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Abstract

We propose a design exploration framework which consider impreciseness in
design specibcation. In high-level synthesis, imprecise information is often encountered.
We consider two types of imprecesness: impreciseness underlying on functional unit
specibcations and on contraints: latency and register. The framework is iterative and hased
on a core scheduling called, Register-Constrained Inclusion Scheduling. An example how
the scheduling algorithm work is shown. We demonstrate the effectiveness of our
framework for imprecise specibcation by exploring a design solution for a well-known
benchmark, Discrefe Cosine Transform, and Voltera Fifter. The selected solution meets the

acceptability criteria while minimizing the total number of registers.
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wasmulaumIan switching activity [30] Chen et. al. ldiaue~ Iseaqudmivnu
ﬂs:qnﬁﬁﬁgﬂﬁm%’ums optimize UL 1WA WA IUATIIUIN memory operation nrolel
Gowladedriasuimindiawas (18] wmadindindnldinafinnas  multidimensional
retiming Eichenerger et. al. lgWa3TMIFARTINTWENNTIITASTEMIUFOIT BN TULUL
V0LIW et superscalar lagls stage scheduling [13,14] Akturan L&s Jacome WILRUBORN
s3flumsdamauiinesannisldinndiselotalendalasanduinaiin  software
pipelining [2] Sanasfuiilsinadie retiming W&z force directed scheduling 3T UK
Arrandafdal®osenivmaedldanadnd dszBndmwmivinnuvaldanaans
uar m3lisimaaiuacldning Wong et al. 1dWau13En1sunn objective function 141
lsznirenssadduuazmssaassnisldninens [35] danasfiuminandotasn FLOF
ssngnuaadnnslfimidiamaimelddanludusussimauninensi
fnwuals Dani et. al. lehinaus heuristic un1sle stage scheduling 1fiaansuansas
et sfxoomﬁﬁaja”lﬂﬁ'onﬁé’ﬂéﬁuﬁm?m:éfuﬁwé’wﬁuﬁ'u [11] Zalamea et. al. ¢
wuadimmeduansaurfuassarauafifiosanslinuitanelaoiunluss
anaunIsuiuy  VLIW  [24,25,38] lusiwvasgenauwd’ muﬁﬁ'uﬁ"lﬁﬁwmsﬂ%uﬂ;q
modulo scheduling W saniawluduimwandimass uay register spiling atnalsfia
mu"‘aﬁ’uﬁtﬁfﬂﬂﬁaﬂwsiﬂéqﬁuﬁﬁﬁmmﬂszqnﬁﬁﬁglﬂu‘[ﬁﬂLLa:'Lai‘lei’ﬁm'smﬂ%ﬁUﬂ'zm
liuinaulugnidnsozsaszuuwiedaimuaas s UuNaawe

Tuemddy 3] 16Tmswan inclusion scheduling @efsnsantfasuanaliu
uauqmé’nwmwanzuu%u é’ana‘%ﬁuiﬂﬁgnﬂ?uﬂ;aLLa:ﬁ.’l;J'ﬂ'z'f‘lun'nﬁ'ﬁnnwaanuuu
muldidonlvenuliwivendsg  dm  waclflunsUsznoweualunivesinuamn
niweny 1568 aswlsianwddadngnflildRnandeadbveinisldningniaa

e lunNIIRdaL



P v A ] = {
UNT1 3 Model UAZAIN AL INUN B N THLHG

ry v A = oo a P a
luunitazldaBunuia model fiddn g MlElumy model ULz MAN I Y90
nams model Tadoanuldwindionquiifodiae  uaz operation 699 vasNTFioad

a v
MNEIVa

3.1 119 model T:UULLR&QN&H&N:ﬂBGi&UU

lums model sruvuazgusnmzvasyvdulvgun lussduaodaonssuld
v oa > a v - A i -~ &
fndimslinuuudonsld data flow graph (DFG) 6 = (A& 81 SaluAifiazRasaniin
WUl directed acyclic graph lu  data flow graph Wi 9zdsznausanlvua Vv , edge ¢
uaz weight function Puuealnua vEV

operation luldaazminsfalvualuniW uazAauEUAUTTNI19 operation 3z

o v R A o o X A o

winefamsinavasdoyaiin  operation wiwlUaBn  operation wikiTiaznunsila
directed edge luNTW Uaz weight function 9 map Mimausslnualunmwlldsmam
L J b L L= z L +*v 1 Qs L 1
ANBUE18Y operation NFUWUIAL IMUARL Suldln Ussianuas operation dadataln
71 3.1
u

Rl R2+R3

R4 R5+R6

R7 R8 * R9

R1C= R11 *R12

R13 = R1+R4+R7+R10

HOODe

gﬂﬁ 3.1 Taauazaaad19 DFG

1u3ﬂ'?i 3.1 ugmaldasmagafids=neudan operation Uaz DFG Aguwwiiu lunsw
flisznaudie 5 Tuua Tnua AB.E 1w operation msuanuss Tnua C.0 (iu operation
Mo n&fe V = {AB,CDEL £ = {A - E,B - E,C — E,D > E}. uay
BlAL = B(B) = B[E) = add | gy B(C} = B(D] = muttiply

operation 14 DFG arsunsnandmanilumizedmuinidag Eﬂuuuﬁ‘u'l,s'f Fartuae
v\muﬁa'hpjaanLmummmt?xahumuﬁnmm'lﬁwmu;ﬂunnﬁm%‘u operation nitaq &
ssmnpivilumssenuuutinesianaliwiveuvssmadanminodwi ol deaoin
(89

dmiudanlugmiunsawimsosnuuwin  onverldundosiadunslindsnmu
waztaiNad AU UNIIHAR ﬁaﬁwuaﬁmmuﬁa:gn mode!l  ldean  tuple
§ = (FAMQ Tap F vaneil L-nmjaoﬂizmmammuﬁﬁmmﬁﬁaglut:uuﬁwuﬂ
iueRIzwINetiadaves danuazdigms =(add mul} ugz A wanofle (A Ve 7)



Faudar Ar Folraund tuple (Q1venc erd 31 @ manoflIAMaNYMETaudaz
whodmwm  f Wiiflesfossan e niosusdunsndundn fredunainlu
model ﬁmmm'umu'l.ﬁ'ﬂmsmqmé’nmm:ﬁug ugunslEndanuniafiuiivemiag
duamle eotn Ar=ix: ¥xi Tagdl aflugudnssauiauaamiindmIu f du
Vol (erVEeF) &g v u ms map 910 Ar lUdamauaIdiuiuadalugag [0..1]
wingfie possible degree lumislfudssmlumndnuasse use eifluiattufinanods
degree ﬁnwaammum’fm:gnuau%’u%‘fﬁw%’uwaé’wﬁmiaammuﬁﬁqmé’nwmwﬁaq i
W d Qo) = Inanails rm'aanLLuufuLﬂuﬁawalammnﬁqm uaz
a1y, a) = 0 15a vxmﬂﬁamiaanuuufu‘l@nnau%’u‘lﬁ

maliWaidn @ lumsfisuszsunsseniuld (acceptability level) w83ssULNKE
Yelomiwanain 1w mansougastisraviadowlurassuunaing  wazenin
ugmaia design goal fillaseuaguilsifivnnadosmmandn Sothadn deenuuy
anzaulaszuunadwifisremldluna ity 500 wmhanauasiusBnaeialy
lLidu 6 wszdldianlumsiinuuazimnTBanesiniasfesfonwolesniu souud

PIRM (ideal system) D100EIN2ENUMIHIIMALNIT 100 MH m:?m URI T IUToR
WSty 1 aNudBINIINETT model ledpWaien Aonar) &yt

Q ifgy =53 orgy > 6
Qlar, asl = 1 ifar <100 and gz < 1
T{ﬂl,ﬂ.}j] otherwise, (2 1)

Taofi F 1{lu finear function uszwapfy Aones) = LA9%MNar + Z2ax) — 0,001242 &4
wldrzaumssanivldsming [0.1]

Tﬂ‘n 3.2 usednmiswaaasaaleity Q dhadu Fuaesfs weighted sum YOI
anwmmmaﬂﬂLl'l.vimmmﬂm'l.ummmmmunama'-smﬂn'nn'lmmnm‘lun*ﬁmmu
il 2 i (register count: latency = 1:2) Fntnilsamuntniusenliimuailunts
M 2 mihsnamtaunoseiuuisanedld 1 & nJ'n 2.3 ugAY projection Y3y
2.2 lun13 possivility uas latency (lufiiunensagoni tradeoff)

o
Q
L
bt

esascosso
Lul B R T N T,

o
e FT ATk

] 1%

< . . X .
3N 3.2 manfanwasdarisu Hanal - LE968Mar + Zax] — 0.001242
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v ]
4

coacemcosno
eRWR DD

LAl Esly

511 3.3 Projection 28931 3.2

u

P w o g
Twnidinaldazlddaaunisd

Q Q1 > P1 e OV Gn > Pry e
a1,z Q) == 1 far1 £ p1 . eeandang <pn_,,
T'[Wlm + wsqa ..Wnﬂn] otherwise. (2 2)

v P=| . (% W A i 1
lagfifaanuuun1sasamunsnunuiuny register count sdneiladvaug iy n3ls
WA (power) 3 3.4 (a) ugasdraeastaiMue Q (WaRansan tradeoff Yisaad
fadeilu wr=Zwz=1 lay F wanofaleridu curve 319 Z-shaped luzd 3.4 (b)
W§as projection uaIzll 3.4 (a) lavudaz Z-curve znatufiduass projection VBIUARE
Waridu Q lussww acceptability uaz possivility Curve sulugavznanofisiaaluns
o d' v r.'l A L3 o a l;.: L dlsd 1 Qs ot
mmuﬂuaamqﬂuam:mmmﬂ“ﬁwaaamgaqﬂ ganniMIaanuuLiid AU T NI

dunasnunafionsoanuuuf optimize snaiRuNEV0INTTBENLULUNINILLDY

0e4 W i [
0.8 N E—
Eﬂi
Zae
an
EQE— i} =
0dde—— =
031
0Z24-—
a1
O 1
i— P 40
(b)

gﬂﬁ 3.4 (a) Z-Shaped acceptability function  (b) projection

210 model T19d lnaddeitlaRsnnilymmsiediduuaznisassminens
sadalusl

fnvuadariivug S = (FLAMD uarnsw G = V.61 war o« seaumsuausule
ammnanssaddumoldiuumihsimminiesiudtinaefidvue s mitus

e —— v o w ' 2 . )
as f lu FHdszaunttosuiulduinniwsawinnu « muld @
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3.2 ﬂq&ﬁiu-ﬁ'ma

Wodwainialoy  Zadeh lwwafifuauiwaliutiuen  (mprecise  boundary)
[36,37] wamuaamInsaaduie aefdsinay (element) witig armansauiiundaly
WumnFnvanaeldvinin Aniwilsssmainuanuheziswettuaundn $30
membership degree \Ju 0 (Wilusun®n) wiadn 1 (Idusandn) witin dwsuad
iaimzaanIoliE et U ESndmwiuuda: element nwlel universe Lﬂum'ﬁag
W9 [0..1] Fyazuanis degree MilJusnBnuey element ffuﬂ Fatiuein degree
Yaamuiuwaurin (membership value) i mixTix = 01

Wadisaaz3unindu normal set fnmeluimatuiisindnagnatosnilaifisien
\flw membership degree 1w 1 &% convex WadwaarninufiNeSiaafifl element
xyz 109 3 X < U < z ngnfia Hall > min(palxliualz)]  dusavad (fuzzy
number) 3x1{l convex, normal Werdian fwuald A, B {Jusdnawied uasiweridu
aundn palx! uas EslWlausey smuald * fwnsnszyiuuy binary dee1eeziiu
witslu operation eafl  (He—eXaEamingmax} psnseyivmindinmansuassaiay e
gossnan AB ldifwaalniusciforidumnin A*B éwmdit oy extended
principle [17]
masslzl= \/ (Al Apsiyl)

ey
lasfV uaz /N operation max W&z min @UAIAL

31]'?'; 3.5(a) ugedsnauwed A dufwea normal WnzgUULY triangular Ao1Tanlu
429 universe (2..6)'.a:Lﬁufi'r?’iLﬂu‘lﬂle'fmnﬁqwuaa A fodn 4 fissnndl szduanudae
s 1 (presumption level) Ltﬂxaﬂﬁ 3.5(b) UFAITLEIN TN B 93 universe a;}i‘lwﬁn
(3.7) LLR:E‘IJ'F% 2.5(¢) WEAIHATAININTZYN A+B dtauM It

p(x]T. u[}')T‘ wz
l .............. l

(al A (B (CVA+B

gﬂ'ﬁl 3.5 nsuandnaisd A+B
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A - " - R ] - - ° L3 -l ] 1 .J‘
lumaSsufsudnauwess s o Inadthimuisomld 33msdneg mai
¥ - J - [ - - - (™ - - -~
Frnufimafiansunuradsauic™ u ey 211 AFmsdunibhlunsifandunuvas
E: N - A “ o L= 4 . o L3
BEARWITY NTLT removal TAENAMIAL k WMINSTNTIOI9INM Kk dumeldann
‘ — 1 " i 1. [ a [P ™ a o '
RIAK) = 3IRUA K ARAAKI (gqpsyduaadiad A) Taofl k Huszozvinoumwuny x
A d e LY R a o | A A
uar R duAuiieudnevad curve membership function NULFWATI x=k Uaz R, (IwAud
YNISIUYVEY curve membership function NULERATY x=k Bnalatnalaunnisly mode
- I - ' a . . . o - o ' . [
dyazflumaiendy x lapfi HIXI= M gawiunn x uazdndagnldinmild
| v o — . vy .
divergence Favanofaanunivadaadiwinlan Xua = Xmr  uazmIlEeN defuzzied
& o = o L = gl A s . ] el
value Wumunusasoaimunni ldrmdsnu 599505 defuzzified ldinansislu
LANFIIAN G [29]
NniTSTaIndn IS uilauaaIn U R IR RE T RN BN TUAT A
I W P f P 4 - o A Y i 6
anuiwlfidvaimsinmieduaiuasliouansunileg dedsfioaveiguansmus
(fuzzy set of characteristics) Ay laprmuald Krlal € [0.1.Va € Ar wa B degree
I3 = o 1] a A A’ v 3
anudnlfldlunsiiquénrae a vemmbisdwin § Bluunanaiiadldiodnues
Qmé’nwmzé’u‘lﬁuﬁnm (timing attribute) %W  fuzzy timing attribute & WIUMIEL
o v N { 16 -m 33 _72 } - 1 A d =3 .
fmans £ laud 130T T T L wanedei £ snansaldioan 10,20,35, wie 70 wiian
nmnumsinanasseadiuhfle Be101 = 2,p0020) = 4 pe(38) =1, 101701 =7

Tueu
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UNIN 4 Iterative Design Framework

JUf 4.1 LRGINWIINDBITUAB UM TEANUULWUY iterative §1MIUATWINTTOAN
wuuAlfiRanmssanuuuiiiudasufidainiy PNAANUUVIITLRaNAWLUISUAU
f(initial design configuration) 31N heuristic LFHINMIIAEIRLULL ALAP (as late as

. . . = L JU @~ q'.:
possible ) %38 ASAP (as soon as possible) [8] lunuiduiidaneifiu RCIS onldluln
. . - O P LI 'Y i .
@8% scheduling & allocation 1%31]14. mL:Juaanai'ﬂuﬂlﬁmf}maﬂum:uuu imprecise

o “ o . ' M v = i = & f
mltlunrsaadudaluinissanuuudlaiiuninawalansals

Initial func, unit
md reg. confipwrati »\
__________________________ acceplability function

scheduling
allocation

748
check schedule accfpmble? output schedule
aftributes ) functional unit
e £ and reg. confipuratio

‘ adjust speci ﬁcan'%:ﬁ\ heuristic

311 4.1 N3 design solution WL iterative

RCIS u“Ju.ETana‘%ﬁumﬁma‘nﬁumeﬂfﬁagamm‘lajuﬂuamﬁmﬁuumﬂﬁwmm
u'l'ﬁ'm'lun'm'fﬂﬁ'wi'y'Tcﬂﬂm‘sﬂauﬁumﬁtﬂuzﬂtmunﬁwuuu direct acyclic tazilan
Smumsd i aidanimeaasdasuasly nniudanoiiuezliamenisda
demiudiney  Semreilesusaaiiddumainuussuda:  operation luntiwlu
wihpfmiitivue Lm:f‘i’lmmqmﬁnumwamwwnaé’wﬁﬁﬁﬁm aﬂnfuﬂmﬁnnm:
ﬁanmfmgm‘h'lﬂmwﬁanﬁ’ums‘:ﬁum'mwa'la'?i"lﬁmvli' (acceptability threshold) W1n
'.I'anﬂ'i’l;jaanLLuun:vl@Tﬁﬂmiﬂ%’ua‘hmmm:ﬂi:anJammuﬁnmmﬁﬁagjiua:maao%’u
sanesfiuBnefinalyl eflslumstiudnwmuactssinmuaamibodwomiuduiudnuos

vaIwlIzyn avIanT A lEane
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-
1NN 5 Register-Constrained Inclusion Scheduling

liomfia: Fnafiedanadifu Register-Constraint Inclusion Scheduling (RCIS )
r a [ oo . . . . o aa X )
TIRFE core BANAINY inclusion scheduling 13 Algorithm 5.1 aanaTnykIENINIg

mwaau&lmﬁnwmxmmmﬁﬁﬂéﬁﬁumﬂﬂ gANTnDTRIENTIENuI I reaTaan

5.1 Latency-based Inclusion Scheduling

Tu inclusion scheduling 1% a:ﬁmimqmﬁ'ﬂwmnmuﬁm%‘fiﬂﬁﬁmimmqm
ANBIUSIUIATBIUARSAUIDEIUITE ﬁ’m{llG]’li’]dﬁﬂﬁ’]ﬁﬂNaﬁwﬁﬁlﬁﬁ?ﬂﬂ:ﬁﬂm
dnwosuuudadaan  Snduwileludana3fia inclusion scheduling w=lFn 3dnuamma
afaeaasuuuNrdndmilssnamsmiissuinudssdndudiseied lunsy
fumssruLaastunaudadadldmadwmmindiamanfuuuidiunes  navesda
leyWadn ldugasddnnanidwiy dhasemmedaseunaans ag@mimaaé'aﬂa‘%ﬁuff
famsidanfiesiasss operation lufminnswinnmile g Sezondy heuristic wuud
nmaaaa"ﬂaﬁm'lﬂﬁauua:e‘hmmqmé’nwmmmmswnaé’wﬁ'ﬁ'lﬁ uzlTousuALNTS
nassstassslUdmhad i aiugfimie u.a:u.ﬁanmﬁwaé’wﬁﬁﬁqmﬁnwmzﬁ"ﬁﬁqﬂ"
FIMANM I 9 éfqndﬂai‘fﬁwlﬁ"’lﬁqmé’nmmwmmﬂﬁméﬁuwaﬁ’wﬁﬁa:tﬁﬂmmx‘l'ﬁ

dudayalunisaaduladngg 16 wiuntdenld modute [4]

Algorithm 5.1 Inclusion Scheduling
Input: G =[V,£,Bl Spec =[F, .4, M, Q). and N =#FUs

Output: A schedule 8. with imprecise latency

1 Q= vertices in G with ne meoming edges i nding root nodes
? while Q # empty do
3 Q = proritized Q|
4 U = dequewe [(Q: mark U scheduled
5 pood S = NULL:
n foreach f & {f; z where £; isabke to perform Blul, 1< j £ N}de
7 tenpas = assign heuristic[ S, u, T assign yat FU
5 if Fval_Schedufe| good_S, 1emp_S, G, Spec]
¥ then pood S = 1empS fi od
h S = good 3 keep good schedule
1 foreachv:(u,v| € Edo
12 mdognee V] = indegreafv] — 1
13 if indeyreciv] = 0 then enguece[ Q,v) A od,
i+ od
/5 retumn(3]

" el 4: o 'A J’ ~ o al.

danginu 5.1 i midwrmmansdiieadululendu Eval_Schedule UTIMah 8
4 o ~ ' w [ v . v o
gevzvhmasafiudguansuzssmandinnlddasss  operation  ldwisdwain
ud  wazazihmadsufiorhomildiaudnsuednhanmiaugildnasasnmie

' a ot - w
i ua:aﬂmmﬁmmnqmnwum’h
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Algorithm 5.2 Eval_Schedule
Input: schedules §1,.5z2. G = (V. €, BI. and Spec = |F,.4,.M, Q)
Output: 1 i §y is better than S3. 0 otherwise.

7 diconstruct a modifi ed graph

Go = [Wou&ou il where Vo = W—{unscheduled nodes}, fa =18
3 foreach schedule $; =51 to Sz do

Eo={{Uy¥) : 1,V € Vo, 1f uywinsame L in 5

s and v is immediately after w}

(v}

e,

o Sort graph G according to the topological order

7 foreach level 1 of graph G in topological order do

& ] rewms the functional unit binding for w
] wattr = fuzzyadd_time|u.aitrgattr]y ujl)

7 foresch u:v — U, YV €V, do

1 wair = fuzeymax_tme[vattr, uv.attr]

12 od

11 od

14 LetWisasetof leaves in Ga

15/ merge all values in gualin]S4]

15 qualinl8] = fizzymaxtmme[W1

17 od

18 7 comparmg the overall attributes of both schedules
v return{ compare[gualin]1}, gualin52]1]
ot - a’ L) & o -y
pana3fin 5.2 udanadfiu Eval Schedule T9az¥innsiein edge adlulunsw

nauduninuaaanIIagiau ﬁﬂﬂuﬂaaﬂvxuwQnﬁnmé’mﬁ%‘i’wiaﬁuLLa:Tﬂuﬂﬁoﬁao
Lifanudunusiudaulunm ssusviadt 4 ﬁafumﬂﬁﬁm‘qﬁﬂiﬁa:ﬂua;‘i‘l,ugﬂ
panTdulniil Fousasdrdumsvnomaasusszlnue swudlieaavasusazmiae
fruouiwuuy  discrete mysuamluusstafl 9 erendunsnssiuuuaFanudile
nfluund 3 Sanuneflensuan wazuiedt 11 nanefinmduam max
wuddmueld DFe lagdl V={ABCE={A-=C  a
PIAI=BBI=B(Cl = acd. yasfimiapduin F ={FU,FU2} Taudi T
Snwoynasuaniu (50051 010,071, (20,081, (30, 11} 15 TUz figndnumema
swaauily (1200051 (15,051, [22,097L (35, 11} yipmnrimsdadauudale 1 A gn
Jaassld U uax 8 pndeassli Uz (ysedidasss B I Th a:'lﬁm‘mﬁ'ﬁam
snwoeludin wardamss ¢ 1 U1 vialdldansanaawsfisl weight latency 47.9 ud
fiass ¢ W 2 oldansnanadwiiisl weight latency 52.5 Fotumseisadiue

d i ar ‘ A’ = g 1 J o ) o .~ ' u‘:
T19RANT qan m’nmﬂutwmmama‘m_w*qmrmuﬂqmanwmxmemun FNIUW
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52 danaina Register-Constrained Inclusion Scheduling

panaiflu Register-Constrained Inclusion Scheduling  @IULRGAINIARNETHY 5.3 32
' a o v o d = £ e P . .
Lmnmqmnaanamu'luzﬂ 5.1 Iuwrsnaf 8 @ailu routine Alduszifiniraredadau
AW va  a M oA : v oA & P v [y
flaanialidisRerraniadsiiaeasuniodou
Algorithm 5.3 Register-Constrained Inclusion Scheduling (RCIS)
Input: G = |1V, &, B1. Spec = [RAM, QL and N =210

Output: A schedule 5. with improcise Itencs
P Q = ertices in Gwith no mcoming edges Sl oot nodes
2 while Q # empty do
3 Q = privritized | Q]
4 W = degrewe( Q1 mark w scheduted
5 cod S = NULL:
6 foreach f € (fi 1 where fj i able 10 perform Blul, 1 < j < Nlda
7 emp.S = assignhewrisie[ S, u, T Hamgn w14 f
| & I Lval-Schedufew ithoReg [ good S empsS, G, Spec)
g then cood s = wemp.S fied
i == coodS #7 heep good ~chedule
1 foreach v:{u,v| € Ldo
n indegreel vl = indepree| vl — 1
13 i indeereel v = O then coqueve | Q,v) fiod
Hood

15 return|S|
A =, L FY [ 3 A' LY :‘, = Qe . Il A
-na'lumﬁwmsmﬂwmaamaimLnudmaauuuﬂQﬂumumauaguﬂn WHia9anIaITed
i . b Y A A - o ' ] —
udas operation ma‘[wmﬂu;ﬂuuumaaﬁ‘ﬁ‘ﬁ'mmwmﬁoﬁmﬁm‘m;11 Hxl =y q
wanoiyilunuanuazltioa x s possibility y fedsIanINaUNITIIMTEI IAUAUAS
naduganishauas e lussndadhduiwedandugduuuiediaaludy
: 28 i : g .
'lumsmmmmnmtmmuun:mwﬁauqﬂmswmwaa'[wuﬂ'lugﬂuuuﬁ‘n‘?'m flezands
e W ' “ d v a T 'Y v o a , &
nydadeuntis  aefldatunglwiidafiudfenmainwiedsu  dalufie:

= = o T =l Lo .
oL NIMIAIUI mmi‘lm’mm I8 Elﬂ%ﬂi'lw PAIQL

5.2.1 Imprecise Timing Attribute

Tumsdmmnsldmdimaafuuuaady SududosRarsonms life time 189
wiazlnualuasedadney  wailasonluemdlldldnsvdadduunu  uaslnuauda:
TmuﬂﬁnmL‘%'m'fuuammﬁvuqﬂLﬂugjﬂuuuﬁ‘nfﬁmiﬁﬂmmmi‘l'ﬁam‘ﬁauﬂa?ﬁao
RsenNeidusndndan dafloruasfiony FSTw) wa: FFT(u) Famunofisiafioauas
L'Jmt‘%'uﬁuua:ﬁ‘n‘immaaL*mfléufgﬂn'ﬁﬁ’mumaaTwuﬂ u Hiowu

fw 51 tmuansn 6 = WdoB) ygzanmetadidy nadudumesinem
gaalwua u Tunmw luguuudadion FST) Tavdmindn HrsTial¥t =V qenyng
e lnue u 01993 udU tn 198 X G738 possibility y
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duiulnuedidufine o luudasniapduam 9l FSTIW =0 dafludn
crisp

iy 52 mwuansm @ = VBl Lazansadaddy nandueu sviau
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Algorithm 5.4 Eval_Schedule_with_Reg
Input: schedules g, S, G = V7,8, (). and Spec = [RA4, .M, Q]
Outpur: 1if' Sy is better than 52, 0 odhenyise,

G = | Loy Loe 5 where Vi« V'={unscheduled nodes}, £ v
foreach schedule 5, = 5S¢ to 5 do
Co M) s, Y € Yo, if U, vinsame fu. in &,

wy ba -

i and ¥ is immedisely afler u|

& Calculate register vsage for Gp using Algorithm 4.3
7 Let ¥V is o sef of leaves in Oy

& latency e fuzzymax_time W]

o gqualinis. = Combinc|encyiS, RegiS |

iU od
{2 i comparing the ovcrall attributes of both schedules
13 retum|compare|guality’Ss ., qualitvisa])
Algorithm 5.5 Calculate_Register Count
Input: Scheduded Graph Gy for schedule § and. wriginal DRG G = |V, &, P1 Spec = {104,V Q1
Cuiput: Reg S, contains register counts needed and its possibility

I Caleulale FLT (W) VU = G by Definition 4.3
2 Caleulate [FLTEU) WU o2 Gp by Definitions 4.4-4.5
i Let max_cs be max. finished time , YU € Gy
for ¢s = 1 to max_cs do
[RegAties. aeg, Reg Al gs ,poss | w CountNode [ [FLT,es, Gpl od
V1 FRegin. =01
for cs = | fo max_cs do
TReg RegAtlcs reg. reg we RegAlpsiuoeg
FReg [RegAtics_oreg. poss w

LU

L= - N

. maxf FReg RegAtos_areg poss, Reg Al les) poss | od
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Algorithm 5.6. Count_Node
loput: ;- i i CS
Output: 8 regiaers necded and it possibility at 05

I node_set w [nodes oucupy reg al 05!

2 set Gy i topoltogicat order

I Lot sontedunde be node_set sorted in by sorted (s

4 ok e prey =1

5 ¥ieZ sonednoede | Lok = FALSE. Lecount o FTALSE
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A if Lok e TRUE and Leowune «« FALSL

: then
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I if FindPoth{ 1. 1
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15 od
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7 if g0k = TRUL

8 then

19 reg + 4+ poss s max{poss, iy - = [os]
2 Jeoount == TRUE

3 gd

22 return [reg, poss ]
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Discrete Cosine Transform (DCT) [12] was Volter filter [8]

7.1 Discrete Cosine Transform
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gy Tidnaanaifia RCIS uar inclusion scheduling LD Avg Latency ue9fis
weighted sum 284 latency (RENBEA@LY  1LD2 Max Reg LLﬁmaﬁwmu‘%’%mmﬁgaqﬂﬁ
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allocated were mainly interface processing, warning processing and control process.
ing, when written in C++, amounts to some 15k steps. Speed of execution of the proc.
cssing for a single video frame at the model simulation stage was 600sec., but in rea)
Hime the actual execution of processing for a single frame was completed withip
100msec., satisfying the design objectives.

The driving safety support system configured in SpecC quickly detected the online
IP modules, and we were able to use RPC to perform the functional evaluations.

From the above, we were able to evaluate that the proposed design method enableg
design objectives to be satisfied at the simulation level, and validation with a radio.-
contro'led car was confirmed, satisfying design objectives at speeds up to 10km.

5 Conclusions

We proposed a hardware/software co-design method of the optimal allocation of func-
tions to HW and SW. We performed simulations by connecting the object to be con-
trolled with the control system being designed. Our proposed design method uses
these simulations, following a staged approach to detailed design in allocating the
functions called for by the design specifications to HW and SW. And we proposed an
online method of validation using RPC to access [P components in the network eavi-
ronment. We confirmed the validity of this approach in an application to the design of
image procesting for ITS. We configured dynamic models for the control system,
extended the validation system to apply to the ITS system for control processing, and
evaluated its effectivencss, By using modeling without separating the functions into
HW and SW, there was no need to configure the system in multiple languages. And
the method of trade-offs was used to shorten development time.

In the near future, we will apply the design method to other application and evalu-
ate the degree of effectiveness.
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Abstract. In archiectural synthesis, scheduling and resource allocation
are important steps. During the early stage of the design, irnprecise in-
formation is unavoldable. Under the imprecise syatem characteristics and
constraints, this paper proposes a polynomial-time acheduling algorithm
which minimizes both functional units and registers while scheduling.
The algorithm can be used in design exploration for exploring the trade-
off between latancy and register counts and selecting a solution with
satisfactory performance and cost. The experirents show that we can
achiave a schedule with the same acceptable degree while saving register
upto 37% compared to the traditional algorithm.

1 Introduction

In architectural level synthesis, imprecise information is almost unavoidable. Fos
instance, there may be various cholees of modules lmplementing the functlons or
the component may have not been completely designed down to the geometry
level. Another kind of irnpreciseness or vagueness arises from the way a design
Is considered to be acceptable at architecture level. If a design with latency of
50 cycles is acceptable, what about a design with 51 cycles? Especially when
there are multiple conflicting design criteria, for exampls, is it worth to expand
a latency by two cycles while saving one register and what about expanding 10
more cycles 7 Effective trestment of such impreciseness In high level synthesis
can undoubtedly play a key role In finding optimal design solutions.

In this paper, we present an approach to handle certain imprecise specifica-
tion and use them duting architectural synthesis. The system characteristica are
modeled based on the fuzzy set theory. Register count is consldered as another
dimenslon of imprecise system requirement. We extend the work in {1} to cre-
ata a schedule subject to register constraints under impreciseness. The proposed
algorithm can be integrated into deslgn exploration framework which considers
T Thin mrk wne supportad in part by the THE under grant number MRG4630115,
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the tradeoff befween latency and register usage to find an acceptable solutign
Such systems can be found in many digital signal processing applications, eg.,
communication switches and real-time multimedia rendering systems.

Many researchers have applied the fuzzy logic approach to various kinds of
scheduling problem (10,11]. These approaches, however, do not take into account
the fact that an execution delay of each job can be imprecise and/or multiple
attributes of a schedule. Research works related to register allocation exists iy
high-level synthesis and compiler optimization area for VLIW architecture. For
example, Chen et. al. proposed a loop scheduling for timing and memory op-
eration optimization under register constraint (8]. The technique Is based o
multi-dimensional retiming. Eichenberger et. al. presented an approach for reg.
ister allocation for VLIW and superscalar code via stage scheduling [7]. Danl et.
al. also presented a heuristic which uses stags scheduling to minimize register
requirement. They also target at instruction level scheduling [5). Nonetheless,
these works focus on loop scheduling and do not consider handling the imprecise
system characteristics or specification.

The inclusion scheduling which takes the imprecise system charscteristic
was proposed in [1]. The algerithm was expanded and used in design explo-
ration under imprecise system requirement as well ag the estimation of Tesource
bounds (2,3,4]. However, it does not take register criteria in creating a schedule,

In this paper, we particularly consider both latency and register constraints.
We propose an extended inclusion scheduling which considers the register usage
while performing scheduling. The developed scheduling core, RCIS, Register-
Constrained Inclusion Scheduling, takes imprecise information into account.
Since the latency of the system specification is imprecise, the register usage
of the schedule s imprecise. We study the impreclsa register usage and propose
a heuristic to estimate the register count In the imprecise schedule. Given a
functional specification (in the form of a directed acyclic graph) and a number
of avallable functional units, an inclusion schedule can be efficlently generated
in polynomial time. Our proposed approach can efficlently be used in an itera-
tive design cycle to find an initial design to reduce the number cycles of design
improvements. Experimental results show that, we can achieve a better design
when the number of registers is imited while keeping the same satisfactory re-
quirement.

This paper ia organized as follows: Section 2 describes our models. Section 3
presents the iterative design framework which may integrate our scheduling ap-
proach an” introduce the inclusion scheduling framework. Section 4 presents
necessary de/in‘tions, properties, and heuristics which integrate register consider-
ation into inclusion scheduling framework. Section 5 dizplays some experimental
result ;. Finally, Section 6 draws a conelusion from our work.

2 Owverview and Models
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each vertex in the vertex set V corresponds to an operation and £ is the set of
edges representing data flow between two vertices. Function f defines the type
of operation for node v € V. . . .
Qperations in a data flow graph can be mapped to different functional E.:G
which in turn can have varying cheracteristics. Such a muﬁSB must also m.wrm.?
certain design constraints, for Instance, power and cost imitations. These specifi-
cations are characterized by a tuple § = (F, A, M, @), where F Isthe set of func-
tional unit types available in the system, e.g., {add, mul}. A ls (A, : JQ € F}.
Each Ay Is a set of tuples (a1,...,ar), where a1 to ap represent w.nnzvcog of
particular f. In this paper, we use only latency as an example attribute. {(Note
that our approach is resdily applicable to Include other constraints such as power
and area). Hence, Ay = {z : ¥ z} where z refers to the latency attribute ol f
Mis {uy : ¥f € F} where uy Is a mapping from Ay to w.m.ma of real number
in [0,1], representing a possible degree of using the value. m,Em:.S @ is a func-
tion that defines the degree of a system belng acceptable for different system
attributes. If @(a,,...,ax) = 0 the corresponding design is totally unacceptable
while Q(ay,-..,ax) = 1, the corresponding design is ammE.omq. acceptable.
Using a function @ to define the acceptability of a system is a very .vocan?_
model. It can not only define certain constraints but also express certain design
goals. For example, one is interested In designing a system with latency under
500 and register count being less than 6 respectively. Also, the smaller latency
and register count, the better a system is. The best system would have both
Fg.unu‘ and register count being less than or equal to 100 and 1 respectively. An
acceptability function, 2(ay,as) for such a specification is formally defined as:

0 fay>5000raz>6
Qla;, a2) = 1 ifa,€£100andaz <1 (1)
F(a1,az) otberwise,

where F is assutned to be linear functions, e.g., F(a1,a2) = 1.249689(ay +2a3) —
0.001242 which returns the acceptability between (0,1). Figures 1{a) and 1(b}
illustrates Equation (1) graphically.

s uatvite Lol g

{a) (b)
. s ! Ragister o 1 Z (b} Tta projoction.
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Based on the above model, the combined scheduling/binding we intend ¢
solve can be formulated as follows: ;

Given a specification containing § = {(F, A, M, @), G = (V,£,8), and ac.
ceptability level o, find a schedule under functional unit and register constraingy
for each f in F whose the acceptability degree is greater than or equal to o

Fuzzy sets, proposed by Zadeh, represent a set with imprecise boundary [12),
A fuzzy set z is defined by assigning each element in a universe of discourse
its membership degree p(x) in the unit interval {0, 1], conveying to what degres
z is a member in the set. Let A and B be fuzzy numbers with membership
functions ua{x) and up(y), respectively. Let » be a set of binary operations
{+, -, %, +, min, max}. The arithmetic operations between two fuzzy numbers,
defined on A « B with membemhip function p4.g(z), can use the extension
principle, by [9]: pasn(z) =V purey (B4(2) A 5(y)) where V and A denote max
and min operations respectively.

Based on the basic furry set concept, we model the relationship between
functional unita and possible characteristica such that each functional unit is
associated with a fuzzy set of characteristics. Given a functional unit f and its
possible characteristic set Ay let uy(a) € [0,1),Va € Ay, describe a possibility
of having attribute a for a functional unit f.

3 Iterative Design Process

Figure 2 presen.s an overview of our iterative design process for finding & sat-
isfactory sclutin. One may estimate the Initial design configuration with any
heuristic. The scheduling and allocation process produces the imprecise sched-
ule attributes which are used to determine whether or not the design config-
uration is acceptable. The dashed block elements contsin the scheduling core
which attempts to minimize both latency and register usage. Our scheduling
and allocation process incorporates varying information of each operation. It
takes an arplication modeled by a directed acyclic graph as well as the num-
ber of functional units that can be used to compute this application. Then, the
scheaule of the application is derived. This schedule shows an execution order of
operations in the application based on the available functional units. The total
attributes of the application can be derived after the schedule is computed. The
given acceptability function is then checked with the derived attributes of the
schedule. In order to determine whether or not the resource configuration is sat-
isfied the objective function, we use the acceptability threshold. If the schedule
attributes lead to the acceptability level being greater than the threshold, the

process stops. Otherwise, the resource configuration is updated and this process

is repeated until the design solution cannot be improved or the design solution
is found.
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Fig. 2. [terative design solution finding process

consists of fuzzy sttributes. In a nutshell, inclusion scheduling simply replaces
the computation of accumulated executlon times in a traditional scheduling algo-
rithm by the fuzzy arithmetic-based computation (See Section 2). Hence, fuzzy
arithmetics Is used to compute possible latency from the given functional speci-
fication. Then, using a fuzzy scheme, latency of different schedules are ooEvE.m._n_
to select a functional unit for scheduling an operation. Though the concept is
gimple, the results are very informative. They can be used in many ways such
a3 module selection [2].

In the Inclusion scheduling, to compute a fuzzy latency, it creates a mew
partition graph. based on the original dats fiow graph and adding extra oa.mﬂ
which connect consecutive nodes in the same function unit. Then & dummy sink
node is created and connected to all leaves in the graph.

According to the scheme, we can see that the schedule table is not explicitly
created. Thus, the notion of cortrol step is tmpliclt. This raises a few aspects.
Firgt, the nodes are assumed to start as esrly as possible. If the register con-
straint 1s considered, the ASAP approach may not give a good result. That is it
may be good to start node later while latency is kept the same or even a little
larger to maximize acceptability. Second, the graph is directly used to calculate
fuzzy maximum latency. When considering only overall fuzzy latency,it is not im-
portant that nodes start ASAP or not, since in overall, the fuzzy length remains
the same. However, when taking registers into account, the start time of a node
becomes important inee it can affect the register usage. Different start time can
imply different register usage at esch time step. As a result, s scheduling heuris-
tic must be modified to consider register usage at each time step. Third, in order
to consider this, since a node’ 8 execution time is a fuzzy number, the start time
of the node and its successors become a fuzzy number. When the start time of
the node is & fuzzy number, the finished time of the node is & fuzzy number. We
need to define the fuzzy life time of & node. Hence at each control step, a node

may occupy the functional unit with some possibility. To minimize the number
of regiater in this way, =r¢ must also minimlze the possibility of using csrtaln
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4 RegistersCount Consideration Under Impreciseness
and RCIS

To consider register constraint, we should count the number of registers useg
at each time step. In specific, when we place a node on a schedule, we consider
a life time of the node in the schedule. Traditionally, a life time of a node de.
pends on the location of the node’s successors in the schedule. That is the valye
produced by the node must be held until its successors have consumed it untj
the meximum time step that its successors can start. When an execution time
of a node is a fuzzy number, the fuzzy life time of a node needs to be defined.
In other words, at each control step, a node may occupy the functional unit
with some possibility. In the following, we establish a notion of fuzzy start time,
fuzzy finished time, and fuzzy life time. We then propose an algorithm to cal
culate fuzzy register usage for a schedule. Then both register usage and latency
charactesistics of the schedule are used to chooss the best schedule.

Definition 1 {(F5T(u) and FFT(u}). For G = (V, £, B), and a given scheduls,
a furzy start time and a fuzzy finished time of node of nodeu eV,

1. FST'(u) is a fuzzy set whose membership degree is defined by upsriafz) =y,
ie, node u may start at time step T with possibility y.

2. FFT (u) is o furzy set whose membership degree is defined by pppriu(z) =
y, i, node u may finish ot time step T with possibility y.

For nodes that are executed at time step 0 in each functional unit, FST(u) =
0, which is & crisp value. Further, FFT(v) = FST(v) + EXEC(v), where

]

EXEC(v) is the fuzzy latency of v. When considering earliest start time of
a pode, FST(v) = max(FFT(w)) + 1, Vu; = v.

The general idea of using fuzzy numbers {3 depicted in Figure 3(a) for both
gtart time and finished time. Circles denote the fuzzy boundary which means that

ao-qquh W oap
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the start time and finished time boundary of anode is unclear. [ndeed, they may
also be overlapped 2s shown in Figure 3{a). When a node occuples a resource
at a certain time step, a possibility value is associated with the assignment.
Computing & fuzzy life time for node u requires two fuzzy sets: FST'(u) and
MFFT(u), the maximum of start time of all its successors.

Definition 2. For G = (V,£,3), and a given schedule, fuzry life time of node
u, FLT(x) is o pair of [FST(u), MFFT(u)], where pprpry = FFT(u) +

max(FST(v}), where u = v; € £ and +, max are fuzzy addition, and ?uwc
3»&3:3 respectively.

Given FLT(u), let min_st be the minlmum time step from FST(u) whose
pFsT(u) 18 nonzero, and maz_st be the maximum time step from FST(u) whose
prsT(w) s nonzero end similarly , for min_fin and maz_fin for MM FET(u)-
Without loss of generality, assume that FST(u) and MFFT(u) are sorted in
the increasing order of the time step. We create a fuzzy set JTFST(u), mapping
for a discrete time domain [min_st..maz_st] to real value in [0..1}, showing the
possibility that at time step x, node u will occupy a register for F.ST(u) and
likewise for IM FFT(u) for M FFT{u) as in Definition 3.

Definition 3 (IFST(u) and IMFFT(u)). Given G = (V,£,5), a schedule,
[min_st..maz_st], [min._fin..maz.fin] and FLT(u)

I oprrstiu)(€) = 0 if ¢ < minst V¢ > mazst and otherwise =
MaXvz minst<x<y(BFsT()(Z)), Where ¥ = max(FST(u)) Ay <c .

2 prmprr{c) = 0 if ¢ < min_fin Ve > maz_fin and otheruise =
MeXys,y<z<maz.fin(BMFFT)(Z)) whee y = maz(MFFT(x)) Ay <c

From the above calculation, we assume that for any two starting time value
a,b € FST(u) where a < b, if node u starts at time q, it will be already started
at time b. For MFFT(u), when a < b, 2,b € M FFT(u), if the value for node
u will not be needed at time a, it will not be needed et time b and vice versa,
Notlee that from Definition 3, the possibility of JFST(u) is in nondecreasing
order and the possibility of IM FFT{u) is in non-increasing order.

From IFST(u} and IMFFT(u}, we merge the two sets to create a fuzzy
interval for a node by defining Definition 4.

Definition 4. Given G = (V,£,5), a schedule, IFST(u} and IMFFT{v).
krreryle) = max(prrsTwy(e) Brmrrrn(c)) if minst < ¢ < maz sty
min_fin < ¢ < maz_fin, or prrpren(c) = 0 if ¢ < min(min_st, min_fin)ve >
E.Wxﬂqrnhnhn.ag:‘_nu.:w. and otherwise HIFLT(u) nnu =1.

After we compute the fuzzy life time interval for each node, we can start
compute register usage for each time step which is used to evaluate the quality
of thie fuzzy schedule.

Next, we eaplaln an RCIS framework. which is based on exdsting Inclusion
WA -t W e ; S RS .....1«,...n...u...._.m..”...l... ........L."....w.....u..an...”....h.L...q_._..-th_.r........._m.......v“
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attempts to estimate w\\?ﬁw property of a schedule containing both latency and
register usage. It also keeps a “better” schedule at any iteration.

In RCIS, we siunply replace the portion of code in inclusion scheduling which
evaluates the fu: .y attributes of a schedule by Eval Schedule Reg. Then, the
better schedule is chosen at each iterstion. In EvalSchedule Reg, the fuzzy
latency of the intermediate schedule and fuzzy register usage are computed.
Algorithm . presents a framework which evaluates the quality of the schedule.

T \Qur heuristic considers the register usages by Algorithm 2.

Algorichm ! (Eval Schedule Reg)
Input: schedules §,5;, G =(V,£,8), and Spec = (F, A, M, Q)
Output: | if S| is better than S4, 0 otherwise.

1 Go = (Vo, &, B) where Vo = V—{unssheduled nodes}, & = @

t fo G schedule rm.* .m.._. g .m.u QO

Lo = {(u,v):u,v € Vy, il u,v in same fu_in 5;
and v is immediately after u}

Calculate register usage for G using Algorithm 2

Let W is a set of leaves in Gy

latency(S;] = fuzzymax time(W)

Bﬁ&ﬁm‘_ = Combine(latency (i, Regl5:])

10

1 // comparing the overall attributes of both schedules

13 return(compare(quality[S1], quality(Sa]))

o -3 O

o

Algorithm 2 {Calculate Register_Count)

Input: Scheduled Graph Gq for schedule S and, original DFG G = (V,£,4)
Spec = (F, A, M, Q)

Output: Reg[S] contains register counts needed and its posaibility

1 Calculate FLT(u) Yu € Gy by Definition 2

¢ Caleulate JFLT(u) Yu € Gy by Definition 3

s Let max cs be max. finish time ,Yu € Gy

{ for s =1 to maxcsdo

s {RegAt[cs|.reg, RegAt|cs|. poss) = Count_Node(IFLT, cs, Gg} od
¢ ¥n, FReg(n| =0

7 for s =1 to maxes do

s FReg|RegAt[cs|.reg|.reg = RegAt[cs].reg

) FReg|RegAt[cs].reg|.poss =
10 max(FReg[RegAt|cs].reg]. poss, RegAt|es|. poss) od
t1 Reg|S) = FReg
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Consider Figure 3(b}. When an execution time becomes a fuzzy number,
each box implies that one register ts needed. However, the derived possibility
associated with a time step indicates that that node may not actually exist
during the time step. For example, node may start later or finish earller. In
other words, there is a possibility that a node may not use such a register. With
this knowledge, the register may be shared with others with high possibility.
Constder the overlap interval in Figure 3(b) at time step 7. Ope or two registers
may be used with some possibility. This depends on whether the dependency
between A — B exists. If edge A —+ B exista In the original data flow graph, the
total register count would be one. Algorithm Count_Node Is simply a heuristic
which attempts to count only the ancestor at the current time step.

5 Experiments

Consider the simple DFG, containing nodes {4, B,C,D,E,F,G} and edges
{A- B,C » B,F -+ G,C - D} Assume that Ammsmwm._ functional units
are available and their characteristics are according to Figure 6(a). In the Ta-
ble, Columns “lat™ and “pos” show the latency and its possibility of having the
latency value If the nodes are executed in a functional unit. Assume the system
specification where register axis contains a discrete value ranged in {1..7) and
latency axis ranged in [1..200] and where latency : register count is 1:10.

F 3|FU4

1{FU2|F TTEG2IF

3{FU4

mwommECc
O QMg

O aEc

Q|

(a) ®

Fig- 4. Schedule obtained by (a) RCIS (b) the original IS.

Figure 4(a) shows the resulting schedule we obtain. We notice that FUI and
FU3 are preferable. To calculate FST{u), we assume a heuristic where a node
starts as early as possible. Figure 5{a) compares FLT{A) and FLT(B). We can
see that FST(B) overlaps with MFFT(A).

We summarize the register count and its possibility value for each time step
as shown in Figure 5(b). Then we conclude that the register usage as following:
(1,0.1) and (2,1). It implies that at some control step, 1 register is needed with
very low possibility, e.g. 0.05 and 0.1. The maximum possible finished time of the
schedule is at 92 with possibility 0.1. With this schedule, the average weighted
_.Eho:bnbﬁ&_‘!i qnm.hnnq—quuw Eb&n&ﬂhﬁnwmn _.wnnu.nw__ the
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(s) (b)
Fig.5. (a) FLT(A) and FLT(B) (b) Register counts and possibility each time step.

FUl1 FU2 | FU3 T FU4

51005/ 716515005/ 705
101 1 112|0.7 10] 1 12|07
15[09 (17 1 |15/0.9 17 1
23] 0.1|29/0.05 B?._ 29/0.05

(a) )
Fig. 8. (a) FU charactanistics (b) Coastraint for DOT

Consider a well-known benchmark, discrete cosine transform [6), containing
48 nodes. Assume the same functional unit specification for both adders and
multipliers and the constraint in Figure 6(b) where the register axis is [1..12]
and the latency axis is [1..500). We compare the results obtained from various
cases of verying the number of functional units, The results are shown in Table 1.
Columns “RCIS"and “IS" compare the performance of the schedule by Register-

Constrained Inclusion Scheduling and the original inclusion scheduling (IS). Row
“Avg Latency” shows the weighted sum of latency for each case. Row “Max
Reg” displays the maximum number of registers. Row “Acceptability” shows
the acceptability value obtained using the “Avg latency” and “Max Reg™. Row

: 2acy™ uts the maximum ﬂ..u.mmn ....:..f..w..~.=nh.. and N.n:v‘ “Avg Weight”

| Sp—y <rig e s ey
— = Foram =,
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i inimizing latency. Tables 2(b}-2(c) shows the summarized
- Jw_mwnwo«.smm“ m_.“a”mmzm omgu M‘mwomn counts for RCIS and IS uﬁvmmz..ﬂmg
morM obvious that IS attempts to minimize latency while not ooEEm.:um.n.rm
register usage. From these tables, we can achieve about the same wcomvnm.,g:n%
(and even better acceptability in some case} with fewer number of registers,
which is upto 37% saving for the number of registers for the cass of 7 adders and
5 multipliers. Among all these cases, we see that the oo,nmmﬁwson with 5 adders
and 4 multipliers should be the best. Consider the running tirne. For all n:.o cases,
the maximum running time is approxmately I BWHES 50 seconds to achieve the
results for 7 adders and 5 multipliers under Pentiura 4 2.8GHz, 1GB RAM.

f functional units.
le 1. {a) Comparison of RCIS and IS when varying the number o
NMMM wkwEQ values of register counts for case case 7 adders and § multipliers for

RCIS snd IS.

ndds 4 muls[§ sdds 4 muls[6 adds 5 muls]7 adda € muls[7 adds 5 muls
W.Onm 5 [RCIS] 15 JRCIS| IS 15 |RCIS] 15
Avg Latency! 122 111 132 98 117 99 124 104 127 94

MaxReg | 6 | 8 | 7] 10 |8 1w {7 !{1w] 7] n
Accaptability!0.718t 0.704 (0.68] 0.6% [0.894] 0.691 |0.699| 0.683 |0.8691( 0.683
Max Latency] 226 252 | 296 224 213 197 255 226 230 179
Avg Weight | 188 111 198 98 206 99 210 104 209 94

(s}

#regl 2 13{ 4 1 5 16]7 #regl 2 | 4 [5{ & (7] 8 (1G{11

poss [0.11310.110.1111{1 poes 10.0510.05/1]0.05{1]0.1[ 1 | 1
(b) {c)

6 Conclusion

We propose a polynomial-time scheduling algorithm which considers imprecise-
ness in the system specification, constraint and attempts to create a schedule
which minimizes both latency and register usages. The elgorithm can be inte-
grated into an iterative design process to find acceptable solutions. Our algorithm
considers.imprecise functional unit characteristic and system _.BESSn:n..Sg
the timing characteristic is imprecise, life time of a node in the schedule is impre-
cise. We investigate the imprecise life time of a node in the schedule and Pnn;.am
the register usage. The algorithm can be integrated into a design mwio:w.ﬂon
which explores an acceptable solution trading off latency cycles with register
saving. The experiments show that the better and same quality schedule cen be
achieved using fiwer number of gistars compared to the traditional scheduling

ki
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Hardware Mediators: A Portability Artifact
for Component-Based Systems

Fauze Valério Polpeta' and Antdalo Augusto Fréhlich®

Federsl University of Santa Catarina, PO Box 476
88049-900, Florisndpolis - SC, Brazil
{fanze,guto}@lisba.nfac.br,
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Abatract. In this article we elaborate on portability ln companent-
based opersting systems, focusing in the hardware medistor construct
proposed by Frohlich n the Application-Oriented System Design method.
Diffarently from hardware abstraction layers and virtual machines, hard-
ware mediators have the ability to establish an interface contract between

the hardware and the operating system components and yet Incur in very
little overhead.

The use of hardware mediators in the EP0OS system corroborates the
portability claims associated to the techniques explained in this article,
for it enabled EPOS to be easily ported across very distinct architectures,

such as the B8 and the IA-32, without any modification in its software
components.

1 Introduction

Portability has always been a matter for operating system developers, because
thé very own nature of an operating system has to do with abstracting hardware
components in a way that is suitable for application programmers to develop
“architecture-independent software”. It is expected that an application devel-
oped on'top of a chosen operating system will run unmodified in all architectures
Euwoﬂﬁ.g. that operating system, Therefore, operating systems constitute one
of tha maln pillars of applicative software portability.
* ‘Traditional approaches to make the operating system itself portable are
mainly concentrated in two flanks: Virtual Machines (VM) and Hardware Ab-
stroction Layers (HAL). While considering the virtual machine approach to op-
erating eystem portability, one cannot forget that the virtual machine itself is
pazt of the operating system—sccording to Habermann, the operating syatam
&xtends from the hardware to the application [10). The virtual machine would
ﬂﬁm.ommmﬁ.nns the architecture-dependent portion of the operating system, while
graating’ bortability for the components above. The main deficiencies of this ap-
. m_m_-...rn overhend of uﬁw_._ﬁ_u.mi VM operations into native code. Sevural
Ly A Lo .ii. & f b L . %
T &-ﬁ i & an L A .%Uﬁ!gi
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Design Exploration Framework Under Imprecisenesg
Based on Register-Constrained Inclusion Scheduling

Chantana Chantrapornchail:*, Wanlop Surakumpolthorn?, and Edwin Sha®*+

! Faculty of Science, Silpakorn University, Nakorn Pathom, Thailand
2 m“nc_d of Engineering, King Mongkut’s Institute of Technology, Ladkrabang, Thailand
\ Department of Computer Science, University of Texas, Richardson, Texas, USA

Abstract. In this paper, we propose a design exploration framework which con-
sider impreciseness in dexign specification. In high-level synthesis, imprecise in-
formation is often encountered. Two kinds of impreciseness are considered here:
irprecisc characteristics of functional units and imprecise design constraints, The
proposed design explontion framework is based on efficient scheduling algo-
rithm which considers impreci . Register-Constrained Inclusion Schedul.
ing. We demonstrate the effectiveness of our frumework by exploring a design
sotution for & well-known benchmark, Vbitera filter. The selected solution meets
the acceptability criteria while minimizing the total number of registers.

-mhﬂi.olu.. Imprecise Design Exploration, Scheduling/Allocation, Multiple de-
sign auributes, Imprecise information, Register constraint, Inclusion Scheduling.

1 Introduction

In architectural level synthesis, imprecise information is almost unavoidable. For in-
sunce, an implementation of a particular component in a design may not be known
due 0 several reasons. There may be various choices of modules implementing the
functions or the component may have not been completely designed down 1o *he ge-
ometry level. Even if it has been designed, variation in fabrication process will likely
induce varying area and time measurements. Another kind of impreciseness or vague-
ness arises from the way a design is considered to be acceptable at architecture level,
If a design with latency of 50 cycles is acceptable, what about a design with 51 cycles
versus a design with 75 cycles? This even becomes imprecise especially when there are
multiple conflicting design criteria. For example, is it worth to expand a latenicy by two
cycles while saving one register and what about expanding 10 more cycles ? Effective
treatment of such impreciseness in high level synthesis can undoubtedly play a key role
in finding optimal design solutions.

H_.. this paper, we propose a design exploration framework which considers impre-
cise information underlying in system specification and requirements. Particuiarly, we

" Thiz work was supported in pan oy the TRF under grant number MRG46801135, Thailand.

** This work was supported in part by T1 University Program, NSF EIA 0103709, Texas ARP-
009741-0028-2001 anc. NSF CCR-0309461, USA.

M1, Maher (Ed): ASIAN 2004, LNCS 3321, pp. 78-92, 2004,
© Spriager- Vertag Bertin Heidelbery 2004
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arc interested in the latency and register constraints, However, the approach can be ex-
teaded 1o handle other multiple design criteria. The system characteristics are modeled
tased on the fuzzy set theory. Register count is considered as another dimension of
jmprecise system requirement. The work in [2, 6] is used as a scheduling core in the
iterative design refinement process. The imprecise schedule which minimizes the reg-
ister usage is generated. If the schedule meets acceptability criteria, the design solution
is selected. Otherwise, the resources are adjusted an the process is repeated. Our input
system is modeled using a data flow graph with imprecise timing parameters, Such sys-
tems can be found in many digital signa) processing applications, e.g., communication
switches and real-time multimedia rendering systems. Imprecise specification on both
system parameters and constraints can have a significant impact on component resource
allocation and scheduling for designing these systems. Therefore, it is important to de-
velop synthesis and optimizstion techniques which incorporate such impreciseness.
Most traditional synthesis tools ignore these vagueness or impreciseness in the spec-
ification. In particular, they assume the worst case (or sometimes typical case) execution
time of a functional unit. The constraints are usually sssumed to be a fixed precise value

. although in reality some flexibility can be allowed in the constraint due to the individual

interpretation of an “acceptable” design. Such assumptions can be misleading, and may
result in a longer design process and/or overly expensive design solutions. By properly
considering the impreciseness up front in the design process, a good initial design so-
lution can be achieved with provable degree of acceptance. Such a design solution can
be used effectively in the iterative process of design refinement, and thus, the number
of redesign cycles can be reduced.

Random variables with probability distributions may be used to model such uncer-
tainty. Nevertheless, collecting the probability data is sometimes difficult and time con-
suming. Furthermore, some imprecise information may not be correctly captured by the
probabilistic mode!, For example, certain inconspicuousness in the design goal/constraint
specification, such as the willingness of the user to accept certain designs or the con-
fidence of the engineer towards certain designs, cannot be described by probabilistic
distribution. ’

Many rescarchers have applied the fuzzy logic approach to various kinds of schedul-
ing problem. In compiler optimization, fuzzy set theory has been used to represent un-
predictable real-time events and imprecise knowledge about variables [16]. Lee et.al.
applied the fuzzy inference technique to find a feasible real-time schedule where each
task satisfies its deadline under resource constraints {20]. In production management
area, fuzzy rules were applied to job shop and shop floor scheduling [24, 28], Kaviani
and Vranesic used fuzzy rules to determine the appropriate number of processors for
a given sct of tasks and deadlines for real-time systems [19]. Soma et.al. considered
the schedule optimization based on fuzzy inference engine [27). These approaches,
however, do not take into account the fact that an execution delay of each job can be
imprecise and/or multiple attributes of 'a schedule,

Many research results are available for design space exploration [ 1,8, 13,23]. All
of these works differ in the techniques used to generate a design solution as well as the
solution justification. These works, however, do not consider the impreciseness in the
system atributes such as Jatency constraints and the execution time of a functional unit.




80 C. Chantrapomchai, W. Surakumpolthom, and E. Sha

Recently, Karkowski and Ouenjintroduced & model to handle the imprecise propagation
delay of events [17, 18). In their approach, the fuzzy sct theory was employed 1o modej

imprecise computation time. Their approach applies possibilistic programming based.

on the integer linear programming (ILP) formulation to simultaneously schedule apg
select a functiona! unit allocation under fuzzy area and time constraints. Nevertheless,
the complexity of solving the ILP problem with fuzzy constraints and coefficients can be
wvery high. Purtharmore, they do not consider multiple degrees in acceptability of design
solutions. Several papers were published on the resource estimation (9, 25, 26). Thess
. however, neither consider multiple design attributes nor impreciseness in

tem charactenistics.
Many research works related (o register allocation exists in high-level synthesis and
piler optimization area for VLIW architecture. For example, Chen et. al. proposed

a loop scheduling for timing and memary operation optimization under register con-

straint [14]. The technique is based on multi-dimensional retiming. Eichenberger ct. a],
presented an approach for register allocation for VLIW and superscaler code via stage
scheduling [11, 12). Dani ct. al. also presented a heuristic which uses stage scheduling
to minimize register requirement. They also target at instruction level scheduling [10].
Zalamea et al. presented hardware and software approach to minimize the register’s
usage targeting VLIW architecture [21,22,30]. On the software side, they proposed an
extended version of modulo scheduling which considers register constraint, and register
spilling. However, these work focus on loop scheduling and do not consider handling
the imprecise system characteristics or specification.

In {2], the inclusion scheduling which takes the imprecise system characteristic was
proposed. The algorithm was expanded and used in design exploration under imprecise
system requircment as well as the estimation of resource bounds [4, 5, 7). However, it
does not take register criteria in creating a schedule.

In this paper, we particularly consider both imprecise latency and register con-
straints. We develop a design exploration framework under imprecise specification and
coastraints. The framework is iterative and based on the developed scheduling core,
RCIS, Register-Constrained Inclution Scheduling that takes imprecise information into
account. Experimenta. re.ults show thal we can achicve an accpetable design solution
with minmized number of registers.

This paper is organized as follows: Section 2 describes our models, It also presents
some backgrounds 10 fuzzy set. Section 3 presents the iterative design framework. Sec-
tion 4 presents the scheduling core (RCIS) used in the design exploration framework.
It also addresses some issues when the register count is calculated during scheduling.
Section 5 disp.ays sone experimental results. Finally, Section 6 draws a conclusion
from our work.

2 Overview and Models

Operations and their dependencies in an application are modeled by a venex-weighted
direcied acyclic graph, called a Data Flow Graph, 3 = (V, £, B), where each vertex in
the: veriex set V corresponds to an operation and £ is the set of edges representing data
flow between two vertices. Function § defines the tvpe of operation for node v € V.
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Operations in a data flow graph can be mapped to different ?nn.zo:w_ c_:.ﬁ EEn_._
in turn can have varying characteristics. Such a system must also w-.m&.w certain design
constraints, for instance, power and cost limitations, These mvonmmn»:o.nu are n_sqwn.n_,.
i20d by atuple § = (F, A, M, Q), where ¥ is the et of funciional unit types available
in the system, e.g., {add, mut}. Ais (Af : ¥f € H.w Each A; is a set of tuples
{81,-+ ,ax). where a) to ax represent attributes of vnEnc_n._. IR Ha. this paper, we use
only latency as an example attribute. (Note that our approach is readily applicable to in-
clude other constraints such as power and area). Hence, Ay = {z: V Hv where  refers
to the latency attribfite of f. M is {us : Vf € F} wherc uy is a mapping from Ay to a
set of real number in [0,1], representing a possible degree of using the <-,_=o. Finally, @
is a function that defines the degree of a system being acceptable for different system
anributes. If @(ay, . .. ,ax) = 0 the corresponding design is totally unacceptable while
@(ey,. .- ax) = 1, the corresponding design is definitely acceptable.

Using & function Q to define the acceptability of a system is & very powerful model.
Tt can not only define certain constraints but also express certain design goals. For ex-
ample, one is interested in designing a system with latency under 500 and register count
being less than 6 respectively. Also, the smaller latency and register count, 5.« better
a system is. The best sysiem would have both latency and register count being less
than or equal to 100 and 1 respectively. An accepuability function, @(ay, a7) for such a
specification is formally defined as:

0 ifa, » 500 0orag > 6
Qay,a;3) = 1 ifay €100 andaa < 1 m
F{ay,aq) otherwise,

where F is assumed to be lincar functions, e.g., F{a),a3} = 1.249689(a; + 202) —
0.001242 which returns the acceptability between (0,1). Figures 1{a) and 1(b) illus-
trates Equation (1) graphically.

Based on the above model, the design solution we would like to find is formulated
as following.

Given a specification comaining S = (F, A, M, Q), G = (V, £, ), and accept-
abiliry level o, find a design solution whose the acceprability degree is greater than or
equal to & subject Q.

Fuzzy sets, proposed by Zadeh, represent a set with imprecise boundary {29]. A
fuzzy set z is defined by assigning cach element in a universe of discourse its member-

LATLMLY

== ™ LT ——
-

(a) (b)

Fig 1. (a) Imprecise constraint Latency : Register = | : 2 (b) Its projection




n C. Chantrapornchai, W. Surakumpolthorn, and E. Sha

ship degree u(z) in the unit integval [0, 1}, conveying to what degree  is a member iy,
the set. Let A and B be fuzzy numbers with membership functions i 4(z} and 1Y)

respectively. Let » be a se1 of binary operations {+, -, x, +, min, max}. The EES&o.
operations between two fuzzy numbers, defined on A + B with membership function
sa.8(z). can use the extension principle, by [15): pa.p(z) = Vimzeyp{tia(z) Augly)
where V A denote max and min operations respectively.

Based pn the basic fuzzy set concept, we model the relationship between functiona)
vaits and ible characteristics such that each functional unit is associated with a
furzy set lof characteristics. Given & functional unit £ and its possible characteristic
set Ay let py(a) € [0,1],Va € Ay, describe a possibility of having attribute a for 3
functional unit .

3 Iterative Design Framework

Figure 2 presents an overvic ¥ of our iterative design process for finding a satisfactory
solution. One may estimate the initial design configuration with any heuristic for ex-
ample using ALAP, anu/or # SAP scheduling {7]. The RCIS scheduling and allocation
Pprocess produces the imprecise schedule artributes which are used 1o determine whether
or not the design configuration is acceptable.

RCIS is a scheduling and allocation process which incorporates varying information
of each operation. It takes an application modeled by a directed acyclic graph as well
as the number of functional units that can be used to compute this application. Then,
the schedule of the apg lication is derived. This schedule shows an execution order of
operations in the application based on the available functional units. The total attributes
of the application can be derived after the schedule is computed. The given acceptabitity
function is then checked with the derived attributes of the schedule.

In order to determine whether or not the resource configuration is satisfied the ob-
Jective function, we usc the acceprability threshold, If the schedule attributes lead tothe
acceptability level being greater than the threshold, the process stops. Otherwise, the
resource configuration is adjusted using a heuristic and this process is repeated uniil the
design solution cannot be improved or the design solution is found.

Fig. 2. Design solution finding process using RCIS
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4 Register-Constraint Inclusion Scheduling

In this sestion, we present the register-constraint inclusion uo__onc_mnm AQO.v algo-
rthm. The algorithm is based on the inclusion scheduling core presented in >mmo2__m: 1.
The algorithm evaluates the quality of the schedule by considering imprecise register
criteria which will be discussed later subsections

Specifically, inclusion scheduling is a scheduling method which takes into consid-
cration of fuzzy characteristics which in this case &5 fuzzy set of varying latency val-
ues associated with cach functional unit. The output schedule, in turm, also consists
of fuzzy attributes. In a nutshell, inclusion scheduling simply replaces the computa-
tion of accumulated execution times in a traditional scheduling algorithm by the fuzzy
arithmetic-based computation. Hence, fuzzy arithmetics is used to compute possible la-
tency from the given functional specification. Then, using a fuzzy scheme, latency of
different schedules are compared to select a functional unit for scheduling an operation.
Though the concept is simple, the results are very informative. They can be used in
many ways such as module selection [3], Algorithm 1 presents a list-based inclusion
scheduling framework,

Algorithm 1 (Register-Constralned Inclusion scheduling)
Input: G = (V,£,8), Spec = {F, A, M, Q), and N =FFUs
Output: A schedule S, with imprecise latency

= vertices in & with no incoming edges # finding root nodes

hile Q@ # empty do
Q = prionitized (Q}
u = dequeue(Q); mark u scheduled
good S = NULL;
foreach f € {f; : where f; is able to perform f(u),1 € § € N} de
temp.S = assign_heuristic(S, u, f) - Hassignu atFU [
¥f Eval_Schedule_with Reg(good S, temp.§, G, Spec)
then good S = temp S fi od
§ =good S / keep good schedule
foreach v : {u,v) € Edo
n indegree(v) = indegree{v) — 1
1 I indegree(v) = U then enqueve(Q, v} fi od
14 od

13 return(S)

4

LI T

- e
-

After node u is assigned to f, the imprecise attributes of the intermediate schedule,
is computed. Eval Schedule_with_Reg compares the current schedule with the “best”
one found in previous iterations. The better one of the two is then chosen and the process
is repeated for all nodes in the graph.

In  Algorithmn 1, fuzzy erithmetic simply takes place in routine
Eval_Schedule_with_Reg (Line 8). In this routine, we also considet the register
count used in the schedule. Since an execution time of a node is imprecise, the life time
of a node is imprecise. Traditionally, a life time of a node depends on the location of
the node's successors in the schedule. That is the value produced by the node must be
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held until its successors have cgnsumed it. For simplicity, let the successors CONSyme
the value right after they start.

Recall that & node's execution time is a fuzzy set, where the membership functigy
is defined by u(2) = y. It .mplies that the node will take z time units with Possibility
y. Contequently, a st 11 t'ne and finished time of a node are fuzzy numbers, T, be
ablé 1o calculate fuzzy stat tine and finished time, we must assume that all nogey
have been|assigned 10 functional units already. We assume that resource binding ang
order of exect ting in these resources are given based on the modified DFG (j 2
sckeduled DFG). The modified DFEG is just the oniginal DFG where extra edges due 1

i t nodes executing in the same functional units ars inserted (as constructaq
in Algorithm 3)

41  Imprecse Timing Attributes
In the following, we present basic terminologies used in the algorithm which calculatey
register usage under impreciseness,

Definitlon 1. For G = (V, £, B), and a given schedule, a fuzzy start time of node
% € V, FST(u)} is a fuzzy set whose members ip degree is defined by ppspiyy(z) =y,
Le. node w may start at time step x with possibility y.

For nodes that are executed at time step 0 in cach functional unit, F§T(u) = 0,
which is a crisp value.

Definition 2. For & = (V.£,B). and a given schedule, a Juzzy finished time of node
uw €V, FFT(u) is a fuzzy set whose membership degree is defined by BrrT(z) =
¥, Le, node u may finish at time step T with possibilisy y.

Hence, FFT(v) = FST(v) + EXEC(v), where EX EC(v) is the fuzzy latency
of v. When considering earliest start time of a node, F5T(v) = max,(FFT(u,)) + 1,
(ﬂa. —u, -

i

§

SVYwDNawna L.y,
-

(2 (b)
Fig. 3. A view of furzy start time and finished time

The general idea of using fuzzy numbers is depicted in Figure 3 for both start time
and finished time. Circles denote the fuzzy boundary which means that the start time
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i e is unclear. Indeed, they may also be overlapped
and E.Ei ﬂﬂonqﬂo wmy&m&iﬁw” ”onoan occupies a resource at a certain time step, 2
= :.._m_:w is associated with the assignment. . .
No..;:«. when the timing attribute is a crisp J_.._n. Ea start time z and mauwﬂa
. of & node form an integer interval [z...%]. g&_o—_ ..S: be used to noBmEn e
time ¥ ¢ in the schedule. In our case, a fuzzy life time for 530.: conlains two
_.nmaa“.n“m.um.%ﬂ?u and M FFT(u), the maximum of start time of all its successors.
fuzry s€15.

. For G = (V,E,8). and a given schedule, furzy life time of node

”ow,u.m_m_wﬁﬂw is a pair of [FST{u), M FFT(u)). where pyrrria) = FFT{u) +

max(F sT{w:)), whereu — v; € £ and +, max are fuzry addition and fuzzy max-

thili
P fradi

imum respectively.

i u), let min_st be the minimum time step from F.ST{u) whose BFST(u)
s :mhﬁﬂ.owwaﬂﬁkﬁhﬁ be the maximum time step from FST(u) whose prer(y) is
ponzero. Similarly, let min_fin be the minimum time step from M FFT(u} whose
} is nonzero, and let maz. fin be the maximum tme step from MFFT(u)
ﬂﬂoﬂodﬂwq?u is nonzero. Without loss of mnan.n.:? assume that FST(u) and
MFFT(u) are sorted in the increasing oaﬂ,o-. the time step. We create a ?<”_~< set
JFST(u), mapping for a discrete time domain _35..-?:3@“-&_ to a real \ :nq:.
[0..1), showing the possibility that at time step z, node u will occupy 2 register for
FST(u) and likewise for IM FFT{u) for M FFT{u) as in Definitions 4-5.

Definition 4. G = (V, £, 8}, a given schedule, [min_st...maz st} and FLT(u)

0 ifc < min_st or ¢ > mazx_st

t:.uux?unnv = Emk(u_imahnm.uAtﬂtm..wﬂ?u (=)} otherwise
y=mar{FST(u)) end y<c

Definition 5. G = {V, £, B), a given schedule, [min_fin...maz_fin] and FLT{u)
0 ife < min_finor
¢ > mazr_fin

awun(n.ﬁAumsaanaAtxm.q?u nhﬂ: otherwise
ymmar(MFFT(u)) and y<e

BIMFFT(w(C) =

From the above calculation, we assume that for any two starting time <w._=n a,b e
FST{u) where a < b, if node u staris at time g, it will be already mzﬁ.& at ime b, For
MFFT(u), whena < b, a,b € MFFT(u), if the value for node u .f...: not be q._o&on_
at time g, jt will not be needed at time b and vice versa. Thus, Definitions 4-5 give the

following properties.

Properry 1. The possibility of  F.ST'(u) is in nondecreasing order.

Property 2. The possibility of /M F FT(u) is in non-increasing order.
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From { FST(u) and I M FFT(u), we merge the two sets to create a fuzzy interva]
for a node by defining Definitipn 6.

Definition 6. & = (V. £, B), a given schedule, IFST{u) and IM FEFT(v).

4] if c < min(min_st, min_fin) or
. e Bﬁ?«nu.&.:ﬁu.ﬁav
prrife) = § mex{u;rsrin(ch Brurrrivie)) minst € ¢ < maz.st
ormin_fin € ¢ £ maz_fin
1 otherwite

After we compute the fuzzy life time interval for each node, we can start compute
register usage for each time step.

42  Register Usage Calculation

Once a scheduled DRG is created, FST(u) and FFT{t) must be calculated for all
u € V. Figure 4 displays the meaning of fuzzy life time implied by Definitions 4-5, 54
and F' A denote the fuzzy start time and the fuzzy finished time of node A respectively.
Similarly, 58 snd F B denote the start time and the fuzzy finished time of node B The
furzy life times of A and B are shown in the filled boxes on the right side.

=,_._..n>
[k

-
=

A=

rtwieBad-40- RES R LI W

Flg. 4. Relationship between scheduled nodes and life time

In the figure, the life time of A and the life time of B may overlap. Traditionally,
when the timing attribute is precise, the overlapped interval implies that two registers
A needed during these time steps. In panticular, during time steps 7 and 8, two registers
Are needed.,

‘Whea an execution time becomes a fuzzy number, each box still implies that one
fegister is needed. However, the derived possibility associated with a time step indicates
that that node may not actually exist during the time step. For example, node may
stant later or finished earlier. In other words, there is a possibility that a node may not
use such a register. With this knowledge, the register may be shared with others with
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igh possibility. Consider the overlap interval in Figure 4 at time step 7. One or two
hig ters may be used with some possibility. This depends on whether the dependency
_.nm_“”ona A — B exists. If edge A — B exists in the original data low graph, the total
.cuo ster count would be one. Notice that in this case, the intersection of f m.bﬁé.u:n
i Wha.ﬂmv is not empty. On the contrary, if A and B are independent, the ..omﬁ register
count would be two although the intersection may not be empty as well. This issue must
be considered in calculating register usages.

43  Algorithms

Algorithm 2 presents a framework in evaluating fuzzy latency and register counts .om a
schedule, This algorithm is called after Line 7 in Algorithm | which already assigns
the start time for each node.

In Algorithm 2, Line 6 invokes Algorithm 3 to calculate the life time of all nodes
in schedule and find the maximum register usage. The register usage is then kept in
ReglSi] for a schedule 5. Next, the latency of the whole schedule is then calculated.
Note that after invoking Algorithm 3, necessary timing attributes for all nodes in Go
can be obtained. The latency of the schedule is obtained by just fuzzy maximizing the
finished time of all leaves in Gg. Line 9 merges latency and register usage attributes
of the schedule using some heuristic function. The combined attribute is denoted as a
gualify of the schedule. This quality is then compared in Line 13 to select the best one.

Algorithm 2 (Eval_Schedule.with_Reg)
Input: schedules 51, 82, G = (V, €, 8), and Spee = (F, A, M, Q)
Output: ! if Sy is better than 8,, ( otherwise.

1 Go = (Vo,&, B) where Vo = V—{unscheduled nodes }, £ = @
2 foreach schedule S; = S to S2 do

3 Eo={{u,v):u,v €V, ifu,vinsamefu. in 5
4 and v is immediately after u} )

5  Calculate register usage for Go using Algorithm 3
7 Let Wis a set of leaves in G

3 latency[S8i] = fuzzymax time(W)

¢ quality[Si) = Combine{latency[S;], Reg[5:])

w0 od

i2 / comparing the overall atiributes of both schedules
13 returr.(compare( quality|$1], quatity[Sa]))

Algorithm 3 (Calculate_Reglster_Count)
Input: Scheduled Graph Gy forschedule S and, original DFG G = (V, £, 8) Spec =(F, A, M, Q)
Output: Reg|S] contains register counts needed and its possibility

1 Calculme FLT{u) Yu € Go by Definition 3

2 Caleulate ] FLT(u) Yu € Gp by Definitions 4-5

3 Let max_cs be max. finished ime ,Vu € Go

4 for cs = 1 to max.cs do

H (RegAtes).reg, RegAiles|.poss) = Count_Node{I FLT, ¢s,Go} od
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¢ ¥n, FReg[nj = 0 v

7 forcs = 1 ta maz_cs do

&t  FReg[RegAt(cs).reg).reg = RegAtfes.reg

?  FReg[RegAtles.reg).poss =

10 max(FReg|RegAt|cs].reg). poss, RegAt[es].poss) od
72 Reg|S) = FReg

In-Algorithm 3, RegAt stores maximum number of registers needed at each cs and
ils associated possibility. The values are oblained by Algorithm Count_Node. Lines 7.
10 summarize the overall number of registers needed and its possibility. Algorithy
Count_Node is described in Algorithm 4.

Algorithm 4 (Count_Node)} -
Input: IFLT, Co. cs
Outpat: & registers needed and jts possibility at es

node_set = {nodes occupy reg at cs}
set Go in lopological order
Let sorted node be node_set sorted in by sorted o
poss =0,reg =0
Vi € sorted_node,i.ok = FALSE, icount = FALSE
for every i € sorted_node do
fori=i+llo last node in sorted_node do
ifiok = TRUE and i.count = FALSE
then
reg + +. poss = max(poss, 4y p i) {es)
i.count = TRUER
If FindPath(i, 5}
14 theo j.ok = FALSE /f don't count descendant fj
15 od
i Let § be the last node in sorted_node
” ifjok =TRUE
s then
1 reg + +; poss = max(poss, uy pir((es)
0 od j.count = TRUE §
H

2 rewr {rcg, poss)

VO N R W A e R s

[
[

~ In Algorithm 4, our heuristic only attempts to constder the ancestor al the current
lime step. {1 viher words, we assume that the ancestor finishes first and then its descen-
dants can start. F.ag ok uses to indicate that the associated node should be counted 2t
5.« current step or not. If it is a descendant of any of nodes in the current step, the flag
will be disable. Since the schedule containg every node, the descendant will be started
n.<n.=.=.n=u_. reg and poss store the current number of counted nodes and maximum pos-
_u_g_? At Line 3, the nodes currently in this time step indicated by [ FLT are sorted
inthe Jovo_ommnw_ order according 1o Go. Then we extract each node in the sorted list to
check if any pair are dependent by using FindPath in Line 13, In the loop, it selectively
marks descendant nodes in the current step.

. o
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Let us consider the complexity of Algorithm 4. The time complexity is dominated by
Lines 6-21, which is O(|VI*(|VI+]E)) - Since for DAG, FindPath takes O(|V{+| E).
In Algorithm 3, the caleulation for F LT (u) depends on FST{u) and MFFT (u).
Let N be the number of discrete points in FS8T(u)and M FFI'(u). Lines 1-2 perfform
he calculation whose upper bound is of O(N, |V||E|). The computation for [ LT(u)
is simply a double loop for each node. In overall, Algorithm 3 runs in polynomial time.

5 Experimental Results

We present experimental results on the voltera filter benchmark (7], containing 27
nodes, where 10 nodes require adder units and the rest requires multiplier units. As-
sume that we have two types of functional units: adder and multiplier. whose latencies
are as shown according to Table 1. In the figure, an adder may have different latency
values with the given possibility. Columns *1at” and “pos™ show the latency and its pos-
sibility of having the latency value for each adder and multiplier. Thus, if the nodes are
executed in the functional unit, the node may have variable latency values as well.

Table 1. Adder and multiplier characteristics

FUs  {{lat,poss)] (lat poss)|{lst.poss)|(1at,poss)
|at| poss [Iat| poss |lat] poss [iat] poss
adder [5)005]10] 1 [15] 0.9 [23] 0.1
muttiptier[ 7] 0.5 N2 6.7 1170 1 1291 0.05

Assume the constraint is depicted in Figure 5 where the register axis is (1..7) and
the latency axis is [200..700]. We demonstrate by considering various design config-
uration of varying the number of functional units using RCIS and original inclusion
scheduling as a scheduling core in the design exploration. Due to the characteristics
of the filter, increasing the number of multiplicrs will help reduce the overall latency.
Suppose that we set the acceptability threshold to be 0.8. The results are shown in Ta-
ble 2. In the table, In particular, Columns “RCIS™and “IS" compare the performance
of the schedule by RCIS and the original inclusion scheduling (IS) for each functional
unit configuration. Row “Avg Latency” shows the weighted sum of iatency for each
case, Row “Max Reg” displays the maximum number of registers. Row “Acceptability” -
shows the acceptability value obtained using the “Avg latency” and “Max Reg”. Row
“Max Latency™ presents the maximum latency values for each case. For RCIS, recall
that wy = 1 and wy = 10. That is we consider register criteria ten times as much as the
latency value. RCIS attempts to create a schedule which minimizes the total weighted
sum of w; x 4 wqy where z and y are the weighted latency and weighted register counts
of the resulting schedule. Figure 6 we depict acceptability values for each design con-
figuration based on RCIS. When we increase the number of functional units the latency
decreases while the number of register counts needed increases, However, when the
number of multipliers becomes 4 or more, RCIS can create a schedule which gives the
maximum acceptability values 0.84 (which is greater than the threshold defined at 0.8),




%0 C. Chantrapomchai, W. Surakumpolthom. and E. Sha

By inspecting the resulting schedule, we conclude that 4 multipliers would be suffic;
and adding more multipliers %ill be wasteful. Compared this the schedule woaoqmﬁwg_
IS, we found that since IS does not consider the register criteria, IS attempts to il o
available resources 10 minimize the overall latency values. Thus, the latency of ..,an__
ule generated by 1S keeps decreasing and the number of register counts keep ,an_,nn ed.
This will finally decrease the aceeptability value according the constraint. asing.
From the results, we can see that to achieve the acceptability threshold 0.8, ug;
RCIS will give a better design solution using fewer number of registers Oo:.&mcm_:m
En___ma.m time. For all the cases, the maximum running time is wvnai_.:u.n._m onst et the
10 achieve the results for | adder and 5 multipliers under Pentium 4 2.8GHz, _.Owumnhﬁm

tons_volt_1_10.grw" ——

Fig. 5. Constraint for Voltera filer

Table 2. Exploring vanous number of functional units using RCIS and IS

M add T muls]? add 3 muls[1 add 4 muls]l add 5 muls
RCIST IS CIS] 15 [[RCIS] 1S [RCIS[ 13
Avg Latency | 308 | 300 [| 267 { 270 [| 260 | 260 |{ 260 | 246
Max Reg 2 2 3 3 4 4 4 3
Acceptability| 0.78 | 0.80 }{ 0.84 | 0.84 || 0.84 | 0.84 {| 0.84 | 0.84

Max Latency| 561 | 561 || 474 | 477 || 445 | 445 || 445 | 416

6 Conclusion

‘w . .

o ¢ propaose a design nxv._oacoz framework considering impreciseness. The framework

u_unnv%&.m on the wn:&::ﬁ core, RCIS which considers impreciseness in the system
1fication,and constraint and atiempts to create a schedule which minimizes both

Design Explosation Framework Under lmprecisencss g1

and register usages. The framework can be used (o generate various design $0-
_»"m:nwcuaﬂ. imprecise sysiem consiraints and characteristics and select an acceplable
Eca_,,o: under latency and register criteria, The experiments demonstrate the usage of
mo__..m__ﬂanioqw on a well-known benchmark, where the selected design solution can be
M.H_an with a given acceptability level.

.
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Fig. 6. Acceptability values for esch configuration
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Abstract. A new formalism, cailed I._o_..n_. for .aom:mam Sﬁ.m.:.m..m
Zm_._o_..o_.n_mq logic programming languages with U,.Q.._.,nhg abstraction ._u
introduced. A model theory, based on partial R..QU.:&SQ algebras, is
presented, with respect to which the formalisr is mrwanw sound. A pro-
gramming language built on a subset of Hiord, E._a. its _wsv_namu__.w:o.:
are discussed. A new proposal for defining modules in this framework is
considered, along with several examples.

1 Intreduction

This paper presents a new declarative formalism, n.mr:ma Hiord, ?wn logic pro-
gramming with untyped higher-order logic and Em.&.nwﬁm w,om:.w.nn._o:u. This is
followed by & discussion of various practical restrictions of this _om._n to 3&.8 it
amenable to speedy translation to WAM-compilable code and static w:w_wm_m“

A number of proposals have been made’ over ﬁ.ym past two m@n_ﬂ& S:._s-
troduce higher-order features into logic programmung in 2 n_on_.waw:,\m HE.H,_M.:
by extending the underlying logic, among Q._mn.: »?.o_om and Hilog ﬁL_. _.,um
has proven a very useful way to place on & solid #om_nl ground certain natura
steps that, in the original first-order context of pure _o@_o. programning, seem 8»
compromise declarative transparency. For example, the simple transformation o
code such as the following:

all{Prep, ).
all(Prop, [HIT1]) :- call{Prop 1), all(Prop,Ti).

o

ali(Prop, (3. ]
all(Prop, [HIT1}) :- Prep(®), all{Prep,T1).

or a typed version thercof, turns a Prolog meta-program into a fully declara-
live program in higher-order logic. This simple example tells only a small part
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In high-level synthesis, imprecise information is often encountered. We consider two types of impre-
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ister. The framework is iterative and based on a core scheduling called, Register-Constrained Inclusion
Scheduling. An example how the scheduling algorithm work is shown. We demonstrate the effec-
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1 Introduction

In architectural level synthesis, imprecise information is almost unavoidable. For instance, an implementation of a
particular component in a design may not be known due to several reasons. There may be various choices of modules
implementing the functions or the component may have not been completely designed down Lo the geometry level.
Even if it has been designed, variation in fabrication process will likely induce varying area and time measurements.
Another kind of impreciseness or vagueness arises from the way a design is considered to be acceptable at architecture
level. If a design with latency of 50 cycles is acceptable, what about a design with 51 cycles versus a design with
75 cycles? This even becomes imprecise especially when there are multiple conflicting design criteria. For example,
is it worth to expand a latency by two cycles while saving one register and what about expanding 10 more cycles ?
Effective treatment of such impreciseness in high level synthesis can undoubtedly play a key role in finding optimal
design solutions.

In this paper, we propose a design exploration framework which considers imprecise information underlying in
system specification and requirements. Particularly, we are interested in the latency and register constraints. However,
the approach can be extended to handie other multiple design criteria. The system characteristics are modeled based
on the fuzzy set theory. Register count is considered as another dimension of imprecise system requirement. The
work in [3, 7] is used as a scheduling core in the iterative design refinement process."The imprecise schedule which
minimizes the register usage is generated. If the schedule meets acceptability criteria, the design solution is selected.
Otherwise, the resources are adjusted an the process is repeated. Our input system is modeled using a data flow graph
with imprecise timing parameters. Such systems can be found in many digital signal processing applications, e.g.,
communication switches and real-time multimedia rendering systems. Imprecise specification on both system param-
eters and constraints can have a significant impact on component resource allocation and scheduling for designing
these systems. Therefore, it is important to develop synthesis and optimization techniques which incorporate such
impreciseness.

Most traditional synthesis tools ignore these vagueness or impreciseness in the specification. In particular, they
assume the worst case (or sometimes typical case) execution time of a functional unit. The constraints are usually
assumed to be a fixed precise value although in reality some flexibility can be allowed in the constraint due to the
individual interpretation of an “acceptable” design. Such assumptions can be misleading, and may result in a longer
design process and/or overly expensive design solutions. By properly considering the impreciseness up front in the
design process, a good initial design solution can be achieved with provable degree of acceptance. Such a design
solution can be used effectively in the iterative process of design refinement, and thus, the number of redesign cycles
can be reduced.

Random variables with probability distributions may be used to model such uncertainty. Nevertheless, collecting
the probability data is sometimes difficult and time consuming. Furthermore, some imprecise information may not be
correctly captured by the probabilistic model. For example, certain inconspicuousness in the design goal/constraint
specification, such as the willingness of the user to accept certain designs or the confidence of the engineer towards
certain designs, cannot be described by probabilistic distribution.

Many researchers have applied the fuzzy logic approach to various kinds of scheduling problem. In compiler
optimization, fuzzy set theory has been used to represent unpredictable real-time events and imprecise knowledge
about variables [18]. Lee et.al. applied the fuzzy inference technique to find a feasible real-time schedule where each



task satisfies its deadline under resource constraints [23]. In production management area, fuzzy rules were applied
to job shop and shop floor scheduling {27, 33]. Kaviani and Vranesic used fuzzy rules o determine the appropriate
number of processors for a given set of tasks and deadlines for real-lime systems [22]. Soma et.al. considered the
schedule optimization based on fuzzy inference engine [32]. These approaches, however, do not take into accougt the
fact that an execution delay of each job can be imprecise and/or multiple attributes of a schedule.

Many research results are available for design space exploration [1, 9, 15, 26]. All of these works differ in the
techniques used to generate a design solution as well as the solution justification. These works, however, do not
consider the impreciseness in the system attributes such as latency constraints and the execution time of a functional
unit. Karkowski and Otten introduced a model to handle the imprecise propagation delay of events {19, 20]. In
their approach, the fuzzy set theory was employed to model imprecise computation time. Their approach applies
possibilistic programming based on the integer linear programming (ILP) formulation to simultaneously schedule and
select a functional unit allocation under fuzzy area and time constraints. Nevertheless, the complexity of solving the
ILP problem with fuzzy constraints and coefficients can be very high. Furthermore, they do not consider multiple
degrees in acceptability of design solutions. Several papers were published on the resource estimation [10, 28, 31].
These approaches, however, neither consider multiple design attributes nor impreciseness in system characteristics.

Many rescarch works related to scheduling and register allocation exist in high-level synthesis and compiler op-
timization area for VLIW architecture. Varatkar et. al. proposed a scheduling algorithm for multiprocessor systems
which consider minimizing total system energy [34]. Shao et. al. presented instruction scheduling for loop appli-
cations which considers minimizing switching activity [30]. These work, however, do not consider register usage
minimization. Chen et. al. proposed a loop scheduling for timing and memory operation optimization under register
constraint [16]. The technique is based on multi-dimensional retiming. Eichenberger et. al. presented an approach
for register allocation for VLIW and superscalar code via stage scheduling [13, 14]. Akturan and Jacome also pro-
posed a scheduling algorithm which considers minimizing register usage for software pipelining [2]. The algorithm
uses retiming and force directed scheduling and explores the trade-off between code size , performance, and register
requirements. Wong et. al. developed a strategy to insert objective functions during scheduling and register allocation
steps [35]. Their algorithm is called, scheduling FLOF, which attempts to minimize register usage subjected to the
latency and resource constraints. Dani et. al. also presented a heuristic which uses stage scheduling to minimize
register requirement. They also targeted at instruction level scheduling [11]). Zalamea et. al. presented hardware and
software approach to minimize the register’s usage targeting VLIW architecture [24, 25, 38]. On the software side,
they proposed an extended version of modulo scheduling which considers register constraint, and register spilling.
However, these work focus on loop scheduling and do not consider handling the imprecise system characteristics or
specification. '

In [3], the inclusion scheduling which takes the imprecise system characteristic was proposed. The algorithm was
expanded and used in design exploration under imprecise system requirement as well as the estimation of resource
bounds [3, 6, 8]. However, it does not take register criteria in creating a schedule.

In this paper, we particularly consider both imprecise latency and register constraints. We develop a design
exploration framework under imprecise specification and constraints. The framework is iterative and based on the
developed scheduling core, RCIS, Register-Constrained Inclusion Scheduling that takes imprecise information into
account. Experimental results show that we can achieve an acceptable design solution with minimized number of
registers.



This paper is organized as follows: Section 2 describes our models. It also presents some backgrounds in fuzzy
sel. Section 3 presents the ilerative design framework. Section 4 presents the scheduling core (RCIS) used in the
design exploration framework. It also addresses some issues when the register count is calculated during scheduling,
An example how the scheduling algorithm works is shown in Section 5. Section 6 displays some experimental resylts.
Finally, Section 7 draws a conclusion from our work.

2  Overview and Models

In this section, we first describe our model as well as problem description. Since in developing an inclusion schedule
some fuzzy arithmetics is involved, we also review some basic concepts in fuzzy computation.

2.1 Model Descriptions

Operations and their dependencies in an application are modeled by a vertex-weighted directed acyclic graph, caltled a
Data Flow Graph, G = (V, £, B), where each vertex in the vertex set V corresponds to an operation and £ is the set of
edges representing data flow between two vertices. Function [ defines the type of operation for node v € V. Figure |

+ X

K '
+

Figure I: Testl: Data flow graph example

shows a five-node data flow graph, where ¥V = {A,B,C,D,E}, £ ={A 5 EB S EC S ED 3 E,(u—v
defines a directed edge fromw to v), f(A) = B(B) = B(E) = add, and f(C) = B(D) = multiply.

Operations in a data flow graph can be mapped to different functional units which in turn can have varying
characteristics. Such a system must also satisfy certain design constraints, for instance, power and cost limitations.
These specifications are characterized by a tuple § = (F, A, M, Q), where F is the set of functional unit types
available in the system, e.g., {add, mul}. A is {A¢ : ¥f € F}. Each A¢ is a set of tuples (a1, ..., ax), where a,
to ayx represent attributes of particular f. In this paper, we use only latency as an example attribute. (Note that our ‘
approach s readily applicable to include other constraints such as power and area). Hence, A ¢ = {x : ¥ x} where x
refers to the latency attribute of f. M is {py : VE € F} where 1y is a mapping from A to a set of real number in [0,1],
representing a possible degree of using the value. Finally, @ is a function that defines the degree of a system being
acceptable for different system attributes. If Q(a1,...,ax) = 0 the corresponding design is lotally unacceptable
while Q(ay,...,ax) =1, the corresponding design is definitely acceptable.

Using a function @ to define the acceptability of a system is a very powerful model. It can not only define
certain constraints but also express certain design goals. For example, one is interested in designing a system with
latency under 500 and register count being less than 6 respectively. Also, the smaller latency and register count, the

4



better a system is. The best system would have both latency and register count being less than or equal to 100 and 1
respectively. An acceptability function, @(ay, az) for such a specification is formally defined as:

0 ifa; >50oraz; > 6 .
Qlar,az2) = 1 ifa; <100andaz <1 ()
Flay,az) otherwise,

where F is assumed to be linear functions, e.g., Flay, a2} = 1.24968%{a, + 2a;) — 0.001242 which returns the
acceptability between (0, 1),

Figure 2 illustrates Equation (1) graphically. In this constraint, we express the weighted sum of the two criteria
which gives the preference to minimizing register count twice as much as minimizing latency, that is latency: register
count is 1:2. In other words, we are willing to spend two more latency cycles if one register can be saved.

Figure 3 shows the projection of Equation (1} on latency and possibility axis.

s

AT ST :‘i‘:ﬂ
et APV = A Lo

Figure 3: Projection of constraint in Figure 2.

In general, one may model any criteria by
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¢ ifay >py, . 0T > P,
Qlay,az,...an) = 1 ifay <py,,..-anday <pp. (2)
Flwyay + wzaz + ..wnan) otherwise. .«

where

For example, we can simply replace the register constraint by others such as power. Figure 4(b) depicts an
example of the specification concerning the tradeoff graphically where w1 = 2, w; = 1. Hence, F refers to a z-shaped
curve function which produces a smooth transition between two given points. Figure 4(c) shows the projection of
the 3-dimensional acceptability model to the latency and acceptability plane. In this figure, each z curve represents a
projection of € function to a latency-acceptability plane. An inner curve (tighter latency constraint) corresponds Lo
larger power values. Based on the acceptability model, a design with high acceptability implies an optimized design
towards certain goals.

Based on the above model, the combined scheduling/binding we intend to solve can be formulated as follows:

Given a specification containing S = (F, A, M, Q}, G = (V, £, B), and acceptability level &, find a schedule
under functional unit and register constraints for each f in F whose the acceptability degree is greater than or equal

to & subject Q. :

2.2 Fuzzy Sets

In this section, we give a quick review of fuzzy set theory as it relates to our work. Readers familiar with the theory
can skip this part.

Fuzzy sets, proposed by Zadeh, represent a set with imprecise boundary [36, 37]. In classical (crisp) sets, an
element can either be a member of a set or not at all; hence, its membership degree is either 1 or 0. A fuzzy set is
defined by assigning each element in a universe of discourse its membership degree in the unit interval [0, 1], conveying
to what degree x is a member in the set. This membership value can be defined as a membership function of an element
in the set, u(x) : x — [0, 1.

A fuzzy set is said to be normal if there exists at least one member in the set whose membership value 1s unity.
A convex fuzzy set is defined as: for any x,y, and z in the fuzzy set A, the relation x < y < z implies that
Ha(y) > min(pa{x},ua(z)). A fuzzy number is a normal, convex fuzzy set defined on the real line R. Let A and
B be fuzzy numbers with membership functions pa(x) and pg(y), respectively. Let * be a set of binary operations
{4+, —, %, +, min, max}. The arithmetic operations between two fuzzy numbers, defined on A B with membership

function wa.g(z), can use the extension principle, by [17]:

mae(z) =\ (kalx) Aus(y)) (3)

z=x#*y

where V and /A denote max and min operations respectively.

Fuzzy arithmetic is used to compute an arithmetic operation between two fuzzy numbers. Figure 5(a) shows a
fuzzy number A, which is assumed to be normal triangular-shaped lied on an real line. In this figure, let A be assigned
with the confidence interval (2, 6). The most possible value of A is 4 since its confidence level or presumption level
is 1. Similarly, Figure 5(b) shows the fuzzy number with the confidence interval (3,7} representing B. Figure 5(c)
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demonstrates a graphical result of adding two fuzzy numbers defined on the integer line from Figures 5(a)-5(b), using
Equation (3).

In order to compare two fuzzy numbers, several methods can be used. All of these methods are based on selecting
a representative for each fuzzy number and compare the representatives [21]. One way to oblain the representatives
is using the removal with respect to k, which is a measure of distance from k, computed by R(A, k] = %(Rl[A, k) +
R(A k}), where A is a fuzzy number, k is a reference position on the x-axis, R is the area bounded by the left side
of the curve and the line x = k and similarly for the right side, R .. Another can be mode, which uses the value x
such that pix] = maxi{pn(x;]} for all x; in the fuzzy set. Divergence is another way to calculate the representatives.
It represents the width of the set which is computed by X . — Xmin. In addition, the defuzzified value can be used to
represent the fuzzy sel. Several defuzzified methods can be found tn [29].

Based on the fuzzy set concepl, we model the relationship between functional units and possible characteristics
such that each functional unit is associated with a fuzzy set of characteristics. Given a functional unit f and its possible
characteristic set Ay let pe{a) € [0,1],¥a € Ay, describe a possibility of having attribute a for a functional unit f.
Let us focus on the timing attribute. A fuzzy set of timing characteristic of a functional unit f may be { %, ‘?—40, %—5-, %
}. That is f may use 10, 20, 35, and 70 ume units to execute with different possibility, i.e., kL ¢(10) = .2, u¢ (20} =
A ps(35) = 1 ue(70) = .7,

3 Iterative Design Framework

Find initial # func. unit| . _
i ,‘ - acceptability function

RCIS-scheduling . -
allocation .7 . - - - -acceptabitity threshold

¥
¢ 4
heck schedule ] “S¢eP@able!( ™ gyt schedule
attributes [ yes 7 functional umit
no and reg. configuratio

adjust specification | - heuristic
increase number of FUy
and/or change types

Figure 6: Design solution finding process using RCIS

.

Figure 6 presents an overview of our iterative design process for finding a satisfactory solution. One may estimate
the initial design configuration with any heuristic for example using ALAP, and/or ASAP scheduling |[8]. The RCIS
scheduling and allocation process produces the imprecise schedule attributes which are used to determine whether or
not the design configuration is acceptable.

RCIS is a scheduling and allocation process which incorporates varying information of each operation. It takes an
application modeled by a directed acyclic graph as well as the number of functional units that can be used to compute
this application. Then, the schedule of the application is derived. This schedule shows an execution order of operations



in the application based on the available functional units. The total attributes of the applicatton cun be derived after
the schedule is computed. The given acceptability function is then checked with the derived attributes of the schedule,

In order to determine whether or not the resource configuration is satisfied the objective function, we use the
acceptability threshold. If the schedule atiributes lead to the acceptability level being greater than the threshold, the
process stops. Otherwise, the resource configuration is adjusted using a heuristic and this process is repeated unt the

design solulion cannot be improved or the design solution is found.

4 Register-Constraint Inclusion Scheduling

In this section, we present the register-constraint inclusion scheduling (RCIS) algorithm.The algorithm is based on
the inclusion scheduling core presented in Algorithm 4.1. The algorithm evaluates the quality of the schedule by
considering imprecise register criteria which will be discussed later subsections

Specifically, inclusion scheduling is a scheduling method which takes into consideration of fuzzy characteristics
which in this case is fuzzy set of varying latency values associated with each functional unit. The output schedule,
in turn, also consists of fuzzy attributes. In a nutshell, inclusion scheduling simply replaces the computation of
accumulated execution times in a traditional scheduling algorithm by the fuzzy arithmetic-based computation. Hence,
fuzzy arithmetics is used to compute possible latency from the given functional specification. Then, using a fuzzy
scheme, latency of different schedules are compared to select a functional unit for scheduling an operation. Though
the concepl is simple, the results are very informative. They can be used in many ways such as module selection [4].
Algorithm 4.1 presents a list-based inclusion scheduling framework.

Algorithm 4.1 (Register-Constrained Inclusion scheduling)
Input: G = (V,£,B), Spec = (F, A, M, Q), and N =#FUs
Qutput: A schedule S, with imprecise latency

1 Q = vertices in G with no incoming edges // finding root nodes
2 while Q # empty do

3 Q = prioritized {Q}

4 u = dequeve(Q); mark u scheduled

5 good_S = NULL,;

6 foreach f € {f; : where f; is able to perform B{u),} €j < N}de

7 temp_S = assign_heuristic(S, u, f) /f assign u at FU f
& if Eval_Schedule_with_Reg{good_S, temp_S, G, Spec) '
9 then good.S = temp_S fi od
10 S = good_§ /f keep good schedute
11 foreach v : (u,v) € E do
12 indegree (v) = indegree(v} — 1
13 if indegree(v) = O then enqueve(Q, v) fi od
M4 ood
{5 return(S)



After node u 1s assigned to f, the imprecise attributes of the intermediate schedule, is compuoted,
Eval_Schedule_with_Reg compares the current schedule with the “best” one found in previous iterations. The bet-
ter one of the two is then chosen and the process is repeated for all nodes in the graph.

In Algorithm 4.1, fuzzy arithmetic simply takes place in routine Eval Schedule with Reg {(Line 8). In this routine,
we also consider the register count used in the schedule. Since an executton time of a node is imprecise, the iife time
of a node is imprecise. Traditionally, a life time of a node depends on the location of the node’s successors in the
schedule. Thal is the value produced by the node must be held until its successors have consumed it. For simplicity,
tet the successors consume the value right after they start.

Recall that a node’s execution time is a fuzzy sel, where the membership function is defined by wix) = y. It
implies that the node will take x time units with possibility y. Consequently, a start time and finished time of a node
are fuzzy numbers. To be able to calculate fuzzy start time and finished time, we must assume that all nodes have been
assigned to functional units already. We assume that resource binding and order of nodes executing in these resources
are given based on the modified DFG (i.e, scheduled DFG). The modified DFG is just the original DFG where extra
edges due to independent nodes executing in the same functional units are inserted (as constructed in Algorithm 4.3).

4.1 Imprecise Timing Attributes

In the following, we present basic terminologies used in the algorithm which calculates register usage under impre-

ciseness.

Definition 4.1 For G = (V, £, 3), and a given schedule, a fuzzy start time of node uw € V , FST(u} is a fuzzy set
whose membership degree is defined by Lrsy (%) = U, I.e, node W may start at time step x with possibility y.

For nodes that are executed at time step 0 in each functional unit, FST{u) = 0, which is a crisp value.

Definition 4.2 For G = (V,&, ), and a given schedule, a fuzzy finished time of nodew € V|, FFT (u) is a fuzzy set
whose membership degree is defined by wrer (X)) =y, i.e, node w may finish at time step x with possibility y.

Hence, FFT(v) = FST (v] + EXEC{v), where EXEC(v) is the fuzzy latency of v. When considering earliest start
time of a node, FST(v] = max (FFT {(ui}) + 1, vu, — v
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Figure 7: A view of fuzzy start time and finished time



The general idea of using fuzzy numbers is depicted in Figure 7 for both start time and finished time. Circles
denote the fuzzy boundary which means that the starl time and finished time boundary of a node is unclear. Indeed,
they may aiso be overlapped as shown in Figure 7(b). When a node occupies a resource at a certain time step, a
possibility value is associaled with the assignment.

Traditionally, when the timing attribute is a crisp value, the start time x and finished time y of a node form an
integer interval [x...y], which will be used to compute the register usage in the schedule. In our case, a fuzzy life time
for node u contains two furzy sets: FST (1) and MFFT (1), the maximum of start time of all its successors.

Definition 4.3 For G = [V, £,B), and a given schedule, fuzzy life time of node u, FLT(u) is & pair of
(FST (u), MFFT{u)l, where uprrr(uw) = FFT{u) + max(FST(w;)). where w — vi € & and +, max are fuzzy

addition and fuzzy maximum respectively.

Given FLT (u}, let min_st be the minimum time step from FST (u) whose LirgT (4 is nonzero, and max st be the
maximum time step from FST(u) whose Wgst () is nonzero. Similarly, let min_fin be the minimum time step from
MFFT (u) whose tiamrpT () is nonzero, and let max _fin be the maximum time step from MFFT (1) whose WpreT (u)
is nonzero. Without loss of generality, assume that FST (u} and MFFT (1) are sorted in the increasing order of the time
step. We create a fuzzy set IFST (u), mapping for a discrete time domain [min st...max st} to a real value in [0..1],
showing the possibility that at time step x, node 1 will occupy a register for FST (u) and likewise for IMFFT (u) for
MFFT {u) as in Definitions 4.44.5. |

Definition 4.4 G = [V, £, B}, a given schedule, [min_st...max st] and FLT (u)

0 ifc < min_st orc > max_st

BIEsT(0){C) = ¢ maxyx, min_st<x<y(HrsT(u)(X)) otherwise

y=max(FST(u}}jandy<c

Definition 4.5 G = {V, £, B), a given schedule, [min_fin..max _fin] and FLT (u) -

0 ifc < min_fin or
¢ > max_fin

HIMFET (u)(C} = :
MaXyyx,y<x<maxfin (WMFFT(u){X]))  otherwise

v=max{MFFT[ul}andy<c

From the above calculation, we assume that for any two starting time value a, b € FST (u) where a < b, if node
u starts at time a, it will be already started at time b. For MFFT (u}, when a < b, a,b € MFFT{u], if the value for,
node u will not be needed at time «, it will not be needed at time b and vice versa. Thus, Definitions 4.4—4.5 give the
following properties. '

Property 4.1 The possibility of IFST (u) is in nondecreasing order.

Property 4.2 The possibility of IMFFT (w1} is in non-increasing order.

From IFST (u} and IMFFT (u}, we merge the two sets to create a fuzzy interval for a node by defining Defini-
tion 4.6.
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Definition 4.6 G = (V. &, B}, a given schedule, ITFST (u) and IMFFT (u).

0 if¢ < min{min_st, min_finj or
c > max{max_st, max_fin)
Hirct ) = € max(pirstonfch mimrerruic))  ifminsst < ¢ < max._st .
ormin_fin < ¢ < max_fin
; otherwise

After we compute the fuzzy life time interval for each node, we can start compute register usage for each time

step.

4.2 Register Usage Calculation

Once a scheduled DFG is created, FST (u) and FFT {u) must be calculated forall u € V. Figure 8 displays the meaning
of fuzzy life time implied by Definitions 4.4-4.5, SA and FA denote the fuzzy start time and the fuzzy finished time
of node A respectively. Similarly, SB and FB denote the start time and the fuzzy finished time of node B The fuzzy
life times of A and B are shown in the filled boxes on the right side.

pume 2 Life Time A)
N

3

4

5

6

7 L lpA [N |
8L \/ Sk oin
9 Life Timg B| |
10 i
1 i
12 |
13 [FB i
14 \

Figure 8: Relationship between scheduled nodes and life time

In the figure, the life time of A and the life time of B may overlap. Traditionally, when the timing attribute is
precise, the overlapped interval implies that two registers are needed during these time steps. In particular. during time
steps 7 and 8, two registers are needed.

When an execution time becomes a fuzzy number, each box still implies that one register is needed. However, the
derived possibility associated with a time step indicates that that node may not actually exist during the time step. For
example, node may start later or finished earlier. In other words, there is a possibility that a node may not use such
a register. With this knowledge, the register may be shared with others with high possibility. Consider the overlap
interval in Figure 8 al time step 7. One or two registers may be used with some possibility. This depends on whether
the dependency between A — B exists. If edge A — B exists in the oniginal data flow graph, the total register count
would be one. Notice that in this case, the intersection of [FLT (A) and IFLT(B] is not empty. On the contrary, if A
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and B are independent, the total register count would be two although the intersection may not be empty as well. This
issue must be considered in calculating register usages.

4.3 Algorithms

A
Algorithm 4.2 presents a framework in evaluating fuzzy latency and register counts of a schedule. This algorithm is
called after Line 7 in Algorithm 4.1 which already assigns the start time for each node.

In Algorithm 4.2, Line 6 invokes Algorithm 4.3 to calculate the life time of all nodes in schedule and find the
maximum register usage. The register usage is then kept in Reg[S ] for a schedule 5;. Next, the latency of the whole
schedule is then calculated. Note that after invoking Algorithm 4.3, necessary timing attributes for all nodes in G ¢
can be obtained. The latency of the schedule is obtained by just fuzzy maximizing the finished time of all leaves in
Go. Line 9 merges latency and register usage attributes of the schedule using some heuristic function. The combined
attribute is denoted as a guality of the schedule. This quality is then compared in Line 13 to select the best one.

Algorithm 4.2 (Eval_ Schedule_with_Reg)
Input: schedules 51,5;, G = (V,£,B), and Spec = (F, A, M, Q)
Output: I ifS) is better than S», 0 otherwise.

1 Go = (Vq, &9, B) where Vo = V—{unscheduled nodes}, £, = @
2 foreach schedule S5i = 5 to 52 do

3 Eo={{u,v):u,v € Vs, ifu,vinsame fu. in 5;

4 and v is immediately after 1t}

6  Calculate register usage for Go using Algorithm 4.3

7 Let W is a set of leaves in Go

& latency[Si] = fuzzymax_time( W)

9 qualitySi] = Combine(latency[Si], Reg(Si])

{0 od

-
tw

/f comparing the overall attributes of both schedules

—
e

return(compare(quality[S1], qualin/S21))

Algorithm 4.3 (Calculate Register_Count)

Input: Scheduled Graph Go for schedule $ and, original DFG G = (V, £, B) Spec = (F, A, M, Q)
Output: Reg[S| contains register counts needed and its possibility

! Calculate FLT (1) vu € Go by Definition 4.3

2 Calculate IFLT (u) Vu € Go by Definitions 4.4-4.5

3 Let max_cs be max. finished time ,Vu € G

4 for cs = 1 to max_cs do

5 (RegAtles].reg, RegAt(cs].poss) = Count.Node (IFLT, ¢cs, Go) od
6 ¥n, FReg[n] =0

7 for cs = 1 to max_cs do

8 FReg[RegAt(cs].regl.reg = RegAtlcs).reg

9 FReg[RegAt(cs|.regl.poss =



H max| FReg[RegAtles].regl.poss, RegAtlcs].poss) od
12 Reg(S] = FReg

In Algorithm 4.3, RegAt stores maximum number of registers needed at each cs and its associated possibility.
The values are obtained by Algorithm Count Node. Lines 7-10 summarize the overall number of registers needed and

its possibility. Algorithm Count_Node is described in Algorithm 4.4.

Algorithm 4.4 (Count_Node)
Input: IFLT, Gy, cs
Output: # registers needed and its possibility atcs

! node_set = {nodes occupy reg at ¢s)

2 set Go in topological order

3 Let sorted_node be node_set sorted in by sorted Gp

4 poss =0,reg =0

5 Wi € sorted_node,i.0k = FALSE,i.count = FALSE
6 for every i € sorted.node do

7 for j =i+ 1 to last node in sorted.node do

8 if i.0ok = TRUE and t.count = FALSE

g then
10 reg + +; poss = max(poss, trp7iyfes)
1! i.count = TRUEfi

13 if FindPath(i,j)

i4 then j.ok = FALSE // don’t count descendant fi
15 od

16 Let j be the last node in sorted_node
17 if j.ok = TRUE

18 then

19 reg + +; poss = max(poss, KirrT51(cs)
20 j.count = TRUE fi

27 od

22 return (reg, poss)

In Algorithmn 4.4, our heuristic only attempts to consider the ancestor al the current time slep. In other words, we
assume that the ancestor finishes first and then its descendants can start. Flag ok uses to indicale that the associated
node should be counted at the current step or not. If it is a descendant of any of nodes in the current step, the flag will
be disable. Since the schedule contains every node, the descendant will be started eventually. reg and poss store the
current number of counted nodes and maximum possibility. At Line 3, the nodes currently in this time step indicated
by IFLT are sorted in the topological order according to G o. Then we extract each node in the sorted list to check if
any pair are dependent by using FindPath in Line 13. In the loop, it selectively marks descendant nodes in the current
step.

Let us consider the complexity of Algorithm 4.4. The time complexity is dominated by Lines 6-21, which is
O(IVI3([V|+ |EN)}, since for DAG, FindPath takes O{|V] + {E|).
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In Aigorithm 4.3, the calculation for FLT (u)} depends on FST{u) and MFFT{u]. Let N | be the number of
discrete points in FST{u) and MFFT (u), Lines -2 perform the calculation whose upper bound is of O{N [V||E]].
The computation for [FLT (w] ts simply a double loop for each node. In overall, Algorithm 4.3 runs in polynomial

time.
A"

5 Example

We integrate Algorithm 4.2 into Algorithm 4.1. The new algorithm is called Register-Constrained Inclusion Schedul-
ing (RCIS). In this section, we present an example which shows the calculation for FLT and the resulting schedule.
Then we discuss the results on other benchmarks.

Consider the simple DFG presented in Figure 9. Assume that there are four general functional units available,
where FU1 and FU3 have the same characteristics as well as FU2 and FU4 as shown in Table 1. In the figure, Columns
“(lat,poss)” show the latency and its possibility of having the latency value if the nodes are executed in a functional
unit. In this case, FU1 and FU3 have the same characteristics while FU2 and FU4 have the same characteristics.

La

Figure 9: A simple DFG example.

FUs (lat,poss) | (lat,poss) | (lat,poss) | (lat,poss)

lat | poss | lat | poss | lat | poss | lat | poss | .
FULFU3 | 5 | 005 10 | I5] 09 23] 01
FU2FU4 | 7 | 0.5 |12} 0.7 | 17 1 29 | 0.05

Table 1: Functional unit characteristics

Given the system specification shown in Figure 10, where register axis contains a discrete value ranged in [1..7)*
and latency axis ranged in [1..200]. In the figure, we use the weighted sum as a criteria similar to Equation (1), where
latency : register count is 1:10.

According to Section 4, Figure 11(a) shows the resulting schedule we obtain. We notice that FU1 and FU3 are
preferable. To calculate FST(u), we assume a heuristic where a node starts as early as possible. From this schedule,
consider node B. Figure 12(a) presents FLT{A} containing FST(A) and MFFT (A}, Figure 12(b) presents FLT(B).
For FST(A), possibility y at time x represents a possibility that node A occupies register at time x wilh respect to
the schedule, denoted by rectangles. Notice that for A, there is only one possible start time whose possibility is one.
Similarly for MFFT [A], possibility y at time x represents a possibility that the life time of node A ends at time x,
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Figure 10: Constraint for Figure 9.

FUL | FU2 | Fu3 | Fu4
FUI | Fu2 | FU3 | Fu4

A E -
A F E R

F C .
G D G “ i
i i B . D -

B - -

(b)

(a)

Figure 11: (a) Schedule obtained RCIS for Figure 9 (b) Schedule obtained using the original inclusion
scheduling.

denoted by triangles in the Figure. For two dependent nodes A, B, Figure 13 compares FLT (A} and FLT(B). We can
see that FST (B) overlaps with MFFT{A). Figures 14(b)~ 14(a) shows the FLT (1t) all the nodes.

We summarize the register count and its possibility value for each time step as shown in Figure 15. Then we
conclude that the register usage as following: (1,0.1) and (2,1). It implies that at some control step, 1 registenis
needed with very low possibility, e.g. 0.05 and 0.1. The maximum possible finished time of the schedule is at 92 with
possibility 0.1. With this schedule, the average weighted sum of latency and register is 79.53. Considering oniy the
average latency, the value is 52. Compared to the constraint, with latency 52 and register count 2, the acceptability
degree is 0.76. In fact, this gives the same acceptability level as the original inclusion scheduling whose average
latency is 41 and the maximum register count is 3. The schedule of this case is given in Figure 1(b).

We have tried to experiment on larger graphs. For instance, we expand the graph in Figure 9 by adding nedes, and
following edges {H — J, 1 — ]} (See Figure 16). Using the same constraint as in Figure 10, and the same functional
unit speciftcation in Table 1 while allowing 4 functional units, RCIS yields the schedule with average latency 57 and
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Figure 15: Register counts and possibility each time step.

maximum registers of 2. This yields acceptability value 0.74. Compared to the latency-based inclusion scheduling, it
results in average latency 37 with the maximum register of 4 which also gives the same acceptability level.

6 Experimental Results

We consider the expereiments on exploring design solutions for Discrete Cosine Transform (DCT) [12] and Voltera
filter benchmark [8].

6.1 Discrete Cosine Transtorm

Consider a well-known benchmark, Discrete Cosine Transform, containing 48 nodes. Assume the same functional
unit specification for both adders and multipliers and the constraint in Figure 17 where the register axis is [1..12]
and the latency axis is [1..500]. We assume the functional unit characteristics similar to the example in the previous
section. In the experiment as shown in Table 2. We compare the results obtained from various cases of varying the
number of functional units. The results are shown in Table 3. Columns “RCISand “IS”” compare the performance
of the schedule by Register-Constrained Inclusion Scheduling and the original inclusion scheduling (1S). Row “Avg
Latency” shows the weighted sum of latency for each case. Row “Max Reg” displays the maximum number of
registers. Row “Acceptability” shows the acceptability value obtained using the “Avg latency™ and "Max Reg”. Row
“Max Latency” presents the maximum latency values and Row “Avg Weight” presents weighted sem value for RCIS
and IS. For RCIS, recall that wy = 1 and wz = 10 and for IS, this is the same value as shown in Row “Avg Latency”
since we only consider minimizing latency. Tables 4-5 shows the summarized possibility values for using certain
register counts for RCIS and IS respectively. It is obvious that IS attempts to minimize latency while not considering
the register usage. From these tables, we can achieve about the same acceptability {and even belter acceptability in
some case) with fewer number of registers, which is upto 37% saving for the number of registers for the case of 7

adders and 5 multipliers. Among all these cases, we see that the configuration with 5 adders and 4 multipliers should
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be the best. Consider the running time. For all the cases, the maximum running time is approximately 1 minute 50
seconds to achieve the results for 7 adders and 5 multipliers under Pentium 4 2.8GHz, IGB RAM.

b a % |
M

Figure 16: A simple DFG example 2.

@

FUs (lat,poss) | (lat,poss} | (lat,poss) | (lat,poss)

lat | poss | lat | poss | lat | poss | lat | poss
Adder 5100510 1 15 09 | 23| 01

Multplier | 7 | 0.5 | 12| 0.7 | 17 1 29| 0.05

Table 2: Adder and multiplier characteristics

Sadds 4 muls | 6 adds 4 muls | 6 adds Smuls | 7adds 4 muls | 7 adds 5 muls
RCIS 15 RCIS IS RCIS IS RCIS IS RCIS IS
Avg Latency 122 INE 132 98 117 99 124 104 127 94
Max Reg 6 8 7 10 8 10 7 10 7 11
Acceptability | 0.719 | 0.704 | 0.69 | 0.69 | 0.694 | 0691 | 0.699 | 0.683 | 0.691 | 0.683
Max Latency 226 252 296 224 213 197 255 226 230 179
Avg Weight 188 11 198 98 206 99 210 104 209 94

Table 3: Comparison of RCIS and IS when varying the number of functional units. '

6.2 Votera filter

We present experimental results on voltera filter benchmark, containing 27 nodes, where 10 nodes require adder units
and the rest requires multiplier units. Assume that we have two types of functional units: adder and multiplier, whose
latencies are as shown according 1o Table 1. In the figure, an adder may have different latency values with the given
possibility. Columms “lat” and "pos” show the latency and its possibility of having the latency value for each adder
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Figure 17: Constraint for DCT.

#reg | 2 [ 3] 4 51617
poss [ Ol [3 (00|01 1]1

Table 4: Possibility values of register counts for case 7 adders and 5 multipliers for RCIS.

#reg 2 4 5 6 7 & 10 | 11
poss | 005 | D05 | 1| 005 | 1| 01 l l

Table 5: Possibility values of register counts for case 7 adders and 5 multipliers for IS.
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and mufltiplier. Thus, it the nodes are executed in the functional unit, the node may have variable latency values as
well.

Assume the constraint is depicted in Figure 18 where the regisier axis is [1..7] and the fatency axis 15 [200..700].
We demonstrate by considering various design configuration of varying the number of functional units usigg RCIS
and original inclusion scheduling as a scheduling core in the design exploration. Due to the characteristic of the
filter, increasing the number of multipliers will help reduce the overall latency. Suppose that we set the acceptability
threshold 1o be 0.8. The results are shown in Table 6. Recall that wy = 1 and w; = 10. That is we consider register
criteria ten times as much as the latency value. RCIS attempts to create a schedule which minimizes the total weighted
sum of wyx + way where x and y are the weighted latency and weighted register counts of the resulling schedule.
Figure 19 depicts acceptability values for each design configuration based on RCIS. When we increase the number
of functional units the latency decreases while the number of register counts needed increases. However, when the
number of multipliers becomes 4 or more, RCIS can create a schedule which gives the maximum acceptability values
(0.84 (which is greater than the threshold defined at (.8). By inspecting the resulting schedule, we conclude that 4
multipliers would be sufficient and adding more multipliers wiil be wasteful. Compared this the schedule generated
by 1S, we found that since IS does not consider the register criteria, IS attempts to utilize all available resources to
minimize the overall latency values. Thus, the latency of schedule generated by IS keeps decreasing and the number
of register counts keep increasing. This will finally decrease the acceptability value according the constraint.

From the results, we can see that to achieve the acceptability threshold 0.8, using RCIS will give a better design
solution using fewer number of registers. Consider the running time. For all the cases, the maximum running time is

approximately 2.8 seconds (o achieve the results for 1 adder and 5 multipliers on the same computer.
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Figure 18: Constraint for Voltera filer.



1 add 2 muls 1 add 3 muls | add 4 muls 1 add 5 muls
RCIS IS RCIS IS RCIS IS RCIS 1S
Avg Latency 308 300 267 270 260 260 260 246
Maux Reg 2 2 3 3 4 4 4 5
Acceptability | 0.78 | 0.80 084 | 0.84 0.84 | 0.84 0.84 | 0.84
Max Latency 561 561 474 477 445 443 445 416

Table 6: Exploring various number of functional units using RCIS and IS.

LT

Figure 19: Acceptability values for each configuration.
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7

Conclusion

We propose a design exploration framework considering impreciseness. The framework is based on the scheduling

core,

RCIS which considers impreciseness in the system specification and constraint and attempts o create a schedule

which minimizes both latency and register usages. The framework can be used to generate various design solutions

under imprecise system constraints and characteristics and select an acceptable solution under latency and register

criteria. The experiments demonstrate the usage of the framework on a well-known benchmark, where the selected

design solution can be found with a given acceptability level.
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