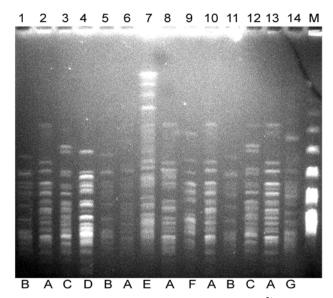
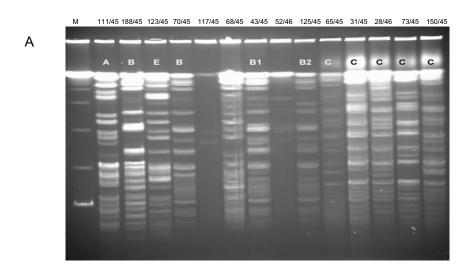
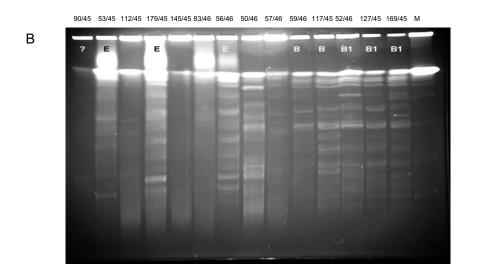
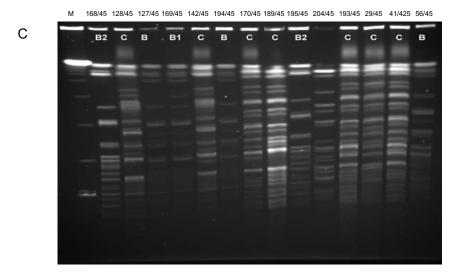

3.2 การทำ typing โดยใช้เทคนิค Randomly amplified polymorphic DNA (RAPD) PCR

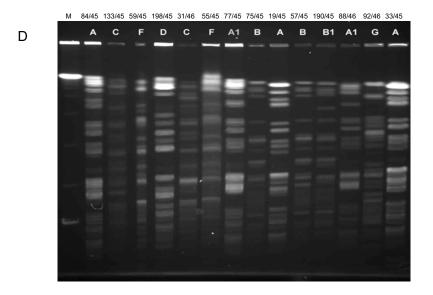
การใช้ primer R004 เพียงเส้นเดียวให้ผลการทดลองที่มีจำนวน band มากที่สุด เป็นการใช้ เทคนิคทางอณูชีวโมเลกุลอีกวิธีหนึ่งที่ได้ถูกนำมาทดสอบเนื่องจากสามารถทำการทดสอบกับเชื้อจำนวน มากได้ในเวลาอันสั้นและมีค่าใช้จ่ายค่อนข้างประหยัดกว่าวิธี Ribotyping รูปที่ 8 แสดงผลการทำ RAPD

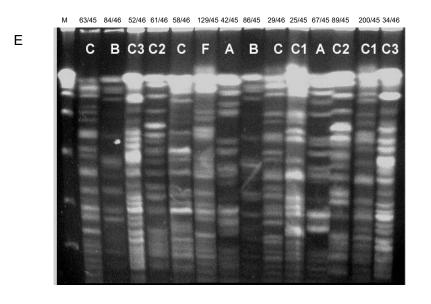

รูปที่ 8. แสดงผลการตรวจ RAPD ของเชื้อ *A. baumannii* จำนวน 101 สายพันธุ์ แบ่งกลุ่มเชื้อได้เป็น 14 แบบ

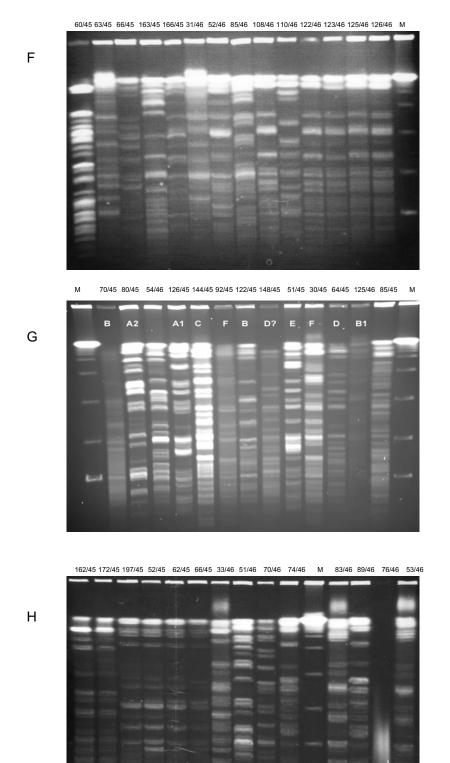

รูปที่ 9. (A) Dendogram แสดงความสัมพันธ์ทางสายพันธุ์ของเชื้อ A. baumannii (101 สายพันธุ์) โดย ใช้ผลการทดสอบ RAPD-PCR (B) มาใช้ในการคำนวณ cluster analysis โดยใช้ parameter ดังนี้: match type, match all tracks to all tracks; match basis, MW; % tolerance, 1.00; similarity measure, Dice; linkage method, UPGMC. ผลการคำนวณแสดงให้เห็นได้ว่า อาจแบ่งเชื้อ A. baumannii ดื้อยา carbapenem ได้เป็น 4 กลุ่มหลัก


3.3 การทำ Pulsed-field gel electrophoresis (PFGE) เพื่อทำการ typing

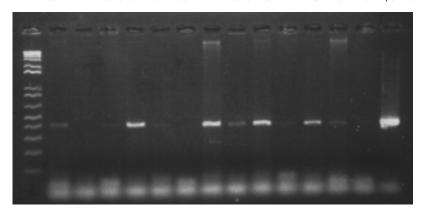

ได้มีการทดสอบการใช้เทคนิค PFGE มาทำการ typing เบื้องต้นพบว่าเป็นวิธีการที่มี discriminating power ดีมาก แต่ในระยะที่ทดสอบช่วงแรก ยังไม่มี standard technique จึงได้ทดลองใช้ restriction enzyme ชนิดต่างๆเช่น Spel และ Smal เป็นต้น รูปที่ 10 เป็นผลการทดสอบโดยใช้ Smal enzyme ในการตัด chromosomal DNA ของเชื้อที่แยกได้จากรพ.ศิริราช



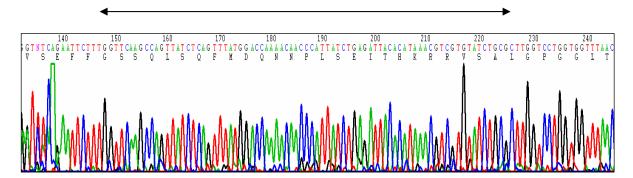

รูปที่ 10. แสดงการทำ PFGE โดยใช้ *Sma*l-digested DNA ของเชื้อ *A. baumannii* Type A – G เป็น preliminary pulsotypes ของเชื้อจำนวน 14 สายพันธุ์ที่ได้รับการทดสอบ



รูปที่ 11. แสดงผลการทำ pulsed field gel electrophoresis ในเชื้อ *A. baumannii* จำนวน 98 สายพันธุ์ โดยการใช*้ Apa*l enzyme


Isolate no.	Date collected	Ribotype	RAPD	Pulsotype
123/45	24/8/2002	1	6	E
29/45	30/3/2002	1	13	С
42/45	11/4/2002	1	4	Α
43/45	14/4/2002	1	5	B1
125/45	20/8/2002	2	2	B1
129/45	27/8/2002	2	5	F
133/45	30/8/2002	2	9	С
142/45	11/9/2002	2	5	С
148/45	9/9/2002	2	5	D
189/45	22/10/2002	2	4	С
111/45	27/7/2002	3	6	Α
128/45	25/8/2002	3	5	С
168/45	1/10/2002	3	2	B2
169/45	1/10/2002	3	2	B1
195/45	2/11/2002	3	2	B2
198/45	3/11/2002	3	2	D
200/45	1/11/2002	3	5	C1
25/45	2/9/2003	3	4	C1
30/45	29/3/2002	3	4	F
52/46	24/10/2003	3	2	C3

ตารางที่ 2. แสดงผลการจำแนก molecular typing ของเชื้อ *A. baumannii* บางส่วนที่นำมาตรวจโดยวิธี ที่ต่างกัน 3 วิธี พบว่าไม่มีความสัมพันธ์ในแต่ละวิธีที่ทดสอบ


4. การศึกษาการดื้อยา rifampin ในเชื้อ A. baumannii

เชื้อ A. baumannii ทั้ง 100 สายพันธุ์ ให้ผลการทดสอบว่าเป็นเชื้อดื้อยา rifampin โดยที่มีเชื้อ 38 สายพันธุ์ที่ไม่พบ inhibition zone รอบๆ rifampin disk เลย แสดงว่าดื้อยาในระดับสูงมาก ได้ทำการ พิสูจน์หายีนดื้อยา rifampin ที่เคยมีรายงานในเชื้อ P. aeruginosa ในประเทศไทย คือ arr-2 gene [9] โดยวิธี PCR และใช้ specific primers ในการตรวจ พบว่าเชื้อที่ดื้อยาแบบไม่มี inhibition zone ทุกสาย พันธุ์เป็นเชื้อที่ให้ผลบวกใน PCR test ว่ามียืน arr-2 ผลการทำ PCR แสดงไว้ในรูปที่ 12 อย่างไรก็ ตามเมื่อตรวจหาลำดับเบสของยืนที่เป็น target ของยา (rpoB gene) ในเชื้อที่ให้ผลลบในการตรวจหา arr-2 พบว่า เชื้อไม่มีความแตกต่างของลำดับเบส เมื่อเทียบกับเชื้อที่ยังไวต่อยา (รูปที่ 13 และ 14) ดังนั้นการดื้อ rifampin ในกลุ่มที่ตรวจไม่พบ arr-2 gene คงต้องมีกลไกอื่นๆอีกที่จะทำให้เชื้อดื้อยาชนิด นี้

รูปที่ 12. แสดงผลการตรวจหา *arr-2* gene โดยวิธี PCR M, marker; pCTF202, positive control plasmid [8]

รูปที่ 13. การตรวจ DNA sequence ของยืนที่เป็นเป้าหมายของยา rifampin ในส่วนที่เป็น hot spot โดย การใช้ predicted primers ในการเพิ่มจำนวนของยืน *rpoB* ลูกศรแสดงตำแหน่งของ DNA sequence ที่ถูก translated เป็น binding site (hotspot) ของ rifampin

```
>qi|50083579|ref|YP 045089.1| DNA-directed RNA polymerase beta chain (Transcriptase beta
            (RNA polymerase beta subunit) [Acinetobacter sp. ADP1]
 gi|49529555|emb|CAG67267.1| DNA-directed RNA polymerase beta chain (Transcriptase beta
chain)
            (RNA polymerase beta subunit) [Acinetobacter sp. ADP1]
          Length=1362
 Score = 173 bits (439), Expect = 1e-42
 Identities = 83/83 (100%), Positives = 83/83 (100%), Gaps = 0/83 (0%)
 Frame = +1
                      RpoB mutation hotspot (no mutation found)
Ab128/45
                   EFFGSSQLSQFMDQNNPLSEITHKRRVSALGPGGLTRERAGFEVRDVHQTHYGRVCPIET
                   EFFGSSQLSQFMDONNPLSEITHKRRVSALGPGGLTRERAGFEVRDVHOTHYGRVCPIET
              513 EFFGSSQLSQFMDQNNPLSEITHKRRVSALGPGGLTRERAGFEVRDVHQTHYGRVCPIET
Other
Ab128/45
                   PEGPNIGLINSLSVYAKANDFGF
                   PEGPNIGLINSLSVYAKANDFGF
                   PEGPNIGLINSLSVYAKANDFGF
```

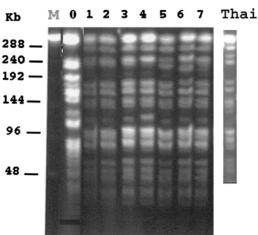
รูปที่ 14. แสดงผลการค้นหายีนที่มีความเหมือนกันโดยโปรแกรม BLASTX analysis ที่สามารถใช้ได้จาก NCBI homepage (http://www.ncbi.nlm.nih.gov/BLAST) Best matched sequence มาจากเชื้อ Acinetobacter ADP1 (ขณะนี้มีชื่อใหม่เป็น A. baylyi) [10]

5. การทดสอบ polymyxins และ tigecycline susceptibility

การทดสอบความไวของเชื้อ A. baumannii ต่อยา polymyxins พบว่าเชื้อทุกสายพันธุ์ไวต่อยา กลุ่มนี้ [11]

การทดสอบยา tigecycline โดยการใช้วิธี disk diffusion และ Etest พบว่าผลการทดสอบออกมา ไม่ตรงกัน ทำให้การแปลผลอาจมีความไม่แน่นอนได้ สาเหตุอาจเกิดจากยาใน disk และ Etest strip ให้ ตัวยาออกมาแล้วไม่สามารถออกฤทธิ์ฆ่าเชื้อได้ บริษัทแนะนำให้ทำการทดสอบแบบใหม่คือการทำ broth dilution technique เท่านั้น ซึ่งผลการตรวจความไวของเชื้อ A. baumannii ต่อยาชนิดใหม่ คือ tigecycline พบว่าเชื้อทุกตัวมีความไวต่อยาชนิดนี้ [12, 13] โดยมี MIC_{50} และ $\mathrm{MIC}_{90} = 2$ และ 4 $\mathrm{\mu g/ml}$ ตามลำดับ และจากผลการทดลองที่ทำไว้น่าจะมีการเปลี่ยนแปลง inhibition zone breakpoint สำหรับ เชื้อ A. baumannii ไปเป็น \geq 13 mm = susceptible แทนการใช้ค่า \geq 19 mm สำหรับเชื้อกลุ่ม Enterobacteriaceae [12]

วิจารณ์ผลการทดลองและสรุป


เชื้อ A. baumannii ที่แยกได้จากผู้ป่วย เป็นเชื้อที่ดื้อยาต้านจุลชีพหลายขนาน แม้ว่าจะเก็บเชื้อ ได้ในช่วงปีพ.ศ. 2545 ประมาณ 5 ปีหลังจากที่มีการรายงานว่าเชื้อที่แยกได้ในโรงพยาบาลมีความไวต่อ ยากลุ่ม carbapenem ถึง 100% ในเชื้อที่แยกได้ราวปี พ.ศ. 2539-2540 [14] สำหรับการดื้อยาต้าน จุลชีพกลุ่ม carbapenem นั้น พบว่าเชื้อทั้งหมดในการศึกษานี้ไม่ได้สร้าง metallo-beta-lactamase (ซึ่ง เป็นเอนไซม์ที่ทำให้เชื้อดื้อยาได้ในระดับสูงมาก) อย่างที่มีรายงานในต่างประเทศ [15] ไม่พบว่าเชื้อมียืน ในกลุ่ม bla_{IMP} family หรือ bla_{VIM} family แต่พบว่าเชื้อสามารถสร้าง beta-lactamase ที่ทำลายยา meropenem ได้ ในปริมาณต่ำๆ การทดสอบต่อมาก็พบว่าเชื้อส่วนใหญ่มียืนที่สร้าง beta-lactamase ที่ทำลาย carbapenem ได้ ซึ่งยืนนี้จัดอยู่ใน bla_{OXA} family

OXA-23 beta-lactamase เป็นเอนไซม์ที่ทำลาย carbapenem ได้ [16] และการใช้ specific primer ที่จำเพาะต่อ bla_{OXA-23} (primer ถูกออกแบบให้ anneal ที่สาย DNA ส่วนนอกของ open reading frame) เป็นหลักฐานโดยอ้อมว่าเชื้อที่ให้ผลบวกในการทำ PCR สำหรับ bla_{OXA-23} น่าจะเป็นเชื้อที่แพร่ ระบาดมาจากต่างประเทศ ถ้าเชื้อที่ดื้อยาเป็นเชื้อที่ถูกคัดสายพันธุ์ภายในประเทศไทยเอง น่าจะมีการ กลายพันธุ์ของลำดับเบส จนกระทั่ง primers ไม่สามารถจับได้

ผลการตรวจความใกล้ชิดของสายพันธุ์โดยการทำ PFGE, ribotyping, และ RAPD ให้ผลออกมา ไม่ค่อยตรงกัน (ตารางที่ 2) โดย ribotyping มี ความสามารถในการแยกชนิดได้น้อยที่สุด RAPD มี ความสามารถแยกสายพันธุ์ได้ปานกลาง ส่วน PFGE มีความสามารถในการแยกสายพันธุ์ได้ดีมาก แต่ สมควรใช้ในช่วงที่มีการสืบสวนแพร่ระบาดในช่วงเวลาไม่เกิน 7 วันถึง 1 เดือน หากเกินกว่านี้อาจพบว่า เชื้อที่แยกได้จากผู้ป่วยมีความแตกต่างของสายพันธุ์มากเกินกว่าจะจัดเป็นเชื้อกลุ่มเดิม แล้วอาจทำให้มี การสรุปผลการสืบสวนการระบาดว่าไม่เกิดการระบาด แต่ความเป็นจริงได้เกิดการแพร่กระจายของเชื้อ อย่างยาวนานโดยไม่ได้รับการแก้ไข อย่างไรก็ตามข้อมูลที่ได้ยังไม่มีการทดสอบยืนยันให้ได้ชัดเจนว่า เชื้อที่มีความหลากหลายของ pulsotype ยังเป็นสายพันธุ์ที่ใกล้ชิดกัน จนกว่าจะมีการทดสอบด้วยวิธี Multi-locus sequence typing ซึ่งเป็นเทคนิคที่ถูกพัฒนาเพื่อทดสอบหาความใกล้ชิดของสายพันธุ์

มีผลการทดสอบโดยวิธี PFGE ที่พอจะนำมาเปรียบเทียบกับวารสารวิชาการนานาชาติ การศึกษาครั้งนี้พบว่าเชื้อที่แยกได้จากผู้ป่วยที่อาจเกิดจากสายพันธุ์เดียวกันแพร่ระบาดตามหอผู้ป่วย ของรพ.ศิริราช ซึ่งเป็นปัญหาการแพร่กระจายของเชื้อก่อโรคที่ดื้อยา (clonal spread) เมื่อเปรียบเทียบ ข้อมูลจาก Journal of Clinical Microbiology ที่ได้ตีพิมพ์บทความโดยกลุ่มนักวิจัยของ Dr. Patrice Nordmann แสดงการใช้ Apal restriction enzyme ในการตัด chromosomal DNA เพื่อศึกษา ความสัมพันธ์ของเชื้อ A. baumannii [17] ซึ่งพบว่าได้ผลดี แล้วการทำ PFGE ของเชื้อที่แยกได้จาก ประเทศไทยได้ใช้ Apal enzyme เช่นเดียวกัน พบว่าเชื้อที่รายงานในต่างประเทศนั้นน่าจะแพร่กระจาย ไปจากประเทศไทย ผลการทดสอบเพิ่มเติมแสดงไว้ในรูปที่ 11 และ 15 และการทำ PFGE ได้ผลออกมา ค่อนข้างหลากหลาย แม้ว่าจะพบ repetitive patterns อยู่มาก อาจพอสรุปผลการตรวจและการแปลผล ออกได้ 2 แบบ คือ

- 1) เชื้อมีความหลากหลายของ pulsotype มากกว่าที่คาดการณ์ไว้ ต่างกับ repetitive patterns ของ ribotypes แสดงว่าเชื้อมี dynamic change ของ genome สูง และ/หรือ PFGE มี power of discrimination สูงเกินไป การทำ PFGE กับเชื้อทั้ง 100 สายพันธุ์อาจไม่เหมาะที่จะนำมาประเมิน cluster หรือ evolution ของเชื้อได้ ดังนั้นการตรวจ PFGE ของเชื้อ *A. baumannii* จึงเหมาะสมกับการ สืบสวนการระบาด (outbreak) ในช่วงเวลาสั้นๆ มากกว่าที่จะนำมาศึกษาเชื้อที่เก็บมาจากช่วงเวลาที่ ต่างกันมาก
- 2) เชื้อ *A. baumannii* มีการแพร่ระบาดความทวีปได้ (มีความเป็นไปได้สูงว่าเชื้อแพร่กระจายจาก ประเทศไทยไปสู่ประเทศฝรั่งเศส) ดังรูปที่ 15.

รูปที่ 15. ผล PFGE ประเทศฝรั่งเศส (lane 0-7) เทียบกับของไทย (lane 7 จากรูปที่ 11 E) [17]

การศึกษาคุณสมบัติการดื้อยา rifampin พบว่าเชื้อที่แยกได้ในประเทศไทย ดื้อต่อยา rifampin ทุกสายพันธุ์ และเป็นเชื้อที่ดื้อในระดับสูงถึงร้อยละ 38 โดยตรวจพบว่าเชื้อมียืน arr-2 ที่สร้างเอนไซม์ rifampin ribosyltransferase ส่วนเชื้อที่ตรวจไม่พบว่ามี arr-2 gene ก็ยังดื้อยาได้ในระดับสูง การตรวจ mutation hotspot ของ ยืน rpoB ก็ไม่พบว่ามีการกลายพันธุ์เป็นชนิดที่ยาไม่สามารถจับได้ ดังนั้นยังต้อง มีการศึกษาต่อเนื่องถึงกลไกการดื้อยา rifampin ในเชื้อกลุ่มนี้ต่อไป

การที่มีวารสารตีพิมพ์ในต่างประเทศให้ใช้ยา rifampin ร่วมรักษาเข้าไปด้วยกับยาชนิดอื่นๆ [18-20] อาจใช้ไม่ได้ผล หรือสมควรให้มีงานวิจัยทางคลินิก (clinical trial) เพื่อยืนยันว่าสามารถใช้ rifampin combination ได้หรือไม่

ยา polymyxins เป็นกลุ่มยาเก่าที่ไม่ได้นำมาใช้ทางคลินิกมานานแล้ว แต่ยานี้สามารถฆ่าเชื้อ A. baumannii ได้ดี จึงมีการนำกลับมาใช้อีก แต่ยังคงต้องระวังผลข้างเคียงต่อไตของผู้ป่วย ยาชนิดนี้จึงยัง มีข้อจำกัดในการใช้อยู่

ยา tigecycline ซึ่งเป็นยาชนิดใหม่ล่าสุดที่มีการนำมาใช้ในประเทศไทย อาจนำไปใช้รักษาผู้ป่วย ได้ดี ยังไม่พบว่าเชื้อดื้อยา อย่างไรก็ตาม การใช้ยาที่เหลือเป็นตัวสุดท้ายในการรักษา อาจต้องมีการ ควบคุมการใช้อย่างเคร่งครัด ไม่เช่นนั้นเชื้ออาจถูกคัดเลือกเหลือแต่เชื้อที่กลายเป็นเชื้อดื้อยาได้โดยง่าย

สรุป

การศึกษากลไกการดื้อยาต้านจุลชีพกลุ่ม carbapenem ของเชื้อ A. baumannii ที่แยกได้ใน รพ.ศิริราชและเชื้อจากกรมวิทยาศาสตร์การแพทย์ (รพ.มหาราชนครศรีธรรมราช) สายพันธุ์ที่ได้รับการ ทดสอบ RAPD, ribotyping หรือ PFGE: cluster analysis พบว่าเชื้อส่วนหนึ่งเป็นเชื้อที่มีความใกล้เคียง กันของสายพันธุ์แพร่ระบาดในหอผู้ป่วยหลายๆแห่ง ทั้งในโรงพยาบาลเดียวกัน ต่างโรงพยาบาลใน ประเทศ หรือบางสายพันธุ์พบว่ามีการแพร่ระบาดข้ามประเทศ ทำให้สามารถสรุปได้คร่าวๆว่า มาตรการการควบคุมโรคติดเชื้อในโรงพยาบาลที่เรียก infection control ยังต้องได้รับการแก้ไขอย่าง จริงจัง ซึ่งรวมไปถึงการให้ความรู้แก่บุคลากรทางการแพทย์ทุกระดับ การเฝ้าระวังและการตรวจหาเชื้อ

ในผู้ป่วยที่เป็นรังโรค (reservoir) และการศึกษาเพิ่มเติมเพื่อหาวิธีการตรวจสายพันธุ์ที่สามารถนำมาใช้ ได้อย่างเหมาะสม (practical use) เพื่อลดอัตราการแพร่ระบาดของเชื้อดื้อยาดังกล่าวหรือกำจัดให้หมด ไป

สำหรับการดื้อยาต้านจุลชีพกลุ่ม carbapenem นั้น พบว่าเชื้อทั้งหมดในขณะนี้ไม่ได้สร้าง metallo-beta-lactamase (ซึ่งเป็นเอนไซม์ที่ทำให้เชื้อดื้อยาได้ในระดับสูงมาก) อย่างที่มีรายงานใน ต่างประเทศ แต่เชื้อส่วนใหญ่สร้างเอนไซม์ที่เป็น class D beta-lactamase ซึ่งเชื่อว่ายืนควบคุมการดื้อ ยานี้อยู่บน chromosome และได้มีการรายงานโดยละเอียดในวารสารนานาชาติแล้ว เช่น enzyme kinetic analysis นอกจากนี้กลไกการดื้อยาที่ใช้ขบวนการ efflux pumps เป็นกลไกที่ทำให้เชื้อดื้อยาใน ระดับต่ำ ๆเท่านั้น เมื่อเชื้อสามารถสร้าง carbapenem-hydrolyzing enzyme class D beta-lactamase ได้ การศึกษา outer membrane protein profiles จึงไม่น่าได้รับผลประโยชน์มากนัก การศึกษา protein efflux pump จึงได้ถูกตัดออกไปก่อนในการศึกษาครั้งนี้

การค้นพบ class 1 integron integrase gene ในเชื้อส่วนหนึ่งเป็นข้อมูลที่แสดงให้เห็นว่าเชื้อ น่าจะมียืนดื้อยาอื่น ๆอีกหลายชนิดในเชื้อสายพันธุ์นั้น ๆ ตามคุณสมบัติของ integron element การศึกษาหา resistance gene cassettes อื่น ๆ อาจนำมาช่วยใช้ในการสืบสวนการแพร่ระบาดของเชื้อ ทั้งที่เป็นแบบ vertical transmission และ horizontal transmission (ของ resistance determinants) เพื่อหาทางป้องกันการแพร่ระบาดที่เหมาะสมต่อไป

เอกสารอ้างอิง

- [1] Keerasuntonpong A, Samakeenich C, Tribuddharat C, Thamlikitkul V. Epidemiology of *Acinetobacter baumannii* Infections in Siriraj Hospital 2002. Siriraj Med J. 2006;58(8):951-4.
- [2] Performance standards for antimicrobial disk susceptibility tests-nineth edition: Approved standard M100-S14 forteenth informational supplement. In: Standards. NCfCL, ed. 9th ed. Pensylvania: National Committee for Clinical Laboratory Standards. 2004.
- [3] Arakawa Y, Shibata N, Shibayama K, Kurokawa H, Yagi T, Fujiwara H, et al. Convenient test for screening metallo-beta-lactamase-producing gram-negative bacteria by using thiol compounds. J Clin Microbiol. 2000 Jan;38(1):40-3.
- [4] Bert F, Branger C, Lambert-Zechovsky N. Identification of PSE and OXA beta-lactamase genes in *Pseudomonas aeruginosa* using PCR-restriction fragment length polymorphism. J Antimicrob Chemother. 2002 Jul;50(1):11-8.
- [5] Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A. 1985 Oct;82(20):6955-9.

- [6] Girlich D, Naas T, Leelaporn A, Poirel L, Fennewald M, Nordmann P. Nosocomial spread of the integron-located veb-1-like cassette encoding an extended-pectrum beta-lactamase in *Pseudomonas aeruginosa* in Thailand. Clin Infect Dis. 2002;34(5):603-11.
- [7] Girlich D, Poirel L, Leelaporn A, Karim A, Tribuddharat C, Fennewald M, et al. Molecular epidemiology of the integron-located VEB-1 extended-spectrum beta-lactamase in nosocomial enterobacterial isolates in bangkok, thailand [In Process Citation]. J Clin Microbiol. 2001;39(1):175-82.
- [8] Tribuddharat C. Mechanisms of Antibiotic Resistance in *Pseudomonas aeruginosa*. North Chicago: Finch University of Health Sciences/The Chicago Medical School; 1999.
- [9] Tribuddharat C, Fennewald M. Integron-mediated rifampin resistance in *Pseudomonas aeruginosa*. Antimicrob Agents Chemother. 1999;43(4):960-2.
- [10] Vaneechoutte M, Young DM, Ornston LN, De Baere T, Nemec A, Van Der Reijden T, et al. Naturally transformable *Acinetobacter* sp. strain ADP1 belongs to the newly described species Acinetobacter baylyi. Appl Environ Microbiol. 2006 Jan;72(1):932-6.
- [11] Tribuddharat C, Tiensasitorn C, Techachaiwiwat W, Rugdeekha S, Dhiraputra C, Thamlikitkul V. In Vitro Activity of Polymyxin B and Polymyxin E against Multi-Drug Resistant *Pseudomonas aeruginosa* and *Acinetobacter baumannii*. J Infect Antimicrob Agents. 2003;20:135-7.
- [12] Thamlikitkul V, Tiengrim S, Tribuddharat C. Comment on: High tigecycline resistance in multidrug-resistant *Acinetobacter baumannii*. J Antimicrob Chemother. 2007 Jul;60(1):177-8; author reply 8-9.
- [13] Tiengrim S, Tribuddharat C, Thamlikitkul V. In vitro activity of tigecycline against clinical isolates of multidrug-resistant *Acinetobacter baumannii* in Siriraj Hospital, Thailand. J Med Assoc Thai. 2006 Nov;89 Suppl 5:S102-5.
- [14] Aswapokee N, Tiengrim S, Charoensook B, Sangsiriwut K. Antimicrobial Resistant Pattern of *Acinetobacter* spp. J Infect Dis Antimicrob Agents. 1998;15(8):43-8.
- [15] Houang ET, Chu YW, Lo WS, Chu KY, Cheng AF. Epidemiology of rifampin ADP-ribosyltransferase (arr-2) and metallo-beta-lactamase (blaIMP-4) gene cassettes in class 1 integrons in *Acinetobacter* strains isolated from blood cultures in 1997 to 2000. Antimicrob Agents Chemother. 2003 Apr;47(4):1382-90.
- [16] Donald HM, Scaife W, Amyes SG, Young HK. Sequence analysis of ARI-1, a novel OXA beta-lactamase, responsible for imipenem resistance in *Acinetobacter baumannii* 6B92. Antimicrob Agents Chemother. 2000 Jan;44(1):196-9.

- [17] Poirel L, Menuteau O, Agoli N, Cattoen C, Nordmann P. Outbreak of extended-spectrum beta-lactamase VEB-1-producing isolates of *Acinetobacter baumannii* in a French hospital. J Clin Microbiol. 2003 Aug;41(8):3542-7.
- [18] Montero A, Ariza J, Corbella X, Domenech A, Cabellos C, Ayats J, et al. Efficacy of colistin versus beta-lactams, aminoglycosides, and rifampin as monotherapy in a mouse model of pneumonia caused by multiresistant *Acinetobacter baumannii*. Antimicrob Agents Chemother. 2002 Jun;46(6):1946-52.
- [19] Petrosillo N, Chinello P, Proietti MF, Cecchini L, Masala M, Franchi C, et al. Combined colistin and rifampicin therapy for carbapenem-resistant *Acinetobacter baumannii* infections: clinical outcome and adverse events. Clin Microbiol Infect. 2005 Aug;11(8):682-3.
- [20] Yoon J, Urban C, Terzian C, Mariano N, Rahal JJ. In vitro double and triple synergistic activities of Polymyxin B, imipenem, and rifampin against multidrug-resistant *Acinetobacter baumannii*. Antimicrob Agents Chemother. 2004 Mar;48(3):753-7.

Output จากโครงการวิจัยที่ได้รับทุนจาก สกว.

- 1. ผลงานตีพิมพ์ในวารสารวิชาการนานาชาติ
 - 1.1 Thamlikitkul V, Tiengrim S, **Tribuddharat C**. Comment on: High tigecycline resistance in multidrug-resistant *Acinetobacter baumannii*. J Antimicrob Chemother. 2007 Jul; 60(1):177-8.

2. การนำผลงานวิจัยไปใช้ประโยชน์

- 2.1 เชิงนโยบาย: มีการนำผลงานไปใช้ในการฝึกอบรมแพทย์และบุคลากรทางการแพทย์ เกี่ยวกับการตรวจและสอบสวนการระบาดของเชื้อแบคทีเรียดื้อยาที่ก่อโรคติดเชื้อใน โรงพยาบาล และมีการรณรงค์และให้ความรู้เกี่ยวกับการเฝ้าระวังและควบคุมโรคติดเชื้อใน โรงพยาบาลในงานประชุมและในการฝึกอบรมที่จัดโดยสมาคมโรคติดเชื้อในโรงพยาบาล ชมรม ควบคุมโรคติดเชื้อในโรงพยาบาลแห่งประเทศไทย และคณะเทคนิคการแพทย์ มหาวิทยาลัยมหิดล เป็นประจำทุกปี
- 2.2 เชิงสาธารณะ: มีการจัดตั้งเครือข่ายการวิจัยเรื่อง Nosocomial infection network ของ กลุ่มภาควิชาจุลชีววิทยาในคณะต่างๆของมหาวิทยาลัยมหิดล
- 2.3 เชิงวิชาการ: ได้มีการจัดหลักสูตรอบรมแพทย์และบุคลากรทางการแพทย์ แบบระยะสั้น (3 วัน) และระยะยาว (2 สัปดาห์) เกี่ยวกับการตรวจวินิจฉัยเชื้อแบคทีเรียก่อโรคที่ดื้อยาต้านจุล ชีพโดยความร่วมมือของคณะเทคนิคการแพทย์มหาวิทยาลัยมหิดล ชมรมควบคุมโรคติดเชื้อใน โรงพยาบาลแห่งประเทศไทย และสถาบันบำราศนราดูร (ตัวแทนของกระทรวงสาธารณสุข)
- การประชุมสัมมนาเชิงปฏิบัติการ เรื่อง "โรคติดเชื้อในโรงพยาบาลสำหรับบุคลากรทาง ห้องปฏิบัติการ" ในวันที่ 18-20 พฤษภาคม, 15-17 มิถุนายน, 13-15 กรกฎาคม, 3-5 สิงหาคม, 24-26 สิงหาคม พ.ศ. 2548, และ 6-8 ธันวาคม 2549
- การอบรมและสัมมนาระดับชาติ ครั้งที่ 3 เรื่อง "การป้องกันและควบคุมโรคติดเชื้อใน โรงพยาบาล" ในวันที่ 17-21 กรกฎาคม พ.ศ. 2549 ณ โรงแรมแอมบาสเดอร์ซิตี้ จอมเทียน พัทยา จ.ชลบุรี
- โครงการฝึกอบรมหลักสูตร การให้ความรู้สำหรับแพทย์ พยาบาลควบคุมโรคติดเชื้อ และนักเทคนิคการแพทย์ เรื่อง "การป้องกันและควบคุมโรคติดเชื้อในโรงพยาบาล" ในวันที่ 30 เมษายน ถึง วันที่ 4 พฤษภาคม พ.ศ. 2550 ณ โรงแรมริชมอนด์ ถ.รัตนาธิเบศร์ จ.นนทบุรี 3. ผลงานตีพิมพ์ในวารสารวิชาการในประเทศและการเสนอผลงานในที่ประชุมวิชาการ
 - 3.1 Tribuddharat C, Tiensasitorn C, Techachaiwiwat W, Rugdeekha S, Dhiraputra C, Thamlikitkul V. In Vitro Activity of Polymyxin B and Polymyxin E against Multi-Drug Resistant Pseudomonas aeruginosa and Acinetobacter baumannii. J Infect Antimicrob Agents 2003; 20: 135-7.

- 3.2 Keerasuntonpong A, Samakeenich C, **Tribuddharat C**, Thamlikitkul V. Epidemiology of *Acinetobacter baumannii* Infections in Siriraj Hospital 2002. Siriraj Med J 2006; 58(8); 951-954.
- 3.3 Tiengrim S, **Tribuddharat C**, Thamlikitkul V. In vitro activity of tigecycline against clinical isolates of multidrug-resistant *Acinetobacter baumannii* in Siriraj Hospital, Thailand. J Med Assoc Thai. 2006 Nov;89 Suppl 5:S102-5.
- 3.4 Oral presentation: Clonality and carbapenem resistance of nosocomial panresistant Acinetobacter baumannii isolated in Thailand. การประชุมใหญ่วิชาการ ประจำปี ครั้งที่ 30 จัดโดยสมาคมโรคติดเชื้อแห่งประเทศไทย ในวันที่ 9-12 ตุลาคม 2547 ณ โรงแรมดุสิตรีสอร์ท พัทยา จ.ชลบุรี

Journal of Antimicrobial Chemotherapy Advance Access published May 11, 2007

Journal of Antimicrobial Chemotherapy doi:10.1093/jac/dkm142

JAC

Comment on: High tigecycline resistance in multidrug-resistant Acinetobacter baumannii

Visanu Thamlikitku!*, Surapee Tiengrim and Chanwit Tribuddharat

Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand

Keywords: A. baumannii, glycylcyclines, susceptibility

*Corresponding author. Tel/Fax: +66-2-412-5994; E-mail: sivth@mahidof.ac.th

Sir.

Navon-Venezia et al.1 recently reported high tigecycline resistance in multidrug-resistant Acinetobacter baumannii. The activity of tigecycline against A. baumannii was determined by disc diffusion method and Etest. The breakpoints for susceptibility were an inhibition zone diameter ≥19 mm and MIC ≤2 mg/L. They found that 66% of the isolates were resistant to tigecycline and that the MIC₅₀ and MIC₉₀ values of tigecycline were 16 and 32 mg/L, respectively, with a wide MIC range of 1-128 mg/L. All the Etest MIC values measured in the resistance range correlated 100% with inhibition zone diameters using the disc diffusion method with tigecycline discs.

We would like to describe our experiences in conducting in vitro activity of tigecycline against 148 isolates of Acinetobacter spp. isolated from different infected patients hospitalized at Siriraj Hospital, Bangkok, Thailand during 2002-2005. These isolates were resistant to all β-lactams, aminoglycosides and fluoroquinolones. In vitro susceptibility of Acinetobacter spp. to tigecycline was determined by Kirby-Bauer disc diffusion, Etest and broth microdilution methods. Paper discs containing 15 µg of tigecycline per disc (Becton Dickinson, USA), Etest strips (AB BIODISK, Sweden) and Gram-negative MicroScan MlC panels (Dade Behring Inc., USA) were provided by Wyeth Research. The methodology for susceptibility testing was determined by direct colony suspension according to the guidelines suggested by the CLSI.2 Quality control was performed by testing the susceptibility of Escherichia coli ATCC 25922.

We found that the MIC₅₀ and MIC₉₀ values of tigecycline for Acinetobacter spp. determined by Etests were 2 and 4 mg/L, respectively. The MIC50 and MIC90 values of tigecycline for Acinetobacter spp. determined by the broth microdilution method were 0.5 and 1 mg/L, respectively. If the MIC of tigecycline at ≤2 mg/L was a breakpoint for tigecycline susceptibility, 97.3% and 72.3% of the isolates were susceptible to tigecycline as determined by the broth microdilution method and Etest, respectively. If the inhibition zone diameter at ≥19 mm was a breakpoint for tigecycline susceptibility, only 44.6% of the isolates were susceptible to tigecycline, as shown in Table 1. There was a significant correlation between inhibition zone diameters

and MICs determined by the broth microdilution method (P < 0.001, r = -0.8) and between MICs of tigecycline determined by the Etest and broth microdilution method (P < 0.001, r = 0.9). The inhibition zone diameter at >13 mm in predicting susceptibility of Acinetobacter spp. to tigecycline determined by the broth microdilution method is the most accurate breakpoint. as shown in Table 1. If the MIC of tigecycline determined by the broth microdilution method at ≤2 mg/L was considered a breakpoint for tigecycline susceptibility, the inhibition zone diameter at ≥13 mm had a sensitivity of 99% and a specificity of 100% in predicting the susceptibility of Acinetobacter spp. to

The MlC_{50} and MlC_{90} values of tigecycline for Acinetobacter spp. determined by the broth microdilution method from our study were comparable with the results from the previous studies on the *in vitro* activity of tigecycline against A. baumannii using the same method.³⁻⁵ However, our findings indicated that there was a discrepancy in susceptibility results of tigecycline against Acinetobacter spp. among different methods of testing. The MICs determined by the Etest were usually 4-fold higher than those determined by the broth microdilution method and Etest might not be an accurate method for in vitro susceptibility testing of tigecycline against Acinetobacter spp. Moreover, our study also observed that the FDA-approved breakpoint of tigecycline Enterobacteriaceae, an inhibition zone diameter of ≥19 mm, was not applicable to tigecycline against Acinetobacter spp. The breakpoint for an inhibition zone diameter of ≥ 13 mm was more accurate in predicting susceptibility of Acinetobacter spp. to tigecycline with a sensitivity of 99% and a specificity of 100%. Our observations were similar to those reported by Jones et al.6 They tested 103 contemporary clinical Acinetobacter spp., including multidrug-resistant strains, by reference broth microdilution and disc diffusion (15 µg disc content) methods against tigecycline. Applying tigecycline breakpoint at ≤2 mg/L and disc diffusion breakpoints at ≥19 and ≤14 mm (susceptible and resistant) to Acinetobacter spp. led to an unacceptable error rate (23.3%). However, an adjustment of tigecycline disc diffusion breakpoints (susceptible/ resistant) to $\geq 16/\leq 12$ mm reduced intermethod errors to an acceptable level (only 9.7%, all minor). Therefore, the interpretative criteria of inhibition zone diameter breakpoint for tigecycline against Acinetobacter spp. should not be ≥19 mm. The mechanisms for having smaller inhibition zones and lower MICs of tigecycline for Acinetobacter spp. tested by solid agar methods should be explored. The aforementioned observations warrant a clinical study to determine the efficacy of tigecycline for therapy of Acinetobacter spp. infections in order to consider whether such proposed breakpoints and appropriate testing method are valid.

A high tigecycline resistance in multidrug-resistant A. baumannii reported by Navon-Venezia et al. could be due to the methods they used, disc diffusion method and Etest. However, they also found a slight variation in tigecycline susceptibility among different pulsotypes of A. baumannii isolates and this

Correspondence

Table 1. Accuracy of the inhibition zone diameter at ≥ 13 and ≥ 19 mm in predicting the susceptibility of *Acinetobacter* spp. to tigecycline

Inhibition zone diameter (mm)	$MIC \le 2 \text{ mg/L (broth microdilution)}$	MIC >2 mg/L (broth microdilution)
≥13	143 (96.6%)	0
<13	1 (0.7%)	4 (2.7%)
≥19	66 (44.6%)	0
<19	78 (52.7%)	4 (2.7%)

might explain a discrepancy in tigecycline susceptibility in *A. baumannii* isolates from Israel and other countries.

Acknowledgements

We thank Wyeth Research for providing Etest strips and MicroScan Gram-negative panels for tigecycline susceptibility tests, and The Thailand Research Fund for supporting the study.

Transparency declarations

None to declare.

References

1. Navon-Venezia S, Leavitt A, Carmeli Y. High tigecycline resistance in multidrug-resistant *Acinetobacter baumannii. J Antimicrob Chemother* 2007; **59**: 772–4.

- **2.** Clinical and Laboratory Standards Institute. *Performance Standards for Antimicrobial Susceptibility Testing: Fifteenth Informational Supplement M100-S15.* CLSI, Wayne, PA, USA, 2005.
- **3.** Pachon-Ibanez ME, Jimenez-Mejias ME, Pichardo C *et al.* Activity of tigecycline (GAR-936) against *Acinetobacter baumannii* strains, including those resistant to imipenem. *Antimicrob Agents Chemother* 2004; **48**: 4479–81.
- **4.** Bouchillon SK, Hoban DJ, Johnson BM *et al.* In vitro activity of tigecycline against 3989 Gram-negative and Gram-positive clinical isolates from the United States Tigecycline Evaluation and Surveillance Trial (TEST Program; 2004). *Diagn Microbiol Infect Dis* 2005; **52**: 173–9.
- 5. Sader HS, Jones RN, Dowzicky MJ *et al.* Antimicrobial activity of tigecycline tested against nosocomial bacterial pathogens from patients hospitalized in the intensive care unit. *Diagn Microbiol Infect Dis* 2005; 52: 203–8.
- **6.** Jones RN, Ferraro MR, Reller LB *et al.* Multicenter studies of tige-cycline disk diffusion susceptibility results for *Acinetobacter* spp. *J Clin Microbiol* 2007; **35**: 227–30.

In Vitro Activity of Polymyxin B and Polymyxin E against Multi-Drug Resistant Pseudomonas aeruginosa and Acinetobacter baumannii

Chanwit Tribuddharat, M.D.* Chuntima Tiensasitorn, M.Sc* Wanida Techachaiwiwat, M.Sc.* Siriporn Rugdeekha, M.Sc.* Chertsak Dhiraputra, M.D.* Visanu Thamlikitkul, M.D.*

ABSTRACT

One hundred clinical isolates of *Pseudomonas aeruginosa* and 100 clinical isolates of *Acineto-bacter baumannii* resistant to cephalosporins, carbapenems, beta-lactams plus beta-lactamase inhibitors, aminoglycosides, fluoroquinolones were tested for susceptibility to polymyxin B and polymyxin E by disk diffusion. All isolates were susceptible to polymyxin B and polymyxin E. Polymyxins should be considered for therapy of patients infected with multi-drug resistant *A. baumannii* or *P. aeruginosa* in Thailand. (*J Infect Dis Antimicrob Agents 2003;20:135-7.*)

INTRODUCTION

Hospital acquired infections in Thailand are usually caused by gram-negative bacilli. Pseudomonas aeruginosa and Acinetobacter spp. caused infections in 14 percent and 8 percent of hospitalized patients. Infections caused by gram-negative bacteria resistant to all available antibiotics in Thailand were not uncommon. In 2002, 57 percent of A. baumannii isolated from infected hospitalized patients in Siriraj Hospital were multi-drug resistant and the mortality rate of such patients was higher than 50 percent. Carbapenem-resistant A. baumannii was found to

produce the OXA-23, OXA-40, IMP-4, IMP-5, or VIM-2 enzymes.³⁻⁷ Over the past few years, there have been reports on treating patients infected with multidrug resistant *P. aeruginosa* and *A. baumannii* with polymyxin E (colistin) or polymyxin B with a response rate of 57-88 percent, and 12-27 percent of the patients developed nephrotoxicity.⁸⁻¹¹ Since polymyxin E (colistin) and polymyxin B are not currently available in Thailand, it is reasonable to investigate whether multidrug resistant *P. aeruginosa* and *A. baumannii* isolated from Thai patients are susceptible to polymyxins before recommending them for

therapy in Thailand.

Reprint request: Visanu Thamlikitkul, M.D., Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.

Keywords: Pseudomonas aeruginosa, Acinetobacter baumanni, polymyxin, colistin, in vitro activity

^{*}Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.

^{**}Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand. Received for publication: December 19, 2003.

The objective of the study was to determine the *in vitro* activity of polymyxin B and polymyxin E against multi-drug resistant *P. aeruginosa* and *A. baumannii* isolated from hospitalized patients in Siriraj Hospital.

MATERIALS AND METHODS

1. Bacterial isolates:

P. aeruginosa (100 strains) and *A. baumannii* (100 strains) isolated from different hospitalized patients in Siriraj Hospital, Bangkok, Thailand, from September 2001 to December 2003 were studied. All strains were resistant to cephalosporins, carbapenems, beta-lactams plus beta-lactamase inhibitors, aminoglycosides and fluoroquinolones.

2. In vitro susceptibility test:

Polymyxin B and E susceptibility tests were performed by standard disk diffusion technique 12 using a 300 IU polymyxin B and a 10 µg polymyxin E disks (BD Biosciences, Sparks, Md.). The bacterial strains were considered susceptible if the inhibition zone was 12 mm or greater for polymyxin B and 11 mm or greater for polymyxin E.

RESULTS

All strains of multi-drug resistant *P. aeruginosa* and *A. baumannii* were susceptible to polymyxin B and polymyxin E, with inhibition zones of greater than 14 mm.

DISCUSSION

Polymyxins, cationic detergent compounds, are active against most of aerobic gram-negative bacteria except *Proteus* spp., *Burkholderia cepacia*, *Neisseria* spp., *Serratia marcescens*, *Stenotrophomonas maltophilia*, *Providencia* spp.¹³ The mechanism of action of polymyxins is to disrupt outer and cytoplasmic membranes of the sensitive organisms. Only polymyxin B and polymyxin E are used for therapy of infections. Resistance to polymyxins is difficult to develop. Polymyxin B and polymyxin E show near-complete cross-resistance. Two types of resistance to polymyxin B have been observed in *P. aeruginosa*: low level

transmissible mutation and high-level stepwise resistance. Nephrotoxicity due to polymyxins was found to be common in early days. Therefore, the use of polymyxins has been unpopular over the past several decades when other safer anti-gram-negatives have been available including cephalosporins, carbapenems, beta-lactams plus beta-lactamase inhibitors, aminoglycosides and fluoroquinolones.

Emergence of hospital-acquired infections caused by gram-negative bacteria especially *A. baumannii* and *P. aeruginosa* resistant to all aforementioned antibiotics has been more and more prevalent over the past decade. Most of multi-drug resistant *A. baumannii* and *P. aeruginosa* isolates were usually sensitive to polymyxins and polymyxins were found to be effective and rather safe in patients infected with these organisms. All isolates of *A. baumannii* and *P. aeruginosa* from Thai patients in this study were susceptible to polymyxins. Therefore, polymyxins should be considered for therapy of patients infected with multi-drug resistant *A. baumannii* and *P. aeruginosa* in Thailand.

ACKNOWLEDGEMENT

The authors would like to thank Thailand Research Fund for supporting the study.

References

- Thamlikitkul V, Jintanothaitavorn D, Sathitmethak ul R, Vaithayaphichet S, Trakulsomboon S, Danchaivijitr S. Bacterial infections in hospitalized patients in Thailand in 1997 and 2000. J Med Assoc Thai 2001; 84:666-73.
- Keerasuntonpong A, Samakeepanich C, Tribuddharat C. Epidemiology of *Acinetobacter baumannii* infections in Siriraj Hospital. [Abstract] The 29th Annual Meeting of Infectious Disease Association of Thailand, 2003 Oct 4-7; Hinton Hua Hin Hotel, Prachuap Khiri Khan, Thailand. Bangkok: Infectious Disease Association of Thailand, 2003:22.
- Dalla-Costa LM, Coelho JM, Souza HA, et al.
 Outbreak
 of carbapenem-resistant Acinetobacter baumannii
 producing the OXA-23 enzyme in Curitiba, Brazil. J

Clin Microbiol 2003;41:3403-6.

- Yum JH, Yi K, Lee H, et al. Molecular characterization of metallo-beta-lactamase-producing *Acinetobacter baumannii* and *Acinetobacter genomospecies* 3 from Korea: identification of two new integrons carrying the bla(VIM-2) gene cassettes. J Antimicrob Chemother 2002;49:837-40.
- Da Silva GJ, Correia M, Vital C, et al. Molecular characterization of bla(IMP-5), a new integron-borne metallo-beta-lactamase gene from an *Acinetobacter* baumannii nosocomial isolate in Portugal. FEMS Microbiol Lett 2002;215:33-9.
- Heritier C, Poirel L, Aubert D, Nordmann P. Genetic and functional analysis of the chromosome-encoded carbapenem-hydrolyzing oxacillinase OXA-40 of *Acinetobacter baumannii*. Antimicrob Agents Chemother 2003;47:268-73.
- Houang ET, Chu YW, Lo WS, Chu KY, Cheng AF. Epidemiology of rifampin ADP-ribosyltransferase (arr-2) and metallo-beta-lactamase (blaIMP-4) gene cassettes in class 1 integrons in *Acinetobacter* strains isolated from blood cultures in 1997 to 2000. Antimicrob Agents Chemother 2003;47:1382-90.
- Levin AS, Barone AA, Penco J, et al. Intravenous colistin as therapy for nosocomial infections caused by multidrug-resistant *Pseudomonas aeruginosa* and *Acinetobacter baumannii*. Clin Infect Dis 1999; 28: 1008-11.
- Garnacho-Montero J, Ortiz-Leyba C, Jimenez-Jimenez FJ, et al. Treatment of multidrug-resistant *Acineto-bacter baumannii* ventilator-associated pneumonia

- (VAP) with intravenous colistin: a comparison with imipenem-susceptible VAP. Clin Infect Dis 2003;36: 1111-8.
- Ouderkirk JP, Nord JA, Turett GS, Kislak JW. Polymyxin B nephrotoxicity and efficacy against nosocomial infections caused by multiresistant gramnegative bacteria. Antimicrob Agents Chemother 2003;47: 2659-62.
- Markou N, Apostolakos H, Koumoudiou C, et al. Intravenous colistin in the treatment of sepsis from multiresistant Gram-negative bacilli in critically ill patients. Crit Care 2003;7:R78-83.
- National Committee for Clinical Laboratory Standards.
 Performance standards for antimicrobic disc susceptibility tests. Approved standard M2A2 S2. Wayne,
 PA. National Committee for Clinical Laboratory Standards, 1981. [cited 2004 May 6]. Available from: URL:http://www.nccls.org
- Savage PB, Li C, Taotafa U, Ding B, Guan Q. Antibacterial properties of cationic steroid antibiotics. FEMS Microbiol Lett 2002:217:1-7.
- 14. Canton R, Coque TM, Baquero F. Multi-resistant gram-negative bacilli: from epidemics to endemics. Curr Opin Infect Dis 2003;16:315-25.

Epidemiology of *Acinetobacter baumannii* Infections in Siriraj Hospital 2002

Anuwat Keerasuntonpong, M.D.*, Chartchai Samakeenich, M.D.*, Chanwit Tribuddharat, M.D.**, Visanu Thamlikitkul, M.D.*

*Department of Medicine. **Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.

ABSTRACT

Objective: To determine the epidemiology of A.baumannii infections in Siriraj Hospital in 2002.

Methods: From January to December 2002, we prospectively studied hospitalized patients in Siriraj Hospital who had A.baumannii isolated from their clinical specimens.

Results: During the study period, *A.baumannii* was isolated from clinical specimens of 208 cases. Eighty-six patients (41.3%) had *A.baumannii* infections whereas 122 patients (58.7%) had *A.baumannii* colonization. Of the 86 patients with *A.baumannii* infections, 54.7% were males and 45.3% were females. The mean age of patients was 56.1 years. Ninety-eight percent of the infections were hospital-acquired. The patients developed infection after an average of 26 days of hospitalization. Fifty-two percent of the patients were in the general wards, whereas 48% of them were in ICU. The common sites of infection were respiratory tract and skin and soft tissues. Factors associated with *A.baumannii* infection were identified in 98.8% of the patients. The most common factors were prior use of antibiotics especially ceftazidime and indwelling medical devices. The susceptibility of *A.baumannii* to carbapenems, aminoglycosides, beta-lactam/ beta-lactamase inhibitors, co-trimoxazole, fluoroquinolone, 4th generation cephalosporins and 3rd generation cephalosporins was 32%, 16%, 12 %, 9%, 7%, 4% and 3%, respectively. Fifty-seven percent of *A.baumannii* isolates were resistant to all antimicrobials currently available in Thailand. The overall mortality rate of the patients infected with *A.baumannii* was 54.7%.

Conclusion: Most A.baumannii infections in Siriraj were hospital-acquired. The most common site of infection was the respiratory tract. The majority of A.baumannii isolates was multi-drug resistant. The mortality rate of A.baumannii infections was high.

Keywords: Acinetobacter baumannii infections; Epidemiology

Siriraj Med J 2006; 58: 951-954 E-journal: http://www.sirirajmedj.com

cinetobacter spp. is aerobic gram negative bacilli. Healthy individuals can harbor this organism on their skin especially over the moist areas. Skin colonization rate of in hospitalized patients was significantly more than that in healthy individuals. This observation implies that the patients should acquire the organism while hospitalization. Acinetobacter spp. is also commonly found in hospital environments and it can be transmitted to the patients via hospital personnel and contaminated instruments or devices. Acinetobacter baumannii is the most common species of Acinetobacter causing infections in human. Over the past decade, there have been many reports on Acinetobacter spp. as a common causative pathogen in intensive care unit patients and the infection was associated with indwelling medical devices, e.g., ventilator-associated pneumonia, catheter-associated

urinary tract infection, blood stream infection associated with intravascular devices. ^{1,2} *Acinetobacter* spp. is usually resistant to many antibiotics including cephalosporins, aminoglycosides and fluoroquinolones due to various resistance mechanisms. ³ *Acinetobacter* spp. is one of the most common causes of hospital acquired infections in Thailand. ⁴ To our knowledge there has been no report on epidemiology of *Acinetobacter baumannii* infections in Thailand. Therefore, this study attempted to determine the clinical features, risk factors, clinical course and outcomes of patients infected with *A.baumannii* in Siriraj Hospital in 2002.

MATERIALS AND METHODS

This is a prospective study conducted in Siriraj Hospital, a tertiary care university hospital, from January to December 2002. The hospitalized patients who had *A. baumannii* isolated from their clinical specimens submit-

Correspondence to: Visanu Thamlikitkul E-mail: sivth@mahidol.ac.th

TABLE 1. Underlying diseases of 86 patients with *A.baumannii* infections.

Diseases	N (%)*
Cerebrovascular disease	27 (31.4)
Hypertension	24 (27.9)
Diabetes mellitus	23 (26.7)
Cancer	14 (16.3)
Chronic renal failure	14 (16.3)
Ischemic heart disease	10 (11.6)
Chronic obstructive pulmonary disease	9 (10.5)
Neutropenia	4 (4.7)
Cirrhosis	1 (1.2)
Others	23 (26.7)

^{*} The patient could have more than one disease.

ted to Microbiology Laboratory were notified to the investigators. Then clinical information and microbiological information of the patients were collected, and the patients were followed until they left the hospital or died. The collected information was analyzed by descriptive statistics

RESULTS

A. baumannii was isolated from clinical specimens of 208 patients during the study period. Eighty-six patients (41.3%) were infected, i.e. the patients who had clinical features of infection at the site where A. baumannii was isolated, whereas 122 (58.7%) were colonization, i.e., the patients who did not have clinical features of infection at the site where A. baumannii was isolated or the patients who had clinical features of infection at the site where the organism was isolated but the infection was caused by other organisms. Patients with A. baumannii infections were males in 54.7% and the mean age was 56.1 years with a range from 6 days to 91 years. Ninety percent of A. baumannii infected patients had underlying diseases as shown in Table 1. The common underlying diseases were cerebrovascular diseases, hypertension and diabetes mellitus. Forty-eight percent of the patients were hospitalized in general wards whereas 52% were in intensive care units. The patients were admitted to medical, surgical and pediatrics department in 61%, 23% and 9%, respectively. Almost all infections (97.7%) were hospital-acquired: which were those occurred in patients after hospitalization for longer than 48 hours. Almost all patients (98.8%) had factors that might be associated with A. baumannii infections as shown in Table 2. The most common factors

TABLE 2. The factors associated with *A.baumannii* infections in 86 patients.

Factors	N (%)*
Antibiotics	85 (98.8)
Peripheral intravascular devices	82 (95.3)
Urinary catheter	73 (84.9)
Nasogastric tube	69 (80.2)
Endotracheal tube	62 (72.1)
Ventilator	62 (72.1)
Surgery	39 (45.3)
Central intravascular devices	38 (44.2)
Immunosuppressives	9 (10.5)
Chemotherapy	5 (5.8)
Parenteral nutritution	5 (5.8)
Others	27 (31.4)

^{*} The patient could have more than one factor.

TABLE 3. The sites of A.baumannii infections in 86 patients.

Sites of infection	N (%)*
Respiratory tract	59 (68.6)
Skin and soft tissues	17 (19.8)
Bacteremia	6 (7.0)
Urinary tract	4 (4.7)
Nervous system	3 (3.5)
Gastrointestinal tract	3 (3.5)
Others	1 (1.2)

^{*} The patient could have more than one site of infection.

were prior use of antibiotics especially ceftazidime and indwelling medical devices. The patients developed infections after an average of 26 days of hospitalization. The sites of A. baumannii infections are shown in Table 3. The common sites were respiratory tract and skin and soft tissues. Seventy-one percent of the patients had A. baumannii as a single pathogen, whereas 29% had mixed infections with others such as Pseudomonas aeruginosa and Staphylococcus aureus. Patients with respiratory tract infections tended to have mixed infections more often than infections in other sites. Almost all patients (98.8%) received various antibiotics prior to having A. baumannii infections as shown in Table 4. Ceftazidime was an antibiotic commonly given to the patients. The susceptibility of A. baumannii to carbapenems, aminoglycosides, betalactam/ beta-lactamase inhibitors, co-trimoxazole, fluoroquinolone, 4th generation cephalosporins and 3rd generation cephalosporins was 32%, 16%, 12 %, 9%, 7%, 4% and 3%, respectively. A. baumannii was resistant to all antimicrobials currently available in Thailand in 57% of the isolates. The patients with A. baumannii infections were usually treated with meropenem, imipenem and cefoperazone/sulbactam as shown in Table 5. The overall mortality rate of patients infected with A. baumannii was 54.7% and most of them died of multi-drug resistant A. baumannii infections. The mortality rate in those patients infected with pan-drug resistant A. baumannii was higher than those infected with sensitive strains.

DISCUSSION

Our study found that less than 50% of the patients whose A. baumannii was present in their clinical speci-

TABLE 4. Antibiotics given to the patients prior to developing *A.baumannii* infections in 86 patients.

Antibiotics	N (%)*
Ceftazidime	28 (32.6)
Meropenem	21 (24.4)
Ceftriaxone	18 (20.9)
Amikacin	14 (16.3)
Vancomycin	14 (16.3)
Imipenem	11 (12.8)
Metronidazole	11 (12.8)
Cefoperazone/sulbactam	10 (11.6)
Ciprofloxacin	9 (10.5)
Cefotaxime	7 (8.1)
Netilmicin	7 (8.1)
Clindamycin	6 (7.0)
Cefepime	5 (5.8)
Amphotericin B	5 (5.8)
Fluconazole	1 (1.2)
Others	23 (26.7)

^{*} The patient could have more than one antibiotic.

TABLE 5. Antibiotics for treating *A.baumannii* infections in 86 patients.

Antibiotics	N (%)*
Meropenem	23 (26.7)
Imipenem	14 (16.3)
Cefoperazone/sulbactam	9 (10.5)
Amikacin	8 (9.3)
Netilmicin	5 (5.8)
Ciprofloxacin	4 (4.7)
Ceftazidime	3 (3.5)
Others	29 (33.7)

^{*} The patient could have more than one antibiotic.

mens were infections, whereas the majority were colonization. Therefore, healthcare providers should be aware of this observation and should avoid antibiotic treatment of patients with A. baumannii colonization. Acinetobacter spp. has been recognized as an important nosocomial pathogen over the past decade. It is usually resistant to many antibiotics empirically used for infections caused by other aerobic gram negative bacilli such as cephalosporins. As a result, the mortality of patient infected with Acinetobacter spp. is rather high. A report in Thailand revealed that Acinetobacter spp. was the most common cause of ventilatory associated pneumonia in a university hospital.⁵ Our study observed that A. baumannii infections are more common in middle-age males. However, the patients could be babies and the elderly as seen in other studies. 6-10 This study also confirmed the observations made by others that almost all patients infected with A. baumannii were hospitalized longer than 48 hours. The other two patients who developed A. baumannii infections within 48 hours of hospitalization were those who were transferred to Siriraj Hospital from other hospitals. However, our study revealed that A. baumannii infections were similarly distributed in general wards and intensive care units (ICU) that was different from other studies. 11 This discrepancy could be explained by the fact that many patients in general wards in Siriraj Hospital were seriously ill but they were unable to be transferred to ICU due to a limited number of ICU beds. The average duration of hospitalization until developing A. baumannii infections in our study was 26 days that was longer than 10 to 14 days found in other studies.^{8,12,14} However, is has been found that a long duration of hospitalization was associated with A. baumannii infections.6 † Although A. baumannii can cause infections in any organs, the common sites of infections seen in our study were respiratory tract and skin and soft tissues similar to other studies. Factors found to be associated with A. baumannii infections were, namely: cancer, indwelling medical devices, antibiotics, parenteral nutrition, surgery, severe underlying diseases and duration of hospitalization. ¹²⁻¹⁵ Our study also observed that antibiotics, especially ceftazidime, and indwelling medical devices were common in patients infected with A. baumannii. In vitro susceptibility of A. baumannii revealed that the pathogen was usually resistant to antibiotics active for other aerobic gram negative bacilli and more than 50% of the isolates were resistant to all antibiotics currently available in Thailand. Therefore, antibiotics to be used for treating A. baumannii infections were limited. These included carbapenems, aminoglycosides and beta-lactam/ beta-lactamase inhibitors. An overall mortality of patients with A. baumannii infections was 54.7% and most of them died of multi-drug resistant A. baumannii infections. Polymyxins were found to be safe

and effective for treatment of multi-drug resistant *A. baumannii* infections. ¹⁶ *In vitro* studies of polymyxins against *A.baumannii* resistant to all antibiotics currently available in Thailand revealed that all isolates were susceptible to polymyxins. ¹⁷ Polymyxin E has just been available in Thailand since January 2005 and the clinical trial on safety and efficacy of polymyxin E for treatment of A.baumannii infections is being conducted in Siriraj Hospital. New antibiotics such as glycylcycline were found to be active against multi-drug resistant *A.baumannii* and these antibiotics should have a role in treatment of *A.baumannii* infections in the near future.

ACKNOWLEDGEMENTS

The authors would like to thank Infectious Disease Association of Thailand and Thailand Research Fund for supporting this study.

REFERENCES

- Bergogne-Berezin E, Towner KJ. Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev 1996; 9: 148-65.
- Quinn JP. Clinical problems posed by multiresistant nonfermenting gramnegative pathogens. Clin Infect Dis 1998; 27(Suppl 1): S117-24.
- Hancock RE. Resistance mechanisms in *Pseudomonas aeruginosa* and other nonfermentative gram-negative bacteria. Clin Infect Dis 1998; 27(Suppl 1): S93-9.
- Thamlikitkul V, Jintanothaitavorn D, Sathitmathakul R, Vaithayapiches S, Trakulsomboon S, Danchaivijitr S. Bacterial infections in hospitalized patients in Thailand in 1997 and 2000. J Med Assoc Thai 2001; 84: 666-73.
- ศิริลักษณ์ อภิวาณิชย์, วาทินี คัชมาตย์, บรรจง วรรณยิง. การเฝ้าระวังโรค ปอดบวมจากการใช้เครื่องช่วยหายใจของผู้ป่วยอายุรกรรมในโรงพยาบาล รามาธิบดี. จุลสารชมรมควบคุมโรคติดเชื้อในโรงพยาบาลแห่งประเทศไทย 2000; 10: 33-41.
- Mulin B, Talon D, Viel JF, Vincent C, Leprat R, Thouverez M, et al. Risk factors for nosocomial colonization with multiresistant Acinetobacter baumannii. Eur J Clin Microbiol Infect Dis 1995; 14: 569-76.
- Wisplinghoff H, Perbix W, Seifert H. Risk factors for nosocomial bloodstream infections due to Acinetobacter baumannii: a case-control study of adult burn patients. Clin Infect Dis 1999; 28: 59-66.
- Siau H, Yuen KY, Ho PL, Wong SS, Woo PC. Acinetobacter bacteremia in Hong Kong: prospective study and review. Clin Infect Dis 1999; 28: 26-30.
- Hanberger H, Garcia-Rodriguez JA, Gobernado M, Goossens H, Nilsson LE, Struelens MJ. Antibiotic susceptibility among aerobic gram-negative bacilli in intensive care units in 5 European countries. French and Portuguese ICU Study Groups. JAMA 1999; 281: 67-71.
- Koprnova JB, Svetlansky IM, Bilikova EB, Babela RM, Krcmery V. Acinetobacter baumannii bacteremia in children. Pediatr Infect Dis J 2001; 20: 1183.
- Cisneros JM, Reyes MJ, Pachon J, Becerril B, Caballero FJ, Garcia-Garmendia JL, et al. Bacteremia due to Acinetobacter baumannii: epidemiology, clinical findings, and prognostic features. Clin Infect Dis 1996; 22: 1026-32.
- Villers D, Espaze E, Coste-Burel M, Giauffret F, Ninin E, Nicolas F, et al. Nosocomial Acinetobacter baumannii infections: microbiological and clinical epidemiology. Ann Intern Med 1998; 129: 182-9.
- Husni RN, Goldstein LS, Arrologa AC, Hall GS, Fatica C, Stoller JK, et al. Risk factors for an outbreak of multi-drug-resistant acinetobacter noso comial pneumonia among intubated patients. Chest 1999; 115: 1378-82.
- Lortholary O, Fagon JY, Hoi AB, Slama MA, Pierre J, Giral P, et al. Nosocomial acquisition of multiresistant *Acinetobacter baumannii*: risk factors and prognosis. Clin Infect Dis 1995; 20: 790-6.
- Mahgoub S, Ahmed J, Glatt AE. Underlying characteristics of patients harboring highly resistant Acinetobacter baumannii. Am J Infect Control 2002; 30: 386-90.
- Falagas ME, Kasiakou SK. Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin Infect Dis 2005; 40: 1333-41.

- Tribuddharat C, Tiensasitom C, Techachaiwiwat W, Rugdeekha S, Dhiraputra C, Thamlikitkul V. In Vitro Activity of Polymyxin B and Polymyxin E against Multi-Drug Resistant *Pseudomonas aeruginosa* and *Acinetobacter* baumannii. J Antimicrob Agents Chemothera 2003: 20: 135-7.
- Milatovic D, Schmitz FJ, Verhoef J, Fluit AC. Activities of the glycylcycline tigecycline (GAR-936) against 1,924 recent European clinical bacterial isolates. Antimicrob Agents Chemother 2003; 47: 400-4.

บทคัดย่อ

ระบาดวิทยาของการติดเชื้อ Acinetobacter baumannii ในโรงพยาบาลศิริราช พ.ศ. 2545

อนุวัฒน์ กีระสุนทรพงษ์ พ.บ.*, ชาติชาย สามัคคีนิชย์ พ.บ.*, ชาญวิทย์ ตรีพุทธรัตน์ พ.บ.**, วิษณุ ธรรมลิขิตกุล พ.บ.*

*ภาควิชาอายุรศาสตร์, **ภาควิชาจุลชีววิทยา, คณะแพทยศาสตร์ศิริราชพยาบาล, มหาวิทยาลัยมทิดล, กทม. 10700, ประเทศไทย.

วัตถุประสงค์: เพื่อทราบระบาควิทยาการติดเชื้อ A.baumannii ในผู้ป่วยที่รับไว้รักษาในโรงพยาบาลศิริราชในปี พ.ศ. 2545
วิธีการ: เฝ้าระวังการตรวจพบเชื้อ A.baumannii ที่ห้องปฏิบัติการจุลชีววิทยาจากตัวอย่างตรวจที่เก็บจากผู้ป่วยที่รับไว้รักษาโรงพยาบาลศิริราชตั้งแต่วันที่ 1 มกราคม ถึง 31 ธันวาคม 2545 แล้วติดตามผู้ป่วยที่มีการติดเชื้อดังกล่าวโดยเก็บข้อมูลต่าง ๆ ที่เกี่ยวข้องเพื่อนำมาวิเคราะห์ ผลการศึกษา: มีผู้ป่วยที่แยกได้เชื้อ A.baumannii จากสิ่งส่งตรวจจำนวน 208 ราย ในจำนวนนี้เป็นการติดเชื้อจำนวน 86 ราย (ร้อยละ 41.3) ส่วนอีก 122 ราย (ร้อยละ 58.7) เป็น colonization, ผู้ป่วยที่ดิดเชื้อ 86 รายเป็นชายร้อยละ 54.7 และหญิงร้อยละ 45.3, ผู้ป่วยมีอายุเฉลี่ย 56.1 ปี, การติดเชื้อร้อยละ 98 เป็นการ ติดเชื้อในโรงพยาบาล, ระยะเวลาเฉลี่ยของการอยู่ในโรงพยาบาลก่อนมีการติดเชื้อ 26 วัน, ผู้ป่วยร้อยละ 52 อยู่ที่หอผู้ป่วยสามัญและผู้ป่วยร้อยละ 48 อยู่ที่ หออภิบาล, ตำแหน่งที่มีการติดเชื้อโดยปัจจัยที่พบบ่อยคือการได้ รับยาต้านจุลชีพโดยเฉพาะอย่างยิ่ง ceftazidime และการมีสายเข้าสู่ร่างกาย, อัตราการคื้อยาของเชื้อ A.baumannii ต่อ carbapenems, aminoglycosides, beta-lactam/beta-lactamase inhibitors, co-trimoxazole, fluoroquinolone, 4th generation cephalosporins และ 3rd generation cephalosporins เป็นร้อยละ 32, 16, 12, 9, 7, 4 และ 3 ตามลำคับ เชื้อ A.baumannii ร้อยละ 57 คื้อต่อยาต้านจุลชีพทุกขนานที่มีในประเทศไทย และผู้ป่วยที่ติดเชื้อ A.baumannii เสียชีวิตร้อยละ 54.7

สรุป: การติดเชื้อ A.baumannii ในผู้ป่วยที่รับไว้รักษาในโรงพยาบาลศิริราชเกือบทั้งหมดเป็นการติดเชื้อในโรงพยาบาล การติดเชื้อส่วนมากเป็นที่ระบบการ หายใจ เชื้อก่อโรคส่วนมากดื้อต่อยาด้านจุลชีพทุกขนานที่มีในประเทศไทย และผู้ป่วยที่ติดเชื้อนี้มีอัตราตายสูง

In Vitro Activity of Tigecycline against Clinical Isolates of Multidrug-Resistant *Acinetobacter baumannii* in Siriraj Hospital, Thailand

Surapee Tiengrim MSc*, Chanwit Tribuddharat MD**, Visanu Thamlikitkul MD*

* Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University

In vitro activity of tigecycline against 148 strains of Acinetobacter baumannii isolated from different patients hospitalized at Siriraj Hospital, Bangkok, Thailand during 2002 to 2005 was conducted. These isolates were resistant to beta-lactams, aminoglycosides and fluoroquinolones. In vitro susceptibilities were determined by Kirby-Bauer disk diffusion, E-test and broth microdilution methods. The MIC_{50} and MIC_{90} values of tigecycline against A. baumannii determined by the broth microdilution method were 0.5 and 1 mg/L respectively. The MICs of tigecycline determined by E-test were 4-fold higher than those from the broth microdilution method. An inhibition zone of ≥ 13 mm was well correlated with a tigecycline MIC of ≤ 2 mg/L and had a sensitivity of 99% and a specificity of 100%. The study results indicated that 97.3% of MDR A. baumannii strains isolated from the patients hospitalized at Siriraj Hospital were susceptible to tigecycline. Tigecycline may prove to be an important antibiotic for treatment of multidrug-resistant A. baumannii infections in Thailand in the near future.

Keywords: Tigecycline, Acinetobacter baumannii

J Med Assoc Thai 2006; 89 (Suppl 5): S102-5

Full text. e-Journal: http://www.medassocthai.org/journal

Acinetobacter baumannii has emerged as a worldwide problem in causing infections in hospitalized patients(1-3). A. baumannii is one of the most common causative pathogens in nosocomial pneumonia, bacteraemia, urinary tract infections, and skin and soft tissue infections, and the mortality associated with these infections is high. The incidence of infections caused by multidrug-resistant (MDR) pathogens, particularly Acinetobacter baumannii and Pseudomonas aeruginosa, in Thailand has dramatically increased⁽⁴⁾. A prospective study of 208 clinical isolates of A. baumannii recovered from patients in Siriraj Hospital from January to December 2002 revealed that 86 strains (41.3%) were isolated from infected patients and the remaining 58.7% were colonizers⁽⁵⁾. In this study, 57% of A. baumannii isolates were resis-

Correspondence to: Thamlikitkul V, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand. Phone: 0-2412-5994, Fax: 0-2412-5994, E-mail: sivth@mahidol.ac.th

tant to all antimicrobial agents available in Thailand including beta-lactams, aminoglycosides and fluoroquinolones, and the overall mortality rate of the patients infected with pandrug-resistant *A. baumannii* was 79%⁽⁵⁾. The study of 104 clinical isolates of *A. baumannii* from 100 hospitalized patients at Maharaj Nakorn Chiang Mai Hospital, Thailand also observed that 46% of the isolates were pandrug-resistant and the overall mortality was 52%⁽⁶⁾. The only available antibiotic effective for treating infections caused by *A. baumannii* resistant to all beta-lactams,aminoglycosides and fluoroquinolones is colistin⁽⁷⁾, hence a search for new agents effective against MDR *A. baumannii* is needed.

Tigecycline is a glycylcycline antibiotic that shows promising activity against a wide range of organisms including multi-drug resistant gram positive cocci and gram negative bacilli⁽⁸⁾. The objective of the study was to determine in vitro activity of tigecycline against clinical isolates of MDR *A. baumannii* in

^{**} Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University

Siriraj Hospital, Thailand.

Material and Method

One hundred and forty-eight strains of A. baumannii isolated from different infected patients hospitalized at Siriraj Hospital, Bangkok, Thailand during 2002 to 2005 were included. These isolates were resistant to all beta-lactams, aminoglycosides, and fluoroguinolones. In vitro susceptibilities of MDR A. baumannii to tigecycline were determined by Kirby-Bauer disk diffusion, E-test, and broth microdilution methods. Paper disc containing tigecycline 15 µg per disk (Becton Dickinson, USA), E-test strips (AB BIODISK, Sweden) and gram negative MicroScan MIC panels (Dade Behring Inc., USA) were provided by Wyeth Research. The methodology for susceptibility testing was done by direct colony suspension according to guidelines suggested by CLSI (9). Quality control was performed by testing the susceptibility of E. coli ATCC 25922 as recommended by Wyeth Research.

Results

A distribution of inhibition zone diameters of tigecycline against A. baumannii is shown in Table 1. The MIC_{50} and MIC_{90} values of tigecycline against A. baumannii determined by E-test were 2 and 4 mg/L respectively. The MIC₅₀ and MIC₉₀ values of tigecycline against A. baumannii determined by the broth microdilution method were 0.5 and 1 mg/L respectively. There was a significant correlation between inhibition zone diameters and MICs determined by the broth microdilution method (p<0.001, r = -0.8), and between MICs of tigecycline determined by E-test and MICs determined by the broth microdilution method (p<0.001, r=0.9). The accuracy of the inhibition zone diameter of ≥13 mm in predicting susceptibility of A.baumannii to tigecycline is shown in Table 2. If the MIC of tigecycline at ≤2 mg/L was considered as a breakpoint for tigecycline susceptibility, the inhibition zone diameter of≥13 mm had a sensitivity of 99% and a specificity of 100% in predicting the susceptibility of A.baumannii to tigecycline and 97.3% of MDR A.baumannii were susceptible to tigecycline.

Discussion

The previous studies on the in vitro activity of tigecycline against A.baumannii by the broth microdilution method revealed that the MIC₅₀ and the MIC₉₀ for tigecycline were 0.5-1 and 2 mg/L respectively, and more than 90% of these isolates had MICs ≤ 2 mg/L and were considered susceptible to

tigecycline(10, 11). Carbapenem-resistant A. baumannii isolates were still susceptible to tigecycline with comparable MICs to the aforementioned values^(12, 13). However, in vitro activity of tigecycline against A. baumannii by the agar dilution method observed that the MIC₅₀ and the MIC₉₀ for tigecycline against A.baumannii were 8 and 8 mg/L respectively(14). These findings implied that the different methods of in vitro susceptibility testing of tigecycline against A. baumannii might yield different results. The breakpoints for the inhibition zone diameter and MIC of tigecycline against A.baumannii are not available. The US FDA-approved breakpoints of tigecycline against Enterobacteriaceae to be used by the local laboratory were inhibition zone diameter ≥19 mm and a $MIC \le 2 \text{ mg/L}^{(9)}$. The previous studies on in vitro activity of tigecycline against A. baumannii used such a MIC breakpoint(10-14). It is not known if the testing methods used in general microbiology laboratories, disk diffusion and E-tests, are accurate in predicting the MICs of tigecycline against A. baumannii.

The MIC_{50} and the MIC_{90} of tigecycline against $A.\ baumannii$ determined by the broth microdilution method observed in our study were similar to those reported in the literature (10-13) and 97.3% of MDR $A.\ baumannii$ isolated from the hospitalized patients at Siriraj Hospital were susceptible to tigecycline. However, our findings indicated that there was a discrepancy in the susceptibility results of tigecycline against $A.\ baumannii$ for the different

Table 1. Distribution of the inhibition zone diameter of tigecycline against 148 isolates of MDR A. baumannii

Inhibition Zone Diameter (mm)	Number of Isolates (%)
11	1 (0.7)
12	4 (2.7)
13	4 (2.7)
15	8 (5.4)
16	11 (7.4)
17	20 (13.5)
18	34 (23.0)
19	21 (14.2)
20	17 (11.5)
21	16 (10.8)
22	8 (5.4)
23	3 (2.0)
26	1 (0.7)

Table 2. Accuracy of the inhibition zone diameter of ≥13 mm in predicting the susceptibility of *A.baumannii* to tigecycline

	MIC (MicroScan) ≤ 2 mg/L	MIC (MicroScan) > 2 mg/L
Inhibition Zone Diameter ≥13 mm Inhibition Zone Diameter <13 mm	143 1	0 4

methods of testing. The MICs determined by E-test were usually 4-fold higher than those determined by the broth microdilution method and E-test might not be an accurate method for in vitro susceptibility testing of tigecycline against A. baumannii. Moreover, our study also observed that the US FDA-approved breakpoint of tigecycline against Enterobacteriaceae, to be used by the local laboratory, of an inhibition zone diameter \geq 19 mm, was not applicable to tigecycline against A. baumannii. The breakpoint for an inhibition zone diameter >13 mm was more accurate in predicting susceptibility of A.baumannii to tigecycline with a sensitivity of 99% and a specificity of 100%. Our findings of good in vitro activity of tigecycline against MDR A. baumannii warrant a clinical study to prove its efficacy and to determine whether such proposed breakpoint and testing methods are valid.

Acknowledgements

We wish to thank Wyeth Research for providing E-test strips and MicroScan gram negative panels for tigecycline susceptibility test and The Thailand Research Fund for supporting the study.

References

- 1. Bergogne-Berezin E, Towner KJ. *Acinetobacter* spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev 1996; 9: 148-65.
- Livermore DM. Multiple mechanisms of antimicrobial resistance in *Pseudomonas aeruginosa*: our worst nightmare? Clin Infect Dis 2002; 34: 634-40.
- 3. Hanberger H, Diekema D, Fluit A, Jones R, Struelens M, Spencer R, et al. Surveillance of antibiotic resistance in European ICUs. J Hosp Infect 2001; 48: 161-76.
- Thamlikitkul V, Jintanothaitavorn D, Sathitmethakul R, Vaithayaphichet S, Trakulsomboon S, Danchaivijitr S. Bacterial infections in hospitalized patients in Thailand in 1997 and 2000. J Med Assoc Thai 2001; 84: 666-73.
- 5. Keerasuntonpong A, Samakeepanich C, Tribuddharat C. Epidemiology of *Acinetobacter*

- *baumannii* infections in Siriraj Hospital. Siriraj Medical Journal 2006;58:951-4.
- Chaiwarith R, Mahatthanaphak S, Boonchoo M, Supparatpinyo K, Sirisanthana T. Pandrugresistance *Acinetobacter baumannii* at Maharaj Nakorn Chiang Mai Hospital. J Infect Dis Antimicrob Agents 2005; 22: 1-8.
- 7. Koomanachai P, Tiengrim S, Kiratisin P, Thamlikitkul V. Efficacy and safety of colistimethate sodium for therapy of infections caused by multi-drug-resistant *Pseudomonas aeruginosa* and *Acinetobacter baumannii* in Siriraj Hospital, Bangkok, Thailand. Abstract presented at the annual meeting of the Royal College of Physicians of Thailand, April 2006.
- 3. Stein GE, Craig WA. Tigecycline: a critical analysis. Clin Infect Dis 2006; 43: 518-24.
- Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing - 15th Informational Supplement. Approved Standard, CLSI document M100-S15. Wayne, Pa: Clinical and Laboratory Standards Institute; 2005.
- Bouchillon SK, Hoban DJ, Johnson BM, Johnson JL, Hsiung A, Dowzicky MJ. In vitro activity of tigecycline against 3989 Gram-negative and Grampositive clinical isolates from the United States Tigecycline Evaluation and Surveillance Trial (TEST Program; 2004). Diagn Microbiol Infect Dis 2005; 52: 173-9.
- 11. Sader HS, Jones RN, Dowzicky MJ, Fritsche TR. Antimicrobial activity of tigecycline tested against nosocomial bacterial pathogens from patients hospitalized in the intensive care unit. Diagn Microbiol Infect Dis 2005; 52: 203-8.
- Pachon-Ibanez ME, Jimenez-Mejias ME, Pichardo C, Llanos AC, Pachon J. Activity of tigecycline (GAR-936) against *Acinetobacter baumannii* strains, including those resistant to imipenem. Antimicrob Agents Chemother 2004; 48: 4479-81.
- 13. Henwood CJ, Gatward T, Warner M, James D, Stockdale MW, Spence RP, et al. Antibiotic resistance among clinical isolates of *Acinetobacter* in

the UK, and in vitro evaluation of tigecycline (GAR-936). J Antimicrob Chemother 2002; 49: 479-87.

14. Zhang YY, Zhou L, Zhu DM, Wu PC, Hu FP, Wu

WH, et al. In vitro activities of tigecycline against clinical isolates from Shanghai, China. Diagn Microbiol Infect Dis 2004; 50: 267-81.

การทดสอบฤทธิ์ของ tigecycline ต่อ Acinetobacter baumannii ที่ดื้อยาต้านจุลชีพหลายขนานที่ แยกได้จากผู้ป่วยในโรงพยาบาลศิริราช

สุรภี เทียนกริม, ชาญวิทย์ ตรีพุทธรัตน์, วิษณุ ธรรมลิขิตกุล

ผู้วิจัยได้ทดสอบฤทธิ์ของ tigecycline ต่อ Acinetobacter baumannii ที่ดื้อยาต้านจุลชีพหลายขนานที่ แยกได้จากผู้ป่วยของโรงพยาบาลศิริราชระหว่าง พ.ศ. 2545 ถึง พ.ศ. 2548 จำนวน 148 สายพันธุ์ด้วยวิธี disk diffusion และวัด minimum inhibitory concentration (MIC) ด้วย E-test และ broth microdilution พบว่า 1) ค่า MIC_{50} และ MIC_{90} ของ tigecycline ต่อ A. baumannii ที่ดื้อยาต้านจุลชีพหลายขนานที่ทดสอบด้วยวิธี broth microdilution เท่ากับ 0.5 มก./ล. และ 1 มก./ล. ตามลำดับ 2) ค่า MIC_{50} และ MIC_{90} ของ tigecycline ต่อ A. baumannii ที่ดื้อยาต้านจุลชีพหลายขนานที่ทดสอบด้วยวิธี E-test มีค่ามากกว่าค่า MIC ที่ได้จากวิธี broth microdilution ประมาณ 4 เท่า 3) เส้นผ่านศูนย์กลางของ inhibition zone ของ tigecycline \geq 13 มม.เป็นค่าที่เหมาะสม สำหรับพิจารณา ความไวของ A. baumannii ต่อ tigecycline หากใช้เกณฑ์ $MIC \leq 2$ มก./ล. ในการระบุว่า A. baumannii ไวต่อ tigecycline โดยมีความไวร้อยละ 99 และความจำเพาะร้อยละ 100, 4) Acinetobacter baumannii ที่ดื้อยาต้านจุลชีพหลายขนานร้อยละ 97.3 ไวต่อ tigecycline ดังนั้น tigecycline น่าจะมีประโยชน์ในการรักษาโรคติดเชื้อ Acinetobacter baumannii ที่ดื้อยาต้านจุลชีพหลายขนานในประเทศไทย