MRG4680115 HNA.a7.TUNUY SUNTINTTY

\

“
R

\

4/
A
o

a b o &
‘J']EJ\?'?%'JQEJRUU&NUEM

A aAa = a a o L1 o o wr Pl
Tﬂi@ﬂ']'i Wk e A Useand mwdmIumsdaunsed o vami eanssd I uTsuus Hﬁlﬂﬁj VLS

le8 WIIEIITUN U SUNTIWSTE LAz

30 i}qmmg .6, 2548

\

o
4

PARN
e

e

g9mIdeaduangal

A Ao o a ar o & a o s
Tﬂ?\‘i AP 11214 1204L teAns MW M UM IR TR =0 Uamﬂﬂﬂﬂﬁ&la']ﬂiumﬁ Elal‘nﬁ VLS|

Tag WIIRITUNUY IUNTINTTE RRSADAS

30 ﬁqmmu W.F. 2548

AL o L3
5'15]\31%'3?]2]%”1]?‘3\'“3{%

-3 H =y a o ar 'S L% Q W
Iﬂﬁﬂ"ﬁ Ak AN S URans mwdwiumsdsensi na uamiasnssd@ mMiussuuiE Elai‘naj VLSI

WHENAWNUWT IUNITINTTE i Inenasdading

a. @3. I8AN FIANADT amﬁumﬂ'[ufaﬁmzaauLnﬂ"mai"]qmﬂmsmmm:ﬁ'a

ﬂﬁﬂﬂ%%fﬂﬂﬂﬂ?ﬂ&d%'ﬁﬂﬂ’lﬁﬂ ua:ﬁ1ﬁna1unaan%aﬁfum§umﬁﬁﬂ

= A/ﬁ ’ e L 1o =| -~ = A
EruAnlunonuiiiuussdidy nuad uaz and. liddudsafudoiaue’y)

UNAAED

Tuawddoitldingue Framework §miUATmsdmemssenuuufitnanzands
Asadoanuluuiuen (Impreciseness) tularimuazasnmsaanuuy lunng
FanevigesssduaaaonIsuin ﬂna:ﬁmmvl.ml,uluamﬁ'ﬂdﬁuﬁagawaaﬁaﬁwuﬂ
Tadsedl s ldResandszimvasenyliuivewsentssiam T analauw
wanlududarvuanamitodiwim wezanwliwiueuludamwuadndonludm
nauazdauluduiinuiiamed 1n Framework it 989837y iterative uazdn38y
MATMIsadeusulaun Register-Constrained Inclusion Scheduling luumanuiilenin
UM wraanssaseuuuul waldnaaasnislds Framework ns
aanUUUTiNUMaing benchmark swldun Discrete Cosine Transform Wa Voltera Fiiter
LmMIMseanLLUTLEendmiumsanuuLaFas i e manauius UM Tsaui e
(Acceptability Criteria) uaz1sznasminismaairinualasylszanmdas

fdan nidanseenuuulasidsanuliuiuen nsdaday am
snwaznITeanuLuLUraIade ﬁa;‘{amm'lml.ti,uau Gowludwaan uar Inclusion
Scheduling

Keywords Imprecise Design Exploration, Scheduling/Allocation, Multiple Design

Aftribute, Imprecise Information, Register Constraint, Inclusion Scheduling

Abstract

We propose a design exploration framework which consider impreciseness in
design specibcation. In high-level synthesis, imprecise information is often encountered.
We consider two types of imprecesness: impreciseness underlying on functional unit
specibcations and on contraints: latency and register. The framework is iterative and hased
on a core scheduling called, Register-Constrained Inclusion Scheduling. An example how
the scheduling algorithm work is shown. We demonstrate the effectiveness of our
framework for imprecise specibcation by exploring a design solution for a well-known
benchmark, Discrefe Cosine Transform, and Voltera Fifter. The selected solution meets the

acceptability criteria while minimizing the total number of registers.

S wIlayn MRG4680115
o A== =] oy o . s '3 - o (%) A &
Tﬂ‘iﬂm‘i MARANNURENE MWEMIUMTERATIEV 26 uamﬂﬁﬂnmmmumn EI'sﬂYIN VLSI

wuurasnsgnlasenisivnszIi

- o eda o oo o o o ¢ A . I a &
ﬁarﬂi\’n’]i Lﬂﬂuﬂﬂuﬂszﬁﬂﬁﬂ’]ﬂﬂ’]ﬁsunqjﬁﬂLﬂij:‘ﬂi:@]uﬁﬂqﬂmﬂn??&]a’]“fuf:uu[ﬁﬂﬁtﬂ“ VLS

sruztaalasanTs 1 nangian 2546- 30 gunuw 2548

A o v

3 Wmm'l_man'mﬂﬁ%'unu WIFTITHNHT TUNTINT DY
d o as o o .
FeunIdufitInw . a3 38an gaziwess
FILIIBBIINA 1 URTIAY 2548 019 30 it 2548

1. gmiviamblasemadldiunu

1.1 msdiiuau I P T TR S B
0 addunishntininuaun ey

[T o o &

0 et Ruueruauine i

1.2 TWASLBIANANTEILHUIIUYBI1ATINT
1. &7Utie (Summary)

Janyszasd
ad g . v oo A w S
meﬂum‘mﬂmmﬂuﬁﬁmwgmmmm‘m'lumamﬂuﬂmsa ANULLYI9IT VLSI
A) e vl & - L3 € & A ke 3

2. Wadlumsdanaruifiiduiug il siaunseddudimiunTidiesziaees VLS wiu
R
A = i v - - w

3. Wadlunsfinwinaiafisgiulaaiulunseanuunans VLS| uasiiansidadiiae
A e - = R A~ ar

4. wadlumadawinafialniiegiolun1seanuuyas VLSI ART0NG MANETHETRIITWAY
pinawTon 9w uazadnanulaiuinau
- = . . - s ar ans, a 'S . a

5. wadumahnaia il Fiuns§unTziees VLS wuudaludd lunisfuniewieasamiu
aUnsofnwBidnnselingeneg

NMIAARINIA ,

MRG4680115 \ 30 dnuuu 2548

a o v "
Aonssudlaraunnls

iRa
112 |34 (5|6 |7 |8 (9|10 11|12 13| 14| 15| 16(171 18| 19| 20| 21| 221 23| 24
! >
< 2
« 3 P
P 4 q PEEL q
< 2 1S < 12 »
< = »
< 1 < 13 >
< 8 >
« 4 > < A >
< 10 W 15 »
1. Anvunafiadaluddlunisdsniziaees lud u scheduling, allocation, module selection '?’i'lﬁgnﬁwm
Twannaw uariieneidedfursanaiamenil
2. #nwifasuanyliuiusulumsfnemeiiariudu
3. AnwednguanuoruaseTHadnt lunizasna vuna nsldndsnu nuimnudiiuiswinueeae
nu .
4. 1wl model zhw?umﬁmn:ﬁqmé’nwm:wanmmaé’wﬁﬁﬁmm’hjumauﬁuageﬁu
5. Waw) wietiudsamatialun1iFnanziages VLS| auuuy model #lT fiRersan scheduling,
allocation wiaunwnaw &L Functional Wa: Register allocation
6. va TardRadenIm i amaiiadingta
7. \3an Benchmark wW3a@18¢19 Application ﬁl‘ﬁagﬁ'ﬂﬂ Wammassaoufisumsvinnusasmedialnsg
fivawidunaznadieirin
8. mesadUszBniuavaanaiianaesuluninlysuniudiaesfivamiu ,
9. JwninanmmesasuasansuwImimaimeiia luitlunseanuuuada
10. Wpusenualnansiv Warsuoranulunsasmeimmsluaiapites
11. Anw13ITN"3 Design Exploration ‘ﬁﬁagui
12. iunaliada 5 yuduairnilu Design Framework TniififiTesbaruliuinawnniieadas lasardonan
379 11
13. uily LasWAWILLLU91ABan5¥auLAawT Design Solution #la9 N 5lnaiit
14, 'Yﬂﬂi:ﬁn'ﬁnawaomﬂﬁﬂﬁﬁaq waz inafialny Wisuifiouiu
15. tﬁuu‘rmmua;ﬂuamﬁ%’nﬁmm Lﬁaﬂsznaumﬂl‘lLaua'lumsﬂiz'gmm’i'mmi wIaaRuAUNITIINT
Jons '
fanssaflarinese

> -~ - P - o »
1ﬂﬁ"lluuann@n77u'n 15 IFTIFULAD

MRG4680115 \ 30 figuwww 2548

aslniyaniinain

1. lavnmsdnmduataudsufifintoaiuSinnTin Register Aliocation Ailndides i LasnunIm
58m3 Inclusion Scheduling Ainzl& wUYin Resource binding uss Allocation 15 aRansmilad
A lusiueninifisatosdomsls Fuzzy Set TavaziBue uasRunsontaidusasnisin
Register constraint $¥%19n717%11 Scheduling/Allocation Hadthduanyliusivan

2. Swrsiilymiiieluuasfoulyaiadasmmmasmilait Register constraint Wan2:i
a1y liusivneu droWogam

3. 'l.e%’ﬁﬂmﬁﬁuﬂgamﬂﬁﬂLﬁ'asad%‘uﬂﬁwaamm"l,ajLtuuaulufm‘mmaﬁﬁama{uﬁ'a

4. ldiudlsussannansauaimuda 3 Soudaoud

5. ldvnmmasasiu Benchmark iiassuuds uazldnadniuuudaduiilildRasoniasy
register 19 35%

6. ldiursauazWaun Design Exploration Framework WUU iterative Faiiladoaa liusinausn,
Register Constraint 382724

7. ldvinmsnaaenu Benchmark ua:tﬁuﬁagmﬁmﬁuéw?u Design Exploration

8. 'lﬁ'L%uuagﬂﬂmm wazds manuscript (19 IEEE Transactions on Computer-Aided Design
(Impact Factor 0.782) Lija il 30 tiwaw 2548

3. HAaWIBRARLN U TP TN IR UK TR

- 'lé'ﬁﬁuﬁéad Efficient Scheduling for Design Exploration with Imprecise Latency and

Register Constraints u Lecture Notes in Computer Science (LNCS 3207) 1 2004 wih 259-270 impact

factor 0.413

a o . . - .
- d@RuiTes Design Exploration Framdwork under Impreciseness based on Inclusion

Scheduling lu Lecture Notes in Computer Science (LNCS 3321) 1l 2004 wih 78-93

impact factor 0.413

4. Panvsudugiifioadas

- "L@Tmmuawamuﬂ’w"m’\nm‘%ao Efficient Scheduling for Design Exploration with Imprecise
Latency and Register Constraints 1umi1_l‘§:'qa.lfa'ﬁ’m’li The 2004 International Conference on Embedded
And Ubiquitous Computing (EUC04) 1 University of Aizu Uszinardiln lwiufl 25-27 fomew 2547

- 1.@'1'1i’1Lﬂuauamumﬁ'ﬁ’lmﬂ%aa Register-Constrained Inclusion Scheduling for Imprecise
Specification hﬂuﬂizﬂgu IEEE Analog and Digital Techniques in Electrical Engineering 1] 2004 w
TrousnTadatomamuts 1Boalna Sufl 20-24 noainiou 2547 uazasdRuWlu Proceeding YCREQIIEER Y
wih 160-163

- 'léﬁl’lLauanm'luﬂ’wfm'm‘méaa Design Exploration Framdwork under Impreciseness based on
Inclusion Scheduling 1u\1'm1.|$:'qu’rmn'ﬁ 9" ASIAN Computing Science Conference ™ ¥WIINETSY

Woslmal Wu3ud 10-12 funau 2548

5 Ugywiuazadessn
L]

MRG4680115 \ 30 figwinu 2548

6. ANMUALLATTBLRUALLE

7. sufiesvinludsaly

a P Y T
2. @wmsuwnIsundInsn

ﬂ:ﬁGLLUUﬂixLﬁuﬂWNM']ﬂ’]ﬂﬂé:‘l

CRATSEY

rmhlasimg ldfumw)

MRG4680115 \ 30 figuinu 2548

UnAAEa

Tnowddoilldiigus Framework §wiu3TmIdimemIsanuuufimanzands
frntaduanyliutues (Impreciseness) lufadvuazaimssenuuy w3
FLATIEY s TE AT RENTTNTIY ﬂ’ﬂﬁ]:ﬁmmvl.;juﬂuamﬁmﬁ’uﬁagamaaﬁaﬁmw
Tuawdsuil AianldRnTandszinmvaseoliuivewsanlszinn ldun analiu
woulugudarvuaasmiodiwin wazenylduivanludaimuadiudowladin
Nnauazdanluduinnuiimand s Framework it 28 BIFUNLY iterative uasE1IB
fATMIsaseuauliun Register-Constrained Inclusion Scheduling luumanuitiein
anamatafai T Itnuussmsaseunund uasldnaaasnisld Framework ™3
paNUUUTTUGI8te benchmark swleun Discrete Cosine Transform Uas Voitera Filter
W IMIMIesNUULAEondnTuMIsanuuuIResi iz aun U UM spa iUl
(Acceptability Criteria) waztrendas s saafranualaglssanmie

drdnty midamIaankutlasandoanaliuiuau nsdaden A
anwemIaanLuunanlay ﬁa;&ammhﬁmﬂuau Gowludmaan uar Inclusion
Scheduling

Keywords Imprecise Design Exploration, Scheduling/Allocation, Multiple Design

Atiribute, Imprecise Information, Register Constraint, Inclusion Scheduling

UTIRREIE v eeeeee oo eeatee oottt ee e 1
T IR TR T ot SO S O 4
UNT 2 STUATUTUR T oo eeese e sesees s 6
unfl 3 Model ua:mmfl,ﬁmﬁumwﬁﬂ%ﬁwﬂ@ .. 8
3.1 N7 model S:UULLa:qmﬁnumwaﬁ:uu .. 8
3.2 MHEIWITITR oot 11
U'ﬂﬁ 4 lterative Design FrameworK ..o crreeera ettt e e eaaa e 13
Uﬂﬁ 5 Register-Constrained Inclusion Scheduiing ... 14
5.1 Latency-based Inclusion Schedulingccccccoiiiiieer i 14
5.2 ganaifiu Register-Constrained Inclusion Scheduling ..o, 16
5.2.1 Imprecise Timing Atribute ... 16
522 MIMIWITMITITIMUIRAADT oo 18
3 T 11112 1 2t VOSSO 19
lmﬁ 6 G10H1INTIVNNNUBS Register-Constrained Inclusion Scheduling 22

LN 7 AN TINARED oo eoeeeeeees e s s eeeseeeeseeseeesse e esseene e 26

7.1 Discrete Cosine TranSformM ... v ee s s e e e eeanaes 26
unil 8 BTUNA 30
3] Toig T OO OO 31

asUusduaza1T

Eﬂﬁ 3.1 TAAURZATDLNI DFEG oo es oo eeneenen 8
Eﬂﬁ 3.2 MINAAVAININTY Farast ~ L% ar « Zaxi — 0001 9
3‘1]‘71' 3.3 Projection UIFU 3.2 ..o s 10
Eﬂﬁ 3.4 (a) Z-Shaped acceptability function {b) projection ... 10
31J?i 3.5 AUTUINGURUNDT A+B oo eeoeeeeeeeseeeeerreees oo 11
SUT 4.1 NI deSign SOIUNION UL IEMBVE ..o 13
31]?'; 5.1 61 FST(U) WAL FET(U) DINTH oot 17
u‘:’llﬁ 5.2 mmé’uﬁuﬁiwi'}ﬂm@ﬁQm‘fﬂa"ﬁﬁuué’ma: 1 7= 1111 V- SO 19
Eﬂﬁ .1 TITTWETBHTI oottt eae s ees s ee e eee e ee ettt seeaeeeseesaseeeed 22
a991 6.1 Ltﬁmoqmﬁnwmmaaﬂﬂaummm .. 22
gﬂﬁ 6.2 System Specification FIMTUNTINFIOUN ..ooovvececeeeeeeee e 23
31]‘?% 63 (@) MYRTAS LT IRN RIS (b) ermisd adné it 9! indusion scheduing ..o 23
SUT 6.4 (8) FLT (A) (B) FLT(B)-1orrvrrvrerersrsnsrsmsmsmrsmsonssssessmsnsesseesnesesess 23
U 65 FLT (A) USE FLT(B) vreretcsernsesnscssmesnssstssssssssnnssssnses s 24
Eﬂﬁ 6.6 FLT ﬁww%’uvlniwuﬂluniww (@) FST (B) MFFT ctiiieeeees e 24
Eﬂﬁ 6.7 Register count uazena M ulUle ab a8 119 s 25
gﬂﬁ 6.8 NI MU 0B TARATIIU oo 25
G319 7.1 SNV adder WAZ MUIIDHEF. ... eeooroeeeeeese oo 26
ST 72 HaMIYIeRBIa) DCT Wh 1Ll 5y RCIS Wt IS S ML i and g fu.....27
Eﬂﬁ 7.1 system specification BBI DCT ...c..vvveveveerereensieeee et saseen st eseens 27
a9 7.3 aenudululggmiunsldnuimniiawaidag du dmsu nad

adder 797 WAz MUIPHEr 5 A D8I RCIS .ot 27
a197 7.4 sanadululddgmivmsldnuiuiniinaedeng fu dmsu nad

adder 7617 WAz MUIPHEr 5 873 VBT IS ... eeeeeeeeeeeeee oo eeeee e 27
Eﬂﬁ 7.2 System Specification DI VORELA FIT evvvrereeseeeseees oo 28
MTIF 7.5 HATINARBITEY Voltera filter 1By RCIS way IS dmiudimaumiag

FAWTORINT G TIW oo eees e ess s eessseess s e eeesee e eeenet e enes e mesneereees 29
Eﬂ‘ﬁ 7.3 @1 acceptability degree VBIRARZMITEBMUU oeoveriieerreeere oo 29

A o
N1 1 YN

lunwdensinndusaniaons dnianaliuiueuludayadisg ldud
Tuduaams implement nMTiEanasdlsznay (component) VBI1ATAIMTUAITEANULL
(design) mm:ﬂ’ﬂajmmsnﬁ'mwﬂvleﬁﬁaamnﬁmumm@ vvziuwwnslivany
Ussinnwasasssznauldidan 1w § module fisimsaiiin A (multiplier) way
Uszinn wiaanvaziilulwiiz module 114 module £lylegnaanuuyluszey physical ¥
Tdfmuanszuia89199 module sindaliuiuar wiousn module ﬁ?uvl,ﬁgnaammu
FHuIDuua? qmé’nwmxmdazmmw:ﬁnmﬂﬁUmLUaaLﬁaqmnﬁu@aum? fabricate i
o andszinnwissasanuliwinonldun anwlivinauniaanudinaluduszau
manasuld (acceptabilty level) wiavzsuanuiinalevaimseanuuuilaluseay
sontlaenssy wuihdanuiemeladunmsesnuuuiisansoiewldmeluna 50
cycle uazdnisaanuuufilaviemlalunm 51 cycle axdsmursnvoniuldvialy Tas
awzagwBadiatitadumssenuuuwaneilastuiisitosdeiladumanivonsiauds
muagludaios uluwddssinimwuaznsliwdanu ﬂs:ﬁﬂ‘ﬁmwmmL%dgoa'm:'laj
Yrzndawdanu wis luwivesimndimeasiltrunalumyinusasniseanuund
¢ feerhewiianelfiwniianeefnnis szsauiulanwiesl dseniurinm
189 1 W38 2 clock cycle udUszwiaTamaasld 1 &1 wia Mldmanniwningy 10
clock cycle v=awpuivlawiall mniasrinls satumsRansoniasuanaluusivas
stnaminzaulumsfansd s vsssuronilasnyvasiinasemsaanuuuiilddan

Tuuded IWinmmiiaus framework MWMIUMIENTIINTEENLLLTRANERY
daransoniladsanyliinewislududarmueuasszuunadniwazdouly
(requirement) @1uLIa1 (latency) uazMTtdNuIiaeed atalsAaItmMInsnaause
ppwsaliieRasonanyliuinenluidonlinain g dulumisanuuude fnwome
Tarimuava910ugn model Ssafunnuiiedios lunuidsfisRonimuids
wasAlfiiudndfnitivanianlvssruunu AivnldRaduiBn1sdaddy (scheduling)
foRusantasudunanz 7] Welfifludanosfunanln iterative design framework i
amasadeufildarnmousansinuliivesiundiaeed danredadeuin
pouiulet Aezldnadnwimrsenuuy fliuin axfimsdiudmuniwenms wie
mhssuinuarnasadadaudeatanaalnl wndldnasniniseanuuniioauiy
1o Toyariyes framework fléun data flow graph F9UsznaumuwITNeaiwmT
Samwlaiuiueusy nwlzgndvesszuniziamaananlaun Uy digital - signal
processing Y38 communication switch WAL UUITLAN real-time multimedia rendering

/. v v o P & I a I - L4 o ‘ ' w
tﬂ%ﬂu 'ﬂEm’muﬂ'nhlLl%%ﬂﬂﬂﬂ%ﬂ']ﬂﬂ'lﬂllLﬂﬂiuﬂzlﬂau‘h}uuﬂ:&mﬂElm\'m'lﬂﬂaﬂﬂﬁ]ﬂ

FITNIWENMT (resource allocation) UazmsiaddudmiumIBNUULIIULTzEN@RE"
i doiu mavemeiamensiuazinafianiy optimize 2993570 H9Rv13onilady
aalsluriunewmanitialanuimdyadiab

Tundaassisaniaseiasfonng 'Fii’ia;ji‘[ﬂUﬁ'ﬂﬂﬂ:"L;jﬁmimﬁ%ﬁ’nmmvlaj
winauludorinnuadandn sauwunasauuiidayadiag Aldazldanfnsonnsd
worst case wionTainialyl (typical case) Wd2 LTuARITOLIAT AT IUTEY module #
15 luuuy worst case L'ii'au"lmw”mnmﬁnazﬁmum:J']'lugijuumjaammﬁ (fixed value)
%auﬁdﬂum’:mﬂuﬁam%:ﬁw@ﬂﬁﬁmﬂaamns:ﬁummﬁawalwaaffﬂaammmm
arawinazuaneain nImanuduudnd e iuundriudarnlinsdead
myUfumseanuuurapatinites ldnadnt wioa1eeziindanadnivasnisasniuui
IFnswennseneg mmfvanusuis mmRnsantedsanaliviaiaminzauduedu
wing vesmssenuuuaztlildmissnuuuBuduiia wazvihldmadiunisesnuuuyin
Tengani

mﬂ"ﬁéhLLﬂiﬁiutta:ﬂﬂuma:Lﬂmﬂu‘é'nummmﬁa%ﬂ'ﬁ' model a7 luuiuan
pene l3nd mﬂﬁuﬁagmﬁ'uaﬁummﬂwuﬂu vendifisnndunuaslsianlumsifu
Toya wannianyliwivenuwahauizdua e iwalevasmsaanuun el
f3150 model lodrsanuiesiiu

Tnruddil ;ﬁ%’u'l@'fﬁm'mnﬁv'aﬂaé’ﬂmmvlajmiuauﬁmnmLm:mi‘l"&’mu‘%ﬁa
wad FAduldiamn framework fmsumagsmssanuuufinasonanaliviueuln
ﬂ’aﬁmummé’nmmx’uaoﬁzuumaé’wﬁua:ﬁau‘w framework dand1IuLLL iterative B9
AT Isadeuldwanniu fiSoni RCIS (Register-Constrained Inclusion
Scheduling) %uﬁmsmﬁagaﬁﬁmm’[ﬂLtuuau M INARBIWLIITLFUNTONIAN
aavdmiunIsanuuLiiaaudisaa e

lurprmitlduseaniuundrag doit

amil 2 diauaswisoiiAeatas

amfi 3 afunsf model AlFluwisura data flow graph L&z model Ak
anwoieiiliuiuan LLa:ﬁ'uﬁuammj’ﬁugme Agrunnuiwed i

-unfl 4 aB11d iterative design framework Aldwamin

ami 5 duauadimssadgauuuy Rois deldluundt 3 TavesiBoe uaz Wiane
wonanitldinanatsdudng AdsdendeRosonnisldmdiaee! wsens
fmndmndiaee i lfsninmssadeudefidaduamalaiuinan

unfl 6 nanaimatamsmnurasdanasfudinanluund 4

At 7 Wananamnmanadifiold framework FInE1INURIBE19 benchmark

il 8 m‘ﬂmu"‘n'fmm:mmuaummamﬁﬁ’mia‘hl'luamﬂﬂ

UNN 2 IBALNBIU D

ldiin3dunaiy g vuldlFasnzupuiadiiauiygndaddulunm
tszynaidna) fiu 15u Aad compiler optimization Teimsldnquiiadimatunmsinsm
real-ime event war aulduiuanAsiudauds (variable) [18] Lee et. al IEnsauanu
wuWadnismeanresadeuminluldgmniusoy reaktime Tosldudas task vinle
sy deadiine meldidowlumsldniwemsfitnvua 23] lusmuém production
management lainslingWadifiarnmsdamdugwiy job shop uaz floor shop
[27,33] Kaviani W&z Vranesic ‘l’r?ngﬁm%'tﬁaﬁﬂﬁumﬁ‘nmﬂwnmmma{ﬁmm:auﬁm%’u
LRVaY task LRz deadline ﬁﬁmuﬂ‘lﬁé’mﬁ'm‘:uu real-time [22] Soma et.al WI13W1NT
¥in schedule optimization I@ﬂ’t‘ﬁ’nﬁm‘smmmuﬁfﬁ% (32] rwidomanit WildRason
nIdAINTarmuamuanaduda: task o1wezldlgduwinen vialildRasongm
SNBIEEU G WENIINTUIRITBINTIMITadEY

MUWEIUY AIRUMIMIIANITOONUULINT (design exploration) leur
[1,9,15,26] swmaniuandanuludmwnaiiefilflunmmmasdwinissanuurusznmsda
suluBonuadnsmisanuuy adslsfdemmaitlilaRaronteduenylininanly
AN USYBITTULLTY Gowludmna uazanalluiwowdsrdunsmildlunmiu
alunshpfnwios Karkowski uas Otten léhana model #ildlunisdanmisennalaiuvinen
dnamsambodnnalaslingudiadioe AEmafiianelddnidaitnng
possibilistic programming JCHERGH integer linear programming (ILP) Lﬁamm‘r}d{f@l
feuuaznsTaaTIminsInsmiheswslasmulddanlvdunaussiud Tasdonls
AMeldvedian model 1tuin otalsfidnsld ILP AU fuzzy constraint usz fuzzy
coefiicient 1 1FaanlumsUszananann wananiwdsuiluidRansonfessauaiy
fawalafiintudwiunadwimssanuufile leimddewmenwisnumdssann
MIMILENIWEINT (resource estimation) [10,28,31] %aammmﬁﬁvlaﬂﬁﬁmsrmﬂm
ANWIALUBIM ILLLRAULATE wiglildRasantsanuliwiveuluguanyuzaes
JLULHRAWD

Addufistumteddutarmidaasiniliiimaasiinununelu area w89
MIFAUATNDAITEALaIaINTTN WAL compiler optimization dwmiuaoaunsuwes
VLIW LB% Varatkar et. al . ldiuauadanaifiunmsiadrdudamivsuudadlnaeaasf
FaRasonmILsniandsnunemue [34] Shao et al. lébugnamivaseudngy
AU (instruction level scheduling) éﬂn'?urmﬂi:qnefﬁﬁgﬂu.a:ﬁmimﬂimifm

wasmulaumIan switching activity [30] Chen et. al. ldiaue~ Iseaqudmivnu
ﬂs:qnﬁﬁﬁgﬂﬁm%’ums optimize UL 1WA WA IUATIIUIN memory operation nrolel
Gowladedriasuimindiawas (18] wmadindindnldinafinnas multidimensional
retiming Eichenerger et. al. lgWa3TMIFARTINTWENNTIITASTEMIUFOIT BN TULUL
V0LIW et superscalar lagls stage scheduling [13,14] Akturan L&s Jacome WILRUBORN
s3flumsdamauiinesannisldinndiselotalendalasanduinaiin software
pipelining [2] Sanasfuiilsinadie retiming W&z force directed scheduling 3T UK
Arrandafdal®osenivmaedldanadnd dszBndmwmivinnuvaldanaans
uar m3lisimaaiuacldning Wong et al. 1dWau13En1sunn objective function 141
lsznirenssadduuazmssaassnisldninens [35] danasfiuminandotasn FLOF
ssngnuaadnnslfimidiamaimelddanludusussimauninensi
fnwuals Dani et. al. lehinaus heuristic un1sle stage scheduling 1fiaansuansas
et sfxoomﬁﬁaja”lﬂﬁ'onﬁé’ﬂéﬁuﬁm?m:éfuﬁwé’wﬁuﬁ'u [11] Zalamea et. al. ¢
wuadimmeduansaurfuassarauafifiosanslinuitanelaoiunluss
anaunIsuiuy VLIW [24,25,38] lusiwvasgenauwd’ muﬁﬁ'uﬁ"lﬁﬁwmsﬂ%uﬂ;q
modulo scheduling W saniawluduimwandimass uay register spiling atnalsfia
mu"‘aﬁ’uﬁtﬁfﬂﬂﬁaﬂwsiﬂéqﬁuﬁﬁﬁmmﬂszqnﬁﬁﬁglﬂu‘[ﬁﬂLLa:'Lai‘lei’ﬁm'smﬂ%ﬁUﬂ'zm
liuinaulugnidnsozsaszuuwiedaimuaas s UuNaawe

Tuemddy 3] 16Tmswan inclusion scheduling @efsnsantfasuanaliu
uauqmé’nwmwanzuu%u é’ana‘%ﬁuiﬂﬁgnﬂ?uﬂ;aLLa:ﬁ.’l;J'ﬂ'z'f‘lun'nﬁ'ﬁnnwaanuuu
muldidonlvenuliwivendsg dm waclflunsUsznoweualunivesinuamn
niweny 1568 aswlsianwddadngnflildRnandeadbveinisldningniaa

e lunNIIRdaL

P v A] = {
UNT1 3 Model UAZAIN AL INUN B N THLHG

ry v A = oo a P a
luunitazldaBunuia model fiddn g MlElumy model ULz MAN I Y90
nams model Tadoanuldwindionquiifodiae uaz operation 699 vasNTFioad

a v
MNEIVa

3.1 119 model T:UULLR&QN&H&N:ﬂBGi&UU

lums model sruvuazgusnmzvasyvdulvgun lussduaodaonssuld
v oa > a v - A i -~ &
fndimslinuuudonsld data flow graph (DFG) 6 = (A& 81 SaluAifiazRasaniin
WUl directed acyclic graph lu data flow graph Wi 9zdsznausanlvua Vv , edge ¢
uaz weight function Puuealnua vEV

operation luldaazminsfalvualuniW uazAauEUAUTTNI19 operation 3z

o v R A o o X A o

winefamsinavasdoyaiin operation wiwlUaBn operation wikiTiaznunsila
directed edge luNTW Uaz weight function 9 map Mimausslnualunmwlldsmam
L J b L L= z L +*v 1 Qs L 1
ANBUE18Y operation NFUWUIAL IMUARL Suldln Ussianuas operation dadataln
71 3.1
u

Rl R2+R3

R4 R5+R6

R7 R8 * R9

R1C= R11 *R12

R13 = R1+R4+R7+R10

HOODe

gﬂﬁ 3.1 Taauazaaad19 DFG

1u3ﬂ'?i 3.1 ugmaldasmagafids=neudan operation Uaz DFG Aguwwiiu lunsw
flisznaudie 5 Tuua Tnua AB.E 1w operation msuanuss Tnua C.0 (iu operation
Mo n&fe V = {AB,CDEL £ = {A - E,B - E,C — E,D > E}. uay
BlAL = B(B) = B[E) = add | gy B(C} = B(D] = muttiply

operation 14 DFG arsunsnandmanilumizedmuinidag Eﬂuuuﬁ‘u'l,s'f Fartuae
v\muﬁa'hpjaanLmummmt?xahumuﬁnmm'lﬁwmu;ﬂunnﬁm%‘u operation nitaq &
ssmnpivilumssenuuutinesianaliwiveuvssmadanminodwi ol deaoin
(89

dmiudanlugmiunsawimsosnuuwin onverldundosiadunslindsnmu
waztaiNad AU UNIIHAR ﬁaﬁwuaﬁmmuﬁa:gn mode!l ldean tuple
§ = (FAMQ Tap F vaneil L-nmjaoﬂizmmammuﬁﬁmmﬁﬁaglut:uuﬁwuﬂ
iueRIzwINetiadaves danuazdigms =(add mul} ugz A wanofle (A Ve 7)

Faudar Ar Folraund tuple (Q1venc erd 31 @ manoflIAMaNYMETaudaz
whodmwm f Wiiflesfossan e niosusdunsndundn fredunainlu
model ﬁmmm'umu'l.ﬁ'ﬂmsmqmé’nmm:ﬁug ugunslEndanuniafiuiivemiag
duamle eotn Ar=ix: ¥xi Tagdl aflugudnssauiauaamiindmIu f du
Vol (erVEeF) &g v u ms map 910 Ar lUdamauaIdiuiuadalugag [0..1]
wingfie possible degree lumislfudssmlumndnuasse use eifluiattufinanods
degree ﬁnwaammum’fm:gnuau%’u%‘fﬁw%’uwaé’wﬁmiaammuﬁﬁqmé’nwmwﬁaq i
W d Qo) = Inanails rm'aanLLuufuLﬂuﬁawalammnﬁqm uaz
a1y, a) = 0 15a vxmﬂﬁamiaanuuufu‘l@nnau%’u‘lﬁ

maliWaidn @ lumsfisuszsunsseniuld (acceptability level) w83ssULNKE
Yelomiwanain 1w mansougastisraviadowlurassuunaing wazenin
ugmaia design goal fillaseuaguilsifivnnadosmmandn Sothadn deenuuy
anzaulaszuunadwifisremldluna ity 500 wmhanauasiusBnaeialy
lLidu 6 wszdldianlumsiinuuazimnTBanesiniasfesfonwolesniu souud

PIRM (ideal system) D100EIN2ENUMIHIIMALNIT 100 MH m:?m URI T IUToR
WSty 1 aNudBINIINETT model ledpWaien Aonar) &yt

Q ifgy =53 orgy > 6
Qlar, asl = 1 ifar <100 and gz < 1
T{ﬂl,ﬂ.}j] otherwise, (2 1)

Taofi F 1{lu finear function uszwapfy Aones) = LA9%MNar + Z2ax) — 0,001242 &4
wldrzaumssanivldsming [0.1]

Tﬂ‘n 3.2 usednmiswaaasaaleity Q dhadu Fuaesfs weighted sum YOI
anwmmmaﬂﬂLl'l.vimmmﬂm'l.ummmmmunama'-smﬂn'nn'lmmnm‘lun*ﬁmmu
il 2 i (register count: latency = 1:2) Fntnilsamuntniusenliimuailunts
M 2 mihsnamtaunoseiuuisanedld 1 & nJ'n 2.3 ugAY projection Y3y
2.2 lun13 possivility uas latency (lufiiunensagoni tradeoff)

o
Q
L
bt

esascosso
Lul B R T N T,

o
e FT ATk

] 1%

< . . X .
3N 3.2 manfanwasdarisu Hanal - LE968Mar + Zax] — 0.001242

]
v]
4

coacemcosno
eRWR DD

LAl Esly

511 3.3 Projection 28931 3.2

u

P w o g
Twnidinaldazlddaaunisd

Q Q1 > P1 e OV Gn > Pry e
a1,z Q) == 1 far1 £ p1 . eeandang <pn_,,
T'[Wlm + wsqa ..Wnﬂn] otherwise. (2 2)

v P=| . (% W A i 1
lagfifaanuuun1sasamunsnunuiuny register count sdneiladvaug iy n3ls
WA (power) 3 3.4 (a) ugasdraeastaiMue Q (WaRansan tradeoff Yisaad
fadeilu wr=Zwz=1 lay F wanofaleridu curve 319 Z-shaped luzd 3.4 (b)
W§as projection uaIzll 3.4 (a) lavudaz Z-curve znatufiduass projection VBIUARE
Waridu Q lussww acceptability uaz possivility Curve sulugavznanofisiaaluns
o d' v r.'l A L3 o a l;.: L dlsd 1 Qs ot
mmuﬂuaamqﬂuam:mmmﬂ“ﬁwaaamgaqﬂ ganniMIaanuuLiid AU T NI

dunasnunafionsoanuuuf optimize snaiRuNEV0INTTBENLULUNINILLDY

0e4 W i [
0.8 N E—
Eﬂi
Zae
an
EQE— i} =
0dde—— =
031
0Z24-—
a1
O 1
i— P 40
(b)

gﬂﬁ 3.4 (a) Z-Shaped acceptability function (b) projection

210 model T19d lnaddeitlaRsnnilymmsiediduuaznisassminens
sadalusl

fnvuadariivug S = (FLAMD uarnsw G = V.61 war o« seaumsuausule
ammnanssaddumoldiuumihsimminiesiudtinaefidvue s mitus

e —— v o w ' 2 .)
as f lu FHdszaunttosuiulduinniwsawinnu « muld @

10

3.2 ﬂq&ﬁiu-ﬁ'ma

Wodwainialoy Zadeh lwwafifuauiwaliutiuen (mprecise boundary)
[36,37] wamuaamInsaaduie aefdsinay (element) witig armansauiiundaly
WumnFnvanaeldvinin Aniwilsssmainuanuheziswettuaundn $30
membership degree \Ju 0 (Wilusun®n) wiadn 1 (Idusandn) witin dwsuad
iaimzaanIoliE et U ESndmwiuuda: element nwlel universe Lﬂum'ﬁag
W9 [0..1] Fyazuanis degree MilJusnBnuey element ffuﬂ Fatiuein degree
Yaamuiuwaurin (membership value) i mixTix = 01

Wadisaaz3unindu normal set fnmeluimatuiisindnagnatosnilaifisien
\flw membership degree 1w 1 &% convex WadwaarninufiNeSiaafifl element
xyz 109 3 X < U < z ngnfia Hall > min(palxliualz)] dusavad (fuzzy
number) 3x1{l convex, normal Werdian fwuald A, B {Jusdnawied uasiweridu
aundn palx! uas EslWlausey smuald * fwnsnszyiuuy binary dee1eeziiu
witslu operation eafl (He—eXaEamingmax} psnseyivmindinmansuassaiay e
gossnan AB ldifwaalniusciforidumnin A*B éwmdit oy extended
principle [17]
masslzl= \/ (Al Apsiyl)

ey
lasfV uaz /N operation max W&z min @UAIAL

31]'?'; 3.5(a) ugedsnauwed A dufwea normal WnzgUULY triangular Ao1Tanlu
429 universe (2..6)'.a:Lﬁufi'r?’iLﬂu‘lﬂle'fmnﬁqwuaa A fodn 4 fissnndl szduanudae
s 1 (presumption level) Ltﬂxaﬂﬁ 3.5(b) UFAITLEIN TN B 93 universe a;}i‘lwﬁn
(3.7) LLR:E‘IJ'F% 2.5(¢) WEAIHATAININTZYN A+B dtauM It

p(x]T. u[}')T‘ wz
l l

(al A (B (CVA+B

gﬂ'ﬁl 3.5 nsuandnaisd A+B

11

A - " - R] - - ° L3 -l] 1 .J‘
lumaSsufsudnauwess s o Inadthimuisomld 33msdneg mai
¥ - J - [- - - (™ - - -~
Frnufimafiansunuradsauic™ u ey 211 AFmsdunibhlunsifandunuvas
E: N - A “ o L= 4 . o L3
BEARWITY NTLT removal TAENAMIAL k WMINSTNTIOI9INM Kk dumeldann
‘ — 1 " i 1. [a [P ™ a o '
RIAK) = 3IRUA K ARAAKI (gqpsyduaadiad A) Taofl k Huszozvinoumwuny x
A d e LY R a o | A A
uar R duAuiieudnevad curve membership function NULFWATI x=k Uaz R, (IwAud
YNISIUYVEY curve membership function NULERATY x=k Bnalatnalaunnisly mode
- I - ' a . . . o - o ' . [
dyazflumaiendy x lapfi HIXI= M gawiunn x uazdndagnldinmild
| v o — . vy .
divergence Favanofaanunivadaadiwinlan Xua = Xmr uazmIlEeN defuzzied
& o = o L = gl A s .] el
value Wumunusasoaimunni ldrmdsnu 599505 defuzzified ldinansislu
LANFIIAN G [29]
NniTSTaIndn IS uilauaaIn U R IR RE T RN BN TUAT A
I W P f P 4 - o A Y i 6
anuiwlfidvaimsinmieduaiuasliouansunileg dedsfioaveiguansmus
(fuzzy set of characteristics) Ay laprmuald Krlal € [0.1.Va € Ar wa B degree
I3 = o 1] a A A’ v 3
anudnlfldlunsiiquénrae a vemmbisdwin § Bluunanaiiadldiodnues
Qmé’nwmzé’u‘lﬁuﬁnm (timing attribute) %W fuzzy timing attribute & WIUMIEL
o v N { 16 -m 33 _72 } - 1 A d =3 .
fmans £ laud 130T T T L wanedei £ snansaldioan 10,20,35, wie 70 wiian
nmnumsinanasseadiuhfle Be101 = 2,p0020) = 4 pe(38) =1, 101701 =7

Tueu

12

UNIN 4 Iterative Design Framework

JUf 4.1 LRGINWIINDBITUAB UM TEANUULWUY iterative §1MIUATWINTTOAN
wuuAlfiRanmssanuuuiiiudasufidainiy PNAANUUVIITLRaNAWLUISUAU
f(initial design configuration) 31N heuristic LFHINMIIAEIRLULL ALAP (as late as

. . . = L JU @~ q'.:
possible) %38 ASAP (as soon as possible) [8] lunuiduiidaneifiu RCIS onldluln
. . - O P LI 'Y i .
@8% scheduling & allocation 1%31]14. mL:Juaanai'ﬂuﬂlﬁmf}maﬂum:uuu imprecise

o “ o . ' M v = i = & f
mltlunrsaadudaluinissanuuudlaiiuninawalansals

Initial func, unit
md reg. confipwrati »\
__________________________ acceplability function

scheduling
allocation

748
check schedule accfpmble? output schedule
aftributes) functional unit
e £ and reg. confipuratio

‘ adjust speci ﬁcan'%:ﬁ\ heuristic

311 4.1 N3 design solution WL iterative

RCIS u“Ju.ETana‘%ﬁumﬁma‘nﬁumeﬂfﬁagamm‘lajuﬂuamﬁmﬁuumﬂﬁwmm
u'l'ﬁ'm'lun'm'fﬂﬁ'wi'y'Tcﬂﬂm‘sﬂauﬁumﬁtﬂuzﬂtmunﬁwuuu direct acyclic tazilan
Smumsd i aidanimeaasdasuasly nniudanoiiuezliamenisda
demiudiney Semreilesusaaiiddumainuussuda: operation luntiwlu
wihpfmiitivue Lm:f‘i’lmmqmﬁnumwamwwnaé’wﬁﬁﬁﬁm aﬂnfuﬂmﬁnnm:
ﬁanmfmgm‘h'lﬂmwﬁanﬁ’ums‘:ﬁum'mwa'la'?i"lﬁmvli' (acceptability threshold) W1n
'.I'anﬂ'i’l;jaanLLuun:vl@Tﬁﬂmiﬂ%’ua‘hmmm:ﬂi:anJammuﬁnmmﬁﬁagjiua:maao%’u
sanesfiuBnefinalyl eflslumstiudnwmuactssinmuaamibodwomiuduiudnuos

vaIwlIzyn avIanT A lEane

13

-
1NN 5 Register-Constrained Inclusion Scheduling

liomfia: Fnafiedanadifu Register-Constraint Inclusion Scheduling (RCIS)
r a [oo o aa X)
TIRFE core BANAINY inclusion scheduling 13 Algorithm 5.1 aanaTnykIENINIg

mwaau&lmﬁnwmxmmmﬁﬁﬂéﬁﬁumﬂﬂ gANTnDTRIENTIENuI I reaTaan

5.1 Latency-based Inclusion Scheduling

Tu inclusion scheduling 1% a:ﬁmimqmﬁ'ﬂwmnmuﬁm%‘fiﬂﬁﬁmimmqm
ANBIUSIUIATBIUARSAUIDEIUITE ﬁ’m{llG]’li’]dﬁﬂﬁ’]ﬁﬂNaﬁwﬁﬁlﬁﬁ?ﬂﬂ:ﬁﬂm
dnwosuuudadaan Snduwileludana3fia inclusion scheduling w=lFn 3dnuamma
afaeaasuuuNrdndmilssnamsmiissuinudssdndudiseied lunsy
fumssruLaastunaudadadldmadwmmindiamanfuuuidiunes navesda
leyWadn ldugasddnnanidwiy dhasemmedaseunaans ag@mimaaé'aﬂa‘%ﬁuff
famsidanfiesiasss operation lufminnswinnmile g Sezondy heuristic wuud
nmaaaa"ﬂaﬁm'lﬂﬁauua:e‘hmmqmé’nwmmmmswnaé’wﬁ'ﬁ'lﬁ uzlTousuALNTS
nassstassslUdmhad i aiugfimie u.a:u.ﬁanmﬁwaé’wﬁﬁﬁqmﬁnwmzﬁ"ﬁﬁqﬂ"
FIMANM I 9 éfqndﬂai‘fﬁwlﬁ"’lﬁqmé’nmmwmmﬂﬁméﬁuwaﬁ’wﬁﬁa:tﬁﬂmmx‘l'ﬁ

dudayalunisaaduladngg 16 wiuntdenld modute [4]

Algorithm 5.1 Inclusion Scheduling
Input: G =[V,£,Bl Spec =[F, .4, M, Q). and N =#FUs

Output: A schedule 8. with imprecise latency

1 Q= vertices in G with ne meoming edges i nding root nodes
? while Q # empty do
3 Q = proritized Q|
4 U = dequewe [(Q: mark U scheduled
5 pood S = NULL:
n foreach f & {f; z where £; isabke to perform Blul, 1< j £ N}de
7 tenpas = assign heuristic[S, u, T assign yat FU
5 if Fval_Schedufe| good_S, 1emp_S, G, Spec]
¥ then pood S = 1empS fi od
h S = good 3 keep good schedule
1 foreachv:(u,v| € Edo
12 mdognee V] = indegreafv] — 1
13 if indeyreciv] = 0 then enguece[Q,v) A od,
i+ od
/5 retumn(3]

" el 4: o 'A J’ ~ o al.

danginu 5.1 i midwrmmansdiieadululendu Eval_Schedule UTIMah 8
4 o ~ ' w [v . v o
gevzvhmasafiudguansuzssmandinnlddasss operation ldwisdwain
ud wazazihmadsufiorhomildiaudnsuednhanmiaugildnasasnmie

' a ot - w
i ua:aﬂmmﬁmmnqmnwum’h

14

Algorithm 5.2 Eval_Schedule
Input: schedules §1,.5z2. G = (V. €, BI. and Spec = |F,.4,.M, Q)
Output: 1 i §y is better than S3. 0 otherwise.

7 diconstruct a modifi ed graph

Go = [Wou&ou il where Vo = W—{unscheduled nodes}, fa =18
3 foreach schedule $; =51 to Sz do

Eo={{Uy¥) : 1,V € Vo, 1f uywinsame L in 5

s and v is immediately after w}

(v}

e,

o Sort graph G according to the topological order

7 foreach level 1 of graph G in topological order do

&] rewms the functional unit binding for w
] wattr = fuzzyadd_time|u.aitrgattr]y ujl)

7 foresch u:v — U, YV €V, do

1 wair = fuzeymax_tme[vattr, uv.attr]

12 od

11 od

14 LetWisasetof leaves in Ga

15/ merge all values in gualin]S4]

15 qualinl8] = fizzymaxtmme[W1

17 od

18 7 comparmg the overall attributes of both schedules
v return{ compare[gualin]1}, gualin52]1]
ot - a’ L) & o -y
pana3fin 5.2 udanadfiu Eval Schedule T9az¥innsiein edge adlulunsw

nauduninuaaanIIagiau ﬁﬂﬂuﬂaaﬂvxuwQnﬁnmé’mﬁ%‘i’wiaﬁuLLa:Tﬂuﬂﬁoﬁao
Lifanudunusiudaulunm ssusviadt 4 ﬁafumﬂﬁﬁm‘qﬁﬂiﬁa:ﬂua;‘i‘l,ugﬂ
panTdulniil Fousasdrdumsvnomaasusszlnue swudlieaavasusazmiae
fruouiwuuy discrete mysuamluusstafl 9 erendunsnssiuuuaFanudile
nfluund 3 Sanuneflensuan wazuiedt 11 nanefinmduam max
wuddmueld DFe lagdl V={ABCE={A-=C a
PIAI=BBI=B(Cl = acd. yasfimiapduin F ={FU,FU2} Taudi T
Snwoynasuaniu (50051 010,071, (20,081, (30, 11} 15 TUz figndnumema
swaauily (1200051 (15,051, [22,097L (35, 11} yipmnrimsdadauudale 1 A gn
Jaassld U uax 8 pndeassli Uz (ysedidasss B I Th a:'lﬁm‘mﬁ'ﬁam
snwoeludin wardamss ¢ 1 U1 vialdldansanaawsfisl weight latency 47.9 ud
fiass ¢ W 2 oldansnanadwiiisl weight latency 52.5 Fotumseisadiue

d i ar ‘ A’ = g 1 J o) o .~ ' u‘:
T19RANT qan m’nmﬂutwmmama‘m_w*qmrmuﬂqmanwmxmemun FNIUW

15

52 danaina Register-Constrained Inclusion Scheduling

panaiflu Register-Constrained Inclusion Scheduling @IULRGAINIARNETHY 5.3 32
' a o v o d = £ e P . .
Lmnmqmnaanamu'luzﬂ 5.1 Iuwrsnaf 8 @ailu routine Alduszifiniraredadau
AW va a M oA : v oA & P v [y
flaanialidisRerraniadsiiaeasuniodou
Algorithm 5.3 Register-Constrained Inclusion Scheduling (RCIS)
Input: G = |1V, &, B1. Spec = [RAM, QL and N =210

Output: A schedule 5. with improcise Itencs
P Q = ertices in Gwith no mcoming edges Sl oot nodes
2 while Q # empty do
3 Q = privritized | Q]
4 W = degrewe(Q1 mark w scheduted
5 cod S = NULL:
6 foreach f € (fi 1 where fj i able 10 perform Blul, 1 < j < Nlda
7 emp.S = assignhewrisie[S, u, T Hamgn w14 f
| & I Lval-Schedufew ithoReg [good S empsS, G, Spec)
g then cood s = wemp.S fied
i == coodS #7 heep good ~chedule
1 foreach v:{u,v| € Ldo
n indegreel vl = indepree| vl — 1
13 i indeereel v = O then coqueve | Q,v) fiod
Hood

15 return|S|
A =, L FY [3 A' LY :‘, = Qe . Il A
-na'lumﬁwmsmﬂwmaamaimLnudmaauuuﬂQﬂumumauaguﬂn WHia9anIaITed
i . b Y A A - o '] —
udas operation ma‘[wmﬂu;ﬂuuumaaﬁ‘ﬁ‘ﬁ'mmwmﬁoﬁmﬁm‘m;11 Hxl =y q
wanoiyilunuanuazltioa x s possibility y fedsIanINaUNITIIMTEI IAUAUAS
naduganishauas e lussndadhduiwedandugduuuiediaaludy
: 28 i : g .
'lumsmmmmnmtmmuun:mwﬁauqﬂmswmwaa'[wuﬂ'lugﬂuuuﬁ‘n‘?'m flezands
e W ' “ d v a T 'Y v o a , &
nydadeuntis aefldatunglwiidafiudfenmainwiedsu dalufie:

= = o T =l Lo .
oL NIMIAIUI mmi‘lm’mm I8 Elﬂ%ﬂi'lw PAIQL

5.2.1 Imprecise Timing Attribute

Tumsdmmnsldmdimaafuuuaady SududosRarsonms life time 189
wiazlnualuasedadney wailasonluemdlldldnsvdadduunu uaslnuauda:
TmuﬂﬁnmL‘%'m'fuuammﬁvuqﬂLﬂugjﬂuuuﬁ‘nfﬁmiﬁﬂmmmi‘l'ﬁam‘ﬁauﬂa?ﬁao
RsenNeidusndndan dafloruasfiony FSTw) wa: FFT(u) Famunofisiafioauas
L'Jmt‘%'uﬁuua:ﬁ‘n‘immaaL*mfléufgﬂn'ﬁﬁ’mumaaTwuﬂ u Hiowu

fw 51 tmuansn 6 = WdoB) ygzanmetadidy nadudumesinem
gaalwua u Tunmw luguuudadion FST) Tavdmindn HrsTial¥t =V qenyng
e lnue u 01993 udU tn 198 X G738 possibility y

16

duiulnuedidufine o luudasniapduam 9l FSTIW =0 dafludn
crisp

iy 52 mwuansm @ = VBl Lazansadaddy nandueu sviau
vasluua u luny lugtwwuiadiaa FFT(u) laodaundgn WrrTil®] = U gemanoily
Pnua u mm:éuqﬂm‘sﬁwm M L9871 x 678 possibility y

st TFT 0V = FSTIVI+ EXECIVITaufl EXEC(v) ssminpfionanfilnua v 1lu
MIMUIUULLINGE Li"jaﬁﬁmrmnmﬁuﬁuﬁL?’Jﬁqﬂﬁtﬂﬂﬂﬁ (earliest start time) a=l@
url FSTiv = nu;\ﬂfﬁ[ﬂ{ﬂ +1 dndy VAl — v

m'lammwmmﬂ‘ﬁ’é’ammﬁmﬁﬁmmufhL'Jml.%"uﬁuuamm‘éuqmﬂué’agﬂ 5.1
ﬁl:LﬁuhnmL‘%'uﬁuua:nm’é’vuqﬂLﬂumﬁﬁmammﬂ'l;iuuuau WRZEIIIZNUToURW L6 L1

4+ 1
(9 4 a N

a o v e v s .
3-1.] 51(b) ®73E (ﬂ\’““l”aI“uG\NﬂqS‘lﬁ\j’}uﬂ'}—w{nﬂj W IR € %:ﬂaﬁﬁﬂq pOSSiblllty

tine

)

LV I S FY T,

~3

/
!
s'l.v

10
(a) ih

5171 5.1 é1 FST(u) uaz FFT(u) da9n 7k

Undudndladarlumsvhawiud crisp dimGudunasiaandugaoziiui
v a ' . . ' | - v g e
THfatia lfe time stwing [x...y] Samnsdanaifilnuadesmsltnuiianes
1 [‘.:' AA‘ d' o [v .d':l’ [L) . Y o ﬂ.:
snimidwany lunsdififlsRosmndudwodfiasiife fuzzy life time fauu
Jaimualvien fuzzy life time vaaluue u UsznausoWoFiaon 2 woalaud FST(U) uas
.J ' o v oA P o & vo a w

MFFT(u) TovanofsdnaGuduiinnigaiidulilddmivivuagnnndazas u

fitny 53 @msunt G = LER gazanrrnsadauiirnvue 61 fuzzy life

tme wadlvus u FLT(u) =Ussneudn [MFST(u), MFFT@W)] Ll

Bagr oy = FFTol - maxiBSTme, , o 0 v €& e na

Iy suadfiun I

AT TEMTUNTUINUALAITF max
o A > v R [' i v -l o I y o
dm Ty FLT(u) fmuald min_st iludnanfidbofigadmiy FST() ilia HsTe
> 0 uazwueuly min_fin Husiansugafdosfigaain MFFT(u) (e Haaki T 5

Havit1 Tau

waz max_fin (fusniamaugefunfigaann MFFT(u) o > 0 guNAMAUAIA

sandnlu FST() uaz MFFT(U) pndmdevldandianiosldinn afudodioedn

17

waldiA IFST) 9ns map d']na”nﬁagh'ﬁw [min_st.max_st] lUfuavdmiuede
0.1 Fmeiimanudwlllédinue u ﬁﬁﬁﬁuag o e x AerldSimead 1w
gAY IMFFT(u) %50 MFFT(u) anuliensl 5.4-5.5

ity 5.4 EnSunTW G = LA uaransadadaufiiiwua [min_st.max_st]
waz FLT(u)

0 1 ¢ < min_st ¥3a c> max_st

cisTey - R g e (x o
ET ST oy b g lasT | nydiaug
[T ER ALY TR TR YTy

R 5.5 FIMIUNTIN G - IV LAZANTNIAZ A UNAIAUA
[min_fin..max_fin] Wax FLT(u)
Q M ¢ < min_fiin ¥38 c> max_fin
MimiaTau (€] =

maxyyy- A et T (0])
e
=PIV EFTIL and y-oC NITtheL €

Pnfisnuthadu suudld duaat ab €FST) io a < b dlwue u Gudu o
e a 9= 18 lnne u sz3udund o 181 b daw @ MFFT(U) e a < b uas a,b
EMFFT(u) tlnua u 'I.G‘fﬁfuqﬂn'nﬁ"mu'lﬂué"z m e a wldinlnua u %:ﬁil:?;uqﬂ
ATV T 1R b AIBLTUU ﬁaqmﬁnum:sia'lﬂﬂ

Auaulan 5.1 denudululdimiv IFsT) gniFeesauenannludasy

Qmauﬂ’ﬁﬁ 5.2 eranudwldledmmiv IMFFTE) gndssdduanndastdan

“ . & M b A o v
Jole IFST(U) ua: IMFFT(U) nuudsyinmsnsaanigadiesingg fuzzy

interval el 5.6
Ay 56 dmdunsd G = VNGB yazanedasaufiniwue was IFST(),
IMFFT{u) '
fe< min{min_st,min_fin} #ip o> max{max_st,max_fin}
Mo (0= maxlpgygr oy (€l b (1] 1 min_st £ ¢ < max_st I8 min_fin < ¢>< max_fin
1

witan'ldl fuzzy life time fiatlugUuLy interval & miLusazlnueuda ez

UM TITITALRDT 19 bUULARELIAN

52.2 D1sAMINNTIZIRIddnes
daldmyadadaulujluunsamniwudy ssdaaimidwin FSTE) uas

a ~ A . . I
FFT(u) § w30 u €V 37 5.2 uamamumungual fuzzy life time aufion 4.4-4.5 lay

18

SA uas FA nunofile FST uaz FFT Ta9lnuy A iTw@oaudémsy SB uar FB wusils
FST Waz FFT 2091ua B ua: fuzzy life time 12w A waz B iflusagauam

LA Litc Timd/A]
: [s

3

4

5

6 [[

YT A ¥
g [\ Sl

g9 ~ Life Timd B
10

11

12 f

13 E

€] \),

]
=1 L= o

3511 5.2 anaduins eI inuangnIaa1auUAINAL life time

'lugﬂﬁ life time 183lnua A uaz B ansxrudanduls laovrludniadnam
andudnafidalilsioe mifigrssriudoutwueniisasinuevinsfeinn naniue:
Faamyiimand 2 @ anludieieiide o af 7 uas 8

tﬁanm'[umiﬁ‘mmﬂugﬂLLuuﬂmf‘fi naasusaznassluglazfinaminaiiviag
é’aamﬁ"%mmaﬁﬂmunﬁaé’mg waszdasimadwinaanudullldlunmsldng
Famesimiuudactivamsan Swuefiein o L'Jﬁ”uf%‘[%ﬂﬂﬂﬁ]ﬂ:'l&i‘lﬁ%’%ﬂgﬁﬁlﬁ
i InuatuansesGundsnnin wisaneshruedeauluud dudaninofsinen
duwliflefilnuaalildiaasd o vsmin sniowihiiilomaiuléi¥naasonesd
n'ﬁgnl'fi’i'mﬁ’uﬁ’u'[wﬂﬁu ﬁmsmn'ﬁﬁ’u‘f{au‘lugﬂﬁ 5.2 o4 LAIA 7 envesiinnsld Faw
noinitasniasasdafle ﬁaﬁi’fuas‘jﬁudwmmﬁuﬁuﬁ A—+BiAnTuniall d1 A +B
Aeduamaunsw DEG winpfaidwnndisee fildeniuldudnilariniy dansdiion
IFLT(A) uaz IFLT(B) a:fnamsduimailiviniuimaite uadh nuatasaslaidamiusin
FwndisaeiAdoinsenmeniusaadailaudiuge IFLT(A) uas IFLT®) 9zfinams
dweafliivinduaadng %aﬁv'qﬁaanirﬁi{ﬁﬁaognﬁﬂmﬁawmﬂmzwmm'sf'i’lmmmﬂ'ﬁ
MuRaead

523 danaIny

0aNa3Ny 5.4 aFLNufenIMUWIBANIRIULY fuzzy LAREMIMWIMITITNINS
- ' v oo oo oA o aa S o o v o v
IamaTnnnTNInd gy TedaneTNuftauinltluusiien 8 vesdanaihy 5.3 1o
v ad v o - v - o o . .
lusanasfuhusiian 6 wFundanaifiv 5.5 tNadmIms life time 283lwua
d‘ [L7 L r.Y " 9 Lo AJ J L o
muAsduazmdmmmsliniiinesiggavasmnsiadauit samsldmdiaesd
& 1 o - T ° IR A
vaanauuezonfivilu Regls] &mitame S uaz Minuuazdwinnanlinimuee
S o v - ¥ -~ v o v, . &
2030 TIndsnSundanaity 55 udfeslddianveudscinueninualu

19

- & LYY A Py [v g - -
nvaanin MW EmanuarasatTtaz lduannmslaadn s s e s WS
&wTU max '[61um:ﬁwﬁ'vnm%uq@‘uaovgnhuﬂluni’lﬂé’ﬂéﬂﬁuﬁ;ﬂu lea! ‘L. IIVON 9

MTIINAIIATILRZNIT LTI UITaLIaaT i wlanade heuristic function =1lwaf

[" W p G as 3 A = o] a o '
1@]3]&%{]]")')’1!.1]1%?]‘Mﬂ']W"JJﬂGﬂlei]Gm'lﬂUﬂ\‘lﬂﬂ'n mm:g}nmmLﬂ%uumvummuum:

]] 1
ol ol =l

Br Iy .~ .=i') d‘. = L]
mﬂammrﬂuw"lﬁ’lm.l,@arsauLwamumﬁamﬂq@wmm'l@ma"l,ﬂ

Algorithm 5.4 Eval_Schedule_with_Reg
Input: schedules g, S, G = V7,8, (). and Spec = [RA4, .M, Q]
Outpur: 1if' Sy is better than 52, 0 odhenyise,

G = | Loy Loe 5 where Vi« V'={unscheduled nodes}, £ v
foreach schedule 5, = 5S¢ to 5 do
Co M) s, Y € Yo, if U, vinsame fu. in &,

wy ba -

i and ¥ is immedisely afler u|

& Calculate register vsage for Gp using Algorithm 4.3
7 Let ¥V is o sef of leaves in Oy

& latency e fuzzymax_time W]

o gqualinis. = Combinc|encyiS, RegiS |

iU od
{2 i comparing the ovcrall attributes of both schedules
13 retum|compare|guality’Ss ., qualitvisa])
Algorithm 5.5 Calculate_Register Count
Input: Scheduded Graph Gy for schedule § and. wriginal DRG G = |V, &, P1 Spec = {104,V Q1
Cuiput: Reg S, contains register counts needed and its possibility

I Caleulale FLT (W) VU = G by Definition 4.3
2 Caleulate [FLTEU) WU o2 Gp by Definitions 4.4-4.5
i Let max_cs be max. finished time , YU € Gy
for ¢s = 1 to max_cs do
[RegAties. aeg, Reg Al gs ,poss | w CountNode [[FLT,es, Gpl od
V1 FRegin. =01
for cs = | fo max_cs do
TReg RegAtlcs reg. reg we RegAlpsiuoeg
FReg [RegAtics_oreg. poss w

LU

L= - N

. maxf FReg RegAtos_areg poss, Reg Al les) poss | od
12 Regls == FRegy

[- & t o Ha o | Ao v .
luganaiflu 5.5 Regat anfiudrduanitsaainunfigafiidoants o udaziom
z - . [* 1 8) +*v r .1
os Tamadudanauiviyld dmsresnzgndwnmdsdanaifin 56 Count_Node
w o o Ao 14 o ' & w
UIINA 7-10 azdwinwniisne mmuefidasnmuazaranudinly e

20

Algorithm 5.6. Count_Node
loput: ;- i i CS
Output: 8 regiaers necded and it possibility at 05

I node_set w [nodes oucupy reg al 05!

2 set Gy i topoltogicat order

I Lot sontedunde be node_set sorted in by sorted (s

4 ok e prey =1

5 ¥ieZ sonednoede | Lok = FALSE. Lecount o FTALSE
o for every 12 sortednode do

= feri= 14 1o lnst nede in soried node do

A if Lok e TRUE and Leowune «« FALSL

: then

o reg 4 b puss = max] poss, jigs <o 108
Iy Leount - TRLUES

I if FindPoth{ 1. 1

i then j,ok = TALSE #/ don’t count descendant fi
15 od

16 Let j be the ast node in sarted node
7 if g0k = TRUL

8 then

19 reg + 4+ poss s max{poss, iy - = [os]
2 Jeoount == TRUE

3 gd

22 return [reg, poss]

Tudanashu 5.6 anilwiss heuristic flFlumsRsaminuaindu ancestor
o emitg Taauudld ancestor ffuﬁwmma%aﬁau‘[wu@nﬁauﬁ‘[ﬂuﬂgna:féu
hawld §1 flag ok 1fuaniilwuanisezpmividdisvield w et thillwuaiudin
Qnu‘%awmumaﬂmaﬁ%’uaq M ALEEITYM flag ﬁl:gﬂLfn@uﬁauaniw:hjﬁfuimﬂ@ﬂ
vionaunng Wiy Lﬁaamnm’mﬁm‘hﬁu{fﬂiznauﬁwnnhuﬂiunﬁw lnunanwie
wmuﬁuﬁa:gnﬁfm?ﬂﬂﬁau'l.w?iqm A1 reg Az poss VaNAISIMIUAND IS nuauazA
aruiiulyldgagn yystiaf 3 Tnuﬁag‘n%’uag o L'Jm‘i{f‘fngnL'%‘mﬁ']ﬁumnﬁﬂﬁwaa
topological order 1 uardanaifuenhlnusesnunindsdmisuidauudfiazdaan
AosaninTnualnumindanudiuiiulnuesuludadwdolulaoworfu Find_Path Tn
ysiiaf 13

HRrsanamlumhawmaeuasdanaifiufiazlé nanflFgmingazag
fusmia 6-21 deda CIVAM-TEN 205 DAG wasWoru Find_Path 14280
Onvl - 1Bl

Tudane3fin 55 midwane FLT@) 4uiui FSTw) us: MFFT() 1wimad
Fmandnminls Sl N, IusmusunBnues FST(u) uar MFFT(u) UsIviafl 1-2 92
s lumadwnmiindy OMNIVIE yazmsduandmiy IFLT() szardogudaugy

] \‘: " ti ['y “r e - ol
W% St aanaTfy 5.5 SulutisWentulnwiluldus

21

UN 6 A1aP19IN1TN 1INV Register-Constrained Inclusion Scheduling

wiannldsudanasiuranuadndninas- -3 RCIS Lé dalUfiasinanas
2819NITANWINE FLT UWazeTasney

Fowannminlugd 6.4 sun@ifinisduaniuuy general purpose agf 4 67 Tagld
FU1, FU3 fanwmonilouny was FU2, FU4 Sdnuosinlonimtunuadansnd 6.1 1u
juradud (latposs) wsaatanauazdanuinldvasaaniui lnuasniuluniag

@ @(?
Q ©

7111 6.1 n5date

AUIUAINATN

Fl's thutpossy | atposs) | datpossy | (latposs)
lat | poss | Lu | poss | Jat | poss | lat | poss

FULFUA | 5 005 | 10 1 151 09 23] 0.1
FULFU4) 7 1 05 (12| 07 |17 1 291 005

157971 6.1 uaﬂaqmﬁnumwamﬁwﬁ‘mm

o v P

ﬁmum‘lﬁizuumaammﬂmﬁﬂwm:ﬁajlﬂ‘ﬁ 6.2 lasunuiimaaiogrniv [1.7]
wazfImaglutig [1..200] %alugﬂﬂﬁf weighted sum Budgaiusuns 2.1) e
fwuaaadw (latency:register count)=1:10

'Lumnun?iua?"zgﬂ 6.3 (a) ugaIITaEeURlduardnadn FU1 uar FU3 92
Humiadamdiilfinnnit lumsdmnn FsTE) suudliinadudurinuldizad
qﬂwi'lﬁﬂ:ﬁﬂﬁ fsonivua B luaise U 6.4 (a) uaay FLT(A) usz MFFT(A) 3V
68.5(b) uand FLT(B) &miu FST(A) sanudulyld o 1asn x mansdadanaiuly
1alwua A ald33anainihedm o v x (mngﬂﬁ'm‘é’uuluﬂ’mq) u Audniy
MFFT(A) azmainofidmanuduldlddmivivue A ﬁ%zéuqm o I x & mTunoEas
Twua A uas B Alaiduudin 3U 6.5 Winufiny FLT(A) ua: FLT(B) 9:wuin FST(B) 3¢
viudauriu MFFT(A) 31U 6.6 uaas FLT dmiuyninue

1 register count wazeaIIWILE o iandneg uamsluglfi 6.7 nnglas
Toinsldmdimaaniudil (1,01) use @1) Famneivinefiosesiimeld
FmnSdmaasiiiss 1 sadnanadultule 0.1 Lm-:mnmﬁvuqﬂﬁmnﬁq@ﬁtﬂu'lﬂ‘ld’
snanadasauillaun 92 duanunimtUle 0.1 Rensan weighted sum vaaIRT
wuaflFuasmildnuidanaiiiu 79.53 %ad’mﬁummmagﬁ 52 wWisudisuidonly

22

duanlugy 6.2 udmudnmflstmuavasmmetasauin 52 uszldimanise
wwafiilu 2 §29: 16 acceptability degree iy 0.76 dvamfuidranuiweladingn
Indidssiufiléiiiold inclusion scheduling Ayleimmanaaily 41 faxld acceptability
degree 0.76 1Buin Folunsdifiaslfimniiamefivinty 3 6 mﬁaﬁLﬂuﬁagﬂ 6.3(b)

IR TEEY)

FUr | Fuz | Fus | Fus
FUr | Fu2 | FU3 | FU4

A R E .
; c A F E .
G _ b - G i ¢ :
i i B . D -

B . . -

(b}

(a)

51171 63 (@) MTWI AL 871N RCIS) A s AR 16T I inclusion scheduling

.

POSS PGSS
1 S ¥ T T T
9 “testz—i.‘g-ﬂ—zo.st"] 1 T E.) T T T
o “test2-1.9-A-20.F1n" 4 0.9 tretgid-af-20.st" O
0.8 F 1 L "test2-1.9-B-20.fin" &
0.8
eT7r J 0.7 b]
.6 . 05 |
0.% 1 0.5 f
0.4 1 0.4 F
0.3} 4 0.2 |
0.2 0,2 p
3 i o L DO EEERE »e o = A
o1 . . ¢ o LEBEFDS " BT, =, TIME
0 1 N 1 1 TIME

10 20 30 40 50 &0 70 80 90 100

(a) {h)

31U 6.4 (a) FLT (A) (b) FLT(B)

23

POSS

H L

»,8 o "te?é%t%'&'ﬁ?@ﬁ“" = {

0.8 | “testl-lg-R-A0fint o

0,7 F "test2-1,5-B-20.8t" o]

0.6 F “test2-1l.g-B-20.fin" - |

0.5 1

0.4 J

03¢ 1

- 0,2 F 4
9'1 I LR OR T ko e] —_
GLuwegsy® "o) | TS

4 10 20 W 46 T &0 A0 BY 90 Lo

5111 6.5 FLT (A) uaz FLT(B)

POSS S
— T : i T v T PP
“testd-1,9-A-20.Fm" 0O 29 . o 'lesti'i.gﬂq JJ.x.. nl
[(R Ay N 9 - teat21,5-B-20, 51
testl-1.oB-20.f1n" = o8 estidal-st -
“test?-1,gC-20.fin" + ' *teotd-1,5-0-20. 81
“test2-1.9-0-20.fin" - 0.7 “teat1,gE-20.61"
“lest2-1,5-E-20,fin" J B “tast2-1,9F-20,et" x
“test2-1,9-F-20.F:n" 0.5 *tost2-1,gG-2. et
“test?-1,9-G-20.Fin" ‘
F 0.4
I T 0.3
s] 0.2
3 BRI ST R S I A))
@ & S-Hf o 4 -~ 0.3 . + . [P SN
T e T T T FINISHED . + -)) = . TIME
6 10 20 30 4 50 S0 7¢ 86 90 100 TIME o - 20 2 1 2 e T

3171 6.6 FLT dmsunnluualunsv (a) FST (b) MFFT

24

"testZ-1,9-20.x" I

POSS reg=1,max poss=0.1

e
At e .
12 L AN
. X ’ m S
aE ran=2, ma¥ pneas=!
1t T TIME
. ,' 100
08090

6.8

: ".‘."‘,".-,.7','-"_'4_'_'- .
" 4 . . ")
REG 16 13g 51

A 1 1
311 6.7 Register count uaza1aaniulyla m 1aa1619 9

winidnlnuaidr ldlunswdn Wunslnldagy 6.8 uazld system specification
[} b= a ['3 el o [d L a n‘:
W ANLazANEIEnIwsd I urlaw@y RCIS wlderedisldiiaalionivue 57
° a iy o . a o ° Y e , w
waziIIImea NI IMuaIIAL 2 &2 MlAle acceptability degree iy 0.74
as A w a . o -~ X
WiBufiy inclusion scheduling @3ldauaiarianyinny 37 uadldiwmindizaaininue

Wiy 4 @Rf1REN acceptability degree YN

| o

@ ©
@

r C A A
31f 6.8 as i inaisadaulnuannly

25

=
UNN 7 HAaNIINAR[DYI

dl JA o o A
TuARRIITNHANIINARD TasnirdsraniTaanLuudnsy benchmark
Discrete Cosine Transform (DCT) [12] was Volter filter [8]

7.1 Discrete Cosine Transform

#at9 DCT fhlsznausay 48 Tnue Feruudliudasminsdmnddnwasdatuem
TN 7.1 uaz system specification (Hudagy 7.1 lavldunwiimaataglute [1.12) uas
wnunaeglulin [1.500) 91719 7.2 waeananTnassslasSoufivunsdidiog vey
Swaumisduamficng g i eeawl RCIS uar 1S waemslSoufisuntihauses
gy Tidnaanaifia RCIS uar inclusion scheduling LD Avg Latency ue9fis
weighted sum 284 latency (RENBEA@LY 1LD2 Max Reg LLﬁmaﬁwmu‘%’%mmﬁgaqﬂﬁ
fBIMT UN? acceptability WF®3 A1 acceptability degree 1ad6n (Avg Latency,Max Reg)
Wl Max Latency u.ﬁmﬂ"lnmﬁmnﬁqaﬁtﬂu‘lﬂ'lﬁ WAZUON Avg Weight WEAIFN
weighted sum 89 RCIS uas IS laodmiy RCIS wy=1 Uaz w, = 10 & WL IS drilas
wmilaurunudnlutes Avg Latency 1iasan 1S axResannisaadanilunén a1
7.3-7.4 waasdnanuiuwlyldvaimslsfimansudarinuiudmiy RCIS uas 1S dvas
wuh IS aswemusasailinauavesinsasaulaslidilifimslinds
ot %amnmiwoﬁv'wuﬂﬁ;ﬂvlﬁ'h RCIS axlen acceptability degree fiiing iy IS wia
ani lapRasonmilinwlimast vildnwSiaesilidsmdaniannts 37 % lu
nifimssanuuulasld adder 7 & usz multiplier 5 &7 d9annsdidneg Anaaseriimue
wuinnsil M3lE adder 5 2 uas multiplier 4 2 (Hunsdiilwen acceptability degree g9
50 Twnsnasaananuadang mﬁﬂmaaoﬁ'l'ﬁ'rm’lmuﬁqﬂ'l@'fuﬁ NGl adder 7 o7
uaz multiptier 5 97 Tagldianimualszano 1 wifl 50 3w Uwe3a9 Pentium IV 1.8
GHz 1GB RAM

Fl's tiatpossy | datpossy | datpossy | datposs)
dat | poss | Tt | poss | lat | poss | k| poss

Adder 5100510 I 151 09 | 23] 0.1
Multiplier | 7 | 0.5 |12 07 [17 1 29| 0.05

< “ T
A9 7.1 anuteve9 adder WAz multiplier

26

Sadds 4 muls | 6 adds 4 owls |6 adds S muls Tadds 4 Tonbds Sl
RCIS IS RUIS 15 RCIS Iy RCIN I KeIN N
Avp Latency 122 1t 132 3 17 W) 124 i -) nd
M Rep 6 8 7 1 hi 10 T L - 11
Acceptabiliny | 0719 | 0704 | G604 | 069 | 060 | 681 | G699) D.ox3 | D64 | (68}
Mas Latenys 220 282 296 224 205 I 255 226 230 179
Avg Weight P88 i I T 200 0y 210 [209 04

MW 72 HRMINARBYNE DCT 1R s1fi 81y RCIS LAz IS 195 LA TWIMWIK I8 I W] N

"U
Q
(¥]

u

L R I R

10

8
REG

4
317 7.1 system specification 289 DCT

#reg

2

4

h]

)

POss

0.1

0.1

0.1

l

A 1 -3 s L] .y Qe
a13191 7.3 mansndulilladmSunislznwimanidainatene g i

&MU sk adder 7@ WAL multiplier 5 @2 79 RCIS

#reg

bl

O

-1

h

10

posy | D08

0415

0.05

] ol

A U L O L] oy 1 L [o
a19190 7.4 aranainlyladgwiumslfnusmawitanatane 9 an dmdu

7.2 Volter Filter

n3th adder 767 uaz multiplier 5§ @2 a9 IS

27

Tu benchmark fusznause 27 Tnualas 10 Inuadulnuefidasmmiae
adder U8: TiMBadaIn1T multiplier aUNAMIzULYIzNOUMY adder uaz multiplier A
anwuzigudgInulunmasaiusn dmua system specification (Iudaz) 7.2 laslwun
wianafaglutn [(1.7] uazunuiamagluling [200..700] tiosnanearsaInsw
Usznoudnlnuaiidasnts multipier uinussInuamsiiulnglidwurinu Saviling
Wudwman mutipier allildamadasduiiliinesess suadldRerson
acceptability threshold (L 0.8 URE w,=1 UAZ w, = 10 1ag RCIS wonenwazaiaen
Tadansn weighted sum 2a3sI8RzN1TlENUIIRIOET wixt wy ¥ LiTB xy (Eluen
RAzS NI IaIRe a9 T d Ly Eﬂﬁ 7.4 URAY acceptability degreefi el
g mitussznseanuuudmin RIS WoldRuswmmibsdwinesnuinailduas
MTIsAdeLR Idasanaday audenstiuiiain multipier 1w 4 §awdosnnin RCIS
alWmetadsufilien acceptability degree 0.84 Tawnnmin acceptability threshold
0.8 fidoan wssiflsarivssumsTas Ut NLIMIRY multiplier sialdasyinlien
acceptabilty degree aanssziiasanaziimsldnuimndineefannidu fesnean
1S Avzewemanfiudwn multiplier TaglisnsBedmnddsaaifiuiuauiasiing
nasnufiy acceptability degree fianasly

PNHAMINASSY T2wud1 RCIS vxldmsaanuuunasniaanlasldsuindds
weiiauni @wnTuralunisyhau mﬂﬁ'ﬁ'}ﬁqﬂiummmao’qﬂﬁl‘ﬁnm 2.8 Swfi
viufonsh adder 1 @1 Uz multiplier 5 ¢

LB B EREE X

Eﬂﬁ 7.2 System Specification 924 Voltera filter

28

badd 2 muls Lac 3irnals 1 add 4 muls Ladd 5 muls
ROILS 1S RC i~ ROIS IS ROIS 15
Ave Latenay 3 M 267 Ry 260 20t) 2011 246
Mis Rew 2 2 3 . 4 4 4 3
Accepthilin .78 | {130 084 | 084 0.84 | U384 084 | Nd
M Latency 501 361 474 477 445 445 445 416

A1351910 7.5 HANITNARBIV DY Voltera filter 1U5811pU RCIS AL IS §1%5UI MW

poss
0,3 T | 1 T 1 L)
0,80 F - - j....;..._;.laddSmui f4ng] -
0,86 F - - RN L 1-add 4 muf (4 reg) *
0‘84 : : .‘.,4;,
o F Y i €3 reg)
078 F - Leiooocoioooia1add 2w
O'?e e T e Tt IR (Ereg.J-
O.?4 ----- : ----- :: :: -‘....:.--
072 F oot
04? [l [| [] 1 [l IL

RWIDATWIHEAN) N

200 220 240 260 280 300 320 340

latency

3‘ﬂﬁ 7.3 @1 acceptability degree ADIUARTNNTODNULIY

29

UnN 8 s3Uua

-

Turwdsoiildiiauwe framework adsranmseanuuulasie- 1o ety
anuliurinan Tay framework fladnsdafiemssaday RCIS daldRansonauluu
wauly system specification wasiiouly Feewenoruflesaimmsagrduildiaale
m‘sﬁwmuﬁanﬁqﬂua:ﬁms'l'ﬁ'am?%mmafﬂfauﬁagﬂ framework @ana1lemunsoinluly
Tumssanisaenuuumeldiasoanaliviveudrag ussifondisenuuuiimanzeas
pauiuldmolddoulanmuszmslfindianes lumwisuiildnageunanssanuuud
idanlapld benchmark Discrete Cosine Transform sz Voltera filter Gawuinaslinany

pANLLUAMINERUMNSEAUa M URIna lafidasn T le

30

taNA1TA 19D

{11 I. Ahmad, M ~. Chodhi. and C.Y.R. Chen. Integrated scheduling, allocation and
module selection for design- space exploration in high-level synthesis. [EEE Proc.-
Comput. Digit. Tech., 142:65.71, January 1995.

[2] Cagdas Akturan and Margarida F. Jacome. RS-FDRA - a register sensitive software
pipelining algorithm for embedded VLIW processors. [EEE Transactions on Computer
Aided Design of Integrated Circuits and Systems, 12(21):1395.1415, December 2002.

[3] C. Chantrapornchai, E. H. Sha, and X. S. Hu. Efficient scheduling for imprecise
timing based on fuzzy theory. In Proceedings of Midwest Symposium on Circuits and
Systems, pages 272.275, 1998,

[4] C. Chantrapornchai, E. H. Sha, and X. S. Hu. Efficient algorithms for Finding highly
acceptable designs based on module-utility selections. In Proceedings of the Great Lake
Symposium on VLS, pages 128,131, 1999.

[5] C. Chantrapornchai, E. H-M. Sha, and X. S. Hu. Efficient module selections for
Finding highly acceptable designs based on inclusion scheduling. J. of System
Architecture, 11(4):1047.1071, 2000.

[6] C. Chantrapornchai, E. H-M. Sha, and Xiaobo S. Hu. Eftcient acceptable design
exploration based on module utility selection. /IEEE Trans. on Computer Aided Design of
Integrated Circuits and Systems, 19:19.29, Jan. 2000.

[7] C. Chantrapornchai,W. Surakumpolthorn, and E.H. Sha. Eflecient scheduling for
design exploration with imprecise latency and register constraints. In Lecture Notes in
Computer Science! 2004 International Conference on Embedded and Ubiquitous
Computing (EUC), pages 259.270, 2004.

[8] C. Chantrapornchai and S. Tongsima. Resource estimation algorithm under
impreciseness using inclusion scheduling. Infl. J. on Foundation of Computer Science,
Special Issue in Scheduling, 12(5):681.598, 2001,

[9] S. Chaudhuri, S. A. Byithe, and R. A Walker. An exact methodology for scheduling
in 3D design space. In Proceedings of the 1995 Infernational Symposium on System
Level Synthesis, pages 78.83, 1995.

[10] S. Chaudhuri and R. Walker. Computing lower bounds on functional units before
scheduling. In Proceedings of the International Symposium on Systemn Level Synthesis,

pages 36.41, 1994,

31

[11] A. Dani, V. Ramanan, and R. Govindara;a~ Register-sensitive software pipelining.
In Proceedings. of the Merged 12th Internationa Paralle! Processing and 9th International
Symposium on Parallel and Distributed Systems, pages 194.198, April 1998.

{12] M. K. Phodhi, F. H. Hielscher, R. H. Storer, and J. Bhasker. Datapath synthesis
using a problem-space genetic algorithm. /{EEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 14(8):934.944, August 1995.

[13] A. Eichenberger and E. S. Davidson. Register allocation for predicated code. In
Proceeding of MICRO, 1995. [14] Alexandre £. Eichenberger and Edward S. Davidson.
Stage scheduling: A technique to reduce the register requirements of a modulo
schedule. In Proceedings of MICRO-28, pages 338.349, 1995.

[15] H. Esbensen and E. S. Kuh. Design space exploration using the genetic algorithm.
In Proceedings of the 1996 International Symposium on Circuits and Systems, pages
500.503, 1996.

[16] F.Chen, S. Tongsima, and E. H. Sha. Loop scheduling algerithm for timing and
memory operation minimization with register constraint. In Proceedings of SiP'98, 1998.
[17] K. Gupta. Introduction to fuzzy arithmetics. Van Nostrand, 1985.

[18] O. Hammami. Fuzzy scheduling in compiler optimizations. In Proceedings of the
ISUMA-NAFIPS, 1995,

[19] I. Karkowski. Architectural synthesis with possibilistic programming. In HICSS-28,
January 95.

[20] I. Karkowski and R. H. J. M. Otten. Retiming synchronous circuitry with imprecise
delays. In Proceedings of the 32nd Design Automation Conference, pages 322.326, San
Francisco, CA, 1995.

[21] A. Kaufmann and M. M. Gupta. Fuzzy mathemalical models in engineering and
management science. North-Holland, 1988.

[22] A. S. Kaviani and Z. G. Vranesic. On scheduling in multiprocessor systems using
fuzzy logic. In Proceedings of the International Symposium on Multiple-valued Logic,
pages 141.147, 1994.

[23] J. Lee, A. Tiao, and J. Yen. A fuzzy rule-based approach to real-time scheduling. In
Proceedings of Intl. Conf. FUZZ-94, volume 2, 1994,

[24] Josep Llosa, Eduard Ayguade, Antonio Gonzalez, Mateo Valero, and Jason
Eckhardt. Lifetime-sensitive module scheduling in a production environment, /EEE

Transactions on Computers, 50(3):234.249, 2001.

32

(25) Josep Llosa, Mateo Valero, and Eduard Ayguade. Heuristics for register-
constrained software pipelining. In International Symposium on Microarchitecture, pages
250.261, 1996.

{26] C. A. Mandal, P. O. Chakrabarti, and S. Ghose. Design space exploration for data
path synthesis. In Proceedings of the10th Infernational Conference on VLSI Design,
pages 166.170, 1996.

[27] K. Mertins et al. Setup scheduling by fuzzy logic. in Proceedings of the
International Conference on Computerintegrated Manufacturing and Automation
Technology, pages 345.350, 1994.

[28] J. Rabaey and M. Potkonjak. Estimating implementation bounds for real time DSP
application specibc circuits. I[EEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 13(6), June 1994,

[29] T. J. Ross. Fuzzy Logic with Engineering Applications. McGrawHill, 1 edition, 1995,

33

AMANKIN
NaWANNY 11 LNCS 3207 uaz LNCS 3321

LNCS 3207

Laurence T. Yang

‘Minyi Guo

Guang R. Gao
Niraj K. Jha (Eds.)

Embedded and
Ubiquitous Computing

International Conference, EUC 2004
Aizu-Wakamatsu City, Japan, August 2004
Proceedings

XII Table of Contents

Component Composition Tools: Process Call Schedull .
ta the Priotity in Connectdy . eduling According

Experimental Performance Evaluation of Embedded Li i
Alternative CPU Corg Organizations 5 & H.:E.x Cm_nm

Sangsoo Park, Yonghes Lee, Heonshik Shin

A Mobile snw.mmn&um Applicati i istri
¢ y plication Controlling Internet-Distrib
Sigoaling Devices via LAN Concento s ributed

Track 2: wmm..—l-H;mgQ MQMﬂmHH—.m

Experimental Assessment of Scenario-Based Multithreadi

eadin
for Real-Time Object-Oriented Models: ¥
A Case Study with PBX Systems

Sachwa Kim, Michae! Buettner, Mark Hermeling,
Seongsoo Hong

Providing Protected Execution Environments for Embedd
ed
Operating Systems Using & p-Kernel0 .

Shuichi Oikawa, Hiroo Ishikawa, Masatoshs ;
Tatsuo Nakafima wa, Masatoshi fwasaki,

A Virtual Reslity Based § m .
o Rovaing a7 & Romete Ml

Moes Bellomine, Norihiro Abe, K. i
Hirokary Taki iro Abe, Kazuaki Tanaka, Peng Chen,

................

Comparison of Tie-Breaking Policies fo _ .
on Multip og Policies for Real-Time Scheduling

Minkyu Park, Sangchul Han. H. : ;
Yooken Cho ngchul Han, Heeheon Kim, Seongje Cho,

....................

Deductive Probabilistjc Verification Met
snd Ubiquitous Computing. ... L w..p. . .m. roau wo.n Embedded

Satoshi Yamane, Tokashi Kanatani

”& Integrated Scheduling Algorithm for Precedence Constrained Hard
mom Real-Time Tasks on Heterogeneous Multiprocessors
Nitin Auluck, Dharma p. Agrawal

Track 3: Power-Aware Computing
An Integrated Multichannel Selection and Dynamic Power Control

Scheme for IEEE 802.1 Wireless Ad Hoc Ne
" tworks
Jim Q—g. Kuochenn Wann Hiea M. n.ru.....

...........

...................

Table of Contents X1l

-

Non-uniform Set-Assoclative Caches for Power-Aware

Embedded ProceSsorsoeovrieireieiiennnneeeieaiaieairae 217
Seiichire Fujfii, Toshinori Sato ‘

Power-Aware Scheduling of Mixed Task Sets

in Priority-Driven SyBtemsocviiirirrneetie it 227

Dongkun Shin, Jihong Kim

Power Consumption of Wireless NIC and Its Impact on Joint Routing
and Power Control in Ad Hoe Netwotk ...c.vovnrinennnnrnneneennene. 238
Min Li, Xiaobo Wu, Menglian Zhao, Hui Wang, Xiaolang Yan

Track 4: Hardware/Software Co-design
and System-on-Chip

A Hardware/Software Co-design Method and Its Evaluation to ITS
Image Processing and Driver-Support Systoms............oovvivnenns, 249
Yu Endo, Jun Sawamoto, Hisao Koizumi

Efficient Scheduling for Design Exploration

with Imprecise Latency and Register Constraints. 259
Chantana Chantrapornchai, Wanlop Surekumpolthorn,
Edwin Sha

Hardware Mediators: A Portability Artifact)

for Component-Based Systems.......ooviviieinneienn i, 271

Fawze Valério Polpeta, Antdnio Augusto Fréhlich

On Implementation of MPEG-2 Like Resl-Time Paralle! Media)
Applications on MDSP SoC Cradle Architecture U 281
Ganesh Yadav, R.K. Singh, Vipin Chaudhary

FERP Interface and Interconnect Cores
for Stream Processing Applicationsoovriiininireerrnnanan. 291
Jeff Young, Ron Sass

Folded Fat H-Tree: An Interconnection Topology

for Dynamically Reconfigurable Processor Afraycovvvnvninnts 301
Yuteka Yomada, Hideharu Amane, Michihiro Koibuchi,
Akiya Jouraku, Kenichiro Anjo, Katsunobu Nishimura

Track 5: Mobile Computing

The 3DMA Middleware for Mobile Applications 312
Tore Fjellheim, Stephen Milliner, Marlon Dumas, Kim Elms

Mining Physical Parallel Pattern from Mobile Usars kY2

258 Y. Endo, J. mw!»._so_.o. and H. Koizuod

allocated were mainly interface processing, warning processing and control process.
ing, when written in C++, amounts to some 15k steps. Speed of execution of the proc.
cssing for a single video frame at the model simulation stage was 600sec., but in rea)
Hime the actual execution of processing for a single frame was completed withip
100msec., satisfying the design objectives.

The driving safety support system configured in SpecC quickly detected the online
IP modules, and we were able to use RPC to perform the functional evaluations.

From the above, we were able to evaluate that the proposed design method enableg
design objectives to be satisfied at the simulation level, and validation with a radio.-
contro'led car was confirmed, satisfying design objectives at speeds up to 10km.

5 Conclusions

We proposed a hardware/software co-design method of the optimal allocation of func-
tions to HW and SW. We performed simulations by connecting the object to be con-
trolled with the control system being designed. Our proposed design method uses
these simulations, following a staged approach to detailed design in allocating the
functions called for by the design specifications to HW and SW. And we proposed an
online method of validation using RPC to access [P components in the network eavi-
ronment. We confirmed the validity of this approach in an application to the design of
image procesting for ITS. We configured dynamic models for the control system,
extended the validation system to apply to the ITS system for control processing, and
evaluated its effectivencss, By using modeling without separating the functions into
HW and SW, there was no need to configure the system in multiple languages. And
the method of trade-offs was used to shorten development time.

In the near future, we will apply the design method to other application and evalu-
ate the degree of effectiveness.

References

1. Hiroaki Takada "Present situation and future prospects in development technologies for
embedded systerns,”® [PS] Journal Vol. 42, No. 4, pp. 930-938 (2001} (in Japaness)

2. Hisao Koirumi, Katsuhikn Seo, Pumio Suzuki, Yohsuke Ohtsury, and Hiroto Yasuyura, “A
Proposal for a Co-design Methed in Control System Using Combination of Models™,
[EICE Trans. on Informadon and Systems, vol. E78-D No. 3, pp. 237-247 (1955).

3. Thomas D.E Adams J.K.and Schmit H.,"A Mcthod and Method for Hardware Software
Codexign®, IEEE Design and Test of Computers, Vol. 10, No. 3, pp. 6-15(1993).

4. Takashi Naitoh, Keiichi Yamada & Shin Yamamoto: "A robust method of aumberplate
recognition af the image taking point,” IEICE Transactions A. Vol. J81-A, No. 4, pp. 536
545 (1998) (in Japans<e)

5. Danicl D. Gajski et al., "The SpecC specification description language and how to use it.”
CQ Press KK (2000)

6. Developments in traffic systema (TTS) for dedicated express motorways:

gfficient Scheduling for Design Exploration with
Imprecise Latency and Register Constraints

Chantana Chantrapornchail*, Wanlop Surakumpolthorn?, and Edwin Sha’**

! Faculty of Science, Silpakorn University, Nakorn Pathom, Thailand
T Fpculty of Engineering, King Mongkut's Instituts of Technology,
Ladkrabang, Thailand
3 Department of Computer Science, University of Texas, Richardson, Texas, USA

Abstract. In archiectural synthesis, scheduling and resource allocation
are important steps. During the early stage of the design, irnprecise in-
formation is unavoldable. Under the imprecise syatem characteristics and
constraints, this paper proposes a polynomial-time acheduling algorithm
which minimizes both functional units and registers while scheduling.
The algorithm can be used in design exploration for exploring the trade-
off between latancy and register counts and selecting a solution with
satisfactory performance and cost. The experirents show that we can
achiave a schedule with the same acceptable degree while saving register
upto 37% compared to the traditional algorithm.

1 Introduction

In architectural level synthesis, imprecise information is almost unavoidable. Fos
instance, there may be various cholees of modules lmplementing the functlons or
the component may have not been completely designed down to the geometry
level. Another kind of irnpreciseness or vagueness arises from the way a design
Is considered to be acceptable at architecture level. If a design with latency of
50 cycles is acceptable, what about a design with 51 cycles? Especially when
there are multiple conflicting design criteria, for exampls, is it worth to expand
a latency by two cycles while saving one register and what about expanding 10
more cycles 7 Effective trestment of such impreciseness In high level synthesis
can undoubtedly play a key role In finding optimal design solutions.

In this paper, we present an approach to handle certain imprecise specifica-
tion and use them duting architectural synthesis. The system characteristica are
modeled based on the fuzzy set theory. Register count is consldered as another
dimenslon of imprecise system requirement. We extend the work in {1} to cre-
ata a schedule subject to register constraints under impreciseness. The proposed
algorithm can be integrated into deslgn exploration framework which considers
T Thin mrk wne supportad in part by the THE under grant number MRG4630115,

20 C. Chantrapornchai, W. Surakumpolthorn, and E. Sha

the tradeoff befween latency and register usage to find an acceptable solutign
Such systems can be found in many digital signal processing applications, eg.,
communication switches and real-time multimedia rendering systems.

Many researchers have applied the fuzzy logic approach to various kinds of
scheduling problem (10,11]. These approaches, however, do not take into account
the fact that an execution delay of each job can be imprecise and/or multiple
attributes of a schedule. Research works related to register allocation exists iy
high-level synthesis and compiler optimization area for VLIW architecture. For
example, Chen et. al. proposed a loop scheduling for timing and memory op-
eration optimization under register constraint (8]. The technique Is based o
multi-dimensional retiming. Eichenberger et. al. presented an approach for reg.
ister allocation for VLIW and superscalar code via stage scheduling [7]. Danl et.
al. also presented a heuristic which uses stags scheduling to minimize register
requirement. They also target at instruction level scheduling [5). Nonetheless,
these works focus on loop scheduling and do not consider handling the imprecise
system characteristics or specification.

The inclusion scheduling which takes the imprecise system charscteristic
was proposed in [1]. The algerithm was expanded and used in design explo-
ration under imprecise system requirement as well ag the estimation of Tesource
bounds (2,3,4]. However, it does not take register criteria in creating a schedule,

In this paper, we particularly consider both latency and register constraints.
We propose an extended inclusion scheduling which considers the register usage
while performing scheduling. The developed scheduling core, RCIS, Register-
Constrained Inclusion Scheduling, takes imprecise information into account.
Since the latency of the system specification is imprecise, the register usage
of the schedule s imprecise. We study the impreclsa register usage and propose
a heuristic to estimate the register count In the imprecise schedule. Given a
functional specification (in the form of a directed acyclic graph) and a number
of avallable functional units, an inclusion schedule can be efficlently generated
in polynomial time. Our proposed approach can efficlently be used in an itera-
tive design cycle to find an initial design to reduce the number cycles of design
improvements. Experimental results show that, we can achieve a better design
when the number of registers is imited while keeping the same satisfactory re-
quirement.

This paper ia organized as follows: Section 2 describes our models. Section 3
presents the iterative design framework which may integrate our scheduling ap-
proach an” introduce the inclusion scheduling framework. Section 4 presents
necessary de/in‘tions, properties, and heuristics which integrate register consider-
ation into inclusion scheduling framework. Section 5 dizplays some experimental
result ;. Finally, Section 6 draws a conelusion from our work.

2 Owverview and Models

" Efficient Scheduling for Design Exploration 261

each vertex in the vertex set V corresponds to an operation and £ is the set of
edges representing data flow between two vertices. Function f defines the type
of operation for node v € V. . . .
Qperations in a data flow graph can be mapped to different functional E.:G
which in turn can have varying cheracteristics. Such a muﬁSB must also m.wrm.?
certain design constraints, for Instance, power and cost imitations. These specifi-
cations are characterized by a tuple § = (F, A, M, @), where F Isthe set of func-
tional unit types available in the system, e.g., {add, mul}. A ls (A, : JQ € F}.
Each Ay Is a set of tuples (a1,...,ar), where a1 to ap represent w.nnzvcog of
particular f. In this paper, we use only latency as an example attribute. {(Note
that our approach is resdily applicable to Include other constraints such as power
and area). Hence, Ay = {z : ¥ z} where z refers to the latency attribute ol f
Mis {uy : ¥f € F} where uy Is a mapping from Ay to w.m.ma of real number
in [0,1], representing a possible degree of using the value. m,Em:.S @ is a func-
tion that defines the degree of a system belng acceptable for different system
attributes. If @(a,,...,ax) = 0 the corresponding design is totally unacceptable
while Q(ay,-..,ax) = 1, the corresponding design is ammE.omq. acceptable.
Using a function @ to define the acceptability of a system is a very .vocan?_
model. It can not only define certain constraints but also express certain design
goals. For example, one is interested In designing a system with latency under
500 and register count being less than 6 respectively. Also, the smaller latency
and register count, the better a system is. The best system would have both
Fg.unu‘ and register count being less than or equal to 100 and 1 respectively. An
acceptability function, 2(ay,as) for such a specification is formally defined as:

0 fay>5000raz>6
Qla;, a2) = 1 ifa,€£100andaz <1 (1)
F(a1,az) otberwise,

where F is assutned to be linear functions, e.g., F(a1,a2) = 1.249689(ay +2a3) —
0.001242 which returns the acceptability between (0,1). Figures 1{a) and 1(b}
illustrates Equation (1) graphically.

s uatvite Lol g

{a) (b)
. s ! Ragister o 1 Z (b} Tta projoction.

262 ‘C. Chantrapornchai, W. Surakumpolthorn, and E. Sha
ot

Based on the above model, the combined scheduling/binding we intend ¢
solve can be formulated as follows: ;

Given a specification containing § = {(F, A, M, @), G = (V,£,8), and ac.
ceptability level o, find a schedule under functional unit and register constraingy
for each f in F whose the acceptability degree is greater than or equal to o

Fuzzy sets, proposed by Zadeh, represent a set with imprecise boundary [12),
A fuzzy set z is defined by assigning each element in a universe of discourse
its membership degree p(x) in the unit interval {0, 1], conveying to what degres
z is a member in the set. Let A and B be fuzzy numbers with membership
functions ua{x) and up(y), respectively. Let » be a set of binary operations
{+, -, %, +, min, max}. The arithmetic operations between two fuzzy numbers,
defined on A « B with membemhip function p4.g(z), can use the extension
principle, by [9]: pasn(z) =V purey (B4(2) A 5(y)) where V and A denote max
and min operations respectively.

Based on the basic furry set concept, we model the relationship between
functional unita and possible characteristica such that each functional unit is
associated with a fuzzy set of characteristics. Given a functional unit f and its
possible characteristic set Ay let uy(a) € [0,1),Va € Ay, describe a possibility
of having attribute a for a functional unit f.

3 Iterative Design Process

Figure 2 presen.s an overview of our iterative design process for finding & sat-
isfactory sclutin. One may estimate the Initial design configuration with any
heuristic. The scheduling and allocation process produces the imprecise sched-
ule attributes which are used to determine whether or not the design config-
uration is acceptable. The dashed block elements contsin the scheduling core
which attempts to minimize both latency and register usage. Our scheduling
and allocation process incorporates varying information of each operation. It
takes an arplication modeled by a directed acyclic graph as well as the num-
ber of functional units that can be used to compute this application. Then, the
scheaule of the application is derived. This schedule shows an execution order of
operations in the application based on the available functional units. The total
attributes of the application can be derived after the schedule is computed. The
given acceptability function is then checked with the derived attributes of the
schedule. In order to determine whether or not the resource configuration is sat-
isfied the objective function, we use the acceptability threshold. If the schedule
attributes lead to the acceptability level being greater than the threshold, the

process stops. Otherwise, the resource configuration is updated and this process

is repeated until the design solution cannot be improved or the design solution
is found.

Efficient Scheduling for Design Exploration 63

Fig. 2. [terative design solution finding process

consists of fuzzy sttributes. In a nutshell, inclusion scheduling simply replaces
the computation of accumulated executlon times in a traditional scheduling algo-
rithm by the fuzzy arithmetic-based computation (See Section 2). Hence, fuzzy
arithmetics Is used to compute possible latency from the given functional speci-
fication. Then, using a fuzzy scheme, latency of different schedules are ooEvE.m._n_
to select a functional unit for scheduling an operation. Though the concept is
gimple, the results are very informative. They can be used in many ways such
a3 module selection [2].

In the Inclusion scheduling, to compute a fuzzy latency, it creates a mew
partition graph. based on the original dats fiow graph and adding extra oa.mﬂ
which connect consecutive nodes in the same function unit. Then & dummy sink
node is created and connected to all leaves in the graph.

According to the scheme, we can see that the schedule table is not explicitly
created. Thus, the notion of cortrol step is tmpliclt. This raises a few aspects.
Firgt, the nodes are assumed to start as esrly as possible. If the register con-
straint 1s considered, the ASAP approach may not give a good result. That is it
may be good to start node later while latency is kept the same or even a little
larger to maximize acceptability. Second, the graph is directly used to calculate
fuzzy maximum latency. When considering only overall fuzzy latency,it is not im-
portant that nodes start ASAP or not, since in overall, the fuzzy length remains
the same. However, when taking registers into account, the start time of a node
becomes important inee it can affect the register usage. Different start time can
imply different register usage at esch time step. As a result, s scheduling heuris-
tic must be modified to consider register usage at each time step. Third, in order
to consider this, since a node’ 8 execution time is a fuzzy number, the start time
of the node and its successors become a fuzzy number. When the start time of
the node is & fuzzy number, the finished time of the node is & fuzzy number. We
need to define the fuzzy life time of & node. Hence at each control step, a node

may occupy the functional unit with some possibility. To minimize the number
of regiater in this way, =r¢ must also minimlze the possibility of using csrtaln

264 C. Chantrapomchai, W. Surakumpolthorn, and E. Sha

4 RegistersCount Consideration Under Impreciseness
and RCIS

To consider register constraint, we should count the number of registers useg
at each time step. In specific, when we place a node on a schedule, we consider
a life time of the node in the schedule. Traditionally, a life time of a node de.
pends on the location of the node’s successors in the schedule. That is the valye
produced by the node must be held until its successors have consumed it untj
the meximum time step that its successors can start. When an execution time
of a node is a fuzzy number, the fuzzy life time of a node needs to be defined.
In other words, at each control step, a node may occupy the functional unit
with some possibility. In the following, we establish a notion of fuzzy start time,
fuzzy finished time, and fuzzy life time. We then propose an algorithm to cal
culate fuzzy register usage for a schedule. Then both register usage and latency
charactesistics of the schedule are used to chooss the best schedule.

Definition 1 {(F5T(u) and FFT(u}). For G = (V, £, B), and a given scheduls,
a furzy start time and a fuzzy finished time of node of nodeu eV,

1. FST'(u) is a fuzzy set whose membership degree is defined by upsriafz) =y,
ie, node u may start at time step T with possibility y.

2. FFT (u) is o furzy set whose membership degree is defined by pppriu(z) =
y, i, node u may finish ot time step T with possibility y.

For nodes that are executed at time step 0 in each functional unit, FST(u) =
0, which is & crisp value. Further, FFT(v) = FST(v) + EXEC(v), where

]

EXEC(v) is the fuzzy latency of v. When considering earliest start time of
a pode, FST(v) = max(FFT(w)) + 1, Vu; = v.

The general idea of using fuzzy numbers {3 depicted in Figure 3(a) for both
gtart time and finished time. Circles denote the fuzzy boundary which means that

ao-qquh W oap

_Efficient Scheduling for Design Exploration 285

the start time and finished time boundary of anode is unclear. [ndeed, they may
also be overlapped 2s shown in Figure 3{a). When a node occuples a resource
at a certain time step, a possibility value is associated with the assignment.
Computing & fuzzy life time for node u requires two fuzzy sets: FST'(u) and
MFFT(u), the maximum of start time of all its successors.

Definition 2. For G = (V,£,3), and a given schedule, fuzry life time of node
u, FLT(x) is o pair of [FST(u), MFFT(u)], where pprpry = FFT(u) +

max(FST(v}), where u = v; € £ and +, max are fuzzy addition, and ?uwc
3»&3:3 respectively.

Given FLT(u), let min_st be the minlmum time step from FST(u) whose
pFsT(u) 18 nonzero, and maz_st be the maximum time step from FST(u) whose
prsT(w) s nonzero end similarly , for min_fin and maz_fin for MM FET(u)-
Without loss of generality, assume that FST(u) and MFFT(u) are sorted in
the increasing order of the time step. We create a fuzzy set JTFST(u), mapping
for a discrete time domain [min_st..maz_st] to real value in [0..1}, showing the
possibility that at time step x, node u will occupy a register for F.ST(u) and
likewise for IM FFT(u) for M FFT{u) as in Definition 3.

Definition 3 (IFST(u) and IMFFT(u)). Given G = (V,£,5), a schedule,
[min_st..maz_st], [min._fin..maz.fin] and FLT(u)

I oprrstiu)(€) = 0 if ¢ < minst V¢ > mazst and otherwise =
MaXvz minst<x<y(BFsT()(Z)), Where ¥ = max(FST(u)) Ay <c .

2 prmprr{c) = 0 if ¢ < min_fin Ve > maz_fin and otheruise =
MeXys,y<z<maz.fin(BMFFT)(Z)) whee y = maz(MFFT(x)) Ay <c

From the above calculation, we assume that for any two starting time value
a,b € FST(u) where a < b, if node u starts at time q, it will be already started
at time b. For MFFT(u), when a < b, 2,b € M FFT(u), if the value for node
u will not be needed at time a, it will not be needed et time b and vice versa,
Notlee that from Definition 3, the possibility of JFST(u) is in nondecreasing
order and the possibility of IM FFT{u) is in non-increasing order.

From IFST(u} and IMFFT(u}, we merge the two sets to create a fuzzy
interval for a node by defining Definition 4.

Definition 4. Given G = (V,£,5), a schedule, IFST(u} and IMFFT{v).
krreryle) = max(prrsTwy(e) Brmrrrn(c)) if minst < ¢ < maz sty
min_fin < ¢ < maz_fin, or prrpren(c) = 0 if ¢ < min(min_st, min_fin)ve >
E.Wxﬂqrnhnhn.ag:‘_nu.:w. and otherwise HIFLT(u) nnu =1.

After we compute the fuzzy life time interval for each node, we can start
compute register usage for each time step which is used to evaluate the quality
of thie fuzzy schedule.

Next, we eaplaln an RCIS framework. which is based on exdsting Inclusion
WA -t W e ; S RS1«,...n...u...._.m..”...l...L."....w.....u..an...”....h.L...q_._..-th_.r........._m.......v“

Pofioles | | e ip A g T A
- i ? i
by | e i A T e e

266 C. Chantrapornchai, W. Surakumpoithorn, and E. Sha

attempts to estimate w\\?ﬁw property of a schedule containing both latency and
register usage. It also keeps a “better” schedule at any iteration.

In RCIS, we siunply replace the portion of code in inclusion scheduling which
evaluates the fu: .y attributes of a schedule by Eval Schedule Reg. Then, the
better schedule is chosen at each iterstion. In EvalSchedule Reg, the fuzzy
latency of the intermediate schedule and fuzzy register usage are computed.
Algorithm . presents a framework which evaluates the quality of the schedule.

T \Qur heuristic considers the register usages by Algorithm 2.

Algorichm ! (Eval Schedule Reg)
Input: schedules §,5;, G =(V,£,8), and Spec = (F, A, M, Q)
Output: | if S| is better than S4, 0 otherwise.

1 Go = (Vo, &, B) where Vo = V—{unssheduled nodes}, & = @

t fo G schedule rm.* .m.._. g .m.u QO

Lo = {(u,v):u,v € Vy, il u,v in same fu_in 5;
and v is immediately after u}

Calculate register usage for G using Algorithm 2

Let W is a set of leaves in Gy

latency(S;] = fuzzymax time(W)

Bﬁ&ﬁm‘_ = Combine(latency (i, Regl5:])

10

1 // comparing the overall attributes of both schedules

13 return(compare(quality[S1], quality(Sa]))

o -3 O

o

Algorithm 2 {Calculate Register_Count)

Input: Scheduled Graph Gq for schedule S and, original DFG G = (V,£,4)
Spec = (F, A, M, Q)

Output: Reg[S] contains register counts needed and its posaibility

1 Calculate FLT(u) Yu € Gy by Definition 2

¢ Caleulate JFLT(u) Yu € Gy by Definition 3

s Let max cs be max. finish time ,Yu € Gy

{ for s =1 to maxcsdo

s {RegAt[cs|.reg, RegAt|cs|. poss) = Count_Node(IFLT, cs, Gg} od
¢ ¥n, FReg(n| =0

7 for s =1 to maxes do

s FReg|RegAt[cs|.reg|.reg = RegAt[cs].reg

) FReg|RegAt[cs].reg|.poss =
10 max(FReg[RegAt|cs].reg]. poss, RegAt|es|. poss) od
t1 Reg|S) = FReg

Effici#¢nt Scheduling for Design Exploration 267

Consider Figure 3(b}. When an execution time becomes a fuzzy number,
each box implies that one register ts needed. However, the derived possibility
associated with a time step indicates that that node may not actually exist
during the time step. For example, node may start later or finish earller. In
other words, there is a possibility that a node may not use such a register. With
this knowledge, the register may be shared with others with high possibility.
Constder the overlap interval in Figure 3(b) at time step 7. Ope or two registers
may be used with some possibility. This depends on whether the dependency
between A — B exists. If edge A —+ B exista In the original data flow graph, the
total register count would be one. Algorithm Count_Node Is simply a heuristic
which attempts to count only the ancestor at the current time step.

5 Experiments

Consider the simple DFG, containing nodes {4, B,C,D,E,F,G} and edges
{A- B,C » B,F -+ G,C - D} Assume that Ammsmwm._ functional units
are available and their characteristics are according to Figure 6(a). In the Ta-
ble, Columns “lat™ and “pos” show the latency and its possibility of having the
latency value If the nodes are executed in a functional unit. Assume the system
specification where register axis contains a discrete value ranged in {1..7) and
latency axis ranged in [1..200] and where latency : register count is 1:10.

F 3|FU4

1{FU2|F TTEG2IF

3{FU4

mwommECc
O QMg

O aEc

Q|

(a) ®

Fig- 4. Schedule obtained by (a) RCIS (b) the original IS.

Figure 4(a) shows the resulting schedule we obtain. We notice that FUI and
FU3 are preferable. To calculate FST{u), we assume a heuristic where a node
starts as early as possible. Figure 5{a) compares FLT{A) and FLT(B). We can
see that FST(B) overlaps with MFFT(A).

We summarize the register count and its possibility value for each time step
as shown in Figure 5(b). Then we conclude that the register usage as following:
(1,0.1) and (2,1). It implies that at some control step, 1 register is needed with
very low possibility, e.g. 0.05 and 0.1. The maximum possible finished time of the
schedule is at 92 with possibility 0.1. With this schedule, the average weighted
.Eho:bnbﬁ&‘!i qnm.hnnq—quuw Eb&n&ﬂhﬁnwmn _.wnnu.nw__ the

268 C. Chantrapornchai, W. Surakumpolthorn, and E. Sha

LAY . DOUHGES SN ¥t ¢
slitopem— & -, TiME

1102 3 4% W20 0o

(s) (b)
Fig.5. (a) FLT(A) and FLT(B) (b) Register counts and possibility each time step.

FUl1 FU2 | FU3 T FU4

51005/ 716515005/ 705
101 1 112|0.7 10] 1 12|07
15[09 (17 1 |15/0.9 17 1
23] 0.1|29/0.05 B?._ 29/0.05

(a))
Fig. 8. (a) FU charactanistics (b) Coastraint for DOT

Consider a well-known benchmark, discrete cosine transform [6), containing
48 nodes. Assume the same functional unit specification for both adders and
multipliers and the constraint in Figure 6(b) where the register axis is [1..12]
and the latency axis is [1..500). We compare the results obtained from various
cases of verying the number of functional units, The results are shown in Table 1.
Columns “RCIS"and “IS" compare the performance of the schedule by Register-

Constrained Inclusion Scheduling and the original inclusion scheduling (IS). Row
“Avg Latency” shows the weighted sum of latency for each case. Row “Max
Reg” displays the maximum number of registers. Row “Acceptability” shows
the acceptability value obtained using the “Avg latency” and “Max Reg™. Row

: 2acy™ uts the maximum ﬂ..u.mmn:..f..w..~.=nh.. and N.n:v‘ “Avg Weight”

| Sp—y <rig e s ey
— = Foram =,

Efficient Scheduling {or Design Exploration 269

i inimizing latency. Tables 2(b}-2(c) shows the summarized
- Jw_mwnwo«.smm“ m_.“a”mmzm omgu M‘mwomn counts for RCIS and IS uﬁvmmz..ﬂmg
morM obvious that IS attempts to minimize latency while not ooEEm.:um.n.rm
register usage. From these tables, we can achieve about the same wcomvnm.,g:n%
(and even better acceptability in some case} with fewer number of registers,
which is upto 37% saving for the number of registers for the cass of 7 adders and
5 multipliers. Among all these cases, we see that the oo,nmmﬁwson with 5 adders
and 4 multipliers should be the best. Consider the running tirne. For all n:.o cases,
the maximum running time is approxmately I BWHES 50 seconds to achieve the
results for 7 adders and 5 multipliers under Pentiura 4 2.8GHz, 1GB RAM.

f functional units.
le 1. {a) Comparison of RCIS and IS when varying the number o
NMMM wkwEQ values of register counts for case case 7 adders and § multipliers for

RCIS snd IS.

ndds 4 muls[§ sdds 4 muls[6 adds 5 muls]7 adda € muls[7 adds 5 muls
W.Onm 5 [RCIS] 15 JRCIS| IS 15 |RCIS] 15
Avg Latency! 122 111 132 98 117 99 124 104 127 94

MaxReg | 6 | 8 | 7] 10 |8 1w {7 !{1w] 7] n
Accaptability!0.718t 0.704 (0.68] 0.6% [0.894] 0.691 |0.699| 0.683 |0.8691(0.683
Max Latency] 226 252 | 296 224 213 197 255 226 230 179
Avg Weight | 188 111 198 98 206 99 210 104 209 94

(s}

#regl 2 13{ 4 1 5 16]7 #regl 2 | 4 [5{ & (7] 8 (1G{11

poss [0.11310.110.1111{1 poes 10.0510.05/1]0.05{1]0.1[1 | 1
(b) {c)

6 Conclusion

We propose a polynomial-time scheduling algorithm which considers imprecise-
ness in the system specification, constraint and attempts to create a schedule
which minimizes both latency and register usages. The elgorithm can be inte-
grated into an iterative design process to find acceptable solutions. Our algorithm
considers.imprecise functional unit characteristic and system _.BESSn:n..Sg
the timing characteristic is imprecise, life time of a node in the schedule is impre-
cise. We investigate the imprecise life time of a node in the schedule and Pnn;.am
the register usage. The algorithm can be integrated into a design mwio:w.ﬂon
which explores an acceptable solution trading off latency cycles with register
saving. The experiments show that the better and same quality schedule cen be
achieved using fiwer number of gistars compared to the traditional scheduling

ki

‘l\‘

270 C. Chantrapornchai, W. Surskumpolthorn, and E. Sha
. ¥

References

i . Efficient scheduling for impre.
. Ch rnchai, E. H. Shs, and X. 5. Hu . for i
; mﬁonmﬂbjgmdi on fuzzy theory. In Proc. Midwest Symposium on Circuils and
terns, pages 272-275, 1998. .
2 Mﬁnvru.ﬂuvoanvt. E. H-M. Sha, and X. S. Hu. Efficient module selections for
. ?..a.:ﬁ highly acceptable designs based on inclusion scheduling. J. of System Ar.
itect 11(4):1047-1071, 2000. . .
3 %u %uﬂ“ﬂﬂ%ﬂwnr&_ E. H-M. Sha, and Xiaobo 5. Hu. Efficient acceptable a&.ﬁ:
. on_.ﬁ,.o_.un..ou based on module utility selection. IEEE Trons. on Computer Aided
Design of Integrated Cércuils and Systems, 19:19-29, Jan. nooo..]

4. C.Chantrapomchai and 5. Toogsima. Rescurca eatimation algotithm under :..nva
e waing imclusion scheduling. [nil J. on Foundation of Comiputer Seiencr,
Special ssue in Scheduling, 12(5):581-598, 2001. N i Wl
5. A.Dani, V. Ramanan, and R. Govindarajan. Register-sensitive 3?«.&3 pipelining.
. Hn Tdo.ﬂ.mgu. of the Merged 12th International Parallel Processing and Sth ?..

ternational Symposium on Porallel and Distributed Systemns, pages 194-198, April
1998. .
i 3 J.B . Datapath synthesis
_ M. K. Dhodhi, F. H. Hielscher, R. H. Storer, and thrmn. :
° ”muﬁm problem-space genetic algorithm. [EEE Transactions on Computer-Aided
Design of integrated circuits and systemns, 14(8):934-944, August u.omm.
7. A. Eichenberger and E. 5. Davidson. Register allocation for predicated code. In
Proceeding of MICRO, 1995. o
8. F.Chen, 3. wH\,.ou@mwn? and E. H. Sha. Loop mnrsn__cmh.ﬁ slgorithm mu... m.nPEm snd
. BaBoJ., operation minimization with register constraint. In Proc. S5iP'98, 1998,
9. K. Gupta. [ntroduction to furzy arithmetics. Van Nostrand, mem..]
5” u._ Lea, A. Tiso, and J. Yen. A fuzzy rule-based approach to real-time scheduling.
Proc. Intl Conf. FUZZ-94, volume 2, 1934,) .
11 ﬂ wo..”? M. Hori, and T. Sogou. Schedule optimization using fuzzy inference. In
FUZZ-95, pages 1171-1176, 1995. . o .
12 Mwﬂ: Zadeh. The concept of a linguistic variable and its application to spproximats
reasoning, Part 1. Infermation Science, 8:199-249, 1975.

Hardware Mediators: A Portability Artifact
for Component-Based Systems

Fauze Valério Polpeta' and Antdalo Augusto Fréhlich®

Federsl University of Santa Catarina, PO Box 476
88049-900, Florisndpolis - SC, Brazil
{fanze,guto}@lisba.nfac.br,
http://wuv.lisha.ofsc.br

Abatract. In this article we elaborate on portability ln companent-
based opersting systems, focusing in the hardware medistor construct
proposed by Frohlich n the Application-Oriented System Design method.
Diffarently from hardware abstraction layers and virtual machines, hard-
ware mediators have the ability to establish an interface contract between

the hardware and the operating system components and yet Incur in very
little overhead.

The use of hardware mediators in the EP0OS system corroborates the
portability claims associated to the techniques explained in this article,
for it enabled EPOS to be easily ported across very distinct architectures,

such as the B8 and the IA-32, without any modification in its software
components.

1 Introduction

Portability has always been a matter for operating system developers, because
thé very own nature of an operating system has to do with abstracting hardware
components in a way that is suitable for application programmers to develop
“architecture-independent software”. It is expected that an application devel-
oped on'top of a chosen operating system will run unmodified in all architectures
Euwoﬂﬁ.g. that operating system, Therefore, operating systems constitute one
of tha maln pillars of applicative software portability.
* ‘Traditional approaches to make the operating system itself portable are
mainly concentrated in two flanks: Virtual Machines (VM) and Hardware Ab-
stroction Layers (HAL). While considering the virtual machine approach to op-
erating eystem portability, one cannot forget that the virtual machine itself is
pazt of the operating system—sccording to Habermann, the operating syatam
&xtends from the hardware to the application [10). The virtual machine would
ﬂﬁm.ommmﬁ.nns the architecture-dependent portion of the operating system, while
graating’ bortability for the components above. The main deficiencies of this ap-
. m_m_-...rn overhend of uﬁw_._ﬁ_u.mi VM operations into native code. Sevural
Ly A Lo .ii. & f b L . %
T &-ﬁ i & an L A .%Uﬁ!gi

FOPRLY P

ic.
Lecture 2.2.3 in Computar wn.a.__.n.m _

ey

The LNCS series reports state’of-the-arf recults in computer science
tescarch, developmene, and eduéatiq;

ian, af a Kigh level and in both printed i
‘08 tight cooperation with the R&D community,
societies, LNCS has g uals; s well s:with prestigious organizations and . .

 STOWN intp the most comprehensive computer science
research forum availablar-ic ¢ 4 -3¢ 513 R ¥

- N}
[Y] >
H

a s © .- . & o g i R BT, o
._..Wn scope of LNCS, inc} iding jts subiseries LNALdnd LNBL, spansthe * .- -
w c_o...nm._mm of computer science and information technology including
interdisciplinary topics in'g Variety of application fields. The typeof *. °
material published traditionallyincludes -5 1; @ .. B 0ot
- proceedings (publishe ..._..w.m_.:...m..monn-. Emmvnn:‘mn 8=mn._,n=nmv,. :
- Post-proceedings (consisting of thoroughly révised fina! full pay
= research monagraphs (i .¢v......

A e

More recently, several color-cover sy

beyond a collection of papers, vario

sublines include

= tutorials (textbook-like
advanced courses)

blines have been added featuring,
us added-value components; thesc

manographs or callections of lectures given at

- state-of-th~-

rtsurveys (oftering comiplete and medjated coveruge
of & topic)

- hot topics {introducing emergent lopics to the broader community)
In parallel to the printed hook, each new volume is published
electronically in LNCS Qnline,

Detailed information on LNCS can be found
r%&\g.uﬂl:mna:.:.nn.naﬂ

Proposals for publication shaukl be <em 1o
LNCS Editorial, Tiergartenstr, 17, 69121 Heideltherg, Germrany
E-mail: Ines@springer.de

ISSN 0302-9743

) springeronline.com

PY

v00Z NYISY
u1 sasuea

dwo)

- 3IUINS JAN

ASIAN
2004

LNCS 3321

E I T U Y

Michael J. Maher (Ed.) . .

Computer Science -
ASIAN 2004

Higher-Level Decision Making

9th Asian Compuning Science Conference .
Dedicated to Jean-Louis Lassez on the Occasion of His 5th Cycle Birthda
Chiang Mai, Thailand, December 2004, Proceedings

.
.
.
.
..
-
..
.
.
.
L]
L]
L]
.
.
L]
.
]
-
2
-
.
[]
.
.
1]

VIil Organization

Refcrees

David Austin
Steven Bird
Colin Boyd
Gerd Brewia
Christophe Cerisara
Lai-Wan Chan
Jeff Choi

Chubb
Leopid Churilov
I ne Cohen
Véronique Corter
Christophe Doche
Alan Dorin
Spencer Fung
Claude Godart
Michael Goldwasser
Guide Governatori
Philippe de Groate
James Harland
L.CK. Hui
Ryutare Ichise
Yan Jin
Norman Foo
Waleed Kadous

7

Yoshitaka Kameya
Yukiyoshi Kameyama
Vellaisamy Kunalmani
Shonali Krishnaswam
Frangois Lamarche
Phu Le

Dong Hoon Lee
Ho-Fung Leung
Guoliang Lj

Lin Lj

Jimmy Liu

Jim Lipton

Eric Martin

Ludovic Mé

Bernd Meyer
Thomas Meyer

Dale Miller

George Mohay

Yi Mu

Lee Naish

Amedeo Napoli
Nicolas Navet

Barry O'Sullivan
Maurice Pagnueco

P

Kuldip Paliwal
Shawn Parr
Silvio Ranise
Jochen Renz
Seiichiro Sakurai
Abdul Sattar
Jun Shen

John Shepherd
Arcot Sowmya
Peter Stuckey
Changai Sun
Willy Susilo
Antony Tang
Peter Tischer
Takehire Tokuda
Mark Wallace
Kin-Hong Wong
Mariko Yasugi
Aldhire Yamamoto
Haruo Yokota
Jane You
Janson Zhang

Table of Contents

Keynote Papers

Counting by Coin Tossings
Philippe Flajoleto i e
On the Role Definitions in and Beyond Cryptography
Phillip Rogaway ...t vvire et iiiiiiieririiaat st eeennneinns

Meme Media for the Knowledge Federation Over the Web and Pervasive

Computing Environments
Yuzruru Tanake, Jun Fufima, Makoto Ohigashi.....................

Contributed Papers
Probabilistic Space Partitioning in Constraint Logic Programming
Nicos Angelopoulos o i i i i

Chi-Square Matrix: An Approach for Building-Block Identification
Chatchawit Aporntewan, Prabhas Chongstitwatans

Design Exploration Framework Under Impreciseness Based on

Register-Constrained Inclusion Scheduling
Chantana Chantrapornchai, Wanlop Surakumpoithorn, Edwin Sha. ..

Hiord: A Type-Free Higher-Order Logic Programming Language with
Predicate Abstraction

Daniel Cabeza, Manuel Hermenegildo, James Lipten

Assessment Aggregation in the Evidential Reasoning Approach to
MADM Under Uncertainty: Orthogonal Versus Weighted Surn

Van-Nam Huynh, Yoshiteru Nokemori, Tu-Baoc Ho.................

Learnability of Simply-Moded Logic Programs from Entailment

MRK. Krishna Rao ... coooiu it it

A Temporalised Belief Logic for Specifying the Dynamics of Trust for
Multi-agent Systems

Chuchang Liu, Maris A. Ozols, Mehmet Orgun

78

e PRI

Design Exploration Framework Under Imprecisenesg
Based on Register-Constrained Inclusion Scheduling

Chantana Chantrapornchail:*, Wanlop Surakumpolthorn?, and Edwin Sha®*+

! Faculty of Science, Silpakorn University, Nakorn Pathom, Thailand
2 m“nc_d of Engineering, King Mongkut’s Institute of Technology, Ladkrabang, Thailand
\ Department of Computer Science, University of Texas, Richardson, Texas, USA

Abstract. In this paper, we propose a design exploration framework which con-
sider impreciseness in dexign specification. In high-level synthesis, imprecise in-
formation is often encountered. Two kinds of impreciseness are considered here:
irprecisc characteristics of functional units and imprecise design constraints, The
proposed design explontion framework is based on efficient scheduling algo-
rithm which considers impreci . Register-Constrained Inclusion Schedul.
ing. We demonstrate the effectiveness of our frumework by exploring a design
sotution for & well-known benchmark, Vbitera filter. The selected solution meets
the acceptability criteria while minimizing the total number of registers.

-mhﬂi.olu.. Imprecise Design Exploration, Scheduling/Allocation, Multiple de-
sign auributes, Imprecise information, Register constraint, Inclusion Scheduling.

1 Introduction

In architectural level synthesis, imprecise information is almost unavoidable. For in-
sunce, an implementation of a particular component in a design may not be known
due 0 several reasons. There may be various choices of modules implementing the
functions or the component may have not been completely designed down 1o *he ge-
ometry level. Even if it has been designed, variation in fabrication process will likely
induce varying area and time measurements. Another kind of impreciseness or vague-
ness arises from the way a design is considered to be acceptable at architecture level,
If a design with latency of 50 cycles is acceptable, what about a design with 51 cycles
versus a design with 75 cycles? This even becomes imprecise especially when there are
multiple conflicting design criteria. For example, is it worth to expand a latenicy by two
cycles while saving one register and what about expanding 10 more cycles ? Effective
treatment of such impreciseness in high level synthesis can undoubtedly play a key role
in finding optimal design solutions.

H_.. this paper, we propose a design exploration framework which considers impre-
cise information underlying in system specification and requirements. Particuiarly, we

" Thiz work was supported in pan oy the TRF under grant number MRG46801135, Thailand.

** This work was supported in part by T1 University Program, NSF EIA 0103709, Texas ARP-
009741-0028-2001 anc. NSF CCR-0309461, USA.

M1, Maher (Ed): ASIAN 2004, LNCS 3321, pp. 78-92, 2004,
© Spriager- Vertag Bertin Heidelbery 2004

[U U

Design Explonation Framework Under Impreciseness 19

arc interested in the latency and register constraints, However, the approach can be ex-
teaded 1o handle other multiple design criteria. The system characteristics are modeled
tased on the fuzzy set theory. Register count is considered as another dimension of
jmprecise system requirement. The work in [2, 6] is used as a scheduling core in the
iterative design refinement process. The imprecise schedule which minimizes the reg-
ister usage is generated. If the schedule meets acceptability criteria, the design solution
is selected. Otherwise, the resources are adjusted an the process is repeated. Our input
system is modeled using a data flow graph with imprecise timing parameters, Such sys-
tems can be found in many digital signa) processing applications, e.g., communication
switches and real-time multimedia rendering systems. Imprecise specification on both
system parameters and constraints can have a significant impact on component resource
allocation and scheduling for designing these systems. Therefore, it is important to de-
velop synthesis and optimizstion techniques which incorporate such impreciseness.
Most traditional synthesis tools ignore these vagueness or impreciseness in the spec-
ification. In particular, they assume the worst case (or sometimes typical case) execution
time of a functional unit. The constraints are usually sssumed to be a fixed precise value

. although in reality some flexibility can be allowed in the constraint due to the individual

interpretation of an “acceptable” design. Such assumptions can be misleading, and may
result in a longer design process and/or overly expensive design solutions. By properly
considering the impreciseness up front in the design process, a good initial design so-
lution can be achieved with provable degree of acceptance. Such a design solution can
be used effectively in the iterative process of design refinement, and thus, the number
of redesign cycles can be reduced.

Random variables with probability distributions may be used to model such uncer-
tainty. Nevertheless, collecting the probability data is sometimes difficult and time con-
suming. Furthermore, some imprecise information may not be correctly captured by the
probabilistic mode!, For example, certain inconspicuousness in the design goal/constraint
specification, such as the willingness of the user to accept certain designs or the con-
fidence of the engineer towards certain designs, cannot be described by probabilistic
distribution. ’

Many rescarchers have applied the fuzzy logic approach to various kinds of schedul-
ing problem. In compiler optimization, fuzzy set theory has been used to represent un-
predictable real-time events and imprecise knowledge about variables [16]. Lee et.al.
applied the fuzzy inference technique to find a feasible real-time schedule where each
task satisfies its deadline under resource constraints {20]. In production management
area, fuzzy rules were applied to job shop and shop floor scheduling [24, 28], Kaviani
and Vranesic used fuzzy rules to determine the appropriate number of processors for
a given sct of tasks and deadlines for real-time systems [19]. Soma et.al. considered
the schedule optimization based on fuzzy inference engine [27). These approaches,
however, do not take into account the fact that an execution delay of each job can be
imprecise and/or multiple attributes of 'a schedule,

Many research results are available for design space exploration [1,8, 13,23]. All
of these works differ in the techniques used to generate a design solution as well as the
solution justification. These works, however, do not consider the impreciseness in the
system atributes such as Jatency constraints and the execution time of a functional unit.

80 C. Chantrapomchai, W. Surakumpolthom, and E. Sha

Recently, Karkowski and Ouenjintroduced & model to handle the imprecise propagation
delay of events [17, 18). In their approach, the fuzzy sct theory was employed 1o modej

imprecise computation time. Their approach applies possibilistic programming based.

on the integer linear programming (ILP) formulation to simultaneously schedule apg
select a functiona! unit allocation under fuzzy area and time constraints. Nevertheless,
the complexity of solving the ILP problem with fuzzy constraints and coefficients can be
wvery high. Purtharmore, they do not consider multiple degrees in acceptability of design
solutions. Several papers were published on the resource estimation (9, 25, 26). Thess
. however, neither consider multiple design attributes nor impreciseness in

tem charactenistics.
Many research works related (o register allocation exists in high-level synthesis and
piler optimization area for VLIW architecture. For example, Chen et. al. proposed

a loop scheduling for timing and memary operation optimization under register con-

straint [14]. The technique is based on multi-dimensional retiming. Eichenberger ct. a],
presented an approach for register allocation for VLIW and superscaler code via stage
scheduling [11, 12). Dani ct. al. also presented a heuristic which uses stage scheduling
to minimize register requirement. They also target at instruction level scheduling [10].
Zalamea et al. presented hardware and software approach to minimize the register’s
usage targeting VLIW architecture [21,22,30]. On the software side, they proposed an
extended version of modulo scheduling which considers register constraint, and register
spilling. However, these work focus on loop scheduling and do not consider handling
the imprecise system characteristics or specification.

In {2], the inclusion scheduling which takes the imprecise system characteristic was
proposed. The algorithm was expanded and used in design exploration under imprecise
system requircment as well as the estimation of resource bounds [4, 5, 7). However, it
does not take register criteria in creating a schedule.

In this paper, we particularly consider both imprecise latency and register con-
straints. We develop a design exploration framework under imprecise specification and
coastraints. The framework is iterative and based on the developed scheduling core,
RCIS, Register-Constrained Inclution Scheduling that takes imprecise information into
account. Experimenta. re.ults show thal we can achicve an accpetable design solution
with minmized number of registers.

This paper is organized as follows: Section 2 describes our models, It also presents
some backgrounds 10 fuzzy set. Section 3 presents the iterative design framework. Sec-
tion 4 presents the scheduling core (RCIS) used in the design exploration framework.
It also addresses some issues when the register count is calculated during scheduling.
Section 5 disp.ays sone experimental results. Finally, Section 6 draws a conclusion
from our work.

2 Overview and Models

Operations and their dependencies in an application are modeled by a venex-weighted
direcied acyclic graph, called a Data Flow Graph, 3 = (V, £, B), where each vertex in
the: veriex set V corresponds to an operation and £ is the set of edges representing data
flow between two vertices. Function § defines the tvpe of operation for node v € V.

Design Exploration Famework Under Impreciseness 81

Operations in a data flow graph can be mapped to different ?nn.zo:w_ c_:.ﬁ EEn_._
in turn can have varying characteristics. Such a system must also w-.m&.w certain design
constraints, for instance, power and cost limitations, These mvonmmn»:o.nu are n_sqwn.n_,.
i20d by atuple § = (F, A, M, Q), where ¥ is the et of funciional unit types available
in the system, e.g., {add, mut}. Ais (Af : ¥f € H.w Each A; is a set of tuples
{81,-+ ,ax). where a) to ax represent attributes of vnEnc_n._. IR Ha. this paper, we use
only latency as an example attribute. (Note that our approach is readily applicable to in-
clude other constraints such as power and area). Hence, Ay = {z: V Hv where refers
to the latency attribfite of f. M is {us : Vf € F} wherc uy is a mapping from Ay to a
set of real number in [0,1], representing a possible degree of using the <-,_=o. Finally, @
is a function that defines the degree of a system being acceptable for different system
anributes. If @(ay, . .. ,ax) = 0 the corresponding design is totally unacceptable while
@(ey,. .- ax) = 1, the corresponding design is definitely acceptable.

Using & function Q to define the acceptability of a system is & very powerful model.
Tt can not only define certain constraints but also express certain design goals. For ex-
ample, one is interested in designing a system with latency under 500 and register count
being less than 6 respectively. Also, the smaller latency and register count, 5.« better
a system is. The best sysiem would have both latency and register count being less
than or equal to 100 and 1 respectively. An accepuability function, @(ay, a7) for such a
specification is formally defined as:

0 ifa, » 500 0orag > 6
Qay,a;3) = 1 ifay €100 andaa < 1 m
F{ay,aq) otherwise,

where F is assumed to be lincar functions, e.g., F{a),a3} = 1.249689(a; + 202) —
0.001242 which returns the acceptability between (0,1). Figures 1{a) and 1(b) illus-
trates Equation (1) graphically.

Based on the above model, the design solution we would like to find is formulated
as following.

Given a specification comaining S = (F, A, M, Q), G = (V, £,), and accept-
abiliry level o, find a design solution whose the acceprability degree is greater than or
equal to & subject Q.

Fuzzy sets, proposed by Zadeh, represent a set with imprecise boundary {29]. A
fuzzy set z is defined by assigning cach element in a universe of discourse its member-

LATLMLY

== ™ LT ——
-

(a) (b)

Fig 1. (a) Imprecise constraint Latency : Register = | : 2 (b) Its projection

n C. Chantrapornchai, W. Surakumpolthorn, and E. Sha

ship degree u(z) in the unit integval [0, 1}, conveying to what degree is a member iy,
the set. Let A and B be fuzzy numbers with membership functions i 4(z} and 1Y)

respectively. Let » be a se1 of binary operations {+, -, x, +, min, max}. The EES&o.
operations between two fuzzy numbers, defined on A + B with membership function
sa.8(z). can use the extension principle, by [15): pa.p(z) = Vimzeyp{tia(z) Augly)
where V A denote max and min operations respectively.

Based pn the basic fuzzy set concept, we model the relationship between functiona)
vaits and ible characteristics such that each functional unit is associated with a
furzy set lof characteristics. Given & functional unit £ and its possible characteristic
set Ay let py(a) € [0,1],Va € Ay, describe a possibility of having attribute a for 3
functional unit .

3 Iterative Design Framework

Figure 2 presents an overvic ¥ of our iterative design process for finding a satisfactory
solution. One may estimate the initial design configuration with any heuristic for ex-
ample using ALAP, anu/or # SAP scheduling {7]. The RCIS scheduling and allocation
Pprocess produces the imprecise schedule artributes which are used 1o determine whether
or not the design configuration is acceptable.

RCIS is a scheduling and allocation process which incorporates varying information
of each operation. It takes an application modeled by a directed acyclic graph as well
as the number of functional units that can be used to compute this application. Then,
the schedule of the apg lication is derived. This schedule shows an execution order of
operations in the application based on the available functional units. The total attributes
of the application can be derived after the schedule is computed. The given acceptabitity
function is then checked with the derived attributes of the schedule.

In order to determine whether or not the resource configuration is satisfied the ob-
Jective function, we usc the acceprability threshold, If the schedule attributes lead tothe
acceptability level being greater than the threshold, the process stops. Otherwise, the
resource configuration is adjusted using a heuristic and this process is repeated uniil the
design solution cannot be improved or the design solution is found.

Fig. 2. Design solution finding process using RCIS

Design Esplonation Femework Under [mpreciseness 83

4 Register-Constraint Inclusion Scheduling

In this sestion, we present the register-constraint inclusion uo__onc_mnm AQO.v algo-
rthm. The algorithm is based on the inclusion scheduling core presented in >mmo2__m: 1.
The algorithm evaluates the quality of the schedule by considering imprecise register
criteria which will be discussed later subsections

Specifically, inclusion scheduling is a scheduling method which takes into consid-
cration of fuzzy characteristics which in this case &5 fuzzy set of varying latency val-
ues associated with cach functional unit. The output schedule, in turm, also consists
of fuzzy attributes. In a nutshell, inclusion scheduling simply replaces the computa-
tion of accumulated execution times in a traditional scheduling algorithm by the fuzzy
arithmetic-based computation. Hence, fuzzy arithmetics is used to compute possible la-
tency from the given functional specification. Then, using a fuzzy scheme, latency of
different schedules are compared to select a functional unit for scheduling an operation.
Though the concept is simple, the results are very informative. They can be used in
many ways such as module selection [3], Algorithm 1 presents a list-based inclusion
scheduling framework,

Algorithm 1 (Register-Constralned Inclusion scheduling)
Input: G = (V,£,8), Spec = {F, A, M, Q), and N =FFUs
Output: A schedule S, with imprecise latency

= vertices in & with no incoming edges # finding root nodes

hile Q@ # empty do
Q = prionitized (Q}
u = dequeue(Q); mark u scheduled
good S = NULL;
foreach f € {f; : where f; is able to perform f(u),1 € § € N} de
temp.S = assign_heuristic(S, u, f) - Hassignu atFU [
¥f Eval_Schedule_with Reg(good S, temp.§, G, Spec)
then good S = temp S fi od
§ =good S / keep good schedule
foreach v : {u,v) € Edo
n indegree(v) = indegree{v) — 1
1 I indegree(v) = U then enqueve(Q, v} fi od
14 od

13 return(S)

4

LI T

- e
-

After node u is assigned to f, the imprecise attributes of the intermediate schedule,
is computed. Eval Schedule_with_Reg compares the current schedule with the “best”
one found in previous iterations. The better one of the two is then chosen and the process
is repeated for all nodes in the graph.

In Algorithmn 1, fuzzy erithmetic simply takes place in routine
Eval_Schedule_with_Reg (Line 8). In this routine, we also considet the register
count used in the schedule. Since an execution time of a node is imprecise, the life time
of a node is imprecise. Traditionally, a life time of a node depends on the location of
the node's successors in the schedule. That is the value produced by the node must be

B84 C. Chantraporchai, W. Surakumpolthomn, and E. Sha

held until its successors have cgnsumed it. For simplicity, let the successors CONSyme
the value right after they start.

Recall that & node's execution time is a fuzzy set, where the membership functigy
is defined by u(2) = y. It .mplies that the node will take z time units with Possibility
y. Contequently, a st 11 t'ne and finished time of a node are fuzzy numbers, T, be
ablé 1o calculate fuzzy stat tine and finished time, we must assume that all nogey
have been|assigned 10 functional units already. We assume that resource binding ang
order of exect ting in these resources are given based on the modified DFG (j 2
sckeduled DFG). The modified DFEG is just the oniginal DFG where extra edges due 1

i t nodes executing in the same functional units ars inserted (as constructaq
in Algorithm 3)

41 Imprecse Timing Attributes
In the following, we present basic terminologies used in the algorithm which calculatey
register usage under impreciseness,

Definitlon 1. For G = (V, £, B), and a given schedule, a fuzzy start time of node
% € V, FST(u)} is a fuzzy set whose members ip degree is defined by ppspiyy(z) =y,
Le. node w may start at time step x with possibility y.

For nodes that are executed at time step 0 in cach functional unit, F§T(u) = 0,
which is a crisp value.

Definition 2. For & = (V.£,B). and a given schedule, a Juzzy finished time of node
uw €V, FFT(u) is a fuzzy set whose membership degree is defined by BrrT(z) =
¥, Le, node u may finish at time step T with possibilisy y.

Hence, FFT(v) = FST(v) + EXEC(v), where EX EC(v) is the fuzzy latency
of v. When considering earliest start time of a node, F5T(v) = max,(FFT(u,)) + 1,
(ﬂa. —u, -

i

§

SVYwDNawna L.y,
-

(2 (b)
Fig. 3. A view of furzy start time and finished time

The general idea of using fuzzy numbers is depicted in Figure 3 for both start time
and finished time. Circles denote the fuzzy boundary which means that the start time

Design Exploration Framework Under Impreciseness 85

i e is unclear. Indeed, they may also be overlapped
and E.Ei ﬂﬂonqﬂo wmy&m&iﬁw” ”onoan occupies a resource at a certain time step, 2
= :.._m_:w is associated with the assignment. . .
No..;:«. when the timing attribute is a crisp J_.._n. Ea start time z and mauwﬂa
. of & node form an integer interval [z...%]. g&_o—_ ..S: be used to noBmEn e
time ¥ ¢ in the schedule. In our case, a fuzzy life time for 530.: conlains two
_.nmaa“.n“m.um.%ﬂ?u and M FFT(u), the maximum of start time of all its successors.
fuzry s€15.

. For G = (V,E,8). and a given schedule, furzy life time of node

”ow,u.m_m_wﬁﬂw is a pair of [FST{u), M FFT(u)). where pyrrria) = FFT{u) +

max(F sT{w:)), whereu — v; € £ and +, max are fuzry addition and fuzzy max-

thili
P fradi

imum respectively.

i u), let min_st be the minimum time step from F.ST{u) whose BFST(u)
s :mhﬁﬂ.owwaﬂﬁkﬁhﬁ be the maximum time step from FST(u) whose prer(y) is
ponzero. Similarly, let min_fin be the minimum time step from M FFT(u} whose
} is nonzero, and let maz. fin be the maximum tme step from MFFT(u)
ﬂﬂoﬂodﬂwq?u is nonzero. Without loss of mnan.n.:? assume that FST(u) and
MFFT(u) are sorted in the increasing oaﬂ,o-. the time step. We create a ?<”_~< set
JFST(u), mapping for a discrete time domain _35..-?:3@“-&_ to a real \ :nq:.
[0..1), showing the possibility that at time step z, node u will occupy 2 register for
FST(u) and likewise for IM FFT{u) for M FFT{u) as in Definitions 4-5.

Definition 4. G = (V, £, 8}, a given schedule, [min_st...maz st} and FLT(u)

0 ifc < min_st or ¢ > mazx_st

t:.uux?unnv = Emk(u_imahnm.uAtﬂtm..wﬂ?u (=)} otherwise
y=mar{FST(u)) end y<c

Definition 5. G = {V, £, B), a given schedule, [min_fin...maz_fin] and FLT{u)
0 ife < min_finor
¢ > mazr_fin

awun(n.ﬁAumsaanaAtxm.q?u nhﬂ: otherwise
ymmar(MFFT(u)) and y<e

BIMFFT(w(C) =

From the above calculation, we assume that for any two starting time <w._=n a,b e
FST{u) where a < b, if node u staris at time g, it will be already mzﬁ.& at ime b, For
MFFT(u), whena < b, a,b € MFFT(u), if the value for node u .f...: not be q._o&on_
at time g, jt will not be needed at time b and vice versa. Thus, Definitions 4-5 give the

following properties.

Properry 1. The possibility of F.ST'(u) is in nondecreasing order.

Property 2. The possibility of /M F FT(u) is in non-increasing order.

84 C. Chantrapornchai. W. Surakumpolthom, and E. Sha

From { FST(u) and I M FFT(u), we merge the two sets to create a fuzzy interva]
for a node by defining Definitipn 6.

Definition 6. & = (V. £, B), a given schedule, IFST{u) and IM FEFT(v).

4] if c < min(min_st, min_fin) or
. e Bﬁ?«nu.&.:ﬁu.ﬁav
prrife) = § mex{u;rsrin(ch Brurrrivie)) minst € ¢ < maz.st
ormin_fin € ¢ £ maz_fin
1 otherwite

After we compute the fuzzy life time interval for each node, we can start compute
register usage for each time step.

42 Register Usage Calculation

Once a scheduled DRG is created, FST(u) and FFT{t) must be calculated for all
u € V. Figure 4 displays the meaning of fuzzy life time implied by Definitions 4-5, 54
and F' A denote the fuzzy start time and the fuzzy finished time of node A respectively.
Similarly, 58 snd F B denote the start time and the fuzzy finished time of node B The
furzy life times of A and B are shown in the filled boxes on the right side.

=,_._..n>
[k

-
=

A=

rtwieBad-40- RES R LI W

Flg. 4. Relationship between scheduled nodes and life time

In the figure, the life time of A and the life time of B may overlap. Traditionally,
when the timing attribute is precise, the overlapped interval implies that two registers
A needed during these time steps. In panticular, during time steps 7 and 8, two registers
Are needed.,

‘Whea an execution time becomes a fuzzy number, each box still implies that one
fegister is needed. However, the derived possibility associated with a time step indicates
that that node may not actually exist during the time step. For example, node may
stant later or finished earlier. In other words, there is a possibility that a node may not
use such a register. With this knowledge, the register may be shared with others with

Design Exploration Framework Under Impreciseness 87

igh possibility. Consider the overlap interval in Figure 4 at time step 7. One or two
hig ters may be used with some possibility. This depends on whether the dependency
.nm“”ona A — B exists. If edge A — B exists in the original data low graph, the total
.cuo ster count would be one. Notice that in this case, the intersection of f m.bﬁé.u:n
i Wha.ﬂmv is not empty. On the contrary, if A and B are independent, the ..omﬁ register
count would be two although the intersection may not be empty as well. This issue must
be considered in calculating register usages.

43 Algorithms

Algorithm 2 presents a framework in evaluating fuzzy latency and register counts .om a
schedule, This algorithm is called after Line 7 in Algorithm | which already assigns
the start time for each node.

In Algorithm 2, Line 6 invokes Algorithm 3 to calculate the life time of all nodes
in schedule and find the maximum register usage. The register usage is then kept in
ReglSi] for a schedule 5. Next, the latency of the whole schedule is then calculated.
Note that after invoking Algorithm 3, necessary timing attributes for all nodes in Go
can be obtained. The latency of the schedule is obtained by just fuzzy maximizing the
finished time of all leaves in Gg. Line 9 merges latency and register usage attributes
of the schedule using some heuristic function. The combined attribute is denoted as a
gualify of the schedule. This quality is then compared in Line 13 to select the best one.

Algorithm 2 (Eval_Schedule.with_Reg)
Input: schedules 51, 82, G = (V, €, 8), and Spee = (F, A, M, Q)
Output: ! if Sy is better than 8,, (otherwise.

1 Go = (Vo,&, B) where Vo = V—{unscheduled nodes }, £ = @
2 foreach schedule S; = S to S2 do

3 Eo={{u,v):u,v €V, ifu,vinsamefu. in 5
4 and v is immediately after u})

5 Calculate register usage for Go using Algorithm 3
7 Let Wis a set of leaves in G

3 latency[S8i] = fuzzymax time(W)

¢ quality[Si) = Combine{latency[S;], Reg[5:])

w0 od

i2 / comparing the overall atiributes of both schedules
13 returr.(compare(quality|$1], quatity[Sa]))

Algorithm 3 (Calculate_Reglster_Count)
Input: Scheduled Graph Gy forschedule S and, original DFG G = (V, £, 8) Spec =(F, A, M, Q)
Output: Reg|S] contains register counts needed and its possibility

1 Calculme FLT{u) Yu € Go by Definition 3

2 Caleulate] FLT(u) Yu € Gp by Definitions 4-5

3 Let max_cs be max. finished ime ,Vu € Go

4 for cs = 1 to max.cs do

H (RegAtes).reg, RegAiles|.poss) = Count_Node{I FLT, ¢s,Go} od

.+ C. Chantrapornchai, W. Surakumpolthom, aud E. Sha

¢ ¥n, FReg[nj = 0 v

7 forcs = 1 ta maz_cs do

&t FReg[RegAt(cs).reg).reg = RegAtfes.reg

? FReg[RegAtles.reg).poss =

10 max(FReg|RegAt|cs].reg). poss, RegAt[es].poss) od
72 Reg|S) = FReg

In-Algorithm 3, RegAt stores maximum number of registers needed at each cs and
ils associated possibility. The values are oblained by Algorithm Count_Node. Lines 7.
10 summarize the overall number of registers needed and its possibility. Algorithy
Count_Node is described in Algorithm 4.

Algorithm 4 (Count_Node)} -
Input: IFLT, Co. cs
Outpat: & registers needed and jts possibility at es

node_set = {nodes occupy reg at cs}
set Go in lopological order
Let sorted node be node_set sorted in by sorted o
poss =0,reg =0
Vi € sorted_node,i.ok = FALSE, icount = FALSE
for every i € sorted_node do
fori=i+llo last node in sorted_node do
ifiok = TRUE and i.count = FALSE
then
reg + +. poss = max(poss, 4y p i) {es)
i.count = TRUER
If FindPath(i, 5}
14 theo j.ok = FALSE /f don't count descendant fj
15 od
i Let § be the last node in sorted_node
” ifjok =TRUE
s then
1 reg + +; poss = max(poss, uy pir((es)
0 od j.count = TRUE §
H

2 rewr {rcg, poss)

VO N R W A e R s

[
[

~ In Algorithm 4, our heuristic only attempts to constder the ancestor al the current
lime step. {1 viher words, we assume that the ancestor finishes first and then its descen-
dants can start. F.ag ok uses to indicate that the associated node should be counted 2t
5.« current step or not. If it is a descendant of any of nodes in the current step, the flag
will be disable. Since the schedule containg every node, the descendant will be started
n.<n.=.=.n=u_. reg and poss store the current number of counted nodes and maximum pos-
_u_g_? At Line 3, the nodes currently in this time step indicated by [FLT are sorted
inthe Jovo_ommnw_ order according 1o Go. Then we extract each node in the sorted list to
check if any pair are dependent by using FindPath in Line 13, In the loop, it selectively
marks descendant nodes in the current step.

. o

Design Exploration mﬂwanio.an Under Imprecissness -3

Let us consider the complexity of Algorithm 4. The time complexity is dominated by
Lines 6-21, which is O(|VI*(|VI+]E)) - Since for DAG, FindPath takes O(|V{+| E).
In Algorithm 3, the caleulation for F LT (u) depends on FST{u) and MFFT (u).
Let N be the number of discrete points in FS8T(u)and M FFI'(u). Lines 1-2 perfform
he calculation whose upper bound is of O(N, |V||E|). The computation for [LT(u)
is simply a double loop for each node. In overall, Algorithm 3 runs in polynomial time.

5 Experimental Results

We present experimental results on the voltera filter benchmark (7], containing 27
nodes, where 10 nodes require adder units and the rest requires multiplier units. As-
sume that we have two types of functional units: adder and multiplier. whose latencies
are as shown according to Table 1. In the figure, an adder may have different latency
values with the given possibility. Columns *1at” and “pos™ show the latency and its pos-
sibility of having the latency value for each adder and multiplier. Thus, if the nodes are
executed in the functional unit, the node may have variable latency values as well.

Table 1. Adder and multiplier characteristics

FUs {{lat,poss)] (lat poss)|{lst.poss)|(1at,poss)
|at| poss [Iat| poss |lat] poss [iat] poss
adder [5)005]10] 1 [15] 0.9 [23] 0.1
muttiptier[7] 0.5 N2 6.7 1170 1 1291 0.05

Assume the constraint is depicted in Figure 5 where the register axis is (1..7) and
the latency axis is [200..700]. We demonstrate by considering various design config-
uration of varying the number of functional units using RCIS and original inclusion
scheduling as a scheduling core in the design exploration. Due to the characteristics
of the filter, increasing the number of multiplicrs will help reduce the overall latency.
Suppose that we set the acceptability threshold to be 0.8. The results are shown in Ta-
ble 2. In the table, In particular, Columns “RCIS™and “IS" compare the performance
of the schedule by RCIS and the original inclusion scheduling (IS) for each functional
unit configuration. Row “Avg Latency” shows the weighted sum of iatency for each
case, Row “Max Reg” displays the maximum number of registers. Row “Acceptability” -
shows the acceptability value obtained using the “Avg latency” and “Max Reg”. Row
“Max Latency™ presents the maximum latency values for each case. For RCIS, recall
that wy = 1 and wy = 10. That is we consider register criteria ten times as much as the
latency value. RCIS attempts to create a schedule which minimizes the total weighted
sum of w; x 4 wqy where z and y are the weighted latency and weighted register counts
of the resulting schedule. Figure 6 we depict acceptability values for each design con-
figuration based on RCIS. When we increase the number of functional units the latency
decreases while the number of register counts needed increases, However, when the
number of multipliers becomes 4 or more, RCIS can create a schedule which gives the
maximum acceptability values 0.84 (which is greater than the threshold defined at 0.8),

%0 C. Chantrapomchai, W. Surakumpolthom. and E. Sha

By inspecting the resulting schedule, we conclude that 4 multipliers would be suffic;
and adding more multipliers %ill be wasteful. Compared this the schedule woaoqmﬁwg_
IS, we found that since IS does not consider the register criteria, IS attempts to il o
available resources 10 minimize the overall latency values. Thus, the latency of ..,an__
ule generated by 1S keeps decreasing and the number of register counts keep ,an_,nn ed.
This will finally decrease the aceeptability value according the constraint. asing.
From the results, we can see that to achieve the acceptability threshold 0.8, ug;
RCIS will give a better design solution using fewer number of registers Oo:.&mcm_:m
En___ma.m time. For all the cases, the maximum running time is wvnai_.:u.n._m onst et the
10 achieve the results for | adder and 5 multipliers under Pentium 4 2.8GHz, _.Owumnhﬁm

tons_volt_1_10.grw" ——

Fig. 5. Constraint for Voltera filer

Table 2. Exploring vanous number of functional units using RCIS and IS

M add T muls]? add 3 muls[1 add 4 muls]l add 5 muls
RCIST IS CIS] 15 [[RCIS] 1S [RCIS[13
Avg Latency | 308 | 300 [| 267 { 270 [| 260 | 260 |{ 260 | 246
Max Reg 2 2 3 3 4 4 4 3
Acceptability| 0.78 | 0.80 }{ 0.84 | 0.84 || 0.84 | 0.84 {| 0.84 | 0.84

Max Latency| 561 | 561 || 474 | 477 || 445 | 445 || 445 | 416

6 Conclusion

‘w . .

o ¢ propaose a design nxv._oacoz framework considering impreciseness. The framework

u_unnv%&.m on the wn:&::ﬁ core, RCIS which considers impreciseness in the system
1fication,and constraint and atiempts to create a schedule which minimizes both

Design Explosation Framework Under lmprecisencss g1

and register usages. The framework can be used (o generate various design $0-
_»"m:nwcuaﬂ. imprecise sysiem consiraints and characteristics and select an acceplable
Eca_,,o: under latency and register criteria, The experiments demonstrate the usage of
mo__..m__ﬂanioqw on a well-known benchmark, where the selected design solution can be
M.H_an with a given acceptability level.

.

cLo2P2

eeee
THYRE=RERBL

o

Fig. 6. Acceptability values for esch configuration

References

1. 1 Ahmad, M. K. Dhodhi, and C.Y.R. Chen. Integrated scheduling, allocation and module
selection for design-space exploration in high-level synthesis. IEEE Proc.-Comput. Digit.
Tech., 142:65~71, January 1995.

2 C.Chantrapornchai, E. H. Sha, and X. S, Hu. Efficient scheduling for imprecise timing bascd
on fuzzy theory. In Proc. Midwest Symposium on Circuits and Sysiems, pages 272275, 1998.

3. €. Chanapomehai, E. H. Sha, and X. 5. Hu. Efficient algorithms for finding highly accept-
able designs based on module-utility selections. In Proceedings of the Great Lake Symposium
on VLS, pages 128-131, 1999. .

4 C. Chantrapornchai, E. H-M. Sha, and X. S. Hu Efficient module selections for find-
ing highly accepuable designs based on inclusion scheduling. /. of System Architeciure,
11(4):1047-1071, 2000.

§. C.Chantrapornchai, E. H-M. Sha. and Xiaobo S. Hu. Efficient acceptable design exploration
pased on module utility sclection. IEEE Trans. on Computer Aided Design of Integrated
Circuits and Systems, 19:19-29, Jan. 2000,

6. C. Chantrapomnchai, W. Surakumpolthom, and EH. Sha. Efficient scheduling for design
exploration with imprecise latency and register constraints, In Lecture Notes in Computer
Science: 2004 International Conference on Embedded and Ubiguitois Computing, 2004

1. C. Chantrapomchai and §. Tongsima. Resource estimation algorithm under impreciseness
using inclusion scheduling. /nd. . on Foundation of Computer Science. Special Issue in
Scheduling, 12(5):581-598, 2001.

& 5. Chaudhuri, S. A. Bylthe, and R. A Walker. An exact methodology for scheduling in
3D design space. In Proceedings of the 1995 International Sympesium on Sysiem Level
Synthesis, pages 78-83, 1995.

9. 5. Chaudhuri snd R. Walker, Computing tower bounds on functional unius befors scheduling.
In Proceedings of the International Symposium on System Level Synthesis, pages 3641,
1994,

21,

C. Chantrapornchai. W. Surakumpolthom, and E. Sha

A. Dani. ¥V Ramanan, ind R Gavindarajan. Register-sensitive software pipelining, In py,.
ceedings. of the Merged 12th tnrernational Porallel Processing and 9th Intemationa| Sym.
potium on FParallel and Disinfiued Systems. pages 194-198, April 1998.

A. Eichenberger and E. S, Davidson. Register allocation for predicated code. In .aaﬂnnn_,:n
of MICRO, 1995.

. Alcxandre E. Eichenberger and Edward $. Davidson. Stage scheduling: A technique ©

reduce the register reguirements of a medulo schedule, In Proceedings of MICRO-28. pages
138349, 1995,

. H. Esbensen and E. 5. Kuh. Design space cxploralion using the genetic algorithm. In pp,.

ceedings of the 1996 International Symposium on Circudts and Sysiems, pages 500-503,
1996

. F.Chen. 5. Toagsima, and £ H. Sha. Loop scheduling algorithm for timing and memory

opention mimmization with regisier consiraint. In Proc. SiP'98, 1998,

. K. Gupta. [nroduction to furgy arithmetics. Van Nostrand, 1985,
. 0. Hammami. Fuzzy scheduling in compier optimizations. In Proceedings of the ISUMA.

NAFIPS, 1995.

- |. Karkowski. Architectural synthesis with possibilistic programmiag. In H/C$5-28, January
95.

. 1. Karkowski and R. H. J. M. Onien. Retiming synchronous circuitry with imprecisc delays,

In Proceedings of the 32nd Design Automaiion Conference, pages 322-326, San Francisco,
CA, 1995.

. A.S. Kavianiand Z, G, ¥ranesic. On scheduling in multiprocess systems using fuzzy logic,

In Pruceedings of the Imtenartional Symposium on Multiple-valued Logic, pages 141-147,
1994,

. I Lee, A, Tiro, and . Yen. A fuzry rule-based approach to real-lime scheduling. In

Proc. Il Conf. FUZZ-94, volume 2, 1994. .

Joscp Llosa, Eduard Ayguade, Antonio Gonzalez, Mateo Vaicro, and Jason Eckhardt
Lifetime-scnsitive modulo scheduling in a production environment, {EEE Transaciions on
Computers, 50(3}:234-249, 2001.

Joscp Llosa. Mateo Valero, and Eduard Ayguade. Heuristics for register-constrained software
pipelining. ln International Symposium on Microarchiteciure, pages 250-261. 1996.

. €A, Mandal, P. O. Chakrabarti, and 8. Ghose. Design space exploration for data path

synthasis. In Proceedings of the I0th International Conference on VLS! Design, pages 166—
£70. 1996

. K. Mertins et al. Sel-up scheduling by fuzzy logic. In Proceedings of the Internationat

conference on computer integrated manufaciuring and awiomation 1echnology, pages 345

350, 1954,

.], Rahaey and M. Potkonjak. Estimating implementation bounds for real time DSP applica-

ton specific circuits. /EEE Transactions on Compuler-Aided Design of integrated éircuits
ard systems, 13063, June 1994,

A. Sharma and R. Jain. Estimating architectural resources apd performance for high-level
synthesis applications. JEEE Transactions on VLST systems. 1(2):175-190, Junc 1993,

. H. Soma, M. Hori, and T. Sogou. Schedule optimization using fuzzy inference. [n

Proc, FUZZ-95, pages 1 171-1176, 1995

. 1.B. Turksen et al, Fuzzy expent sysiem shell for scheduling. SPIE, pages 308-319, 1993.
. L A. Zadch. The concegx of a linguistic variable and its application to approximale reason-

ing. Part . Information Science, 8:199-249_ 1975,

J. Zalamea, 1. Llosa, E. Ayguade, and M. Valcro. Software and hardware techniques o
optimize regisicr fle utilizalion in vliw architcetures. In Proceedings of the lntemaiional
Workshap on Advanced Compiler Technelogy for High Performance and Embedded Systems
(TWACT)., July 2001.

Hiord: A Type-Free mm.m:m.ﬁroﬂ&mn
Logic Programming Language
with Predicate PUmS.moSmn

Daniel Cabeza', Manuel Hermenegildo'?, and James Lipton's
' Technical University of Madrid, Spain
. {dcabeza, herms, jliptonjefl . upm.es
? University of New Mexico, USA
harmeCunm. edu
3 Wesleyan University, USA
jliptonfvesleyan.edu

Abstract. A new formalism, cailed I._o_..n_. for .aom:mam Sﬁ.m.:.m..m
Zm_._o_..o_.n_mq logic programming languages with U,.Q.._.,nhg abstraction ._u
introduced. A model theory, based on partial R..QU.:&SQ algebras, is
presented, with respect to which the formalisr is mrwanw sound. A pro-
gramming language built on a subset of Hiord, E._a. its _wsv_namu__.w:o.:
are discussed. A new proposal for defining modules in this framework is
considered, along with several examples.

1 Intreduction

This paper presents a new declarative formalism, n.mr:ma Hiord, ?wn logic pro-
gramming with untyped higher-order logic and Em.&.nwﬁm w,om:.w.nn._o:u. This is
followed by & discussion of various practical restrictions of this _om._n to 3&.8 it
amenable to speedy translation to WAM-compilable code and static w:w_wm_m“

A number of proposals have been made’ over ﬁ.ym past two m@n_ﬂ& S:._s-
troduce higher-order features into logic programmung in 2 n_on_.waw:,\m HE.H,_M.:
by extending the underlying logic, among Q._mn.: »?.o_om and Hilog ﬁL_. _.,um
has proven a very useful way to place on & solid #om_nl ground certain natura
steps that, in the original first-order context of pure _o@_o. programning, seem 8»
compromise declarative transparency. For example, the simple transformation o
code such as the following:

all{Prep,).
all(Prop, [HIT1]) :- call{Prop 1), all(Prop,Ti).

o

ali(Prop, (3.]
all(Prop, [HIT1}) :- Prep(®), all{Prep,T1).

or a typed version thercof, turns a Prolog meta-program into a fully declara-
live program in higher-order logic. This simple example tells only a small part

M. 3. Maher [Ed.): ASIAN 2004, LNCS 3321, pp. 93-108, 2004,
@) Springer- Variag Boclin Haidelbarg 2004

AMAHBIN
Manuscript &1%51 IEEE Transactions on Computer-Aided Design

Submission

IBOX: TCAD 2358: Acknowledgement of paper
® B P2 e’

' v Folders Ophiens Search Heip Addressbook Logout

i TCAD 2358: Acknowledgement of paper
319) €
dly 1 Reply to All | Forward | Redirect | Blacklist | Message Source | Save as | Print
%41, 30 Apr 2005 22:56:33 -0700
adece.orst edu M
wa@su.sc.th &
i@ece.orst.ecdu &
1CAD 2358: Acknowledgement of paper

ana chantrapornchai:
o for submitting the following paper to TCAD.

Design Exploration with Imprecise Latency and Register Constraints
. Chantrapornchai, W. Surakumpoithorn, E. H-M. Sha

% jou sent for this paper printed fine.

By takes about three months to make a decision about a paper.
¥ te informed via e-mail when the decision has been made.

ieantime, you may use your id and password to
2 status of your paper periodically.

8if of the editorial board, 1 would like to thank you for
nission.

Heply | Reply to All | Forward | Redirect | Blacklist | Message Source | Save as | Print

~

[netserv2.su.ac.th/horde/imp/message.php?index=12692&array_index=158

Page 1 of 1

= [NBOX =
Upen Fraldar

Move | Copy
[This message to ~|

Back to INBOX <&

.,

Back to INBOX <[>
Move | Capy | This message to ~|

1/7/2548

Design Exploration with Imprecise Latency and Register.

Constraints
C. Chantrapornchai' W. Surakumpolthorn E. H-M. Shat
Faculty of Science Faculty of Engineering Dept. of Computer Science
Silpakorn University King Mongkut’s Institute of Technology University of Texas at Dallas
Nakorn Pathom, Thailand Ladkrabang, Thailand Richardson, U.S.A
Abstract

We propose a design exploration framework which consider impreciseness in design specification.
In high-level synthesis, imprecise information is often encountered. We consider two types of impre-
cesness: impreciseness underlying on functional unit specifications and on contraints: latency and reg-
ister. The framework is iterative and based on a core scheduling called, Register-Constrained Inclusion
Scheduling. An example how the scheduling algorithm work is shown. We demonstrate the effec-
tiveness of our framework for imprecise specification by exploring a design solution for a well-known
benchmark, Discrete Cosine Transform, and Voltera Filter. The selected solution meets the acceptability
criteria while minimizing the total number of registers.

Keywords: Imprecise Design Exploration, Scheduling/Allocation, Multiple design attributes, Imprecise information,
Register constraint, Inclusion Scheduling

Corresponding author:

Chantana Chantrapomchai
Faculty of Science, Silpakorn University, Nakorn Pathom, Thailand 73000 '

ctana@su.ac.th

PThis work was supported in part by the TRF under grant number MRG46801135.
¥This work was supported in part by TI University Program, NSF EIA 0103709, Texas ARP-009741-0028-2001 and NSF
CCR-0309461, USA.

1 Introduction

In architectural level synthesis, imprecise information is almost unavoidable. For instance, an implementation of a
particular component in a design may not be known due to several reasons. There may be various choices of modules
implementing the functions or the component may have not been completely designed down Lo the geometry level.
Even if it has been designed, variation in fabrication process will likely induce varying area and time measurements.
Another kind of impreciseness or vagueness arises from the way a design is considered to be acceptable at architecture
level. If a design with latency of 50 cycles is acceptable, what about a design with 51 cycles versus a design with
75 cycles? This even becomes imprecise especially when there are multiple conflicting design criteria. For example,
is it worth to expand a latency by two cycles while saving one register and what about expanding 10 more cycles ?
Effective treatment of such impreciseness in high level synthesis can undoubtedly play a key role in finding optimal
design solutions.

In this paper, we propose a design exploration framework which considers imprecise information underlying in
system specification and requirements. Particularly, we are interested in the latency and register constraints. However,
the approach can be extended to handie other multiple design criteria. The system characteristics are modeled based
on the fuzzy set theory. Register count is considered as another dimension of imprecise system requirement. The
work in [3, 7] is used as a scheduling core in the iterative design refinement process."The imprecise schedule which
minimizes the register usage is generated. If the schedule meets acceptability criteria, the design solution is selected.
Otherwise, the resources are adjusted an the process is repeated. Our input system is modeled using a data flow graph
with imprecise timing parameters. Such systems can be found in many digital signal processing applications, e.g.,
communication switches and real-time multimedia rendering systems. Imprecise specification on both system param-
eters and constraints can have a significant impact on component resource allocation and scheduling for designing
these systems. Therefore, it is important to develop synthesis and optimization techniques which incorporate such
impreciseness.

Most traditional synthesis tools ignore these vagueness or impreciseness in the specification. In particular, they
assume the worst case (or sometimes typical case) execution time of a functional unit. The constraints are usually
assumed to be a fixed precise value although in reality some flexibility can be allowed in the constraint due to the
individual interpretation of an “acceptable” design. Such assumptions can be misleading, and may result in a longer
design process and/or overly expensive design solutions. By properly considering the impreciseness up front in the
design process, a good initial design solution can be achieved with provable degree of acceptance. Such a design
solution can be used effectively in the iterative process of design refinement, and thus, the number of redesign cycles
can be reduced.

Random variables with probability distributions may be used to model such uncertainty. Nevertheless, collecting
the probability data is sometimes difficult and time consuming. Furthermore, some imprecise information may not be
correctly captured by the probabilistic model. For example, certain inconspicuousness in the design goal/constraint
specification, such as the willingness of the user to accept certain designs or the confidence of the engineer towards
certain designs, cannot be described by probabilistic distribution.

Many researchers have applied the fuzzy logic approach to various kinds of scheduling problem. In compiler
optimization, fuzzy set theory has been used to represent unpredictable real-time events and imprecise knowledge
about variables [18]. Lee et.al. applied the fuzzy inference technique to find a feasible real-time schedule where each

task satisfies its deadline under resource constraints [23]. In production management area, fuzzy rules were applied
to job shop and shop floor scheduling {27, 33]. Kaviani and Vranesic used fuzzy rules o determine the appropriate
number of processors for a given set of tasks and deadlines for real-lime systems [22]. Soma et.al. considered the
schedule optimization based on fuzzy inference engine [32]. These approaches, however, do not take into accougt the
fact that an execution delay of each job can be imprecise and/or multiple attributes of a schedule.

Many research results are available for design space exploration [1, 9, 15, 26]. All of these works differ in the
techniques used to generate a design solution as well as the solution justification. These works, however, do not
consider the impreciseness in the system attributes such as latency constraints and the execution time of a functional
unit. Karkowski and Otten introduced a model to handle the imprecise propagation delay of events {19, 20]. In
their approach, the fuzzy set theory was employed to model imprecise computation time. Their approach applies
possibilistic programming based on the integer linear programming (ILP) formulation to simultaneously schedule and
select a functional unit allocation under fuzzy area and time constraints. Nevertheless, the complexity of solving the
ILP problem with fuzzy constraints and coefficients can be very high. Furthermore, they do not consider multiple
degrees in acceptability of design solutions. Several papers were published on the resource estimation [10, 28, 31].
These approaches, however, neither consider multiple design attributes nor impreciseness in system characteristics.

Many rescarch works related to scheduling and register allocation exist in high-level synthesis and compiler op-
timization area for VLIW architecture. Varatkar et. al. proposed a scheduling algorithm for multiprocessor systems
which consider minimizing total system energy [34]. Shao et. al. presented instruction scheduling for loop appli-
cations which considers minimizing switching activity [30]. These work, however, do not consider register usage
minimization. Chen et. al. proposed a loop scheduling for timing and memory operation optimization under register
constraint [16]. The technique is based on multi-dimensional retiming. Eichenberger et. al. presented an approach
for register allocation for VLIW and superscalar code via stage scheduling [13, 14]. Akturan and Jacome also pro-
posed a scheduling algorithm which considers minimizing register usage for software pipelining [2]. The algorithm
uses retiming and force directed scheduling and explores the trade-off between code size , performance, and register
requirements. Wong et. al. developed a strategy to insert objective functions during scheduling and register allocation
steps [35]. Their algorithm is called, scheduling FLOF, which attempts to minimize register usage subjected to the
latency and resource constraints. Dani et. al. also presented a heuristic which uses stage scheduling to minimize
register requirement. They also targeted at instruction level scheduling [11]). Zalamea et. al. presented hardware and
software approach to minimize the register’s usage targeting VLIW architecture [24, 25, 38]. On the software side,
they proposed an extended version of modulo scheduling which considers register constraint, and register spilling.
However, these work focus on loop scheduling and do not consider handling the imprecise system characteristics or
specification. '

In [3], the inclusion scheduling which takes the imprecise system characteristic was proposed. The algorithm was
expanded and used in design exploration under imprecise system requirement as well as the estimation of resource
bounds [3, 6, 8]. However, it does not take register criteria in creating a schedule.

In this paper, we particularly consider both imprecise latency and register constraints. We develop a design
exploration framework under imprecise specification and constraints. The framework is iterative and based on the
developed scheduling core, RCIS, Register-Constrained Inclusion Scheduling that takes imprecise information into
account. Experimental results show that we can achieve an acceptable design solution with minimized number of
registers.

This paper is organized as follows: Section 2 describes our models. It also presents some backgrounds in fuzzy
sel. Section 3 presents the ilerative design framework. Section 4 presents the scheduling core (RCIS) used in the
design exploration framework. It also addresses some issues when the register count is calculated during scheduling,
An example how the scheduling algorithm works is shown in Section 5. Section 6 displays some experimental resylts.
Finally, Section 7 draws a conclusion from our work.

2 Overview and Models

In this section, we first describe our model as well as problem description. Since in developing an inclusion schedule
some fuzzy arithmetics is involved, we also review some basic concepts in fuzzy computation.

2.1 Model Descriptions

Operations and their dependencies in an application are modeled by a vertex-weighted directed acyclic graph, caltled a
Data Flow Graph, G = (V, £, B), where each vertex in the vertex set V corresponds to an operation and £ is the set of
edges representing data flow between two vertices. Function [defines the type of operation for node v € V. Figure |

+ X

K '
+

Figure I: Testl: Data flow graph example

shows a five-node data flow graph, where ¥V = {A,B,C,D,E}, £ ={A 5 EB S EC S ED 3 E,(u—v
defines a directed edge fromw to v), f(A) = B(B) = B(E) = add, and f(C) = B(D) = multiply.

Operations in a data flow graph can be mapped to different functional units which in turn can have varying
characteristics. Such a system must also satisfy certain design constraints, for instance, power and cost limitations.
These specifications are characterized by a tuple § = (F, A, M, Q), where F is the set of functional unit types
available in the system, e.g., {add, mul}. A is {A¢ : ¥f € F}. Each A¢ is a set of tuples (a1, ..., ax), where a,
to ayx represent attributes of particular f. In this paper, we use only latency as an example attribute. (Note that our ‘
approach s readily applicable to include other constraints such as power and area). Hence, A ¢ = {x : ¥ x} where x
refers to the latency attribute of f. M is {py : VE € F} where 1y is a mapping from A to a set of real number in [0,1],
representing a possible degree of using the value. Finally, @ is a function that defines the degree of a system being
acceptable for different system attributes. If Q(a1,...,ax) = 0 the corresponding design is lotally unacceptable
while Q(ay,...,ax) =1, the corresponding design is definitely acceptable.

Using a function @ to define the acceptability of a system is a very powerful model. It can not only define
certain constraints but also express certain design goals. For example, one is interested in designing a system with
latency under 500 and register count being less than 6 respectively. Also, the smaller latency and register count, the

4

better a system is. The best system would have both latency and register count being less than or equal to 100 and 1
respectively. An acceptability function, @(ay, az) for such a specification is formally defined as:

0 ifa; >50oraz; > 6 .
Qlar,az2) = 1 ifa; <100andaz <1 ()
Flay,az) otherwise,

where F is assumed to be linear functions, e.g., Flay, a2} = 1.24968%{a, + 2a;) — 0.001242 which returns the
acceptability between (0, 1),

Figure 2 illustrates Equation (1) graphically. In this constraint, we express the weighted sum of the two criteria
which gives the preference to minimizing register count twice as much as minimizing latency, that is latency: register
count is 1:2. In other words, we are willing to spend two more latency cycles if one register can be saved.

Figure 3 shows the projection of Equation (1} on latency and possibility axis.

s

AT ST :‘i‘:ﬂ
et APV = A Lo

Figure 3: Projection of constraint in Figure 2.

In general, one may model any criteria by

[

¢ ifay >py, . 0T > P,
Qlay,az,...an) = 1 ifay <py,,..-anday <pp. (2)
Flwyay + wzaz + ..wnan) otherwise. .«

where

For example, we can simply replace the register constraint by others such as power. Figure 4(b) depicts an
example of the specification concerning the tradeoff graphically where w1 = 2, w; = 1. Hence, F refers to a z-shaped
curve function which produces a smooth transition between two given points. Figure 4(c) shows the projection of
the 3-dimensional acceptability model to the latency and acceptability plane. In this figure, each z curve represents a
projection of € function to a latency-acceptability plane. An inner curve (tighter latency constraint) corresponds Lo
larger power values. Based on the acceptability model, a design with high acceptability implies an optimized design
towards certain goals.

Based on the above model, the combined scheduling/binding we intend to solve can be formulated as follows:

Given a specification containing S = (F, A, M, Q}, G = (V, £, B), and acceptability level &, find a schedule
under functional unit and register constraints for each f in F whose the acceptability degree is greater than or equal

to & subject Q. :

2.2 Fuzzy Sets

In this section, we give a quick review of fuzzy set theory as it relates to our work. Readers familiar with the theory
can skip this part.

Fuzzy sets, proposed by Zadeh, represent a set with imprecise boundary [36, 37]. In classical (crisp) sets, an
element can either be a member of a set or not at all; hence, its membership degree is either 1 or 0. A fuzzy set is
defined by assigning each element in a universe of discourse its membership degree in the unit interval [0, 1], conveying
to what degree x is a member in the set. This membership value can be defined as a membership function of an element
in the set, u(x) : x — [0, 1.

A fuzzy set is said to be normal if there exists at least one member in the set whose membership value 1s unity.
A convex fuzzy set is defined as: for any x,y, and z in the fuzzy set A, the relation x < y < z implies that
Ha(y) > min(pa{x},ua(z)). A fuzzy number is a normal, convex fuzzy set defined on the real line R. Let A and
B be fuzzy numbers with membership functions pa(x) and pg(y), respectively. Let * be a set of binary operations
{4+, —, %, +, min, max}. The arithmetic operations between two fuzzy numbers, defined on A B with membership

function wa.g(z), can use the extension principle, by [17]:

mae(z) =\ (kalx) Aus(y)) (3)

z=x#*y

where V and /A denote max and min operations respectively.

Fuzzy arithmetic is used to compute an arithmetic operation between two fuzzy numbers. Figure 5(a) shows a
fuzzy number A, which is assumed to be normal triangular-shaped lied on an real line. In this figure, let A be assigned
with the confidence interval (2, 6). The most possible value of A is 4 since its confidence level or presumption level
is 1. Similarly, Figure 5(b) shows the fuzzy number with the confidence interval (3,7} representing B. Figure 5(c)

acceptability

0.
0.
0.4
0.
% 0
= 30
50~ 0"‘ 40
s 2 G
O, 100- LB e =
T T
150120 100N > 20 100 %powes
(a} Linear acceptability (b) z curve acceptability with trade-off
1
0.5.
0.8
207
206
%
gos
0.4
0.3
0z
01
04 B0 40100
latency
(¢) Latency acceptability curves corresponding to different power constraints
derived from Figure 4(b} -
Figure 4: Various kinds of acceptability functions
Hix) piz)
! ! o
5 9 13 z
2 4 61 A+B
(@) A (b)Y B (A +B

Figure 5: Adding two fuzzy numbers, A and B

demonstrates a graphical result of adding two fuzzy numbers defined on the integer line from Figures 5(a)-5(b), using
Equation (3).

In order to compare two fuzzy numbers, several methods can be used. All of these methods are based on selecting
a representative for each fuzzy number and compare the representatives [21]. One way to oblain the representatives
is using the removal with respect to k, which is a measure of distance from k, computed by R(A, k] = %(Rl[A, k) +
R(A k}), where A is a fuzzy number, k is a reference position on the x-axis, R is the area bounded by the left side
of the curve and the line x = k and similarly for the right side, R .. Another can be mode, which uses the value x
such that pix] = maxi{pn(x;]} for all x; in the fuzzy set. Divergence is another way to calculate the representatives.
It represents the width of the set which is computed by X . — Xmin. In addition, the defuzzified value can be used to
represent the fuzzy sel. Several defuzzified methods can be found tn [29].

Based on the fuzzy set concepl, we model the relationship between functional units and possible characteristics
such that each functional unit is associated with a fuzzy set of characteristics. Given a functional unit f and its possible
characteristic set Ay let pe{a) € [0,1],¥a € Ay, describe a possibility of having attribute a for a functional unit f.
Let us focus on the timing attribute. A fuzzy set of timing characteristic of a functional unit f may be { %, ‘?—40, %—5-, %
}. That is f may use 10, 20, 35, and 70 ume units to execute with different possibility, i.e., kL ¢(10) = .2, u¢ (20} =
A ps(35) = 1 ue(70) = .7,

3 Iterative Design Framework

Find initial # func. unit| . _
i ,‘ - acceptability function

RCIS-scheduling . -
allocation .7 . - - - -acceptabitity threshold

¥
¢ 4
heck schedule] “S¢eP@able!(™ gyt schedule
attributes [yes 7 functional umit
no and reg. configuratio

adjust specification | - heuristic
increase number of FUy
and/or change types

Figure 6: Design solution finding process using RCIS

.

Figure 6 presents an overview of our iterative design process for finding a satisfactory solution. One may estimate
the initial design configuration with any heuristic for example using ALAP, and/or ASAP scheduling |[8]. The RCIS
scheduling and allocation process produces the imprecise schedule attributes which are used to determine whether or
not the design configuration is acceptable.

RCIS is a scheduling and allocation process which incorporates varying information of each operation. It takes an
application modeled by a directed acyclic graph as well as the number of functional units that can be used to compute
this application. Then, the schedule of the application is derived. This schedule shows an execution order of operations

in the application based on the available functional units. The total attributes of the applicatton cun be derived after
the schedule is computed. The given acceptability function is then checked with the derived attributes of the schedule,

In order to determine whether or not the resource configuration is satisfied the objective function, we use the
acceptability threshold. If the schedule atiributes lead to the acceptability level being greater than the threshold, the
process stops. Otherwise, the resource configuration is adjusted using a heuristic and this process is repeated unt the

design solulion cannot be improved or the design solution is found.

4 Register-Constraint Inclusion Scheduling

In this section, we present the register-constraint inclusion scheduling (RCIS) algorithm.The algorithm is based on
the inclusion scheduling core presented in Algorithm 4.1. The algorithm evaluates the quality of the schedule by
considering imprecise register criteria which will be discussed later subsections

Specifically, inclusion scheduling is a scheduling method which takes into consideration of fuzzy characteristics
which in this case is fuzzy set of varying latency values associated with each functional unit. The output schedule,
in turn, also consists of fuzzy attributes. In a nutshell, inclusion scheduling simply replaces the computation of
accumulated execution times in a traditional scheduling algorithm by the fuzzy arithmetic-based computation. Hence,
fuzzy arithmetics is used to compute possible latency from the given functional specification. Then, using a fuzzy
scheme, latency of different schedules are compared to select a functional unit for scheduling an operation. Though
the concepl is simple, the results are very informative. They can be used in many ways such as module selection [4].
Algorithm 4.1 presents a list-based inclusion scheduling framework.

Algorithm 4.1 (Register-Constrained Inclusion scheduling)
Input: G = (V,£,B), Spec = (F, A, M, Q), and N =#FUs
Qutput: A schedule S, with imprecise latency

1 Q = vertices in G with no incoming edges // finding root nodes
2 while Q # empty do

3 Q = prioritized {Q}

4 u = dequeve(Q); mark u scheduled

5 good_S = NULL,;

6 foreach f € {f; : where f; is able to perform B{u),} €j < N}de

7 temp_S = assign_heuristic(S, u, f) /f assign u at FU f
& if Eval_Schedule_with_Reg{good_S, temp_S, G, Spec) '
9 then good.S = temp_S fi od
10 S = good_§ /f keep good schedute
11 foreach v : (u,v) € E do
12 indegree (v) = indegree(v} — 1
13 if indegree(v) = O then enqueve(Q, v) fi od
M4 ood
{5 return(S)

After node u 1s assigned to f, the imprecise attributes of the intermediate schedule, is compuoted,
Eval_Schedule_with_Reg compares the current schedule with the “best” one found in previous iterations. The bet-
ter one of the two is then chosen and the process is repeated for all nodes in the graph.

In Algorithm 4.1, fuzzy arithmetic simply takes place in routine Eval Schedule with Reg {(Line 8). In this routine,
we also consider the register count used in the schedule. Since an executton time of a node is imprecise, the iife time
of a node is imprecise. Traditionally, a life time of a node depends on the location of the node’s successors in the
schedule. Thal is the value produced by the node must be held until its successors have consumed it. For simplicity,
tet the successors consume the value right after they start.

Recall that a node’s execution time is a fuzzy sel, where the membership function is defined by wix) = y. It
implies that the node will take x time units with possibility y. Consequently, a start time and finished time of a node
are fuzzy numbers. To be able to calculate fuzzy start time and finished time, we must assume that all nodes have been
assigned to functional units already. We assume that resource binding and order of nodes executing in these resources
are given based on the modified DFG (i.e, scheduled DFG). The modified DFG is just the original DFG where extra
edges due to independent nodes executing in the same functional units are inserted (as constructed in Algorithm 4.3).

4.1 Imprecise Timing Attributes

In the following, we present basic terminologies used in the algorithm which calculates register usage under impre-

ciseness.

Definition 4.1 For G = (V, £, 3), and a given schedule, a fuzzy start time of node uw € V , FST(u} is a fuzzy set
whose membership degree is defined by Lrsy (%) = U, I.e, node W may start at time step x with possibility y.

For nodes that are executed at time step 0 in each functional unit, FST{u) = 0, which is a crisp value.

Definition 4.2 For G = (V,&,), and a given schedule, a fuzzy finished time of nodew € V|, FFT (u) is a fuzzy set
whose membership degree is defined by wrer (X)) =y, i.e, node w may finish at time step x with possibility y.

Hence, FFT(v) = FST (v] + EXEC{v), where EXEC(v) is the fuzzy latency of v. When considering earliest start
time of a node, FST(v] = max (FFT {(ui}) + 1, vu, — v

| time

2 L] A

3

4]
5

6 /

70

g [\)

9

10

(a) (b)

Figure 7: A view of fuzzy start time and finished time

The general idea of using fuzzy numbers is depicted in Figure 7 for both start time and finished time. Circles
denote the fuzzy boundary which means that the starl time and finished time boundary of a node is unclear. Indeed,
they may aiso be overlapped as shown in Figure 7(b). When a node occupies a resource at a certain time step, a
possibility value is associaled with the assignment.

Traditionally, when the timing attribute is a crisp value, the start time x and finished time y of a node form an
integer interval [x...y], which will be used to compute the register usage in the schedule. In our case, a fuzzy life time
for node u contains two furzy sets: FST (1) and MFFT (1), the maximum of start time of all its successors.

Definition 4.3 For G = [V, £,B), and a given schedule, fuzzy life time of node u, FLT(u) is & pair of
(FST (u), MFFT{u)l, where uprrr(uw) = FFT{u) + max(FST(w;)). where w — vi € & and +, max are fuzzy

addition and fuzzy maximum respectively.

Given FLT (u}, let min_st be the minimum time step from FST (u) whose LirgT (4 is nonzero, and max st be the
maximum time step from FST(u) whose Wgst () is nonzero. Similarly, let min_fin be the minimum time step from
MFFT (u) whose tiamrpT () is nonzero, and let max _fin be the maximum time step from MFFT (1) whose WpreT (u)
is nonzero. Without loss of generality, assume that FST (u} and MFFT (1) are sorted in the increasing order of the time
step. We create a fuzzy set IFST (u), mapping for a discrete time domain [min st...max st} to a real value in [0..1],
showing the possibility that at time step x, node 1 will occupy a register for FST (u) and likewise for IMFFT (u) for
MFFT {u) as in Definitions 4.44.5. |

Definition 4.4 G = [V, £, B}, a given schedule, [min_st...max st] and FLT (u)

0 ifc < min_st orc > max_st

BIEsT(0){C) = ¢ maxyx, min_st<x<y(HrsT(u)(X)) otherwise

y=max(FST(u}}jandy<c

Definition 4.5 G = {V, £, B), a given schedule, [min_fin..max _fin] and FLT (u) -

0 ifc < min_fin or
¢ > max_fin

HIMFET (u)(C} = :
MaXyyx,y<x<maxfin (WMFFT(u){X])) otherwise

v=max{MFFT[ul}andy<c

From the above calculation, we assume that for any two starting time value a, b € FST (u) where a < b, if node
u starts at time a, it will be already started at time b. For MFFT (u}, when a < b, a,b € MFFT{u], if the value for,
node u will not be needed at time «, it will not be needed at time b and vice versa. Thus, Definitions 4.4—4.5 give the
following properties. '

Property 4.1 The possibility of IFST (u) is in nondecreasing order.

Property 4.2 The possibility of IMFFT (w1} is in non-increasing order.

From IFST (u} and IMFFT (u}, we merge the two sets to create a fuzzy interval for a node by defining Defini-
tion 4.6.

11

Definition 4.6 G = (V. &, B}, a given schedule, ITFST (u) and IMFFT (u).

0 if¢ < min{min_st, min_finj or
c > max{max_st, max_fin)
Hirct) = € max(pirstonfch mimrerruic)) ifminsst < ¢ < max._st .
ormin_fin < ¢ < max_fin
; otherwise

After we compute the fuzzy life time interval for each node, we can start compute register usage for each time

step.

4.2 Register Usage Calculation

Once a scheduled DFG is created, FST (u) and FFT {u) must be calculated forall u € V. Figure 8 displays the meaning
of fuzzy life time implied by Definitions 4.4-4.5, SA and FA denote the fuzzy start time and the fuzzy finished time
of node A respectively. Similarly, SB and FB denote the start time and the fuzzy finished time of node B The fuzzy
life times of A and B are shown in the filled boxes on the right side.

pume 2 Life Time A)
N

3

4

5

6

7 L lpA [N |
8L \/ Sk oin
9 Life Timg B| |
10 i
1 i
12 |
13 [FB i
14 \

Figure 8: Relationship between scheduled nodes and life time

In the figure, the life time of A and the life time of B may overlap. Traditionally, when the timing attribute is
precise, the overlapped interval implies that two registers are needed during these time steps. In particular. during time
steps 7 and 8, two registers are needed.

When an execution time becomes a fuzzy number, each box still implies that one register is needed. However, the
derived possibility associated with a time step indicates that that node may not actually exist during the time step. For
example, node may start later or finished earlier. In other words, there is a possibility that a node may not use such
a register. With this knowledge, the register may be shared with others with high possibility. Consider the overlap
interval in Figure 8 al time step 7. One or two registers may be used with some possibility. This depends on whether
the dependency between A — B exists. If edge A — B exists in the oniginal data flow graph, the total register count
would be one. Notice that in this case, the intersection of [FLT (A) and IFLT(B] is not empty. On the contrary, if A

12

and B are independent, the total register count would be two although the intersection may not be empty as well. This
issue must be considered in calculating register usages.

4.3 Algorithms

A
Algorithm 4.2 presents a framework in evaluating fuzzy latency and register counts of a schedule. This algorithm is
called after Line 7 in Algorithm 4.1 which already assigns the start time for each node.

In Algorithm 4.2, Line 6 invokes Algorithm 4.3 to calculate the life time of all nodes in schedule and find the
maximum register usage. The register usage is then kept in Reg[S] for a schedule 5;. Next, the latency of the whole
schedule is then calculated. Note that after invoking Algorithm 4.3, necessary timing attributes for all nodes in G ¢
can be obtained. The latency of the schedule is obtained by just fuzzy maximizing the finished time of all leaves in
Go. Line 9 merges latency and register usage attributes of the schedule using some heuristic function. The combined
attribute is denoted as a guality of the schedule. This quality is then compared in Line 13 to select the best one.

Algorithm 4.2 (Eval_ Schedule_with_Reg)
Input: schedules 51,5;, G = (V,£,B), and Spec = (F, A, M, Q)
Output: I ifS) is better than S», 0 otherwise.

1 Go = (Vq, &9, B) where Vo = V—{unscheduled nodes}, £, = @
2 foreach schedule S5i = 5 to 52 do

3 Eo={{u,v):u,v € Vs, ifu,vinsame fu. in 5;

4 and v is immediately after 1t}

6 Calculate register usage for Go using Algorithm 4.3

7 Let W is a set of leaves in Go

& latency[Si] = fuzzymax_time(W)

9 qualitySi] = Combine(latency[Si], Reg(Si])

{0 od

-
tw

/f comparing the overall attributes of both schedules

—
e

return(compare(quality[S1], qualin/S21))

Algorithm 4.3 (Calculate Register_Count)

Input: Scheduled Graph Go for schedule $ and, original DFG G = (V, £, B) Spec = (F, A, M, Q)
Output: Reg[S| contains register counts needed and its possibility

! Calculate FLT (1) vu € Go by Definition 4.3

2 Calculate IFLT (u) Vu € Go by Definitions 4.4-4.5

3 Let max_cs be max. finished time ,Vu € G

4 for cs = 1 to max_cs do

5 (RegAtles].reg, RegAt(cs].poss) = Count.Node (IFLT, ¢cs, Go) od
6 ¥n, FReg[n] =0

7 for cs = 1 to max_cs do

8 FReg[RegAt(cs].regl.reg = RegAtlcs).reg

9 FReg[RegAt(cs|.regl.poss =

H max| FReg[RegAtles].regl.poss, RegAtlcs].poss) od
12 Reg(S] = FReg

In Algorithm 4.3, RegAt stores maximum number of registers needed at each cs and its associated possibility.
The values are obtained by Algorithm Count Node. Lines 7-10 summarize the overall number of registers needed and

its possibility. Algorithm Count_Node is described in Algorithm 4.4.

Algorithm 4.4 (Count_Node)
Input: IFLT, Gy, cs
Output: # registers needed and its possibility atcs

! node_set = {nodes occupy reg at ¢s)

2 set Go in topological order

3 Let sorted_node be node_set sorted in by sorted Gp

4 poss =0,reg =0

5 Wi € sorted_node,i.0k = FALSE,i.count = FALSE
6 for every i € sorted.node do

7 for j =i+ 1 to last node in sorted.node do

8 if i.0ok = TRUE and t.count = FALSE

g then
10 reg + +; poss = max(poss, trp7iyfes)
1! i.count = TRUEfi

13 if FindPath(i,j)

i4 then j.ok = FALSE // don’t count descendant fi
15 od

16 Let j be the last node in sorted_node
17 if j.ok = TRUE

18 then

19 reg + +; poss = max(poss, KirrT51(cs)
20 j.count = TRUE fi

27 od

22 return (reg, poss)

In Algorithmn 4.4, our heuristic only attempts to consider the ancestor al the current time slep. In other words, we
assume that the ancestor finishes first and then its descendants can start. Flag ok uses to indicale that the associated
node should be counted at the current step or not. If it is a descendant of any of nodes in the current step, the flag will
be disable. Since the schedule contains every node, the descendant will be started eventually. reg and poss store the
current number of counted nodes and maximum possibility. At Line 3, the nodes currently in this time step indicated
by IFLT are sorted in the topological order according to G o. Then we extract each node in the sorted list to check if
any pair are dependent by using FindPath in Line 13. In the loop, it selectively marks descendant nodes in the current
step.

Let us consider the complexity of Algorithm 4.4. The time complexity is dominated by Lines 6-21, which is
O(IVI3([V|+ |EN)}, since for DAG, FindPath takes O{|V] + {E|).

14

In Aigorithm 4.3, the calculation for FLT (u)} depends on FST{u) and MFFT{u]. Let N | be the number of
discrete points in FST{u) and MFFT (u), Lines -2 perform the calculation whose upper bound is of O{N [V||E]].
The computation for [FLT (w] ts simply a double loop for each node. In overall, Algorithm 4.3 runs in polynomial

time.
A"

5 Example

We integrate Algorithm 4.2 into Algorithm 4.1. The new algorithm is called Register-Constrained Inclusion Schedul-
ing (RCIS). In this section, we present an example which shows the calculation for FLT and the resulting schedule.
Then we discuss the results on other benchmarks.

Consider the simple DFG presented in Figure 9. Assume that there are four general functional units available,
where FU1 and FU3 have the same characteristics as well as FU2 and FU4 as shown in Table 1. In the figure, Columns
“(lat,poss)” show the latency and its possibility of having the latency value if the nodes are executed in a functional
unit. In this case, FU1 and FU3 have the same characteristics while FU2 and FU4 have the same characteristics.

La

Figure 9: A simple DFG example.

FUs (lat,poss) | (lat,poss) | (lat,poss) | (lat,poss)

lat | poss | lat | poss | lat | poss | lat | poss | .
FULFU3 | 5 | 005 10 | I5] 09 23] 01
FU2FU4 | 7 | 0.5 |12} 0.7 | 17 1 29 | 0.05

Table 1: Functional unit characteristics

Given the system specification shown in Figure 10, where register axis contains a discrete value ranged in [1..7)*
and latency axis ranged in [1..200]. In the figure, we use the weighted sum as a criteria similar to Equation (1), where
latency : register count is 1:10.

According to Section 4, Figure 11(a) shows the resulting schedule we obtain. We notice that FU1 and FU3 are
preferable. To calculate FST(u), we assume a heuristic where a node starts as early as possible. From this schedule,
consider node B. Figure 12(a) presents FLT{A} containing FST(A) and MFFT (A}, Figure 12(b) presents FLT(B).
For FST(A), possibility y at time x represents a possibility that node A occupies register at time x wilh respect to
the schedule, denoted by rectangles. Notice that for A, there is only one possible start time whose possibility is one.
Similarly for MFFT [A], possibility y at time x represents a possibility that the life time of node A ends at time x,

15

Figure 10: Constraint for Figure 9.

FUL | FU2 | Fu3 | Fu4
FUI | Fu2 | FU3 | Fu4

A E -
A F E R

F C .
G D G “ i
i i B . D -

B - -

(b)

(a)

Figure 11: (a) Schedule obtained RCIS for Figure 9 (b) Schedule obtained using the original inclusion
scheduling.

denoted by triangles in the Figure. For two dependent nodes A, B, Figure 13 compares FLT (A} and FLT(B). We can
see that FST (B) overlaps with MFFT{A). Figures 14(b)~ 14(a) shows the FLT (1t) all the nodes.

We summarize the register count and its possibility value for each time step as shown in Figure 15. Then we
conclude that the register usage as following: (1,0.1) and (2,1). It implies that at some control step, 1 registenis
needed with very low possibility, e.g. 0.05 and 0.1. The maximum possible finished time of the schedule is at 92 with
possibility 0.1. With this schedule, the average weighted sum of latency and register is 79.53. Considering oniy the
average latency, the value is 52. Compared to the constraint, with latency 52 and register count 2, the acceptability
degree is 0.76. In fact, this gives the same acceptability level as the original inclusion scheduling whose average
latency is 41 and the maximum register count is 3. The schedule of this case is given in Figure 1(b).

We have tried to experiment on larger graphs. For instance, we expand the graph in Figure 9 by adding nedes, and
following edges {H — J, 1 —]} (See Figure 16). Using the same constraint as in Figure 10, and the same functional
unit speciftcation in Table 1 while allowing 4 functional units, RCIS yields the schedule with average latency 57 and

16

mow e

4

R ral Wl DT e . H — T T 77T
RT3 BT S B Dl S bpeba)P0t cd
s Ttaet-Y . pF-30 FenT
Tk)
bk J
L KIS d
] e N 1
S 4
1
r R ‘:.'_15;;‘41. - -
H P S P U T
2 . N -1
B L I L LU= LI N L8 1]
L 10 L% Ll &

(a)

v L4 T L4 L
wak Temikd Log B OO et :
wal Ceatinl, R0
art frantd-llg ¥ Beer”
ae b tertg-l bl in”)
:‘,:-1 <
b
LI F
NI
w1 b . € .

Il

Figure 12: (a) FLT(A) (b) FLT(B).

[LG L AT L (R FO S A

Figure 13: FLT{A)and FLT{B).

(b)

1
“
ar

A “
fen™. iy Lo
[P
‘o Crecl Lo b et
(R S
e
c b
Lt
- i A B
' f ot o 3 "
(a)
i
1 — -
. RLESN B B L ISR
3 Comw o
M SR ST
N J AL B N TR Y TR
R ML LE ALY SIS S LT TR
- Tractloln Do
Pest TN
3
Trant) boan st
B
.1
e
e PSR N 1
LR I Y L +
. — . N [N TR

I T L R S I TR THER T AR R V1Y

(b)

Figure 14: FLT (u), for all nodes in Figure 9 (a) FST (1) (b) MFFT (w).

18

Figure 15: Register counts and possibility each time step.

maximum registers of 2. This yields acceptability value 0.74. Compared to the latency-based inclusion scheduling, it
results in average latency 37 with the maximum register of 4 which also gives the same acceptability level.

6 Experimental Results

We consider the expereiments on exploring design solutions for Discrete Cosine Transform (DCT) [12] and Voltera
filter benchmark [8].

6.1 Discrete Cosine Transtorm

Consider a well-known benchmark, Discrete Cosine Transform, containing 48 nodes. Assume the same functional
unit specification for both adders and multipliers and the constraint in Figure 17 where the register axis is [1..12]
and the latency axis is [1..500]. We assume the functional unit characteristics similar to the example in the previous
section. In the experiment as shown in Table 2. We compare the results obtained from various cases of varying the
number of functional units. The results are shown in Table 3. Columns “RCISand “IS”” compare the performance
of the schedule by Register-Constrained Inclusion Scheduling and the original inclusion scheduling (1S). Row “Avg
Latency” shows the weighted sum of latency for each case. Row “Max Reg” displays the maximum number of
registers. Row “Acceptability” shows the acceptability value obtained using the “Avg latency™ and "Max Reg”. Row
“Max Latency” presents the maximum latency values and Row “Avg Weight” presents weighted sem value for RCIS
and IS. For RCIS, recall that wy = 1 and wz = 10 and for IS, this is the same value as shown in Row “Avg Latency”
since we only consider minimizing latency. Tables 4-5 shows the summarized possibility values for using certain
register counts for RCIS and IS respectively. It is obvious that IS attempts to minimize latency while not considering
the register usage. From these tables, we can achieve about the same acceptability {and even belter acceptability in
some case) with fewer number of registers, which is upto 37% saving for the number of registers for the case of 7

adders and 5 multipliers. Among all these cases, we see that the configuration with 5 adders and 4 multipliers should

19

be the best. Consider the running time. For all the cases, the maximum running time is approximately 1 minute 50
seconds to achieve the results for 7 adders and 5 multipliers under Pentium 4 2.8GHz, IGB RAM.

b a % |
M

Figure 16: A simple DFG example 2.

@

FUs (lat,poss) | (lat,poss} | (lat,poss) | (lat,poss)

lat | poss | lat | poss | lat | poss | lat | poss
Adder 5100510 1 15 09 | 23| 01

Multplier | 7 | 0.5 | 12| 0.7 | 17 1 29| 0.05

Table 2: Adder and multiplier characteristics

Sadds 4 muls | 6 adds 4 muls | 6 adds Smuls | 7adds 4 muls | 7 adds 5 muls
RCIS 15 RCIS IS RCIS IS RCIS IS RCIS IS
Avg Latency 122 INE 132 98 117 99 124 104 127 94
Max Reg 6 8 7 10 8 10 7 10 7 11
Acceptability | 0.719 | 0.704 | 0.69 | 0.69 | 0.694 | 0691 | 0.699 | 0.683 | 0.691 | 0.683
Max Latency 226 252 296 224 213 197 255 226 230 179
Avg Weight 188 11 198 98 206 99 210 104 209 94

Table 3: Comparison of RCIS and IS when varying the number of functional units. '

6.2 Votera filter

We present experimental results on voltera filter benchmark, containing 27 nodes, where 10 nodes require adder units
and the rest requires multiplier units. Assume that we have two types of functional units: adder and multiplier, whose
latencies are as shown according 1o Table 1. In the figure, an adder may have different latency values with the given
possibility. Columms “lat” and "pos” show the latency and its possibility of having the latency value for each adder

20

Figure 17: Constraint for DCT.

#reg | 2 [3] 4 51617
poss [Ol [3 (00|01 1]1

Table 4: Possibility values of register counts for case 7 adders and 5 multipliers for RCIS.

#reg 2 4 5 6 7 & 10 | 11
poss | 005 | D05 | 1| 005 | 1| 01 l l

Table 5: Possibility values of register counts for case 7 adders and 5 multipliers for IS.

21

and mufltiplier. Thus, it the nodes are executed in the functional unit, the node may have variable latency values as
well.

Assume the constraint is depicted in Figure 18 where the regisier axis is [1..7] and the fatency axis 15 [200..700].
We demonstrate by considering various design configuration of varying the number of functional units usigg RCIS
and original inclusion scheduling as a scheduling core in the design exploration. Due to the characteristic of the
filter, increasing the number of multipliers will help reduce the overall latency. Suppose that we set the acceptability
threshold 1o be 0.8. The results are shown in Table 6. Recall that wy = 1 and w; = 10. That is we consider register
criteria ten times as much as the latency value. RCIS attempts to create a schedule which minimizes the total weighted
sum of wyx + way where x and y are the weighted latency and weighted register counts of the resulling schedule.
Figure 19 depicts acceptability values for each design configuration based on RCIS. When we increase the number
of functional units the latency decreases while the number of register counts needed increases. However, when the
number of multipliers becomes 4 or more, RCIS can create a schedule which gives the maximum acceptability values
(0.84 (which is greater than the threshold defined at (.8). By inspecting the resulting schedule, we conclude that 4
multipliers would be sufficient and adding more multipliers wiil be wasteful. Compared this the schedule generated
by 1S, we found that since IS does not consider the register criteria, IS attempts to utilize all available resources to
minimize the overall latency values. Thus, the latency of schedule generated by IS keeps decreasing and the number
of register counts keep increasing. This will finally decrease the acceptability value according the constraint.

From the results, we can see that to achieve the acceptability threshold 0.8, using RCIS will give a better design
solution using fewer number of registers. Consider the running time. For all the cases, the maximum running time is

approximately 2.8 seconds (o achieve the results for 1 adder and 5 multipliers on the same computer.

poss

o—— |"Bons_volt_1_10,gnu" ——
_ﬂ———‘__p__\i—:"— S
e B

I
N

PN

: rgg
00 5

Figure 18: Constraint for Voltera filer.

1 add 2 muls 1 add 3 muls | add 4 muls 1 add 5 muls
RCIS IS RCIS IS RCIS IS RCIS 1S
Avg Latency 308 300 267 270 260 260 260 246
Maux Reg 2 2 3 3 4 4 4 5
Acceptability | 0.78 | 0.80 084 | 0.84 0.84 | 0.84 0.84 | 0.84
Max Latency 561 561 474 477 445 443 445 416

Table 6: Exploring various number of functional units using RCIS and IS.

LT

Figure 19: Acceptability values for each configuration.

23

7

Conclusion

We propose a design exploration framework considering impreciseness. The framework is based on the scheduling

core,

RCIS which considers impreciseness in the system specification and constraint and attempts o create a schedule

which minimizes both latency and register usages. The framework can be used to generate various design solutions

under imprecise system constraints and characteristics and select an acceptable solution under latency and register

criteria. The experiments demonstrate the usage of the framework on a well-known benchmark, where the selected

design solution can be found with a given acceptability level.

References

(1

(2]

{3]

(4}

(51

6]

(7]

(8]

(9

[10]

{11]

I. Ahmad, M. K. Dhodhi, and C.Y.R. Chen. Integrated scheduling, allocation and module selection for design-
space exploration in high-level synthesis. [EEE Proc.-Comput. Digit. Tech., 142:65-71, January 1995.

Cagdas Akwran and Margarida F. Jacome. RS-FDRA - a register sensitive software pipelining algorithm for
embedded VLIW processors. [EEE Transactions on Computer Aided Design of Integrated Circuits and Systems.,
12(21):1395-1415, December 2002.

C. Chantrapornchai, E. H. Sha, and X. §. Hu. Efficient scheduling for imprecise timing based on fuzzy theory.
In Proceedings of Midwest Symposium on Circuits and Systems, pages 272-275, 1998.

C. Chantrapomchai, E. H. Sha, and X. S. Hu. Efficient algorithms for finding highly acceptable designs based
on module-utility selections. In Proceedings of the Great Lake Symposium on VLSI, pages 128-131, 1999.

C. Chantrapomnchai, E. H-M. Sha, and X. S. Hu. Efficient module selections for finding highty acceptable designs
based on inclusion scheduling. J. of System Architecture, 11(4):1047-1071,2000.

C. Chantrapornchai, E. H-M. Sha, and Xiaobo S. Hu. Efficient acceplable design exploration based on module
utility selection. JIEEE Trans. on Computer Aided Design of Integrated Circuits and Systems, 19:19-29, Jan,
2000.

C. Chantrapornchai, W. Surakumpolthorn, and E.H. Sha. Efficient scheduling for design exploration with impre-
cise latency and register constraints. In Lecture Notes in Computer Science: 2004 International Conference on
Embedded and Ubiguitous Computing (EUC), pages 259-270, 2004.

C. Chantrapornchai and S. Tongsima. Resource estimation algorithm under impreciseness using inclusion
scheduling. fnel. J. on Foundation of Computer Science, Special Issue in Scheduling, 12(5):581-598,2001.

S. Chaudhuri, S. A. Bylthe, and R. A Walker. An exact methodology for scheduling in 3D design space. In
Proceedings of the 1995 International Symposium on System Level Synthesis, pages 78-83, 1995,

5. Chaudhuri and R. Walker. Computing lower bounds on functional units before scheduling. In Proceedings of

the International Svimposium on System Level Synthesis, pages 3641, 1994,

A. Dani, V. Ramanan, and R. Govindarajan. Register-sensitive software pipelining. In Proceedings. of the
Merged 12th International Parallel Processing and 9th International Symposium on Parallel and Distributed
Svstems, pages 194-198, April 1998,

24

(12

[13]

{14]

{15)

[16]

(171
(18]
(19]
{20}

[21]

{22]

(23]

[24]

{25]

[26]

{27]

(28]

[29]

M. K. Dhodhi, F. H. Hielscher, R. H. Storer, and J. Bhasker. Datapath synthesis using a problem-space genetic
algorithm. [EEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 14(8):934-944,
August 1995.

A. Eichenberger and E, S. Davidson. Register allocation for predicated code. In Proceeding of MICRO, 1895,

Alexandre E. Eichenberger and Edward §. Davidson. Stage scheduling: A technique to reduce the register
requirements of a modulo schedule. In Proceedings of MICRO-28, pages 338-349, 1995,

H. Esbensen and E. S. Kuh. Design space exploration using the genetic algorithm. In Proceedings of the 1996 In-
ternational Symposium on Circuits and Systems, pages 500-503, 1996.

F.Chen, S. Tongsima, and E. H. Sha. Loop scheduling algorithm for timing and memory operation minimization

with register constraint. In Proceedings of SiP'98, 1998.

K. Gupta. fntroduction to fuzzy arithmetics. Van Nostrand, 1985,

O. Hammami. Fuzzy scheduling in compiler optimizations. In Proceedings of the ISUMA-NAFIPS, 1995.
L. Karkowski. Architectural synthesis with possibilistic programming. In HICSS-28, January 95.

I. Karkowski and R. H. J. M. Otten. Retiming synchronous circuitry with imprecise delays. In Proceedings of
the 32nd Design Automation Conference, pages 322-326, San Francisco, CA, 1995.

A. Kaufmann and M. M. Gupta. Fuzzy mathematical models in engineering and management science. North-
Holland, 1988.

A. S. Kaviani and Z. G. Vranesic. On scheduling in multiprocess systems using fuzzy logic. In Proceedings of
the International Symposium on Multiple-valued Logic, pages 141-147, 1994,

J.Lee, A, Tiao, and J. Yen. A fuzzy rule-based approach to real-time scheduling. In Proceedings of Intl. Conf.
FUZZ-94, volume 2, 1994,

Josep Liosa, Eduard Ayguade, Antonio Gonzalez, Mateo Valero, and Jason Eckhardt. Lifetime-sensitive modulo
scheduling in a production environment. /EEE Transactions on Computers, 50(3):234-249,2001.

Josep Llosa, Mateo Valero, and Eduard Ayguade. Heuristics for register-constrained software pipelining. In

International Symposium on Micrearchitecture, pages 250-261, 1996.

C. A. Mandal, P. O. Chakrabarti, and S. Ghose. Design space exploration for data path synthesis. In Proceedings
of the10th International Conference on VLSI Design, pages 166170, 1996,

K. Mertins et al. Set-up scheduling by fuzzy logic. In Proceedings of the International Conference on Computer
Integrated Manuyfacturing and Automation Technology, pages 345-350, 1994,

I. Rabaey and M. Potkonjak. Estimating implementation bounds for real time DSP application specific circuits.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 13(6), June 1994.

T. J. Ross. Fuzzy Logic with Engineering Applications. McGrawHill, 1 edition, 1995,

25

130}

[31]

[32)

[33]
[34]

(35]

(36]

(37]
(38]

Z. Shao, Q. Zhuge, M. Liu, B. Xiao, and E. H-M. Sha. Switching activity minimization on instruction-level loop
scheduling for VILIW DSP applications. In Proceedings of ASAP, 2004,

A. Sharma and R. Jain. Estimating architectural resources and performance lor high-level synthesis applications.
IEEE Transactions on VLSI systems, 1(2):175-190, June 1993, *

H. Soma, M. Hori, and T. Sogou. Schedule optimization using fuzzy inference. In Proceedings FUZZ-95, pages
1171-1176, 1995,

I.B. Turksen et al. Fuzzy expert system shell for scheduling. SP/E, pages 308-319, 1993.

G. Varatkar and R. Marculescu. Communication-aware task scheduling and voltage selection for total systems
energy minimization. In [EEE/ACM Intl. Conf. on Computer Aided Design, November 2003.

J. L. Wong, §. Megerian, and M. Potkonjak. Forward-looking objective functions: Concepts & applications in
high level synthesis. In Proceedings of Design Automation Conference, 2002,

L. A. Zadeh. The concept of a linguistic variable and its application to approximale reasoning, Part L. Information
Science, 8:199-249, 1975.

L. A. Zadeh. Fuzzy Logic. Computer, 1:83-93, 1988.

J. Zalamea, J. Llosa, E. Ayguade, and M. Valero. Software and hardware techniques to optimize register file uti-
lization in vliw architectures. In Proceedings of the International Workshop on Advanced Compiler Technology
Jor High Performance and Embedded Systems (IWACT), July 2001.

26

	MRG4680115_s01
	MRG4680115_s02

