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1 INTRODUCTION

OUS applications of dielectric materials
now advancing in the forms of dielectric particles
n a fluid dielectric. For example, electrorheo-
) fluid [1,2] utilizes the interaction between
a fluid dielectric. In these applications, we are
rested in the amount of force acting on parti-
can be often modeled as dielectric spheres.
orce highly depends on the electric field on the
face [3], the precise calculation of the electric
portant for these applications. Generally, the
ld can be calculated either by analytical meth-
umerical field calculation. The analytical meth-
exact selution of electric field, but are not
cable for a practical arrangement, especially
lation arrangement is complicated. On the
merical methods can calculate the electric
retically any complicated arrangement, but
of the results may be sometimes question-
> of such factors as imperfect shape simula-

teceived on § December 2002, in final form 26 March 2003,

Vol. 10, No. 4; August 2003 623

- Calculation of the Electric Field for Lined-up Spherical
Dielectric Particles

Boonchai Techaumnat

Department of Electrical Engineering
ulalongkorn University
Phyathai Road, Pathumwan, Bangkok 10330, Thailand

and Tadasu Takuma
Central Research Institute of Electric Power Industry
2-11-1 Iwado kita, Komae-shi, Tokyo 201-8511, Japdn

ABSTRACT

This paper calculates the electric field in arrangements of dielectric parficles. An
analytical method is presented in the paper. The method repetitively inserts
monopoles and multipoles until all the boundary conditions are satisfied, so that
unlike the existing methods, it does not require setting up a linear equation system
in the calculation. It can be applied to various types of energization such as a uni-
form field, spherical electrodes, or planar electrodes. The method and the BEM, a
numerical method, have been utilized to investigate the effects of the particle num-
ber and particle permittivity. The authors have compared the results by the analyt-
ical method with those by the numerical method, and found that the accuracy of
the numerical method preatly varies from less than 10 ~*% to more than 2%, de-
pending on the condition of the calculation arrangements.

Index Terms — Electrorheological fluid, dielectrophoresis, electric field, ana-
lytical method, bouhdary element method.

tion, improper subdivision, and in some cases singular na-
ture of the electric field in the arrangement.

For an arrangement of two dielectric spheres lying in
another dielectric under a uniform electric field, analyti-
cal methods for calculating electric field have been pre-
sented in bispherical coordinates and in spherical coordi-
nates. Davis [4] and Stoy [5,6] utilized a bispherical coor-
dinate system to express the surface of both dielectric
spheres. The potential is expressed by an infinite series, of
which the coefficients are recursively determined. A main
disadvantage of their approach is that the number of di-
electric spheres is limited to only two. On the other hand,
Washizu et al. [7] presented a sophisticated method in
spherical coordinates. The method utilizes the re-expan-
sion of monopoles and multipoles. It can calculate the field
for both axisymmetrical and three-dimensional arrange-
ments. Nakajima et al, [8] extended the method in refer-
ences [7] to calculate the field for an arrangement consist-
ing of a number of dielectric particles, These two methods
express the potential by an infinite series individually for
each dielectric sphere. Coefficients in the series are calcu-
lated by solving a linear equation system formed by using
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conditions on every sphere surface. The di-
the linear equation system depend on the
expansion terms used to represent the infinite
and the number of dielectric particles. Further-
he methods have been proposed only for arrange-
nergized by an external electric field.

per, we report the calculation of electric field
ry number of dielectric spheres arranged on
using analytical and numerical methods. Com-
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ure 1. Arrangements of dielectric particles energized by: a, uni-
1 electric field; b, spherical electrodes; c, parallel-plate elec-

the methods in references [7] and [8], Our ana- 4
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Figure 2. A dielectric particle lying between parallel-plate conduc-
tors.

Iytical method does not require setting up a linear equa-
tion system. Instead, it repetitively inserts multipoles (in-
cluding monopoles) unti] all the boundary conditions on
conductor and dielectric surfaces are satisfied. Our
method requires much less memory capacity compared
with the Nakajima et al. calculation. Both the analytical
method proposed here and the numerical method can cal-
culate various arrangements consisting of spherical elec-
trodes or planar electrodes. The analytical and numerical
methods are further discussed on their advantages and
disadvantages.

2 ANALYTICAL METHOD

Figures la to lc show examples of arrangements to
which the analytical method can be applied. In Figure 1,
N dielectric particles are immersed in a fluid dielectric
having a permittivity of e;. The radius and permittivity of
particles are arbitrary and may be different from each
other. A particle may also be in contact with or separated
from its adjacent particles. The arrangements are ener-
gized by a uniform field as in Figure 1a, by spherical con-
ductors as in Figure 1b, or by parallel-plate conductors as
in Figure lc. When the number of particles is infinitely
large in Figure 1a, the arrangement is reduced to a simple
one as shown in Figure 2 where a dielectric particle lies
between and in contact with two parallel-plate conduc-
tors. The arrangement is also equivalent in electric field
to the arrangement of Figure lc where N=2" (n=
0,1,2,....) dielectric particles are lined in contact with par-
allel-plate electrodes.

The method utilizes the multipole re-expansion (Ap-
pendix 7.1) to express the potential by a set of functions
expanded around each particle center. For each particle,
we take its center as the origin of spherical coordinates,
the potentials ¢, in the interior of the particle, and ¢, in
the exterior of the particle are written as [9]

b= T AriF(cose) (1)
=0

o 1 o B
dp= 3, MyiP(cos)+ ¥ rj—j,g(cose) (2)
j=0 i=0
where » and @ are the spherical coordinates, f; the Le-
gendre function of the first kind, and 4;, B, Mj are the
coefficients _of the analytical solutions. The term
B;Pfcos8)/r’*! in Equation (2) corresponds to a
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monopole for j=0 and a multipole for j> 0. B, is de-
noted as the magnitude of the monopole or multipole.
Note that the definition of a multipole is simplified here
and slightly different from that in [7]. The first term on
the right-hand side of equation (2) is interpreted as the
potential due to sources in the exterior of the sphere, while
the second term is the potential due to the existence of
the sphere. In our method, the coefficients 4, B;, and
M; are to be recursively adjusted via insertion of
monopoles and multipoles so as to satisfy all the boundary
conditions in the arrangement. Examples of the applica-
tion of the analytical method are given in Appendix 7.2
for the arrangements of (1) a point charge and & grounded
conducting sphere, (2) a point charge and a dielectric
sphere, and (3) a charged conducting sphere and a dielec-
tric sphere.

In the following sections, we first review the potential
due to the presence of a multipole and a dielectric parti-
cle or a conductor, which is obtained by the proper inser-
tion of monopoles and multipoles. Then, we give a recur-
sive procedure for calculating electric field in the arrange-
ments shown in Figures 1 and 2.

2.1 MULTIPOLE AND A GROUNDED
PLANAR CONDUCTOR

Consider a k-th order multipole having a magnitude B,
located at a point m which lies at a distance d from a
grounded planar conductor, as shown in Figure 3. The di-
rection of the multipole is denoted by an arrow in the
figure. The potential ¢,, due to the"multipole is

B,
b= T Pu(c050,,) 3)

In this equation, r,, and §, arc the spherical coordi-
nates where m is treated as the origin and 8, =0 in the
direction of the multipole.

If the planar conductor is perpendicular to the multi-

pole direction, the potential resulting from the multipole
and the conductor can be readily determined by using the

Figure 3. Muttipole and a grounded planar conductor.
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method of images. In order to satisfy the zero-potential
condition on the conductor, an image B, is placed below
the conductor by the same distance d (also shown in Fig-
ure 3). The magnitude B} of the image is

=(_1)k+lBk (4)

According to the multipole and its image, the potential
becomes

By k+1 Bk
¢ = k_'_th(COSBm)‘}'(—l) k+1Pk(c°sem‘) (5)
Fm Tt

where r,, and 8, are defined in a similar manner to r,,
and 6. If we re-expand the term P,(cos@,,)/rk*! around
m (Appendtx 7.1), the potential can be rewritten as

b= f”Pk(cose 3+ EM f P(cos6,,)  (6)
/=0

for r,, <2d. M; is the coefficient computed from B, by
equation (18) in Appendix 7.1.

2 2 MULTIPOLE AND A GROUNDED
CONDUCTOR SPHERE

Consider a k-th order multipole having a magnitude B,,
located at a point m above a grounded conductor sphere
as shown in Figure 4. In the figure, n is the center, R, is
the radius of the sphere, and ¢ is the distance between
the multipole and sphere center. The potential ¢, due to
the multipole is given by equation (3). We re-expand the
¢, around n (Appendix 7.1) and rewrite ¢,, as

b= Z M, riP(cosf,), for r,<d (N
i=

In this equation, M,; is the coefficient obtained from
the re-expansion, where r, and 4, are defined in a similar
manner to r,, and 6,, in equation (3).

From equation (7), the potential resulting from the
multipole and the conductor sphere can be written in a

I
B
mt "
|

Figure 4. Multipole and a grounded conductor sphere.
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Figure 5. Multipole and a dielectric sphere.

general form of equation (2) around n,

o . o B )
¢= 2 M, rjP(cosg)+ 3 ri:J‘
j=0 j=0"n

P(cost,)  (8)

By applying the zero-potential condition on the conduc-
tor surface, we obtain

an= _Manrzaj+l (9)

for j=0.,1,.... Thus, the resultant potential becomes

25+ 1

¢=1 M,,,-[r,{' - —L—;]Pj(cosf’n) (10)
=0 Tn

2.3 MULTIPOLE AND A DIELECTRIC
SPHERE

Consider a multipole and a dielectric sphere in Figure
5. The arrangement is the same as that in Figure 4, except
that the conductor sphere is now replaced by a dielectric
sphere, The permittivity of the dielectric sphere and the
surrounding medium are denoted by €, and &g, respec-
tively.

Similarly as in the previous section, the potential &,
due to the multipole can be re-expanded around n and
expressed in the form of equation (7). The potential ¢,,
in the interior of the sphere and ¢, in the exterior of
the sphere can be written in the forms of equations (1)
and (2).

dJnI = E A,,jr;,il’j(cosﬂ,,) (11)
j=0

e = L M,riP(cost,)+ L —5F(cosd,) (12)
i=0 j=07n

where M, is the coefficient in equation (7) obtained by

the re-expansion, A,; and B, are the coefficients to be

determined so as to satisfy the boundary conditions on the

sphere surface. The boundary conditions on the surface

are,at r,= R
n n

‘bnl = ¢nE
and
a¢nl 6¢HE
€,—— = €
ar, ar,

n n

From the boundary conditions, A,,; and B,_; in equations
(11) and (12) are related to M,; as
ex(2j+1
. G Al vy 13)
(e +ec)itee
(GE - f,,)j

B.={R 2j+1_ \N%E "ald
i (Ra) (e, +eg)j+ e

M,; (14)
for j=0,1,.. *

2.4 PROCEDURE TO CALCULATE THE
ELECTRIC FIELD

Consider the arrangements of N particles in Figure 1.
Each spherical conductor or dielectric is denoted by a
number n=1.2,..., N for convenience. The potential in the
interior of the n-th particle is expressed by

bnt = Z Aﬂjr,{f;(cosﬁ,,)
j=0

The potential in the exterior of the n-th particle, is ex-
pressed by

oo Bn.

; J

¢rr£ = E I:Mnjrr{ + rj+l

i=0 n

Pi(cosé,)

In the following procedure, we recursively calculate the
coefficients A,;, B,; and M, ;. For example, in the /-th
step of the recursion, we compute 4%, BY and MS) and
adjust the coefficients as

1
!

B,,j-i- Bf"-)= an
I

Mnj+M,§j)=>Mnj

The recursive procedure is carried out as follows.

L. If an n-th conductor sphere possesses a potential ¢,
insert a monopole of a magnitude B =4¢,R, at the
sphere center n. So the potential (¢,), due to this
monopole is

(0)

s Py(cosd,)
rl‘l

(¢n)m =

Then, separately satisfy the potential boundary condi-
tion on each conductor. If there is an external field or a
field given by parallel-plate conductors, apply an appro-
priate value of a constant field E,. The potential is then

(¢a)m = % Egry Py{cosby)

626 1470-9878/1/$17.00 © 2003 IEEE



.,
IEEE Transactions on Dielectrics and Electrical Insulation

where r, and @, are the spherical coordinates with the
origin being the point of zero potential on the axis of sym-
metry. The + sign indicates the direction of the external
field or the potential difference between the conductors.

‘2. For each dielectric sphere, re-expand all the
‘monopoles and the external field in step 1 around the
particle center n, and add the resuits to M(9. For a

monopole, utilize equation (18) or (19) in Appendix 7.1 to
compute M9 (j=(,1,...). For the case of an gxternal field

nj
i

MI(Ig} fib”g
MY =+ E,

where ¢, is the potential due to £, at n, and M) =0
-4}*01

3 '_ dielectric spherc from M,";‘,’) by usmg equatlons (13)
id (14). Aftter this step, we compute A%, B, and MP

3 nyr nye
for n=12,...,N and j=0,1,.. (For an n-th conductor
sphere, all A, are zero.)

4, For each conductor sphere and dielectric one, re-ex-
and the multipoles BY) P, (cos6,,)/ri*! (k=0,1,...) of all

the other conductors and spheres (for all m # r) around
s center, and accumulate the results to MS).

5. Compute A',! and B}
* For a planar elcctrodc simply calculate Bf? by using
equation (4},
s For a conductor sphere, compute Bi? by using equa-
ion (9).
s For a dielectric sphere, compute A% and BY) by us-
ing equations (13) and (14).

6. Repeat steps 4 and 5, re-expand BY) to MUY and
caleulate B{\" " from M"Y, until the so[uuon convergcs

3 NUMERICAL METHOD

* Numerical field calculation methods have atready been
applied as a practical way (o obtain the field distribution
on the dielectric particles [10-12). Numerical field calcu-
lation methods can be classified into two categories; do-
pain subdivision methods and boundary subdivision
methods. In this paper, we have utilized the boundary ele-
pent method (BEM) which is one of the boundary subdi-
'nu methods. In the BEM, the electric scalar potential
dlhe narmal component of electric field in the outward
direction on all the boundary nodes are determined first.
‘Then, the potential ¢, &t any point p in the region can be
expressed in terms of the potential ¢ and the normal
mponcnt of electric field E, on the boundary I' of the
gion as

Ce, = fl_E,lqb*dF £ f]_da(c?d)*/an)dl“ (15)

where C s a coefficient that depends on the position of
g, ¢* the fundamental solution of the Poisson equation
f* =~ A¥ (A” is a Dirac delta function that is every-

Vol. 10, No. 4; August 2003 627

where 0 except at p.), and (9¢*/dn) is its normal deriva-
tive on the boundary. C =1 if p is not on the boundary. If
p is on the boundary and the boundary is smooth at p,

=1/2. The BEM can be applied to an inhomogeneous
domain by subdividing the domain into regions of each
homogeneous medium. The values between two adjacent
regions, region 1 and 2, are related on the boundary inter-
face as

¢1 o= ¢2
§E,=6E,
where e is the permittivity of each region and the sub-

scripts 1 and 2 denote the region.

As the electric field can become very high in complex
dielectric cases, substantially increasing with particle per-
mittivity, numerical field calculations must be appropri-
ately impiemented in order to minimize calculation er-

N particles

Figure 6. Calculation arrangements. a, N dielectric spheres under a
uniform field; b, one dielectric sphere under parallel-plate conduc-
tors; ¢, one dielectric sphere between two spherical conductors.

1070-9878/1/$17.00 © 2003 IEEE 627
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rors. We have simulated every surface contour with sec-
ond-order curved elements, and utilized second-order
polynomial interpolating functions for the potential and
electric field on the elements. Each sphere contour has
been subdivided into 360 elements between 8 =0 to .

4 CALCULATION RESULTS

Figure 6 shows arrangements of which we have calcu-
lated the electric field by the two methods. The arrange-

ments in Figures 6a and 6b consist of & and an infinite™

number of dielectric spheres under a uniform electric field
of 1 V/m, respectively. As already explained,.the electric
field of Figure 6b is also the same as that in Figure lc
where N =2" spheres arc in contact with parallel-plate
electrodes. The arrangement in Figure 6c is a dielectric
sphere subjected to a non-uniform electric field between
two conductor spheres. In this case, the average electric
field is kept to be 1 V/m, as same as in the other arrange-
ments. All dielectric spheres in each arrangement have
the same permittivity €, which has been varied from 1 to
64 times of the exterior permittivity €z in the calculation.
Radii of all the dielectric and conductor spheres are set to
a unit length of 1 m.

4.1 RESULTS BY THE ANALYTICAL
METHOD

Calculation results for all the arrangements are pre-
sented in Figure 7. Figure 7 shows the electric field at
contact paints between the dielectrie particles or between
a dielectric particle and a conductor. The contact points
are the points P, to P; denoted in Figure 6. We display
the contact-point electric field here because the field is
usually maximum at a contact point, providing the diclec-
tric spheres are perfectly insulating, i.e. they possess no
conductivity [10]. It is clearly seen from the figure that for
the energization by a uniform field, the contact-point
glectric field increases with increasing the number of di-
electric spheres from two (P, N =2} to four (P,, N =4),
eight (P,, N =8), and infinity (P,). However, an infinite

10000

—~ 1000 -
E
=
)
2 100tk !
9
€
8
Z 10 7

1 10 100
Permittivity ratio g5/ £
Figure 7. Electric field at contact points.
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Figure 8. Errors of the electric field by BEM.

number of spheres does not lead to a singular ficld on
particle surface. The field is even lower than that in the
case of spherical conductars (P;). Concerning the effect
of particle permittivity, the contact-point electric field is
greatly intensified by an increase of €,/€; as can be seen
in Figure 7 presented in logarithmic scale. The slope cf
each line in the relation between the electric field and the
permittivity ratio gradually increases with the permittivity
ratio. For example, the slope for P, increases approxi-
mately from 1.83 at e;/ep =6 to 1.93 at €,/e; =12, and
1.98 at e,/¢e; = 48.

4.2 RESULTS BY THE NUMERICAL
METHOD

Calculation results by the BEM are presented in Figure
8, which shows the errors of the contact-point electric field
compared with the corresponding analytical results in the
previous section. It is clear that the results by the BEM
agree well with those of the analytical method. However,
the accuracy of the numerical method (BEM) decreases
when the permittivity of dielectric spheres becomes higher.
The field non-uniformity in the case of sphericat conduc-
tors (P;) also magnifies the errors in calculation results.
In Figure 8, the error at P, exhibits a different pattern
from the others. The error is comparatively higher at low
€,/€g. The higher error is caused by the difficulty in nu-
merical calculation. Figure 9 depicts the simulated surface
of the dielectric sphere and planar conductor near the
contact point P,. A distance between adjacent points in
the figure represents an eclement size. It is clearly seen
from the figure that the two surfaces are extremely close
to each another near P,, thus making the numerical calcu-
lation very difficult to realize a high accuracy.

For all the arrangements, the errors shown in Figure 7
rise from less than 107% or 107 *% to more than 2% when

elalolol=tiniaar,r ko] gogoo0ocoOoOoOCOoO0eo0n
me&o‘agﬁmoeoomoe
P2 99000000000
sphere surface ¢ o
conductor surface ©
Figure 9. Subdivision near the poin: P,.
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Table 1. Values of & for all the calculated arrangements.
Contact Py Py Py
Point N=2 N=4 N=8
k 0.7859 0.8893 0.9460

0.9713 1.0123

the particie permittivity increases from 2 to 64. It is to be
noted here that the error can be much higher for a coarser
subdivision of sphere surface or the use of linear elements

instead of curved elements. .

5 DISCUSSIONS

51 APPROXIMATION OF ~
CONTACT-PQINT ELECTRIC FIELD

The following approximation expression has been pro-
posed for the electric field E_ at a contact peint in the e
side [13].

E, 1
E_C=E(5d/55)((fd/f£)k+l) (16)
cl
where E, is the contact-point electric field for e,/ =1,
and k is a constant depending on arrangement conditions.
Table I shows the estimated values of & for all the calcu-
lated arrangements. They are determined from the analyt-
ical results in the range of €,/e; = 1 to 64. For the case of
a uniform external field (P, and P,), all the values of & in
Table 1 are smailer than 1.0 as predicted in [13]. How-
ever, the table shows that k is possibly greater than 1.0 if
a dielectric sphere is subjected to a non-uniform field (P,).
Table 2 shows the errors evaluated from the analytical re-
sults when the values of & in Table 1 are used to estimate
the electric field.

5.2 COMPARISON OF THE ANALYTICAL
AND NUMERICAL METHODS

For the calculation of the electric field on dielectric
spheres in another dielectric medium, we have shown the
results by the analytical method and the numerical field
calculation method. The methods may be compared in the
following aspects.

521 ACCURACY .

The analytical method gives the field value of higher
accuracy than the numerical method since particle and
conductor surfaces are perfectly represented. However,
the numerical methods can give adequately accurate re-

Table 2. Errors of the electric field obtained by equation (15}

Errars of the contact-point electric field (%)

€4/€E £ £y £y
N=2 N=4 N=8

4 3.66 4,10 6.28 7.75 4.08

16 1.41 1.32 279 4,08 1.79

64 1.54 0.69 2.27 4.17 t.44

Vol. 10, No. 4; August 2003 629

sults if they are appropriately implemented as we have
shown in the previous section.

52.2 APPLICABILITY

The numerical methods are useful for the arrangements
where a dielectric or conductor surface is in a more com-
plicated shape where no analytical method is applicable.
The analytical method can give correct results without any
problem even for some arrangements where the singular-
ity of electric field is concerned, such as an arrangement
of two or more spherical dielectrics in contact under a
uniform field.

523 CALCULATION TIME

For the BEM and many other numerical field calcula-
tion methods, calculation time increases by O(N.?) where
N, is the number of elements utilized. N, is also explicitly
propartional to the particle number N,. For the analytical
method proposed here, the calculation time also increases
by O(N,}?) since the number of operations in each itera-
tion is simply proportional to the square of N, at a large
N,. However, the main difference is that while the permit-
tivity ratio €,/e; has no effect on the calculation time by
the numerical methods, it considerably affects the calcula-
tion time by the analytical method. This is because the
recursive procedure takes more steps until the results
converge for a higher ¢;/e;. So we prefer the use of nu-
merical field calculation methods for the case that the
€,/¢x and particle number are large, provided that the
accuracy of the methods is primarily confirmed by the an-
alytical method for the case of a small number of parti-
cies. This is based on Figure 8 where the accuracy is virtu-
ally independent of a particle number at high e /e.

Lastly, it is to be noted that although we have proposed
and applied the analytical method for axisymmetrical ar-
rangements in this paper, the method can be applied in a
similar manner to a three-dirmensional arrangement by us-
ing the associated Legendre functions.

5 CONCLUSIONS

HIS paper has applied an analytical method and a

numerical method to calculate electric field on di-
clectric particles immersed in another dielectric medium.
An apalytical method has been proposed in this paper.
The method can calculate the electric field in axisymmet-
rical arrangements for a variety of conditions. We have
utilized the method and the BEM, a numerical method, to
calculate electric field in some representative arrange-
ments and compared the results by the methods. We have
found that the maximum electric field increases with the
particle number, the particle permittivity, and the degree
of non-uniformity of an applied field. The results by the
BEM agree well with the analytical results. However, the
results by the BEM become less accurate with increasing
the permittivity of dielectric particles. We suggest the use

1070-9878/1,/$17.00 © 2003 IEEE 629
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Figure 10. Re-cxpansion of a muitipole,

of the analytical method to estimate the accuracy of the
numerical method. The maximum electric ficld on particle
surface can be approximated by using an empirical equa-
tion with the proper parameter.
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7 APPENDICES
7.1 RE-EXPANSION OF A MULTIPOLE

Consider a k-th order multipole of a unit magnitude
{B, = 1) at the origin of a spherical coordinate system in
Figure 10. The potential due to the muitipole can be re-
expanded around the point n or o' in the same figure. n
and n' are separated from the multipole by a distance d,
and are in the § = and & = ( direction from the multi-
pole, respectively. The re-expansion equations for the po-
tential ¢ at a point p(r,0) in Figure 10 according to the
multipole are

4)=%PA_(C056) {17}
1V = (k4 )
=(E] j=0 klj! (

=(—1)*(%)k+11)§3‘]%(§] P(cost,) (19)

) Pcosd,) (18)

Flgure 11. A point charge and a grounded conducting sphere.

These expressions were derived in reference [7].

7.2 CALCULATION EXAMPLES

721 APOINT CHARGE AND A GROUNDED
CONDUCTING SPHERE

Consider a point charge g, and a grounded conducting
sphere of radius R, shown in Figure 11. The sphere cen-
ter is located at ¢, which is separated from ¢, by a dis-
tance 4. The permittivity of the exterior regicn is ez We
determine the potential for this arrangement in the fol-
lowing steps.

1. Re-expand the potential ¢, due to g, at a point p
(that R, <r; <d) around the sphere center ¢, by using
equation (19} with k=0 as

&, T i (%)jl’j(cosﬂl)

= dmregd j=0

= E Mljr{P(cosﬂ )
faidd
where r; and 0, are the distance and angle shown in Fig-
ure 11 and M,; = gp/(4megd’*").

2. Use equation (8) to express the potential ¢ at p as

=3 Myr{ i
j=0

or
¢ =+ ): N ,(cose ) (20)
where B, is determined by using equation (9)
q R
By=- T+
dep d

It can be easily proved that the second term on the right
hand side of equation (20) is identical to the potential due
to a point charge g, = —(R, /d)g, located at a distance of
R%/d from ¢, as shown in Figure 12. Consequently, for
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l

; %/ 1Ri/a
Figure 12. Image charge lnsnde the conducting sphere.

this arrangement the solution obtained by utilizing the
multipole re-expansion is simply the same as that ob-
tained by the method of images which can be found in
text books on electromagnetics such as [14].

7.2.2 A POINT CHARGE AND A DIELECTRIC
SPHERE

Consider a point charge g, and a dielectric sphere of
radius R, shown in Figure 13. The dielectric-sphere cen-
ter is located at ¢, which is separated from g, by a dis-
tance d. The permittivity of the sphere and the exterior
region are €, and €g, respectively. We determine the po-
tential for this arrangement in the following steps.

1. Re-expand the potential ¢,, due to g at a point p
{(that r| < d) around the sphere center ¢, as

u0 = 34 M;/’{‘Dj(cosel)
4=0

where r; and 6, are the distance and angle shown in Fig-
ure 13 and

qo
MU ; 47T65di+ L

2. Use equations (11) and (12) to express the potential
¢ at p in the following forms.

If p is in the interior of the dielectric sphere

Figure 13. A point charge and a dielectric sphere.
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¢=‘f’|.r“A|j"{ﬁr(°°591) (21)

If p is in the exterior of the dielectric sphere

d=¢e= 2 Mur{ﬂ(wsel)"‘ 2

i=0 j=0

{H Bi(cost,)

= of
= ¢+ ¥ ’J—i)]Pj(cosﬂl) (22)
j=071

A,; and B,; are determined by using equations (13) and
(14)

eg{2/+1) } qe (23)

A= -
Y {(el+eg)j+e'£ daregd’t!

B],'=(R1)1j+l{ U5 } e ()

(e +€x)j+ e | dmegd’™!

Note that for the arrangement of a point charge and a
dielectric sphere, the solution by the method of images
using only point charges is not available since neither the
term on the right hand side of equation (21} nor the sec-
ond term on the right hand side of equation (22) is a po-
tential of a single point charge. The solution for this ar-
rangement can only be obtained by the application of
multipoles to express the electric potential ¢.

7.23 A CHARGED CONDUCTING SPHERE
AND A DIELECTRIC SPHERE

Consider a conducting sphere of radius R, and a di-
electric sphere of radius R, shown in Figure 14. The cen-
ters of the conducting and dielectric spheres are located
at ¢, and ¢, (separated by a distance ), respectively. The
conducting sphere is assumed to have an arbitrary poten-
tial ¢,. The permittivity of the dielectric sphere and the
exterior region are €, and e, respectively, We determine
the potential for this arrangement in the following steps.

1. Place a point charge ¢, = 4me; ¢, R, (a monopole of
a magnitude B{) =¢ R,) at ¢, to satisfy the boundary
condition of the conductmg sphure

L)
Figure 14. A charged conducting sphere and a dielectric sphere.
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2. Re-expand the potential ¢{” due to ¢, at a point p
(that r;> R, and r, < d) around ¢, as

"= 3 szr{f’j(cosﬁz)
j=0

where ry, ry, and 8, are the distances and angles shown
in Figure 14, and

()
4 _ BR
dmegd!  dit! -

3. Utilize equations (11} and (12) to express the poten-
tial ¢ at p in the following forms.

If p is in the interior of the dielectric sphere

¢ = o8] = .EOA&”}riP,»(cosez)
j=
If p is in the exterior of the dielectric sphere
b= ¢+ o2

i (0)

i=v’

A$) and B are determined by using equations (13) and
(14)

BY = (R2)2;+1{ (€x— €)] }M‘“’

(et eg}i+eg g

4. Re-expand the potential ¢4} (due to all BY) around
¢, by using equation (18} as

= E M{PriP,(cos8,)

where

- 1 (k)
) = 1Y —— T _pO
M= 2 T T

5. Use equation (8) to express the potential ¢ in the
following form

= 0 3
¢ = o+ ¢52 + ¢{"

© (1)

=3 r,+1P(COSB)
1

j=t

B{} is determined by using equation (9)
B = — M{PRY!

6. Re-expand ¢{" (due to all B{) around ¢, by using

equation (19) as

P = Z M{Dr{P(cosb,)
j=0
where
1 (k +j)'
(l)— E( 1) d;+k+1 k1}| lk

7. Utilize equations {11) and (12) to express the poten-
tial ¢ at p in the following forms.

If p is in the interior of the dielectric sphere
¢ = b5) + ¢4}
and if p is in the exterior of the dielectric sphere

6= 00+ 60 + 60+ 9

where
= T A cosey)
i=

B

o5y = i ﬁ, P(cos0,)

AY} and BYY are determined by using equations (13) and
(14)

o[t M
P (ate)ite|

BY = (R,)H*" _(ei__ﬂ_ M
(2t eg)j+ e !

By repeating steps 4 to 7 until the value of ¢ converges,
we obtain the final solution of the potential ¢.
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This article presents an analytical method for calcujgting electric field and dielectrophoretic force in
three-dimensional arrangements of spherical particles. The analytical method is based on the method
of images that utilizes the multipole re-expansion and the fundamental solutions for several
arrangements of a multipole. It is capable of calculating electric field for various conditions of
particles and energization. The method needs much less memory than the already proposed one. The
calculation results show that force on a dielectric particle chain in a dielectric fluid depends on the
number of particles and the chain direction. However, the maximal attractive and repulsive forces
reach their saturation values at about 32 and 12 particles, respectively. When the lower particle of
a two-particle chain is in contact with a plate electrode, the dielectrophoretic force on the chain
becomes higher on the whole, and it always attracts the chain to the electrode. As a result, the
particle chain is stabilized for a wider range of the angle between the chain and the applied field.
Neglecting the interaction between the electrodes and particles usually gives adequate accuracy in

the force calculation, unless the electrodes are not very close to particles.

Institute of Physics. [DOI: 10.1063/1,1637138]

I. INTRODUCTION

Diclectrophoretic force is now being utilized in many
applications of dielectric materials. For example, the force
works so as to align dielectric particles suspended in an elec-
trorheological {(ER) fluid in the direction of applied electric
field, resulting in the change of the fluid viscosity,'” The ER
fluid has been proposed for a variety of applications, such as
the hydraulic valve, clutch, and shock absorber. In such ap-
plications, we are usually interested in the force acting on
particles, which can be often modeled as dielectric spheres.
The force on a particle is closely related to the electric field
on its surface, and can be readily calculated once we know
the electric field.

For an axisymmetrical arrangement of two dielectric
spheres under a uniform electric field, the solutions were
reported by Davis® and Stoy.*® They utilized a bispherical
coordinate system to express the surface of two dielectric
spheres. The potential is expressed by an infinite series, of
which the coefficients are recursively determined. Although
this metheod has a good rate of convergence, it has the main
disadvantage that the number of dielectric spheres is limited
to only two.

For a three-dimensional (3D} arrangement of two dielec-
tric spheres, Washizu et al.® have presented a method utiliz-
ing multipole re-expansion for calculating the electric field
and force on the particles. The method is clearly extendable
to arrangements of any number of particles. It has been later

YElectronic mail: boonchai.t@chula.ac.th

0021-8979/2004/95(3)/1586/8/$22.00
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applied to an axisymmetrical arrangement consisting of a
few tens of particles.” However, it is difficult to apply the
method for a large number of particles in 3D arrangements.
This is because it requires setting up and solving a linear
equation system, which becomes much more difficult to
solve with an increasing number of particles. Besides, the
method has been proposed only for arrangements under a
uniform field.

In this article, we present a variation of the analytical
method proposed by Washizu e al. Our methed is based on
the method of images having fundamental solutions for sev-
eral relevant arrangements, for example, the solutions for a
multipole and a spherical dielectric. The main advantages of
our approach are: (1) it requires less memory in calculation
than the method of Washizu ef al. because the solution is
obtained by a repetitive procedure instead of forming a linear
equation system, (2) particles under consideration may be
either conductor or dielectric, and (3) it is applicable for
various types of energization, including a uniform ficld, plate
electrodes, and spherical electrodes. We have already pro-
posed a method for axisymmetrical arrangements.® Here, we
extend it to the case of 3D arrangements, and calculate the
dielectrophoretic force on particles in a dielectric fluid. We
also investipate the effects of various parameters on the
force, such as the number of particles, direction of a particle
chain, and existence of a planar electrode.

il. CALCULATION METHOD

Figure 1 shows an example of arrangements that the ana-
Iytical method proposed here is applicable for electric field

@ 2004 American Institute of Physics
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FIG. 1. Dielectric particles suspended in a dielectric fluid.

spherical
particles

-

.

calculation. In the figure, spherical particles are suspended in
a dielectric fluid, which is energized by two parallel-plate
electrodes of separation D, having a potential difference ¢ .
The particles may be dielectrics, floating conductors without
net charge, or charged conductors. In general, the method
can be applied for arbitrary postitions and radii of particles,
although in this article we analyze the electric field and force
in arrangements of particle chains. When the parallel-plate
electrodes are far from the particles, the field approximates to
a uniform field of ¢y /D.

The method expresses potential with a set of functions
expanded around the origin of spherical coordinates at each
particle center, The potentials ¢, in the interior and ¢, in the
exterior of the particle are written as follows:

J
qS,—Z 2 Ly ip, Lqu(cos B)e L n

J=0k

-

P, 14l cos e)e'“'] (2)

where L, ;. M. and B, ; are the coefficients to be deter-
mined, (#,&,¢) are the spherical coordinates, i= \f-:f' , and
f_’j‘|k| is the normalized associated Legendre function. The
first and second terms on the right-hand side of Eq. (2) can
be interpreted as the potentials due to multipoles {including
monoepoles or point charges) outside and inside the particle
being considered, respectively. In our method, we repeti-
tively caleulate L; 4, M, ,, and B, ; for each particle so as to
satisfy all the boundary conditions on the, particle surface.
For a special case in which the particle is a conductor, all the
coefficients L, ;, except Lyy, are zero. We use the normal-
ized function P, | (cos 6) instead of the associated Legendre
function P; ,{cos &) here since P, |, (cos 6) has better nu-
merical stability at higher values of j and & The nth-order
normalized associated Legendre function P, |(x), mel,
and —n<=m=n, is defined by the equation

— (n—|m[}
Pom{x}= \/mﬂm(ﬁc).

where P, |, {x} is the associated Legendre function and
- l=x=1,

The term B; 4P, |q{cos 8)¢™¥r*" in Eq. (2) is the poten-
tial due to the kth component of the jth-order multipole that
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FIG. 2. Re-expansion of the potential due to a multipole at a point p 1o a
point q. {D,,, &, ,B,) are the spherical coordinates of p when q is taken as
the origin.

is located at the particle center.” For convenience, we simply
regard the term.as the potential due to a multipole of orders
(j.k) having a strength B, ;. Note that the definition of
strength here is not identical to the conventional definition of
multipole moment.

A. Multipole re-expansion

Consider a unit multipele of orders (n,m), —n=m
=n, located at a point p in Fig. 2. The multipole potential is
expressed as

1
b=—7 P, jui(c05 6,)e ™, 3
Tp

where (r,,8,,4,) are the spherical coordinates where p is
taken as the origin. If (D,,,¢,,8,) are the spherical coor-
dinates of p when g is taken as the origin (Fig. 2), we can
re-expand the potential ¢ to q by the equation

=2, ;é

o Hm—k
- . An.m,j.kPn+j,|m—k|(COS aq)e! "By
i -J

(=)

q

X | ——2

Jtr+l
DP

P} 1si{ cos Bq)e'“’ﬂ'J, (4)

forr,<D,,, where (r,,8,,4,) are defined in a similar way
as (r,,0,.¢,), and thc cocffcwnt Ay myx is determined
from the relation

(n+m+j—k)(n—m+j+k)!
(n+m)(G—E) (n—m)G+E)

A= el ==

nom.fok
Equation (4} is derived from the multipole re-expansion pre-

sented by Greengard and Rokhlin.'® Finally, we rewrite Eq.
{4) in the form of more simplified expression as

»
p=2 > M
J=0k=-j

where the re-expansion moment is given as

r{]zaj.m(cos 8,)e*%, ()

nm;i‘c

Ditn Py jym—pilcos a)e"m R84 (6)

M =(-1)V"—7T
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FI1G. 3. A unit multipele of orders (n,m} located at p at a distance & above
an infinite grounded plane and its image at p'.

B. Method of images

The repetitive procedure to calculate electric field is pos-
sible if we know the fundamental solutions for configura-
tions composed of a multipole and a particle or an electrode.
We present the fundamental solutions for the follewing ar-
rangements.

1. Multipole and a grounded plane

Consider a unit multipole of orders {n,m) located at a
point p that lies at a distance & above an infinite grounded
plane, as shown in Fig. 3. Potential due to the multipole is
expressed by Eq. (3). We can readily fulfill the zero-potential
boundary condition on the plane by placing an image multi-
pole of the same orders at p', which is at the same distance
below the plane. The strength B, , of the image muitipole is
determined by the equation

B;‘mz(_])n+m+l_ (7)

2. Multipole and a grounded spherical conductor

Consider & unit multipole of orders (n,m) located at a
point p and a grounded spherical conductor, as shown in Fig.
4. The conductor has a radius R and its center is located at a
point q. Potential due to the multipole is expressed by Eq.
(3), and then rewritten in the form of Eq. (5) by re-expanding
the potential to q. In general, we obtain the fundamental
solution for a grounded conductor by placing an infinite
number of image multipoles at q to satisfy the zero-potential
condition on the conductor. The strengths of the image mul-
tipoles are related to M, , in Eq. (5) by

B.iJr:_Mj,kszH, {8)

for j=0,1,2,... and k=—j,—j+1,...
It is obvious that the potential is zero on the conductor
surface as

¢=

i

=
+,Z‘ :S‘ JH

x /
>, 2 M RIP, icos 8,)e ¢
=0 k=~

j.|k|(005 8,)e*¥=0.

|

|

|

|
1 , -
Loks
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FIG. 4. A unit multipole at p and a spherical conductor.

When the spherical conductor is not grounded, the po-
tential on the conductor is not zero, but total charge on the
conductor surface must be equal to a given value (usually
zero). We simply fulfill this condition by adjusting the term
By from the just-presented solution since all the other mul-
tipoles have no net charge.

3. Multipole and a spherical dielectric

Consider again the arrangement in Fig. 4, but now we
replace the conductor with a spherical dielectric of radius R.
We denote the relative permittivity of the spherical dielectric
and its surrounding by €; and eg, respectively. Similarly to
the previous section, potential due to the multipole can be
rewritten by re-expanding it to g, as in Eq. (5). We express
the fundamental solutions of the potential ¢; in the interior
and ¢, in the exterior of the spherical dielectric in the forms
of Egs. (1) and (2}, respectively, where M .4 are equal to
those in Eq. (5).

To fulfill the boundary conditions of potential and elec-
tric field on the dielectric interface, the coefficients L, , and
B, , are related to M, by the following equations:

(eg~e€/)f

e Rt LAy
R (£E+ €;)j+ fER M}.k| (9)
€(2j+1)
A el ¥ P
‘Lj',k (EE+ E.r)j‘}’ €r fok (10)

C. Calculation procedure

The procedure to obtain the solutions of ¢, and ¢ for
all particles can be carried out in the following steps.

(1) Satisfy the initial {potential) boundary condition of each
charged conducting particle and each pair of parallel-
plate conductors as if the other particles or ¢lectrodes do
not exist.

For a conducting particle possessing a potential ¢, , this
is accomplished by inserting a point charge

go=4mepeyd,R,

or equivalently, a multipole of orders (0,0), having a
strength

Bo,0= ¢pR

where R is the particle radius, € the relative permittivity
of the surrounding medium, and € is the permittivity of
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FIG. 5. Two spherical dielectrics under a uniform field E;.

free space.
For the parallel-plate conductors in Fig.
add a uniform field

_(¢0/D)a

where a, is the unit vector in the field direction.

(2} For each particle and eclectrode in the arrangement, we

consider the potential due to all the external charges, and
calculate the interaction between the sources and the par-
ticle or electrode.
In this step, we first rewritc the potential as a series of
M 4P, y(cos 9)e*?, which is the first term on the
right-hand side of Eq. (2). For example, if the particle
center is located at a point ¢, the potential ¢ at a point
p due to a field — Ega, (of parallel-plate electrodes) can
be re-expanded to ¢ as

g, =t +Elp—c)-a,, -

1, we simply

where ¢, is the potentiai at ¢ due to £,. Now, ¢ is
rewritten in the form of Eq. (2}, in which M=, and
M, = E,. For a multipole, we re-expand its potential by
using Eq. (5).
After the potential due to all external sources is rewrit-
ten, we obtain M, in Eq. (2). We then calculate L, , in
Eq. (1) and B, in Eq. {2) from M, , by the method of
images so as to satisfy the boundary conditions on its
surface.

{3} Repeat the previous step until the solutions of all par-
ticles converge.

D. Example

Consider an arrangement of two spherical dielectrics, £,
and Pg under a uniform electric field E; in the —z direction
(Fig. 5). The particles of radii R ; and Rz, whose centers are
at ¢, and ¢y, have relative permittivities €, and €5, respec-
tively. The relative permittivity of the surrounding is ez . We
assume zero potential at an arbitrary point ey. The potential
can be calculated in the following steps, where a subscript A
or B of variables denotes their corresponding particle and a
superscript (i) indicates the repetition step.

(1} For #,, the potential due to Eq at a point p in its exte-
rior is written as

(2

—

(3}

4
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(qu)E: (‘ﬁA)W
=(M )60 0,0(c0s 80+ (M ), o7 4 P\ o(cOs 8,),

where (M ()o0=Eq-(¢o—¢4) and (M) 0= Eq.
Similarly, the potential is written for Py as

(Bp)e=(dp)y’
=(Mpg)ooPool €08 8g)+(Mp)| or 5 P o cOS 65),

where (M g)p0 and (Mg), , are defined in a similar man-
ner,

Applying the fundamental solution of an arrangement of
a multipole and a spherical dielectric for P,, we obtain
the following expressions:

(B)s=(d) +(dy
(S0=(d",

)U)

(boy'= 2 ; Pl

P, ji(cos 0, )¢,

(¢4 )“’—2 2 (L)AL, (cos 8,

where (8004 (B4, (Lo and (L)} are calcu-
lated from (M,,)gfo’ and {MA)QO’ by using Egs. (9) and
(10), and the other coefficients are zero. Similarly, we
obtain the following expressions for Fy:

(dple=(dp)iy +{ds)y,
(da)i={da)i,

l)

i J
()= 22 E_

M(cos By)e ¥,

(s )“’—2 _E (Ly)drhPp(cos By)es

Using the re-expansion in Eqgs. (3)—(6), we re-expand
()%, the potential due to multipoles inside Py, to
¢,. and obtain (¢,)%2:

(¢A)3,3’=(¢B>5;’—E ; (M3 P alcos 60,

Each coefficient (M ,)'3) is calculated from all (8)S!)
with Eq. (6). Similarly, we re-expand (¢,)4’, the po-
tential due to multipoles inside P,, to ¢y, and obtain
()5

«

(ol =(80= 2 20 (My)3rsP,cos ).
=7

Similarly to the second step, we apply the fundamental
solution for a mulitpole and a spherical dielectric.

For example, for P,, we express the potential as fol-
lows:
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A3 =

' (5]

FIG. 6. Dielectric particles in a dielectric fluid (€ : the relative permittivity
of the fluid). {a} N-particle chain under a uniform field. (b) Two-particle
chain in contact with a plate electrode under a uniform field. (c) Two-
particle chain between two parallel-plate electrodes.

()= (D2 +Hda)h (BT +{b)y .

(b=t + (D,
> / 12}

By - ;
(Q"AJ(BZ):,ZG E—ZJ 7{{—Pj_w(cos 8,36,
shEE A

x J
(= 2}] kE (L2 P; lcos 8,)e™¥,
=0 k==

where (8,)(} and (L,){ are calculated from (M ,)\%
by using Egs. (9) and (10). The expressions for {$g)g
and (¢g), are in the same forms,

{5} Repeat the two previous steps until the potential value
converges.

In the following sections, for arrangements in which a
plate electrode exists the fundamental solution for a multi-
pole and grounded plane is applied to satisfy the potential
condition on the plane. The fundamental solution for a mul-
tipole and grounded spherical conductor is given in Sec. IIB
for reference. The fundamental solution is not utilized here,
but it is necessary for an arrangement having a conductor
sphere.

E. Force calculation

The dielectrophoretic force on a particle can be calcu-
lated from the Maxwell-Helmholtz stress:

Techaumnat, Eua-Arpom, and Takuma

(a)

FIG. 7. Dielectrophoretic force on a two-particle chain under a uniform
field. (a) 8,=0°. (b) B=590°. {c) #p=45°.

f=ere BE,— tepegin, (11}

where € is the relative permittivity of the surrounding me-
dium, E the electric field on particle surface, £, the normal
component of E, and n the unit normal vector on the surface,
Alternatively, it is possible to calculate the force as the sum
of that acting on effective multipoles of each particle.!' How-
ever, we calculate the force here by using a straightforward
method, integrating the stress over particle surface,

ill. CALCULATION ARRANGEMENTS

We apply the aforementioned method to caiculate elec-
tric field and force on spherical dielectric particles in ar-
rangements shown in Fig. 6. They consist of dielectric par-
ticles in a dielectric fluid energized by two parallel-plate
electrodes. As mentioned earlier, dielectrophoretic force in
fluids usually attracts particles, resulting in the formation of
particle chains. Particle chains in Fig. 6 are assumed bent to
form angles 8, against the applied field. Figure 6(a} presents
a case in which the electrodes are so far from particles that
we can approximate their effect with a uniform field. We
have varied the number of particies for 8, ranging from 0° to
90°. In Fig. 6(b), a two-particle chain is in contact with a
plate electrode, while the other electrode is still away from
the particles. We investigate the variation of force with 6y .
In Fig. 6(c), in which both plate electrodes are at a finite
distance, we study the effect of electrode separation D on the
force for 8z=45°. In all the calculations, the particle radius
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FIG. 8. Forces on the uppermost and lowermost diclectric particles in Fig.
6(a). (a) Component F, parallel to the chain direction. (b} Component #,
perpendicular to the chain direction,

and the applied electric field are set to a unit value, and the
refative permittivities of the particles and the fluid are 4 and
1, respectively. The ratio ¢,/ in Fig. 6(c} is kept at a unit
vaiue so that when no particle exists, the field is the same as
that in the other arrangements. In the following section,
forces are normalized by Fy=1/2€,E;R? for generality.

IV. RESULTS AND DISCUSSION

We discuss the effects of the following parameters on the
dielectrophoretic force acting on particles in a dielectric
fluid.

A. Angle between applied field and a particle chain

Figure 7 shows the force on a two-particle chain in Fig.
6(a) for fx=10°, 45°, and 90°. The vectors F| and F, repre-
sent the forces on the lower and upper particles, respectively.
The figure illustrates that both magnitude and direction of the
forces greatly vary with 8. For 6;=0°, F, and F, are
attractive forces parallel to the particle chain, where F,
=F,=6352F,. For 8;=90°, F, and F, are repulsive
forces also parallel to the particle chain, but perpendicular to
the applied field, where F,=F,=0.828F;. For 0°<é;
<90°, the forces are not parallel to the particle chain, as
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FIG. 9. Variations of the maximal attractive and repulsive forces with the
number of particles. in Fig. 6(a). (a} Maximal attractive force (#:=0°). (b)
Maximal repulsive force { 8;=90°).

shown in Fig. 7(c} where #y=45°. They are composed of
twe components: F, parallel and F, normal to the chain
direction. Here, we define the signs of F, and F,, such that
(1) F,>0 for an attractive force and F,<<0 for a repulsive
one, and (2) F,>0 for a force that tends to align the chain
with the applied field (reducing #g). Figure 7 implies that
there must be a transition angle that the dielectrophoretic
force changes from attractive to repulsive one. The transition
angle is about 70° for this two-particle chain. We discuss the
transition angle further for chains of more particles in the
next session. Our results for a two-particle chain agree well
with those of Washizu et g/..* which were obtained by sepa-
rating the field £, into the components parallel and normal to
the chain before calculation,

B. Number of particles

Figure 8 shows the relation between 8z and F, or F,, on
the highest and lowest particles of a particle chain in Fig.
6(a). In the figure, F, and F are presented for numbers of
particles, N=2, 4, and 8. For each N, F, changes from at-
tractive force to repulsive one approximately between 70°
and 73° in Fig. 8(a}. On the other hand, Fig. 8(b} shows that
F, never changes its sign; thus, it tends to align the chain
with the applied field for all 8¢. F, is most attractive when
#:=0° and most repulsive when 8z=90°, while the maxi-
mal Fj, occurs at §p=~45°. The transition angle at which £,

Downloaded 02 Feb 2004 to 161.200.255.161. Redistribution subject to AlP license or copyright, see http:/fjap.aip.orgljap/copyright.jsp



1592 J. Appl. Phys.,"Yol. 95, No. 3, 1 February 2004

FIG. 10. Dielectrophoretic force on a two-particle chain in contact with a
plate electrode. (a) #,=0°. {b) 9,=45°. (c)} F,=80°. (d)} 6,=90°.

changes its sign slightly increases with V. The increase of the
transition angle means that a chain is stabilized by dielectro-
phoretic force for a wider range of the chain direction; how-
ever, the effect of & on the transition angle is very small for
higher N. The maximal magnitudes of F, and F, also in-
crease with the number of particles, but this increase be-
comes saturated with increasing number of particles. Figure
9 shows the variations of the maximal attrative F,(8g
=(°) and the maximal repulsive F, (8= 90°) with the num-
ber of particles. Saturation occurs for F,, respectively. at
N=:32 for the maximal attractive force amounting to about
7.924F, and at N=12 for the maximal repulsive force about
0.866F,. The saturation of force was also reported by Na-
kajima ef o/, but only for the attractive one at 6z=0°.

C. Plate electrodes

Figure 10 shows dielectrophoretic force con the two-
particle chain in Fig. 6(b). The angles 8 are 0°, 45°, 80°,
and 90° in Figs. 10(a)—10(d), respectively. The variation of
F, and F, with #, significantly differs from that in Fig. 7,
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FIG. 11. Force attracting the lower particle to the plate electrode in

Fig. 6(b).

1

where no plate electrode exists. Firstly, F, always attracts the
lower particle to the plate electrode. Its magnitude is
0.888F for 8;=0°, but becomes substantially higher when
8¢ increases. Figure 11 presents the component of F,, par-
allel to the field E,, attracting the lower particle to the plate

8 . . . . : .
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__7r ~._ Upperparticla in Fig10 o
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FIG. 12, Comparison of forces on the upper particle in Figs. 7 and 10. (a)

Component F, parallel to the chain direction. (b} Component F, perpen-
dicular to the chain direction.
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TABLE . Forces on the particles for various D/R in Fig. 6(c), including the
case, in Fig. 6(b), of D/R=1=,

Lower particle Upper particle

AF, AF,
DiR F\IF, (%) FylF, (%)

x 7.463 £.000 +4.072 0.000
10 7.481 +0.242 +4.082 +0.254
8 7,498 +0.471 +4.093 +0.511

6 7.552 +1.196 +4.127 +1.351

5 7.638 +2.342 +4,181 +2.673

4 7.860 +5.317 +a30t +5.869

electrode. Secondly, F, also exhibits the effect of the plate
electrode. When &5 is so high that the upper particle be-
comes very close to the plate electrode, the effect of the
electrode is predominant, resulting in an abrupt change of F,
from Figs. 10(c) to 10(d). Figure 12 compares the compo-
nents F, and F,, of F; in Fig. 10 with those in Fig. 7. The
force behavior is similar except the clearly different patterns
of F;, at high 6 in Fig. 12(b). For #; near 90°, the effect of
the plate electrode makes F,, highly strong downward force
for Fig. 10 compared to zero for Fig. 7. For lower &g, Fig.
12 implies that F, in Fig. 10 is similar to that in Fig. 7.
However, the attractive force F, is stronger for Fig. 10,
while the repulsive force is weaker. In conclusion, when a
particle chain is in contact with the electrode, the chain is
stabitized for a wider range of 5, and for most values of
. the particles are attracted by stronger forces.

For the effect of the upper electrode, Table | presents
forces in Fig. 6(c), where 8;=45° for various values of
D/R, including the case of Fig. 6(b) as D/R=¢c, It also
shows the difference AF of the force compared to that for
Fig. 6(b). The subscripts 1 and 2 in Table 1 denote the lower
and upper particles, respectively. The table shows that the
presence of the upper electrode results in a higher dielectro-
phoretic torce. However, for D/R as small as 4, where the
separation between the upper particle and the upper electrode
is only 0.879R, both AF| and AF, are still less than 6%. If
the upper electrode is extremely close to the upper particle,
the force will completely change, as the particle will be at-
tracted to the upper electrode. Such behavior can be inferred
from our calculation results for the lower particle in Figs.
6{(a) and 6(b).

s
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V. CONCLUSIONS

We have presented an analytical method for calculating
electric field in 3D arrangements of spherical particles, and
applied it to the calculation of the dielectrophoretic force on
particles in a dielectric fluid. The method is based on the
multipole re-expansion and the method of images, which uti-
lizes fundamental solutions for several arrangements of a
multipole. It is capable of calculating electric field for vari-
ous conditions of particles; for example, dielectric or con-
ductor particles, and energization. Our calculation tesults
show that the force on a particle chain depends greatly on the
angle between the applied field and the chain, The maximal
attractive and repulsive forces slightly increase with the
number of particles in a chain, but they show saturation
when the number of particles is high enough. For a two-
particle chain in which the lower particle is in contact with a
plate electrode, the force usually attracts the lower particle to
the plate electrode and attracts the upper particle to the lower
one, The chain is stabilized for a wider range of &g, and for
most values of &g, the particles are attracted by stronger
force. The consideration of the upper electrode in the calcu-
lation for 8,=45° gives a stronger force than that obtained
for a uniform field or when the upper electrode is neglected.
However, the change of force caused by the existence of the
upper plate is small, except when the electrode is very close
to the particles.
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This article presents the analysis of the electric field and dielectrophoretic force on spherical
particles with a surface film. In the analysis, we use the method of images with the fundamental
solutions given for the various types of particles cogiposed of a core and a surface film. The concept
of the apparent conductivity is introduced to clarify the difference between the particle types. The
analysis shows that the response of a particle with a surface film to an external field is unique and
generally cannot be obtained by replacing the particle with a homogeneous particle. Using
numerical examples, we compare the field and force characteristics between the particles that are of
different types but exhibit an identical response to a uniform external field. The electric field and
force are found smaller on the conductor-core particle but greater on ‘the dielectric-core particle
compared with the particle without any surface film. We have calculated the electric field and force
by using the boundary element method in which a surface film is treated as a zero-thickness
medium. The propriety of such treatment of a surface film depends not only on the film properties

but also on the external field. © 2004 American Institute of Physics. [DOI: 10.1063/1.1801161]

L. INTRODUCTION

Dielectric particles commonly exist in applications such
as photocopying, printing, and coating.' In insulation sys-
tems, particles are used as a filler to improve the electrical or
mechanical properties of insulators.? Another application of
dielectric particles that is now widely studied is the elec-
trorheological (ER) fluid, the suspension of the dielectric
particles in a host quuid.3 As the fluid exhibits a fast, revers-
ible change in the apparent viscosity under an electric field, it
has been proposed for a variety of applications such as the
hydraulic valve, clutch, and shock absorber.* Particles uti-
lized in such applications may be homogeneous without any
surface layer or may be coated with a surface film. A surface
film also occurs as the result of the humidity on particle
surface.

For the ER fluid, various types of particles have been
proposed to improve the rheological properties of the fluid.
in practice, we may classify the particles into three catego-
ries: (1) homogeneous particle without any surface element,’
(2) conductor particle with a semiconductive surface film,”’
and (3) insulating particle with a conductive surface film.'’
Since ER response (the change in the apparent viscosity} is a
result of the interaction between the particles induced by an
applied electric field, several works on ER-response analysis
arc based on the determination of the electric ficld and di-
electrophoretic force on a two-particle system. Convention-
ally, particles are modeled as spherical ones in the analysis.
The electric field and force have been calculated by the ana-
lytical methods,'""'? numerical methods,'"* and an approxi-
mation method including the effects of the nonlinear
conductivity.® The relation between the material properties

YElectronic mail: boonchai.t@chula.ac.th

0021-8979/2004/96(10)/5877/9/$22.00

5877

(permittivity and conductivity of the particles and host lig-
uid} and the fluid behavior has been understood fairly well.

On the other hand, for the ER fluid having particles with
a surface film, the fundamental behavior of the particies un-
der electric field has not been fully clear. It is difficult to
accurately calculate electric field on the particles with a thin
surface film by using numerical field catculation methods.
The numerical methods often treat a very thin film as a zero-
thickness element and introduce the surface conductivity to
be a new calculation parameter.“”‘IT However, the propriety
of such a treatment depends on the film thickness and mate-
rial properties. Up to now, the electric field and force on a
chain of particles with a surface film have been analyzed by
using analytical methods in which some approximations on
the electric-field distribution are applied.g'g"8 A typical ap-
proximation is that the electric field near the chain axis de-
pends only on the distance from the axis in each medium
(core, film, or exterior region). The electric field is then
solved to fulfill the conditions of the electric potential and
current,

This article presents a fundamental analysis of the elec-
tric field and force on particles with a surface film. The ob-

jective is to clarify the difference between the homogeneous

particle without any surface element and the particle com-
posed of a core and a surface film with respect to the re-
sponse to an extemal electric field. We calculate the electric
field on particles by the method of multipole images, an ana-
lytical method. By the method of images, it is possible to
calculate electric field in the arrangements of particles with-
out any approximation on the field distribution. Furthermore,
we can make clear how the parameters of the core and the
film affect the electric and force behavier. We have already
applied the method of multipole images to calculate electric

© 2004 American Institute of Physics
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zh

FIG. 1. Spherical particle centered at c.

.

field and force on systems of homogeneous partir:les.[z'l3 In
this article, we present the fundamental solutions for various
kinds of particle with a surface film and utilize the funda-
mental solutions in our analysis.

Il. SOLUTIONS OF ELECTRIC POTENTIAL

Consider a spherical particle located under an external
field E;.The particle and the surrounding medium are as-
sumed to possess linear electrical properties independent of
the electric field. We can always write the external potential
¢y due to the £y as a function expanded about the particie
center ¢ in the fellowing form:

®

=2 2 M riPlcos 8 )explike,), (1)

J0 k==

where M, is the coefficient of the expansion, (r,, §.. ¢.) the
spherical coordinates having the origin at ¢ (see Fig. 1), and

P, is the associated Legendre function normalized by
v+ /(- ]AD!. Note that the external field &, is defined
here as the field due to all the charges located outside the
particle.

The presence of the particle disturbs the potential ¢by. In
general, if the particle has no surface element, we can sepa-
rately express the resultant potentials ¢, in the interior and
¢y in the exterior of the particle as

s

=

&= 2 2 Ly P utcos B )explike,). (2)

=0 k=

] P lcos 8 Jexplike.), (3)

e = ZE[MHc

B
J=t k= ’J
where L, and B, ; are the coefficients to be determined so as
to satisfy the boundary conditions on the particle surface. If
the particle comprises a core and a surface film, ¢ in Eq. (2)
and ¢ in Eq. {3} will represent the potential in the particle
core and that in the exterior of the particle, respectively. Ad-
ditionally, we write the potential, ¢, in the surface film as a
function expanded around ¢ as
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kré ’J+'| :I -j.lk[(cos ec)exp(ikﬁpr:): (4)

where N,; and O, are the coefficients to be determined.
Equations (14) express the potentials for the general three-
dimensional arrangements. For an arrangement where axi-
symmetry exists, all the nonzero-% terms vanish, and the
equations reduce to

b= M J,-‘(,r’c'ﬁj(cos 6.),

=0

Y

¢l = E Lj,()ri};j(cos 9(:)'
=0

> B -
QSE: 20 Mj,ofJ,_. + ’_J-E% PJ,-(COS 6{_-),
=L
and
g 0=
br= > Nt + =4 Pycos 6,).
J=0 L ¢ d

In the following sections, we will describe the solutions
of the potentials for the various particles.

A. Homogeneous particle without a surface film

Let o; and o denote the conductivities of the particle
and its surrounding medium, respectively. For dc cases (or
low-frequency ac cases, where the conductivity is totally pre-
dominant aver the permittivity), we obtain the following re-
lations between the M, and the other patential coefficients
in Egs. (2) and (3) for j=1:

(Zj + 1oy
T — Ly ks (S)
G+ Nog+jo;
B..= j(UE_UI) RZ"HIM- (6)
G Dogtja P

where R is the particle radius. It can be readily shown that
the coefficients given by Eqs. (5) and (6) satisfy the bound-
ary conditions

&= &, (7

Gy = 0gleg (8)

on the particle surface (r.=R), where £, is the normal com-
ponent of the electric field and the subscripts / and £ denote
the corresponding regions. In addition to Egs. (5) and (6}, we
always have Lgo=M;o and Bye=0 (except for the charged
conductor particles). It is obvious from the equations that if

=op, then L, =M, ; and B, ,=0 for all /, i.e., the potential
remams equal to .

If the particle is a floating conductor, o;=c, then L;,
=0 and B;,=—RY" M, for j= 1. Consequently, the electric
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i') Surface film

FIG. 2. Particle composed of a core and a surface film.

field inside the conductor is zero. The field £, on the con-
ductor surface (».=R) is obtained from the partial derivative
of ¢¢ in Eg. (3).

= r
E= 3 X~ (2j+ DM RP, ylcos 6explike,)
==y

z 2+
=S HE)=D _j;—(Eru);, 9)
j=t

i=l

where (£,); and (£,q); are the (j— 1}th-order components of
the E, and —d¢y/ dr,, respectively, on the conductor surface.
The field-intensification ratio (£,);/{£,4), is equal to 3 for j
=1 and constantly decreases with increasing j. The ratio ap-
proaches 2 as f— . Thus, the field intensification due to a
conductor particle is preater for the external field of the
tower (f—1)th-order. [The {;~1)th-order field is associated
with the jth-order potential.] For the general case of a finite
value of o; greater than o, the electric field is essentially
intensified in the exterior of the particle. The field intensifi-
cation has a variation with j similar to the case of a conduc-
tor particle. However, the degree of the field intensification
depends on the ratio of o,/ og. For real fluids, it should be
noted that the host-liquid conductivity oy substantially in-
creases with the electric field when the field is higher than a
critical value. For this case, the increase of o decreases
;! og, thus mitigating the electric-field intensification in
high-field regions. As a result, the maximal field is lower
than the value estimated by the constant-conductivity model.
Similarly, the real force is also weakened because the force is
usually predominated by the high electric field.

B. Particle composed of a conductor core and a
surface film

Figure 2 shows a particle composed of a conductor core
and a semicouductive surface fitm. We shall refer to a par-
ticle of this type as a conductor-core particle hereafter. The
film thickness and conductivity are denoted by the ¢ and o,
trespectively. Because the electric field inside the core is theo-
retically zero, we focus on the potentials ¢b¢ in the film and
¢ in the exterior of the particle.

The relations between the M;, and the other potential
coefficients for j= 1 are given by the following equations:
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5 1 _JA=8Mae=[j+ G+ 1 oy
LG D= op+ [+ G+ 1D oy
XM RV, (10)
_ (Zj + Nog

Nt G D= g e G+ Gr DG g
(11)
0;4=— RZ"'Nj 4 (12)

where R is the core radius (R-=R-1) and ¢ is the radius
ratio defined by {=R/R. Rearranging Eq. (10) into a form
similar to Eq. (6), we get

Jlog— ay;)

B .= T
" (f+ Do+ joy

R¥IM,,, (13)
where oy; is regarded as the apparent conductivity of the
particle associated with the (j—1)th-order external field. In
other words, if all the components of the external field are of
the same (—1)th order, we can replace the particle by a
homogeneous particle having o;=oy; and obtain the same
electric-field distribution in the exterior of the particle. The
apparent conductivity is a function of the film conductivity,
the radius ratio, and the order of the external field. For a
conducter-core particle,

G+ ne

1t should be noted here that the similar concept of the
apparent material property has already been reported for di-
electric mixtures'®® and layered spherical particles.”! How-
¢ver, the concept has been applied only for the case where
the external field is uniform or axisymmetrical. In this ar-
ticle, we generalize the apparent conductivity for the three-
dimensional cases of an arbitrary external ficld so as to com-
pare the behavior of the particles having different structures.

]a’; forj=1. (14)

C. Particle composed of a perfect-dielectric core and
a surface film

Consider again the particle in Fig. 2, but the particle core
is now a perfect dielectric, i.e., it has zero conductivity. We
shall refer to a particle of this type as a dielectric-core par-
ticle. The potentials ¢y and ¢ are still expressed by Egs. (3)
and (4), respectively. From the boundary condition of the
electric field on the core surface, we can infer that

3 ¢p

—t =)

ar.

at F.= Rc. (1 5)

The aforementioned condition is also a good approxima-
tion for practical particles composed of an insulation core
and a film, provided the core conductivity is sufficiently
lower than op. To satisfy all the boundary conditions, the
potential coefficients of the ¢ and ¢ conform to the fol-
lowing relations:

Downloaded 12 Nov 2004 to 161.200.255.162. Redistribution subject to AP license or copyright, see http:/fjap.aip.org/jap/copyright.jsp



5880 . Appl. Phys.: Vol. 96, No. 10, 15 November 2004

- _f_{[(i*- D+ op -+ U - ;”*‘)ap}

MG LG D+ g+ (1= e
XM, R {16)
(2j+ Doy
N, = - - M., 17
ik [(1+ 1)+j§2ﬁf]0'5+_}'(1 7§2p|)0,}_ ik ( )
o ,,=LR2J*'N - (18)
T

Again, we can rearrange Eq. (16) into the Yorm of Eg,
(13}, and obtain the following expression for the apparent
conductivity of the dielectric-core particle:

_ G-
TG

.

op forj=1. (19)

D. Particle composed of a semiconductive core and a
surface film

Although in this article we focus on three particle types
described in the previous sections, the concept of oy, can be
applied to general cases where the core is neither a conductor
nor a perfect dielectric but has a conductivity ¢. For the
general case, the potentials ¢; in the core, ¢ in the surface
film, and ¢ in the exterior of the particle are expressed by
Eqgs. (2), (4). and (3}, respectively.

To fulfill the boundary conditions on the core surface
and those on the particle (film) surface, the relations between
the expansion coefficients are giveg by the following equa-
tions for j=1:

EL*_ =R2i+l(_{’-....)
Mis jtl
CitCller— Gl — Cal'er (20)
Ci+ Gl ep+ Gl pg + G+ DICT g’
Ly @+1) ‘ !
My, J+1 C+Clept CGlre+ [+ 1D]CT ¢
(21)
Mg G+ D+ Cer - (22)
L_f.k 2_] +1
O‘k J + 2i+1
ik —RY
Lo 2j+ (1~ FenRE (23)

where |,z is the conductivity ratio defined by T jy=04/ 0,
and C, to C4 are given by

Ci=(+ 0+,
Cy=j(1 =¥,
Cy=(+ 101 =g,
Co=[j+(G+ NN,
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Equation (20) can be rewritten in the form of Eq. (13),
where the apparent conductivity is given by

G+ CGiler

e Cy+ Czrc.rap 24)
_Cu+Glpe o
_Ca T CZFCFUC forj=1. (25)

It can be readily shown that Eq. (25) reduces to Eq. {14) for
oe=% and to Eq. (19} for o-=0.

Lastly, it should be noted that the fundamental solutions
in Secs. Il A-IID are given for the dc cases or low-
frequency ac cases, where the conductivity is totally pre-
dominant over the permittivity. For general cases, we replace
o with the complex conductivity ¢ defined by =0+ we,
where & and ware the permittivity and angular frequency of
the energization, respectively. Accordingly, in the perfect-
dielectric case or in high-frequency ac cases where conduc-
tivity can be neglected, o in the fundamental solutions shall
be replaced by &.

I, VARIATION OF THE APPARENT CONDUCTIVITY

First, it is worth noting that the apparent conductivity oy
varies with j for both the conductor-core and dielectric-core
particles. This, under an external field comprising the com-
ponents of more than one order, the response of a particle
with a surface film to the field is unique and cannot be ob-
tained by replacing the particle with a homogenecus particle.
The only exception is the case that the external field consists
of components having the same order, e.g., a uniform exter-
nal field. However, if two or more particles are located not so
far from each other, the external field for each particle is the
resultant field from the applied electric field and from the
charges induced in the other particles. As a consequence, all
the field components are not of the same order in a multipar-
ticle configuration.

Next, consider the effect of the film thickness ¢ on ay; in
Egs. (14) and (19). For (=R, {=0 and both equations are
reduced to

U;j:(rp.

For 0 <¢t<<R(or 0 <{ <1}, oy; of the conductor-core particle
increase, but that of the diclectric-core particle decreases
with decreasing ¢ If no surface film exists (=0 and {=1),
then

oy = for the conductor core, but

a;=0 for the perfect-dielectric core.

More interesting is the variation of oy; with j. For j=1,
the case of a uniform electric field,

1+2£
o-ff= 1_{3

o> o for the conductor core, and (26)
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