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FIG. 3. Variation of the apparent conductivity o; normalized by the film
conductivity o with j for a conductor-core particle.
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o= WO’F < gp for the perfect-dielectric core.
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With increasing j, oy; becomes lower for the conductor-core
particle but higher for the dielectric-core particle. Figures 3
and 4 display the variation of o;; for the conducter-core and
dielectric-core particles, respectively, The figures indicate
that, when j is sufficiently high, the conductivity approxi-
mates o, independent of the core type. This means that any
effect of the core vanishes at a high j. 1t can also be seen
from the figures that gy, of the particle having a thinner film
converges to o at a larger j and gives a wider range of oy,

Another implication by Figs. 3=and 4 is that, at low val-
ves of j, e; of the conductor-core (=) and diclectric-
core (o,=0) particles arc characterized by the o/t and o,
respectively. (Needless to say that if oo=ayp, then a,=oy,
irrespective of ¢ and j.) In a numerical field calculation, a
thin surface film presents difficulty to realize the high accu-
racy if the film thickness is very small compared with the
surface area. An approach often used to solve this problem is
to treat the film as zero-thickness elements and introduce the
surface conductivity, defined as o= ot, to be the calculation

Q.1
('8
(=]
&
0.01
0.001
1

FIG. 4. Variation of the apparent conductivity «, normalized by the film
conductivity o, with j for a dielectric-core patticle.
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FIG. 5. Variation of the apparent conductivity o), normalized by the core
conductivity o of the conductive-core particle for I'ge-=1000.

parameter. Our analysis, however, shows that the approxima-
tion to zerc-thickness surface clements is appropriate only
where the film conductivity is predominant over the core
one. Howevet, even for the dielectric-core particle, ay; cor-
responding to a high (j— 1)th-order external field is approxi-
mately equal to og, no longer a function of op.

Figures 5 and & present oy, for the general case that the
particle core has a finite but nonzero conductivity, Figure 5
shows the variation of o;/ ¢ of the particles having differ-
ent film thickness as (['r-=1000). In the figure, oy; varies
from ay given by Eq. (25) at j=1 to o at a high j. The
values of oy, are always between the o and the o, With the
thinner film, the particle gives the lower value of gy, and oy
more slowly converges to op.

Figure 6 compares o/oc between the particles that
have different film thicknesses ¢ but have the same value of
a./ o, where og=opt (o5/o-=1 m). If the core conductiv-
ity is constant, it is evident from the figure that oy; is ap-
proximately the same for all the particles at low values of /.
However, at a higher j, the values of oy, gradually deviate
from each other. The deviation starting at a lower j for a
thicker film reflects that particles of the same surface con-
ductivity respond differently to an external electric ficld.
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FIG. 6. Variation of the apparent conductivity oy, normalized by the core

conductivity o of the conductive-core particle for a fixed a¢/ o, where o
is the surface conductiviy.
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FIG. 7. Spherical particle and a point charge,
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Thereby, the propriety of the film representation by o de-
pends not only on the film thickness and conductivity but
also on the {j- 1)th-order of the external field.

IvV. COMPARISON OF THE ELECTRIC FIELD AND
FORCE

We have calculated two arrangements of particles to
demonstrate the effects of the surface film on the ¢lectric
field and dielectrophoretic force. The first arrangement is a
spherical particle located at a distance d, from a point charge
g as shown in Fig. 7. The second arrangement is of two
spherical particles spaced by a distance ¢ under a uniform
electric field £, in the direction shown in Fig. 8. The former
arrangement is used to investigate the fundamental response
of the particle to a nonuniform field, which is, in this case,
the electric field from the point charge. The interaction in the
latter arrangement is more complicated than that in the
former one, as the external field for each particle is the sum
of E, as well as the field due to thevdipoles and higher-order
multipoles induced in the other particle. We set the particle
radius R to a unit length of 1 m, while varying d, and d5 in
the calculation.

For each arrangement, we have camried out the calcula-
tion for the three particle conditions: The homogeneous par-
ticle without a surface film, the conductor-core particle, and
the dielectric-core particle. The homogeneous particles are
assumed to have a conductivity o,=10c;. We consider the
film thickness ¢ between 0.001R and 0.02R for the
conductor-core and dielectric-core particles. This is the prac-
tical range for particles with their radius in the order of mil-
limeter to micrometer. For each pair of the particle core and

s

FIG. 8. Two spherical particles under a uniform field £,
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FIG. 9. Magnitude of the potential coefficient M;, in Eq. (1) for j
=0-200,
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film thickness, we determine the value of oy in order that
opn=0;=100. Thus, all the particles shall exhibit the same
interaction with a uniform external field.

We have calculated the electric field on the particles by
the method of multipole images using the multipole re-
expansion technique. Equations (5), (6}, (1012}, and (16}~
(18) are utilized as the fundamental solutions of images for
their corresponding particle types. We focus on the maximal
electric field and force on the particle surface. The maximal
electric field occurs at p, in the first arrangement and p; in
the second arrangement. Note that, by the axisymmetry of
the arrangements, we can simplify the expressions of the
potentials, as explained in Sec. Il

A. A spherical particle and a point charge

The calculation results are shown in Figs. 9-11, Figure 9
displays the values of the expansion cocfficient M, in Eq.
(1) when the point-charge potential is re-expanded about ¢
for a different d,. ( M;,=0 for & # 0 because of the axisym-
metry.) It is evident from Fig. 9 that M, decreases rapidly
with increasing ; for the large d,. When the separation d,
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FIG. 10. Electric-field ratio at the point g, of the amangement in Fig. 7 as a
function of d,. The symbaols (3, A, and O represent the conductor-core
particles, wheread M, A, and @ represent the dielectric-core particles.
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FIG. ). Ratio of the force on the particle in Fig. 7 to F,. The symbols (5,
A, and O represent the conductor-core particles, whereas M, A, and @
represent the diglectric-core particies.

becomes smaller, the external potential (and so the external
field) due to ¢ comprises the higher-order components,
which cannot be neglected.

Figure 10 shows the electric field at p, as a function of
d,. The field is presented as its ratio to £,=¢/(4md?), the
field strength at p, in the absence of the particle. It can be
seen from Fig. 10 that, if 4, is sufficiently large, all the
particles almost have the same magnitude of electric field.
With decreasing 4, the di¢lectric-core particle gives a higher
electric field, whereas the conductor-core particle gives a
lower electric field than the particle without a surface film.
The effect of the film thickness also differs between the core
types. The maximal field on the conductor-core particle of a
smaller ¢/R is higher but vice versa on the dielectric-core
particle. However, the variation of £/, becomes smaller as
the thickness ratio decreases. Particularly, the difference be-
tween the t/R=0.01 and 0.001 of the diclectric-core particle
is hardly noticeable in Fig. 10. Note that, at small 4, £ is
lower than £, for the conductor-core particle with /R
=0.01 and 0.001.

Figure 11 presents the variation with the separation &, of
the dielectrophoretic force induced on the particles by the
charge ¢. Similarly to the electric field, the force is shown by
its ratio to £ .=%sEEfR2, where € is the permittivity of the
surrounding medium. We have computed the force b}z,r inte-
grating the Maxwell’s stress over the particle surface. 2 (Al-
ternatively, the force may be determined as the force acting
on the charge g.) For a particle of an arbitrary radius, the
force can be calculated from the values at the corresponding
d, in Fig. 11 and the normalizing factor 7. Figure 11 shows
that the force behavior is significantly different, depending
on the core types. As 4, decreases, the attractive force in-
duced on the dielectric-core particle gradually becomes
stronger than the particle without a surface fihn. By contrast,
the conductor-core particle shows a rather complex variation
with d|. With decreasing ), the force ratio initially in-
creases, but after reaching the peak value, the force ratio
decreases. If the film is thin enough, we can see that the force
becomes repulsive at small 4|, e.g., at the separation closer
than about 0.07 m for /R=0.01 and 0.001 in the figure.
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FIG. 12. Electric field at the point p, of the amangement in Fig. 8. The
symbols (3 and O represent the conductor-core particles, whereas @l and @
represent the dielectric-core particles.

B. Two spherical particles under a uniform field

In this arrangement, the electric field on each particle is
intensified by the particle itself and by the existence of the
other particle. Figure 12 shows the normalized electric field
at p,, as the functions of d. It can be seen that the decrease
of d5 results in the field enhancement on all the particles.
Similarly to the previous section, the electric field is lower
on the conductor-core particle but higher on the diclectric-
core particle compared with the particle without a surface
film. The reduction of the film thickness moderates the field
on the conductor-core particle but intensifies the field on the
dielectric-cotre particle. Note that the electric field for /R
=0.001 is omitted from the figure as it is very close to that
for t/R=0.01.

Figure 13 compares the dielectrophoretic forces on the
particles at a different gap o>. The force becomes stronger
with decreasing o, for all the particles. Compared with the
particle without a surface film, the tendencies of the force on
the particles are in the similar manner to those of the electric
field shown in Fig, 12. The force in this arrangement is al-
ways attractive, inclined to reduce 4,.The force variation
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FIG. t3. Force in the arrangement of two particles under a uniform field.
The symbols O and O represent the conductor-core particles, whereas ll
and @ represent the dielectric-core particles.
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FIG. [4. Varation of force on each particle type with the film thickness, {a}
Conductor core and {b) perfect-dielectric core.

with the film thickness can be more clearly observed in Fig.
14, where the force is separately presented for each particle
type. The saturation of force as t/R— 0 and d,/R— 0 can be
seen in Fig. 14(a) but not in Fig. 14(b). This is because, for
the condition of fixed oy, as 1 decreases, gr converges to
zero for the cenductor-core particle but converges to = for
the dielectric-core particle. The increase of op of the
dielectric-core particle leads to the singular electric field and
force if d,=0. Therefore, we see the force in Fig. 14(b) at a
very small /R constantly becomes stronger with decreasing
d-.

V. NUMERICAL RESULTS WHEN A SURFACE FiLM IS
REPRESENTED BY THE SURFACE CONDUCTIVITY

A surface filim is often treated as a zero-thickness me-
dium of the surface conductivity o in the numerical field
calculation methods. This section compares the calculation
results by the method of images, the analytical method with
those by a numerical method in which a surface film is re-
placed with a surface conductivity. The numerical method
applied here is the boundary element method (BEM). The
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FIG. 15. Ervors of the maximal electric field by the BEM on the particles
remote from each bther.

BEM is one of the boundary-subdivision methods, which
generally give more accurate results of the electric field than
the domain-subdivision ones. The treatment of the surface
films in the BEM is referred to Refs. 16 and 17. We have
carried out the calculations for the arrangement of Fig. §,
where o-=ag=1. The film thickness ¢ and conductivity o
have been varied to study their effects on the results. The
BEM applies the axisymmetrical condition of the arrange-
ment to realize the high accuracy as well as the symmetry
with respect to the midplane between the particles to reduce
the calculation time. We also use a fine subdivision on each
particle surface (480 second-order elements from #=0°
—180°) to reduce the errors in the surface modeling and the
discretization of the variables invelved. Accordingly, we
shall consider that the errors of the results obtained from the
BEM are predominated by the representation of a real sur-
face film with a zero-thickness one.

Figure 15 presents the errors of the electric field calcu-
lated by the BEM, where the particles are remotely located.
The electric field {s evaluated at the maximal-field position
P, shown in Fig. 8. As can be seen from the figure, the errors
decrease with increasing I're. The decrease becomes steeper
with "z when the film conductivity becomes predominant.
The steeper transition occurs at smaller I for the particle
having a thicker film. For small Tz, the errors are higher on
the particle having a thicker film. However, for the case
where the external field is uniform, the errors are very low,
less than 2%.

Figure 16 shows the errors of the field when the particles
are closely spaced. The errors are evidently greater than
those in Fig. 15. The figure shows that a thicker surface film
results in higher errors for identical I' . The variation of the
errors with 'z is more complex where the particles are
close to each other, With increasing I'g, the errors of the
clectric field are magnified as the external field is composed
of higher {j—1)th-order components but they are reduced by
the predomination of the film conductivity, which makes the
representation by ¢ more accurate. As a consequence, the
errors in Fig. 16 may either increase or decrease with ['pe.
Nonetheless, at a very high g, the errors are reduced to
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FIG. 16. Error of the maximal electric field by the BEM on the particles
closely spaced.

lower than 1%. Furthermore, if the film is thin enough (e.g.,
t=0.001 in Fig. 16), the errors are very small even at low

e

V1. CONCLUSIONS

We have presented the analysis of the electric field and
dielectrophoretic force on spherical particles with a surface
film. The fundamental solutions, which can be utilized in the
method of multipole images are presented for the various
types of particles composed of a core and a surface film, We
introduce the concept of the apparent conductivity oy; to
clarify the difference between the particle types. The analysis
shows that the response of a particle with a surface film to an
external field is unique and generaly cannot be obtained by
replacing the particle with a homogeneous particle, We have
found that o; varies with ; differently between the
conductor-core and the dielectric-core particles, oy, is char-
acterized by g/t for the conductor-core particle but by ogs
for the dielectric-core particle, where ¢ and o are the film
thickness and conductivity. We have presented two numeri-
cal examples demonstrating the difference between the par-
ticles that exhibit an identical response to a uniform external
field. The electric field and force are found smaller on the
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conductor-core particle but greater on the dielectric-core par-
ticle compared with the homogeneous particle without any
surface film. We have shown that the propriety of treating a
surface fillm as a zero-thickness medium of the surface con-
ductivity depends not only on the film properties but also on
the order of the external field.
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Abstract

This paper presents results of calculations of the electric field and
dielectrophoretic force on a dielectric particle chain suspended in a host
liquid lying between parallel-plate electrodes. The method of calculation is
based on the method of multipole images using the multipole re-expansion
technique. We have investigated the effect of the particle permittivity, the tiit
angle (between the chain and the applied field) and the chain arrangement on

the electric field and force. The results show that the electric field
intensification rises in accordance with the increase in the ratio of the
particle-to-liquid permittivity, I';. The electric field at the contact point
between the particles decreases™with increasing tilt angle, while the maximal
field at the contact point between the particles and the plate electrodes is
almost unchanged. The maximal field can be approximated by a simple
formula, which is a quadratic function of I",. The dielectrophoretic force
depends significantly on the distance from other particles or an electrode.
However, for the tilt angles in this paper, the horizontal force on the upper
particle of the chain always has the direction opposite to the shear direction.
The maximal horizontal force of a chain varies proportional to ([, — 1)!7 if
the particles in the chain are still in contact with each other. The
approximated force, based on the force on an isolated chain, has been
compared with our calculation results. The comparison shows that no
approximation model agrees well with our results throughout the range of

permitlivity ratios.

1. Introduction

There are many applications of dielectric materials in the form
of particles. For example, an electrorheological (ER) fluid is
a suspension of dielectric particles in a host liquid [1]. The
fluid exhibits a fast, reversible change in apparent viscosity
under an electric field. The fluid has been proposed for a
variety of applications such as hydraulic valves, clutches and
shock absorbers. In many applications, ER fluids exist in small,
uniform gaps between electrodes, which may be either coaxial
cylinders or circular discs [2—4). The configuration of parallel
circular discs is also found in rheometers of the rotating-plate
type. These arrangements are often simplified to arrangements

0022-3727/04/233337+108$30.00 © 2004 IOP Publishing Ltd  Printed in the UK

of parallel-plate electrodes in analysis, as the gap length is
usually much smatler than the electrode dimensions.

The change in apparent viscosity of the ER fluid results
from the interaction between suspended particles and the
electric field. When an electric field, usually of the order
of kilovolts per millimetre, is applied to the fluid, the field
aligns the particles into chains parallel to its direction. As
the chains increase the flow resistance, the apparent viscosity
is closely related to the dielectrophoretic force acting on the
chains. Up to now, there have been several reports that have
analysed the shear yield stress of ER fluids. Many of them
have determined the shear yield stress based on the force on an
isolated particle-chain. Davis calculated the electric field on
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a two-particle chain using an integral equation method [5].
The force on the particles was approximated from the gap
field by integrating Maxwell's stress. Another analysis on a
two-particle chain by Gonon e af [6] was performed using
an equivalent electrical circuit. The circuit was based on the
conduction model for particles composed of a conducting core
and a weakly conductive film. The force was caiculated over
the mid-plane between the particles. Altemnatively, Wu and
Conrad [7,8] reported on analysis of the force on a chain with an
infinite number of particles. The particles under consideration
consisted of an insulating core and a conductive surface film.
The electric field was calculated using the conduction moggl.
All the analysis considered the cases in which the chain was
parallel to the applied field. An approximation was made
that the electric field direction in the gap b&tween particles
principally coincided with the direction of the applied field
[6-8]. The force on a chain making a non-zero angle with
the applied field was assumed to be induced only by the
electric field parallel to the chain. Besides, the presence of
the electrodes was neglected in the analysis.

This paper presents the results of calculation of the electric
field and dielectrophoretic force on a particle chain between
two parallel-plate electrodes. Using the method of multipole
images [9], we can calculate the electric field without any
approximation regarding the field distribution. The calcutation
has been carried out for three-dimensional arrangements in
which the particle chain is not parallel to the applied field.
We have partly reported the results of calculation for particles
between parallel-plate electrodes [9]. The results have shown
that the effect of the electrode is small if a particle chain is
separated from an electrode roughly by the particle radius
or greater. However, when the gaps between the chain and
electrodes are smaller than thosen [9], the existence of the
two electrodes is not negligible, which plays a significant
role in the change in apparent viscosity of the fluid. This
paper considers the deformation (tilting and separation) of
a particle chain bridging two parallel-ptate electrodes, and
reports a detailed analysis of the effect of the distance from
the electrodes. We also vary the particle permittivity and the
geometrical arrangement of the chain under a shear stress to
make clear the behaviour of the force.

2. Dielectropheretic force

The dielectrophoretic force is described as the force induced
by a spatially non-uniform electric field-on a polarized but
uncharged particle. The force exists only if the particle
polarizability differs from that of the surrounding medium,
i.e. their permittivities are different. If the particle
permittivity is greater than the surrounding one, then
‘positive dielectrophoresis’ occurs. The induced force pulls
the particle towards the region of higher electric field. In
contrast, ‘negative dielectrophoresis’ occurs if the particle
permittivity is less than the surrounding one. The force repels
the particle towards the region of lower field.

On a particle located under an electric field E, sufficiently
far from other particles and electrodes, the dielectrophoretic
force, F, can be approximated by the point—dipole model [10].

F =2negRABVE?, (1)

3338

where gg is the surrounding permittivity, Rp the particle radius
and B the Clausius—Mossotti factor, defined for a particle
permittivity, £p, as

_ Ep—EE
ﬁ - &p + 26‘[-; I

It can be seen easily from equation (2) that F # Qonlyif 8 # 0
and VE? # 0.

However, the behaviour of the force is more complicated
for particles very close to each other. The point—dipole
approximation becomes inadequate, and we must consider
higher-order multipoles. Figure 1 shows the distributions of the
electric field and force on a two-particle chain under a uniform
field for positive dielectrophoresis (8 = 1.5). In figure 1(a),
we can clearly see electric field intensification near the contact
point between the particles. The downward force due to the
high field near the contact point is predominant over the force
on the rest of particle surface, resulting in a net force attracting
the particles together. The electric field and force change as
in figure 1(b) (left), where the chain is tilted by 15" while
the particles are still in contact. The direction of the force is
obviously influenced by the change in chain direction. If the
particles are separated by a small gap as in figure 1(c), the

og
X
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Figure 1. Distributions of electric field (left) and dielectrophoretic
force (right) on the upper particle of a two-particle chain under a
uniform field. (@) A chain aligned paralle! to the electric field.

{b) A chain tilted to make an angle of 15° with the electric field.

(¢) A tilted chain in which particles are separated by a small distance
(=0.07 Rp).

@
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field and force resemble those in figure 1(&) but are of smaller
magnitudes.

For cases where the particies or the surrounding medium
is not a perfect dielectric, dielectrophoresis is characterized
by the complex Clausius-Mossotti factor 8’ including the
conductivity, o, and the angular frequency, w,

£p —
/ P E
=_F E 3
s &p + 2ef @
where the complex permittivity ¢’ = ¢ — ig/w.

-~

3. Arrangements

The arrangements for the calculation are two dielectric
particles in a host dielectric liquid which lies between two
parallel-plate electrodes. When the electrodes are energized
to have a potential difference ¢, an external electric field
in the vertical direction induces a dielectrophoretic force on
the particles. If the force is sufficiently strong, it will align
the particles to form a particle chain acress the electrodes
in the field direction as shown in figure 2. In practical ER
fluids, the particle chains are composed of a large number of
particles. The largest effect on the electric field and resultant
force is made by the interaction with the adjacent particle,
or an electrode in the case of a particle at the chain edge.
The behaviour of the ficld at the end of the two-particle
approximation corresponds mainly to that of a particle at a
chain edge, while the behaviour near the middle corresponds to
that of an intermediate particle. In this work, we are interested
in the situation where a chain starts tilting to be non-parallel
with the applied field. The chain is still close to the electrodes,
and both electrodes are included in the calculation model. In
the calculation, the particle radius, R, is normalized to a unit
value. The electrode separation, D, is chosen so that there is no
space between the particle chain and the electrodes in figure 2
(D = 4R). Figure 3(a) shows the electric field and force on the
particle chain before application of shear. The parallel plates
lead to the symmetry of electric field between the upper and
lower halves of the particle in figure 3(a). Consequently, the
forces on the upper and lower halves completely cancel each
other; thus, the net force on the particle is zero.

Under application of shear, the upper plate slides in the
horizontal direction, and the particle chain is tilted from a
vertical position. Asaresult, the electric field and force change
from those in figure 3(a). Figures 3(8) and (¢) display the
distributions of the electric field and force on the tifted chain
without and with a gap between the particles, respectively.
With the existence of the plate electrodes, the field and force

=4,

=

Figure 2. A particle chain formed by the dielectrophoretic force,

in figures 3(b) and (¢) are significantly different from those in
figures 1(b) and (c). However, the ficld and force between the
particles in figure 3 are still very similar to those in figure 1 as
the interaction between particles is predominant in the region,
In this paper, we consider four geometrical arrangements of
the chain for any tilt angle, o, between the chain and the
applied field, as shown in figure 4. The four arrangements
are as follows:

(i) In figure 4(a), the chain is split by a distance d =
2R{(coser)~! — 1] so as to remain in centact with both
electrodes.

(ii) In figure 4(b), the chain rotates, and the particles are still
in contact with each other but no more in contact with the
electrodes.

(iii) In figure 4(c), the chain is split, and the particles are in
contact neither with each other nor with the electrodes.
This is considered to be a transition arrangement between
the first two arrangements. The separation between the
particies is taken as half of that in figure 4(a) in the
calculation.

(iv) In figure 4(d), the chain rotates, while it remains in contact
with the [ower electrode.

8¢
5%
08

Figure 3. Distributions of electric field (left} and dielectrophoretic
force (right) on the upper particle of a two-particle chain between
two parallel-plate electrodes. {a) A chain aligned parallel to the
applied electric field. (&) A chain tilted to make an angle of 15° with
the field while the lower particle remains on the electrode.

(c) A tilted chain in which particles are in contact with their closest
electrodes and separated by the same distance as in figure 1(c).
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(a) shear direction
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(b) shear direction
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Figure 4. Assumed deformation of a particle chain during shear.

For all the arrangements, we assume that the particles and
the host liquid are perfect dielectrics (i.e. they possess no
conductivity) and their permittivities are independent of the
electric field. The permittivities of the particles and host liquid
are denoted by gp and &1, respectively. We have calculated the
electric field and force for 0° < o € 45 and gp/eL = 4, 8
and 12. For cases of ac fields, if the conductivity is a constant
independent of the electric field, the material conductivity can
be readily taken into consideration by replacing ¢ with the
complex permittivity as mentioned in the previous section.

4, Analytical method

The method of calculation is based on the method of images
[11]. However, in addition to using peint charges, we
use multipoles to obtain the solution. For each particle,
the potential is expressed with a set of spherical-harmonics
functions expanded around its centre. The potentials, ¢y in
the interior and ¢g in the exterior, of a particle are written
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Figure 5. Spherical coordinates for expressing the potential about
the particie centre.

as follows:

oo
o= Z Z Ljr? P; jy(cos 8) exp(ike), (4)

j=0k=—j

g = Z Z ( rd + ----) PJ k{cos &) exp(ikg), (5)
f=0k=—j
where Ly, M; ; and B, are the coefficients to be determined,
(r, 8, @) are the spherical coordinates in which the particle
centre is taken as the origin (see figure 5) and P;y is the
normalized associated Legendre function. Py is related to
the associated Legendre function, P; |, by

(n — jm|)!
(n +[m|)!

for —1 € x < 1. Note that the former and the latter terms on
the right-hand side of equation (5) represent the potentials due
to charges located in the interior and exterior of the particie,
respectively.

In the calculation, we compute repetitively the coefficients
Ljx, M, and Bj, until all the boundary conditions on
the particle and electrode surfaces are satisfied. The
repetition procedure, using the multipole re-expansion and the
appropriate multipole images for the arrangements of particles
and electrodes, is described in [9,12). However, the presence of
more than one electrode complicates the calculation procedure.
We explain the calculation procedure for a multipole and two
parallel-plate electrodes in the appendix.

The analytical method has the main limitation that it is
applicable only for certain configurations where we know
the solutions of images. However, where applicable, the
analytical method usually gives results of better accuracy, and
often takes a shorter calculation time than numerical field
calculation methods. This is because errors in boundary
simulation are involved in the numerical methods, especially
in the simulation of three-dimensional curved surfaces.
Furthermore, for arrangements having triple-junction points,
the points where three media (conductor or dielectric) meet
each other, electric field enhancement often occurs near
the points. Thus, the numerical methods need very fine
subdivision of domains or boundaries for attaining a high
accuracy. In our calculation arrangements, the contact point

Piw(x) = Pjrx) (6)
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between the particles and the contact point between the
particle and the plate electrode are triple-junction points. We
have already reported a comparison between the analytical
method and the boundary element method, a numerical field
calculation method, for axisymmetrical arrangements [12].
For the arrangements including the two plate electrodes, we
have confirmed that the electric field cannot be computed easily
with a higher accuracy using the numerical methods than using
the analytical one.

After we obtain the potential coefficients for each particle,
we compute the dielectrophoretic force on the particle by
integrating Maxwell’s stress on the particle surface. -~

5. Results and discussion

3.1, Electric field distribution on particle surface

Figure 6 shows the electric field distributions along the 8 = 0°
1o 180°, ¢ = 180" line on the upper particle in the arrangement
of figure 4(g) for the permittivity ratio I'; = &p/e. = 4 and
a = 0% 107, 20" and 30°. The electric field is normalized
by Eg = ¢o/ D, the applied field in the absence of particles.
For this arrangement, the field is maximal at 8 = 0°, the
contact point between the particle and the upper electrode.
There is also a local maximai field at 8§ = 180° — o, which is
the point closest to the lower particle. The maximal electric
field does not vary much with «, whereas the local maximal
field decreases considerably with increasing «. It can also
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Figure 6. Electric field distributions on the upper particle in

figure 4(a) for I", = 4: (a) 1otal electric field; (b) normal component
of electric field.

be inferred from the figure that, in the high-field regions,
the normal component of the electric field is predominant
over the tangential one. For a higher mismatch between gp
and g, (higher I',), we have found that the field distributions
remain similar, but the field is more intensified in the high-field
regions.

For ¢ = ", the contact-point electric fields at 6 = 0"
and 180" are identical since the arrangement reduces to an
infinite number of particles aligned parallel to the applied field.
The contact-point electric field, E., may be approximated
as a function of the permittivity ratio by the following
equation [13]:

r.(r.+1
= %EU- )]

Figure 7 compares the approximation by (7) and the calculation
results. The figure shows a good agreement between the
approximation and the results of caiculation for I';, = 1-64.

Figure 8 presents the distributions of the total field on the
upper particle in the arrangement of figure 4(b). (Note that for
a = 07, the electric field is the same in all the arrangements
of figure 4.) The electric field is maximal at 8 = 180° — «,
which is the contact point between the particles. The field
is locally maximal at 8 = 0°, the point closest to the vpper
electrode. The variation of the maximal field is different from
that in figure 6 as it depends greatly on «.

The arrangement in figure 4(c) may exist during the
transition between the chains in figures 4(a) and (&). Figure 9

E,

10000 - ——rry ——
F Calculation results o
Approximation
1000 | E
L=}
w
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(4]
w
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1 ¥ PRy | " N aa
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Figure 7. Electric field at the contact points for o = 0.
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0 30 60 90 120 150

8 (%)
Figure 8. Electric field distributions on the upper particle in
figure 4(b) for I, = 4.
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Figure 9, Electric field distributions on the upper.particle in
figure 4(c) for I", = 4.

presents the field distributions on the upper particle for
comparison. The figure shows that both electric fields at
8 = (" (closest to electrode) and 8 = 180° - a (closest to the
lower particle) decrease considerably when & increases. The
maximal field is located at & = 0. However, the maximal-
field position possibly depends on the distance between the
particles and the separations between them and the electrodes.

While symmetry with the middle plane between the
electrodes exists in the arrangements of figures 4(a)~(c), the
ficlds on the upper and lower particles in the arrangement
of figure 4(d) are not identical. The fields are presented in
figure 10. Figure 10 shows the electric field distributions along
the p = 180" line on the upper particle and the ¢ = 0° line
on the lower particle for I, = 4. The field distribution in
figure 10(z) is similar to that in figure 8, but lower than that
in figure & near § = 0°. For the lower particle, the field at
# = 180° does not vary greatly with « since the particle remains
in‘contact with the lower electrode. The field strength is more
or less the same as that of the field at 8 = 0" in figure 6(a).

5.2, Dielectrophoretic force on the particle chain

We consider the horizontal force, Fy, and vertical force, F;,
on the particles. There is no net force in the y-direction
because of the symmetry of the arrangement. The spatial
deformation of the chain from figure 2 results in a non-zero
net force on each particle. As already shown in figure 3(c),
where ¢ = 15°, the electric field becomes non-symmetrical
after the deformation. It can be seen from the figure that the net
horizontal force is mainly induced by the interaction between
the particles.

Figure 11 shows the variation of F; and F; with « on the
upper particle in the arrangement of figure 4(a). The forces are
normalized by Fy = %ELESRZ, the force actingonany R x R
square element of the electrodes in the absence of particles.
The directions of F, and F, conform with the axes in figure 4.
Figure 11 shows that, for the range 0 < o < 45°, F, resists
the shear applied to the upper electrode since F, < 0 and F,
attracts the particle to the upper electrode. The angles omaxr,
and ety r, at which F, and F,, respectively, become maximal
depend on I';. Both amexr, and @, tend to be smaller for
higher T',. The maximal F, and ¥, increase with increasing
I",, but not linearly.
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Figure 10. Electric field distributions on the particles for I', = 4:
{a) the upper particle; (&) the lower particle.

Figure 12 shows F; and F, on the upper particle in the
arrangement of figure 4(b). In this arrangement, the particles
have moved adrift from the electrodes, but are still in contact
with each other. The electric field on the particle surface near
the electrode decreases with increasing ¢« to a greater extent
than does the field near the contact point (see figure 8). This is
because the particle becomes farther from the upper electrode
when « increases. The electric field in the former region
contributes mainly to an upward F; attracting the particle to the
upper electrode, whereas that in the latter region attracts the
particles together, resulting in the leftward F, and downward
F,. For this arrangement, the force between the particles is
predominant over the one between the particle and electrode;
thus, F; is negative for most values of . However, F, is
slightly weaker for this arrangement than that in figure 11(5).
By contrast, F, is much stronger in figure 12(a).

Figure 13 shows the forces for the arrangement of
figure 4(c). F, in figure 13(a) varies with ¢ as in figure 11(a),
but F; is stronger for this arrangement. F, in figure 13(b)
has an upward direction, attracting the particle to the upper
electrode. The magnitude of F, is much smaller than in
figures 1 and 12. With increasing & in this arrangement, the
force attracting the particle to the upper electrode decreases as
the separation from the electrode increases. In contrast, the
force due to the interaction between particles is lowered by
two factors. The first is the widened separation between the
particles. The second is the reduction of the field component
parallel to the chain. Figure 13(&) implies that the arrangement
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Figure 13, Forces on the upper particle in figure 4(c): (@) F:; (&) F.

of figure 4(c) is unstable, depending on I',, because the upper
particle is forced to move upwards by the positive ., until it
makes contact with the upper electrode.

For the arrangement of figure 4(d), the forces on the upper
and lower particles are different. Figures 14 and 15 present
the forces on the upper and lower particles, respectively. In
figure 14, the force variation for the upper particle is similar
to that in figure 12 for the arrangement of figure 4(6), but both
F; and F, are slightly stronger. Among all the arrangements,
this one possesses the highest values of the maximal F, and
F,;. F; acting on the lower particle is similar to that on the
upper particle (but has the opposite sign), while F, differs
considerably from that on the upper particle. For the lower
particle, F, has a downward direction. Lastly, it is to be noted
that, for all the arrangements we consider here, F, on the upper
particles has a direction opposite to the shear direction.

5.3. Discussion of the dielectrophoretic force

The maximal horizontal force, max{F,}, on an isolated
particle-chain was used to determine the shear yield stress of
ER fluids in many reports. Mostly, max{F,} was calculated
based on the force, F,o, acting on the chain when it is aligned
parallel to the applied field, Ey (i.e. @ = 0). However,
there were different approaches to evaluating Fup. It could
be obtained for a two-particle chain [5,6] or for a chain having
an infinite number of particles [7,8]. For the latter case where
the net force on any particle was zero, Fup was taken as the
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Figure 16. An isolated chain under an external field.

sum of the forces on the upper or lower half of any particle in
the chain. .

When the particle chain is bent to make an angle o with
the applied field, Ep, as shown in figure 16, the following
assumptions were often made:

e Only Egcoswa, the component parallel to the chain,
contributes to the force. (Egsina, the component
perpendicular to the chain, is neglected.)

s The effect of electrodes is neglected.

Under the above assumptions, we obtain the following
relation for the electric field, E, and its normal component,
E,, at any point on the particle surface.

Eﬂ En,a
EuO En.a()
where the subscripts 0 and o denote the values fora = 0

and any a, respectively. Fy in figure 16 can be written as an
integral of Maxwell’s stress over the particle surface,

(8)

=cosa,

1
FQ- = f (SLE(IETI,C!’O - EELEin) ds, (9)
where n is the unit normal vector on the particle surface. From
equations (8) and (9), it can be inferred that F, = Fyqcos?a.
The horizonta! force for the tilt angle, «, in figure 16

approximates to [6]
Fi(er) = Fapcos® asine. (10)
Then, max{F,} is defined as
max{F,} = max{F,g cos* o sina}
0 X maxfcos? & sin a}.

(11)

From equation (11), the angle tyaxr,, at which the maximal
F, occurs, is about 35.3°, independent of T, and

max{F,} ~= 0.385F,. (12)

In comparison, our calculation results show that if a
particle chain deforms as in figure 4(a) or (c), @maxr, is
much lower than 35.3° and dependent on T'.. For the chain
arrangements in figures 4(k) and (d), @maxr, varies slightly
between 30° and 35°, which is close to the approximation.
For reference, figure 17 gives F, on the two-particle chain
making different angles with an applied uniform field (without
the plate electrodes). The angle amas, in figure 17 agrees
well with the approximation; thus, amar, is not affected
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Figure 17, Horizontal force on the upper particle &f a two-particle
chain without the presence of the plate electrodes.

Table 1. max{F,}/F, for isolaied chains of different panticle
numbers.

Particle ———r‘—
number 4 8 I2

2 2.45 996 204
32 305 140 313
o0 924 283 579

significantly by the electric field perpendicular to the chain.
Comparing figure 17 with figures 12(a) and 14(a), we can
see the effect of an electrode separated from a particle chain
by a small distance. While the presence of the electrode
affects amaxp, slightly, it increases the magnitude of the force
considerably.

From the results of calculation in section 5.2, it is
obvious that the force on a particle chain depends greatly on
the assumed positions of particles. We further discuss the
approximation of max{F;} from Fyo using equation (12). We
have calculated max{F,} based on the force Fyg of isolated
chains consisting of two, 32 and an infinite number of particles.
Note that the calculation for the isolated chain in figure 16
differs from that for the arrangements in figure 4, as there
is no electrode involved and the calculation reduces to an
axisymmetrical one (since @ = 0). Table 1 shows the results
of the calculation. As already mentioned, for a finite number
(two and 32) of particles, F,q is the force acting on the particles
at the chain terminals. For an infinite number of particles, Fyo
is determined as the force on the upper or lower half of the
particle. The reason why chains of more than two particles
are considered here is that, by the method of images, the
arrangements in figure 4 may be approximated to arrangements
of an infinite number of particles under a uniform field E,. By
the method of images, if @ = 0, the particle chain in figure 4
is simply vertical, and the net force on any particle is zero. If
a # (), the particle chain still comprises an infinite number of
particles, but the chain is no more a straight line. Additionally,
there may exist gaps between adjacent particles in the chain.

It can be seen from table | that the force depends greatly on
the chain model. The two-particle chain gives the lowest value
of max{F,} for each I",. The 32-particle chain represents the
sauration values of max{ F, } when the particle number is large.
The difference between the force for the two-particle chain
and its corresponding saturation value is greater for higher ;.

Table 2. max{F,}/F, for the arrangements of figure 4.

T
Figure 4 8 12
4(a) 238 753 128
4(b) 455 185 383
4c) 2.86 9.24 157
4{d) 470 199 423

The magnitudes of max{F,} obtained for the chain having an
infinite number of particles in table 1 are significantly higher
than those obtained using the other models. This means that,
even where a chain comprises a large number of particles,
the model of the infinite particle number may not give the
appropriate value of the force on the chain terminals.

Table 2 presents max{F.} from our calculation in
section 5.2, The forces in table 2 are determined as the
maximum of F, that are cbtained for the range 0° < o <
45°. For the arrangements of figures 4(&) and (d), max{F,}
increases with the permittivity ratios roughly by a (I, — 1)
dependence. As can be scen from tables 1 and 2, none of
the isolated-chain models gives the appropriate max{F,} for
all ;. Even though the two-particle chain approximates
max{F,} comparatively well for the arrangements of figures
4(a) and (c) at low [, the difference becomes fairly high at
I': = 12. For all the chain arrangements considered here,
the approximation from the chain of an infinite number of
particles gives force magnitudes higher than those of the results
of calculation in table 2, although the difference from max{F,)
in the arrangement of figure 4(d) decreases with increasing I,

6. Conclusions

‘We have calculated the electric field and dielectrophoretic force
on a two-particle chain between parallel-plate electrodes using
an analytical method. The calculation has been carried out in
three-dimensional conditions, which fully include the effect
of the electrodes, for various geometrical arrangements of
the particle chain. The results of the calculation show that the
electric field intensification and the force significantly increase
with the ratio of the particle permittivity to the surrounding
(liquid) permittivity. The maximal electric field located at
the contact point can be approximated by a very simple
formula. The dielectrophoretic force on the chain depends
greatly on the spatial deformation of particles in the chain.
However, the horizontal force on the upper particle always
bas a direction opposite to the shear direction. Depending on
the chain arrangement, the tilt angle that gives the maximal
horizontal force on the upper particle may vary greatly with
the permittivity ratio. We have found that it is not sufficient to
approximate the maximal horizontal force using the isolated-
chain model since no approximation agrees with our results for
all the permittivity ratios. The approximation using a chain of
an infinite number of particles gives forces that are higher than
our results, especially at low permittivity ratios.
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Appendix

This appendix explains how to determine the solutions of the
potential for arrangements having more than one electrode.
Consider a multipole B, located between two parallel-plate
electrodes, as shown in figure Al. Assume that the potentials
at the upper and lower electrodes are ¢ and zero, respectively.
The electrode separation is D). B is located at a distance 4
above the lower plate.

The calculation procedure starts with expanding the
(undisturbed) potential, ¢gg, due to the plate electrodes as

@,
$r0 = o+ 3% cos(0a), (A1)
which is of the form -
dE0 = Moo + M) ors P o(cos 8g), (A2)

where (rg, 05, wg) are the spherical coordinates in which the
position of B, is taken as the origin. If we add the multipole
potential to ¢gg, we obtain

(A3)

¢ = P; i{cos 65) explikgg).

The potential ¢'% conforms to Poisson’s equation, but does not
satisfy the potential conditions on the electrodes. Therefore,
in the following steps, we place the proper multipole images
to satisfy the boundary conditions on the electrodes.

(i) Insert an image multipole Cj(liz = (—1)}/*+ B, at the

same distance, d, below the lower electrode [9]. The
potential then becomes
(n
o (0 C
¢! = ¢@ + == P; (cosfco) exp(ikpco), (Ad)
co

3346

where (rco, 8co. @co) are defined in a similar manner as
(ru, 85, 5). The potential ¢!V satisfies the zero-potential
condition on the lower electrode.

(if) Insert BY) and C% as the images of B and ciy,
rcspectwely Asin step (i}, the images are related to their
corresponding multipoles by

3 .
Bj.l? = (_I)J*kHBj,k

and
(2) _ ( 1)]+k+l C(])

The potential is now expressed as
B(Z)
¢ = ¢ + L P, 4 (cos Bg2) explikpan)
s .BZ
(2)
+ --—PJ k{c0s Bca) exp(ikocs).
e
Note that the potential ¢ satisfies the boundary condition
on the upper electrode, but the potential on the lower
electrode now deviates from zero because of the insertion
of Bﬁ and Cﬂ
(iii) As in the two previous steps, we satisfy the boundary
condition repetitively on each electrode. Although the
magnitudes of B('; and C¥) Jk do not decrease in the iter-
ation, the positions of the image multipoles consistently
become farther from the electrodes. Therefore, we can
terminate the iteration when their effects on the plate
potential are sufficiently small.

(A5)
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Calculation of Electric Field and Force on Conductor
Particles With a Surface Film
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This paper applies the method of images, an analytical method, to calculate electric field on conductor particles with a surface film.
The method utilizes the multipole re-expansion and appropriate fundamental solutions. Electric field is repetitively calculated so as to
satisfy al) the boundary conditions. The main advantage over Mumerical field-calculation methods is that high accuracy can be realized as
neither approximation nor discretization of the particle surface or the film thickness is involved. The calculation results for arrangements
of a particle chain under a uniform ficld show the field intensification due to the film thickness and electrical properties. We have also
carried out field calculation by the boundary element methed (BEM), and compared the results with the analytical ones. The results
by the BEM exhibit higher error with decreasing film thickness. Force and yield stress have been calculated from the electric field and
compared with experimental results. The comparison shows a good agreement for the ac field, but significant difference for the dc one.

Index Terms—Dielectrophoretic force, electric field, electrorheological (ER) fluid, method of images, particle, surface film.

1. INTRODUCTION

HE analysis of electric field and dielectrophoretic force is

one of the important topics in many applications of dielec-
tric materials. For example, electrostatic force is a key factor
in the behavior of the electrorheological (ER} fluid. The fluid
15 a suspension of micrometer-size solid particles in a host di-
electric liquid [1]. With an application of electric field in the
order of MV/m, induced force on particles attracts them to each
other, and forms particle chains parallel to the applied field. As
a consequence of the chain formation, the fluid exhibits a fast,
reversible change in its apparent viscosity. The ER fluid has
been proposed for a variety of applitations such as the hydraulic
valve, clutch, and shock absorber.

Various kinds of particles have been proposed to improve rhe-
ological properties of the fluid. In practice, we may classify the
particles into three categories: homogeneous particle without
any surface element [2], conductor particle with a semi-con-
ducive surface film [3], (4], and insulating particle with a con-
ductive surface film [5]. Up to now, the force behavior of ER
fluids having homogeneous particles has been well studied by
using the analytical methods [6]-[8], numerical metheds [9],
[10], and an approximation method including the effects of non-
linear conductivity [2]. By contrast, the behavior of ER fluids
having particles with a surface is still unclear. The electric field
and force have been analyzed only by using analytical methods
in which some approximations on the electric field distribution
are applied [4], [11].

In this paper, we apply the method of images to calcuiate elec-
tric field on spherical particles composed of a conductor core
and a surface film. The method, using the multipole re-expan-
sion and fundamenta! solutions of potential, enables us to ob-
tain results of high accuracy. For particles with a thin film, it
15 generally difficult to realize high accuracy by numerical field
calculation methods due to the small film-thickness. A surface

Digital Object Identifier 10.1109/TMAG.2005.844352

film on the conductor core cannot be simplified by reducing it
to a zero-thickness element and applying the condition of sur-
face current [12], since potential gradient is zero on the con-
ductor core. Furthermore, electric field enhancement near a con-
tact point between particles also presents additional calculation
difficulty.

II. CALCULATION ARRANGEMENT

The calculation arrangement is a chain of NV spherical parti-
cles lying parallel to a uniform external field Ey. Fig. | shows
the calculation arrangement where N = 2. Each particle is com-
posed of a conductor core and a semi-conductive surface film.
We shall refer to the particle as a conductor-core particle here-
after. Symbols o and er represent the film conductivity and
permittivity, respectively; while og and ¢g represent those of
the background medium. The particle radius, core radius, and
film thickness are denoted by Ep, Iic, and £, respectively. We
define a radius ratio { by { = fic/Rp.

III. CALCULATION METHOD

A. Re-Expansion of Potential Due to Sources Outside a
Particle

Consider a unit multipole of orders (n,m), —n £ m < n,
located at the point q and a particle centered at p in Fig. 2. The
multipole potential ¢f, is expressed as

—l 2 im
t‘b% [ ,rn-i-i Pn,fm|(COS gq) e Y (1)
q

where (74, 84, %, ) are the spherical coordinates where q is taken
as the origin, i = /=1, and P; ;, is the associated Legendre
function normalized by \/(n — [m[)1/(n + [m[)..

We shall re-expand the potential ¢f; about the particle center
p, and rewrite the potential as ¢§; in the following form:

o 7
P =D D MpuriPyj(cosy)e™s )

7=0 k=—j

0018-9464/$20.00 © 2005 IEEE
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Fig. 1. Calculation arrangement. A chain of particles is lying parallel 10 a
uniform field Eg.

Fig. 2.  Multipole at q and a particle centered at p.
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Fig. 3. Normalized electric field in the middle plane between the particles. The

abscissa and ordinate are normalized by Rp and E,, respectively.

for r, < Dyq, where the re-expansion moment is given by

; An.,nl,j,k D,

2 i{m—k)3
M} = (= 1) 35T Patsim—k (cos ap)e =00
Fq

3

and
i].k-ﬁ'm.L—

» \/(n+m+j—k)!(n—m+j+k)‘.

[k —]m]

An.m,],k

(n 4+ m)(7 — k) (n—m)l(7+k)!

Note that, in (2) the potential due to the source (multipole) out-
side the particle is now rewritten as a local expansion around the
particle center.

For our special case in Fig. | where Eg = Epa,, we still
re-expand the potential in the form of (2) in which M§, =

[EEE TRANSACTIONS ON MAGNETICS, VOL. 41, NQ. 5, MAY 2005

—Eq - (p —co), M{ 3 = Eqy, and Mik = 0 for the other (5, k),
where ¢y is the reference point of zero potential. That is

M=M,+ Mf.orpﬁl_g(cos 8,). (4)

B. Fundamental Solutions for a Particle Composed of a
Conductor and a Surface Film

Consider a conductor-core particle centered at q lying under
an external field which its potential can be written in the form
of (2). The resuitant potentials ¢% inside the film and ¢}; in the
exterior of the particle can be expressed as

SIS

i= Uk——g

By o ;
B2 3 Ak Byuosty)et
= ¢h + ¢ )

where Bpk, NJ 5+ and Op . are the coefficients to be determined
to fulfill lhe boundary condmons on the core and the film. From
the condition of zero total-charge, it can be deduced that Nj , =
Mg and Of o = Bf 5 = 0. The relations between M; ;. and the
other potential coefficients for j > 1 are given by the following:

NPJ'
e

0 = ;
_H] Pj‘|k|(cosﬂp)e'k‘°’ (5)

Yr

_ GKe - Cy; Ky
k C‘ngE + CQjKF
(2 + 1)Kg P

B R+ MY, €

W = ettt ke w e =
kT Oy Ky + Co i K (8)
7, = ~REVNE 9

where the material constants are defined by K = o +iwe, w the
angular frequency of Eg, and

Clj = j(]‘ - C2j+1)1
Ca; =3 +(j + 1)¢¥+,
Cs; = (j + 1)(1 - ¢V,

Note that the potentials are given here for general three-dimen-
sional cases. If a calculation arrangement is axisymmetrical as
in Fig. 1, all the coefficients vanish for k # 0, and the expres-
sions of potentials can be simplified.

C. Calculation Procedure
The solutions of ¢p and ¢p for the particles in Fig. 1 are
obtained by the following repetitive steps.

1} Foreach particle, satisfy the initial potential due to Eq
with (4)

¢f = (qﬁﬁd)(ﬂ) forp=1to N.

The superscript (0) denotes the step of repetition.
2) Apply the fundamental selutions (5) and (6), and adjust
the potentials as follows.

¢ = (5@ + (¢5)
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Fig. 4. Normaulized electric field inside the surface film on the lower particle.
(a) epfor = 2and t/Rp = 0.1, (M opfog = Zand {/Rp = 0.01. (c)
opfog = 100 and ¢/ Rp = 0.1.

¢ = (¢2)"

where the potential coefficients are calculated from
Mf;-"k by using (7) to (9). _

3)  For each particle p, using (2), re-expand {¢% )¢ ob-
tained in the previous step to (¢}, )¢+1) for all ¢ # p.
Note that (n;bfa)(“) is 1the potential due to charges (or
multipoles) located outside the particle q.
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Fig. 5. Normalized electric field at the contact point as a function of o /g,

#) Similarly to the second step, rewrite the potentials as
i+l )

> [0 + (850

n={

i+1

=S ()™,
n=>0

5)  Repeat Steps 3 and 4 until the solutions of all particles

converge.

Although the calculation procedure is described for the ar-
rangement in Fig. 1, it is worth noting that the method pre-
sented here can be applied for arbitrary arrangements of con-
ductor-core particles by using a similar procedure [8].

It

¢

IV. CALCULATION RESULTS
A. Electric Field Distribution

We applied the calculation method in Section III to calculate
electric field in the arrangement of Fig. 1 for N = 2. The cal-
culation parameters were: t = 0.1 t00.001, og/og = 2 to 100,
and w = 0 (dc field), We used 200 to 2000 expansion terms for
potentials, depending on the field nonuniformity. The calcula-
tion was terminated when the maximal electric field on particle
surface varied less than 10~%% from the previous iteration step.

Fig. 3 shows the field on the mid-plane between the particles
as a function of the distance from P for or fog = 2 and 100. The
field is normalized by Ej. It can be seen from the figure that the
electric field becomes more intensified and nonuniform near the
contact point with decreasing the film thickness or increasing
the film conductivity.

Fig. 4 shows the field distribution inside the surface film on
the lower particle for different film parameters. The effect of ¢
on the electric field in the film is similar to that in Fig. 3, as
the field in Fig. 4(b) is more intensified than that in Fig. 4(a).
Fig. 4(c) displays the effect of o on the field distribution. With
the increase of o /og from 2 to 100, the field becomes highly
nonuniform near the contact point. This leads to the difficulty
for numerical field calculation method to realize high accuracy
in the arrangement. Fig. 5 summarizes the contact-point electric
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Fig.6. Difference between the contact-point electric field by the BEM and that
by the method of images as a function of o foE.

TABLE 1
RESULTS OF THE CALCULATION USING PARAMETERS OF A REAL ER FLUID
BaseD ON DIFFERENT NUMBERS /Y OF PARTICLES N A CHAIN. E_ [ THE
CONTACT-POINT ELECTRIC FIELD, F; THE FORCE ACTING AT THE CHAIN
TERMINAL, AND 7, [$ THE SHEAR YIELD STRESS QF THE FLUID.

Applied field N  E/Eo  Fof(eoEiRE) 7y (Pa)
ac 2 51034 167.35 413.56

16 73.046 353.69 874.05

dc 2 43.511 143.51 354.65

16  61.364 295.36 729.91

field a1 P as a function of or /oy for different thickness. For a
sufficiently thin film, it can be seen that the contact-point electric
field varies exponentially with the onductivity ratio.

For comparison, we calculated the electric field in the ar-
rangement by a numerical method, The method utilized here
was the boundary element method (BEM) for axisymmetrical
arrangements. We subdivided each surface (contour) of the core
and the film into 512 second-order curved elements (1025 nodes
for # = 0 10 180°). Accordingly, the number of unknowns (po-
teniial and normal component of electric field) for each particle
was totally 3076. Fig. & compares the results by the BEM with
those by the method of images. The difference is higher for the
particle with a thinner film. This 15 because of the difficulty in
numerical quadratures where the core surface is very close to the
film one. However, at the high conductivity ratio, oy fog &= 100
in the figure, the difference is approximately the same for all .
This implies that the error due to conductivity mismatch, which
contributes to high nonuniformity of electric field, is predomi-
nant over that from the numerical quadratures. The difference
can be reduced by using a finer subdivision on the sphenical sur-
face; however, too small elements may lead to numerical errors
in the evaluation of the elliptic integrals involved.

B. Force and Shear Yield Stress

We compare the shear yield stress of an ER fluid obtained
from our calculation with the experimental results [3]. Parame-
ters of the ER fluid are: Bp = 10 pm, ¢t = 0.2 ym, op = 4 x
10712 S/m, op = 2.4 % 10712 §/m, ep = 5ep, and eg = 2.5¢q.
The appiied field is 3 MV/m, dc, or 50-Hz ac. Note that, at the
50-Hz frequency, the effect of e is predominant over that of o.

IEEE TRANSACTIONS ON MAGNETICS, VOL. 41, NO. 5, MAY 2005

To determine the shear yield stress, we first calculated the
field on the particle chain by the method of images. The force
£ at the chain terminal was then obtained by integrating the
Maxwell's stress on particle surface. The shear yield stress 7,
was computed from the maximal force perpendicular to the ap-
plied field.

ma,x{sK Fgcos3ﬂsin8}
Ty = K —m——
¥ 27 ‘JTRIZ;,
0.487 14 x K\,—Fiz

TR

14

(10

where 8 is the angle between the chain axis and the applied field,
and K, is the volume fraction of the particles [5]. For the ER
fluid under consideration, K, = 0.2, Table I summarizes the
calculation results. The force Fy increases with increasing N,
but reaches its saturation value for a sufficiently-long chain. The
force for N = 16 in the table represents the saturation value.
According to [3], the measured yield stress is approximately 500
Pa for ac field and 100 Pa for dc field. The values of yield stress
in Table I agree with the experimental data for the ac case, but
are much higher for the dc case. This difference is possibly due
to the nonlinear o, which depends on electric field, of the real
liquid in the experiment.

V. CONCLUSION

We have presented an analytical method to calculate electric
field on conductor particles with a surface film. The method uti-
lizes the multipole re-expansion and fundamental solutions to
repetitively calculate electric field until all the boundary con-
ditions are satisfied. Calculation on example arrangements of a
particle chain shows the higher degree of field intensification
with increasing film conductivity or decreasing film thickness.
We have applied the method for determining the force and shear
yield stress of an ER fluid, and compared the calculation results
with the experimental ones.
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Abstract: This paper presents an analysis of the
electric field at the contact point of zero contact angle
for different curvature of the dielectric interface near
the contact point. The arrangement considered here
is a dielectric solid {a spheroid or an elliptic cylin-
der} standing on a grounded plane under a uniform
external field. The electric field has been calculated
by using the boundary element method for 2D and
AS arrangements. The calculation results show that
the contact-point electric field is intensified by either
decreasing the aspect ratio a/b of the dielectric solid
or increasing the ratic of the material constant of the
solid to that of the surrounding medivmm. Two simple
equations are given for estimating the contact-point
electric field for a range of the material-constant ra-
tio with the errors less than 6.6%.

INTRODUCTION

A triple junction or a contact point, the point where
three media meet together, exists in many insulation
systems. It may be formed, for example, by a di-
electric solid utilized as a mechanical support of an
electrode or by a particle adhering to an electrode
{1). Figure i gives examples of the contact points
(p)} at the junctions between the dielectric interface
and the electrode. The behavior of the electric field
at the contact point is very important as the field is
often intensified, possibly causing partial discharge
or breakdown in the insulation systems.

The contact-point electric field depends strongly on
the contact conditions and the electrical properties
of the media involved. According to the contact an-
gle 8. that the dielectric interface makes with the
conductor, we can group contact points into three
categories: (i) 8. = 90°, (i) 0° < 6. < 90°, and
(iii) 8, = 0°. For 8, = 90°, the contact-point field
may be enhanced by a certain degree but is still fi-
nite [2]. For 0° < #. < 90°, the contact-point field
is either zero or infinity, depending on the media in-
volved [2,3,4]. For the last category, 8. = 0°, the field
is finite but possibly much more intensified than that
in the first category. The electric field at zero-angle

gas or liguid dielectric

p =

Figure 1: Examples of the contact points.

contact points has been analyzed in [1,5,6,7] but only
for the cases where the dielectric interface is circu-
lar in cross section near the contact point. However,
if we consider the case of particles in an insulation
system, it is anticipated that particles thinner than
spherical ones may be more deleterious by bringing
higher field.

This paper presents an analysis of the electric field
at the zero-angle contact point between a conduct-
ing plane and a dielectric solid of elliptic cross sec-
tion. The purpose of the analysis is to clarify how the
curvature near the contact point affects the electric
field. The electric field has been calculated by us-
ing the boundary element method (BEM}, a numer-
ical method. The contact conditions treated here is
line contact and point contact in the two-dimensional
12D) and axisymmetrical (AS) cases, respectively.

ARRANGEMENT OF CALCULATION

Figures 2 shows the arrangement of calculation con-
sisting of a dielectric solid standing on a grounded
conducting plane under a uniform external field Eq.
The zero-angle contact peoint is located at the point



p in the figure. The dielectric solid is an elliptic
cylinder in a 2D configuration or a spheroid in an
AS configuration. Its geometry is specified by the
lengths of the minor and major axes {a and b) as
shown in Figure 2. In the calculation, the aspect ra-
tio a/b has been varied from 0.1 to 1.0, while keeping
b to be a unit length, to alter the curvature of the
dielectric interface near the contact point.

L

Figure 2: Arrangement of calculation.

As mentioned earlier, the electric field distribution
in this arrangement also depends on the material
constants of the dielectric solid and the surrounding
medium. In a typical insulation system, the mate-
rial constants are the permittivity ¢ for an ac case
or the conductivity o for a dc case where the sur-
rounding medium is a dielectric liquid. In general,
the constants may be represented in a complex form,
o+ jwe or € — jo/w, where = /=1 and w is the
angular frequency. For generality, we define ' as the
ratio of the material constant of the dielectric solid to
that of the surrounding medium. The field has been
calculated for I' = 1 to 32 in this paper. Note that all
the material constants are assumed to be constant,
independent of the electric field.

CALCULATION METHOD

The boundary element method (BEM) [8] is utilized
to calculate electric field in the arrangement of Fig-
ure 2. In the BEM, we subdivide the dielectric inter-
face into elements. At any point r’ on each element,
we express the potential ¢(r') as

#(r') = NP(r')e (1)

and the outward normal component of the electric
field E,(r') as

Eo(r') = Y NE(r')Ens, (2)

where Nf’ and NF are the functions interpolating
¢ and E, from the nodal values ¢; and E,;, respec-
tively. ¢; and E,; are either defined by the boundary
conditions or to be determined by the BEM.

To calculate ¢; or F,;, at each node i located at a
point r, we form a linear equation,

C™M )¢ = fEi,“‘(r')w(r,r’)dS’

s
+ f ¢(r')%a’;’—)ds' 3)
g

for the interior of the dielectric solid, or

C* ()¢ = /Ej{“(r')w(r,r')dS’

5
n Owlr,r’)
+ [ ¢{r')———=dS
S/ an
—Eqp - (r —ro} (4)

for the exterior of the dielectric solid, where w is
the fundamental solution of the Laplace’s equation,
7 the outward normal vector at r, S the dielectric in-
terface (including its image with respect to the con-
ducting plane), and rg is the reference point of zero
potential. The constants C™(r) = C°**(r) = 1/2 on
smooth surface. The superscripts “int” and “ext” in
Equation (4) denote the interior and the exterior of
the dielectric solid, respectively.

On the interface, EI™ is related to ES* by

IEint 4 poxt = g, (5)

The fundamental solution w is defined in 2D calcu-
lation for r{z,y) and v/(z’,y") as

i In !
P RN T

and in AS calculation for r(p, 2) and r'(p', 2') as

’ K(\/Zn/(m+n))

w(r,r') = , 7

(e ) Jmn @
where K is the elliptic integral of the first kind, m =
p?+ p* + (z — 2')%, and n = 2pp’. Equations (3) to
(7) are the main equations for the BEM code utilized
in this work. To attain high accuracy of the electric
field at the contact point, the dielectric interface was
subdivided into 720 second-order curved elements.

w(r,r’)

(6)

RESULTS AND DISCUSSION

The presence of the dielectric solid enhances electric
field near the interface even in the absence of the
conducting plane. Without the conducting plane,
the maximal electric field E.p in the surrounding
medium, located at p, is given by [9]

AN

(8)

Eq \Ta/b+1
ior the 2D configuration, and
E.o r

By 14T -De )



for the AS conﬁéuration, where « is a function of
1 - (a/b)?,

_1-p 1+7
o= n(125) -]

For reference, Figure 3 presents the values of F.p
where a/b = 0.1 to 1.0 and I' = 4, 8, and 12. It
is clear that Ey is intensified by either decreasing
a/b or increasing I For a circular cylinder and a
sphere (a¢/b = 1.0) E. approaches 2Eg and 3E,,
respectively, with I" — oo,
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Figure 3: Maximal electric field in the absence of the
conducting plane.

With the presence of the conducting plane in Figure
2, the contact-point electric field £, (in the exterior)
is highly intensified to be significantly greater than
Ey. Figure 4 shows E, normalized by Ep as a func-
tion of u/b. As a/b decreases from 1.0, the degree of
field intensification increases, and the effect of I" on
the electric field also becomes more significant. It is
also implied from Figure 4 that we cannot express
E./Ey in a simple form of fi(a/b) - f2(I"). That is
to say the effects on E. of a/b and I are related to
each other. Note that, for the same I" and a/b, the
field is higher in the AS arrangement than in the 2D
arrangement.

Figure 5 presents E, in relation to T" for various val-
ues of a/b. E./Fy in Figure 5 apparently increases
with I" as an exponential function; however, the slope
of each line is not constant throughout the plot. For
practical gas-insulated systems under an ac field, '
should range from 2 to 8. We may estimate the
contact-point electric field for a range 1 < T < 8
using the following expression:

For the 2D configuration,

E, "

=L =Tk, 10
and for the AS configuration,

Ec _ 1 k—1

B = 21’(1" + 1), (11)

a/b

Figure 4. Contact-point electric field as a function of
the aspect ratio a/b. The 2D and AS cases are pre-
sented with the solid and dotted lines, respectively.

kS

where k is the constant which can be numerically de-
termined. The approximation by Equation (11) was
previously proposed for a dielectric sphere (@ = b)
[2,5). We obtain k = 1.75 here for the sphere whereas
in {2,5] & is abont 1.77 as the approximation is ap-
plied over a slightly wider range of I' in the refer-
ences. For a circular cylinder (@ = b), it can be
derived that £ = 1 in Equation (10) {10].

10000 2D:ab=0.1 —a—

alb =05 ——
alb=10 —+— .

=1 “

alb=1.0

o

100

E./Eq

10

Figure 5: Contact-point electric field as a function of
I

Figure 6 compares the electric field estimated using
Equation (10) or (11) (the solid or dotted lines) with
the results by the BEM (shown by the dots). It is
clear that the equations estimate the electric field
well for a dielectric elliptic cylinder and a dielectric
spheroid having 0.1 < a/b<1.0and 1 <T < 8. The
difference between the approximated values and the
BEM results is less than 6.6%.

Figure 7 presents k as a function of the aspect ratio
a/b. With decreasing a/b from 1.0 to (1.1, k increases
consistently from 1.00 to 2.02 and from 1.75 to 2.80
for the 2D and AS cases, respectively. It was pre-
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6: Comparison of the field vhlues from the
Its {dots) with those from the approxima-

ested that & < 2 for a round conductor
. the results here show that & can be
than 2.0 with different curvature near
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ant k for approximating the contact-

value of I, the contact-point electric
simply approximated by the same ex-

g (12)

)and AS cases. The constant kforT" >
ler than that for 1 < I' < 8 in most
for afb < 0.2 in the AS arrangement.

“ \ JSIONS

analyzed the behavior of the electric
e contact point between a conducting
tric elliptic cylinder or a dielectric
ra uniform external field. The results
ed as follows.

¢ The contact-point electric field E, increases with
decreasing the aspect ratio a/b of the dielectric
solid or increasing the ratio I' of the material
constant of the dielectric solid to that of the
surrounding medium.

¢ The relation of E, to a/b and I' is complicated
and cannot be written as a simple function for
the whole ranges of I" and a/b.

e For 1 < T" <€ 8, we may use two simple ex-
pressions to estimate E, separately for the two-
dimensional and axisymmetrical cases with the
errors smaller than about 6.6%.

¢ For a larger value of I', E, is approximately pro-
portional to I'*.
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