INTRODUCTION

Pseudoephedrine is a diastereoisomer of ephedrine and both are classified as sympatomimetic drugs (Will, 1997). Pseudoephedrine is commonly found in over-thecounter decongestants, anorectic agents and as an amphetamine substitute (Blosser et al., 1987; Blum, 1981). The sympathomimetic agents can produce psychoactive effects such as pleasant perceptual changes, euphoria and mental stimulation as same as amphetamine, a psychostimulant drug, if taken in large doses. The action of sympathomimetic agents shows a similar way to amphetamine because of its related structure (Wills, 1997). The effect of pseudoephedrine has been studied in the nervous system. Kumarnsit et al. (1999) found that pseudoephedrine induced an immediate early gene Fos immunoreactivity in the nucleus accumbens and striatum. Furthermore, the action of pseudocphedrine was also found to mediate via dopaminergic mechanism (Zarrindast, 1981; Kumainsit et al., 1999). In the study of drug discrimination, pseudoephedrine was shown both partial substitution (20 mg/kg) and full substitution (40 mg/kg) for amphetamine (1mg/kg) (Tongjaroenbuangam et al., 1998). Amphetamine, dopamine agonist, can produce long-term behavioral changes including sensitization, tolerance, and dependence (reviewed by Robinson and Becker, 1986). Moreover, the administration of methamphetamine, the derivatives of amphetamine, can damage neurotoxicity to dopaminergic and serotonergic nerve terminals in several brain areas (O'Callaghan and Miller, 1991; O'Dell et al., 1991). It has also been reported that acute methamphetamine administration decreases dopamine transporter function (Fleckenstein et al., 1997) and loss of dopamine transporter sites demonstrates following chronic methamphetamine administration (Nakayama et al., 1993). Changes of dopamine function can induce malfunction of glutamatergic system because there are well-documented interactions between glutamate/NMDA receptors and dopaminergic systems (e.g Murase et al., 1993; Verma and Moghaddam, 1996). There is an evidence indicated the role of glutamate in the development of methamphetamine toxicity. Methamphetamine enhances glutamate release (Abekawa et al., 1994), and NMDA-receptor antagonist has been report to protect against methamphetamine neurotoxicity (Sonsalla et al., 1998). Moreover. methamphetamine also produced alterations of striatal and cortical glutamate/NMDA receptors (Eisch et al., 1996). Itzhak (1994) found the upregulation of cortical NMDA receptor following repeated exposure of mice to cocaine, a psychostimulant. Although glutamate abnormalities have not to date been elucidated after exposure to sympatomimetic agents, a study found that ephedrine play a critical role of glutamate release in subcortical region indicated dysfunction of CNS glutamatergic pathways (Bowyer et al., 2000). It is very interesting to study mechanisms of glutamatergic system after pseudoephedrine, an over-thecounter product, exposure as the glutamate/NMDA receptors seem to be critically involved in synaptic formation and plasticity of the CNS (Cline et al., 1987; Udin and Scherer, 1990) as well as in aspects of long-term potentiation (e.g. Coan et al., 1987; Davies et al., 1989). Therefore, in the present study, we aimed to investigate the effects of acute and chronic pseudoephedrine administration on the alteration of glutamate/NMDA receptor density in rat hippocampus and dentate gyrus.

MATERIALS AND METHODS

Male Sprague-Dawley rats (250-280g) were obtained from the National Animal Center, Mahidol University, Thailand. The animals were housed 3-6 per cage and maintained at room temperature under a 12 h light/dark cycle with free access to water and food. All animals were handled for at least 1 week before experiment. All animal procedures were carried out in compliance with Mahidol University Code of Practice and the National Institutes of Health (USA) Guidelines for treatment of laboratory animals.

Psedoephedrine was received from the Health Sciences Research Institute, Naresuan University, Thailand. To examine the effects of acute pseudoephedrine, animals were administered intragastically at a dose of 320 mg/kg. The chronic effects of pseudoephedrine were examined by treated intragastrically at the dose of 160 mg/kg, once daily for 15 days. Rats were sacrificed 2 h later the last dose and brains were removed for the immunohistochemical analysis of glutamate/NMDA receptor subunit1 (NMDAR1). Drug doses for these studies were chosen based on the dose that pseudoephedrine can produce a discriminative stimulus resembling that of amphetamine (Tongjaroenbuangam, et al., 1998; Glennon and Young, 2000).

Brains were fixed in 4% paraformaldehyld and embedded in paraffin wax and thickness of 5 μM, subsequently sectioned at a then mounted 3onto aminopropyltriethoxysilane (APES) coated glass slides The sections were deparaffinize in xylene, rehydrated in grade alcohol, then heated in microwave oven on full power (650 W) for 3 periods of 5 min in phosphate buffer saline (PBS; 0.01 M phosphate buffer, 0.9% NaCl,) pH 7.4, to aid antigen retrieval. Sections were incubated for 30 min in a solution of 0.6% H₂O₂ in 10% methanol and 0.1% Triton X in PBS pH 7.4 to inhibit endogeneous peroxidase activity and then washed for 3x5 min in PBS. Non-specific binding was minimized by incubation for 1 h in 5% normal rabbit serum in PBS and incubated overnight at 4°C with a polyclonal antibody against the NMDAR1 (Sigma) at a dilution of 1:1000 in protein blocking solution. The sections were washed for 3x5 min in PBS before incubation for 2 h at room temperature with biotinylated secondary antibody (anti-rabbit lgG) diluted 1:200 in protein blocking solution. This was followed by incubation for 2 h at room temperature with avidinbiotinylated horseradish peroxidase complex (purchased with secondary antibody as a Vectorstain ABC kit, Vector Laboratories, Burlingame, CA) after which the sections were The sections were washed for a further 3x5 min. Then the washed for 3x5 min in PBS.

protein immunoreactivity was visualized using the chromogen diaminobenzidine (DAB), intensified with nickel chloride. The sections were dehydrated and mounted. mmunoreactivity was not present in control sections in which the primary antibody was omitted from the staining protocol.

Immunoreactivity was quantified by optical density (OD) of NMDAR1 immunoreactivity in the subregions of hippocampus and the dentate gyrus. The optical measurements were made blind to the animal groups. OD analysis was performed on high resolution and analyzed with Scion Image Software based on NIH image (v. beta 3b; www.scioncorp.com; 1998). The software was used to obtain the integrated optical density (IOD) of the region. The value is the sum of the optical densities of all pixels in the region divided by number of pixels. Background values were obtained from the neighboring white matter. The average of values from three sections for each subject was used for statistical analysis. Statistical analysis was performed using ANOVA with Dunnett post hoc tests.

RESULTS

Immunohistochemistry demonstrated NMDAR1 immunoreactive cells in all principal neuronal populations of the hippocampus, namely pyramidal neurons in cornu ammonis fields 1-3 (CA1-3), granule cells in the dense cell layer of the dentate gyrus (DG). Immunoreactivity was accordingly limited to neurons, was strong in pyramidal cells of CA1-3, and was especially strong in granule cells of DG. Neurons in other hippocampal subareas (e.g. molecular layer) and surrounding areas (white matter) were less immunoreactive. Therefore, the data was analyzed by selected the area of interest in pyramidal cell layer in CA1-3 and granule cell layer in dentate gyrus. Within each region, NMDAR1 immunodensity in the three experimental groups were compared by ANOVA. NMDAR1

immunodensity was significantly increased above control in dentate gyrus in acute (p<0.01) and chronic (p<0.005) pseudoephedrine administration.

DISCUSSION

The main finding of the present study is an increase of NMDAR1 immunodensity in the dentate gyrus of rats following acute and chronic pseudoephedrine administration. The result showed an up-regulation of NMDAR1 density in granule layer of dentate gyrus. As pseudoephedrine has been considered to be a psychostimulant and has the potential to be abused (Tongjaroenbuangam et al., 1998; Glennon and Young, 2000), our findings provide a support of psychostimulant effect on glutamatergic system. Abnormalities of glutamatergic system may derive from the change of dopamine function as the action of pseudoephedrine has been suggested to mediate via dopaminergic mechanism (zarrindast, 1981; Kumarnsit et al., 1999). The present results are in agreement with the previous reports which found increase in cortical NMDA receptor binding after treatment with psychostimulant agents either methamphetamine (Eisch et al., 1996) or cocaine (Itzhak, 1994), suggesting the mechanisms of NMDA receptor implicated in the development of sensitization of the drugs. Moreover, the phosphorylation of NMDAR1, at least on serine 896 and 890 sites, was demonstrated sensitive to amphetamine exposure (Liu et al., 2004).

Supporting a hypothesis of glutamatergic dysfunction in subcortical regions following psychostimulant drug exposure, an increase of metabotropic glutamate receptor (mGluR5) immunoreactivity and mRNA levels have been reported in the cortical and hippocampal neurons after amphetamine treatment (Yu et al., 2001). Furthermore, the observations that found decrease of glutamate release after stimulation of dopamine receptor (Mitchell and Dogget, 1980; Crowder and Bradford, 1987) provide a further support of glutamate abnormalities following the administration of psychostimulants including pseudoephedrine.

A possible interpretation of the present observation that is certainly testable in further studies is that the NMDA receptor elevation may be a response to a neurodegenerative process involving either glutamatergic neuronal loss or a reduction of glutamate release.

Acknowledgements

This research was supported by the Thailand Research Fund (TRF) and Commission of Higher Education (CHF), and the Faculty of Medical Science, Naresuan University, Thailand. The authors also gratefully acknowledge the Health Sciences Research Institute, Naresuan University, Thailand.

References

- Abekawa T, Ohmori T, Koyama T. Effects of repeated administration of a high dose of methamphetamine on dopamine and glutamate release in rat striatum and nucleus accumbens. Brain Res 1994;643;276-81.
- Blosser JC, Barrantes M, Parker RB. Correlation between anorectic potency and affinity for hypothalamic (+)-amphetamine binding sites of phenylethylamines. Eur J Pharmacol 1987;134:97-103.
- Blum A. Phenylpropanolamine: an over-the-counter amphetamine? JAMA 1981;245:1346-7.
- Bowyer JF, Newport GD, Slikker W Jr, Gough B, Ferguson SA, Tor-Agbidye J. An evaluation of l-ephedrine neurotoxicity with respect to hyperthermia and caudate/putamen microdialysate levels of ephedrine, dopamine, serotonin, and glutamate. Toxicol Sci 2000;55:133-42.
- Cline HT, Debski EA, Constantine-Paton M. N-methyl-D-aspartate receptor antagonist desegregates eye-specific stripes. Proc Natl Acad Sci USA 1987;84:4342-5.

- Coan EJ. Saywood W, Collingridge GL. MK-801 blocks NMDA receptor-mediated synaptic transmission and long term potentiation in rat hippocampal slices. Neurosci Lett 1987;80:111-4.
- Crowder JM, Bradford HF. Inhibitory effects of noradrenaline and dopamine on calcium influx and neurotransmitter glutamate release in mammalian brain slices. Eur J Pharmacol 1987;143:343-52.
- Davies SN, Lester RA, Reymann KG, Collingridge GL. Temporally distinct pre- and postsynaptic mechanisms maintain long-term potentiation. Nature 1989;338:500-3.
- Eisch AJ, O'Dell SJ, Marshall JF. Striatal and cortical NMDA receptors are altered by a neurotoxic regimen of methamphetamine. Synapse 1996;22:217-25.
- Fleckenstein AE, Metzger RR, Wilkins DG, Gibb JW, Hanson GR. Rapid and reversible effects of methamphetamine on dopamine transporters. J Pharmacol Exp Ther 1997;282:834-8.
- Glennon RA, Young R. (+)Amphetamine-stimulus generalization to an herbal ephedrine product. Pharmacol Biochem Behav 2000;65:655-8.
- Itzhak Y. Modulation of the PCP/NMDA receptor complex and sigma binding sites by psychostimulants. Neurotoxicol Teratol 1994;16:363-8.
- Kumarnsit E, Harnyuttanakorn P, Meksuriyen D, Govitrapong P, Baldwin BA, Kotchabhakdi N, Casalotti SO. Pseudoephedrine, a sympathomimetic agent, induces Fos-like immunoreactivity in rat nucleus accumbens and striatum. Neuropharmacology 1999;38:1381-7.
- Liu Z, Mao L, Parelkar NK, Tang Q, Samdani S, Wang JQ. Distinct expression of phosphorylated N-methyl-D-aspartate receptor NR1 subunits by projection neurons and interneurons in the striatum of normal and amphetamine-treated rats. J Comp Neurol 2004;474:393-406.

- Mitchell PR, Doggett NS. Modulation of striatal [3H]-glutamic acid release by dopaminergic drugs. Life Sci 1980;26:2073-81.
- Murase S, Grenhoff J, Chouvet G, Gonon FG, Svensson TH. Prefrontal cortex regulates burst firing and transmitter release in rat mesolimbic dopamine neurons studied in vivo.

 Neurosci Lett 1993;157;53-6.
- Nakayama M, Koyama T, Yamashita I. Long-lasting decrease in dopamine uptake sites following repeated administration of methamphetamine in the rat striatum. Brain Res 1993;601:209-12.
- O'Dell SJ, Weihmuller FB, Marshall JF. Multiple methamphetamine injections induce marked increases in extracellular striatal dopamine which correlates with subsequent neurotoxicity. Brain Res 1991;564:256-60.
- O'Callaghan JP, Miller DB. Neurotoxicity profiles of substituted amphetamines in the C57BL/6J mouse. J Pharmacol Exp Ther 1991;270:197-206.
- Robinson TE, Becker JB. Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res 1986;396:157-98.
- Sonsalla PK, Albers DS, Zeevalk GD. Role of glutamate in neurodegeneration of dopamine neurons in several animal models of parkinsonism. Amino Acids 1998:14:69-74.
- Tongjaroenbuangam W, Meksuriyen D, Govitrapong P, Kotchabhakdi N, Baldwin BA. Drug discrimination analysis of pseudoephedrine in rats. Pharmacol Biochem Behav 1998;59:505-10.
- Udin SB, Scherer WJ. Restoration of the plasticity of binocular maps by NMDA after the critical period in Xenopus. Science 1990;249:669-72.

- Verma A, Moghaddam B. NMDA receptor antagonists impair prefrontal cortex function as assessed via spatial delayed alternation performance in rats: modulation by dopamine. J Neurosci 1996;16:373-9.
- Will S. Drugs of abuse. London: Pharmaceutical Press;1997, p.131-4.
- Yu MF, Lin TY, Ho WH, Yin HS. Amphetamine induces differential changes in the gene expression of metabotropic glutamate receptor 5 in cultured cortical and hippocampal neurons. J Mol Neurosci 2001;17:13-24.
- Zarrindast MR (1981) Dopamine-like properties of ephedrine in rat brain. Br J Pharmacol 1981;74:119-22.



Figure 1 Immunohistochemistry analysis of NMDAR1 in rat denatate gyrus

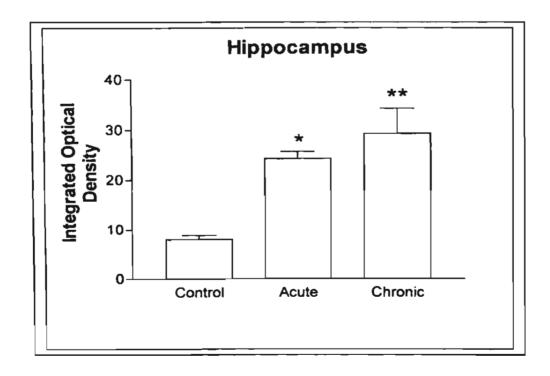
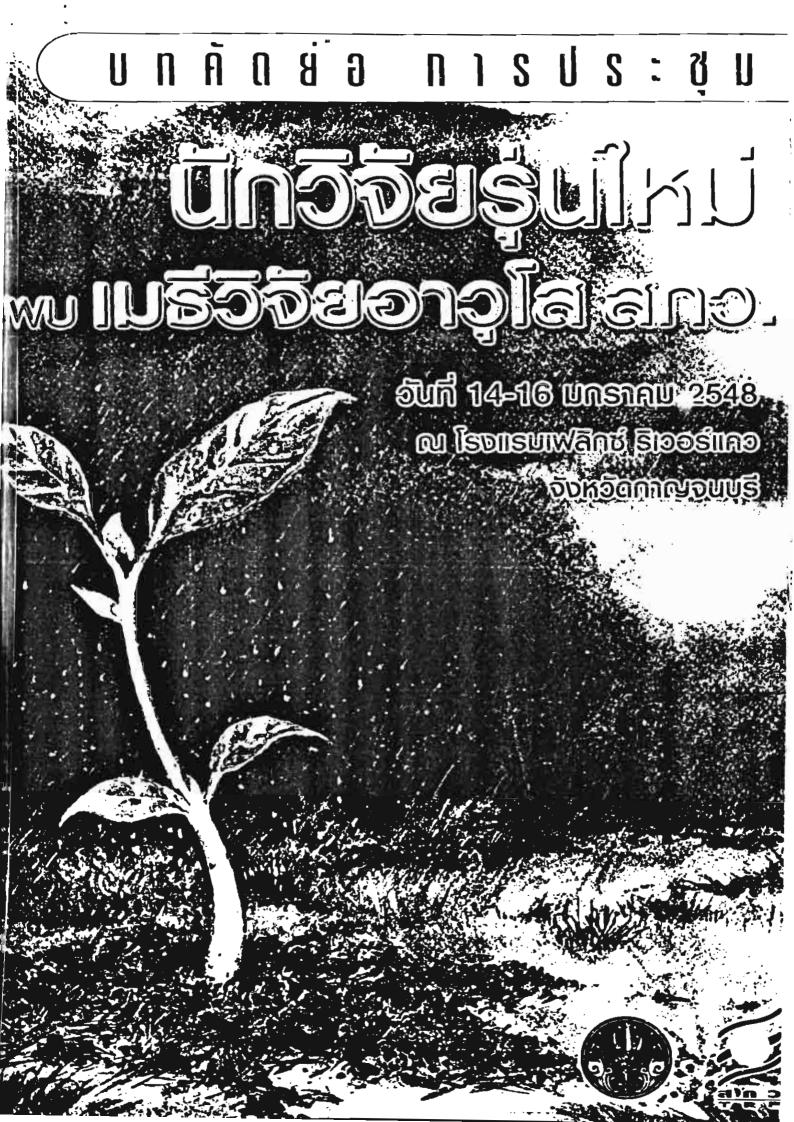



Figure 2 NMDAR1 immunodensity in granule layer of dentate gyrus in rat hippocampal formation after acute and chronic administrations.

Data are integrated optical density. Values are mean \pm S.E.M.

** p<0.005 * p<0.01 vs control by Dunnett Post Hoc Tests

การประชุม นักวิจัยรุ่นใหม่..พบ...เมธีวิจัยอาวุโส สกว. 😥

MRG063/p261

Increased density of glutamate/N-methyl-D-aspartate receptors in rat hippocampus following acute and chronic pseudoephedrine administrations

Sutisa Nudmamud-Thanoi^{a,b*}, Samur Thanoi^{a,b}, Prasert Sobhon^c

Department of Anatomy, ^b Center for Central Facility and Research Development, Facutly of Medical Science, Naresuan University, Phitsanulok 65000 c Department of Anatomy, Facutly of Science, Mahidol University, Bangkok 10400

Abstract—Background: Pseudoephedrine is a sympathomimetic drug in which its structure is similar to amphetamine. Although pseudoephedrine is not as potent as amphetamine, it has been reported that the actions of pseudoephedrine on the central nervous system via dopamine release resemble to amphetamine. Changes of dopamine function can induce malfunction of glutamatergic system because there are well-documented interactions between glutamate/N-methyl-D-aspartate (NMDA) receptors and dopaminergic system. Therefore, this study is aimed to investigate the effects of acute and chronic pseudoephedrine administrations on MDA receptors in hippocampus which is the area involved in learning and memmory.

Methods: We employed immunohistochemistry to determine the alteration of NMDA receptors density in rat hippocampus following acute and chronic pseudoephedrine administrations.

Results: The density of NMDA receptors in hippocampus of animals treated with pseudoephedrine chronically was significantly highest (p<0.005) when compared with the acute and control groups. Similarly, the density of NMDA receptors in an acute group was also higher than the comtrol group (p<0.01).

Conclusion: These results indicate that pseudoephedrine could induce an increase of NMDA receptors in hippocampus. This might be a compensatory effect of NMDA receptor in response to the degeneration or loss of glutamatergic neurons.

Keywords—Pseudoephedrine, Glutamate/N-methyl-D-aspartate receptor, Amphetamine, Hippocampus

Output

1. Nudmamud-Thanoi S, Thanoi S, Sobhon P, Increased density of glutamate/N-methyl-D-aspartate receptor in rat hippocampus following acute and chronic pseudoephedrine administrations. (in preparation).

Corresponding author Tel: 055 261000 ext 4516; fax: 055 261197, e-mail: sutisat@nu ac th

ร:หว่างวันที่ 27-29 เมษายน 2548 ณ โรงแรมเนวาด้า แทรนด์ จังหวัดอุบลราชธานี

พลของการได้รับ pseudoephedrine ต่อการแสดงออกของ glutamate/N-methyl-D-aspartate receptor ในบริเวณ hippocampus ของสมองหมู

สุทิสา กานัอย^{1,2} , เสมอ กานัอย^{1,2}, ประเสริฐ โศกณ³

¹ ภาควิชากายวิภาคศาสตร์,
²ศูนย์ปฏิบัติการกลางและ
ส่งเสริมงานวิจัย, คณะ
วิทยาศาสตร์การแพทย์,
มหาวิทยาลัยนเรศวร
³ภาควิชากายวิภาคศาสตร์,
คณะวิทยาศาสตร์,
มหาวิทยาลัยมหิดล

วัตถุประสงค์: ศึกษาผลของการได้รับ pseudoephedrine แบบ เฉียบพลัน และแบบเรื้อรังต่อการแสดงออกของ glutamate/N-methyl-D-aspartate(NMDA) receptors ในสมองหนูส่วน hippocampus ซึ่งเป็น บริเวณที่ทำหน้าที่เกี่ยวข้องกับการเรียนรู้ และความจำ

วิธีการศึกษา: หนูขาวเพศผู้ (250-280 กรัม) แบ่งเป็น 3 กลุ่มๆ ละ 10 ตัว คือกลุ่มที่ได้รับ pseudoephedrine อย่างเฉียบพลัน กลุ่มที่ได้รับ อย่างเรื้อรัง และกลุ่มควบคุม กลุ่มเฉียบพลันได้รับ pseudoephedrine ขนาด 120 มิลลิกรัม/กิโลกรัม 1 ครั้งโดยป้อนเข้าสู่หลอดอาหาร กลุ่ม เรื้อรังได้รับ pseudoephedrine ขนาด 80 มิลลิกรัม/กิโลกรัม วันละ 1 ครั้ง เป็นเวลา 15 วัน และกลุ่มควบคุมได้รับน้ำ ภายหลังการได้รับ pseudoephedrine แล้ว สัตว์ทดลองถูกทำให้ตายอย่างสงบ การแสดงออกของ NMDA receptors subunit 1 (NMDAR1) ถูกศึกษาโดยวิธี immunohistochemistry ในสมองหนูส่วน hippocampus ภายหลังการได้รับยา pseudoephedrine แบบเฉียบพลัน และแบบเรื้อรัง

ผลการศึกษา: เทคนิค Immunohistochemistry แสดงให้เห็นว่ามี NMDAR1 immunoreactive cells ในสมองส่วน hippocampus โดยเฉพาะ pyramidal cells ของ cornu ammonis fields และ granule cells ของ dentate gyrus ความหนาแน่นของ NMDAR1 เปรียบเทียบใน 3 กลุ่มทดลอง ถูกวิเคราะห์ด้วยวิธีทางสถิติแบบ analysis of variance พบว่ามีการ เพิ่มขึ้นของ NMDA receptors ในกลุ่มเฉียบพลัน (p<0.01) และกลุ่มเรื้อรัง (p<0.005) อย่างมีนัยสำคัญ เมื่อเปรียบเทียบกับกลุ่มควบคุม ผลการ ศึกษาพบว่าการได้รับ pseudoephedrine ทำให้มีการเพิ่มขึ้นของ NMDA receptors ในสมองส่วน hippocampus ซึ่งอาจเป็นผลมาจากการ ปรับตัวเพิ่มขึ้นของตัวรับที่ตอบสนองต่อการเสื่อม หรือสูญเสียของ เชลล์ประสาทกลูตาเมท

Keywords: glutamate/NMDAreceptors, pseudoephedrine, hippocampus, immunohistochemistry

งานวิจัยนี้ได้รับการสนับสนุนจากสำนักงานกองทุนสนับสนุนการวิจัย (สกว.) และสำนักงานคณะกรรมการการอุดมศึกษา (สกอ.) ให้กับ สทิสา ถาน้อย

EFFECTS OF PSEUDOEPHEDRIEN ADMINISTRATION ON GLUTAMATE/N-METHYL-D-ASPARTATE RECEPTOR IMMNOREACTIVITY IN RAT HIPPOCAMPUS

Sutisa Nudmamud-Thanoi^{1,2}, Samur Thanoi^{1,2}, Prasert Sobhon³

² Center for Central Facility and Research

Department of Anatomy.

Development, Facutly of

Naresuan University

Medical Science.

Department of Anatomy,

Facutly of Science,

Mahidol University

Objectives: This study is aimed to investigate the effects of acute and chronic pseudoephedrine administration on glutamate/ N-methyl-D-aspartate (NMDA) receptors in hippocampus which is the area involved in learning and memory.

Materials and Methods: Sprague Dawley male rats (250-280 g) were divided into 3 groups as acute, chronic, and control groups with 10 animals each. To examine an acute effect of pseudoephedrine, animals were administered intragastically at the dose of 120 mg/kg. The chronic effect was examined by treated pseudoephedrine intragastically at the dose of 80 mg/kg, once daily for 15 days. The animals in control group were administered intragastically with vehicle. We employed immunohistochemistry to determine the alteration of glutamate/N-methýl-D-aspartate receptors subunit 1 (NMDAR1) immunoreactivity in rat hippocampus following acute and chronic pseudoephedrine administration.

Results: Immunohistochemistry demonstrated NMDAR1 immunoreactive cells in all principal neuronal populations of the hippocampus. Immunoreactivity was accordingly limited to neurons, was strong in pyramidal cells of cornu ammonis fields 1-3 (CA1-3), and was especially strong in granule cells of dentate gyrus. NMDAR1 immunodensity in three experimental groups were compared by analysis of variance (ANOVA) with Dunnett post hoc tests. NMDAR1 immunodensity was significantly increased above control in dentate gyrus in acute (p<0.01) and chronic (p<0.005) groups. These results indicate that pseudoephedrine could induce an increase of NMDA receptors in hippocampus. This might be a compensatory effect of NMDA receptor in response to the degeneration or loss of glutamatergic neurons.

Keywords: glutamate/NMDA receptors, schizophrenia, superior temporal cortex

This research project was supported by the Thailand Research Fund (TRF) and Commission of Higher Education (CHE) to S Rudmamud-Thanoi

การได้รับ pseudoephedrine ในปริมาณสูงสามารถเหนี่ยวนำให้เกิดการตาย ของเชลล์ในท่อน่าอสุจิของหนูขาวเพศพู้

สุทิสา กาน้อย 1.2 , เสมอ กาน้อย 1.2 , ประเสริฐ โศกณ์

¹ ภาควิชากายวิภาคศาสตร์, ² ศูนย์ปฏิบัติการกลางและ ส่งเสริมงานวิจัย, คณะ วิทยาศาสตร์การแพทย์, มหาวิทยาลัยนเรศวร ³ ภาควิชากายวิภาคศาสตร์, คณะวิทยาศาสตร์, มหาวิทยาลัยมหิดล

วัตถุประสงค์: เพื่อศึกษาผลกระทบของการได้รับยา pseudoephedrine ต่อระบบสืบพันธุ์โดยทำการศึกษาการตายของเซลล์ในท่อสร้างอสุจิ ซึ่งจะทำให้เกิดความเข้าใจในกลไกการทำงานและการใช้ยาอย่างถูกวิธี วิธีการศึกษา หนูขาวเพศผู้ (250-280 กรัม) แบ่งเป็น 3 กลุ่มๆ ละ 10 ตัว คือกลุ่มที่ได้รับpseudoephedrine อย่างเฉียบพลันกลุ่มที่ได้รับอย่างเรื้อรัง และกลุ่มควบคุม กลุ่มเฉียบพลันได้รับ pseudoephedrine ขนาด 120 มิลลิกรัม/กิโลกรัม 1 ครั้งโดยป้อนเข้าสู่หลอดอาหาร กลุ่มเรื้อรังได้รับ pseudoephedrine ขนาด 80 มิลลิกรัม/กิโลกรัม วันละ 1 ครั้ง เป็นเวลา 15 วัน และกลุ่มควบคุมได้รับน้ำ ภายหลังการได้รับ pseudoephedrine แล้ว สัตว์ทดลองถูกทำให้ตายอย่างสงบ ท่อสร้างอสุจิถูกนำมาศึกษา การตายของเซลล์โดยวิธี TUNEL (TdT-mediated dUTP Nick End Labeling) assay

ผลการศึกษา : จากการศึกษาพบว่ากลุ่มที่ได้รับ pseudoephedrine อย่างเฉียบพลันด้วยปริมาณสูง สามารถเหนี่ยวนำให้เกิดขบวนการ ตายของเซลล์ในท่อสร้างอสุจิ ในขณะที่กลุ่มที่ได้รับ pseudo- ephedrine อย่างเรื้อรังในขนาดความเข้มข้นที่ต่ำกว่าพบการตายของเซลล์ในท่อ สร้างอสุจิในจำนวนน้อยกว่า การศึกษาเชิงคุณภาพพบว่า กลไกการ เกิดการตายของเซลล์เกี่ยวข้องในทุกระยะของการพัฒนาของเซลล์ อสุจิภายในท่อสร้างอสุจิ ผลการศึกษาแสดงให้เห็นถึงการได้รับยา pseudo-ephedrine ในปริมาณสูงนั้นสามารถทำให้เกิดกระบวนการ ตายของเซลล์ในท่อนำอสุจิ ซึ่งการตายของเซลล์นั้น อาจเป็นผลมา จากการหดตัวของหลอดเลือดที่เพิ่มขึ้นอย่างเฉียบพลันด้วยฤทธิ์ของ ยาภายหลังการได้รับ

คำสำคัญ: pseudoephedrine การตายของเซลล์ spermatogenesis

งานวิจัยนี้ได้รับการสนับสนุนจากสำนักงานกองทุนสนับสนุนการวิจัย (สกว.) และสำนักงานคณะกรรมการการอุดมศึกษา (สกอ.) ให้กับ สุทิสา ถาน้อย

HIGH DOSE PSEUDOEPHEDRINE ADMINISTRATION CAN INDUCE APOPTOSIS IN SEMINIFEROUS TUBULES ON MALE RATS

Sutisa Nudmamud-Thanoi^{1,2}, Samur Thanoi^{1,2}, Prasert Sobhon³

¹ Department of Anatomy, ² Center for Central Facility and Research Development, Facutly of Medical Science, Naresuan University ³ Department of Anatomy, Facutly of Science,

Mahidol University

Objectives: The present study is aimed to investigate the effects of pseudoephedrine, a sympathomimetic drug, on the reproductive system for understanding the mechanisms and increasing the knowledge of using the drug.

Materials and Methods: Sprague Dawley male rats (250-280 g) were divided into 3 groups as acute, chronic, and control groups with 10 animals each. To examine an acute effect of pseudoephedrine, animals were administered intragastically at the dose of 120 mg/kg. The chronic effect was examined by treated pseudoephedrine intragastically at the dose of 80 mg/kg, once daily for 15 days. The animals in control group were administered intragastically with vehicle. After treatment, animals were sacrificed and apoptotic activities within the seminiferous tubules were studied using the TUNEL (TdT-mediated dUTP Nick Er d Labeling) assay.

Results: The present study showed that acute administration of high dose pseudoephedrine can induce apoptotic activities within seminiferous tubules. In contrast, animals treated with lower dose of pseudoephedrine chronically showed a small amount of apoptotic cells inside the seminiferous tubules. Qualitatively, the apoptotic activities were involved in every stage of sperm development inside the seminiferous tubules especially the spermatogonia. These results indicate that acute administration of high dose pseudoephedrine could induce apoptosis within the seminiferous tubules of male rats. Apoptosis that caused by pseudoephedrine may be due to a sudden increased adrenergic vasoconstriction after a single high dose administration.

Keywords: pseudoephedrine, apoptosis, spermatogenesis

This research project was supported by the Thailand Research Fund (TRF) and Commission of Higher Education (CHE) to S Nudmamud-Thanci.

บทคัดย่อ

การประชุมทางวิชาการ

กระบวนทัศน์ใหม่ในการบริหารงานวิจัยในมหาวิทยาลัยนเรศวร

วันที่ 28-29 กรกฎาคม 2548

ณ ชั้น 3 สถาบันวิจัยทางวิทยาศาสตร์สุขภาพ มหาวิทยาลัยนเรศวร จังหวัดพิษณุโลก

การได้รับ pseudoephedrine ในปริมาณสูงอย่างเฉียบพลันสามารถเหนียวนำ ให้เกิดการตายของเซลล์ภายในท่อสร้างอสุจิของหนูขาว Acute high dose administration of pseudoephedrine induced apoptotic activity in the seminiferous tubules of male rats

เพมด ดานักย ``สุทิสา ตานักย ``, ประเสริฐ โศภณ์ Samur Thanoi^{1,2}, Sutisa Nudmamud-Thanoi^{1,2}, Prasert Sobhon '

บทคัดย่อ

Pseudoephedrine เป็นยาในกลุ่มเดียวกับ ephedrine โดยลอกฤทธิ์ต่อระบายไระสาทรีมพาเธสิก (Will, 1997) Pseudoephedrine นั้นเป็นยาที่มีฤทธิ์ decongestant และใช้สำหรับลดความอ้วน โดยกอกฤทธิ์คล้ายกับ amphetamine (Blosser et. al, 1987) ดังนั้นการได้รับ pseudoephedrine ในปริมาณมากอาจสามารถทำให้เกิดอาการติดยาได้คล้าย กับการได้รับ amphetamine - จากการศึกษาที่ผ่านมาพบว่าการได้รับ methamphetamme นั้นเหนี่ยวนำให้เย็ดการตาย ของเซลล์ในท่อสร้างอสุจิของหนู (Yamamoto et al., 2002) ดังนั้นงานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาฤทธิ์ ผลกระทบของการได้รับกา pseudoephedrine ต่อระบบสืบพันธุ์โดกท่าการศึกษาการตากของเขลล์ในท่อสร้างอสุจิ ซึ่งจะ ทำให้เกิดความเข้าใจในกลไกการทำงาน และการใช้ยาอย่างถูกวิธี หนูขาวเพศผู้ (250-280 กรัม) แบ่งเป็น 3 กลุ่มๆ ละ 10 ตัว คือกลุ่มที่ได้รับ pseudoephedrine อย่างเฉียบพลัน กลุ่มที่ได้รับอย่างเรื้อรัง และกลุ่มควบคุม กลุ่มเฉียบพลันได้รับ pscudoephedrine ขนาด 120 มิลลิกรัม/กิโลกรัม 1 ครั้งโดยปัจนเข้าสู่หลบดอาหาๆ กลุ่มเรื่อรังได้รับ pseudoephedrine และกล่มควบคมได้รับน้ำ ขนาด 80 มิลลิกรัม/กิโลกรัม วันละ 1 ครั้ง เป็นเวลา 15 วัน สัตว์ทดลองถกทำให้ตายอย่างสงบ ท่อสร้างอสุจิถูกน้ำมาศึกษาการตายของเขลล์โดยวิธี pseudoephedrine แล้ว TUNEL (TdT-mediated dUTP Nick End Labeling) assay จากการศึกษาพบว่ากลุ่มที่ได้รับ pseudoephedrine อย่างเจียบพลันด้วยปริมาณสูง สามารถเหนี่ยวนำให้เกิดขบวนการตายของเซลล์ในท่อสร้างอสุจิ ในขณะที่กลุ่มที่ได้รับ อย่างเรื้อรังในขนาดความเข้มข้นที่ต่ำกว่าพบการตายของเซลล์ในท่อสร้างอสุจิในจำนวนน้อยกว่า pseudoephedrine กลไกการเกิดการตายของเซลล์เกี่ยวข้องในทุกระยะของการพัฒนาของเซลล์อสุจิภายในท่อ การศึกษาเชิงคุณภาพพบว่า สร้างอสูจิ ผลการศึกษาแสดงให้เห็นถึงการได้รับยา pseudoephedrine ในปริมาณลูงนั้นสามารถทำให้เกิดกระบวนการ ตายของเขลล์ในท่อน้ำอสุจิ ซึ่งการตายของเขลล์นั้น อาจเป็นผลมาจากการหดตัวของหลอดเลือดที่เพิ่มขึ้นอย่างเฉียบพลัน ด้วยฤทธิ์ของยาภายหลังการได้รับ

Abstract

Pseudoephedrine is a diastereoisomer of ephedrine and both are classified as sympatomimetic drugs (Will, 1997). Pseudoephedrine is commonly found in over-the-counter decongestants, anorectic agents and as an amphetamine substitute (Blosser et al., 1987). It has been reported that methamphetamine has the effects in reproductive organs. Yamamoto et al. (2002) reported that methamphetamine induces apoptosis in seminiferous tubules in male mice testis. Therefore, The present study is aimed to investigate the effects of pseudoephedrine, a sympathomimetic drug, on the reproductive system for understanding the mechanisms and increasing the knowledge of using the drug.

Sprague Dawley male rats (250-280 g) were divided into 3 groups as acute, chronic, and control groups by the administration of the pseudoephedrine. After treatment, animals were sacrificed and apoptotic activities within the seminiferous tubules were studied using the TUNEL (TdT-mediated dUTP Nick End Labeling) assay.

The present study showed that acute administration of high dose pseudoephedrine can induce apoptotic activities within seminiferous tubules. In contrast, animals treat d with lower dose of

pseudoephedrine chronically showed a small amount of apoptotic cells inside the seminiferous tubules. Qualitatively, the apoptotic activities were involved in every stage of sperm development inside the seminiferous tubules especially the spermatogoma. These results indicate that acute administration of high dose pseudoephedrine could induce apoptosis within the seminiferous tubules of male rats. Apoptosis that caused by pseudoephedrine may be due to a sudden increased adrenergic vasoconstriction after a single high dose administration.

Keywords: pseudoephedrine, apoptosis, spermatogenesis

[้] ภาควิชาการยับราคคาจตร์, * ศูนย์ปฏิบัติการกลามและส่งเล่รมงานวิจัย, คณะมีทยาธาสกรบารแพทย์, มษาวิทยาลัยณะของร, จักณุโลก 65000

³ภาค์วิชากายวิภาคศาสตร์, คนนะวิทยาศาสตร์, มหาวิทยาลัยมหิดสี, กรุงเทพร์ 10300

⁴ Department of Anatomy, ² Center for Central Facility and Research Development, Faculty of Medical Science, Naresuan University, Phitsanulok 65000

Department of Anatomy, Facutly of Science, Mahidol University, Bangkok 10400

การได้รับ pseudocphedrine เพิ่มปริมาณของ glutamate/N-methyl-D-aspartate receptor ในบริเวณ hippocampus ของสมองหนู Pseudocphedrine administration can increase glutamate/N-methyl-D- aspartate receptor immunoreactivity in rat hippocampus

ชุที่ตา ถานัยกำ, เพษ ถานัยกำ, ประเศริฐ โดยณา Sutisa Nudmamud-Thanoi^{1,2} , Samur Thanoi^{1,2} , Prasert Sobhon³

บทคัดย่อ

Pseudoephedrine เป็นยาในกลุ่มเดียวกับ ephedrine โดยออกฤทธิ์ต่อระบบประสาทขึ้นพาเลติก (Will, Pseudoephedrine นั้นเป็นยาที่มีฤทธิ์ decongestant และใช้สำหรับลดความช้วน โดยลชกฤพธิ์คล้ายกับ 1997) amphetamine (Blosser et. al, 1987) ถึงแม้ว่าการออกฤทธิ์ของ pseudoephedrine นั้นไม่รนแรงเท่า amphetamine และ methamphetamine จากการศึกษาพบว่า pseudoephedrine นั้นออกฤทธิ์ต่อระบบประสาทส่วนกลาะกำนุทาง ระบบโตพามีนเหมือนกับ amphetamine ดังนั้นงานวิจัยนี้มีวัตถุประสงค์ในการศึกษาผลของการได้รับ pseudoephedrine แบบเฉียบพลัน และแบบเรื้อรังต่อการแสดงออกของ glutamate/N-methyl-D-aspartate (NMDA) receptors ใน สมองหนูส่วน hippocampus ซึ่งเป็นบริเวณที่ทำหน้าที่เกี่ยวข้องกับการเรียนรู้ และความจำ หนูขาวเพศผู้ (250-280 กรัม) แบ่งเป็น 3 กลุ่มๆ ละ 10 ตัว คือกลุ่มที่ได้รับ pseudocphedrine อย่างเฉียบพลัน กลุ่มที่ได้รับอย่างเรื้อรัง และกลุ่ม ควบคุม เทคนิค Immunohistochemistry แสดงให้เห็นว่ามี NMDAR1 immunoreactive cells ในสมกงส่วน hippocampus โดยเฉพาะ pyramidal cells ของ cornu ammonis fields และ granule cells ของ dentate gyrus ความหนาแน่นของ NMDAR1 เปรียบเทียบใน 3 กลุ่มทดลอง ถูกวิเคราะห์ด้วยวิธีทางสถิติแบบ analysis of variance พบว่ามีการเพิ่มขึ้นของ NMDA receptors ในกลุ่มเฉียบพลัน (p<0.01) และกลุ่มเรื้อรัง (p<0.005) อย่างมีนัยสำคัญ เมื่อ เปรียบเทียบกับกลุ่มควบคม ผลการศึกษาพบว่าการได้รับ pseudoephedrine ทำให้มีการเพิ่มขึ้นของ NMDA receptors ในสมองส่วน hippocampus ซึ่งอาจเป็นผลมาจากการปรับตัวเพิ่มขึ้นของตัวรับที่ตอบสนองต่อการเลื่อม หรือ สูญเสียของเขลล์ประสาทกลูตาเมท

Abstract

Pseudoephedrine is a diastereoisomer of ephedrine and both are classified as sympatomimetic drugs (Will, 1997). Pseudoephedrine is commonly found in over-the-counter decongestants, anorectic agents and as an amphetamine substitute (Blosser et al., 1987). Although pseudoephedrine is not as potent as amphetamine, it has been reported that its actions on the central nervous system via dopamine release resemble to amphetamine (Kumarnsit et al., 1999).

Therefore, this study aimed to investigate the effects of acute and chronic pseudoephedrine administration on the alteration of glutamate/NMDA receptor density in rat hippocampus.

Sprague Dawley male rats (250-280 g) were divided into 3 groups as acute, chronic, and control groups by the admistration of pseudoephedrine. Immunohistochemistry demonstrated NMDAR1 immunoreactive cells in all principal neuronal populations of the hippocampus. Immunoreactivity was accordingly limited to neurons, was strong in pyramidal cells of cornu ammonis fields 1-3 (CA1-3), and was especially strong in granule cells of dentate gyrus. NMDAR1 immunodensity in three experimental groups were compared by analysis of variance (ANOVA) with Dunnett post hoc tests. NMDAR1 immunodensity was significantly increased above control in dentate gyrus in acute (p<0.01) and chronic (p<0.005) groups. These results indicate that pseudoephedrine could induce an

increase of NMDA receptors in hippocampus. This might be a compensatory effect of NMDA receptor in response to the degeneration or loss of glutamatergic neurons.

Kerwards: glutamate/NMIXA receptors, schizophrenia, superior temporal cortex

วิทาททางอะรู้, คณะวิทยาศาสตร์, เกยาวิทยาลัยมหืดล, กรุงเทพฯ *0400

[่] ภาควิชากายวัก เคลาสังร์. ' คุณก็ปฏิวัติการกละงและส่งเสริมงานวิสัย, คณะอิทยาศาสตร์การแพทธ์, มหาวิทยาลัยนิเรษาร ' ภาควิชากาย

¹ Department of Anatomy, ² Center for Central Facility and Research Development, Faculty of Medical Science, Natesian University, Philisanulok 65000

Department of Anatomy, Eaconly of Science, Mahidol University, Bangkok 10400

การได้รับ pseudoephedrine เพิ่มปริมาณของ glutamate/N-methyl-D-aspartate receptor ใน บริเวณ hippocampus ของสมองหนู

Pseudoephedrine administration can increase glutamate/N-methyl-D-aspartate receptor immunoreactivity in rat hippocampus

โดย

<u>สุทิสา ถาน้อย''</u>² , เสมอ ถาน้อย'², ประเสริฐ โคภณ³ <u>Sutisa Nudmamud-Thanoi</u>^{1,2} , Samur Thanoi^{1,2}, Prasert Sobhon³

บทคัดย่อ

Pseudocphedrine เป็นยาในกลุ่มเคียวกับ ephedrine โดยออกฤทธิ์ต่อระบบประสาทซิมพาเธติก (Will, 1997) Pseudoephedrine นั้นเป็นยาที่มีฤทธิ์ decongestant และใช้สำหรับลดความอ้วน โดย ออกฤทธิ์คล้ายกับ amphetamine (Blosser et. al, 1987) ถึงแม้ว่าการออกฤทธิ์ของ pseudoephedrine นั้นไม่รุนแรงเท่า amphetamine และ methamphetamine จากการศึกษาพบว่า pseudoephedrine นั้น ออกฤทธิ์ต่อระบบประสาทส่วนกลางผ่านทางระบบโคพามีนเหมือนกับ งานวิจัยนี้มีวัตถุประสงค์ในการศึกษาผลของการได้รับ pseudoephedrine แบบเฉียบพลัน และแบบ เรื้อรังค่อการแสดงออกของ glutamate/N-methyl-D-aspartate (NMDA) receptors ในสมองหนูส่วน hippocampus ซึ่งเป็นบริเวณที่ทำหน้าที่เกี่ยวข้องกับการเรียนรู้ และความจำ หนูขาวเพศผู้ (250-280 กรัม) แบ่งเป็น 3 กลุ่มๆ ละ 10 ตัว คือกลุ่มที่ได้รับ pseudoephedrine อย่าง เฉียบพลัน กลุ่มที่ได้รับอย่างเรื้อรัง และกลุ่มควบคุม เทคนิค Immunohistochemistry แสคงให้เห็น ว่ามี NMDAR1 immunoreactive cells ในสมองส่วน hippocampus โดยเฉพาะ pyramidal cells ของ cornu ammonis fields และ granule cells ของ dentate gyrus กวามหนาแน่นของ NMDAR1 เปรียบเทียบใน 3 กลุ่มทดลอง ถูกวิเคราะห์ด้วยวิธีทางสถิติแบบ analysis of variance พบว่ามีการ เพิ่มขึ้นของ NMDA receptors ในกลุ่มเฉียบพลัน (p<0.01) และกลุ่มเรื้อรัง (p<0.005) อย่างมี นัยสำคัญ เมื่อเปรียบเทียบกับกลุ่มควบคุม ผลการศึกษาพบว่าการได้รับ pseudoephedrine ทำให้มี การเพิ่มขึ้นของ NMDA receptors ในสมองส่วน hippocampus ซึ่งอาจเป็นผลมาจากการปรับตัว เพิ่มขึ้นของตัวรับที่ตอบสนองต่อการเสื่อม หรือสูญเสียของเซลล์ประสาทกลูตาเมท

Abstract

Pseudoephedrine is a diastereoisomer of ephedrine and both are classified as sympatomimetic drugs (Will, 1997). Pseudoephedrine is commonly found in over-the-counter decongestants, anorectic agents and as an amphetamine substitute (Blosser et al., 1987). Although

pseudoephedrine is not as potent as amphetamine, it has been reported that its actions on the central nervous system via dopamine release resemble to amphetamine (Kumarnsit et al., 1999). Therefore, this study aimed to investigate the effects of acute and chronic pseudoephedrine administration on the alteration of glutamate/NMDA receptor density in rat hippocampus.

Sprague Dawley male rats (250-280 g) were divided into 3 groups as acute, chronic, and control groups by the admistration of pseudoephedrine. Immunohistochemistry demonstrated NMDAR1 immunoreactive cells in all principal neuronal populations of the hippocampus. Immunoreactivity was accordingly limited to neurons, was strong in pyramidal cells of cornu ammonis fields 1-3 (CA1-3), and was especially strong in granule cells of dentate gyrus. NMDAR1 immunodensity in three experimental groups were compared by analysis of variance (ANOVA) with Dunnett post hoc tests. NMDAR1 immunodensity was significantly increased above control in dentate gyrus in acute (p<0.01) and chronic (p<0.005) groups. These results indicate that pseudoephedrine could induce an increase of NMDA receptors in hippocampus. This might be a compensatory effect of NMDA receptor in response to the degeneration or loss of glutamatergic neurons.

Keywords: glutamate/NMDA receptors, schizophrenia, superior temporal cortex

Introduction

Pseudoephedrine is a diastereoisomer of ephedrine and both are classified as sympatomimetic drugs (Will, 1997). Pseudoephedrine is commonly found in over-the-counter decongestants, anorectic agents and as an amphetamine substitute (Blosser et al., 1987). Although pseudoephedrine is not as potent as amphetamine, it has been reported that its actions on the central nervous system via dopamine release resemble to amphetamine (Kumarnsit et al., 1999). Changes of dopamine function can induce malfunction of glutamatergic system because there are well-documented interactions between glutamate/N-methyl-D-aspartate (NMDA) receptors and dopaminergic system. Although glutamate abnormalities have not to date been elucidated after exposure to sympatomimetic agents, a study found that ephedrine plays a critical role of glutamate release in subcortical region indicated dysfunction of CNS glutamatergic pathways (Bowyer et al., 2000). It is very interesting to study mechanisms of glutamatergic system after pseudoephedrine, an over-the-counter product, exposure as the glutamate/NMDA receptors seem

to be critically involved in synaptic formation and plasticity of the CNS (Udin and Scherer, 1990) as well as in aspects of long-term potentiation (Davies et al., 1989).

Therefore, this study aimed to investigate the effects of acute and chronic pseudoephedrine administration on the alteration of glutamate/NMDA receptor density in rat hippocampus.

Materials and Methods

Sprague Dawley male rats (250-280 g) were divided into 3 groups as acute, chronic, and control groups with 10 animals each. To examine an acute effect of pseudoephedrine, animals were administered intragastically at the dose of 120 mg/kg. The chronic effect was examined by treated pseudoephedrine intragastically at the dose of 80 mg/kg, once daily for 15 days. The animals in control group were administered intragastically with vehicle. We employed immunohistochemistry to determine the alteration of glutamate/N-methyl-D-aspartate receptors subunit1 (NMDAR1) immunoreactivity in rat hippocampus following acute and chronic pseudoephedrine administration. The immunoreactivity was detected by NMDA receptor subunit1 (NMDAR1) polyclonal antibody and staining density quantified by the Scion Image Software based on NIH image. Statistical analysis was performed using analysis of variance and post-hoc Dunnett's t-test.

Results

Immunohistochemistry demonstrated NMDAR1 immunoreactive cells in all principal neuronal populations of the hippocampus, namely pyramidal neurons in cornu ammonis fields 1-3 (CA1-3), granule cells in the dense cell layer of the dentate gyrus (DG). Immunoreactivity was accordingly limited to neurons, especially strong in pyramidal cells of CA1-3 as well as in granule cells of DG. Neurons in other hippocampal subareas (e.g. molecular layer) and surrounding areas (white matter) were less immunoreactive. Therefore, the data was analysed by selected the areas of interest in pyramidal cell layer in CA1-3 and granule cell layer in dentate gyrus. Within each region, NMDAR1 immunodensity in the three experimental groups were compared by ANOVA. NMDAR1 immunodensity was significantly increased above control in dentate gyrus in acute (p<0.01) and chronic (p<0.005) pseudoephedrine administration.

Figure 1. NMDAR1 immunoreactivity in rat hippocampus

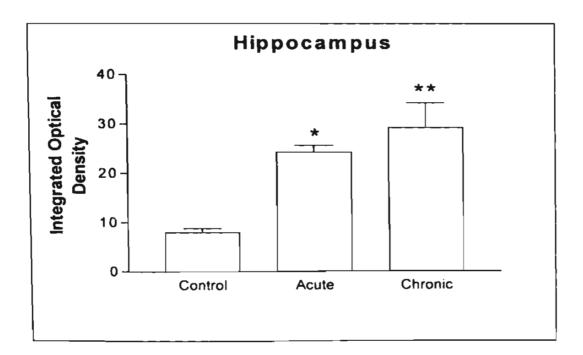


Figure 2. NMDAR1 immunodensity in granule layer of dentate gyrus in rat hippocampus after acute and chronic administration.

Data are integrated optical density. Values are mean ± S.E.M.

** p<0.005 * p<0.01 vs control by Dunnett Post Hoc Tests

Discussions

The main finding of the present study is an increase of NMDAR1 immunoreactivity in rat hippocampus following acute and chronic pseudoephedrine administration. The result showed an up-regulation of NMDAR1 density in granule layer of dentate gyrus. As pseudoephedrine has been considered to be a psychostimulant and has the potential to be abused (Glennon and Young, 2000), our findings provide a support of psychostimulant effect on glutamatergic system. Abnormalities of glutamatergic system may derive from the change of dopamine function as the action of pseudoephedrine has been suggested to mediate via dopaminergic mechanism. The present results are in agreement with the previous reports which found increase in cortical NMDA receptor binding after treatment with psychostimulant agents either methamphetamine (Eisch et al., 1996) or cocaine (Itzhak, 1994), suggesting the mechanisms of NMDA receptor implicated in the development of sensitization of the drugs. Supporting a hypothesis of glutamatergic dysfunction in subcortical regions following the administration of psychostimulants including pseudoephedrine, an increase of metabotropic glutamate receptor (mGluR5) immunoreactivity and mRNA levels have been reported in the cortical and hippocampal neurons after amphetamine treatment (Yu et al., 2001). A possible interpretation of the present observation is that the NMDA receptor elevation may be a response to a neurodegenerative process involving either glutamatergic neuronal loss or a reduction of glutamate release.

Acknowledgements

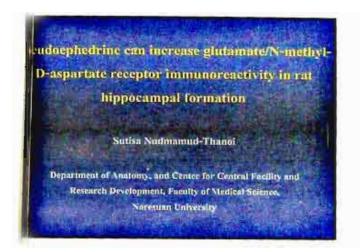
This research was supported by the Thailand Research Fund (TRF) and Commission of Higher Education (CHE). The authors also gratefully acknowledge the Faculty of Medical Science, Naresuan University for facility support and the Health Sciences Research Institute for pseudoephredrine drug.

References

- Blosser, J.C., Barrantes, M. and Parker, R.B.(1987) Correlation between anorectic potency and affinity for hypothalamic (+)-amphetamine binding sites of phenylethylamines. Eur. J. Pharmacol. 134,97-103.
- Bowyer, J.F., Newport, G.D., Slikker, W. Jr., Gough, B., Ferguson, S.A. and Tor-Agbidye, J. (2000) An evaluation of l-ephedrine neurotoxicity with respect to hyperthermia and caudate/putamen microdialysate levels of ephedrine, dopamine, serotonin, and glutamate. Toxicol. Sci. 55, 133-142.

Davies, S.N., Lester, R.A., Reymann, K.G. and Collingridge, G.L. (1989) Temporally distinct

- pre- and post-synaptic mechanisms maintain long-term potentiation. Nature 338, 500-503.
- Glennon, R.A. and Young, R. (2000) (+) Amphetamine-stimulus generalization to an herbal ephedrine product. Pharmacol. Biochem. Behav. 65, 655-658.
- Itzhak, Y. (1994) Modulation of the PCP/NMDA receptor complex and sigma binding sites by psychostimulants. Neurotoxicol. Teratol. 16, 363-368.
- Kumarnsit, E., Harnyuttanakorn, P., Meksuriyen, D., Govitrapong, P., Baldwin, B.A.,
 Kotchabhakdi, N. and Casalotti, S.O. (1999) Pseudoephedrine, a sympathomimetic agent,
 induces Fos-like immunoreactivity in rat nucleus accumbens and striatum.
 Neuropharmacology 38,1381-1387.
- Udin, S.B., Scherer, W.J. (1990) Restoration of the plasticity of binocular maps by NMDA after the critical period in Xenopus. Science 249, 669-672.
- Will, S. (1997) Drugs of abuse, Pharmaceutical Press, London, pp.131-34
- Yu, M.F., Lin, T.Y., Ho, W.H., and Yin, H.S. (2001) Amphetamine induces differential changes in the gene expression of metabotropic glutamate receptor 5 in cultured cortical and hippocampal neurons. J. Mol. Neurosci. 17, 13-24.


งานวิจัยนี้ได้รับการสนับสนุนจากสำนักงานกองทุนสนับสนุนการวิจัย (สกว.) และสำนักงาน คณะกรรมการการอุดมศึกษา (สกอ.) ให้กับ คร. สุทิสา ถาน้อย

^{ี่} ภาควิชากายวิภาคศาสตร์, ² ศูนย์ปฏิบัติการกลางและส่งเสริมงานวิจัย, คณะวิทยาศาสตร์การแพทย์, มหาวิทยาลัยนเรศวร, พิษณุโลก 65000

[่] ภาควิชากายวิภาคศาสตร์, คณะวิทยาศาสตร์, มหาวิทยาลัยมหิดล. กรุงเทพฯ 10400

¹ Department of Anatomy, ² Center for Central Facility and Research Development, Facutly of Medical Science, Naresuan University, Phitsanulok 65000

³ Department of Anatomy, Facutly of Science, Mahidol University, Bangkok 10400

PSEUDOEPHEDRINE

- · a sympathomimetic agent
- commonly found in over-the-counter decongestants,
 anorectic agents and as an amphetamine substitute

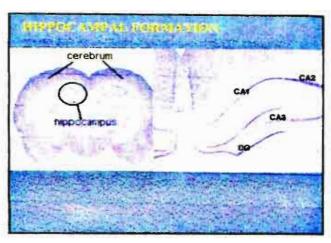
(Blosser et al., 1987)

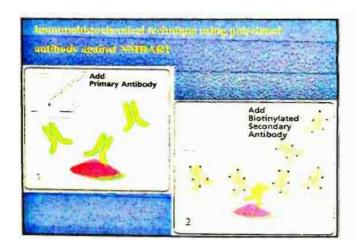
 produce psychoactive effects (e.g. pleasant perceptual changes, cuphoria and mental stimulation (Will, 1997).

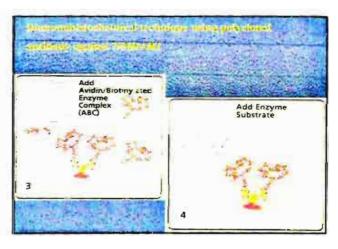
Previous reports

- Psuedoephedrine was shown both partial and full substitution for amphetamine (Tongjaroenbuangam et al., 1998)
- The action of pseudoephedrine was found to mediate via dopaminergic mechanism (Zarrindast, 1981; Kumarnsit et al., 1999)
- Changes of dopamine function can induce malfunction of glutamatergic system (e.g Verma and Moghaddam, 1996)

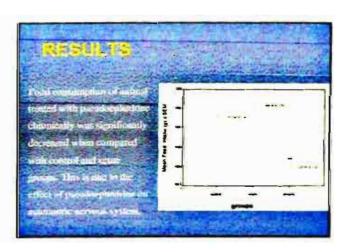
Glutamate/NMBA receptors

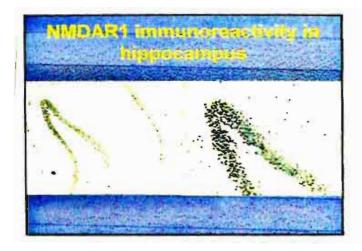

- NMDA receptors are composed of four or five submits (NMDAR) and NMDAR2A-2D)
- NMDA receptors are important in aspects of long-term potentiation, which may in turn underlie some forms of learning.
- NR1 is an obligate subunit and present in many neurones throughout a large number of regions in the CNS (Nakanishi, 1992)

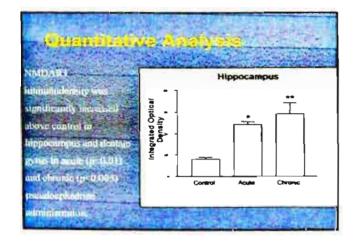



OBJECTIVES

 To determine the effects of acute and chronic pseudoephedrine administration on the alteration of glutamate/NMDA receptor density in rat hippocampal formation






Data amalysis NMDAR1 immunoreactivity was quantified by optical density (ND) in rat hippobampos and dentate gyrus OD was analysed with Scion Image Software based on NIH image to obtain the integrated optical density (IOD) Statistical analysis was performed using ANOVA with Dunnett post hac test

Enclidentive Enchasts

- Inmurohistochemistry demonstrated NMDAR1 immunoreactive cells in pyramidal neurones in come ammonis fields (CA1-3), granule cells in the dense layer of the dentate gyrus.

convertisted

The mean finding is thereased NMDAR1 incommoderably in rat hipporamens following acute and chronic pseudosphedrine administration

The result showed an up-regulation of MMD/RT density in granule layer of the dentate pyras.

CONCLUSION

As pseudoophedrine has been considered to be a psychostimulant and has the potential to be addeed (Tongjeroenbruangem et al., 1998, Anderson et al., 2001; Glennon and Young, 2000), c., havings provide support of psychostimulant effect on glutamateres system.

The present results are in agreement with the previous reports which found increase in contical NMDA receptor binding after treatment with psychosthrulant agents either methamphictamine (Elisch et al., 1996) or cocaine (Itzhak 1994).

ARTERIOR HOUSE

To summarise, the present observations provide evidence to support the abnormalities of glutamatergic system following the administration of psychostimulants including pseudoephedrine

A possible interpretation of the present gbservation is that the NMDA receptor elevation may be a response to a neurodegenerative process involving either glutamatergic neuronal loss or a reduction of glutamate release

ACK NOWS TOKE SERVED

- This was was supported by the Thatball Research Fund
- (TRP) and Commission of Higher Education (CRB)
- · Paculty of Medical Science. Narcomm University
- Health Science Receased Institute, Narcation University
- Prof. Dr Present Subhou, Paculty of Science, Maketol.
 University.
- Prof. Dr. Govin 2 Reynolds, Queen, e Lieuwaldy, Isoland UK

การได้รับ pseudoephedrine ในปริมาณสูงอย่างเฉียบพลันสามารถเหนี่ยวนำให้เกิดการตายของ เซลล์ภายในท่อสร้างอสุจิของหนูขาว

Acute high dose administration of pseudoephedrine induced apoptotic activity inside the seminiferous tubules of male rats

โดย

<u>เสมอ ถาน้อย'.²</u>,สุทิสา ถาน้อย'.² , ประเสริฐ โคภณ³ <u>Samur Thanoi'.²</u>, Sutisa Nudmamud-Thanoi'.² , Prasert Sobhon³

บทคัดย่อ

Pscudoephedrine เป็นยาในกลุ่มเคียวกับ ephedrine โดยออกฤทธิ์ต่อระบบประสาทซิมพาเธติก (Will, 1997) Pscudoephedrine นั้นเป็นยาที่มีฤทธิ์ decongestant และใช้สำหรับลดความอ้วน โดย ออกฤทธิ์กล้ายกับ amphetamine (Blosser et. al, 1987) ดังนั้นการได้รับ pseudoephedrine ใน ปริมาณมากอาจสามารถทำให้เกิดอาการติดยาได้กล้ายกับการได้รับ amphetamine จากการศึกษาที่ ผ่านมาพบว่าการได้รับ methamphetamine นั้นเหนี่ยวนำให้เกิดการตายของเซลล์ในท่อสร้างอสุจิ ของหนู (Yamamoto et al., 2002) ดังนั้นงานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาฤทธิ์ และผลกระทบ ของการได้รับยา pscudoephedrine ต่อระบบสืบพันธุ์โดยทำการศึกษาการตายของเซลล์ในท่อสร้าง อสุจิ ซึ่งจะทำให้เกิดความเข้าใจในกลไกการทำงาน และการใช้ยาอย่างถกวิธี

หนูขาวเพศผู้ (250-280 กรัม) แบ่งเป็น 3 กลุ่มๆ ละ 10 ตัว คือกลุ่มที่ได้รับ pseudoephedrine อย่าง เฉียบพลัน กลุ่มที่ได้รับอย่างเรื้อรัง และกลุ่มควบคุม กลุ่มเฉียบพลันได้รับ pseudoephedrine ขนาด 120 มิลลิกรัม/กิโลกรัม 1 ครั้งโดยป้อนเข้าสู่หลอดอาหาร กลุ่มเรื้อรังได้รับ pseudoephedrine ขนาด 80 มิลลิกรัม/กิโลกรัม วันละ 1 ครั้ง เป็นเวลา 15 วัน และกลุ่มควบคุมได้รับน้ำ ภายหลังการได้รับ pseudoephedrine แล้ว สัตว์ทดลองถูกทำให้ตาขอย่างสงบ ท่อสร้างอสุจิถูกนำมาศึกษาการตาขของ เซลล์โดยวิธี TUNEL (TdT-mediated dUTP Nick End Labeling) assay

จากการศึกษาพบว่ากลุ่มที่ได้รับ pseudoephedrine อย่างเฉียบพลันด้วยปริมาณสูง สามารถเหนี่ยวนำ ให้เกิดขบวนการตายของเซลล์ในท่อสร้างอสุจิ ในขณะที่กลุ่มที่ได้รับ pseudoephedrine อย่างเรื้อรัง ในขนาดความเข้มข้นที่ต่ำกว่าพบการตายของเซลล์ในท่อสร้างอสุจิในจำนวนน้อยกว่า การศึกษา เชิงคุณภาพพบว่า กลไกการเกิดการตายของเซลล์เกี่ยวข้องในทุกระยะของการพัฒนาของเซลล์อสุจิ ภายในท่อสร้างอสุจิ ผลการศึกษาแสดงให้เห็นถึงการได้รับยา pseudoephedrine ในปริมาณสูงนั้น สามารถทำให้เกิดกระบวนการตายของเซลล์ในท่อนำอสุจิ ซึ่งการตายของเซลล์นั้น อาจเป็นผลมา จากการหดตัวของหลอดเลือดที่เพิ่มขึ้นอย่างเฉียบพลันด้วยฤทธิ์ของยาภายหลังการได้รับ

Keywords: pseudoephedrine, apoptosis, spermatogenesis

Abstract

Pseudoephedrine is a diastereoisomer of ephedrine and both are classified as sympatomimetic drugs (Will, 1997). Pseudoephedrine is commonly found in over-the-counter decongestants, anorectic agents and as an amphetamine substitute (Blosser et al., 1987). It has been reported that methamphetamine has the effects in reproductive organs. Yamamoto et al. (2002) reported that methamphetamine induces apoptosis in seminiferous tubules in male mice testis. Therefore, The present study is aimed to investigate the effects of pseudoephedrine, a sympathomimetic drug, on the reproductive system for understanding the mechanisms and increasing the knowledge of using the drug.

Sprague Dawley male rats (250-280 g) were divided into 3 groups as acute, chronic, and control groups by the administration of the pseudoephedrine. After treatment, animals were sacrificed and apoptotic activities within the seminiferous tubules were studied using the TUNEL (TdT-mediated dUTP Nick End Labeling) assay.

The present study showed that acute administration of high dose pseudoephedrine can induce apoptotic activities within seminiferous tubules. In contrast, animals treated with lower dose of pseudoephedrine chronically showed a small amount of apoptotic cells inside the seminiferous tubules. Qualitatively, the apoptotic activities were involved in every stage of sperm development inside the seminiferous tubules especially the spermatogonia. These results indicate that acute administration of high dose pseudoephedrine could induce apoptosis within the seminiferous tubules of male rats. Apoptosis that caused by pseudoephedrine may be due to a sudden increased adrenergic vasoconstriction after a single high dose administration.

Keywords: pseudoephedrine, apoptosis, spermatogenesis

Introduction

Pseudoephedrine is a diastereoisomer of ephedrine and both are classified as sympatomimetic drugs (Will, 1997). Pseudoephedrine is commonly found in over-the-counter decongestants, anorectic agents and as an amphetamine substitute (Blosser et al., 1987). It has been reported that methamphetamine has the effects in reproductive organs. Yamamoto et al. (2002) reported that methamphetamine induces apoptosis in seminiferous tubules in male mice testis. Apoptotic cells were detected in the seminiferous tubules of male mice 24 hours after a single treatment with 5, 10, and 15 mg/kg methamphetamine. Moreover, it has been reported that gonadal steroid hormones play an important role in modulating methamphetamine neurotoxicity (Dluzen et al.,

2002). Treatment of gonadectomized females with a physiological regimen of estrogen significantly diminished the amount of striatal dopamine (DA) depletion to methamphetamine (METH) compared with non-estrogen treated mice suggesting that estrogen serves as a neuroprotectant (Dluzen and McDermott 2002). In contrast, testosterone tends to increase METH-evoked dopamine responses (Dluzen and McDermott 2002). Therefore, there may be an interaction between changes of neural mechanism and reproductive system after taken drug abuse. Therefore, The present study is aimed to investigate the effects of pseudoephedrine, a sympathomimetic drug, on the reproductive system for understanding the mechanisms and increasing the knowledge of using the drug.

Materials and Methods

Sprague Dawley male rats (250-280 g) were divided into 3 groups as acute, chronic, and control groups with 10 animals each. To examine an acute effect of pseudoephedrine, animals were administered intragastically at the dose of 120 mg/kg. The chronic effect was examined by treated pseudoephedrine intragastically at the dose of 80 mg/kg, once daily for 15 days. The animals in control group were administered intragastically with vehicle. After treatment, animals were sacrificed and apoptotic activities within the seminiferous tubules were studied using the TUNEL (TdT-mediated dUTP Nick End Labeling) assay.

Results

The present study showed that acute administration of high dose pseudoephedrine can induce apoptotic activities within seminiferous tubules (Fig 1a, b). In contrast, animals treated with lower dose of pseudoephedrine chronically showed a small amount of apoptotic cells inside the seminiferous tubules (Fig 2). Qualitatively, the appearance of TUNEL-positive-cells in seminiferous tubules in animals treated with high dose pseudoephedrine were detected in almost every stage of sperm development especially in the spermatogonia lining along the basement membrane of the tubules (Fig. 1a)

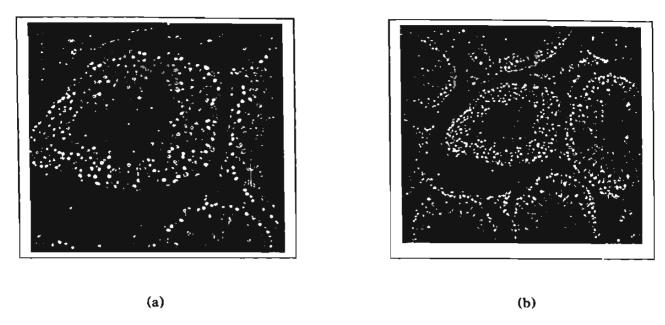


Figure 1. Apoptotic cells in seminiferous tubule of rats treated with high dose pseudoephedrine. TUNEL-positive staining indicative of DNA fragmentation was detected as yellow-green fluorescent on the nuclei (a,b) and normal cells were detected as red fluorescent signals (b)

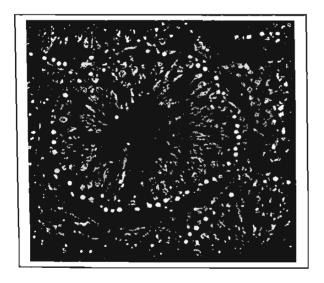


Figure 2. Apoptotic cells in seminiferous tubule of rats treated with lower dose pseudocphedrine chronically indicated by yellow-green fluorescent signals

Discussions

The main finding of the present study indicate that acute administration of high dose pseudoephedrine could induce apoptosis within the seminiferous tubules of male rats. It has been suggested that the percentage of apoptotic activity in semoniferous tubules caused by methamphetamine was dose dependent (Yamamoto et al., 2002). Apoptosis that caused by

pseudoephedrine may be due to a sudden increased adrenergic vasoconstriction after a single high dose administration (Traino et al., 2004). In addition, pseudoephredrine may have an effect in reducing the serum testosterone concentration as well as the effect of methamphetamine (Yamamoto et al., 2002). The changes of testosterone concentration may play some role in triggering the apoptosis in the spermatogenic cells.

Acknowledgements

This research was supported by the Thailand Research Fund (TRF) and Commission of Higher Education (CHE). The authors also gratefully acknowledge the Faculty of Medical Science. Naresuan University for facility support and the Health Sciences Research Institute for pseudoephredrine drug.

References

- Blosser, J.C., Barrantes, M. and Parker, R.B.(1987) Correlation between anorectic potency and affinity for hypothalamic (+)- amphetamine binding sites of phenylethylamines. Eur. J. Pharmacol. 134, 97-103.
- Dluzen, D.E., Anderson, L.I. and Pilati, C.F. (2002) Methamphetamine-gonadal steroid hormonal interactions: effects upon acute and striatal dopamine concentrations. Neurotoxicol. Teratol. 24, 267-73.
- Dluzen, D.E. and McDermott, J.L. (2002) Estrogen, anti-estrogen, and gender: differences in methamphetamine neurotoxicity. Ann.N Y Acad. Sci. 965, 135-56.
- Traino, A.A., Buckley, N.A. and Bassett M.L. (2004) Probable ischemic colitis caused by pseudoephedrine with tramadol as a possible contributing factor. Ann Pharmacother. 38, 2068-70.
- Will, S. (1997) Drugs of abuse, Pharmaceutical Press, London, pp.131-34
- Yamamoto, Y., Yamamoto, K., Hayase, T., Abiru, H., Shioto, K. and Mori, C. (2002)
 Methamphetamine induces apoptosis in seminiferous tubules in male mice testis.
 Toxicol.Appl.Pharmacol. 178, 155-160.

ิภาควิชากายวิภาคศาสตร์, ` ศูนย์ปฏิบัติการกลางและ ส่งเสริมงานวิจัย, คณะวิทยาศาสตร์การแพทย์, มหาวิทยาลัยนเรศวร, พิมณุโลก-65000

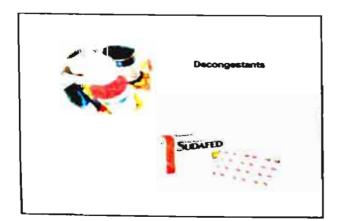
ิ์ภาควิชากายวิภาคศาสตร์, คณะวิทยาศาสตร์, มหาวิทยาลัยมหิดล, กรุงเทพฯ 10400

¹ Department of Anatomy, ² Center for Central Facility and Research Development, Faculty of Medical Science, Naresuan University, Phitsanulok 65000

งานวิจัยนี้ได้รับการสนับสนุนจากสำนักงานกองทุนสนับสนุนการวิจัย (สกว.) และสำนักงาน คณะกรรมการการอุดมศึกษา (สกอ.) ให้กับ สุทิสา ถาน้อย

Department of Anatomy, Facutly of Science, Mahidol University, Bangkok 10400

Acute high dose administration of pseudoephedrine induced apoptotic activity inside the seminiferous tubules of male rats


What is Pseudoephedrine?

Pseudoephedrine is a diastereolsomer of ephedrine and both are classified as sympatomimetic drugs (Will, 1997).

Pseudoephedrine is commonly found in over-thecounter decongestants, anorectic agents and as an amphetamine substitute (Blosser et al., 1987).

Anorectic drugs

Yamamoto et al. (2902) reported that methamphetamine induces apoptosis in seminiferous tubules in male mice testis.

Apoptotic cells were detected in the seminiferous tubules of male mice 24 hours after a single treatment with 5, 10, and 15 mg/kg methamphetamine.

Therefore, The present study is aimed to investigate the effects of pseudoephedrine on the reproductive system for understanding the mechanisms and increasing the knowledge of using the drug.

Materials and Methods

Animals

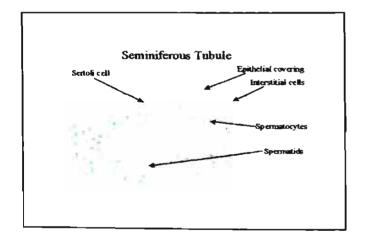
3 Groups of Animals

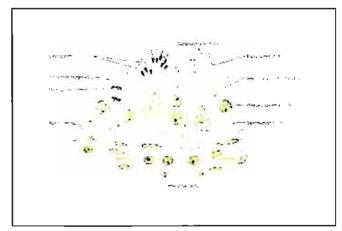
- 1. Control N = 10
- 2 Acute N = 10
- 3. Chronic N = 10

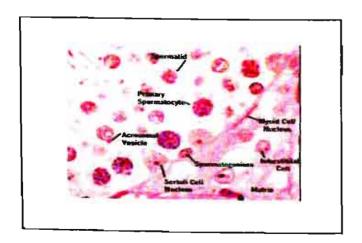
Sprague Dawley male rats (250-280 g)

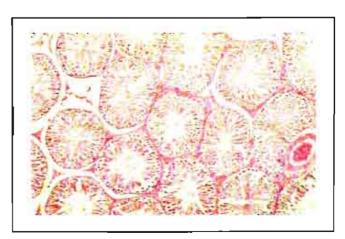
3 Groups of animals

1. Control = Water intragastically

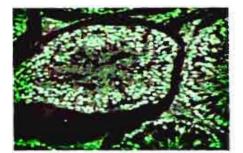

2. Acute = 120 mg/kg pseudoephedrine once

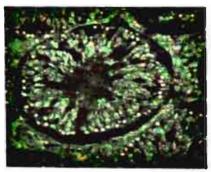

intragastically

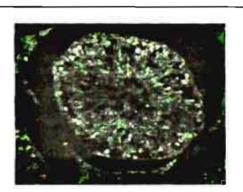

3. Chronic = 80 mg/kg pseudoephedrine


intragastically once daily for 15 days

TUNEL (TdT-mediated dUTP Nick End Labeling) assay was used to examined apoptotic activities in the seminiferous tubules of rat testis




Results


Acute group

Acute group

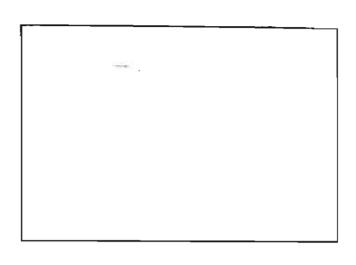
Chronic group

Control group

Discussions

The main finding of the present study indicate that soute administration of high dose pseudosphedrine could induce epoptosis within the seminiferous tubules of male rate.

It has been suggested that the percentage of epoptotic activity in elementarius tubules caused by methamphatamine was dose depundent (Yamamoto et al., 2002).


Apoptosis that caused by pseudosphedrine may be due to a sudden increased advenorable vesoconstriction after a single high dose administration (Traino et al., 2004).

In addition, pseudosphredrine may have an effect in reducing the serum testestarene concentration as well as the effect of methampheternine (Yamamate et al., 2002). The changes of testestarone concentration may play some rate in triggering the secretaris in the searmateasoric cells.

Purther study on sporm quality examinations need to be done

Acknowledgements

This research was supported by the Thailand Research Fund (TRF) and Commission of Higher Education (CHE). The authors also gratefully acknowledge the Faculty of Medical Science, Naresuan University for facility support and the Heelth Sciences Research Institute for pseudoephredrine drug.

