

การทำบริสุทธิ์และคุณสมบัติของเอนไซม์ดีอะมิโนเอชิดอะมิเดสจาก

Delftia acidovorans

(Purification and characterization of D-amino acid amidase from
Delftia acidovorans)

โดย ผศ. ดร. กิรตัน หงษ์ทรรศ

วันที่ 30 มิถุนายน พ.ศ. 2547

รายงานวิจัยฉบับสมบูรณ์

การทำบริสุทธิ์และคุณสมบัติของเอนไซม์ดีอะมิโนเอชิดอะมิเดสจาก
Delftia acidovorans

(Purification and characterization of D-amino acid amidase from
Delftia acidovorans)

คณะผู้วิจัย

ผศ. ดร. ทิพรัตน์ หงษ์ทรรศรี

สนับสนุนโดยทบวงมหาวิทยาลัย และสำนักงานกองทุนสนับสนุนการวิจัย
(ความเห็นในรายงานนี้เป็นของผู้วิจัย ทบวงฯและสกอ.ไม่จำเป็นต้องเห็นด้วยเสมอไป)

Abstract (บทคัดย่อ)

Project Code : MRG4680118

Project Title : Purification and characterization of D-amino acid amidase from *Delftia acidovorans*

Investigator : ดร. ทิพรัตน์ หงษ์กัทร์

E-mail Address : tipparat.h@psu.ac.th

Project Period : 1 ปี

Delftia acidovorans เป็นแบคทีเรียที่ผลิตเอนไซม์ดีอะมิโนเอชิดอะมิเดส ซึ่งถูกแยกจากตัวอย่างดินโดยใช้เทคนิคการทำให้เชื้อคุ้นเคย (acclimation culture technique) ในอาหารเลี้ยงเชื้อที่มี D-phenylalanine amide เป็นแหล่งไนโตรเจนเพียงชนิดเดียว แบคทีเรียสามารถขับถ่าย D-phenylalanine amide ไปเหนี่ยวนำแต่ไม่หลั่งเอนไซม์ออกนอกเซลล์ เอนไซม์ที่ผ่านการทำให้บริสุทธิ์ 380 เท่าโดยใช้ การตกรตะกอนด้วยแอมโมเนียมซัลเฟต โครมาໂടกราฟฟิแบบแลกเปลี่ยนประจุลบ แบบไฮโดรฟอฟิก MonoQ และ Superdex มีน้ำหนักโมเลกุลโดยประมาณ 54 กิโลดalaตันจาก sodium dodecyl sulfate-polyacrylamide gel electrophoresis กิจกรรมของเอนไซม์มีความจำเพาะกับ amino acid amides รูปจิมากกว่ารูปแอลโดยเฉพาะ กลุ่มที่มีโครงสร้างวงแหวน เช่น D-phenylalanine amide, D-tryptophan amide and D-tyrosine amide แต่ไม่มีความจำเพาะต่อ D-amino acid amide ที่มีขานดเล็ก เช่น D-, L-alanine amide และ L-serine amide รวมถึงพากโอลิกोเปปไทด์ กิจกรรมของเอนไซม์มีค่าสูงสุดที่อุณหภูมิ 40 °C พีเอช 8.5 และมีความคงตัวที่ 45 °C โดยที่ยังมีกิจกรรมอยู่ถึง 92.5% เมื่อเวลาผ่านไป 30 นาที ดังนั้นการนำเอนไซม์จาก *Delftia acidovorans* ไปประยุกต์ใช้ในระดับอุตสาหกรรมจึงยังต้องมีการปรับปรุงโครงสร้างโมเลกุลของเอนไซม์ให้มีความจำเพาะสูงต่อสารตั้งต้นในรูปดีหรือรูปแอลเท่านั้น

Delftia acidovorans was D-amino acid amidase producing bacteria isolated from soil samples using acclimation culture technique in medium broth containing D-phenylalanine amide as a sole source of nitrogen. This strain produced intracellular, D-amino acid amidase constitutively. The enzyme was purified about 380-fold to homogeneity using ammonium sulfate fractionation, anion exchange chromatography on DEAE Toyopearl 650M, hydrophobic column chromatography on Ether Toyopearl, Butyl Toyopearl and Phenyl Superpose column, MonoQ HR 10/10 and Superdex 200 HR 10/35. The molecular mass of the purified enzyme was estimated to be about 54 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme was active preferentially toward D-amino acid amides to their L-counterparts. It exhibited the strong amino acid amidase activity toward aromatic amino acid amide including D-phenylalanine amide, D-tryptophan amide and D-tyrosine amide, yet it was not specifically active toward low molecular weight D-amino acid amide such as D-, L-alanine amide and L-serine amide. Moreover, it was not specifically active toward oligopeptides. The enzyme showed maximum activity at 40°C and pH 8.5, and appeared to be very stable with the remaining activity of 92.5% in the reaction performed at 45°C for 30 min.

Therefore the industrial application of the enzyme from *Delftia acidovorans* still need further structural development regarding substrate specificity of the enzyme to be strictly acting towards either D- or L-amino acids amides

Keywords : D-Amidase, D-Amino acids, enantioselective amidase, Amino acid amides, *Delftia acidovorans*.

หน้าสรุปโครงการ (Executive Summary)
ทุนพัฒนาศักยภาพในการทำงานวิจัยของอาจารย์รุ่นใหม่

1. ชื่อโครงการการทำบริสุทธิ์และคุณสมบัติของเอนไซม์ดีอะมิโนเอชิดอะมิเดสจาก *Delftia acidovorans*

Purification and characterization of D-amino acid amidase from *Delftia acidovorans*

2. ชื่อหัวหน้าโครงการ หน่วยงานที่สังกัด ที่อยู่ หมายเลขอร์สัพท์ โทรศัพท์ และ e-mail
ดร. ทิพรัตน์ คงภัทรคีรี

ภาควิชาเทคโนโลยีชีวภาพอุตสาหกรรม คณะอุตสาหกรรมเกษตร
มหาวิทยาลัยสงขลานครินทร์ อ. หาดใหญ่ จ. สงขลา 90112

โทรศัพท์(074) 446-727, 286-361, 286-371
โทรศัพท์ (074) 212-889

E-mail htippara@ratree.psu.ac.th

3. สาขาวิชาที่ทำการวิจัย เทคโนโลยีชีวภาพ

4. งบประมาณรวมทั้งโครงการ 240,000 บาท

5. ระยะเวลาดำเนินงาน 1 ปี

6. ได้เสนอโครงการนี้ หรือโครงการที่มีส่วนเหมือนกับเรื่องนี้บางส่วน เพื่อขอทุนต่อ
แหล่งทุนอื่นที่ใดบ้าง

ไม่ได้เสนอต่อแหล่งทุนอื่น
 เสนอต่อ.....

7. ปัญหาที่ทำวิจัย และความสำคัญของปัญหา

การดีอะมิโนในรูปดีจัดเป็นสารเริ่มต้นที่สำคัญในอุตสาหกรรมทางเภสัชกรรม การผลิตยาผ่าหู การผลิตสารเติมแต่งอาหาร โดยเป็นสารตัวกลาง (intermediates) ในการเตรียม ยาปฏิชีวนะกลุ่มเบต้าเลกแتم เช่น semi-synthetic cephalosporins และ penicillins ส่วน D-alanine มีความสำคัญในสารให้ความหวานสังเคราะห์ อะลิตาม (alitame) หรือแม้กระทั่งการสังเคราะห์สารที่มีกิจกรรมทางชีวภาพต่างๆ เช่น เปปไทด์ ชอร์โนน ยาปฏิชีวนะที่มีการดีอะมิโนรูปดีอยู่ในโครงสร้าง [1]

กรดอะมิโนรูปแอล (L-amino acid) ซึ่งพบอยู่ทั่วไปในธรรมชาติ ส่วนใหญ่สามารถผลิตได้โดยวิธีการหมัก ในขณะที่กรดอะมิโนรูปดีส่วนใหญ่ผลิตโดยอาศัยเอนไซม์ ซึ่งนักวิทยาศาสตร์หลายกลุ่มได้พยายามพัฒนากระบวนการใหม่ๆ โดยใช้กลุ่มเอนไซม์ต่างๆ เพื่อผลิตกรดอะมิโนและอนุพันธ์ในรูปดีให้ได้หลายชนิด เมื่อไม่นานมา นี้วิถีของสารในตระล (nitriles) ได้รับความสนใจเป็นอย่างมาก เนื่องจากเป็นวิถีชีวภาพ ที่สามารถนำมาใช้ผลิตสารเคมีที่หายากได้หลายชนิด วิถีนี้แบ่งเป็น 2 วิถีย่อย วิถีแรก อาศัยการทำงานของเอนไซม์ nitrilase ซึ่งจะเปลี่ยนสารในตระลเป็นคาร์บอชิลของสารนั้นๆ [5]

อีกวิถีหนึ่งอาศัยการทำงานของเอนไซม์ nitrile hydratase และเอนไซม์ amidase

เอนไซม์ D-amino acid amidase มีบทบาทในการเร่งปฏิกริยาเพื่อเปลี่ยน D-amino acid amide ได้เป็น D-amino acid และแอมโมเนีย ควบคุมปัจจัยนี้จำนวนเอนไซม์ชนิดนี้ที่มีความจำเพาะกับรูปดี อยู่น้อยมากที่สูกคันพบและศึกษาคุณสมบัติ อีก ทั้งยังมีความจำเพาะกับ D-amino acid amide ไม่กี่ชนิด การแยกและคัดเลือกจุลทรรศ์ ที่มีความสามารถในการย่อย D-amino acid จึงมีความจำเป็นเพื่อการคันพบเอนไซม์ที่มี ความจำเพาะกับรูปดีมากขึ้น รวมถึงสามารถใช้สารตั้งต้นได้กว้างหลากหลายชนิดมาก ขึ้น เพื่อที่จะสามารถผลิตสารหายากได้หลากหลายยิ่งขึ้น

ทางผู้วิจัยได้ทำการแยกแบคทีเรียจากตัวอย่างดิน สามารถแยกแบคทีเรียที่ ย่อย D-phenylalanine amide ได้ 13 และ 19 สายพันธุ์เมื่อทำการแยกที่ 30 และ 45° ตามลำดับ อย่างไรก็ตามมีเพียง 1 สายพันธุ์ที่สามารถย่อย D-tert-leucine amide ซึ่ง D-amino acid amidases ที่มีรายงานมายังไม่มีชนิดใหม่ที่ย่อย D-tert-leucine amide ได้ ซึ่งสายพันธุ์ดังกล่าวได้ถูกส่งไปจัดจำแนกที่ National Collections of Industrial and Marine Bacteria (Sizuoka, Japan) ซึ่งรายงานว่าเป็น *Delftia acidovorans* ดังนั้นจึง ต้องทำการปรับปรุงเอนไซม์เพื่อศึกษาคุณสมบัติและความจำเพาะในการย่อยสารตั้งต้นโดย เนพาะสารที่อยู่ในรูปดี (D-configuration) เพื่อที่จะได้เป็นแนวทางในการนำเอนไซม์มา ปรับปรุงและใช้ประโยชน์ในการปรับปรุงกระบวนการผลิตกรดอะมิโนรูปดีต่อไป โดย งานวิจัยนี้ได้รับความร่วมมือจาก Professor Yasuhisa Asano จาก Toyama Prefectural University ในการจัดส่งสารเคมีที่หายากบางชนิดมาจากประเทศญี่ปุ่น และ เอื้อเพื่อให้ใช้เครื่องมือและอุปกรณ์ในห้องปฏิบัติการ ซึ่งผู้วิจัยได้รับทุนสนับสนุนค่าเดินทางและค่าใช้จ่ายไปดำเนินการทดลองจาก โครงการ NRCT-JSPS Core University Programme

8. วัตถุประสงค์

- 8.1. เพื่อทำบิสูทิ่เอนไซม์ D-amino acid amidase จากเชื้อ *Delftia acidovorans*
- 8.2. เพื่อศึกษาคุณสมบัติของเอนไซม์บิสูทิ่ที่แยกได้
- 8.3. เพื่อศึกษาความจำเพาะในการย่อยสารตั้งต้น (substrate specificity) ของเอนไซม์บิสูทิ่ที่แยกได้

9. ระเบียบวิธีวิจัย

9.1. การทำบิสูทิ่เอนไซม์ D-amino acid amidase

- 9.1.1. โดยทำการเลี้ยงเชื้อ *Delftia acidovorans* ในอาหารเหลว Tryptone Glucose Yeast (TGY) broth ที่อุณหภูมิ 30°ซ เป็นเวลา 24 ชั่วโมง แล้วทำการเหวี่ยงแยกเซลล์ ออกจากน้ำหมัก ล้างเซลล์ 2 ครั้ง แล้วแขวนลอยเซลล์ใน 0.1 M Tris-HCl buffer พีเอช 8.0 ก่อนนำไปทำให้เซลล์แตกโดยใช้เสียงความถี่สูงด้วย sonic oscillator
- 9.1.2. เหวี่ยงแยกส่วนของเหลว แล้ววิเคราะห์กิจกรรมของเอนไซม์ D-amino acid amidase ในการย่อย D-phenylalanine amide ตามวิธีการของ Asano และคณะ (1989)

- 9.1.3. นำส่วนของเหลวมาตกร่องด้วย เกลือ ammonium sulfate อิ่มตัวที่ 20, 40, 60 และ 80% โดยตากองที่ได้ในแต่ละความเข้มข้น จนถูกนำมาละลายใน 0.1 M Tris-HCl buffer พีเอช 8.0 แล้วนำไป dialysis ในบัพเพอร์ เป็นเวลา 24 ชั่วโมง

- 9.1.4. นำสารละลายเอนไซม์ที่ได้ในแต่ละส่วน (fraction) มาวิเคราะห์กิจกรรมของเอนไซม์ตามข้อ 9.1.2

- 9.1.5. เลือกส่วนที่มีกิจกรรมของเอนไซม์สูงสุดมา ทำบิสูทิ่ในขั้นตอนต่อไปด้วยวิธี anion exchange chromatography โดยใช้ DEAE-Toyopearl 650M column, MonoQ HR10/10-FPLC และ size exclusion chromatography โดยใช้ Superdex 200HR10/35-FPLC

- 9.1.6. ทำการตรวจสอบความบิสูทิ่ และประมาณน้ำหนักโมเลกุลของเอนไซม์ที่แยกได้โดย SDS-Polyacrylamide gel electrophoresis

9.2. ศึกษาคุณสมบัติของเอนไซม์บิสูทิ่ที่แยกได้

- 9.2.1. ศึกษาผลของพีเอชต่อ กิจกรรมของเอนไซม์ โดยศึกษา กิจกรรมของเอนไซม์ในบัพเพอร์ชนิดต่างๆ
- 9.2.2. ศึกษาผลของอุณหภูมิต่อ กิจกรรมของเอนไซม์ โดยศึกษา กิจกรรมของเอนไซม์ที่อุณหภูมิ ต่างๆ ตั้งแต่ 0-60°ซ
- 9.2.3. ศึกษาความคงตัวของเอนไซม์ที่พีเอชต่างๆ
- 9.2.4. ศึกษาความคงตัวของเอนไซม์ที่อุณหภูมิต่างๆ

- 9.2.5. ศึกษาผลของโลหะชนิดต่างๆ ต่อกิจกรรมของเอนไซม์
- 9.2.6. ศึกษาผลของสารบัญชีชนิดต่างๆ ต่อกิจกรรมของเอนไซม์
- 9.3. ศึกษาความจำเพาะต่อสารตั้งต้นของเอนไซม์บริสุทธิ์ที่แยกได้ โดยใช้สารตั้งต้น amino acid amides ชนิดต่างๆ และอนุพันธ์ ทั้งในรูปดี และแอล รวมทั้งเปปไทด์สายสั้นๆ ที่มี D และ L-amino acids

10. จำนวนโครงการที่ผู้สมัครกำลังดำเนินการอยู่

ชื่อโครงการ การศึกษาและพัฒนาคุณสมบัติในการกำจัดอนุมูลอิสระของผลิตภัณฑ์ไวน์ผลไม้ โดยใช้พีซสมูนไพรและเครื่องเทศ

ระยะเวลาโครงการ 2 ปี ตั้งแต่ 1 ตุลาคม 2545 ถึง 30 กันยายน 2547

แหล่งทุนที่ให้การสนับสนุน กรมโรงงานอุตสาหกรรม

งบประมาณที่ได้รับ 500,000 บาท

สถานะผู้สมัคร หัวหน้าโครงการ

ผู้ร่วมโครงการ

เวลาที่ใช้ทำวิจัยในโครงการนี้ 5-10 ชั่วโมงต่อสัปดาห์ (โครงการนี้มีงบประมาณจ้างผู้ช่วยวิจัย)

เนื้อหางานวิจัย

วัสดุและวิธีการ

วัสดุและสารเคมี

1. DEAE-Toyopearl 650M
2. Butyl-Toyopearl 650M
3. Cosmosil C18 (5C18-MS) 4.6x150 ของ Nakarai
4. Sumichiral OA-500 (4.6x150 mm) ของ Sumika Analysis Service
5. Marker Proteins
6. Coomassie Brilliant Blue R-250
7. Amino acid amides: D-phenylalanine amide, D-norvaline amide, D-methionine amide, D-tryptophan amide, D-leucine amide, D-n-leucine amide, D-tyrosine amide, D-serine amide, D-threonine amide, D-*allo*-threonine amide, D-proline amide, D-isoleucine amide, D-histidine amide, D-lysine amide, D-tert-leucine amide, D-aspartic acid amide, D-alanine amide, D-glutamic acid amide, D-glutamine amide, D-glycine amide, D-valine amide, L-leucine amide L-phenylalanine amide, L-tyrosine amide, L-norvaline amide, L-alanine amide, L-asparagine amide, L-glutamic acid amide, L-lysine amide, L-proline amide, L-serine amide; amino acids such as D-phenylalanine, D-tert-leucine; and oligopeptides; including (D-phenylalanine)₄, (D-phenylalanine)₃, (D-phenylalanine)₂, D-phenylalanine-L-phenylalanine, L-phenylalanine-D-phenylalanine, (L-phenylalanine)₂
8. Chemicals: KCl, NaCl, MgSO₄, CaCl₂, CrCl₃, MnCl₂, ZnCl₂, PbCl₂, CoCl₂, NiCl₂, CuSO₄, ZnSO₄, Na₂MoO₄, AgNO₃, CdCl₂, HgCl₂, BaCl₂, LiCl₂, PbCl₂, H₂BO₃,

AlCl₃, CuCl₂, K₄FeCN₆, MgCl₂, Fe(NH₄)₂(SO₄)₂, FeC₆H₄O₇.nHO₂, KI, FeCl₃, (NH₄)₆Mo₇O₂₄, RbCl, Co(NH₃)₆Cl₃, CsCl, MnSO₄, SnCl₂, LiBr, MnSO₄ K₃Fe(CN)₆, As₂O₃, Ti₂SO₄, CuCl, EDTA, NaF, Tiron, ethylene glycol, bis (2-aminoethyl ether)-N,N,N,N-tetraacetic acid (EGTA), 8-quinolinol, Bipyridyl, O-phenanthroline 5, 5-dithiobis 2-nitrobenzoic acid (DTNB), Iodoacetic acid, p-chloromercuribenzoic acid (PCMB), N-ethylmaleimide (NEM), phenyl methane sulfonyl fluoride (PMSF), hydroxylamine, NaN₃, KCN, Mercaptoethanol, dithiothreitol (DTT), DL-penicillamine, D-cycloserine, phenzine methosulfate (PMS), potassium ferricyanide, potassium ferrocyanide, thiamine, phenylhydrazine, hydrazine, diphenylhydantoin, sodium barbital, leupeptine, T9777, T9003, T9378, avidine pepstatin A, and miconazole

វិធីការทดสอบ

Enzyme assay

Activity of D-amidase was routinely assayed at 30^oC by measuring the production of D-phenylalanine from D-phenylalanine amide, otherwise specified. The reaction mixture contained 195 μ l of 100 mM Tris-HCl, pH 8.0, 200 μ l of 100 mM D-phenylalanine amide dissolved in 100 mM Tris-HCl (pH 8.0) and 5 μ l of enzyme solution. The reaction was performed at 30^oC for 10 min and then was terminated by adding 200 μ l of reaction mixture to 40 μ l of 2 N HClO₄. D-Phenylalanine was determined by high performance liquid chromatography through Cosmosil C18 column equipped with Sugai U620 column heater (30^oC), a pump (Shimazu LC-10AVP model) and Waters 717 plus Autosampler system controller. The substrate and product were

eluted isocratically by a mobile phase containing 500 ml of methanol, 2 l of milliQ water and 684 μ l of phosphoric acid. Both phenylalanine and phenylalanine amide were detected by UV-VIS detector setting at 254 nm wavelength and the chromatogram was recorded on the Shimadzu C-R6A Chromatopac recorder. One unit of enzyme activity was defined as the amount of enzyme catalyzing the hydrolysis reaction to form 1 μ mol of D-phenylalanine/min.

Analytical methods

Protein content was determined by BioRad assay using BSA as standard or by measuring absorbance at 280 nm. Polyacrylamide gel electrophoresis was carried out in 12% polyacrylamide gel with running buffer (containing 0.25 M Tris-HCl, 2 M glycine and 1% SDS) at 30 mA/gel. Protein bands were stained with Coomassie Brilliant Blue R-250 and destained in methanol/acetic acid/water (3 : 1 : 6 by vol) before drying by ATTO-Rapidry-Mini-System at 65 $^{\circ}$ C for 3 h. Native gel electrophoresis was performed with Native Page AE-6000 supplied by Atto (Tokyo, Japan) in running buffer containing 0.25 M Tris-HCl and 2 M glycine. The gel was stained and destained with dye and solution previously mentioned. The destained gel was then dried at 40 $^{\circ}$ C for 3 h.

Purification of D-amino acid amidase from bacterial culture

D. acidovorans strain 16 was cultivated aerobically at 30 $^{\circ}$ C for 24 h in 10 liters of TGY broth. All purification steps were performed at temperature lower than 5 $^{\circ}$ C, and 10 mM Tris-HCl (pH 8.0) was used throughout the process.

Bacterial cells cultivated in 10 liters of culture broth were separated and washed twice with 0.9 % saline solution. Washed cells were then suspended in 10 mM Tris-HCl

and were disrupted by sonication for 10 min (19 kHz; Insonator model 201M, Kobuta, Tokyo, Japan). Cell debris was removed by centrifugation at 15,000xg for 20 min at 4°C. Protamine sulfate (5% in water) was added in the concentration of 20 μ l/ml of cell-free-extract (CFE) and stirred for 30 min before removal of the precipitant by centrifugation at 15,000xg for 20 min. The obtained supernatant was then fractionated with ammonium sulfate powder. The precipitate obtained at 20 to 40% saturation was separated by centrifugation at 8,000xg for 20 min, and was dissolved in 0.1 M Tris-HCl, pH 8.0 and dialyzed against 5 l of 10 mM Tris-HCl for 24 h. The dialyzed solution was further applied to a DEAE-Toyopearl 650M column (2.5x10.5 cm) equilibrated with 10 mM Tris-HCl. After sample application, the column was washed thoroughly with 10 mM Tris-HCl, and then followed by elution step with the linear gradient of 250 ml of 500 mM NaCl in 10 mM Tris-HCl and 250 ml of 10 mM Tris-HCl buffer. The active fraction, collected and pooled, was further saturated to 5 M NaCl, and was subjected to Ether Toyopearl column, and subsequently to Butyl Toyopearl column. The active fractions which were pooled and concentrated using Microcon® was passed through Phenyl Superose equipped with FPLC system. The elution was achieved by linear gradient beginning with 5 M NaCl in 10 mM Tris-HCl buffer. The active fractions were collected and determined for the enzyme activity, combined, concentrated and washed to remove excessive salt before being applied to MonoQ HR5/5 column equipped with FPLC system. The column was equilibrated with 10 mM Tris-HCl before sample application and the elution length was carried on with linear gradient of 500 mM NaCl in 10 mM Tris-HCl buffer for 1 h at the flow rate of 1 ml/min. Fractions containing protein was detected by UV-Vis detector at 280 nm. The active fractions were pooled and

concentrated using Microcon® spinning at 15,000 rpm. The concentrated sample was passed through Superdex 200HR10/35 column equilibrated with 150 mM NaCl in 10 mM Tris-HCl. Isocratic elution with the same buffer was achieved by FPLC system at the flow rate of 0.5 ml/min.

Substrate specificity

Enzyme activity toward various amino acid amides and oligopeptides was determined by either by the production of amino acids or the formation of ammonia. Quantitative analysis of D- and L-phenylalanine was estimated by HPLC as mentioned above. D-tert-leucine was evaluated by HPLC on Sumichiral OA-5000 with UV-VIS detector at 254 nm. The amino acids were eluted with 2 mM CuSO₄/isopropanol (95:5 by vol) at the flow rate of 1 ml/min. Other amino acids were quantitatively assayed for the ammonia content by the phenol/hypochlorite method using Conway microdiffusion apparatus [6].

Determination of pH and temperature optima

The enzyme reaction was performed in various buffers as follows: 0.1 M acetate buffer (pH 4.0, 4.5, 5.0, 5.5 and 6.0), 0.1 M potassium-phosphate buffer (pH 6.0, 6.5, 7.0, 7.5, 7.8 and 8.5), 0.1 M Tris-HCl buffer (pH 7.5, 8.0, 8.5, 9.0 and 9.5), and 0.1 M sodium bicarbonate buffer (pH 8.7, 10.2, 10.7 and 11.3). D-Phenylalanine amide dissolved in water was used as substrate for the enzyme reaction assay.

The reaction mixture was conducted in 0.1 M Tris-HCl, pH 8.0 at various temperatures in the presence of D-phenylalanine amide as a substrate.

Effects of Metal Ions and Inhibitors

The enzyme activity was determined after the enzyme was pre-incubated at 30°C for 10 min with various compounds at the concentration of 1mM unless specified.

ផលការទទួល

Purification of A-amino acid amidase from *Delftia acidovorans*

D-amino acid amidase was purified from 10 liter of cultured broth of *D. acidovorans* with a recovery of 0.22% by ammonium sulfate fractionation, DEAE-Toyopearl, Ether-Toyopearl, Butyl-Toyopearl, FPLC Phenyl Superose, FPLC MonoQ and FPLC Superdex 200 column chromatography (Table 1). The final step with FPLC Superdex 200 chromatography provided a single band on SDS/PAGE (Figure 1) corresponding to the only peak on the chromatogram, which exhibited the activity toward D-phenylalanine amide. The molecular mass was estimated to be about 50 kDa by SDS/PAGE. The native molecular mass of the enzyme was then calculated from the relative mobility compared with those of the standard proteins: glutamate dehydrogenase (290 kDa), lactate dehydrogenase (142 kDa), enolase (67 kDa), adenylate kinase (32 kDa), and cytochrome C (12.4 kDa) (products of Oriental Yeast Co.). However, the molecular mass of the native enzyme cannot be drawn by high-pressure liquid chromatography performed on Toso G-3000 SW column due to its high hydrophobicity. This highly hydrophobic property could explain the significant loss of enzyme activity in the process of enzyme concentration using ultrafiltration membrane when the enzyme was highly homogeneous in the presence of high salt concentration. The strong activity was eventually found when a piece of the membrane filter was

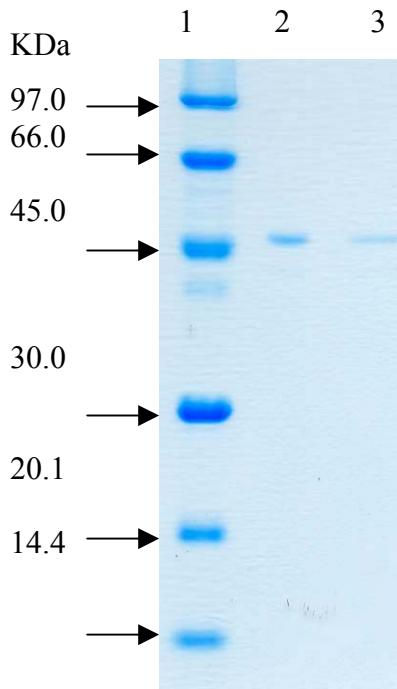

added into the reaction mixture. Moreover, the enzyme was eluted in the washing step with water after the elution gradient was over, when hydrophobic chromatography such as Butyl Toyopearl and Superose was applied. The phenomenon indicated the highly-hydrophobic property of the enzyme.

Table 1 Summary of purification processes for D-amino acid amidase from *D. acidovorans*

Purification procedures	Total protein (mg)	Total activity (units)	Specific activity (units/mg)	Yield (%)
Cell-free extract	6290	947	0.15	100
Protamine sulfate and ammonium sulfate (20-40% saturation)	3851	851	0.22	89.9
DEAE-Toyopearl	469	781	1.67	82.5
Ether-Toyopearl	11	165	15.6	17.4
Butyl-Toyopearl	4.13	70.0	17	7.39
Phenyl superose	0.17	39.3	234	4.15
MonoQ HR10/10	0.04	9.81	257	1.04
Superdex 200 HR10/35	0.01	2.09	380	0.22

Effects of pH and Temperature

The optimum pH for the activity of the enzyme was measured in the buffers described above. The enzyme showed maximum activity at pH 8.5 as shown in Figure 2A. The enzyme reaction was carried out at various temperatures in 0.1 M Tris-HCl buffer, pH 8.0, and the maximum activity was exhibited at the temperature of 40°C (Figure 2B). About 100 and 93% activity remained after incubation at 40 and 45°C, respectively in 0.1 M Tris-HCl, pH 8.0, for 30 min (Figure 3).

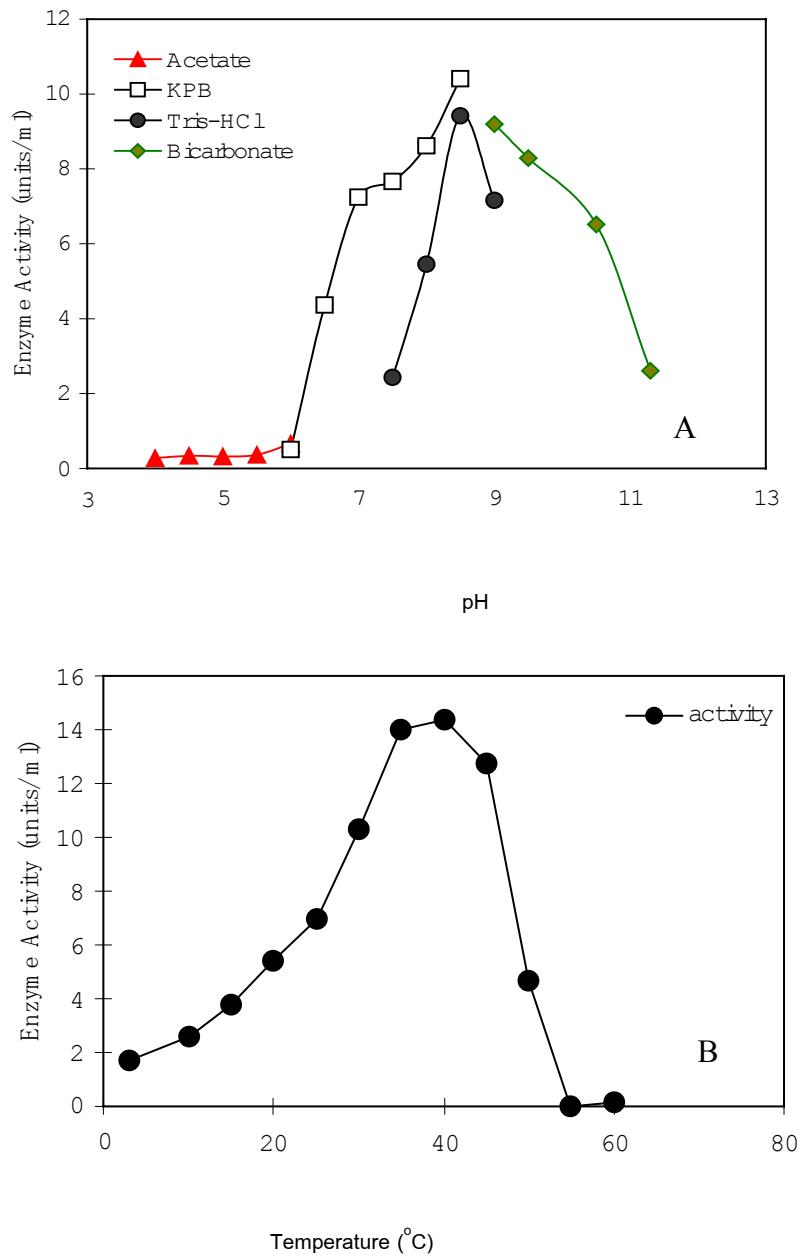


Figure 1 SDS/polyacrylamide slab gel electrophoresis of D-amino acid amidase enzyme from *Delftia acidovorans*. Lane 1, molecular-mass standards [phosphorylase b (94 kDa), BSA (67 kDa), ovalbumin (43 kDa), carbonic anhydrase (30 kDa), soybean trypsin inhibitor (20.1 kDa), and α -lactalbumin (14.4 kDa)]; lanes 2 and 3, purified D-amino acid amidase from *Delftia acidovorans* strain 16.

Effects of Metal Ions and Inhibitors

The enzyme activity was measured after the enzyme was pre-incubated at 30^oC for 10 min with various compounds at final concentration of 1 mM unless otherwise noted. Only 3-26% inhibition was observed when the enzyme was incubated with K₄Fe(CN)₆, CsCl, Tl₂SO₄, Co(NH₃)₆Cl₃, LiBr, MnSO₄, K₃Fe(CN)₆, and CuCl. Other inorganic compounds such as H₂BO₃, MnCl₂, Na₂MoO₄, LiCl, CaCl₂, BaCl₂, MgSO₄, KCl, PbCl₂, CoCl₂, FeC₆H₅O₇.nH₂O, KI, CrCl₃, RbCl, NaCl, (NH₄)₆Mo₇O₂₄, MgCl₂ did not influence the enzyme activity (Table 2). The enzyme activity was inhibited 42-55% by Fe³⁺, Sn²⁺,

Cu^{2+} , Al^{3+} and Ni^{2+} ; and 91-97% by As^{3+} , Zn^{2+} , Hg^{2+} and Ag^+ . The activity was completely lost in the presence of Cd^{2+} as shown in Table 2.



Figure 2 Effects of pH (A) and temperature (B) on the activity of D-amino acid amidase

from *D. acidovorans*.

Among all inhibitors, phenylmethanesulfonyl showed strongly inhibitory effect on the enzyme activity (Table 3), indicating that amino acid serine may involve in enzyme active site. Carbonyl reagents such as hydroxylamine, phenylhydrazine, D,L-

penicillamine and D-cycloserine did not inactivate the enzyme activity, neither did the chelating agents like EDTA, 8-quinolinol and bipyridyl. This phenomenon indicated that *D. acidovorans* amidase had no requirement of metal ions since no inhibition was observed in the presence of EDTA and O-phenanthroline. The amidase was strongly inhibited by sulphydryl reagents, particularly *p*-chloromercuribenzoic acid and the metal ions As^{3+} , Zn^{2+} , Hg^{2+} , Ag^+ and Cd^{2+} , indicating that cysteine residue is required for activity. The amidase activity was also protected and not inhibited by dithiothreitol (DTT), indicating that disulfide bonds are not critical for the enzyme activity.

Figure 3 Thermal stability of D-amino acid amidase produced by *D. acidovorans*

Table 2 Effect of various metals on enzyme activity.

Metals	Enzyme activity (units/ml)	Relative activity (%)
None	8.96	100
H_2BO_3	16.9	189
MnCl_2	14.9	167
Na_2MoO_4	14.3	160
LiCl	13.6	152
CaCl_2	13.0	145
BaCl_2	12.9	144
MgSO_4	12.8	142
KCl	12.6	140
PbCl_2	12.5	140
PbCl_2 (0.1 mM)	12.4	138
CoCl_2	12.3	138
$\text{FeC}_6\text{H}_5\text{O}_7\text{.nH}_2\text{O}$	11.7	126
KI	10.8	120
CrCl_3	10.4	116
RbCl	9.7	108
NaCl	9.7	108
$(\text{NH}_4)_6\text{Mo}_7\text{O}_{24}$	9.5	106
MgCl_2	9.4	105
$\text{K}_4\text{Fe}(\text{CN})_6$	8.7	97
CsCl	8.4	94
Ti_2SO_4	7.9	88
$\text{Co}(\text{NH}_3)_6\text{Cl}_3$	7.5	84
LiBr	7.2	80
MnSO_4	6.9	77
$\text{K}_3\text{Fe}(\text{CN})_6$ (0.1 mM)	6.8	76
CuCl	6.6	74
FeCl_3	5.2	58
SnCl_2	5.2	58
CuCl_2	5.1	56

AlCl ₃	4.2	47
NiCl ₂	4.0	45
As ₂ O ₃	0.8	9
ZnSO ₄	0.4	4
HgCl ₂	0.4	4
ZnCl ₂	0.4	4
AgNO ₃	0.2	3
CdCl ₂	0.01	0.1

Table 3 Effect of various inhibitors on enzyme activity.

Inhibitors	Enzyme activity (units/ml)	Relative activity (%)
None	7.48	100
EDTA	7.86	105
NaF	2.46	32.8
Tiron	9.63	129
EGTA	7.44	99.4
8-quinolinol	10.7	144
Bipyridyl	11.4	153
DTNB	6.42	85.8
Iodoacetic acid	6.82	91.2
PCMB (0.5 mM)	0.78	10.4
NEM	7.16	95.7
PMSF	0.35	4.7
Hydroxylamine	9.24	124
NaN ₃	8.71	117
KCN	8.87	119
Mercaptoethanol	8.46	113
DTT	8.75	117
D, L-Penicillamine	8.83	118
D-Cycloserine	10.7	144
PMS (0.1 mM)	7.93	106

Potassium ferricyanide	7.33	98
Potassium ferrocyanide	7.49	100
Thiamine (0.002%)	7.75	104
Phenylhydrazine	7.14	95.4
Hydrazine	7.78	95.4
PCMB	5.00	66.8
Diphenylhydantoin	6.17	82.5
Sodium barbital	7.68	103
Leupeptine (0.2 mM)	6.65	88.8
T9777 (0.1%)	5.82	77.8
T9003 (0.1%)	5.94	79.4
T9378 (0.1%)	7.94	106.1
Avidine (0.1%)	7.23	96.7
Pepstatin A (0.1 mM)	7.48	100.1
EGTA (0.1 mM)	7.61	101.8
Miconazol (0.1 mM)	4.80	64.2
NEM (0.1 mM)	8.15	109.0
PMSF	0.36	4.8
PCMB (0.5 mM)	1.58	21.1

Substrate Specificity

The enzyme showed the preference in the catalysis D-enantiomeric substrate to the L-amino acid amide (Table 4 and 5). It also exhibited the ability to catalyze broad range of D-amino acid amides although its stereospecificity was not high toward many amino acid amides such as phenylalanine amide, norvaline amide, methionine amide, leucine amide, tyrosine amide, and isoleucine amide. However, the enzyme showed the preference toward D- to L-enantiomers, and it showed strict stereospecificities toward D-tryptophan amide, D-Serine amide, D-proline amide and D-lysine amide. The enzyme preferably catalyzed bulky and aromatic D-amino acid

amides, for example D-phenylalanine amide, D-tyrosine amide and D-tryptophan amide; but was not capable of catalysis of small molecules of aliphatic amino acid amides such as D-alanine amide and D-glycine amide. Moreover, the enzyme was not active on either D- or L-oligopeptides tested (Table 6).

Table 4 Substrate specificity toward D-amino acid derivatives.

Substrates	Enzyme activity (units/ml)	Relative activity (%)
D-Phenylalanine amide	10.8	100
D-Norvaline amide	7.7	70.6
D-Methionine amide	5.9	54.2
D-Tryptophan amide	5.2	47.6
D-Leucine amide	3.1	45.6
D-n-Leucine amide	4.8	44.4
D-Tyrosine amide	4.5	41.6
D-Serine amide	0.5	41.0
D-Threonine amide	2.5	23.0
D- <i>allo</i> -Threonine amide	1.9	17.1
D-Proline amide	0.7	6.2
D-Isoleucine amide	0.5	4.5
D-Histidine amide	0.4	3.4
D-Lysine amide	0.3	2.5
D-tert-Leucine amide	0.2	1.4
D-Aspartic acid amide	0.1	0.4

Table 5 Substrate specificity toward L-amino acid derivatives.

Substrates	Enzyme activity (units/ml)	Relative activity (%)
L-Leucine amide	3.1	28.7
L-Phenylalanine amide	1.5	12.8

L-Tyrosine amide	0.8	7.2
L-Norvaline amide	0.6	5.2
L-Methionine amide	0.3	5.0
L-Threonine amide	0.3	2.4
L-Valine amide	0.2	1.5
L-Glycine amide	0.1	0.8
L-Isoleucine amide	0.1	0.8

Table 6 Amino acid derivatives as inactive substrate for the enzyme.

D-Amino acid derivatives	L-amino acid derivatives	Peptides
D-Alanine amide	L-Alanine amide	(D-Phenylalanine) ₄
D-Glutamic acid amide	L-Asparagine amide	(D-Phenylalanine) ₃
D-Glutamine amide	L-Glutamic acid amide	(D-Phenylalanine) ₂
D-Valine amide	L-Lysine amide	D-Phenylalanyl-L-Phenylalanine
	L-Proline amide	Phenylalanine
	L-Serine amide	L-Phenylalanyl-D-Phenylalanine
	L-Tryptophan amide	(L-Phenylalanine) ₂

Discussion

A D-amino acid amidase producer was isolated from soil obtained from southern Thailand, and was taxonomically identified as *D. acidovorans*. The enzyme was formed intracellularly, which was similar to most D-amidases reported so far including those from *V. paradoxus* [10], *O. anthropi* SV3 [8], *Rhodococcus* sp. [5]. *D. acidovorans* strain 16 secreted the D-amidase constitutively whereas most amidase producers; such as *V. paradoxus* [10], *Arthrobacter* sp. NJ-26 [12] *Rhodococcus rhodochrous* M8 [14] and *Brevibacterium* sp. [11]; required inducers for their amidase production. Its chromatographic behavior with hydrophobic resin and loss of activity during ultrafiltration

using Amicon product suggested its high hydrophobic property. This similar phenomenon was also observed in the purification process of amidase produced by *V. paradoxus* [10].

D-Amino acid amidase from *D. acidovorans* hydrolyzed a broad range of aliphatic and aromatic amide, preferentially to D-enantiomers. It showed high activity for D-phenylalanine amide, similar to the D-amino acid amidase from *O. anthropi* [8] and the (R)-ketoprofen-amidase from *C. acidovorans* KPO-2771-4 [7]. The purified amidase from *D. acidovorans* strain 16 is strictly D-enantioselective for certain amino acid amides such as D-tryptophan amide, D-proline amide, D-serine amide and D-lysine amide; but not strictly toward D-phenylalanine amide whereas D-amino acid amidase from *O. anthropi* was strictly active toward all D-amino acid amides tested [8]. It also exhibited slight activity to D-*tert*-leucine amide, similar to D-amidase from *V. paradoxus* [10].

D. acidovorans strain 16 amidase has maximal activity at pH of 8.5, similar to D-stereospecific amino acid amidase from *O. anthropi* SV3 [8], *V. paradoxus* [10] and enantioselective amidase from *C. acidovorans* [7], which have maximal activity at alkaline pH of 9, 7-8.6 and 8.5-10, respectively. The optimal temperature for *D. acidovorans* amidase is 40°C, whereas those of the three above are 45, 47-49 and 35°C, respectively. Compared to the pH 5-8, 55-60°C of *R. rhodochrous* [9] and the pH 7-8.6, 50°C of *P. chlororaphis* B23 [5], its optimal pH is more alkaline and its optimal temperature slightly lower. The amidase was completely inhibited by phenylmethanesulfonyl fluoride suggesting the involvement of a serine residue at the active site of the enzyme, the same as D-stereospecific amino acid amidases from *O. anthropi* SV3 [8] and *V. paradoxus* [10]. Cysteine appears to play an important role for

activity and structural integrity of the enzyme. This referred from the strong inhibition by the sulphydryl reagents *p*-chloromercuribenzoate and metal ions As^{3+} , Zn^{2+} , Hg^{2+} , Ag^+ and Cd^{2+} . The enzyme has similar behavior with metal ions and inhibitors to that from *V. paradoxus*, which also shows highly significant homology in nucleotide and amino acid sequences. On the other hand, some amidases reported to date [4, 5, 9] have been shown the involvement of a thiol group at the active center of the enzyme.

References

1. Asano Y, Lübbehüsen TL (2000) Enzyme acting on peptides containing D-amino acid. *J. Biosci. Bioeng.* 89: 295-306.
2. Asano Y, Mori T, Hanamoto S, Kato Y, Nakazawa A (1989) A new D-stereospecific amino acid amidase from *Ochrobactrum anthropi*. *Biochem. Biophys. Res. Comm.* 162:470-474.
3. Asano Y, Nakazawa A, Kato Y, Kondo K (1989) Properties of a novel D-stereospecific aminopeptidase from *Ochrobactrum anthropi*. *J. Biol. Chem.* 264:14233-14239.
4. Baek DH, Kwon SJ, Hong SP, Kwak MS, Lee MH, Song JJ, Lee SG, Yoon KH, Sung MH (2003) Characterization of a thermostable D-stereospecific alanine amidase from *Brevibacillus borstelensis* BCS-1. *Appl. Environ. Microbiol.* 69:980-986.
5. Ciskanik LM, Wilczek JM, Fallon RD (1995) Purification and characterization of an enantioselective amidase from *Pseudomonas chlororaphis* B23. *Appl. Environ. Microbiol.* 61:998-1003.
6. Conway E J, Byrne A (1933) An absorption apparatus for the microdetermination of certain

volatile substances. I. The microdetermination of ammonia. *Biochem. J.* 27:419-429.

7. Hayashi T, Yamamoto K, Matsuo A, Otsubo K, Muramatsu S, Matsuda A, Komatsu K (1997) Characterization and cloning of an enantioselective amidase from *Comamonas acidovorans* KPO-2771-4. *J. Ferment. Bioeng.* 83:139-145.

8. Komeda H, Asano Y (2000) Gene cloning, nucleotide sequencing, and purification and characterization of the D-stereospecific amino-acid amidase from *Ochrobactrum anthropi* SV3. *Eur. J. Biochem.* 267:2028-2035.

9. Kotlova EK, Chestukhina GG, Astaurova OB, Leonova TE, Yanenko AS, Debabov VG (1999) Isolation and primary characterization of an amidase from *Rhodococcus rhodochrous*. *Biochem. (Moscow)* 64:384-389.

10. Krieg L, Ansorge-Schumacher MB, Kula MR (2002) Screening for amidases: isolation and characterization of a novel D-amidase from *Variovorax paradoxus*. *Adv. Synth. Catal.* 344:965-973.

11. Mayaux JF, Cerbelaud E, Soubrier F, Faucher D, Petre D (1990) Purification, cloning , and primary structure of an enantiomer-selective amidase from a *Brevibacterium* sp. strain R312: evidence for genetic coupling with nitrile hydratase. *J. Bacteriol.* 172:6764-6773.

12. Ozaki A, Kawasaki H, Yagasaki M, Hashimoto Y (1992) Enzymatic production of D-alanine from DL-alanine by novel D-alanine amide specific amide hydrolase. *Biosci. Biotech. Biochem.* 56:1980-1984.

โครงการ: การทำบริสุทธิ์และคุณสมบัติของเอนไซม์ดีอะมิโนเอซีดอะมิเดสจาก *Delftia acidovorans*
 รายสรุปการเงินในรอบ 6 เดือน

ชื่อหัวหน้าโครงการ ดร. ทิพรัตน์ หงษ์ภัทรคีรี
 รายงานในช่วงตั้งแต่ วันที่ 1 มกราคม 2547 ถึง วันที่ 30 มิถุนายน 2547

รายจ่าย (งวดที่ 2)

หมวด	รายจ่าย สะสมจาก รายงานครั้ง ก่อน	ค่าใช้จ่าย งวดปัจจุบัน	รวมรายจ่าย สะสมถึง งวดปัจจุบัน	งบประมาณรวม ทั้งโครงการ	คงเหลือ (หรือเกิน)
1. ค่าตอบแทน	60,000.00	0	60,000.00	120,000.00	60,000.00
2. ค่าจ้าง	0	5,340.00	5,340.00	5,340.00	0
3. ค่าใช้สอย	360.00	7,300	7,660.00	7,660.00	0
4. ค่าวัสดุ	10,422.00	96,578.00	107,000.00	107,000.00	0
5. ค่าครุภัณฑ์	0	0	0	0	0
รวม	70,782.00	109,218.00	180,000.00	240,000.00	60,000.00

จำนวนเงินที่ได้รับและจำนวนเงินคงเหลือ

จำนวนเงินที่ได้รับ

งวดที่ 1	120,000.00	บาท เมื่อ วันที่ 7 สิงหาคม 2546
งวดที่ 2	60,000.00	บาท เมื่อ วันที่ 12 กันยายน 2546
รวม	180,000.00	บาท

จำนวนเงินที่จ่าย

งวดที่ 1	70,782.00	บาท
งวดที่ 2	109,218.00	บาท
รวม	180,000.00	บาท
จำนวนเงินคงเหลือ	0	บาท

เจ้าหน้าที่การเงิน

หัวหน้าโครงการวิจัยผู้รับทุน