therefore, photo-Fenton was stopped instantly by adding NaOH to the reaction mixtures and quenched by adding Na₂SO₃ before analysis. Hydrogen peroxide was analyzed by iodometric titration with Na₂S₂O₃ solution. The initial pH value was adjusted by a gas chromatographer equipped with an FID Detector (HP 4890). A pack column (5% diphenyl and dimethylpolysiloxane) was used.

3. Results and discussion

3.1 Process comparison on formaldehyde and methanol degradation

It is recognized that hydroxyl radicals can be obtained from different reaction pathways. In photo-Fenton, hydroxyl radicals can be initiated by the combination of UV/H₂O₂ and Fe²⁺. The relative contribution to hydroxyl radical formation among reaction pathways is one of the principal issues to be investigated in this study. Figure 1 presents the comparisons of formaldehyde and methanol degradation by UV/H₂O₂

and photo-Fenton. This comparison can illustrate the enhancing effects of ferrous ions on the degradation of both contaminants. As observed from the change during 80 min irradiation, the decomposition rates of formaldehyde and methanol by the UV/H₂O₂ process were slower than those by photo-Fenton. In the UV/H₂O₂ process, the removal ratios of formaldehyde and methanol at the first 5 min were 5% and 0.2% and at 80 min were 48% and 32%, respectively. When ferrous ion was introduced into the UV/H₂O₂ system, the removal ratios of formaldehyde and methanol were drastically increased. As seen from the graph, the formaldehyde and methanol removal rates were observed after 80 min reaction time, which as high as 94% and 78%, respectively.

These data indicate that ferrous ions play a crucial role in the photo-Fenton system. Generally, the hydroxyl radicals formed from photolysis of hydrogen peroxide can be shown as in Equation (1). With the addition of ferrous ions to the system, so called photo-Fenton, additional hydroxyl radicals can be obtained from the reaction between ferrous ion and hydrogen peroxide, as shown in Equation (2). With UV irradiation, a recycling of the ferrous ions by the reduction of ferric ions is occurred.

In this way, the concentration of ferrous ions increases and therefore the oxidation reaction is accelerated due to the higher generation of hydroxyl radicals [6].

 $H_2O_2 + UV \longrightarrow 2OH^{\bullet}$ (1)

21
$$Fe^{2+} + H_2O_2 \longrightarrow Fe^{3+} + OH^- + OH^-$$
 (2)

 $Fe^{3+} + UV + H_2O \longrightarrow OH^* + Fe^{2+} + H^*$ (3)

From the above explanation, it follows that the photo-Fenton system could be more efficient in formaldehyde and methanol removal than the UV/H₂O₂ system.

The results also show that the oxidation reactions of formaldehyde and methanol removal were very fast during the first 5 min (the first stage), then they gradually slowed down during the short period (the second stage), and got slower after 20 min (the third stage). It is obviously a three-stage reaction. In the first stage, formaldehyde and methanol were decomposed quickly; this is referred to as the Fe²⁺/H₂O₂ stage. The second stage is the transition stage, which occurs rapidly during the short period. The third stage is the declining phase of the photo-Fenton oxidation rate in which Fe³⁺ is the major species that plays a role during this stage. This stage is called the Fe³⁺/H₂O₂ stage [9]. Obviously, the rate of formaldehyde and methanol decomposition in the third stage was slower than in the first and second stages. Therefore, it can be derived that the first stage reaction is the most rapid stage compared with the other stages, resulting in a higher rate of hydroxyl radical formation in the first stage reaction than in the second and third stages. However, due to the predominant role of Fe²⁺ in the first stage and Fe³⁺ in the third stage in the photo-Fenton process, only the first- and third-stage of the oxidation reaction rate are discussed here. The first stage, or Fe²⁺/H₂O₂ stage, of the oxidation reaction is discussed by means of the initial average rate at the first 5 min, and the third stage, or Fe3+/H2O2 stage, is discussed by means of the first order rate constant (k). In addition, the competition between formaldehyde and methanol is described as r_m/r_f, where r_m and rf are the initial rates of methanol and formaldehyde, respectively. The rate constants of formaldehyde and methanol were calculated as in Table

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

The rate constants of formaldehyde and methanol were calculated as in Table 1. The initial rates of formaldehyde degradation increased from 3.33x10⁻³ M.min⁻¹ to 4.33x10⁻³ M.min⁻¹ and for methanol degradation increased from 3.18x10⁻⁵ M.min⁻¹ to 7.55x10⁻³ M.min⁻¹. The k values of formaldehyde and methanol in the third stage

changed from $6.5 \times 10^{-3} \text{ min}^{-1}$ to $1.49 \times 10^{-2} \text{ min}^{-1}$ and from $3.66 \times 10^{-3} \text{ min}^{-1}$ to 8.25×10^{-3} min⁻¹, respectively.

From the experiments, it can be concluded that photo-Fenton can significantly increase the efficiency of formaldehyde and methanol removal in an aqueous solution. However, the oxidation rate of formaldehyde and methanol changed only slightly in the last stage of the oxidation reaction. This may be caused by the slow rate of the Fe³⁺/H₂O₂ reaction and almost complete disappearance of hydrogen peroxide in the last stage.

3.2 Effect of initial pH

-As shown in the principal reaction of photo-Fenton in Equation (2), the amount of generated hydroxyl radical is affected by pH. The hydroxyl radicals can be efficiently formed, especially under acidic conditions. According to a previous study [12], at pH values above 4, the degradation of organic contaminants strongly decreases because at higher pH values iron precipitates as hydroxide and this reduces the transmission of the radiation. Whereas, at relatively low pH values, the regeneration of ferrous ions may reduce due to the high concentration of H⁺ in the system as represented by Equation (3). Therefore, in this study the values of initial pH of all experiments were investigated in the range of 2.6-4. As stated in the experimental section, in all the experiments carried out in the present work the desired initial pH was obtained by addition of suitable amounts of H₂SO₄ or NaOH, but once the reaction started, the solution pH was not controlled.

Figure 2 shows the relationship between the residual fraction of formaldehyde and methanol with time. It is noticeable that 93% of formaldehyde elimination and about 70-80% of methanol degradation can be obtained after 80 min of reaction

period. However, in the Fe²⁺/H₂O₂ stage, the difference of formaldehyde and methanol oxidation rates among different initial pH values is not obvious. For the Fe³⁺/H₂O₂ stage, both formaldehyde and methanol degradation rates obey first-order kinetics and the rate constants are listed in Table 2.

From the results it can be derived that the initial pH does not have an obvious influence on the decomposition of formaldehyde and methanol in the photo-Fenton reaction. This finding agrees with Kang et al. [13] in that the generating amount of hydroxyl radicals appears to be no different at initial pH 3-5 for color removal. While considering each stage separately, the initial pH plays a more apparent role in the initial stage than the removal ratio of formaldehyde and methanol at the last stage. Apparently, the formaldehyde and methanol oxidation rates increase as the pH value decreases. It can be calculated that when the pH is greater than 3, Fe(OH)₃ can occur [14] and it does not react with hydrogen peroxide [11]. Thus the ferric ions in the system that can react with hydrogen peroxide are reduced and, consequently, hydroxyl radicals are diminished. In addition, it appears that the highest removal efficiency for both formaldehyde and methanol was achieved at an initial pH 2.6. Therefore, this initial pH value was used throughout the rest of the experiments.

3.3 Effect of the initial hydrogen peroxide concentration

Hydrogen peroxide plays an important role in the photo-Fenton process. As shown in Figure 3, if only ferrous ions were added in the solution without adding hydrogen peroxide, both formaldehyde and methanol did not decompose. This shows that ferrous ions alone cannot decompose the organic contaminants of the interest. The percentages of formaldehyde at the first 5 min of reaction time were 56%, 65%, and 90% in the presence of 0.333, 0.667, and 1.0 M of hydrogen peroxide.

respectively. In addition, formaldehyde was almost completely degraded with 1.0 M 1 of hydrogen peroxide at 10 min. The percentages of methanol at the first 5 min were 2 45%, 47%, and 66% with 0.333, 0.667, and 1.0 M of hydrogen peroxide, respectively. 3 As observed from the experimental results, the removal efficiency of formaldehyde 4 5 and methanol increase with the increase of the hydrogen peroxide concentration. This finding agrees with Pignatello [11] who concluded that an increase in hydrogen 6 7 peroxide could increase the rate of 2,4-D mineralization. The residual hydrogen peroxide with time is shown in Figure 4. 8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

During the Fe²⁺/H₂O₂ stage, the hydrogen peroxide was rapidly consumed. resulting in the huge decrease of formaldehyde and methanol during the beginning of the photo-Fenton reaction. This is in agreement with the fact that Fenton and photo-Fenton reactions dominate the first minutes of the process and a larger concentration of reactants directly increases the reaction rate [15]. In the Fe3+/H2O2 stage, the formaldehyde and methanol oxidations follow first-order kinetics, and the rate constants are listed in Table 3. It is obvious that the reaction rates increase with increasing hydrogen peroxide. As pointed out by Rahhal and Richter [16], the higher the concentrations of hydrogen peroxide, the faster it is decomposed. As presented by a previous study [17], the reaction rate can be inhibited by an excess of hydrogen peroxide in the system. The reason for this may arise from either the reaction of hydroxyl radicals and the hydrogen peroxide concentration, or the combination of two hydroxyl radicals to form hydrogen peroxide as shown in Equations (4) and (5). However, in this study, the oxidation of both formaldehyde and methanol was not inhibited by increasing the concentration of hydrogen peroxide. The reason for this could be that the amount of hydrogen peroxide added in this experiment had not yet reached the degree of inhibition.

3.4 Effect of ferrous ions

As shown in Figure 1, formaldehyde and methanol can not be completely oxidized by only adding hydrogen peroxide to the solution. Ferrous ions are the main species that can catalyze hydrogen peroxide to produce hydroxyl radicals with a strong oxidizing ability [18]. Additionally, ferrous ions also act as a photo catalyst in the photo-Fenton system; ferric ion can be regenerated to ferrous ion in the presence of UV light. However, an excess amount of ferrous ions may inhibit the oxidation reaction because ferrous ions can also compete with target organic compounds to consume hydroxyl radicals. To investigate the effects of ferrous ion concentration on the photo-Fenton process for treating formaldehyde and methanol, experiments were carried out with various amounts of ferrous ions.

Figures 5 and 6 show the effects of ferrous ion concentrations on the degradation of formaldehyde and methanol. As the ferrous ion concentration increased from 0 M to 6.67x10⁻³ M, 2.27x10⁻² M, 6.67x10⁻² M, and 8.33x10⁻² M, the removal percentages of formaldehyde degradation at 5 minutes were 5%, 32%, 55%, 65%, and 78%, respectively. While the removal efficiencies of methanol oxidation during the same period were 0.2% to 2%, 37%, 47%, and 49%, respectively. Interestingly, these removal percentage values had increased tremendously as the reaction time reached at 80 min of the reaction period. The removal percentages of formaldehyde reached 48%, 62%, 79%, 94% and 95%, respectively, and those for methanol 32% to 44%, 63%, 79% and 82%, respectively.

These results indicate that the removal efficiency of formaldehyde and methanol increased with an increase in the ferrous ion concentration, especially during the Fe²⁺/H₂O₂ stage. However, at ferrous concentrations of 6.67x10⁻² M and 8.33x10⁻² M, the removal efficiencies of formaldehyde and methanol did not change

much. This result might be explained by the ferrous ion inhibition that occurred when too high a concentration of ferrous was presented. Ferrous ions themselves may react with hydroxyl radicals resulting in the retardation of the reaction. Liou et al. [4] also indicated that the hydroxyl radical inhibition effect could occur in the photo-Fenton reaction with high ferrous concentrations.

In the Fe³⁺/H₂O₂ stage, when ferrous ions increased, the rate constant values of formaldehyde and methanol increased as shown in Table 4. Noticeably, when high dosages of ferrous ions were used (6.67x10⁻² and 8.33x10⁻² M), the initial rate of formaldehyde and methanol changed slightly. Therefore, the benefit obtained from an increased amount of ferrous ions on the initial rate was not obvious.

11 -

3.5 Competition of formaldehyde with methanol

Methanol is present in commercial formaldehyde to keep its stability. As hydroxyl radicals are a non-selective oxidant, it can react with almost all organic compounds. Therefore, methanol may compete with formaldehyde to consume hydroxyl radicals resulting in the retardation of the oxidation reaction of formaldehyde. To investigate the effect of methanol on the degradation of formaldehyde treated by the photo-Fenton process, three experiments with different initial concentrations of methanol, 0.0796 M, 0.333 M and 0.667 M, were investigated. As shown in Figures 6(a) and 6(b), the amounts of formaldehyde decomposition within 5 minutes were 65%, 41% and 21% and the amounts of methanol decomposition were 47%, 24%, and 13%, when the initial concentrations of methanol were 7.96x10⁻² M, 0.333 M, and 0.667 M, respectively. In the presence of high concentrations of methanol, 0.333 M and 0.667 M, the oxidation reaction of formaldehyde had almost stopped after 20 min. These results indicate that the removal

1 efficiency of formaldehyde decreased with an increase in the methanol concentration.

2 Presumably, the presence of methanol retards the oxidation of formaldehyde and

3 methanol itself. Methanol may compete with formaldehyde to consume formaldehyde

4 as in the reaction as expressed in Equation (4):

$$6 CH3OH + OH\bullet \longrightarrow {}^{\bullet}CH2OH + H2O (4)$$

Further evidence for the retardation of formaldehyde by the methanol oxidation can be seen from Table 5. As the concentrations of methanol increased, the initial rates and k values of formaldehyde and methanol decreased. These values clearly show that methanol may compete with formaldehyde to react with hydroxyl radicals and get oxidized.

As presented by Buxton et al. [19], the intrinsic rate constants for formaldehyde and methanol with hydroxyl radicals were almost at the same value: $1x10^9 \text{ M}^{-1}\cdot\text{s}^{-1}$ and $9.7x10^8 \text{ M}^{-1}\cdot\text{s}^{-1}$, respectively. Therefore, the oxidation rate of formaldehyde could almost be the same as that of methanol.

According to the following equation:

$$r_{m}/r_{f} = \frac{K_{OH} \cdot [CH_{3}OH] \cdot [\bullet OH]}{K_{OH} \cdot [CH_{2}O] \cdot [\bullet OH]}$$
(5)

where r_m stands for the initial rate of methanol and r_f is the initial rate of formaldehyde; K_{OH} is the intrinsic rate constant of pollutants to react with hydroxyl radicals: 1×10^9 M⁻¹·s⁻¹ for formaldehyde and 9.7×10^8 M⁻¹·s⁻¹ for methanol; [CH₃OH] is

the initial concentration of methanol: 0.0796 M. [CH₂O] is the initial concentration of formaldehyde; 0.333 M, and [•OH] is the concentration of hydroxyl radicals in the system.

By substituting these values in Equation (5), the theoretical value of r_m/r_f is equal to 0.232. Table 6 lists the r_m/r_f obtained from the experiments. It indicates that all values of r_m/r_f obtained from the experiments are lower than the theoretical values. Similar results are also presented in Table 7. By substituting 0.333 M and 0.667 M of methanol in Equation (5), the theoretical values of r_m/r_f are 0.97 and 1.94, respectively. However, r_m/r_f values obtained from the experiments are 0.588 and 1.209, respectively, which are much lower than the theoretical values. This finding indicates that methanol is difficult to oxidize when competing with formaldehyde.

Conclusions

The results from this study show that the degradation of formaldehyde is feasible in the photo-Fenton system. During the oxidation reaction, methanol, the additive chemical in commercial formaldehyde, was also decomposed. As a comparison, the photo-Fenton process provides a more significant increase in the efficiency of formaldehyde and methanol oxidation in aqueous solutions than that of the UV/H₂O₂ process. The formaldehyde decomposition in this system underwent a three-stage reaction. The first stage was the reaction during the first 5 min in which both formaldehyde and methanol were quickly decomposed and this is referred to as the Fe²⁺/H₂O₂ stage. The decomposition rates in the following stages were clearly slow and can be divided into the second and third stages. In third stage, called the Fe³⁺/H₂O₂ stage, the reaction took place after 30 min, and this was discussed by means of the first order rate constant (k). The degradations of formaldehyde and

methanol are far swifter in the Fe²⁺/H₂O₂ stage than those in the second and third stages. In the photo-Fenton system, the oxidation rates of formaldehyde and methanol were influenced by many factors, such as the initial pH value, the concentrations of hydrogen peroxide, ferrous ions and methanol. The initial pH values exerted less effect on formaldehyde and methanol degradation. However, the initial pH at 2.6 provided the highest removal efficiencies in this system. The increasing of hydrogen peroxide and ferrous ion concentrations enhanced the formaldehyde and methanol removal efficiencies. However, at high concentrations of ferrous ions (higher than 2.27x10⁻² M), the initial rate of formaldehyde and methanol changed only slightly.

The addition of methanol exhibited a competitive effect on formaldehyde degradation. The removal of formaldehyde decreased with increasing methanol concentration. At high concentrations of methanol, the oxidation reaction of formaldehyde was retarded. In the kinetic reaction rate study, the experimental values of the ratio of methanol to formaldehyde oxidation rates (r_m/r_f) is lower than those derived from theoretical values. However, these values present the same finding; oxidation of formaldehyde is much more easily achievable than that of methanol in the same system.

Acknowledgement

We are thankful for the supported by the Thailand Research Fund, Thailand under grant no. MRG4680029 and the National Science Council, Taiwan ROC under grant no. NSC 92-2211-E-006.

1 References:

- 2 [1] S.T. Christoskova, M. Stoyanova, Catalytic Degradation of CH₂O and C₆H₅CH₂OH in Wastewaters, Wat. Res. 36 (2002) 2297-2303.
- [2] R.C. Grafstrom, R.D. Curren, L. L. Yang, C.C. Harris, Genotoxicity of
 Formaldehyde in Cultured Human Bronchial Fibroblasts, Science 228 (1985)
 89-91.
- 7 [3] Y. Grushko, Harmful Organic Compounds in Industrial wastewater, 8 Peterburg, Himia (1982).
- 9 [4] M.-J. Liou, M.C. Lu, J.N. Chen, Oxidation of Explosives by Fenton and 10 Photo-Fenton Processes, Wat. Res. 37 (2003) 3172-3179.
- [5] F. Torrades, M. Pérez, H.D. Mansilla, J. Peral, Experimental Design of
 Fenton and Photo-Fenton Reactions for the Treatment of Cellulose Bleaching
 Effluents, Chemosphere 53 (2003) 1211-1220.
- [6] M.Y. Ghaly, G. Härtel, R. Mayer, R. Haseneder, Photochemical Oxidation of p-chlorophenol by UV/H₂O₂ and Photo-Fenton Processes. A comparative study, Waste Manage. 21 (1) (2001) 41-47.
 - [7] A. Goi, M. Trapido, Hydrogen Peroxide Photolysis, Fenton reagent and
 Photo-Fenton for the Degradaiton of Nitrophenols: a Comparative Study,
 Chemosphere 46 (2002) 913-922.
- [8] J. Araña, E.T. Rendón, J.M. Doña Rodríguez, J.A. Herrera Melián, O.G. Díaz, J.P. Peña, Highly Concentrated Phenolic Wastewater Treatment by the Photo-Fenton Reaction, Mechanism Study by FTIR-ATR, Chemosphere 44 (2001) 1017-1023.
 - [9] M.C. Lu, J.N Chen, C.P. Chang, Oxidation of Dichlorvos with Hydrogen
 Peroxide using Ferrous Ion as Catalyst, J. Hazard. Mater. 65 (1999) 277-288.

- [10] M.A. Engwall, J.J. Pignatello, D. Grasso, Degradation and Detoxification of 1 the Wood Preservatives Creosote and Pentachlorophenol in Water by the 2 Photo-Fenton Reaction, Wat. Res. 33 (5) (1999) 1151-1158. 3
- [11] J.J. Pignatello, Dark and photoassisted Fe3+ catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide, Env. Sci. Technol. 26 5 (1992) 944-951 6
- [12] B.C. Faust, J. Hoigne, Photolysis of Fe(III)-hydroxy complexes as sources of 7 OH radicals in clouds, fog, and rain, Atmos. Environ. 24A (1990) 79-89 8
- [13] S.F. Kang, C.H. Liao, S.T. Po, Decolorization of Textile Wastewater by Photo-Fenton Oxidation Technology, Chemosphere 41 (2000) 1287-1294. 10
 - [14] Snoeyink and Jerkins, Water Chemistry, Wiley, 1980.

11

16

17

- [15] M. Pérez, F. Torrades, J. A. Garcia-Hortal, X. Doménech, and J. Peral 12 Removal of Organic Contaminants in Paper Pulp Treatment Effluents under 13 Fenton and Photo-Fenton Conditions, Appl. Cat. B: Environ.. 36 (2002) 63-14 74. 15
 - [16] S. Rahhal, H.W. Richter, Reduction of hydrogen peroxide by the ferrous iron chelate of diethylenetriamine-N,N,N',N,N'-pentaacetate, J. Am. Chem. Soc. 110 (1988) 3126-3133.
- [17] D.-K. Moon, T. Maruyama, K. Osakada, T. Yamamoto, Chemical oxidation 19 of polyaniline by radical generating reagent, Chem. Lett. (1991) 1633-1636. 20
- [18] P.F. Collins, H. Diehl, G.F. Smith, 2,4,6-Tripyridyl-s-Triazine as a Reagent 21 for Iron, Determination of Iron in Limestone, Silicates, and Refractories, 22 Anal. Chem. 31 (1959) 1862-1867. 23
- [19] G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, Critical Review of 24 Rate Constants of Hydrated Electrons, Hydrogen Atoms and Hydroxyl 25

- Radicals (OH*/O-*) in Aqueous Solution, J. Phys. Chem. Ref. Data 17 (1988)
- 2 513-886.

1		Table Captions
2	Table 1.	Formaldehyde and methanol oxidation rates and rate constants using
3		UV/H ₂ O ₂ and photo-Fenton
4	Table 2.	Effect of initial pH on photodecomposition of formaldehyde and methanol
5		with 6.67x10 ⁻² M of Fe ²⁺
6	Table 3.	Effect of H ₂ O ₂ on formaldehyde and methanol oxidation
7	Table 4.	Effect of ferrous ions on formaldehyde and methanol oxidation
8	Table 5.	Influence of methanol on the oxidation reaction
9	Table 6.	Comparison of experimental and theoretical values for r_{m}/r_{f}
10	Table 7.	Comparison of experimental and theoretical values for $r_{m}/r_{f}\text{in various initial}$
11		concentrations of methanol
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
2 2		
23		
24		

1 Table 1. Formaldehyde and methanol oxidation rates and rate constants using

UV/H₂O₂ and photo-Fenton

Process	initial rate	(M·min ⁻¹)	k (min ⁻¹)		r _m /r _f	
	CH ₂ O	CH₃OH	CH ₂ O	СН₃ОН		
UV/H ₂ O ₂	3.33x10 ⁻³	3.18x10 ⁻⁵	6.5x10 ⁻³	3.66x10 ⁻³	0.0095	
photo-Fenton	4.33x10 ⁻²	7.55x10 ⁻³	1.49x10 ⁻²	8.25x10 ⁻³	0.174	

Table 2. Effect of initial pH on photodecomposition of formaldehyde and methanol

2 with 6.67×10^{-2} M of Fe²⁺

0.

Parameters	initial rate (M·min ⁻¹)		k (min ⁻¹)		r _m /r _f
	CH₂O	СН₃ОН	CH ₂ O	СН₃ОН	
pH 2.6	4.33x10 ⁻²	7.55×10 ⁻³	1.49x10 ⁻²	8.25×10 ⁻³	0.174
pH 3	3.95x10 ⁻²	2.23x10 ⁻³	1.71x10 ⁻²	8.91x10 ⁻³	0.056
pH 3.5	4.00x10 ⁻²	5.99x10 ⁻³	1.63x10 ⁻²	9.09x10 ⁻³	0.15
pH 4	3.60x10 ⁻²	4.92x10 ⁻³	1.69x10 ⁻²	8.29x10 ⁻³	0.137

Table 3. Effect of H₂O₂ on formaldehyde and methanol oxidation

CH ₂ O or CH ₃ OH	initial rate	(M·min ⁻¹)	k (m	r _m /r _f	
Concentration	CH₂O	СН₃ОН	CH₂O	CH₃OH	
0.333 M	3.72x10-2	6.03x10-3	1.58x10-3	1.78×10-3	0.1621
0.500M	3.4x10-2	2.66x10-3	3.79x10-3	2.85x10-3	0.078
0.667 M	4.33x10-2	7.55x10-3	1.45x10-2	8.25×10-3	0.174
0.833 M	4.6x10-2	8.5x10-3		1.47×10-2	0.185
1 M	5.97x10-2	1.05x10-2	_	4.6x10-3	0.207

Table 4. Effect of ferrous ions on formaldehyde and methanol oxidation

б

[Fe ²⁺]	initial rate (M·min-1)		k (min-1)		r _m /r _f
	CH ₂ O	СН₃ОН	CH ₂ O	СН₃ОН	
0 M	3.33x10 ⁻³	3.18x10-5	6.5x10 ⁻³	3.66×10 ⁻³	0.0095
6.67x10 ⁻³ M	1.46x10-2	3.98x10-4	8.25x10-3	4.85x10-3	0.0273
2.27x10 ⁻² M	3.69x10 ⁻²	5.89 x10 ⁻³	9.01x10 ⁻³	4.6x10 ⁻³	0.16
6.67x10 ⁻² M	4.33x10 ⁻²	7.55x10 ⁻³	1.49x10 ⁻²	8.25x10 ⁻³	0.174
8.33x10 ⁻² M	5.18x10 ⁻²	7.82x10 ⁻³	1.54x10 ⁻²	1.12x10 ⁻²	0.151

Table 5. Influence of methanol on the oxidation reaction

-5

[CH ₃ OH]	initial rate (M·min ⁻¹)		k (min ⁻¹)		r _m /r _f
	CH ₂ O	CH₃OH	CH ₂ O	СН ₃ ОН	
0.0796 M	4.33x10 ⁻²	7.55x10 ⁻³	1.49x10 ⁻²	8.25x10 ⁻³	0.174
0.333 M	2.72x10 ⁻²	1.6x10 ⁻²	1.33x10 ⁻³	2.04x10 ⁻⁴	0.588
0.667 M	1.43x10 ⁻²	1.79x10 ⁻²	4.67x10 ⁻⁴	1.48×10 ⁻⁴	1.209

Table 6. Comparison of experimental and theoretical values for r_m/r_f

	Experimental conditions		rm	r _m /r _f		
	[H ₂ O ₂], M	[Fe ²⁺], M	initial pH	Experimental value	Theoretical value	
UV/H ₂ O ₂	0.667	0	2.6±0.1	0.0095	0.232	
photo-Fenton	0.667	6.67x10 ⁻²	2.6±0.1	0.174	0.232	
	0.667	6.67x10 ⁻²	2.6±0.1	0.174	0.232	
Effect of pH	0.667	6.67x10 ⁻²	3.0±0.1	0.056	0.232	
	0.667	6.67x10 ⁻²	3.5±0.1	0.15	0.232	
	0.667	6.67x10 ⁻²	4.0±0.1	0.137	0.232	
	0,333	6.67x10 ⁻²	2.6±0.1	0.162	0.232	
	0.5	6.67x10 ²	2.6±0.1	0.078	0.232	
Effect of H ₂ O ₂	0,667	6.67x10 ⁻²	2.6±0.1	0.174	0.232	
	0.833	6.67×10^{-2}	2.6±0.1	0.185	0.232	
:	1	6.67×10^{-2}	2.6±0.1	0.207	0.232	
	0.667	0	2.6±0.1	0.0095	0.232	
	0.667	6.67x10 ⁻³	2.6±0.1	0.106	0.232	
Effect of Fe ² *	0.667	2.27x10 ⁻²	2.6±0.1	0.16	0.232	
	0.667	6.67x10 ⁻²	2.6±0.1	0.174	0.232	
	0.667	8.33x10 ⁻²	2.6±0.1	0.151	0.232	

Table 7. Comparison of experimental and theoretical values for r_m/r_f in various initial

concentrations of methanol

	Experi	mental condi	r _m /r _f		
	ICH OH M		m 2th h4	Experimental	Theoretical
	[СН₃ОН], М	[H ₂ O ₂], M 	[Fe ²⁺], M	value	value
Effect of	0.0796	0.667	6.67x10 ⁻²	0.174	0.232
methanol	0.333	0.667	6.67x10 ⁻²	0.588	0.97
medianoi	0.667	0.667	6.67x10 ⁻²	1.209	1.94

```
1
                                                  Figure captions
      Figure 1. Comparison on the removal of formaldehyde and methanol in different
2
                   processes, removal of formaldehyde in photolysis process (---), removal
3
                   photolysis process (...p...), removal of methanol in photo-Fenton process
5
                   (\cdots \triangle \cdots); experimental conditions: [H_2O_2] = 6.67 \times 10^{-1} M.
6
                   [Fe^{2+}] = 6.67 \times 10^{-2} \text{ M}, \text{ pH} = 2.6\pm0.1.
7
      Figure 2. Photooxidation of formaldehyde (F) and methanol (M) in various initial pH,
8
                   F-pH 2.6(——), F-pH 3.5(——), F-pH 4(——), M-pH 2.6(···□··),
9
                   M-pH 3.5 (·········), and M-pH 4(········); experimental conditions:
10
                   [CH_2O]=0.33 \text{ M}, [H_2O_2]=6.67 \times 10^{-1} \text{M}, [Fe^{2+}]=6.67 \times 10^{-2} \text{ M}.
11
       Figure 3. Photooxidation of formaldehyde (F) and methanol 'M) at different
12
                    hydrogen peroxide concentrations, H<sub>2</sub>O<sub>2</sub> Free(-·•·-), F-[H<sub>2</sub>O<sub>2</sub>] 0.333 M
13
                    (---), F-[H<sub>2</sub>O<sub>2</sub>] 0.667 M (----), F-[H<sub>2</sub>O<sub>2</sub>] 1 M (----), M-[H<sub>2</sub>O<sub>2</sub>]
14
                    0.333 \text{ M} (\cdots \square \cdots), \text{ M-[H<sub>2</sub>O<sub>2</sub>] } 0.667 \text{ M} (\cdots \triangle \cdots), \text{ M-[H<sub>2</sub>O<sub>2</sub>] } 1 \text{ M}(\cdots \triangle \cdots);
15
                    experimental conditions: [CH<sub>2</sub>O]=0.33 M, [Fe<sup>2+</sup>]=6.67x10<sup>-2</sup> M, pH
16
                    =2.6\pm0.1.
17
       Figure 4. Residual fraction of hydrogen peroxide with time, [H<sub>2</sub>O<sub>2</sub>] 0.333 M(-a-),
18
                   [H_2O_2] 0.500 M(\rightarrow-), [H_2O_2] 0.667 M(\rightarrow-), [H_2O_2] 0.833 M(\rightarrow-), [H_2O_2]
19
                    1 M (--); experimental conditions: [CH<sub>2</sub>O]=0.33 M, [Fe<sup>2+</sup>]=6.67x10<sup>-2</sup> M.
20
                    pH = 2.6 \pm 0.1
21
22
23
24
25
```

```
Figure 5. Effect of initial concentrations of ferrous ions on photooxidation of (a)
1
                    formaldehyde (F), F-Fe<sup>2+</sup> Free (---), F-[Fe<sup>2+</sup>] 6.67x10<sup>-3</sup> M (----), F-
2
                    [Fe^{2+}] 2.27 \times 10^{-2} M (-----), F-[Fe^{2+}] 6.67 \times 10^{-2} M (------),
3
                    F-[Fe<sup>2+</sup>] 8.33 \times 10^{-2}M (-\Box-), and (b) methanol (M), M-Fe<sup>2+</sup> Free(\cdots \diamond \cdots),
4
                    M - [Fe^{2+}] 6.67 \times 10^{-3} M(\cdots p - \cdot), M - [Fe^{2+}] 2.27 \times 10^{-2} M(\cdots \Delta - \cdot), M - [Fe^{2+}]
5
                    6.67x10<sup>-2</sup>M (····»), M -[Fe<sup>2+</sup>] 8.33x10<sup>-2</sup> M (···×··); experimental
6
                    conditions: [CH_2O]=0.33 \text{ M}, [H_2O_2]=6.67 \times 10^{-1} \text{ M}, pH =2.6±0.1.
7
8
       Figure 6. Effect of initial concentrations of methanol on the oxidation of
9
                    (a) formaldehyde (F), F-[CH<sub>3</sub>OH] 0.0796 M(→), F-[CH<sub>3</sub>OH] 0.333 M
10
                    (—■—),F-[CH<sub>3</sub>OH] 0.667 M(——) and (b) methanol (M), M-[CH<sub>3</sub>OH]
11
                    0.0796 M(·······), M-[CH3OH] 0.333 M (········), M-[CH3OH] 0.667 M
12
                    (\cdots \triangle \cdots); experimental conditions: [CH<sub>2</sub>O]=0.33 M, [H<sub>2</sub>O<sub>2</sub>]=6.67x10<sup>-1</sup> M,
13
                    [Fe^{2+}] = 6.67 \times 10^{-2} \text{ M}, pH = 2.6 \pm 0.1.
14
15
16
17
18
19
20
21
22
23
 24
 25
```

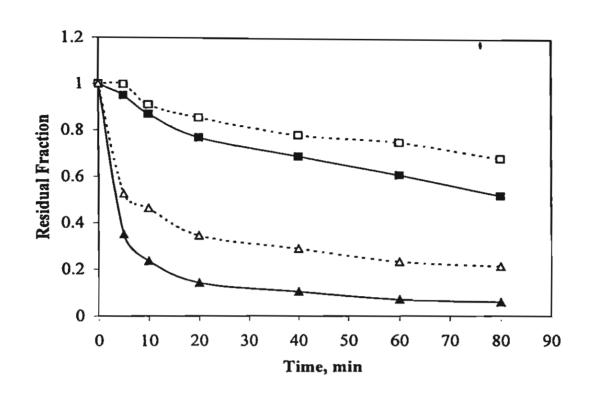


Figure 1. Comparison on the removal of formaldehyde and methanol in different processes, removal of formaldehyde in photolysis process (———), removal of formaldehyde in photo-Fenton process (———), removal of methanol in photolysis process (···········), removal of methanol in photo-Fenton process (·················); experimental conditions: [H₂O₂] = 6.67 x 10⁻¹ M, [Fe²⁺] = 6.67 x 10⁻² M, pH = 2.6±0.1.

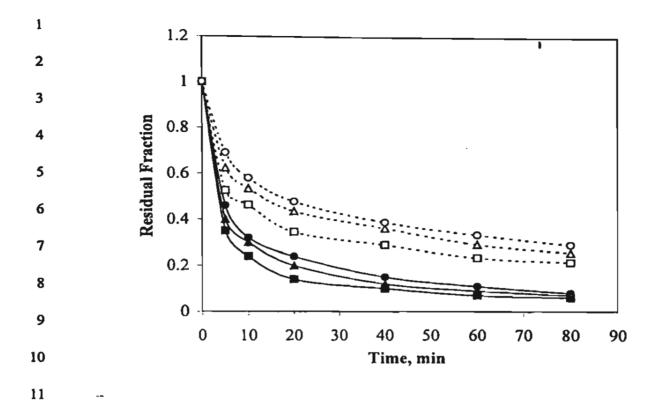


Figure 2. Photooxidation of formaldehyde (F) and methanol (M) in various initial pH,

F-pH 2.6(——), F-pH 3.5(——), F-pH 4(——), M-pH 2.6(···□···),

M-pH 3.5 (···Δ···), and M-pH 4(···δ···); experimental conditions:

 $[CH_2O]=0.33 \text{ M}, [H_2O_2]=6.67 \times 10^{-1} \text{M}, [Fe^{2+}]=6.67 \times 10^{-2} \text{ M}.$

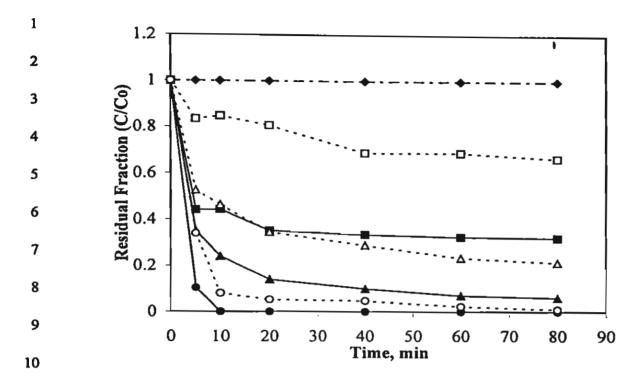


Figure 3. Photooxidation of formaldehyde (F) and methanol (M) at different hydrogen peroxide concentrations, H_2O_2 Free($-\cdot \bullet \cdot -$), $F_-[H_2O_2]$ 0.333 M ($-\bullet -$), $F_-[H_2O_2]$ 0.667 M ($-\bullet -$), $F_-[H_2O_2]$ 1 M ($-\bullet -$), $F_-[H_2O_2]$ 0.333 M ($-\bullet -$), $F_-[H_2O_2]$ 0.667 M ($-\bullet -$), $F_-[H_2O_2]$ 1 M($-\bullet -$); experimental conditions: $[CH_2O]=0.33$ M, $[Fe^{2+}]=6.67\times10^{-2}$ M, $pH=2.6\pm0.1$.

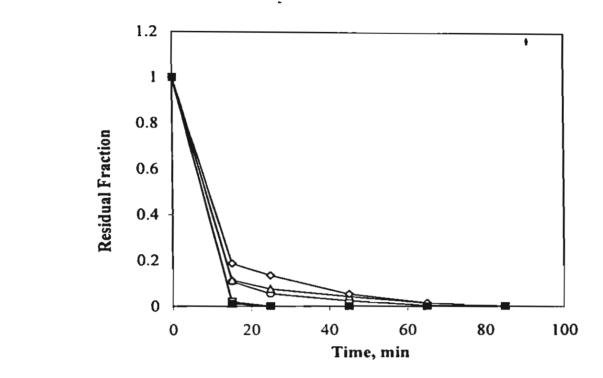


Figure 4. Residual fraction of hydrogen peroxide with time, $[H_2O_2]$ 0.333 M(-a-), $[H_2O_2]$ 0.500 M(-a-), $[H_2O_2]$ 0.667 M(-a-), $[H_2O_2]$ 0.833 M(-a-), $[H_2O_2]$ 1 M (-a-); experimental conditions: $[CH_2O]$ =0.33 M, $[Fe^{2+}]$ =6.67x10⁻² M, pH =2.6±0.1.

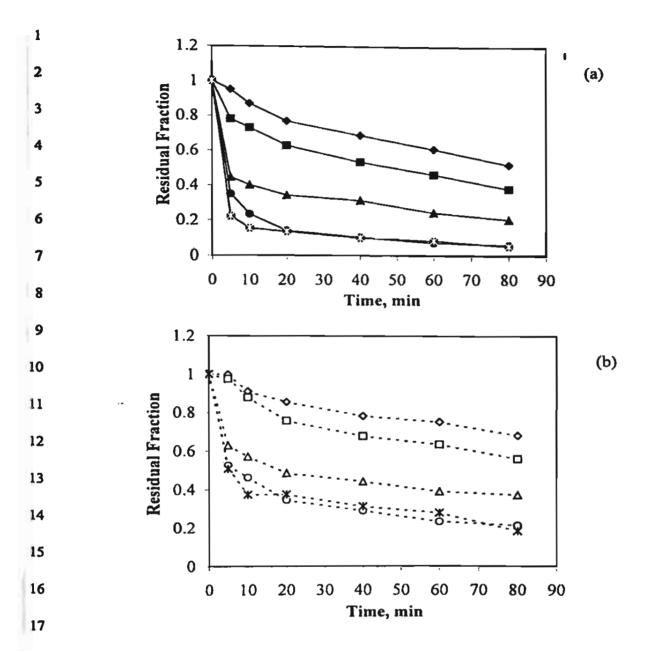


Figure 5. Effect of initial concentrations of ferrous ions on photooxidation of

(a) formaldehyde (F), F-Fe²⁺ Free (→-), F-[Fe²⁺] 6.67x10⁻³ M (→--),

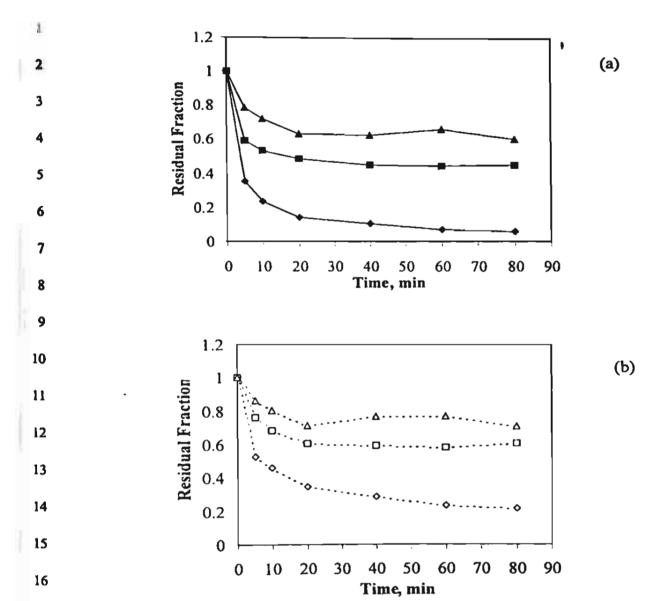
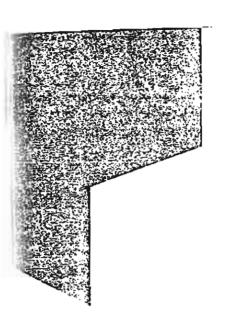
F-[Fe²⁺] 2.27x10⁻² M (→---), F-[Fe²⁺] 6.67x10⁻² M (→--),

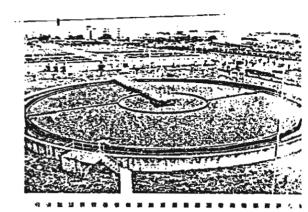
F-[Fe²⁺] 8.33x10⁻²M (→----), and (b) methanol (M), M-Fe²⁺ Free(·····--),

M -[Fe²⁺] 6.67x10⁻³ M(····□···), M -[Fe²⁺] 2.27x10⁻² M (····□···), M -[Fe²⁺]

6.67x10⁻²M(····□···), M-[Fe²⁺] 8.33x10⁻²M (···□····); experimental

conditions: [CH₂O]=0.33 M, [H₂O₂]=6.67x10⁻¹ M, pH =2.6±0.1.


Figure 6. Effect of initial concentrations of methanol on the oxidation of

(a) formaldehyde (F), F-[CH₃OH] 0.0796 M(\rightarrow), F-[CH₃OH] 0.333 M

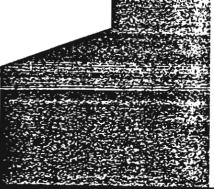
(\rightarrow),F-[CH₃OH] 0.667 M(\rightarrow) and (b) methanol (M), M-[CH₃OH] 0.0796 M(\rightarrow), M-[CH₃OH] 0.333 M (\rightarrow), M-[CH₃OH] 0.667 M

(\rightarrow); experimental conditions: [CH₂O]=0.33 M, [H₂O₂]=6.67x10⁻¹ M, [Fe²⁺] = 6.67x10⁻² M, pH = 2.6±0.1.

Proceedings of

Asian-Pacific Regional Conference on Practical Environmental Technologies

亞太地區實用性環境技術研討會


【論文集】

December 18 - 21, 2003

Chia Nan University of Pharmacy and Science Tainan, Taiwan, ROC

嘉南藥理科技大學

EFFECT OF UV/H2O2 ON DEGRADATION OF FORMALDEHYDE IN AQUEOUS SOLUTION

Puangrat Kajitvichyanukul¹, Arissara Tariya², Wanpen Wirojanagud³, Thammarat Koottatep⁴, and Chih-Hsiang Liao⁵

ABSTRACT

In this study, UV/H2O2 photooxidation process was investigated for the degradation of formaldehyde from aqueous solution. An annular photoreactor equipped with 254 nm low pressure mercury lamp was employed. The effects of UV irradiation, hydrogen peroxide, and pH solution on process performance were systematically studied. The study shows that UV photolysis has little effect on degradation of formaldehyde. The highest efficiency of formaldehyde degradation is achieved with the mole ratio of CH2O: H2O2 at 1:2. The degradation of formaldehyde does not improve in the presence of hydrogen peroxide in excess. The favorable oxidations of formaldehyde were obtained in the region of pH 5-7. In addition, the byproduct of formic acid was identified in the degradation of formaldehyde by UV/H2O2 process.

KEYWORDS: formaldehyde, photooxidation, advanced oxidation processes, ultraviolet light, hydrogen peroxide

1. INTRODUCTION

Medical wastewater contains a variety of toxic organic contaminants in wide concentration range. The toxic chemicals used in hospital generally consist of formalin solution as 40% formaldehyde and other chemicals such as acetone chloroform. According to prior studies (Charuratana and Voranisarakul, 1993; Cheawchanthanakit and Sangphromma 1997), the failure of the hospital wastewater treatment plants in Thailand came from the direct discharge of these toxic chemicals to the process units. The results from these studies also indicated that formaldehyde is considered as the major toxic organic contaminant in the medical wastewater due to its relatively high strength and volume discharge. Formaldehyde is commonly used as the preservative chemical in laboratory and embalming room in hospital. Used formaldehyde will be discharged to the wastewater treatment plant from the laboratory once a week with average amount of 500 mg/L and from embalming room twice a year with average amount of 67.5 m³.

Department of Environmental Engineering, King Mongkut's University of Technology Thonburi,

Bangkok, Thailand

National Research Center in Environmental and Hazardous waste Management, Chulalongkorn
University, Bangkok, Thailand

Department of Environmental Engineering Khonkaen University, Khonkaen, Thailand School of Environment, Resources and Development (SERD), Asian Institute of Technology (AIT),

Thailand

Department of Environmental Engineering and Science Chia Nan University of Pharmacy and Science, Tainan, Taiwan.

EFFECT OF UV/H2o2 ON DEGRADATION OF FORMALDEHYDE IN AQUEOUS SOLUTION

The degradation of these toxic pollutants that pose some degree of either toxic or inhibition to microorganism in biological treatment process must be carried out by other treatment technology prior to the conventional treatment. During the last decade, attention has been focused on the advance oxidation processes (AOPs), which provide ultimate solution for the treatment of hazardous organic pollutants (Amiri et al., 1997; Andreozzi et al., 1999; Krutzler and Bauer, 1999). The combination of UV irradiation and some catalysts (e.g. H₂O₂, O₃, Fe(II) and TiO₂) is employed to produce hydroxyl radicals which react with organic pollutants, leading to mineralization of the contaminants. Since the conventional treatment method for medical wastewater in Thailand is biological process, the AOPs are selected as the pretreatment method to decompose formaldehyde to a certain safety concentration level for further treatment. Of the AOPs, the UV/H₂O₂ is selected in this research due to its easiness and readiness as well as its effectiveness in organic pollutants removal.

2. MATÉRIALS AND METHODS

2.1 Photochemical Reactor

A 1-litre photochemical batch reactor was used in all experimental performed. The photoreactor consists of outer and inner compartments. The inner part is an angular quartz vessel for locating low pressure mercury lamp, which has a wattage of 10 and emits 254 nm primarily. This inner well is water-jacketed to maintain a constant solution temperature. The outer quartz compartment is the solution receiving well with 2 sampling ports. In addition, this system was well agitated by a magnetic stirring bar.

2.2 Experimental Procedure

For each experiment, synthetic wastewater of 10,000 mg/L (0.33 M) formaldehyde was prepared in deionized water. The pH solution was adjusted to desired values by H₂SO₄ or NaOH before startup, then a predetermined amount of hydrogen peroxide was injected in the reactor right at the beginning of each run. The time at which the solution was irradiated was considered as time zero. Each solution was irradiated for 300 min.

2.3 Analytical Measurements

At appropriate time intervals, samples were taken from the reactor into glass vials. The samples were immediately analyzed to avoid further reaction. Enzyme catalase was also added to each sample to decompose hydrogen peroxide residue, preventing hydrogen peroxide from reacting with organic substrates during the analysis. The standard iodometric method was performed to determine the hydrogen peroxide residual concentrations. The concentrations of formaldehyde residue were determined by gas chromatography equipped with flame ionization detector (GC-17A Shimadzu with ATTM-Aquawax glass capillary column 30m. x 0.25 mm. x 0.25 μm film thickness). The analytical conditions were set as follows: the injector and detector temperatures were 170^{-C}C and 250 occurrence column temperature programming was 35 occurrence column temperature programming was 35 occurrence column temperature programming was 35 occurrence column temperature rate at 0.8 occurrence column temperature rate at 0.8 occurrence column temperature rate at 16 occurrence column time of 1.85 minute was used for identifying formaldehyde peak. Helium is used as carrier gas using 20% split mode. The injection sample volume was 2 μl. The

concentrations of formaldehyde were calculated from corresponding peak area. Initial and treated TOC were analyzed with Shimadzu 700 TOC ANALYZER 0-1-Analytical.

3. RESULTS AND DISCUSSION

3.1 Photodegradation of Formaldehyde

In this study, the photolysis of formaldehyde without hydrogen peroxide was investigated. As shown in Figure 1, by UV alone slight amount of formaldehyde was decomposed, less than 20% being removed. In the presence of H_2O_2 , formaldehyde was seen to drop down sharply. But after a certain time point around 120 min, the residual formaldehyde remained rather unchanged.

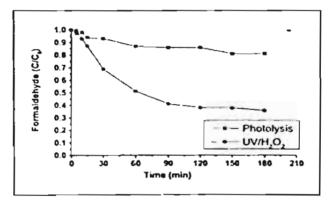


Figure 1. Degradation of formaldehyde by UV and UV/ H_2O_2 . ([CH₂O]₀ = 10,000 mg/l, CH₂O: H_2O_2 = 1:1, pH =7)

3.2 Effect of H2O2

In the UV/H₂O₂ process, hydroxyl radicals were generated through the photolysis of hydrogen peroxide as shown in the initiation step of hydroxyl radicals formation (equation (1)).

$$H_2O_2 + hv \longrightarrow 2OH'$$
....(1)

This generated hydroxyl radical can react with hydrogen peroxide and thus leads to many reactions as follow:

$$OH^{\bullet} + H_2O_2 \xrightarrow{\bullet} HO_2^{\bullet} + H_2O$$
 (2)
 $HO_2^{\bullet} + HO_2^{\bullet} \longrightarrow H_2O_2 + O_2$ (3)
 $OH^{\bullet} + HO_2^{\bullet} \longrightarrow H_2O + O_2$ (4)
 $OH^{\bullet} + OH^{\bullet} \longrightarrow H_2O_2$ (5)

Figure 2 illustrates the degradation of formaldehyde as a function of the irradiation time at different initial hydrogen peroxide concentrations. As described earlier, the photolysis of

formaldehyde in the absence of hydrogen peroxide gave rather slight effect and resulted in slow degradation of formaldehyde. With the presence of hydrogen peroxide, the degradation rate of formaldehyde increased with increasing hydrogen peroxide concentration. However the ratio of 1:3 resulted in less removal of formaldehyde than 1:2. This can be explained due to hydroxyl radical scavenging by excessive H_2O_2 (equation (2)). As the ratio of formaldehyde and hydrogen peroxide is higher than 1:2, its hydroxyl radical scavenging effect became important and the formaldehyde degradation decreased accordingly. In the meantime, the termination reactions (equation (3)-(5)) might be expected to occur.

With the ratios of formaldehyde and hydrogen peroxide at 1:0.1, 1:0.5 and 1:1, Figure 3 shows that hydrogen peroxide was completely consumed at 60 minutes, indicating that the amounts of hydrogen peroxide in these systems were insufficient. On the contrary, hydrogen peroxide was observed to be in excess with the ratios of 1:2 and 1:3, which led to considerable residue of hydrogen peroxide at the end of reaction period 300 min. Under such ratios, H₂O₂ was seen to reduce remarkably in the period of 90 min, and after 90 min it decreased slowly.

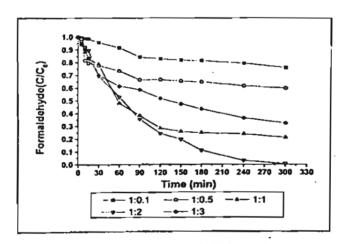


Figure 2. Degradation of formaldehyde by UV/H2O2 with different molar ratios of CH2O:H2O2.([CH2O]0 = 10,000 mg/l, pH =7)

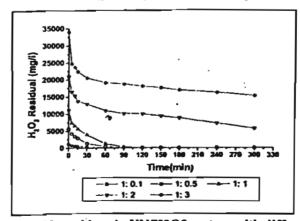


Figure 3. Hydrogen peroxide residues in UY/H2O2 system with different molar ratios of CH2O:H2O2. ([CH2O]0 = 10,000 mg/l, pH =7)

3.3 Effect of pH

It has been reported that the best oxidation was obtained at acidic pH for ultraviolet and hydrogen peroxide process in the presence of carbonate species (Liao and Gurol, 1995; Mokrini et al., 1997). However, higher dissociation rate for hydrogen peroxide at higher pH has also been reported (Ku et al., 1998). In addition, effect of pH on the efficiency of hydroxyl radical production and its final reaction will mostly depend on nature of contaminant (Hernandez et al., 2002). The results for oxidation of formaldehyde at different pH by UV/H₂O₂ process were given in Figure 4. Obviously, the best formaldehyde removal was obtained in the region of pH 5-7. When the pH solution was lower or higher than this pH region the formaldehyde oxidation efficiency was reduced. The highest rate of formaldehyde degradation was observed to be at pH 7.

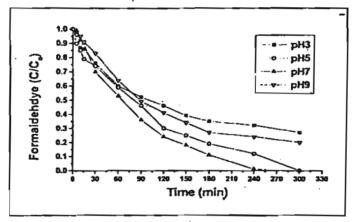


Figure 4. Hydrogen peroxide residuals in UV/H2O2 system with different pH. ([CH2O]0 = 10,000 mg/l, CH2O:H2O2 =1:2)

3.4 Degradation of Formaldehyde

Figure 5 shows the TOC removal as a function of the irradiation time at a molar ratio of formaldehyde:hydrogen peroxide, 1:2. Apparently, degradation of formaldehyde does not reach complete mineralization since 60% of TOC still remained in the solution. This phenomenon can be explained that formaldehyde was oxidized into formic acid as its reaction byproduct, which is refractory to hydroxyl radical oxidation. As reported in earlier studies (Stefan and Bolton, 1998; Heit et al., 1998; Gonzalez and Braun, 1996), formaldehyde itself react with hydroxyl radicals (OH) by way of hydrogen abstraction, resulting in the formation of formyl radicals (CHO) or their hydrated form. The latter are oxidized by dissolved molecular oxygen to yield formic acid and hydroperoxyl radicals. Again, formic acid reacts with OH to give formoyl radicals that react with molecular oxygen finally yielding carbon dioxide and hydroperoxyl radicals. The presence of formic acid was evidenced by identifying its peak in GC chromatogram in this study.

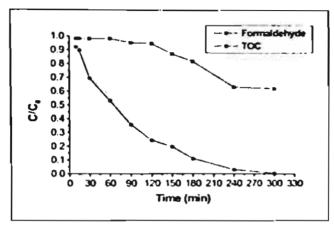


Figure 5. TOC and formaldehyde degradation by UV/H₂O₂ process. ([CH₂O]₀ = 10,000 mg/l, CH₂O:H₂O₂ =1:2, pH =7)

4. CONCLUSIONS

This study shows the photoxidation of formaldehyde by UV.H2O2 process at different molar ratios of formaldehyde: hydrogen peroxide and different solution pH levels. Slight formaldehyde degradation by UV alone was observed. Addition of hydrogen peroxide led to significant increase of efficiency of formaldehyde degradation. The excessive amount of hydrogen peroxide (e.g. ratio of CH2O:H2O2 at 1:3) in the UV/H2O2 system exerted negative effect on the degradation of formaldehyde. The optimum molar ratio of CH2O:H2O2 was found to be 1:2 to achieve the highest degradation of formaldehyde. The optimum pH of this system is presented at the region of pH 5-7. The results show that degradation of formaldehyde does not reach complete mineralization due to the occurrence of reaction byproduct like formic acid, which is refractory to hydroxyl radical oxidation.

ACKNOWLEDGEMENTS

This research was supported by the Thailand Research Fund under grant no. MRG4680029.

REFERENCES

- Amiri A. S., Bolton J. R., Cater S. R. (1997) Ferrioxalate-mediated photodegradation of organic pollutants in contaminated water. Wat. Res. 31, 787-798
- Andreozzi R., CaprioV., Insola A., Marotta R. (1999) Advanced oxidation processes (AOP) for water purification and recovery, Cat. Today, 53, 51-59
- Charuratana U., Voranisarakul J. (1993) Wastewater Treatment Plant Research and Development for 25 Hospitals Nationwide. Report submitted to Health Department, Ministry of Health, Thailand
- Cheawchanthanakit S., Sangphromma A (1997) Effect of Lysol on activated sludge for hospital wastewater treatment

Asian-Pacific Regional Conference on Practical Environmental Technologies Dec. 18~21, 2003, Tainan, Taiwan

- Clasisse C., Ferrieu F., Assous M., Wel D., Zachman G. (1996) Automated Infrared Microscopy as analytical tool in a lithographic silylation process of resists. *Bruker Report* 143/96.
- Gonzalez M. C., Braun A. M.(1996) Vacuum UV photolysis of aqueous solution of nitrate effect of organic matter. II. Methanol. J. Photochem. Photobiol. A. 95,67-72
- Heit G., Neuner A., Saugy P.-Y., Braun A. M. (1998) Actinometry: The quantum yield of the photolysis of water. J. Phys. Chem. A. 102,5551-5561
- Hernandez R., Zappi M., Colucci J., Jones R. (2002) Comparing the performance of various advanced oxidation processes for treatment of acetone contaminated water. J. Hazard. Mater., 2789, 1-18
- Krutzler T., Bauer R. (1999) Optimization of a photo-Fenton prototype reactor. Chemosphere, 38, 2517-2532
- Ku Y., Wang L., Shen Y. (1998). Decomposition of EDTA in aqueous solution by UV/H₂O₂ process. J. Hazard. Mater. 60, 41-45
- Liao C., Gurol M.(1995). Chemical Oxidation by photolysis decomposition of hydrogen peroxide. *Environ Sci Tech.* 29, 300-3014
- Stefan M. I., Bolton J. R. (1998) mechanism of the degradation of 1,4-Dioxan in dilute aqueous solution using the UV/H₂O₂ process. *Environ. Sci. Techno.* 32,870-873

DEGRADATION OF FORMALDEHYDE AND METHANOL BY PHOTO-FENTON PROCESS

Puangrat Kajitvichyanukul¹, Ming-Chun Lu², Aditsuda Jamrocnsan³, Jarurat Voranisarakul¹, Wanpen Wirojanagud⁴, Thammarat Koottatep⁵

ABSTRACT

The degradation of formaldehyde and methanol using photo-Fenton method in a lab-scale reactor was investigated in this study. The initial concentration of formaldehyde and methanol were 0.333M and 7.96x10⁻² M, respectively. Effect of methanol, H₂O₂ and Fe²⁺ concentrations on the photo-Fenton reaction was investigated. The initial rate of formaldehyde and methanol oxidation significantly increased with increasing the concentration of H₂O₂. UV light has higher promotion efficiency when there is a lower Fe²⁺ concentration; however, at the higher concentration of Fe²⁺, it just slightly increased the oxidation rate due to the fast reaction of H₂O₂ and Fe²⁺. The optimum concentrations of H₂O₂ and Fe²⁺ for formaldehyde and methanol oxidation obtained in this study were 1.0 M and 6.67x10⁻²M, respectively.

KEYWORDS: formaldehyde, methanol, photo-Fenton

1. INTRODUCTION

Many chemical substances are used in hospitals and are discharged monthly or annually to wastewater treatment plants. Recently, King Mongkut's University of Technology Thonburi (KMUTT) has studied the failure of the wastewater treatment plant in many hospitals in Thailand. It is found that the major factor causing the problem to the wastewater treatment plant, normally biological processes, is the batch discharging of used chemical substances causing the shock load of toxic chemicals of the wastewater treatment plant. Major organic contaminant discharged to wastewater treatment plants is formaldehyde, used as embalming solution. With large discharge volume, formaldehyde becomes the most significant pollutant in hospital wastewater.

Photo-Fenton process has attracted a great interest in recent years due to its high efficiency to mineralize organic pollutants. The success of organic hazardous waste removal from the

Department of Environmental Engineering, King Mongkut's University of Technology
Thonburi, Bangkok, Thailand.

² Department of Environmental Resources Management, Chai Nan University of Pharmacy and Science, Tainan, Taiwan

³ National Research Center in Environmental Hazardous Waste Management, Chulalongkorn University, Bangkok, Thailand.

⁴ Department of Environmental Engineering, Khon Kaen University, Khon Kaen, Thailand
⁵ School of Environment, Resources and Development (SERD), Asian Institute of Technology (AIT),
Thailand

wastewater using this process has been widely reported (Rodriguez et al., 2002; Bauer et al., 1999). With combination of H₂O₂, Fe²⁺, and UV, very reactive free radicals, known as hydroxyl radicals (OH[•]), are generated and react rapidly with almost organic compounds. In this study, photo-Fenton process was applied to investigate the oxidation of formaldehyde in aqueous phase. In addition, methanol is also added in the commercial product of formaldehyde to keep it stable. Therefore, methanol always exists in formaldehyde solution and competes hydroxyl radical with formaldehyde during the oxidation. In this study, formaldehyde as well as methanol oxidation in the photo-Fenton process were evaluated. Three parameters, namely initial pH, [H₂O₂], and [Fe²⁺] were used to explore their effect on the oxidation reaction. In addition, the oxidation of formaldehyde in the presence of different methanol concentrations was also studied.

2. EXPERIMENTAL

2.1 Chemicals and Materials

Analytical grade formaldehyde 37% with 10% 0f methanol, hydrogen peroxide 35% and heptahydrated ferrous sulfate were purchased from the Merck Company. All experiments were performed in a 1.1-L reactor. The quartz reactor includes of two compartments. The outer compartment contains the treated mixture and the chemical reagents, and the inner one was used to insert the UV-lamp. The cooling water was provided for the inner part to keep a constant temperature (30°). The sampling solution was well mixed with a magnetic stirrer bar.

2.2 Procedure

All reaction solutions were adjusted to pH 2.6±0.2 with H₂SO₄. The light source was a 10-W ultraviolet lamp with a peak wavelength of 254nm. The initial concentration of formaldehyde and methanol were 0.333 M, and 7.96×10⁻²M, respectively. The concentrations of hydrogen peroxide and ferrous ion were varied from 0.333 to 1.0 M and 6.67×10⁻³ to 8.33×10⁻² M to investigate the optimum condition for formaldehyde and methanol degradation. The photo-Fenton reaction was initiated by the addition of hydrogen peroxide and simultaneously starts of irradiation. 1-ml aliqots were withdrawn at selected time intervals. The reaction was quenched instantly by adding 2-ml of 0.28 M Na₂SO₃ and 1-ml of NaOH 0.5 M before analysis.

Formaldehyde was analyzed by a GC equipped with an FID detector (HP4890). A pack column (5%diphenyl and dimethylpolysiloxane) with the following dimension, 60 m, and 0.53 µm, was used. The temperature program during the GC analysis was used as follows: 35 °C(1min), 0.8 °C-min until 40 °C(3min), 65 °C-min until 200 °C(1min).

3. RESULTS AND DISCUSSION

3.1 Comparison of UV/H2O2 and photo-Fenton processes

Since photo-Fenton process initiated by combination of UV/H₂O₂ and Fe²⁺, the oxidation efficiency of UV/H₂O₂ should be studied first and then compared with photo-Fenton process.

In UV/H₂O₂ process hydroxyl radical are formed according to equation (1) (Esplugas, et. al, 2002):

$$H_2O_2 + h\nu \longrightarrow 2OH^{\bullet}$$
(1)

In the photo-Fenton process system, Fe²⁺ can catalyze H₂O₂ to produce OH^{*} as shown in equation (2):

$$Fe^{2^{+}}_{30} + H_{2}O_{2} \longrightarrow Fe^{3^{+}}_{30} + OH^{*} + OH^{*}$$
 (2)

The role of UV irradiation leads not only to the formation of additional hydroxyl radicals as shown in equation (1) but also to a recycling of the Fe²⁺ catalyst by the reduction of Fe³⁺. By this way, the concentration of Fe²⁺ increases and therefore the oxidation reaction is accelerated because much more hydroxyl radicals are generated (Ghaly et al., 2001).

As shown in Figures 1 and 2, the decomposition rate of formaldehyde and methanol by UV/H₂O₂ process was slow compared with that by photo-Fenton process. In UV/H₂O₂ process, the removal ratios of formaldehyde and methanol at 5 minutes were 12% and 3% and after 80 minutes, those were 57% and 40%, respectively. In this study, the initial rate is defined as the average oxidation rate in the first 5 min. of the oxidation reaction. When Fe²⁺ was introduced in the UV/H₂O₂ process, therefore the initial rate of formaldehyde degradation increased from 7.66x10⁻³ M-min⁻¹ to 4.63x10⁻² M-min⁻¹ and 4.78x10⁻⁴ M-min⁻¹ to 7.56x10⁻³ M-min⁻¹ for methanol degradation. From our observation, it is recommended that the photo-Fenton process can significantly accelerate the rate of formaldehyde and methanol degradation in aqueous solution.

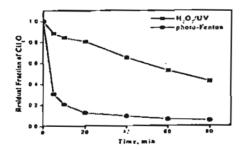


Figure 1 Comparison of formaldehyde degradation by H_2O_2/UV and photo-Fenton methods (initial $[CH_2O] = 0.333 \text{ M}, [H_2O_2] = 0.667 \text{ M}, [Fe^{2^*}] = 6.67 \text{x} 10^{-2} \text{ M}, initial pH = 2.6 <math>\pm 0.2$).

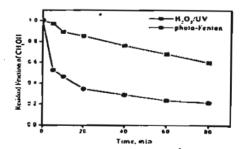


Figure 2 Comparison of methanol degradation by H_2O_2/UV and photo-Fenton method (initial $\{CH_3OH\} = 8.36\times10^{-2} \text{ M}, \{H_2O_2\} = 0.667 \text{ M}, \{Fe^{2*}\} = 6.67\times10^{-2} \text{ M}., \text{ initial pH} = 2.6\pm0.2).$

3.2 Effect of H2O2

Hydrogen peroxide plays an important role in the photo-Fenton process. As shown in equations (1) and (2), •OH is generated by the photolysis of hydrogen peroxide and the reaction between hydrogen peroxide and ferrous ion. In the absence of H_2O_2 , no

formaldehyde degradation was observed and methanol concentration was slightly decreased. The role of added H₂O₂ is different depending on its concentration. Figure 3 shows the effect of initial concentration of H2O2 on the removal of formaldehyde. Results show that the removal ratio of formaldehyde at the time of 5 minutes were 56%, 70%, and 90% in the presence of 0.333, 0.667, and 1.0 M H₂O₂, respectively. Formaldehyde was almost degraded with addition of 1.0 M H₂O₂ within 10 min. After 80 min, the removal ratios of formaldchyde were 68%, and 95% with 0.333 and 0.667 M of H₂O₂. The initial rate of formaldehyde degradation were 3.73x10⁻² M-min⁻¹, 4.63x10⁻² M-min⁻¹ and 5.96x10⁻² M-min⁻¹ with different concentration of H₂O₂ ranging from 0.333 to 1.0 M. Figure 4 shows the profile of methanol degradation using different dosages of H₂O₂ in the presence of 6.67x10⁻² M of Fe²⁺. The removal rate of methanol was higher during the first 20 minutes. The degradation of methanol at the time of 5 minutes were 40%, 47% and 66%, and reached 61%, 79% and 96% after 80 minutes with 0.333, 0.667 and 1.0 M of H₂O₂, respectively. Due to increasing the concentration of H₂O₂ from 0.333 to 1.0 M, the initial rate of methanol degradation increased from 6.28x10⁻³ M·min⁻¹ to 7.56x10⁻³ M·min⁻¹ and 1.05x10⁻² M·min⁻¹, respectively. It indicates that the initial degradation rates of formaldehyde and methanol increased with increasing H₂O₂ concentration in a linear relationship as shown in Figure 5.

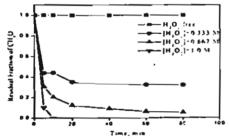


Figure 3 Effect of hydrogen peroxide dosage on the photodegradation of formaldehyde (initial $[CH_2O] = 0.333 \text{ M}, [Fe^{2^{+}}] = 6.67 \times 10^{-2} \text{ M}, initial pH = <math>2.6\pm0.2$).

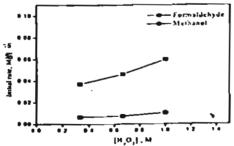


Figure 5 Effect of hydrogen peroxide dosage on initial rate of formaldehyde and methanol degradation (initial [CH₂O]=0.333M, [CH₂OH] = 7.96x10⁻² M, [Fe²⁺] = 6.67x10⁻² M, initial pH = 2.6±0.2).

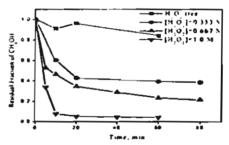


Figure 4 Effect of hydrogen peroxide dosage on the removal ratio of Methanol (initial [CH₂OH] = 7.96x10⁻² M, [Fe²⁺] = 6.67x10⁻² M, initial pH = 2.6±0.2).

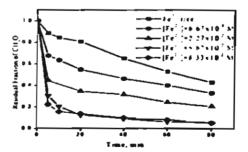


Figure 6 Effect of ferrous ion concentration on the removal of formaldehyde (initial $|CH_2O| = 0.333 \text{ M}$, $|H_2O_2| = 0.667 \text{ M}$, initial $pH = 2.6\pm0.2$).

3.3 Effect of ferrous ion

Ferrous ion acts as a photo catalyst in photo-Fenton system. However, Liou et al.(2003) indicated that the OH* inhibition effect can occur in photo-Fenton reaction with high Fe²⁺ concentration. To obtain the optimal Fe²⁺ concentration, the experiment was carried out with various amounts of iron salt. Figure 6 shows the effect of ferrous ion concentration on the degradation of formaldehyde. As the ferrous ion concentration increased from 0 to 6.67x10⁻³, 2.27x10⁻², 6.67x10⁻², and 8.33x10⁻² M, the percentage of formaldehyde degradation at time of 5 minutes were 12%, 33%, 56%, 70%, and 78% and reached 58%, 67%, 80%, 95% and 95% respectively after 80 minutes. The initial rates of formaldehyde degradation increased with increasing Fe²⁺concentration; they are 7.66x10⁻³ M·min⁻¹, 2.16x10⁻² M·min⁻¹, 3.7x10⁻², M·min⁻¹, 4.63x10⁻² M·min⁻¹, and 5.16x10⁻², M·min⁻¹, respectively. The removal ratio of methanol at the different concentrations of ferrous ions is shown in Figure 7. It is remarkable that the degradation curve of methanol and formaldehyde show a similar tendency. The removal ratio at the time of 5 minutes and 80 minutes increased from 3% to 14%, 37%, 47%, and 49% and from 40% to 54%, 63%, 79% and 82% when the ferrous ion concentration was increased from 0 to 6.67x10⁻³, 2.27x10⁻², 6.67x10⁻², and 8.33x10⁻² M. As a result, the initial rate of methanol degradation increased from 4.78x10⁻³ M·min⁻¹, to 2.30x10⁻³ M·min⁻¹, 5.89x10⁻³ M·min⁻¹, 7.56x10⁻³ M·min⁻¹, and 7.8x10⁻³ M·min⁻¹, respectively.

It indicates that the degradation rate of formaldehyde and methanol distinctly increased with increasing amounts of ferrous ion concentration. Figure 8 shows the relationship between the Fe²⁺ concentration and the initial rate of formaldehyde and methanol degradation. The optimum Fe²⁺ concentration for formaldehyde and methanol degradation obtained in this study was 6.67×10^{-2} M. Although, the highest initial rate was obtained at 8.33×10^{-2} M of Fe²⁺, the removal ratios of formaldehyde and methanol after 20 min were almost the same with that at 6.67×10^{-2} M of Fe²⁺.

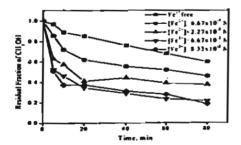


Figure 7 Effect of ferrous ion concentration on the removal of methanol (initial $[CH_3OH] = 7.96 \times 10^{-2} M$, $[H_2O_2] = 0.667 M$, initial pH = 2.6 ± 0.2).

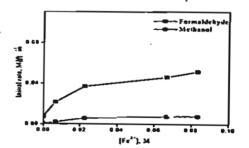


Figure 8 Effect of ferrous dosage on initial rate of formaldehyde and methanol degradation (initial $[CH_2O] = 0.333$ M, $[CH_3OH] = 7.96 \times 10^{-2}$ M, $[H_2O_2] = 0.667$ M, initial pH = 2.6 ± 0.2).

3.4 Effect of methanol

Due to the presence of methanol in formaldehyde solution, the effect of methanol concentration was investigated in this study. Figure 9 indicates that formaldehyde remaining

within 5 minutes decreased from 70% to 41% and 28%, when the concentration of methanol increased from 7.96x10⁻² to 0.333 and 0.667 M, respectively. The initial rates of formaldehyde degradation under the experimental conditions were 4.63x10⁻² M-min⁻¹, 2.73x10⁻² M-min⁻¹, 1.86x10⁻² M-min⁻¹, respectively. Fig 10 shows the removal ratio of methanol at different initial concentrations. The initial rates of methanol degradation were 7.56x10⁻³ M-min⁻¹, 1.52x10⁻² M-min⁻¹, and 2.48x10⁻² M-min⁻¹, at the initial concentrations of 7.96x10⁻², 0.333, and 0.667 M, respectively.

The concentration of methanol in formaldehyde solution plays an important effect on formaldehyde degradation. Increasing methanol concentration lead to inhibit the degradation of formaldehyde significantly, due to the reaction of hydroxyl radical with methanol as shown in equation (3) (Chamarro, et al., 2001)

$$CH_3OH + OH^{\bullet} - CH_2OH^{\bullet} + H_2O....$$
 (3)

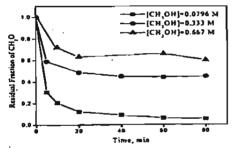


Figure 9 Degradation of formaldehyde in the presence of methanol at different concentrations (initial $|CH_2O|$ = 0.333 M, $|H_2O_2|$ = 0.667 M, $|Fe^{2^+}|$ = 6.67x10⁻² initial pH = 2.6±0.2).

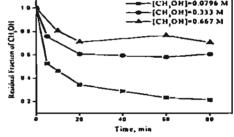


Figure 10 Degradation rate of methanol at different concentrations (initial $[H_2O_2] = 0.667 \text{ M}, [Fe^{2+}] = 6.67 \text{x} \cdot 10^{-2}$ initial pH = 2.6±0.2).

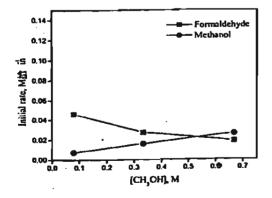


Figure 11 Effect of methanol on initial rate of formaldehyde and methanol degradation (initial |CH₂O]= 0.333 M, [H₂O₂] = 0.667 M, [Fe²⁺]= 6.67x10⁻², initial pH = 2.6±0.2).

4. CONCLUSIONS

Photo-Fenton process is effective in the degradation of formaldehyde and methanol. The initial rate of formaldehyde and methanol oxidation significantly increased with increasing the concentration of H₂O₂. UV light has higher promotion efficiency when there is a lower

 ${\rm Fe}^{2+}$ concentration; however, at the higher concentration of ${\rm Fe}^{2+}$, it just slightly increased the oxidation rate due to the fast reaction of ${\rm H_2O_2}$ and ${\rm Fe}^{2+}$. The optimum concentrations of ${\rm H_2O_2}$ and ${\rm Fe}^{2+}$ for formaldehyde and methanol oxidation obtained in this study were 1.0 M and $6.67 \times 10^{-2} {\rm M}$, respectively. According the finding in this study, competition of formaldehyde and methanol has to be further explored.

ACKNOWLEDGEMENTS

This research was supported by the Thailand Research Fund under grant no. MRG4680029 and the National Science Council, Taiwan ROC under grant no. NSC 88-2211-E-041-011.

REFERENCES

- Bauer R., Waldner G., Fallmann H., Hager S., Klare M., Krutzler T., Matalo S., Maletzky P. (1999) The photo-fenton reaction and the TiO₂/UV process for waste water treatment-novel developments. *Catalysis Today* 53, 131-144
- Chamarro E., Marco A., Esplugas S. (2001) Use of Fenton reagent to improve organic chemical biodegradability. Wat. Res. 35(4), 1047-1051.
- Christoskova S.T., Stoyonova M. (2002) Catalytic degradation of CH₂O and C₆H₅CH₂OH in wastewaters. Wat. Res. 36, 2297-2303
- Esplugas, S., Giménez, J., Contreras, S., Pascual, E., and Rodriguez, M. (2002) Comparison of different advanced oxidation processes for phenol degradation. *Wat. Res.* 36, 1034-1042.
- Ghaly M.Y., Härtel G., Mayer R., Haseneder R. (2001) Photochemical oxidation of p-chlorophenol by UV/H₂O₂ and photo-Fenton process. A comparative study. Waste Management. 21, 41-47
- Liou, M. -J., Lu, M. -C., Chen. J. -N., (2003) Oxidation of explosives by Fenton and photo-Fenton processes. Wat. Res. 37, 3172-3179.
- Rodriguez M., Timokhin, V., Michl, F., Contreras, S., Gimenez, J., Esplugas, S., (2002). The influence of different irradiation sources on the treatment of nitrobenzene. *Catalysis Today*. 76, 291-300

การย่อยสถายน้ำเสียจากโรงพยาบาลโดยใช้กระบวนการ ยูวีไฮโดรเจนเปอร์ออกไซด์

Degradation of Medical Wastewater Using

UV/H₂O₂ Process

พวงรัตน์ ขจิตวิชยานุกูล "และ <u>อาทิตย์พันธุ์ สัยยะนิฐี</u>" Puangrat Kajitvichyanukul and <u>Artitraphan Saiyanite</u>

บทคัดย่อ

ในการศึกษานี้ กระบวนการออกซิเดชันขั้นสูงที่นำมาใช้ คือกระบวนการยูวีไฮโครเจนเปอร์ออกไซค์ ซึ่งเป็น กระบวนการที่สามารถย่อยสลายสารอินทรีย์ปนเปื้อน เช่น อะซิโตน, แอลกอฮอล์, คลอโรฟอร์ม รวมทั้งกรคอินทรีย์ต่างๆ ใค้ โดยน้ำเสียที่นำมาใช้ในการศึกษาเป็นน้ำเสียจริงที่นำมาจากโรงพยาบาลบางประกอก3 และเป็นน้ำเสียที่มาจากห้อง ปฏิบัติการของโรงพยาบาล โดยมีค่า ซีโอดี และ ทีโอซี เริ่มค้นเท่ากับ 1350 และ 1050 มิลลิกรัม/ลิตร ตามลำคับ จากผลการ ศึกษาพบว่า ที่พีเอช 3 เป็นพีเอชที่สามารถย่อยสลายซีโอดีของน้ำเสียโรงพยาบาลได้ดีที่สุดคือ 28% โดยประสิทธิภาพในการ ย่อยสลายสารอินทรีย์ปนเปื้อนส่วนใหญ่ขึ้นอยู่กับ ความเข้มข้นและปริมาณไฮโครเจนเปอร์ออกไซค์ ที่ค้องมีมากพอ ที่จะใช้ ในกระบวนการย่อยสลายสารอินทรีย์สดลงไปด้วย เนื่องจากการที่ไฮโครเจนเปอร์ออกไซค์ที่มากเกินพอจะสามารถทำปฏิกิริยา กับไฮครอกซิลราคิคอล ทำให้ประสิทธิภาพในการบำบัตลคลง โดยในการทดลองความเข้มข้นของไฮโครเจนเปอร์ออกไซค์ ที่เหมาะสมที่สุดคือ 2025 มิลลิกรัม/ลิตร สามารถย่อยสลายซีโอดีได้ถึง 51% โดยขั้นตอนในการย่อยสลายสารปนเบื้อนค้วย กระบวนการยูวีไฮโครเจนเปอร์ออกไซค์นี้เป็นไปอย่างข้าวุ และกระบวนการย่อยสลายนี้จะเกิดได้เร็วขึ้นเมื่อทำการ ย่อยสลายโดยการเติมไฮโครเจนเปอร์ออกไซค์แบบหลายช่วงเวลาเมื่อเทียบกับการเติมไฮโครเจนเปอร์ออกไซค์แบบช่วง เวลาเดียวและผลที่ได้จากการทดลองคือที่การเติมไฮโครเจนเปอร์ออกไซค์แบบหลายช่วงเวลาเมื่อเทียบกับการเติมไฮโครเจนาปอร์ออกไซค์แบบช่วง เวลาเดียวและผลที่ได้จากการทดลองคือที่การเติมไฮโครเจนเปอร์ออกไซค์แบบหลายช่วงเวลาเมื่อเทียบกับการเติมไฮโครเจนาปอร์ออกไซค์แบบช่วง เวลาเดียวและผลที่ได้จากการทดลองคือที่การเติมไฮโครเจนเปอร์ออกไซค์แบบหลายช่วงเวลาเมื่อเกียกบาหลายช่วงเวลาสามารถย่อยสลายซีโอดีได้ มากถึง 75%

คำสำคัญ : น้ำทึ้งโรงพยาบาล, ยูวิไฮโครเจนเปอร์ออกใชด์, กระบวนการออกซิเคชันขั้นสูง, กระบวนการฉายแสง

[&]quot;ผู้ช่วยศาสตราชารย์ ภาควิชาวิศวกรรมสิ่งแวคล้อม มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าชนบุรี กรุงเทพฯ 10140;

¹ นิสิตปรีญญาโท ภาควิชาวิศวกรรมสิ่งแวคล้อม มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี กรุงเทพฯ 10140;

ใกรศัพท์: 0-2470-9163, โทรสาร: 0-2470-9165 e-mail: puangrat.kaj@kmutt.ac.th

Abstract

In this study, UV/H₂O₂ process was used to explore the possibility of treating medical wastewater containing various organic pollutants such as acetone, alcohol, chloroform, and organic acids. The real wastewater was taken from Bangpakok3 Hospital for all investigated experiments. The initial COD and TOC were 1350 and 1050 mg/l, respectively. Results show that the highest degradation of medical wastewater was obtained at pH 3. The degradation efficiency of organic pollutants depended mainly on concentration of hydrogen peroxide. With the excess of hydrogen peroxide in the system, the performance of pollutant degradation is relatively low. The self-scavenging of hydrogen peroxide is the major explanation of this inhibition effect. The highest percentage of COD removal was found at 51% with 2025 mg/L of hydrogen peroxide. However, the faster oxidation was found in multi-step addition of hydrogen peroxide comparing to the one step process. The COD removal was enhanced with multi-step addition of hydrogen peroxide as the COD removal percentage was increased to 75%.

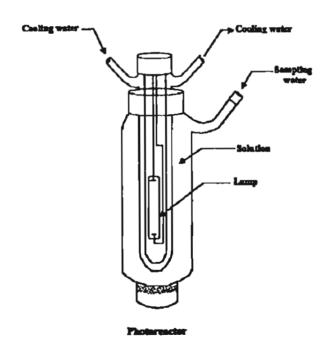
Keywords: Medical wastewater, UV/H,O,, Advanced oxidation processes, irradiation process

คำนำ

ในปัจจุบันโรงพยาบาลของรัฐทุกแห่งจะมีระบบบำบัดน้ำเสีย ซึ่งจะเป็นระบบบำบัดน้ำเสียแบบชีวภาพ โดยอาศัย จุลินทรีย์ที่เลียงไว้เป็นตัวบำบัด เช่นระบบบ่อผึ้ง (Oxidation pond) หรือระบบคะกอนเร่ง (Activated Sludge) น้ำเสียของ โรงพยาบาลมีลักษณะคล้ายกับน้ำเสียจากอาคารบ้านเรือน (Domestic waste water) แต่จะแตกต่างกันในส่วนที่น้ำเสียจอง โรงพยาบาลนั้น มีเชื้อจุลินทรีย์ที่ทำให้เกิดโรค (Pathogenic microorganisms) ทั้งปริมาณ และชนิดมากกว่าน้ำเสียจากอาคาร บ้านเรือน และเนื้องด้วยสาเหตุนี้เองจึงจำเป็นที่จะด้องมีการกำจัดของเสียในน้ำทิ้งโรงพยาบาล เพื่อป้องกันไม่ให้สิ่งสกปรก และเชื้อโรคแพร่กระจายออกนอกโรงพยาบาล [1]

โรงพยาบาล และสถานพยาบาลจะมีการใช้สารเคมีเป็นจำนวนมาก ได้แก่ น้ำยาฟอร์มาลินที่ใช้ในการคองศพ การ ใช้สารเคมีในกลุ่มของอะซีโตน การใช้สารเคมีในกลุ่มของไลซอลในการล้างทำความสะอาค รวมทั้งแอลกอฮอล์หลายชนิด สารเคมีเหล่านี้เมื่อใช้แล้วจะถูกระบายลงสู่ระบบบำบัคน้ำเสียในปริมาณมากต่อครั้ง ซึ่งสารเคมีเหล่านี้จะก่อให้เกิดความ เป็นพิษต่อจุลินทรีย์ ส่งผลให้ระบบบำบัดน้ำเสียทางชีวภาพของโรงพยาบาล เกิดปัญหาในการเดินระบบ และมีประสิทธิภาพ ลดลง

เมื่อวิเกราะห์ โดยภาพรวมแล้ว หากมีการบำบัคสารเคมีเหล่านี้เบื้องค้น ก่อนระบายลงสู่ระบบบำบัค น้ำเสียทาง ชีวภาพของโรงพยาบาล โดยการเพิ่มหน่วยบำบัคทางเคมีสำหรับน้ำทึ่งจากห้องปฏิบัติการของโรงพยาบาลซึ่งมีปริมาณน้อย เมื่อเทียบกับน้ำเสียจากโรงพยาบาลโดยรวม จะทำให้ปัญหาที่เกิดจากความเป็นพิษของสารเกมีค่อจุลินทรีย์หมดไปได้ ซึ่ง สามารถนำไปใช้กับระบบบำบัคน้ำเสียทางชีวภาพเดิมของโรงพยาบาลที่มีอยู่ทั่วประเทศได้ จากการศึกษาที่ผ่านมาแล้วพบ ว่ากระบวนการแอควานซ์ออกซิเคชัน(Advanced Oxidation Processes, AOPs) เป็นกระบวนการบำบัดน้ำเสียขั้นต้นร่วมกับ กระบวนการบำบัดทางชีววิทยา ในการบำบัคน้ำเสียที่มีองค์ประกอบของ 2,4-D และ Propoxur พบว่าสามารถลดความเป็น พิษของน้ำเสียได้ ดังนั้นจึงมีความเป็นไปได้ที่จะใช้กระบวนการ AOPs ร่วมกับกระบวนการทางชีววิทยาในการบำบัคน้ำเสีย [2] โดยในการศึกษานี้กระบวนการ AOPs ที่ใช้คือ ยูวีไฮโดรเจนเปอร์ออกไซด์ (UV/H₂O₂) ซึ่งกระบวนการนี้ได้มีการนำไป


ใช้อย่างแพร่หลายกับน้ำเสียจากอุตสาหกรรมในต่างประเทศ โดยประสบผลในการกำจัดสารอินทรีย์อย่างดียิ่ง วิธีการนี้จึงมี ความเป็นไปได้สูงในการนำมาใช้กับน้ำเสียที่มีสารเคมือินทรีย์ปนเปื้อนจากห้องปฏิบัติการของโรงพยาบาล

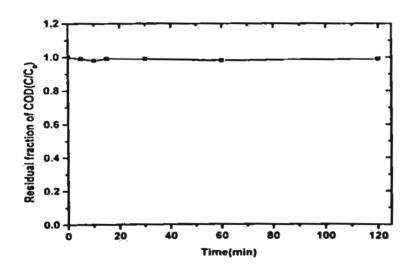
อุปกรณ์และวิธีการ น้ำเสีย

ในการทคลองนี้ใช้น้ำเสียจริงจากห้องปฏิบัติการของโรงพยาบาลบางประกอก3 ซึ่งเก็บจากเครื่องตรวจวัคปริมาณ เม็ดเลือด และเครื่องวิเคราะห์เม็ดเลือดด้วยเคมื โดยนำน้ำเสียทั้งสองเทรวมกันให้เป็นน้ำเสียรวม จากนั้นได้ทำการวิเคราะห์ ลักษณะสมบัติของน้ำเสีย ก่อนเข้าสู่กระบวนการยูวีไฮโครเจนเปอร์ออกไซค์ โดยน้ำเสียมีลักษณะสมบัติดังนี้ค่าซีโอดีเท่ากับ 1350 มิลลิกรัม /ลิตร คำความเข้มข้นของสารอินทรีย์ทั้งหมด(ทีโอซี)เท่ากับ 1050 มิลลิกรัม/ลิตร และมีค่าพีเอชอยู่ใน ช่วง 7.5-7.6

ถึงปฏิกรณ์และสารเคมี

ถึงปฏิกรณ์ที่ใช้ในงานวิจัยนี้มีขนาด 1.2 ถิตร ทำจาก quartz มีทางเข้าออกสำหรับน้ำหล่อเย็น ตรงกลางมีช่องว่างไว้ สำหรับใส่หลอดยูวี และมีแท่งแม่เหล็กเป็นตัวกวนผสม ไฮโครเจนเปอร์ออกไซค์ (H_2O_2 , 30% m/m) จัดซื้อจาก บริษัท Carlo erba chemical กรดซัลฟูริก (H_2SO_4 , 96%), โซเคียมไฮครอกไซค์ (NaOH)และสารเคมีอื่นๆจัดซื้อจาก บริษัท Merck chemical

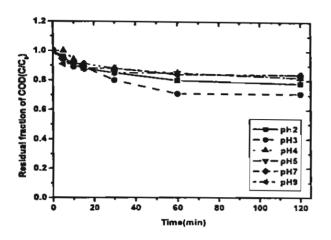
รูปที่ เ ถังปฏิกรณ์สำหรับกระบวนการออกซิเคชัน

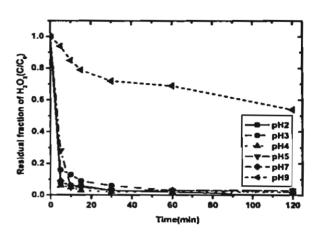

กระบวนการยูวิไฮโดรเจนเปอร์ออกไซด์

นำน้ำเสียจากห้องปฏิบัติการโรงพยาบาลปริมาตร) ถิตร เทลงในถึงปฏิกรณ์สำหรับกระบวนการออกซีเคชันทำ การปรับพีเอชจากนั้นเติมสารละลายไฮโครเจนเปอร์ออกไซค์ลงไปในถึงปฏิกรณ์สำหรับกระบวนการออกซีเคชัน และใส่ แท่งแม่เหล็ก เพื่อทำให้เกิดการผสมขึ้น ฉายแสงยูวี และเริ่มต้นจับเวลา เก็บตัวอย่างน้ำเสียหลังจากผ่านการบำบัตที่เวลา 0, 5, 10, 15, 30, 60 และ 120 นาที ตามลำดับและวัดค่าพีเอช รวมทั้งอุณหภูมิในชณะที่ เก็บตัวอย่างน้ำเสีย

วิธีการวิเคราะห์

น้ำตัวอย่างที่เก็บแต่ละเวลาหลังจากผ่านการบำบัดแล้ว จะถูกแบ่งออกเป็นสามส่วนด้วยกันคือ ส่วนที่หนึ่งนำมาใช้ ในการวิเคราะห์หาปริมาณไฮโครเจนเปอร์ออกไซด์ที่เหลืออยู่โดยกระบวนการ Standard Iodometric method น้ำตัวอย่าง ส่วนที่สองนำมาใช้ในการวิเคราะห์หาค่าที่โอซีโดยใช้เครื่องวิเคราะห์ Model TOC-V CPH ของบริษัท Shimadzu น้ำตัวอย่างส่วนที่สามนำมาใช้ในการหาค่าซีโอดีโดยวิธีฟลักแบบปิควีเคราะห์ตาม Standard Method for the examination of Water and Wastewater 20th edition 1998 การวัดคำพีเอช ใช้เครื่องวัดพีเอชรุ่น Model CG 848 W.Germany

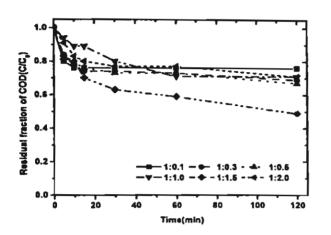

ผลการทดลองและวิจารณ์ ผลของปฏิกิริยาโฟโตไลซีส

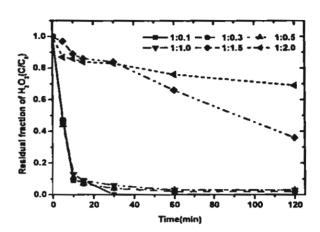


รูปที่ 2 การย่อยสลายซีโอดีด้วยกระบวนการโฟโตไลซีส

จากการศึกษาโดยนำน้ำเสียจากห้องปฏิบัติการของโรงพยาบาลมาฉายแสงเพื่อให้เกิดกระบวนการไฟโตไลซิส โดยทำการทคลอง ที่สภาวะพีเอช 7.5 ค่าซีโอดีเริ่มต้นเท่ากับ 1350 มิลลิกรัม/ลิตร และค่าทีโอซีเริ่มต้น 1050 มิลลิกรัม/ลิตร จากรูปที่ 2 พบว่าค่าซีโอดีไม่มีการลคลงแต่อย่างใด ซึ่งแสดงให้เห็นว่าน้ำเสียชนิดนี้ไม่สามารถย่อยสลายได้ด้วยแสงอัลดรา ไวโอเล็ดเพียงอย่างเดียว

ผลของพีเอชเริ่มต้นที่มีต่อประสิทธิภาพในการย่อยสลายชีโอดี

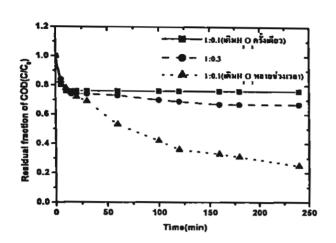

รูปที่ 3 การย่อยสลายซีโอดีด้วยกระบวนการยูวีไฮโดรเจนเปอร์ออกไซด์ ที่อัตราส่วน COD: H₂O₂ (1:1) ที่พีเอช 2, 3, 4, 5, 7, 9 และปริมาณH₂O₂ ที่ยังคงเหลืออยู่ต่อเวลา

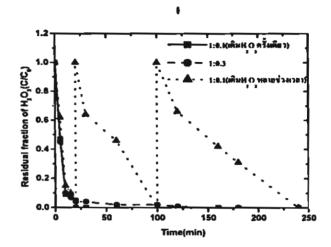

จากการศึกษาโดยนำน้ำเสียจากห้องปฏิบัติการของโรงพยาบาลมาผ่านกระบวนการยูวีไฮโดรเจนเปอร์ไซด์ โดยทำ การทดลองที่สภาวะพีเอชที่เป็นกรดซึ่งได้แก่พีเอช 2, 3, 4 และ5 ที่สภาวะเป็นกลางได้แก่พีเอส 7 และที่สภาวะเป็นเบสได้แก่ พีเอส 9 คำซีโอดีเริ่มด้นเท่ากับ 1350 มิลลิกรัม/ลิตร และค่าที่โอซีเริ่มต้น 1050 มิลลิกรัม/ลิตร โดยเติม H₂O₂ 1350 มิลลิกรัม/ลิตร จากรูปที่ 3 พบว่าพีเอช มีผลกระทบน้อยมากต่อการย่อยสลายซีโอดีของน้ำเสียชนิดนี้ แต่อย่างไรก็ตามจาก รูปที่ 3 แสดงให้เห็นว่าที่พีเอช 3 เป็นสภาวะที่สามารถย่อยสลายซีโอดีได้มากกว่าที่พีเอชอื่นโดยสามารถย่อยสลายได้ถึง 28% และถ้าดูที่ปริมาณ H₂O₂ ที่เหลืออยู่นั้นจะเห็นได้ว่า ที่พีเอชเป็นกรดและเป็นกลางนั้นปริมาณ H₂O₂ที่เหลืออยู่จะน้อยมากเมื่อ เทียบกับที่พีเอชเป็นเบสเนื่องมาจาก H₂O₂ สามารถแตกตัวได้ดีกว่าที่พีเอชเป็นกรด เช่นเดียวกับการย่อยสลายซีโอดีของน้ำ เสียปีโตรเคมี พีเอชที่เหมาะสมคือ พีเอช 3 ซึ่งสามารถย่อยสลายซีโอดีได้มากกว่าที่พีเอช 11 ถึง 2 เท่าและสามารถอธิบายได้ จากสมการ การแตกตัวของ H₂O₂ ที่สภาวะเป็นกรดและเบสดังนี้

$$H_2O_2 + OH$$
 $HO_2 + H_2O$ (1)
 $HO_2 + H_2O$ (2)
 $H_2O_2 + OH$ $OH + O$ (2)
 $H_2O_2 + OH$ (3)

โดย H₂O₂ จะสามารแตกตัวให้ ^oOH 2 โมล ในสภาวะที่เป็นกรดดังสมการที่ (3) และ H₂O₂ จะสามารถแตกตัวให้ ^oOH เพียง I โมล ในสภาวะที่เป็นเบสดังสมการที่ (1) และ (2) [3] และในการบำบัดน้ำชะมูลฝอย พบว่าการออกซิไดซ์สารอินทรีย์จะมี ประสิทธิภาพดีในช่วง พีเอช 2-4 [4] ในการศึกษาการใช้กระบวนการออกซิเดชันกำจัดสารประกอบในกลุ่มเบนซิน 2 ชนิด คือ ฟีนอล และกรดเบนโซอิก ผลที่ได้ก็อในกระบวนการยูวีไฮโดรเจนเปอร์ออกไซด์ ปฏิกริยาจะเกิดขึ้นได้อย่างรวดเร็วมาก ที่พีเอช 3-7 [5]

ผลของความเข้มข้นไอโดรเจนเบ่อร์ออกไซด์ที่มีต่อประสิทธิภาพในการย่อยสลายซีโอดี




รูปที่ 4 การย่อยสถายซีโอดีด้วยกระบวนการยูวีไฮโดรเจนเปอร์ออกไซด์ ที่อัตราส่วน COD: H₂O₂ (1:0.1, 1:0.3, 1:0.5, 1:1, 1:1.5, 1:2) ที่พีเอช 3 และปริมาณ H₂O₂ที่ยังคงเหลืออยู่ต่อเวลา

จากการศึกษา โดยนำน้ำเสียจากห้องปฏิบัติการของโรงพยาบาลมาผ่านกระบวนการยูวิไฮโดรเจนเปอร์ไซด์ โดยทำการทดลอง ที่สภาวะพีเอช 3 ค่าซีโอดีเริ่มคันเท่ากับ 1350 มิลลิกรัม/ลิตร และทีโอซีเริ่มคัน 1050 มิลลิกรัม/ลิตร และอัตราส่วนในการเติม H₂O₂ เป็นดังนี้ 1:0.1, 1:0.3, 1:0.5, 1:1, 1:1.5และ 1:2 จากรูปที่ 4 พบว่าเมื่อเติม H₂O₂ ในปริมาณที่น้อยเกินไป ประสิทธิภาพในการย่อยสลายซีโอดีจะหยุดลงเมื่อ H₂O₂ถูกใช้หมดไป ดังรูปที่ 4 ที่อัตราส่วน 1:0.1 เมื่อ H₂O₂หมดลงที่เวลา 20 นาที ประสิทธิภาพในการย่อยสลายซีโอดีก็จะหยุดลงที่ 24% ด้วยเช่นกัน เช่นเคียวกันหากมีการเติม H₂O₂ มากจนเกินไป เช่น ที่อัตราส่วน 1:2 ประสิทธิภาพในการย่อยสลายซีโอดีก็จะที่เพียง 29% เท่านั้น ซึ่งสามารถอธิบายได้ว่าเมื่อมีปริมาณ H₂O₂ มาก OH ที่มีอยู่ในน้ำเสียมีแนวโน้มที่จะจับตัวกับ H₂O₂หรือ OH ด้วยกันเองทำให้ไม่เกิดการย่อยสลายซีโอดีที่อยู่ใน น้ำเสีย และในการศึกษาครั้งนี้อัตราส่วน 1:1.5 เป็นอัตราส่วนที่สามารถย่อยสลายซีโอดีค่อไปได้ เมื่อเพิ่มเวลาในการทำปฏิกิริยา ให้นานขึ้น สำหรับปริมาณหรือ อัตราส่วนที่เหมาะสมนั้นขึ้นอยู่กับประเภทของน้ำเสีย [6] ในการย่อยสลาย อะซิโดน(C,H₂O) อัตราส่วนของ (C,H₂O) ที่ (1:20) สามารถย่อยสลายอะซิโดนได้ถึง 96% ที่เวลา 60 นาที[7] สำหรับ การย่อยสลายซีโอดีของน้ำเสียปีโตรเคมี อัตราส่วนของ (COD:H₂O₂) จะอยู่ที่ (1:2.33-2.74) [2]

ผลของการย่อยสลายซีโอดีโดยการเดิมไฮโดรเจนเปอร์ออกไซด์แบบหลายช่วงเวลา

ในการศึกษาครั้งนี้ได้ทำการศึกษาโดยทำการเปรียบเทียบผลของการย่อยสลายซีโอดีของการเติม H₂O₂ ที่อัตราส่วน 1:0.1 โดยทำการเติม H₂O₂ ที่เริ่มด้นเพียงครั้งเดียว เทียบกับการเติม H₂O₂ ที่อัตราส่วน1:0.1 โดยทำการเติม H₂O₃ ที่เริ่มด้นและทำการเติมอีก 2 ครั้งเมื่อ H₂O₃ หมดลง ผลการทดลองแสดงในรูปที่ 5

รูปที่ 5 การย่อยสลายซีโอดีด้วยกระบวนการยูวีไฮโดรเจนเปอร์ออกไซด์ ที่อัดราส่วน COD: H₂O₂ (1:0.1, 1:0.3และ 1:0.1 โดยทำการเดิมเมื่อ H₂O₂หมด) ที่พีเอช 3 และปริมาณ H₂O₂ที่ยังคงเหลืออยู่ต่อเวลา

คังรูปที่ 5 จะสังเกตว่าที่การเดิม H₂O₂ 1:0.1 เท่า เพียงครั้งเคียวปริมาณ H₂O₂จะหมดลงที่เวลา 20 นาที และ ประสิทธิภาพในการย่อยสลายซี โอดีก็จะหยุดลงที่ 24% ด้วยเช่นกัน หากดูที่การเดิมแบบหลายครั้งเมื่อ H₂O₂ หมดลงแล้วทำ การเดิม H₂O₂ เข้าไปเพื่อให้เกิดการย่อยสลายซี โอดีต่อ จากรูปที่ 5 จะสังเกตได้ว่ามีการเดิม H₂O₂ ถึง 3 ครั้ง และประสิทธิภาพ ในการย่อยสลายจะเพิ่มมากขึ้นถึง 75% และเมื่อทำการเปรียบเทียบการเดิมแบบหลายครั้งกับการเดิมแบบครั้งเดียวใน ปริมาณ H₂O₂ ที่เท่ากันจากรูปที่ 5 จะสังเกตได้ว่า การเดิมหลายครั้งจะให้ประสิทธิภาพในการย่อยสลายซี โอดีได้มากกว่า โดยในการเดิม H₂O₂ แบบเป็นขั้นนี้ต้องเดิมเมื่อปริมาณของ H₂O₂ ถูกย่อยสลายจนใกล้หมดแล้วจึงทำการเดิม H₂O₂ เพิ่มลง ไป แต่หาก H₂O₂ ในน้ำ ยังคงมีปริมาณสูงอยู่ การเดิม H₂O₂ จะเป็นการเดิมที่มากเกินไปซึ่งจะไม่ช่วยเพิ่มประสิทธิภาพในการ ย่อยสลาย ซี โอดีให้ดีขึ้น ดังที่กล่าวมาแล้วข้างต้น

สรุปผลการทดลอง

น้ำเสียจากห้องปฏิบัติการของโรงพยาบาลนั้น ไม่สามารถที่จะย่อยสลายซี โอดีได้ด้วยกระบวนการ โฟโตโลซิส และในการทคลองหาสภาวะที่เหมาะสมในการย่อยสลายสารอินทรีย์ในน้ำเสียนั้น พบว่าพีเอชส่งผลน้อยมากต่อการย่อย สลายสารอินทรีย์ และจากการทคลองพบว่าอัตราส่วนที่เหมาะสมที่สุดที่สามารถย่อยสลายซี โอดีได้มากที่สุดคือ COD: H,O, เท่ากับ (1:1.5) สามารถทำให้ค่าซีโอดีลคลงได้มากถึง 51% รวมทั้งการย่อยสลายซี โอดีแบบการเติม H,O, หลายช่วงเวลานั้น ผลที่ได้ก็คือการเติม H,O, เมื่อเวลาที่ H,O, หมคลง จะสามารถช่วยเพิ่มประสิทธิภาพในการลดค่าซี โอดีได้มากถึง 75 %

กิตติกรรมประกาศ

ผู้วิจัยใคร่ขอขอบคุณสำนักงานกองทุนสนับสนุนการวิจัย ในการสนับสนุนทุนวิจัยสำหรับการศึกษานี้ภายใต้ โครงการ "การใช้กระบวนการแอควานช์ออกซิเคชันในการบำบัคน้ำเสียขั้นต้นสำหรับน้ำเสียจากโรงพยาบาล" ตามสัญญา รับทุนเลขที่ MRG4680029

เดกสารอ้างอิง

- 1. มหาวิทยาลัยสุโขทัยธรรมธิราช, 2533, เอกสารการสอนชุดวิชาการบริหารโรงพยาบาล (Hospital Management I), สำนักพิมพ์มหาวิทยาลัยสุโขทัยธรรมธิราช, หน้า 1-7.
- 2. Lu, M. C. and J.N. Chen. 1997. Pretreatment of Pesticide Waster by Photocatalytic Oxidation. Wat. Sci. Tech. 36(2-3):117-122
- 3. Jung, L.C., D.H. Tseng and S.C. yang. 1997. Treatment of Petrochemical Wastewater by UV/H₂O₂

 Photodecomposed System. Wat. Sci. Tech. 36(12): 375-365
- 4. Steensen, M. 1997. Chemical Oxidation for the Treatment of Leachate-Process Comparison and Result from Full-Scale Plant. Wat. Sci. Tech. 35(4):249-256
- 5. Mokrini, A, D. Ousse and S. Esplugas. 1997. Oxidation of Aromatic Compound with UV Radiation/Ozone/Hydrogen Peroxide. Wat. Sci. Tech. 35(4):95-102
- Glaze, W.H., Kang, J. W., and Chapin, D.H. (1987). The chemistry of water treatment processes involving ozone, hydrogen peroxide, and ultraviolet radiation. Ozone Science and engineering 9: 335-352.
- 7. Refael, H., Mark Z., Jose, C., and Robert, J. (2002). Comparing the performance of various advanced oxidation processes for treatment of acetone contaminated water. Journal of hazardous madterials 2789: 1-18

การย่อยสลายน้ำเสียจากโรงพยาบาลโดยใช้กระบวนการ โฟโตเฟนตัน

Degradation of Medical Wastewater Using

Photo-Fenton Process

พวงรัคน์ ขจิดวิชยานุกูล "และ <u>ณัฐพล สุนทรวิภาต</u>" Puangrat Kajitvichyanukul and <u>Nattapol Suntronvipart</u>"

บทคัดย่อ

ในการศึกษาครั้งนี้ กระบวนการที่นำมาใช้ในการบำบัคน้ำเสียจากโรงพยาบาล คือกระบวนการโฟโดเฟนตัน โดยสารอินทรีย์ปนเบื้อนส่วนใหญ่จะเป็นพวก อะจิโตน, แอลกอฮอล์, คลอโรฟอร์มและกรคอินทรีย์ต่างๆ โดยน้ำเสียที่นำ มาใช้ในการศึกษาครั้งนี้นำมาจากโรงพยาบาล โดยมี ปริมาณซีโอดี และ ทีโอซี เริ่มต้นที่ 1350และ1050 มิลลิกรัม/ลิตร ตามลำคับ กระบวนการย่อยสลายคั้วยแสงเป็นตัวกระคุ้น ให้กระบวนการเกิดเร็วขึ้น ประสิทธิภาพในการบำบัดของกระบวนการโฟโตเฟนตันสามารถอูได้จากปริมาณ ซีโอดี ที่ลดลง หลังจากผ่านการบำบัดแล้ว จากการศึกษาพบว่าที่สภาวะที่เหมาะสมที่สุดในการย่อยสลายสารอินทรีย์ปนเบื้อนในน้ำเสียโรง พยาบาลนั้นคือ ที่พีเอช 3 และจากการศึกษาพบว่าประสิทธิภาพในการย่อยสลายสารอินทรีย์จะขึ้นอยู่กับปริมาณไฮโดรเจน เปอร์ออกไซด์และปริมาณ เฟอรัสไอออน เป็นหลักโดยที่ในการทำปฏิกิริยาต้องมีสารทั้งสองชนิดนี้ในปริมาณที่เหมาะสม กล่าวคือในการทำปฏิกิริยาเมื่อมีไฮโดรเจนเปอร์ออกไซด์และเฟอรัสไอออนนั้อยเกินไป จะทำให้ไฮดรอกซิลราติคอลมี ปริมาณน้อย ทำให้ลดค่าซีโอดีได้น้อยตามไปด้วย แต่ถ้ามีปริมาณไฮโดรเจนแปอร์ออกไซด์และเฟอร์สโอออนที่มากเกินไป ทั้งไฮโดรเจนเปอร์ออกไซด์และเฟอร์สโอออนต่างเป็นตัวแย่งทำปฏิกิริยากับไฮดรอกซิลราดิคอล ทำให้ประสิทธิในการลด ค่าซีโอดีมีประสิทธิภาพที่ด่ำลง และจากการศึกษาพบว่าเมื่อน้ำเสียผ่านกระบวนการบำบัดเป็นเวลา เช้วโมงภายใต้สภาวะที่ เหมาะสมที่สุดจะสามารถลดปริมาณซีโอดีได้มากถึง 75%

คำสำคัญ : น้ำทิ้งโรงพยาบาล, โฟโตเฟนตัน, กระบวนการออกซิเคชันขั้นสูง, กระบวนการฉายแสง

[่] ผู้ช่วยศาสตราจารย์ ภาควิชาวิศวกรรมสิ่งแวคล้อม มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี กรุงเทพฯ 10140;

² นิสิตปริญญาโท ภาควิชาวิศวกรรมสิ่งแวคล้อม มหาวิทยาลัยเทคโนโลชีพระจอมเกล้าธนบุรี กรุงเทพฯ 10140;

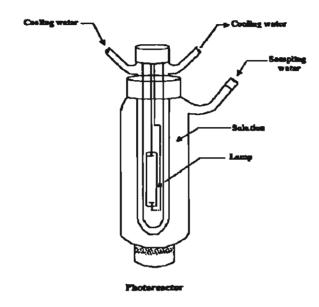
ใทรศัพท์ : 0-2470-9163, โทรสาร: 0-2470-9165 e-mail : <u>puangrat.kaj@kmutt.ac.th</u>

Abstract

In this study, photo-Fenton process was used to explore the possibility of treating medical wastewater containing various organic pollutants such as acetone, alcohol, chloroform, and organic acids. The real wastewater was taken from Bangpakok3 Hospital for all investigated experiments. The initial COD and TOC were 1350 and 1050 mg/l, respectively. The photodegradation experiments were carried out in a stirred batch photoreactor equipped with an immersed germicide lamp as UV source. The treatment efficiencies of the photo-Fenton processes were calculated from the residual COD in the water. The results showed that the most optimum pH for the degradation of medical wastewater was pH 3. It was also found that both hydrogen peroxide and ferrous ions exerted the significant effect on degradation efficiency. If the hydrogen peroxide and ferrous ions are not in an appropriate amounts, the COD is relatively low in removal percentage. On the other hand, if the excess amounts of both substances are found in the reaction, the inhibition effect of organic degradation occurred. Hydrogen peroxide and ferrous ions were hydroxyl radical scavengers in the latter situation. At the optimum condition, COD removal of more than 75% was achieved after 1 hr of reaction time in this process.

Keywords: Medical wastewater, photo-Fenton, Advanced oxidation processes, irradiation process

คำนำ


ในปัจจุบันทั้งภาครัฐและเอกชน ได้ตระหนักถึงความสำคัญของสิ่งแวดล้อม โดยเฉพาะมลพิษทางด้านน้ำเสียจาก โรงพยาบาลและสถานพยาบาลซึ่งเป็นสถานที่หนึ่งที่มีการใช้สารเคมีเป็นจำนวนมาก และสารเคมีเหล่านั้นหลังจากผ่านการ ใช้งานแล้วมักจะถูกทิ้งเจือปนมากับน้ำทิ้งทั่วไปของโรงพยาบาลและเข้าสู่ระบบบำบัดน้ำเสียในที่สุด สารเคมีเหล่านี้ก่อให้ เกิดความเป็นพิษต่อจุลินทรีย์ทำให้เซลล์จุลินทรีย์อาจจะเกิดการแตกและตายในที่สุด ส่งผลให้ระบบบำบัดน้ำเสียแบบ ชีวภาพของโรงพยาบาลทำให้เกิดปัญหาในการดำเนินงาน และทำให้น้ำที่ผ่านระบบบำบัดของโรงพยาบาลไม่ได้คุณภาพ อนึง เมื่อวิเคราะห์ในภาพรวมแล้ว การบำบัดสารเคมีเหล่านี้เบื้องต้น โดยเพิ่มหน่วยบำบัดทางเคมีสำหรับสารเคมีซึ่งมี ปริมาณน้อยเมื่อเทียบกับปริมาณน้ำเสียของโรงพยาบาลโดยรวม เพื่อทำให้สารเคมีเหล่านี้มีความเข้มขันด่ำลงในระดับที่ไม่ เป็นพิษต่อจุลินทรีย์ก่อนที่จะระบายไปสู่ระบบบำบัดน้ำเสียทางชีวภาพ นับว่าเป็นการแก้ไขวิธีหนึ่ง ซึ่งสามารถนำไปใช้กับ ระบบบำบัดน้ำเสียทางชีวภาพเดิมของโรงพยาบาลและสถานพยาบาลที่มีอยู่ทั่วประเทศได้

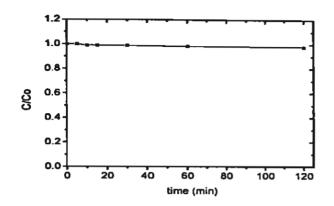
กระบวนการแอดวานซ์ออกซิเดชั่น (Advanced Oxidation Processes, AOPs) เป็นกระบวนการบำบัดน้ำเสียทาง เคมีที่ได้รับความนิยมอย่างแพร่หลายในการบำบัดน้ำเสียที่มีสารเคมีเจือปนอยู่ กระบวนการนี้เป็นกระบวนการทางเคมีโดย อาศัยการทำปฏิกิริยาของโฮดรอกซิลราดิคอล (Hydroxyl Radical, OH°) กับสิ่งปนเปื้อนทำให้สิ่งปนเปื้อนเกิดการย่อย สลายและความเป็นพิษของสารเคมีนั้นลดลง โดยในการศึกษานี้ได้เลือกใช้ กระบวนการเฟนตัน (Fenton Processes) ร่วม กับการฉายแสงอัลตราไวโอเลต (UV) เพื่อให้เกิดโฮดรอกซิลราดิคอลทำปฏิกิริยาย่อยสลายสารปนเปื้อนจำพวกสารอินทรีย์ ที่เจือปนอยู่ในน้ำเสียของโรงพยาบาลและจากการที่ กระบวนการแอควานซ์ ออกซิเดชั่นนี้ได้มีการนำไปใช้อย่างแพร่หลาย กับน้ำเสียอุตสาหกรรมในต่างประเทศ โดยประสบผลการบำบัดสารเคมือย่างดียิ่ง วิธีการนี้จึงมีความเป็นไปได้สูงในการนำ มาใช้กับน้ำเสียอุที่มีสารอินทรีย์ปนเปื้อนจากโรงพยาบาล

ชุปกรณ์และวิธีการ

เครื่องมือที่ใช้ในการทดลอง

การทคลองทั้งหมดทคลองด้วย ถังปฏิกรณ์ทำจากควอสด์ ขนาด 1.2 ลิตร ใช้ปริมาณสารผสมในการทำปฏิกิริยา เ ลิตร แบ่งออกเป็น 2 ส่วน คือ ส่วนนอก ใช้สำหรับใส่น้ำเสียที่ด้องการบำบัดและสารเคมีผสมสำหรับการทำปฏิกิริยา ส่วนใน ใส่หลอดแสงยูวี 10 วัตค์ ความยาวคลื่น 250 นาโนเมตร น้ำหล่อเย็นสำหรับปรับอุณหภูมิให้คงที่ที่ 30 °C ใส่ พีเอชมิเตอร์ (pH Meter) และ เทอร์โมมิเตอร์(Thermometer) ติดกับ ถังปฏิกรณ์ ตามรูปที่ 1 ทำการผสมสารภายในให้เข้ากันด้วยเครื่อง กวนแบ่เหล็ก

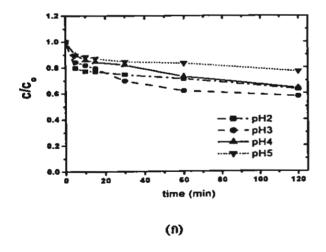
รูปที่ 1 ถึงปฏิกรณ์ที่ใช้สำหรับทุกการทดลอง

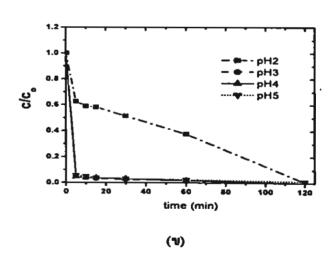

วิธีการทดลอง

น้ำเสียที่ใช้ในการทดลองเป็นน้ำน้ำเสียจริงของสารเคมีที่ออกจากห้องปฏิบัติการของโรงพยาบาลบางประกอก3 ในปริมาณ 1 ลิตร ใส่เฟอรัสซัลเฟต (FcSO₄; Merck) ทำการปรับพีเอชเริ่มค้น เปิดแสงยูวีแบบ 10 วัตค์ 250 นาโนเมตร ใส่ ไฮโดรเจนเปอร์ออกไซค์(Hydrogen peroxide; Carlo ERBA) 30% เป็นการเริ่มปฏิกิริยา การเก็บตัวอย่างน้ำเสียในแต่ละช่วง เวลาทำการวิเคราะห์หาคำไฮโดรเจนเปอร์ออกไซค์ที่เหลือ (Hydrogen peroxide concentration) ด้วยวิธีการไอโอโด เมทต ริก(Standard Iodometric Method) และ คำซีโอดี (COD) ด้วยวิธีการรีฟลักแบบปิด (Colse Refiux) [1]

ผลการทดลองและวิจารณ์

ผลของปฏิกิริยาโฟโตไลซิลต่อการย่อยสลายน้ำเสีย


จากรูปที่ 2 แสคงผลของปฏิกิริยาโฟโตไลซิล (photolysis) ต่อการลดกำซีโอคีซึ่งจะเห็นได้ว่ากระบวนการ โฟโตไลซิสเพียงอย่างเดียวไม่สามารถส่งผลต่อการย่อยสลายสารอินทรีย์ปนเปื้อนในน้ำเสียโรงพยาบาลสามารถดูได้จาก ปริมาณ ซีโอคีที่ลดลงเพียง 2% หลังจากผ่านการบำบัคแล้ว

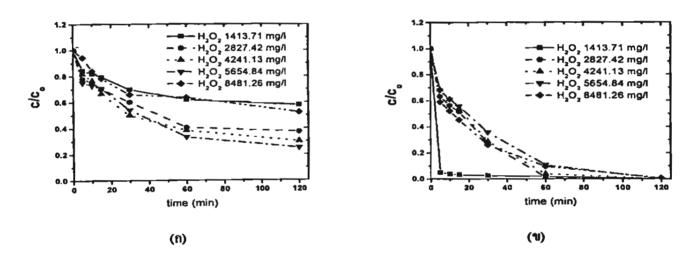


รูปที่ 2 แสดงผลของปฏิกิริยาโฟโตไลซิลต่อการลดค่า ซีโอดี โดยใช้แสงยูวีแบบ 10 วัตต์ 250 นาโนเมตร

ผลกระทบของค่าพีเอช (Effect of pH)

ผลกระทบของค่าพีเอชที่มีต่อการย่อยสลายน้ำเสียจากโรงพยาบาลค้วยกระบวนการโฟโดเฟนตัน จากรูปที่ 3 แสดง การย่อยสลายน้ำเสียโรงพยาบาล ที่พีเอช 2, 3, 4 และ 5 สามารถลดค่าได้ชีโอดี 37%, 43%, 36% และ 24% ตามลำดับและลด ได้สูงสุดถึง 43 % ที่พีเอชมีค่าเท่ากับ 3 จากรายงานการวิจัยที่ผ่านมากระบวนการโฟโตเฟนตันจะมีค่าพีเอชดีที่สุดเท่ากับ 3 [2] ทั้งนี้เนื่องมาจากเฟอรัสที่พีเอช 2-3จะอยู่ในรูป Fe(OH)^{2*}(H₂O), ซึ่งเป็นรูปของเฟอรัสที่มีค่าคงที่ของการดูดซับแสงกว้าง ที่สุด ทำให้เกิด ไฮดรอกซิลแรดิคอล (OH°) ได้ดีที่สุด [3] จากรายงานการวิจัยพบว่าโนกระบวนการโฟโตเฟนตัน ไฮโดรเจน เปอร์ออกไซค์สามารถแตกตัวให้ไฮดรอซิลเรดิคอลได้ดีในสภาวะที่เป็นกรด [4] นอกจากนี้ยังพบว่าพีเอชในช่วงกรดเป็น พีเอชที่เหมาะสมสำหรับกระบวนการโฟโตเฟนตันในการบำบัดน้ำเสียหลายชนิด เช่น น้ำชะขยะมูลฝอย [5] สารอินทรีย์ที่มี ในโดรเจนเป็นองค์ประกอบ [6] สีในน้ำเสียจากโรงงานสีข้อม [7] เป็นต้น

รูปที่ 3 แสดงผลกระทบของพีเอชในกระบวนการโฟโตเฟนตันที่มีต่อประสิทธิภาพการลดค่าซีโอดี (ก) และ ไฮโดรเจนเปอร์ ออกไซด์ (ข) โดยสภาวะที่ใช้ในการทดลอง คือ แสงยูวี 10 วัตต์ความยาวกลื่น 250 นาโนเมตร ไฮโดรเจนเปอร์ออกไซด์ 1,413.71 มิลลิกรัม/ลิตร และ เฟอรัสไอออน 135 มิลลิกรัม/ลิตร


ผลกระทบของปริมาณไฮโดรเจนเปอร์ออกไซด์เริ่มต้น (Effect of H₂O₂dosage)

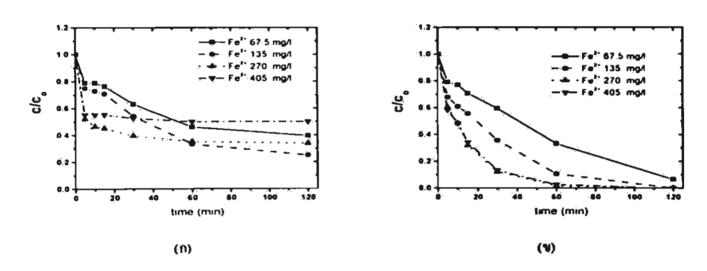
จากรูปที่ 4 แสดงถึงผลกระทบของปริมาณไฮโดรเจนเปอร์ออกไซค์เริ่มต้นที่มีต่อการย่อยสลายน้ำเสียด้วย กระบวนการโฟโตเฟนตันจะเห็นได้ว่าที่พีเอช 3 เฟอรัสโอออน 135 มิลลิกรัม/ลิตร ปริมาณไฮโดรเจนเปอร์ออกไซค์เริ่มดัน เท่ากับ 1,413.71, 2,827.42, 4,241.13, 5,654.84, 8,481.26 มิลลิกรัม/ลิตร สามารถลดค่าซีโอดีได้ 43%, 63%, 70%, 75% และ 48% ตามลำคับ โดยที่ปฏิกิริยาหลักของการเกิดไฮครอซิลเรดิคอลของกระบวนการโฟโตเฟนตันเกิดจากกระบวนการของ กระบวนการเฟนตัน (fenton reaction) กระบวนการโฟโตไลซิสของไฮโดรเจนเปอร์ออกไซค์ (photolysis of hydrogen peroxide) และกระบวนการโฟโตรีดักชั่นของเฟอริคไอออน (photoreduction of ferric ion) ตามสมการที่ 1,2 และ 3 ตามลำคับ [8,9]

$$H_{2}O_{3} + Fe^{2+}$$
 \longrightarrow $HO^{0} + Fe^{3+} + OH^{-}$ (1)

$$H_2O_2 + UV$$
 \longrightarrow $2HO^{\circ}$ (2)

$$Fe^{3+} + UV + H_{2}O \longrightarrow HO^{6} + Fe^{2+} + H^{+}$$
 (3)

รูปที่ 4 แสดงผลกระทบของไฮโดรเจนเบ่อร์ออกไซด์เริ่มต้นในกระบวนการโฟโดเฟนตันที่มีต่อประสิทธิภาพการลดค่าซีโอดี (ก) และ ไฮโดรเจนเบ่อร์ออกไซด์ (ข) โดยสภาวะที่ใช้ในการทดลอง คือ แสงยูวี 10 วัตต์ความยาวคลื่น 250นาโนเมตร เฟอรัสไอออน 135 มิลลิกรัม/ลิตร

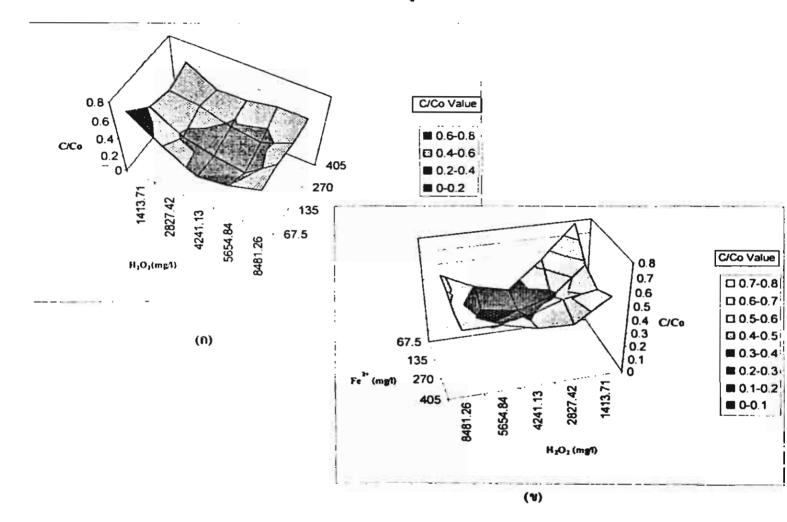

จากกราฟในกราฟในรูป 4 จะพบว่าเมื่อให้ไฮโครเจนเปุอร์ออกไซด์ในปริมาณที่น้อยเกินไป เช่น ที่ไฮโครเจน เปอร์ออกไซด์ 1413.71 มิลลิกรัม/ลิตร ไฮโตรเจนเปอร์ออกไซด์จะถูกนำไปใช้ในการย่อยสลายอย่างรวดเร็ว ทำให้หมดไป ภายในเวลาไม่ถึง 10 นาที ประสิทธิภาพในการกำจัดสารอินทรีย์จึงมีค่าประมาณ 43% เมื่อเพิ่มปริมาณไฮโครเจน เปอร์ออกไซด์ให้มากขึ้น ประสิทธิภาพในการบำบัคจะเพิ่มขึ้นตามลำคับ ทั้งนี้เนื่องจากไฮโดรเจนเปอร์ออกไซด์ที่เพิ่มขึ้นจะ ทำให้เกิดไฮดรอกซิลเรดิกอลเพิ่มมากขึ้นตามไปด้วยดังแสดงในสมการที่ 1 และ 2 อย่างไรก็ดีหากมีปริมาณไฮโครเจน เปอร์ออกไซด์ที่มากเกินไป เช่น เมื่อมีไฮโครเจนเปอร์ออกไซด์ 8481.26 มิลลิกรัม/ลิตร ไฮโดรเจนเปอร์ออกไซด์จะแย่งทำ ปฏิกิริยากับไฮดรอกซิลเรดิกอลทำให้ประสิทธิภาพลดลงดังแสดงในรูปที่ 4 (ก) ซึ่งอธิบายได้โดยสมการที่ 4

$$H_2O_2 + HO^\circ$$
 $HO_2^\circ + H_2O$ (4)

การใช้กระบวนการไฟโตเฟนตันในการบำบัดน้ำเสียจึงด้องมีการเติมไฮโครเจนเปฮร์ออกไซค์ที่เหมาะสมจึงจะ สามารถบำบัดน้ำเสียได้อย่างมีประสิทธิภาพในการทดลองนี้ที่ใช้ไฮโครเจนเปอร์ออกไซค์ความเข้มข้น 5654.84 มิลลิกรัม /ลิตรให้ประสิทธิภาพในการบำบัดดีที่สุด คือ สามารถลดคำซีไอดีลงได้ 75%

ผลกระทบของปริมาณเฟอรัสไอออนเริ่มต้น (Effect of Fe^{2*} dosage)

จากรูปที่ 5 แสดงถึงผลกระทบของเฟอรัสไอออนเริ่มดันที่มีต่อการย่อยสลายน้ำเสียด้วยกระบวนการโฟโดเฟนตัน จะเห็นได้ว่าที่พีเอช 3 ไฮโดรเจนเปอร์ออกไซด์ 5654.84 มิลลิกรับ/ลิตร ปริบาณเฟอรัสไอออนเริ่มต้นเท่ากับ 67.5, 135, 270, 405 มิลลิกรับ/ลิตร สามารถลดกำซีโอดีได้ 61%, 75%, 67%และ 50% ตามลำดับ



รูปที่ 5 แสดงผลกระทบของปริมาณเฟอรัสไอออนเริ่มต้นในกระบวนการโฟโตเฟนตันที่มีต่อประสิทธิภาพการลดกำซีโอดี (ก) และ ไฮโดรเจนเปอร์ออกไซด์ (ข) โดยสภาวะที่ใช้ในการทดลอง คือ แสงยูวี 10 วัตต์ความยาวกลิ่น 250 นาโนเมตร ไฮโดรเจนเปอร์ออกไซด์ 5654.84 มีลลิกรัม/ลิตร

ผลกระทบของปริมาณของเพียรัส โอออนเริ่มต้นจะส่งผลโดยตรงต่อความเร็วของปฏิกิริยาการเกิดโฮดรอกซิล เรดีกอลเนื่องจากเพียรัส โอออนเป็นตัวเร่งโฮโครเจนเปอร์ออกโซด์ ในการสร้างโฮครอซิลเรดีคอลให้เกิดอย่างรวดเร็ว เมื่อ พิจารณาในกรณีเพิ่มค่าความเข้มข้นเพียรัสให้มากขึ้นจาก 67 5 มิลลิกรัม/ลิตร 135 มิลลิกรัม/ลิตร ประสิทธิภาพในการกำจัด ค่าซีโอดีจะเพิ่มขึ้นตามไปด้วยจาก 61% ไปเป็น 75% ทั้งนี้เมื่อเพียรัสโอออนเพิ่มขึ้นปริมาณโฮครอกซิลเรดีคอลในน้ำจะเพิ่มขึ้นตามทำให้การกำจัดซีโอดีมีประสิทธิภาพชิ่งขึ้น อย่างไรก็ดีเมื่อมีเพียรัสโอออนในปริมาณที่มากเกินไปจะส่งผลกระทบ ต่อประสิทธิภาพในการลดคำซีโอดี เนื่องจากไฮครอซิลเรดิคอลที่เกิดขึ้นจะไปทำปฏิกิริยากับโฮโครเจนเปอร์ออกไซด์ และ ทำปฏิกิริยากับเพียรัสโอออน ดังสมการที่ 4 และ 5 [10]ส่งผลให้ประสิทธิภาพในการลดคำซีโอดีเพียรัสใจออนเริ่มดันที่ 270 และ 405 ลดคำลงอยู่ที่ 67% และ 50% ซึ่งค่ำกว่าคำซีโอดีที่ถูกกำจัดโดยเพียรัสโอออนเริ่มดันที่ 135 มิลลิกรัม/ลิตร ซึ่ง สามารถลดคำซีโอดีได้สูงสุดที่ 75%

ผลกระทบของปริมาณไฮโดรเจนเปอร์ออกไซด์ และเฟอรัสไฮฮฮนเริ่มต้น (Effect of H₂O₂ and Fe²⁺ dosage)

จากการทคลองที่ผ่านมาจะเห็นได้ว่าทั้งไฮโครเจนเปอร์ไฮโครเจนเปอร์ออกไซค์และเฟอรัสไอออนต่างส่งผลต่อ ประสิทธิภาพในการบำบัคน้ำเสีย กล่าวคือ สารทั้งสองชนิคต้องมีปริบาณที่เหมาะสมจึงจะสามารถจึงจะสามารถบำบัค น้ำเสียได้อย่างมีประสิทธิภาพปริบาณที่น้อยเกินไปหรือมากเกินไปจะทำให้ประสิทธิภาพในการลดค่าซีโอคีลคลงอย่าง เห็นได้ชัด ในการทคลองชุคนี้จึงทำการทคลองโคยสร้างเป็นเมตริกซ์ของการทคลองเมื่อมีการพิจารณาผลของไฮโครเจน เปอร์ออกไซค์และเฟอรัสไอออนร่วมกัน โดยแปรผันค่าของความเข้มข้นของสารทีละชนิคจำนวนทั้งหมด 20 การทคลอง โดยมีค่าไฮโครเจนเปอร์ออกไซค์เริ่มต้นเท่ากับ 1,413.71, 2,827.42, 4,241.13, 5,654.84, 8,481.26 มิลลิกรัม/ลิตร และเฟอรัส ไอออนเริ่มต้นเท่ากับ 67.5, 135, 270, 405 มิลลิกรัม/ลิตร ดังแสดงในรูปที่ 6

รูปที่ 6 (ก) และ (ข) แสดงสภาวะที่เหมาะสมของปริมาณไฮโดรเจนเปอร์ออกไซด์และปริมาณเฟอรัสไอออนเริ่มต้นที่มีต่อ ประสิทธิภาพการลดค่าซีโอดี ที่ค่าพีเอชเท่ากับ 3 และ แสงผูวีแบบ 10 วัตต์ความยาวคลื่น 250 นาโนเมตร ในมุมมองของ กราฟที่แตกต่างกัน

จากกราฟ จะเห็นได้ว่าที่สภาวะที่เหมาะสมที่สุดของกระบวนการโฟโดเฟนตันในการบำบัดน้ำเสียจากห้องปฏิบัติ การของโรงพยาบาลอยู่ที่ ค่าไฮโดรเจนเปอร์ออกไซค์เริ่มต้นเท่ากับ 5654.84 มิลลิกรัม/ลิตร และเฟอรัสไอออนเริ่มต้นเท่ากับ 135 มิลลิกรัม/ลิตร สามารถบำบัคคำซีโอดีได้ลดลงมากที่สุดถึง 75%

สรุปผลการทดลอง

ภาพรวมผลกระทบของพีเอช ไฮโครเฉนเปอร์ออกไซค์และเฟอรัสไอออนค่อประสิทธิภาพการบำบัคน้ำเสียจาก ห้องปฏิบัติการจากโรงพยาบาลโดยที่สภาวะที่เหมาะสมในการลดค่าซีโอคีของกระบวนการโฟโตเฟนตันคือ พีเอช เท่ากับ 3 ไฮโครเฉนเปอร์ออกไซค์ เท่ากับ 5654.84 มิลลิกรัม/ลิตรและ เฟอรัสไอออน เท่ากับ 135 มิลลิกรัม/ลิตร โดยในการทำ ปฏิกิริยาต้องมีสารทั้งสองชนิค คือ ไฮโครเฉนเปอร์ออกไซค์และเฟอรัสไอออนในปริมาณที่เหมาะสมกล่าวคือในการทำ ปฏิกิริยาเมื่อมีไฮโครเฉนเปอร์ออกไซค์และเฟอรัสไอออนน้อยเกินไปไฮครอซิลเรคิคอลที่เกิดขึ้นในปริมาณที่น้อยไม่ เพียงพอที่จะส่งผลให้ประสิทธิภาพในการลดค่าซีโอดีให้อยู่ในสภาวะที่เหมาะสม แต่ถ้ามีปริมาณไฮโครเฉนเปอร์ออกไซค์ และเฟอรัสไอออนต่าง เป็นตัวแย่งรับอิเล็คตรอนทำให้ประสิทธิในการลดค่าซีโอดีมีประสิทธิภาพที่ต่ำลง

กิตติกรรมประกาศ

ผู้วิจัยใกร่ของอบคุณสำนักงานกองทุนสนับสนุนการวิจัย ในการสนับสนุนทุนวิจัยสำหรับการศึกษานี้ภายใต้ โครงการ "การใช้กระบวนการแอควานซ์ออกซิเคชันในการบำบัคน้ำเสียขั้นค้นสำหรับน้ำเสียจากโรงพยาบาล" ตามสัญญา รับทุนเลขที่ MRG4680029

เอกสารอ้างอิง

- [1] Standard Methods for the Examination of Water and Wastewater, 19th ed., American Public Health Association/ American Water Works Association/ Water Environment Federation, Washingtin DC. 1995.
- [2] J.J. Pignatello, D. Liu, P.Huston, 1999. Evidence for as additional oxidant in the photoassisted Fenton reaction. Environ. Sci. Tecchnol. 33. 1832.
- [3] H.J. Benkelberg, P. Werneck, J. 1995. Phys. Chem. 99. 52140
- [4] Kang, S.F., Liao, C.H., Po, S.T., 2000. Decolorization of textile wastewater by photo-fenton oxidation technology. Chemosphere 41, 1287-1294.
- [5] Kim, S.M., Geissen, S., Vogelpohl, A., 1997. Landfil leachate treatment by a photoassisted fenton reaction. Wat. Sci. Technol. 35, 239-248.
- [6] Maletzky, P., Bauer, R., 1998. The photo-fenton method degradation of nitrogen containing organic compounds. Chemosphere 37, 899-909.
- [7] Kang, S.F., Liao, C.H., Hung, H.P., 1999. Peroxidation treatment of dye manufacturing wastewater in the presence of ultraviolet light and ferrous ions. J. Hazardous Mat. B 65, 317-333.
- [8] Fenton, H.J.H., 1894. Oxidation of tartaric in the presence of ion. Chem. Soc, J. Lond. 65, 899-910
- [9] Faust, B.C., Hoigne, J., 1990. Photolysis of Fe complexes as sources of OH radicals in clouds, fog, and rain III.

 Atmos. Environ. A24, 79-89
- [10] Perez, M., Torrades, F., Domenech, X., Peral, J.,2002. Fenton and photo-Fenton oxidation of textile effluents. Wat. Res 36, 2703-2710.