

บทคัดย่อ

รหัสโครงการ: MRG4680075

ชื่อโครงการ: การเตรียมแผ่นกรองเซรามิกที่เหมาะสมสำหรับนำไปประยุกต์ใช้จับเก็บฝุ่นจากแก๊ส
ที่มีอุณหภูมิสูง

ชื่อผู้วิจัยและสถาบัน: รศ. ดร. มนัส อมรกิจบำรุง
มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี

E-mail Address: mana.amo@kmutt.ac.th

ระยะเวลาโครงการ : 1 กรกฎาคม 2546 – 30 เมษายน 2552

งานวิจัยนี้ได้ทำการเตรียมตัวกรองเซรามิก โดยจุ่มฟองน้ำในน้ำดิน PBA ในแม่พิมพ์โลหะ (ขนาด 20 ซม. \times 20 ซม. \times 2.0 ซม.) ทึ้งไว้ให้แห้งในบริเวณอากาศนิ่งเพื่อให้น้ำระเหยออกไปอย่างช้า ๆ จนน้ำนำไปเผาที่อุณหภูมิ 700°C, 900°C และ 1,250°C เป็นเวลา 1 ชั่วโมง ตัวกรองเซรามิกที่เผาแล้วถูกส่งไปวิเคราะห์การแยกแขงขนาดของรูพรุน ความพรุน และความแข็งแรงเชิงกล พบว่าตัวกรองเซรามิกที่เผาที่อุณหภูมิ 700°C มีขนาดรูพรุนเฉลี่ยเท่ากับ $0.35 \mu\text{m}$ ค่าความพรุน 62.92% และมีความแข็งแรงเชิงกลเท่ากับ $0.20 \pm 0.05 \text{ MPa}$ ตัวกรองเซรามิกที่เผาที่อุณหภูมิ 900°C มีขนาดรูพรุนเฉลี่ยเท่ากับ $0.96 \mu\text{m}$ มีความพรุน 73.72% และมีความแข็งแรงเชิงกลเท่ากับ $0.38 \pm 0.08 \text{ MPa}$ ส่วนตัวกรองเซรามิกที่เผาที่อุณหภูมิ 1,250°C มีขนาดรูพรุนเฉลี่ยเท่ากับ $27.06 \mu\text{m}$ มีความพรุน 23.46% และมีความแข็งแรงเชิงกลเท่ากับ $3.05 \pm 0.32 \text{ MPa}$ ผลการทดลองที่ได้แสดงให้เห็นว่า ตัวกรองเซรามิกที่อุณหภูมิการเผา 1,250°C มีความเหมาะสมที่สุด เนื่องจากมีความแข็งแรงเชิงกลสูงกว่า อีกทั้งมีความพรุนและขนาดรูพรุนที่เหมาะสม สำหรับการทดสอบประสิทธิภาพในการกรองฝุ่น กระทำที่สภาวะการกรองแบบเป็นวงเดียวโดยใช้ความเร็วในการกรองเท่ากับ 3, 5 และ 7 cm/s อัตราการป้อนฝุ่นเท่ากับ 7.5 g/min และความดันลดก่อนໄล่เค็กฝุ่นเท่ากับ 500, 700 และ 900 Pa พบว่าประสิทธิภาพในการกรองฝุ่นมีค่าใกล้เคียงกัน โดยมีค่าอยู่ในช่วง 98-99%

คำหลัก: การกรอง / การทำความสะอาดแก๊ส / ตัวกรองเซรามิก / เก้าออย

ABSTRACT

Project Code: MRG4680075

Project Title: Preparation of Ceramic Membrane Filter Suitable for Hot Gas Cleaning Application

Investigator: Assoc. Prof. Dr. Mana Amornkitbamrung

E-mail Address: mana.amo@kmutt.ac.th

Project Period: 1 July 2003 – 30 April 2009

Ceramic filters were prepared by soaking the sponge in PBA soil/water slurry in a steel mold (20 cm × 20 cm × 2.0 cm). The soaked samples were slowly dried using ambient air and then sintered at 700°C, 900°C and 1,250°C for 1 hour. The sintered samples were characterized to determine pore size distribution, porosity and mechanical strength. It was found that the sample, which was sintered at 700°C, had an average pore size of 0.35 µm, a porosity of 62.92% and a compressive strength of 0.20 ± 0.05 MPa. The sample sintered at 900°C, had an average pore size of 0.96 µm, a porosity of 73.72% and compressive strength of 0.38 ± 0.08 MPa. When the sample was sintered at 1,250°C, the average pore size, porosity and compressive strength were 27.06 µm, 23.46% and 3.05 ± 0.32 MPa, respectively. These results indicated that the sample sintered at 1,250°C was most suitable because it had an optimal porosity and size, together with higher compressive strength. To investigate the filtration efficiency, the batch operation was performed at filtration velocity of 3, 5 and 7 cm/s, dust feed rate of 7.5 g/min and final pressure drop of 500, 700 and 900 Pa. It was found that filtration efficiencies at such operating conditions were insignificantly different, with the value being in between 98% and 99%

Keywords: Ceramic Filter/ Filtration / Fly Ash / Gas Cleaning