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Abstract

The study of pulsatile flow through a compliant tube has multiple applications especially within
human body. This phenomenon is more complex than flow inside a rigid tube. Because of the motion
of the tube wall, the fluid radial velocity at the wall is no longer zero. Thus, the driving pressure
changes cause local movements of the fluid and tube wall, which then propagate downstream in the
form of a wave. This study will provide us a better understanding role of the flow-wall interaction and
can be applied with the vascular disease diagnostic in the future.

The objective of this research is to study the behavior of pulsatile flow in a compliant tube
using two-dimensional numerical model. The first stage of this study focused on the pulsatile in a rigid
tube in order to develop a fundamental understanding before moving on to the pulsatile flow in a
compliant tube. The numerical modeling was built by using the finite volume method and solved with
SIMPLEC technique. The velocity field and pressure distribution was analyzed and compared with the
linear theoretical solution. The numerical result shows that amplitude of flow rate depends on the
frequency of applied pressure. For low frequency pressure, the amplitude velocity field is close to
steady flow velocity and maximum velocity is almost in-phase with the pressure. As the pressure
frequency increases, the maximum velocity magnitude decreases. Also the lag of velocity phase can
be observed because of the fluid inertia. If the excited frequency is too high, the fluid is unable to
response the change, and the maximum velocity magnitude approaches zero.

The steady flow in a compliant also studied numerically and experimentally. Flow rate was
varied based on the Reynolds number from 800 to 4100. The tube deformation of the numerical model
matched well with the experimental and the theoretical result. However, difference between the
numerical result and the experimental model increases as the length of the tube increased. This
difference caused by bulking and non-circular deformation in the experimental model. This effect was
not found in the numerical model due to the assumption of circumferential symmetrical flow.

The study of pulsatile flow through a compliant tube was studied through the developed 2-D
numerical model at various flow rates, frequencies and young modulus. The parametric study of
pulsatile flow were setup by using the Womerseley number, which were set from 3.34-6.67, and
Reynolds numbers, which were set from 800 to 4100. The solutions of numerical model presented that
changing of pressure was non-proportional to the tube's length. The velocity distribution varies in both
radial and longitudinal direction and propagates downstream along with the pressure wave with a
certain amount of phase lag. The tube’s dimension also decreases by increase Reynolds number and
wall stress was increase by increase the pressure. The difference between velocity phase and

pressure phase increases as the pressure frequency increase. The magnitude of velocity also
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decreases as the pressure frequency increase. This study will provide us a better understanding role of

the flow-wall interaction and can be applied related applications in the future.
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Yszmnalnpfidnidulsaialafinisudiniia (Congenital Heart Disease) 13vanos
5,000 audall visdan 0.8 Wasduduasiwinaniianmue’ %@Qﬂ'sUﬁLﬂuISﬂﬁﬂaﬁmia:ﬁau
nwlasmaniaa wienslien giheliailafimaudinfioussiia maﬁ%”?magji"l,éTﬁ'lmnﬁg%"ﬁ:MN
Wasmaluundnouazaan (atrial septal defect (ASD)) 1w lumefliilu transposition of great vessels

(TGV), tricuspid atresia (TA), hypoplastic right ventricle, total anomalous pulmonary venous connection
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g‘ﬂﬁ 1 WHWATNLRAIAN U8 915A%ANNITUIELAN univentricular heart defect

A3HN&a Fontan Operation [Fontan and Baudet, 1971] Wuminndawalafiutlalsaialasinig
1/921AN  univentricular heart defect L%% tricuspid atresia (TA) TagagFnmaraaasialakassnsamn
FrunIRaLdwEand inferior vena cava (IVC) Wa superior vena cava (SVC) WARuUL§HLEanuadfth
aaanialawasssrnluslea  (Pumonary Artery) lagldrnuialakassne@snissnga  Fontan
Operation g3gu13auUdaan aiduzadds

1. Atrio-Pulmonary Connection (APC) tiluwmstinda Fontan uuuasidnlasfissldmlawasum

1dudtingudaiienlddlen Farnserndadssanziladassivnlagnsde
Walakas11uwdAy Pulmonary Artery asuaaalugdl 2(n) wdnnmiinmlaslinannis
MINAEA3IVa9 A lunenas [Low et al., 1993 Uaz Kim et al., 1995] wuiiwalaasun
uu"laj"lﬁﬁﬁ'm‘*ﬁausl,umiguﬁ@Lﬁaml,@iﬂ'uﬁﬂﬁl,ﬁ@migtyL%ﬂwé'amumﬂ'ﬁuﬁﬂ

2. Total Cavopulmonary Connection (TCPC) Lﬂumsmﬁ@L?imﬁ'ﬂaﬁ'mm'nﬁy'aaadﬁaaﬁw

mida IVC waz SVC 1y PA lapassauaaslugyl 2 (1) Sharma et al. (1996) uaz
Lardo et al. (1999) vl,ﬁﬁ’]ﬂ’]iﬂ@madLLﬁQﬁ’]%’J%ﬂ’]igty wonasoulagldnguiaunaesas
V24104 Inaudiwudn TCPC fimsgadundsnuiasnii APC
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gﬂﬁ 2 MIN169@ Fontan Operation

(n) Atrio-Pulmonary Connection (%) Total Cavopulmonary Connection

;jﬂaﬂﬁmumimé’@ﬁazmﬁaLﬁmLLﬁﬁ"ﬂaﬁad"ﬁN%yﬁﬁmﬁwﬁguﬁ@Lﬁa@"lﬂl,gmi’mmﬂ F9rung
aN@ILAIT8INIdaLR LA DA i’JNﬁgﬂé’ﬂﬂm:ﬂ’li@iaLﬁ%lﬁa@luﬂ’]iﬂi’lﬁtﬂﬁdﬁNaaﬂ’ldﬁd@iaﬂ’ﬁgtyL?!F;l
wadwlunTlvaraiae [van Haedonck et al., 1995, Sharma et al., 1996, Migiliavacca, 1996, Dubini
et al.,1996, de Leval, 1996, Ryu et al.,, 2001 18z Khunatorn et al., 2002] %Gﬁwaﬂiwuiﬂﬂmwia
USZANTHAVBINITHIAN LAZNAANWS LUIZHZEMIRAINSHIAABNAIE [Humes et al., 1976, Mayer, 1998,
Stamm et al., 2001, Mair et al., 2001] Lﬁaamﬂé’mwmuﬁﬂ%%maagﬂam"?'ivlﬁ‘?uﬂﬁmé'@ Fontan
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ﬁﬁmuadwmiqﬂﬁmmLﬁmﬁaﬂﬁwammne‘inmmLLazé'ﬂumzms@imé?mﬁa@‘lumsmﬁm vy
drenealng danseadiafin s ﬂmaa;}ﬂ’mﬁvlﬁ%'umsmﬁ@ Fontan fa 83% [Soonswang et al., 2000]
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Fadsziniulasanizagneds mytwaveddeanoluduion waznsiraldiouvesiaanaluiila
ed a & & a Av o ga ' o AaA ' A
lasdnngnsaiiiiedulunsiwadszinnfasiima jaunusnusznivnianongu uszvaslnailna
agnolu Mldifaduanadudousesdyninaldiinmidiasusesdynidizinnd a1f nns
. . . P2 v da X . .  Lw e A
ATTILAIVBIANNAY LAZANNULT BNNIANULARNAATUUHEIEI N3 aansusiilasni lduiaziiae
@ A A a o o o ) & A
lalusasansmede mvlnaniinnduauzeslasiasn (structure  driven) (dumsilfsuudasvad
v o v a J a a a QJ o Y a v A A = q; 1 o v
lassaavildiianmsinadu af walafuarildmdensivaldauidwmieansensduaivasvavinla
i lnalddhanii uaz matuauiiiiaanvesnarhlfifansdfouulasgievesvia (fluid driven) N3
TravasiiiurieinlirieanuaInIenan? ANUFNAUTTZRIIANEMLNNITNIZILAIVIANNUTIVES
A a £ o , 4 4 A @ ' ' o
289 naniatu vevesnkiviaNUasuLladldutinauUfsuiladanuauanasen wasa1ANNLAL
A A a J ' v & 6 vd € ' @ a 6
deufiinaumulurie azaansnlfifluasdenaifidudszlomiadannlu duidansmuuszlueaas
ea A £
mMIunwndNAedag
Uszinalnofiidniidulsanalamnisudrifia (Congenital Heart Disease) 15zu1a4 7,000-8,000
L A A A« ¢ = & o & da & Aaa A o R =
audel wiafailu 0.8 wediduduasdwdniiianinue  (yadsidaatuayunisiidamlai@n,
o % é Y { &) Q =Y v g 1 et v
sontulianale nawnnsuwnd, 2546) Gegihoidulsailafinsazdasinmlasnisinda wianisld
1 fholsadrlafinauddifiaussiia eviidiaey ladimindzenisiesiluuudiouazuin
(atrial septal defect (ASD)) LT lurefdu transposition of great vessels (TGV), tricuspid atresia (TA),

hypoplastic right ventricle, total anomalous pulmonary venous connection
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gﬂﬁ 1.1 UHWATNLRAIANBIALT89150121aANNTUIELAN  univentricular heart defect

M3H6a Fontan Operation [Fontan and Baudet, 1971] 1luminndawalafiuilalsasialafinig
1/921AN univentricular heart defect L% tricuspid atresia (TA) Tagazimsrdaiioaialakassnsuan
AEUNNIABLFULAEEAG inferior vena cava (IVC) Waz superior vena cava (SVC) FhnuEwEaauasfiin
wonanialakassnsnnludslen (Pumonary  Artery) lagliruialawasans@snisiida Fontan
Operation ign313auLs00n latduaasds

Atrio-Pulmonary Connection (APC) 1iln3rneia Fontan uuuasiaulasfissldwalawasuman
Lﬂuﬁﬁmguamﬁa@"lﬂﬂ'ma@ Giuisrdaiassanzialavasssanlagmsdewalawasnunidn
Al Pulmonary Artery aiugaalug 2(n) udannisanslasldnannisnianamanizaslnalunionas
[Low et al., 1993 uaz Kim et al., 1995] wuhialakesunuulildlaumeslunsgulaieauddarila
Lﬁﬂﬂﬂig@LﬁﬂWﬁdd’]%&l’]ﬂ%ﬁﬁﬂ

Total Cavopulmonary Connection (TCPC) iilunstindaiasswaladnsaniisgasiasdromsde
IVC uaz SVC 1111y PA lasasadauaaslugil 2 (1) Sharma et al. (1996) uaz Lardo et al. (1999) ldvi
nInaasduddnmMIgysnssnulaslingejdunamaaizesvesinaudinudt TCPC - In13
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(n) Atrio-Pulmonary Connection (2) Total Cavopulmonary Connection

Eﬂﬁ 1.2 NM3H1A6 Fontan Operation

QﬂaUﬁﬂh%ﬂﬁﬂi’]éf@ﬁﬁ]ﬂﬁﬁaL‘ﬁmLLdﬁ'ﬂaﬁaaﬁnsﬁ’ﬁsﬁﬁmﬁ']ﬁguﬁﬂLﬁaﬂ"l,ﬂl,?iymi'mmu FouunIs
LRONALAUIVBINITADLEWLRD A iwﬁﬁnﬁm:mi@iaﬁmﬁa@lumsﬁnﬁ@%oﬁmaazmﬁwiamigzyl,ﬁﬂ
WRITWIWAIT IARTDILRA [van Haedonck et al., 1995, Sharma et al., 1996, Migiliavacca, 1996, Dubini
et al.,1996, de Leval, 1996, Ryu et al., 2001 Was Khunatorn et al., 2002] %dﬁwaﬂi:ﬂuiﬂﬂ@l‘id@ia
Uz RNINATEINTHIAA LAZNARND IUIZHZINIRRINIHNIAABNAI8 [Humes et al., 1976, Mayer, 1998,
Stamm et al., 2001, Mair et al., 2001] Lﬁaamﬂé'mwmﬂﬁﬂ%‘imaa;jﬂ’a:J“?‘]I"L@‘T%'umsmé'@ Fontan &
sungdulnginan SmizmuduiiaUndvasinle nsgaduzanduiion Morgan et al. (1998) o
hiauadingaauuaduioaiinaunnduniiuazansuznsdeiduifoalunisinga dwmivlu
Usznalng aaseadiaiu 5 ﬂmadﬁﬂwﬁvlﬁ%’umimﬁﬂ Fontan A& 83% [Soonswang et al., 2000]
ﬁaLLiT’j'm'mhﬁmzmmin%'ﬂmw%aLLﬁ”L‘UlﬁQﬂwné'mﬂuﬂnavlﬁ wagthaudwid 81ns
WnInFanadabuitu Pulmonary Hypertension (PHT) @8 81n13p89mItussiulunaan tiaavaslon
(Pulmonary Vascular Resistance, PVR) &4 %dL'ﬂuéhLLﬂiﬁ%ﬂﬁ'tyﬁa:uaﬂﬁamm%mm 2841301713
ANININARUAZRAINTHGA MV PHT luﬁa@ﬁummiﬂﬁﬂﬁﬁmmﬂﬁm wanyanesia
uazdSanaenlfinanzaw s $uluazdaserdumsiadn PVR flududh 33nviad PVR filuanassu
1uﬂaqﬁuﬁﬁvlﬁ%ﬂ’i%@mﬁ)muﬁ'ﬂaLﬁa’mé’mwmﬂmLLa:dwummmé'uM Main Pulmonary Artery
(MPA) uaz Pulmonary Arteries (PA’s) Wi134aansaswinausidulunasaionvasdaald nsaa
swnlafionadsuaneldlasani: ludndn faudinedssaudaiusuameiosnit wu n13asia
AAuLELIazouala (Echocardiography) waz Ultrasound Doppler uanaft 1o lisansaninanudunus
szminonadi leniudn PVR lelasass
Fmumsfnwuasianadilafugulungdnssuussqaisnsazassmswauuowadniolu

' tﬂld [ oA ' a v = a Q/dg/ I o Y a
nan EJ@WiE‘!uvl@ﬂNLWUdLL@]ﬂZLﬁ‘iNﬂ’]’]NL"II’]I%“]JE]G‘EzUUﬂTSVLﬂﬂL’J U%IQ‘V\@IlﬁﬂﬂluLLﬂzLﬂuLLu’]ﬂ’]\‘m’]l%N’]@I(ﬂ
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A A A & 7 o ° ' o ° ' ~ i ° A 'Y
fidszAnSuageuriuu damaninib ldgnsnaminisdwiumer PVR  fududuazliiduduans
Augiheld uazdssmunsni lddsgndldnunsiiemed uazfins Jywufsany ssuumslnaion
a A o & o ° o o & ;s“VL & A A A
laadug lduannnuudiaaninibanuianudhlatuguilulslunmssanuuy guninindaiaiesia

va a a ‘§/
NNIILLAN ﬂmﬂszawﬁmwmﬂmu

1.2 %mqﬂszmﬁwmfmams

a‘fwauum‘imau%aé”an@maaﬁ@maams"lmuuuﬁaﬂw/iaﬁﬁ@mju‘lﬁ URSANHIANMNTUANUT
sendeeudsfifedasiumsing 1w anudn anusa fu mmJ'Ei'ﬂuLLﬁmgﬂ‘mLLazmﬂmﬁmﬁau
(Shear Stress) 2a9ntiiria 0 lUAsANUFIRUEIRIIAARAMUGULAZARUANS T AR NN AT 8

AT IAa

1.3 POULYAVDINTIVY
° a & Al a o . . . g
wuudaasniadiamanszeslaluszuufinansanszuan (Cylindrical Coordinate) LAzWAMEAS
A o & =g & ~ o ¥ o 7 ' o a A
v mafiaisdululasmithzidwfissundaeadesdurie - lasazadmoldauydziuivesina
Duvaslnauvvdadlildusnduvaslnanuy falaflon (Newtonian Fluid) uazqusuiifvasniiavian

, & o a Av ¥ A . .
Banguld liaunuianauazRnad1ads (Isentropic Material)

1.4 Us:Tardilasuannlasensise
1. "lé'ﬁwm‘haaa@aﬁuamamﬁ?\mmmivlv\mmuﬁae‘flumivmaﬁﬁ@mjuvlﬁ
2. VlﬁLLum‘imawa\‘iNﬁf\‘iﬁ@mjuﬁmm:auﬁ'umiﬁwvlﬂﬂixﬂqn@ﬂ%ﬁmmﬁaﬁLﬁm‘*ﬁadﬁuﬂa‘*?'i
Bangulduuueng 9
3. MIUANUANAWEITNINeLU IR ABITo9RUNT e 1T0 A E® ANLEY U N3
LﬂﬁUuLLﬂmgﬂiNLLa:m’]mﬁuLﬁau (Shear Stress) TaINITID

4. NINUANNFUNUTIERINIAAUAININAULAZARUANLIINAANNAFVDINT AR

meﬁaaaw‘fm"’amwaamﬂwmmyﬁ'gvﬁmﬂuﬁaﬁﬁwgu'Z@T 4



UNN 2

ao ad A [y
ﬂ"m'aﬁlml,azﬂms}gmﬂﬂ'mad
2.1 owmIduiiiaTas

mu’i%’mﬁmﬁumsvlmmmlﬁwﬁfnﬁﬁwzjuvl,ﬁﬁmﬂunmﬂﬁwﬁuﬂuﬁa (1985 - 2005) Zhaos W&z
Atk (1998a LAz 1998b) VL@i”LLﬂaﬂQumu’ifﬁ'ﬂaan"l,ﬁl,ﬂuaaamjwﬁﬂﬁa mjuﬁ%ﬁagaﬁﬂmmuﬁm
LUUFIRINHATIAARAT DI ULADA LAZWOANTINVBINGILTWLREA ﬂajmﬁaaosioﬁnmuuuﬁwaaama
At aasuaIn Il sunutaznineesna ussposuds o wikaFwAan I@ﬂﬂajmnnvlﬁl,‘%'uﬁwmsﬁﬂm
lust a.q. 1950 LLa:wamaomﬁ%’ﬂéf@nﬁmﬂﬁ@Un@:uﬁ'ﬁaﬂmn’ﬂ f.¢1. 1980

Lambert WazAthe (1958) VL@Tﬁ']LauaLmuﬁ'maamoﬂﬂ@mam’mawaﬂmmﬂluﬁaﬁﬁwﬂ;uvlﬁ
wuuliidwdadu nuiwsvesuuuitsesi i dudodumaniougainaniunnuawldaniuuusiaes
WULEILE% Whirlow uazame (1965) Tadasnzimslnalurieinioduuuy viscoelastic lagvinnisur
i:m_lmJmsmuqumsvlmagjmuﬁuawmimsmﬁauﬁmawaaw‘ﬁmuu elastic WUAMULANGIIDING
YoInanaMNaHIzRI9m s s luranuy elastic LLa:wamqmwﬁmaami"lma’l,wiam%aﬁ"l,ﬁmnmumaa
Womersley (1957) #asunn a4 lsAauNanIsnaaaduad Whirlow Uazamaizaaafadnun1Imaaasd
U89 McDonald (1960) §iai1 Atabek UazALE (1966) "I,@Tﬁwms‘ime:ﬁmamwﬁmaammws’maaﬂa"u
anuanlumslnavasaaslnasaaala'le (incompressible  fluid) nelurafifnnuduEudn nans
ATEANLITHANITUNS u,azmsmN"]wuam'&"umwﬁuﬁuagﬁummmLﬁumaowﬁoﬁa Mirsky (1967)
l@dnsmsuwsvasanuauzainsinanisluria elastic  wUU orthotropic  laslfuuuinasdinlLa
wudwmmmmmlummwiﬂuaaﬂ'ﬁ'umwuﬁuﬁuagjiﬁ'mh tangential modulus of elasticity VaInhILTn
wan downludl o.q. 1968 Atabek WalmuuUsaasvasmslnanelutie elastic wuU orthotropic 713
AT UL wundm'&‘umwL%qﬂfuagﬁuﬁmwmmmdnm longitudinal  modulus  WAY @1
circumferential modulus 111 @.@. 1972 Ling uazatwe (1972) vl,éfﬁ’mwmﬁyuNamﬁmﬁzﬁuumﬁwaaa‘ﬁ
vl,mﬂw,%aLﬁu"uaqmivl;vsaLLuuﬁaﬁﬁﬁmiﬁ'}ﬁoﬁmamau%ugﬂmamﬁf@mﬂmé?ul,ﬁamm (arteries) NU
MINARBINUIULLINRIEN NN TALEBEHA (ALTWALINUANTNAREY Cancelli LAZATA (1985) WAL
mei']aaammﬁmmm%ﬁm%’uﬁaﬁquﬁﬂﬁﬁﬂi:ﬂauﬁammﬁamwmwzmmaawﬁfa WREMIFRYLEY
wasulumsifiansuendivessuvadlng HanwiTpwnuhiimafenanszduaiiesliifiaeaadaatu
%ul,fiam']11L?’J“ﬂawaﬂmgan’hmmL§a°uaoﬂ'1§|,l,wimaaﬂ§uﬂ1'a Wu uazathe (1989) WalWLULIIN889
mangedesmiunivaseauwuylidwdnduiulosodoanuuiufrzwianuiduiinima e
\Wuvaspaslng uaznsedaniivendwien

Wu uszame (1984) lavmadianzdiuazasuuuiiaeflidudadunuinnsi ldsonadoany
NWITENINOHVad Green waz Adkin (1960) 1ull a.¢. 1992 Dutta uazAme (1992) n13d1aasns

Twauwuuwad uazeasdasmailuriouuy elastic lasardosuufigniuses Ling uas Atabek (1972) wuin

meﬁaam‘fm‘"amwadmﬂwmmyﬁaﬁmﬂuﬁaﬁﬁwgu'Z@T 5
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danudwdon uazawunmagenlnideyuingsznilInuan uazn13na Perktold  uAzATME
(1993) ANBIHATBINT IWAULUWAFUEIVDI IRAULY non-Newtonian  garunuaubanguldvaIngs
melumsngnuaaduideafidnislionas NamiﬁﬂmwmwmmmLﬁmﬁaumnwﬁfaﬁaﬁﬁwzqiu"l,@‘i”l,sjﬁ
ANULANESRURIIaINgs asnslsfianunsinaawlriasniidnademsuanstuasveslvauazsme
289ANLAULAEY Lou uazame (1993) laltuuuiiaaadsniaanuuaadlaansnamansuainisina
mﬁlumﬁfaﬁuﬁﬁwsjuvlﬁwu*j'lmst,ﬂ’é‘auﬁmaaNﬁaﬁﬂﬁlﬁ@mﬂm5auné‘waa°ﬂaavlmmmzd'm'nmﬁ”u
maawﬁaﬁ%mjﬂﬁﬁ@hﬁasm'jwﬁfam%a 10 1Wasiue Steinman  uazAME (1994) HLEUENTANHIKA
mMstadvadnnisluiuuiaedaasifuasnsinanuy Uane-da-114 (end-to-side anatomoses) WUIHA
mMItiaaiinadadinnuiduifanitasann Hofer uazame (1996) lavinnsAansnamansvasved Ina
melunslrauuy Uane-da-119 (end-to-side anatomoses) $833MSITIAILAVNLIINNTUVIAVRITIBUAZ
mﬂﬂﬁlﬂuLLﬂaa@hmuL@T%Lﬁamﬁ@%ugdq@ﬁiaﬂ@ia"uama LLazﬂawuﬁwﬂ;uvlﬁmawiaﬁﬂﬁﬂ’mﬁ@ms
WYUIUTBINITINS UAzNTIMAaUNALAARI Downing UATAMAE (1997) WAL 09 BIRAINTES
ﬁamamaﬁuﬁﬁwﬂ;uVL@TLﬁaﬁﬂmwamaoﬂ'ﬁgryLﬁﬁLﬁadmﬂmu?{mmu WATNNT IAALUUWAFN 8 L ULEY
bk Namiﬁﬂmwuiﬂmigrgl,%ﬂLﬁaammndL?m@muﬁNa@iamummaamsauﬁwawia
Greenshields uazamiz (1999) WLauoITN19FIaL828195UNIUTUAUTIZNI92849 nauazlassasns
PYaIvia Lﬁ'aﬁﬂmmmwimam?&"ummmﬂmmUiuﬁaﬁﬁmﬁqwlﬁ NANIANHINLINIDNTLTINIEY
T¥namoandoiiunnu] uazn1Imaned Tang  uazaAme (2000) AnwmslwauuuWadnoluradudid
WSIABNEHDNNIENGABNTIINE HANTITINUITNAYBINIAUTNAGBNTVINHAIUAZRAGIDENITULT
P9¥io Qiu  WAZAEE (2000) ﬁwmﬁ%’mﬁmﬁ'un*mvlmaLLuuﬁafﬂuLLuu{i’uaawauﬁmﬁa@ﬁ"ﬂﬁ]ﬁﬁwgju
lalasdnwranaldsuazmitndaniluuwisadvesvia namsisonuinenudwionsosnioanluden
desnin walimyseadaiatugini %amaﬁﬂﬁﬁwa@iamiqﬂﬁwauﬁmﬁa@vl,ﬁ Rosar WazaAmke (2001)
ﬁmauame‘i'maummﬁ?mawiaﬁﬁwsjuvL@T“?iﬁu@TMVLWLuﬁ HAMIANENNLILE aANaRMEuan 6
gaﬂﬁwﬁ'ﬂmﬂmamﬂ%aamﬁamsquéﬁmamaﬂ'ﬁvu LLafzﬁmwLﬂuvl,ﬂvlﬁﬁaxl,ﬁﬂmsqué‘amﬂﬂimﬁa
FURUI Khunatorn (2002) ldaF19unusnansndamanizainisiadoniivasvasing luns
Uszgndliiudynimedusasnaeaifaniala iwisuifisunanmsmdaeunimnujiunaiiaias
maamﬂumﬁamﬁuﬂszaﬂ'ﬁ‘maamsquﬁaﬁmmﬂﬁu lwsadanaslUamuanusniiais nsw
fasvitaeansasrunnuiudnsiilaliludadudidasimainslunoandoadell Lee and Xxu
2002) l@asuuusiaasmslnauaznganssuvasnisnlunady dramysiassranssnszuaniinig
v 45 Wasidud  Tesuduazlimsinameluiuwnslvsuuuaan lassuudliveslvaduuunsad
Tildusspaslnaduuuy falasfion misduianunmnlimusasasld uazniinlaswulsssunas
ﬁ'unnéf’mi@yﬁmmmnmsﬁ']mmmﬂmLLa:mimﬁ'auﬁmawﬁfamﬂiﬁmnw CFX 42™ g
ABAQUST ™ ufisrumansenuuaznisUsunuslunmenasiudunsvesnisnaneluvioudanisuaz
urisvion lifinislng wuianuisiaauwinnuanm s suazmsiad lauandrsn 7 wesidue
LATANMNLA LWL FUTE LI IVIaAINY 5 LUasiEud m’mLﬁmﬁauﬁwﬁfwamaﬁwaju %a8nin 7.2
Wasidud nmssassanzviomeldanudusitausuaznmisiass mMIgaILnUIzRIIved lnauaznits
vieRdmslnauuuwad Sansazadeiulasnslnaunuwadinlwanuduwluumdusourainin 13
Wasiudluaamidodinu anudulusuwidaianad 31 Wasidud waz 8 1UaTiFud Luuuiunn Koji et

meﬁaaaw‘fm"’amwaamﬂwmmyﬁ'gvﬁmﬂuﬁaﬁﬁwgu'Z@T 6



2. UIFBUIEN BNV

al. (2003) lednsmansznuaes 3 asslsznauiinasamslnaiouvsadonsuldunnsinauuuwag
Qmauﬂ'ﬁ&uaﬂmﬁlﬂu wau-falanilou uazvisBangudinnis nasaslagldiinguuilelnaniuria
Fanou TannuauANAsaNLAZALATIEHAN BT oL HansznuAAiaduiurezanidlosaussdua
mumLL@:&'@Jﬂitx%ﬂ%ﬂMﬁﬂ@ﬂﬂWaaviaﬁwﬂ;mzﬁaﬂﬂ'jmauﬁuﬂ%d voslwaidu wan-ialandion
LLazﬁaﬁ@%ﬂ;uﬁNaﬂi:mI@Umuﬁaa@mwwﬁwaamLm: Maerzo et al. (2003) l@gauuudand 3
fifvasmnauunasminmeluriefangumdilasldlusunsunmedu TWluddfuud FIDAP™) uaz
lduSpuifisunazasmslnanedayaiadiauazminases wuiwai ldgeandannanlusunsuds
$1naen17inar uriefidanunuianenu et ldidSouifiouiunaniImasssdron1 R TN
ANMUFURUE TN UALARART FaN13$18898 UL LS 88915969187 sanTnduiunanuns
NARe4 ke Bassiouny and Neal (2004) laainsuvudiaasmesulnlutdfaudlunsiianz¥nnsva
maqﬁfwmﬁwmwmﬁmm:mﬂﬂﬁUuLLﬂa{l"ummawiaﬁ@mjulwﬁwﬁgu6] Tagldasrianuiu R-22 (@4
%’ﬂmqmwgﬁﬁ’]mﬁ’mﬁuga 16.7 99ALTALTUR) LLazvlﬁapiﬂuviaﬁﬁ@]%qul@T (ﬁaﬁ@iﬂu@é’amaomm
fanguan 5513-9889 Alathaens) Wisnifisuiunanisnasssnuinmalasuudasiiiaduiuriad
ANHIUZANALE IR D UADADATBINIAG ﬁaﬁﬁiu@é’aﬁamﬂ'jwzﬁqumimmﬁs_lamowm*’ﬁmmﬂ'j’] Uaz
mmﬁu@nﬂiaumwmmmwawiau’mmfﬁLﬁaomnmiméhgm'j'] uaf lewuindanuswRndu 45
Wasidud AnAidanansvaimsinaaaasiion 60 Weiidud amnmsdmisnuiidasimslnalasiis
V29ULLIINBINNNNTY MInasadat 14 1afifud Hoekstra (2004) ldaiunudiaes 2 86 vasnisina
ﬁvl&iméhmaluﬂaﬁ@%zjuvlﬁﬁaﬂ'i%mdﬁﬁuiﬂidiﬂoﬁﬁﬁnwmuﬂum“ﬂﬁsJ (LBGK) \WSsufisunany N3
Auwrmnangejredriaania 30 Jadiwas 17 200 Jadwas LAaaNuRWIVaIMadIBAIaILEDI8
e siang g W fiddsuaaiaasd (Womersley Number) §4¢ L L U CE R CUSER
AMUAUAARININANEIVBINIE FIufiAndaziaiemssan g ﬁ]zﬁﬂ'smﬂmmﬂé‘auga ANNNTAN
ntenansdede ludrsdusin umsinmfsmwsinvesnavasanusunuiszninamslnanunis
wasuuaswasie udagnalsinuenusuiusszwinedndsiugiudii g fifsdesiunsing gu
ANUAK AULT? ﬁ‘umil,ﬂ'é’iﬂul,l,ﬂawm@gﬂiw wazaNULAULAanUINTIYias s L laansAnu B
an GeazldvimsanuasiiasesilagaziBualunuised

2.2 nauinineIdas

luns@nsnmsinansluvandangulddndudadldanuiiugu dunamanivesvedlnauss
nasaainuuiuiesdng lunssiuusieeaiiduauuitdeslfasdanufifndunisdiung
aaasniosu  (discretization) Lﬁaﬁ'm'lil,l,ﬂammﬁﬂ'mquﬁag’lugﬂawmim&ﬁuﬂﬁagjlugﬂmaa

a a = o o ad A o = 1Y a .
FUMTATADA Faezvmadimarmnaaas lalagdtnadsaardaclduaaslunsazdoadaly
wananuulunssiuudnesnadavesgunssdymdidadlfasdanuiidudulasanizlunng

'
A

gaNe  IEnaaasf ldannuuusaeslianuaaanfonita e AINUIUUNAI eI IN TR UE

wanmauazngugnlsluuissieanduudssdrnausrauaii

meﬁaaaw‘fm"’amwaamﬂwmmyﬁ'gvﬁmﬂuﬁaﬁﬁwgu'Z@T 7
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2.21 a&lnﬂiﬁ’aqun’JﬂWﬁ (Governing Equations)

nsafueniemsuitanfoartunisinazesveslnalasmluudreldszuuauns
mqu’?ﬁﬂn'j'ﬁzuuaun'ﬁmLfim’-aimm? (Navier-Stokes Equations) fvsznavludsaums
m’lmial,ﬁa\‘i (Continuity Equation) FUNILULUUAN (Momentum  Equation) LLa:a&m'ﬁmﬁnﬁ
Wa991% (Energy  Equation)  JULULUBIRUNIOINENITI9G a:ﬁuagﬁmzuuﬁﬁ'ﬂﬁn'ﬁam%
iilasanmslnafidnelunuiseiiiunisinanisluriensenszuan é’aﬁ?m:uuaumimuqu
aanaizldgniuaueluszufnadns8inssnszuan (Cylindrical Coordinate) aauaasluyy
2.1

Eﬂﬁ 21 “?]ﬂ“/]']x‘iLLﬂ$ﬂ'J']&lL§'Jl%LLWJ WNWYDIITUUNNASNBINIINTZUAN

2.21.1 &nn13AIINABLaY (Continuity Equation)

[

R suminnudaifiesastinasnugule 9 susadsuduaunsldas

%+V.(pl7)=0 (2.1)

aum3 (2.1) uaasliagluRnansinszuanazldd

%P, [ 1opy) a(pu)} 0 22)
ot |r or ox

yaslnaaaallald nufe Wanunwuiuilainsn (O = constant)  nsuNINEIBIN LY

190 uaz laadit

—+—+—=0 (2.3)

meﬁaam‘fm‘"amwadmﬂwaLLUUﬁa§n7y2uﬁaﬁﬁ@wgu'Z@T 8
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2.21.2 annsluanannsangtanaasyasiiian (Newton’s Second Law)

darninddsuudasaslamuduaisludiniasaivqule 9 ansluszuuiine

‘Y]i\‘iﬂit'uaﬂﬁ’]il'liﬂLLﬁ@leLﬁﬁdﬁ

NI ﬁ&lﬂ'ﬁl%LL%’J LN X

o(pu) 5\ op 0o, ot
o +V.(puV)_ 8x+ . + P (2.4)

NTNRNUNITIULWITAR 7

), o (o), O, 00,
o +V.(va)— 8r+ . + 5 (2.5)

a 6 ar Q/ A a a 1 1 = 6 [ .
sunseuNutzaImsauinsluwuduniaisundnatned sunsuiss-aland (Navier-
Stokes Equation) lujtuuvauing lasasswudgiwiwednaduveslnauuninladion
. . ! o d
(newtonian fluid) n&1fe wNIAINgANNFEIaMUVEIRLAN (Stokes'sLaw) TIUENS

ANMVFNWUTTZAINIANNLAULAZ sammaaswutasasanueisanmelusaslwaun
Us:qﬂﬂﬂﬁﬁdﬁ?
2 — ou
o, =——uV.V+2u— (2.6)
3 Oox
2 — ov
o, =——uV.V +2u— (2.7)
3 or
ou Ov
Tr =Tr=1u(_+_) (28)
A ox or

NTAVDIFUNT (2.6) — (2.8) unuelu (2.4) LLazﬁ'@gﬂlmjﬁlzvl,ﬁawﬂﬁﬁdﬁ

BUWILLN X

meﬁaaaw‘fm"’amwaamﬂwmmyﬁ'gvﬁmﬂuﬁaﬁﬁwgu'Z@T 9
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ou ou ou. op |0%uw 0%u lou
p—+u—+v—)+—=u + + (2.9)
ot Ox or  Ox 8x2 5,,2 ror

LRTWITAN 1

(@+u@+v@)+6_p_ 62V+62v+16V—L (2.10)
oo o o TH 2 2 e 2 '

A
lasn
u fo ANLSIVBIVDI AR PULUILAY X , m/s
v fo ANNITIVBIVRI IAR PAUITAR £, mis
A o 2
p fo ANNAUUBIVDI IR, N/m
A ' 3
yo, fo AMURWILUNTRIVBI IR, m kg
o a £ . . .
y7i fa fudsedntanunitaaatt (Dynamic Viscosity) 289289 1%a,
kg/m-s
r fa Salvadvia, m

srupaunIaiuguisdulilunmsatuiengdnssamslnazesveslnalugduesanuss uaz
o o ' & A4 XY o A
Anuau o a1 uazdunisla 9 moluiunfaula uazausndgndldiunmsinaldifiounn

Uszinn lagawizmsinanisluviains LLazﬁaﬁﬁwaqiu"léfﬁﬁmﬁ”umiﬁﬂmlmm’iﬁ'ﬂﬁ

1 [ [
2.2.2 ﬂ"?z‘ﬁaﬂ?ﬂ‘l%ﬂauﬂ\”ﬂ?ﬂ

o
o

ndl a 1 = = Adln a A A s
ﬂ’]ivl.ﬂﬂ‘ﬂl,ﬂ@’lﬂﬁilluﬂmlfﬂﬂLﬂ'idﬂWﬁ]’]im’]sL%\“l']%’]"ﬂ&I%N 2 Wuuae mﬂ%mmummua:

mylwanuueeadaained
2.221 msluauvuasaa neluraudoinss (Steady Flow in Rigid Tube)

AT ARLUUIIUST BUWRzAIa1A 8 uviawdnTs vadlnavslansmenivivanwis
saniuzug uazlinslnavuwrunuldassanizulaglifinslnadhusuiu ansmzguing

[ 1 ‘ﬂy ldl v I 1 tdld 3 a J lﬂl '
ﬂ’]']llLi’JEL%LL@Iﬂtwu‘ﬂ‘lﬂlﬁ@]ﬂ‘ﬂZLﬂ%LLU‘UW’]'ﬁI‘Uﬂ’]“flllﬂ’)']llLi’]ﬁg\‘lﬁg(ﬂLﬂﬂ“ﬂu [3%3 ’ﬂ@]ﬂdﬂﬂ’]{l“ﬂﬂ{]‘ﬂa

oK) LLam‘Lugﬂ 22

o A o o ¢ ;AN ' o
LLUU@']QQ\?L’IN@?Lﬂ"l/?]adﬂ']?IZWﬂLLUUWﬂﬁﬂ']UZu‘”ﬂ7’]5/@'Vf%/ulz@ 10



Ao A A o
2. JIUIVUURSNE) B NN IV B

ny

——
N \ . N
Xl ﬁ = / = ) — )

u=ufrg), v=10

C; 04 ~ ldl a ! ' ~ =
gﬂ‘n 2.2 aﬂiﬂ'mxg'ﬂLL‘]J‘]J"II?Nﬂ’J’]&JLi’J“UI’J\‘]"IJENVL%E\WILﬂWH%ﬂWUl%VIE’JLL“INLﬂﬁx‘i

(Zamir, 1998)

ANTIMT MALULTULSEU (laminar flow) HwviananluuwiTeauniTalivasviarinny a a9

waaslugy 2.3 zwuhaumiluwuaniaigunsiwamunsauaasldassunms (2.11)

1 d( duj 1 dp
| === 2.11)
dr

rdr _,ua'x

y f\& )

) — [ y

' =< . \

s St S
[ R~ B

317 2.3 m3lnauuunuiSpurkiurianan (Fung, 1997)

A AN A A o, . Y
wazndenlvreuwaf liinylnavesveslnafintiria (no-slip) wazmslnaguNIATTOULEY

ngﬁuﬁnmwama
u=0 at r=a
du
—=0 at r=0
dr

IINFUNIT (2.11) LLazlﬁau"lmmuquﬁﬁmumﬁaﬁu AuL5? m Funiedngg aeluvie

RINIDAUIDALE 95

u=—4él(a2—r2);l—i (2.12)

u,umi’ma\u%\7@”71,awaamﬂwmwuw‘"m(mﬂﬂlun'aﬁﬁ@%giu?@” 11



2. UIFBUIEN BNV

NauMs (2.12) 1nazldaanmslnanuralasnsdufiiniaaums (2.13)

Q =2 Jurdr (2.13)
0
2 leaaIM I maLvinnu
4
O=- 7;1 j—i (2.14)

ANBATINI A1 DA N UARINAAIZEINITAFIWIMANAIAINLS AR VDIV LR A A

FUNT (2.15)

2
u, = _a’dp (2.15)
Su dx

AMULA LRI UWUBHIINIARINITDAIWI T b ATIM SR UULURIAINNLSY Db WikITie

Shear stress at the wall = —,ua—u (2.16)
Pr=a
azlein
Shear stress at the wall = 4—'[;Q _ g tm
na

2.2.2.2 msluauvuesaadaamasnalunainss (Oscillatory Flow in a Rigid Tube)

mybangluriainTs AN IRaNURuusUaIa1uIa) FNNITINLURANVBINT AR

Laad laaIauNNT (2.18)

2
ou 10op Ou 10ou
p—t—— =y —+—— (2.18)
ot pox or- ror
Y = ' da & Xa o o 4 o
fMwinmadfswudssmsinadanaifeduiiiiaannanuaunidfowudasaunanluansme

(HunuuNsRTuaY (periodic function) LI lUENANT (2.19)

o A o o ¢ ;AN ' o
LLUU@']QQJL’IN@?Lﬂ"l/?]adﬂ')?IZWﬂLLUUWﬂﬁﬂ']UZuVIa7’]5/@'Vf%/ulz@ 12



2. ywisuaznnuiifates
P(t)= P = P(cos(a)t)+ isin(a)t)j (2.19)

P A Y ' A a £ =] a '
lasfi P da anwauanaiengegafifadulunisaumslve Waunudaunis (2.19) as
luauns (2.18) azwuin

o’u 10u pou P
S t—————=—¢ (2.20)
or~ ror uot u

ﬁﬁrmmgﬂLLmJ“uaaawmﬁwﬁm:é’aLﬂ@vlﬁ'hm'mL%’mawaavlmﬁa:ag'lugﬂmaa u=Ue™
Tasfl U fannausiadoluuuiuni aanuannnsdmwisaunns (2.20) ANNi5328903 Ma kUL

saadaanaineluviainTimunsadiowlaasit (Zamiar, 1997)

iaz d_p 1_']0(4/) eia)t

u(r,t) = (2.21)
17 de\ - J,(A)
Lﬁla JO fa Bessel Function of the first kind, of order zero
(0] A .
Q= 'O—a Eh) #1 Womersley number
)7
1i—2
A= —|Q
V2
T
Cn=A-

Tau?l Womersley number @8 8as8uszninennudosuasnsivg uazanuniiavesns
Inalumslwauouiduaiy sudarnylnagnd (net flow rate) melugrsnamitsenuns
Inavasmsinaunveasdaaneazlandugudiaus uaz damnisinazeszasina w anle
9 fewurinu

. 4
L.a dp 1_2J1(A) eia)t (2.22)

= a0

Lfia J, fa Bessel Function of the first kind, of the first order

AR WNNITINARINITDFIWI D LI NFNANT

o A o o ¢ ;AN ' o
LLUU@']QQ\?L’IN@?Lﬂ"l/?]adﬂ']?IZWﬂLLUUWﬂﬁﬂ']UZu‘”ﬂ7’]5/@'Vf%/ulz@ 13



ae ad A o
2. JIWIVYUNSN) YNNIV E

= 2

a dp J](A) eia)t

" Adx\ J,(A)

r=a

(2.23)

a v v ad d @ & \ = d 4 v @ ae & 4 %
VIﬂa']’JSJ'WﬂO@]‘I/LLﬂ%YIE]HQ‘Y]Lﬂﬂ’]ﬂ‘llﬂ'ﬁvl,%ﬂ‘ﬂdﬂ&l(ﬂﬂﬂUl%“ﬂﬂLﬂ‘NV]Lﬂil’J"HEJ{]ﬂ‘U{i’]%’J?JU% ‘Ii{ﬁ]zvl(ﬂ

ﬁwvlﬂﬂi:qﬂﬁ‘l,‘*ﬁﬁ'umnﬂﬁﬂuLuJmgﬂ‘hamaawﬁfaﬂaé’aa:ﬂmﬂmmanﬁzlmiavl;ﬂ

2.2.3 IaAWIU

1umm'fa:l,ﬂumiﬁ'1Lauamwﬁlﬁmﬁ'quaﬂsimaqﬁaﬁa:ﬁﬁvlﬂﬁmsmﬁ"mﬁu
malnaludnemzeans gasi lenanluudludradu Seezdsznevlddrsunsfiasunamadaow
WAL AMRRANILAS RN UNTTIa Lﬁagﬂl,l,ian'muann‘szﬁ'l fNTUVIONIILNY
zdaNNAzIufe AnurnwzaInkIviadeTallddanuing Lﬁa'uLiﬂnﬁguﬁ%qﬁé’nwmmam"lﬁ
a931 2.4 FatuaunsatuNenTIaswudad uaznsindenivasnislusuuRTasN95

NINNIITUBNRINIIN LLHG]GVL@T@G]'\‘]“I‘:L

WWALLNY X
; I ( p)aRW+ L S:R,
a, = — — 4T _Tt -
U onfiv@r x| T T R x| 1 (@R sox)’
(2.24)
uwasedl r
L 1 o p (e —r)aRuiﬁ S.R, (6Rw)
"onfr+@r a0 |C T " T v R, x| |1+ (@R, Jox)’  Ox
(2.25)
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ae ad A o
2. JIWIVYUNSN) YNNIV E

ZZ

-,

—
——

22

<SS
T,

.
L,

(@)

1 ] 1 ’~ J/ o v { { L 1
3UN 2.4 mafouudaanifelunuriiuazusinmenen (a) Mmadasuulainuiiive

a 2 [ a v Ada X o X2 @
(b) ’JLﬂi’]:ﬁ“ﬁumu‘nmNud (c) 'JLﬂi']zﬁﬂ')']&]l;ﬂuﬁLﬂﬂmuﬂu“ﬁuﬁ'ﬂumaﬂwuﬂ

(Wu ,1989)
- A @ A = & a '
lagfi R, Aa JAdaININaINURITaITe, m
A v ' 2
S¢ Aa AMULAUAINANNLIVBINE, N/m
A v v ' 2
Sp e ANULAUMVUWILFUTOLIIVBITID, N/m
A v A& Y o 2
p, o ANNAUDDY Va9 lnaNiasaInAUKEIia, N/m
v ¥ A 4 o o 2
P, fAa AULAUVDY NURINAIRINALHIYIE, N/m
A v oA a e 2
T, fAa anuewdanaas 284 nafiniva, Nim
A v A AL a o 2
T Aa  anudwdeuniiuAzed nikivia, N/m
h fAa AMURUIVBINIITIE, m
A ' 2
a, fAa anussluiwannu,m/s
A ' v A 2
a, fAa anussluuwaiad,mss
' o 2
o) fa anwnmLkuvaInibevie, Nim

“ . P N
PNFUMT (2.24) Uaz (2.25) Faanuissluuwinnuiaziwisaiiiaduasnurinldinaiuisan
v o ¢ o v , A 4 o A v o ¢ .
mmauwuwaaaumﬂugﬂmad N135290v89NI e UAuuUad bllle SInnuFuNUETERINg
mmL%qLLa:mmLi'aﬁNﬁTaa%mﬂﬁﬁammiﬁmmlﬁwﬁhﬂmﬂui’@qﬁﬁmwmiaLﬁm LASANNUA
° o A a A a £ A A aAa £
fnuald x , Ao madfsuudasszasiifioduwluuwinns uas r, s MIUfsuudasszosiiiodu
Tuuursad azleqn
.
r.=R —R (2.26)

{ * A o o ' v o o A & {
Lﬁﬂ R fa 3?[1]“1]a\ﬁ’]aﬂqﬁiﬁlﬁﬂquﬁwﬂﬂ'ﬁ%aiﬂuﬂﬂﬂ L‘Wiqz‘a;uuslﬂﬂ'ﬁvlﬂaﬁﬁlli]'l@li@l'lw

& da & o o &
LN UANNLININAT LT waath
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2. JIUIVUURSNE) B NN IV B

ox, or,
u= , V= (2.27)
ot ot

ANNLTI UL N ULRZ L WITAN VI o NI LN L T UAIFNNNT

WAILNT
o’x. ox. 0 ox
a, =—5+——(—") (2.28)
ot ot ox Ot
e
UwISAR
8213 ox, 0 o,
a, =—; ( ) (2.29)
ot 81‘ Ox
{ o ° [y a & A a
Lﬁawmwagﬂmzmmsl@mm@mzm@mwmuuazmwLﬂmmummmmaﬁmﬂ
ladaaums
_ J Jk
S,=-p+A4/E, +B"E E, (2.30)
A A o A A
Bh i fa arhUsuaniian 1-3
A o a ¢ 2
p fla ANMUARFNAL, N/m
, Ao LT SUBIAINNLA
: Ao ANLAILA
A7, Bl.j" fa Anananubantuuadaa (Lame's elastic constants)

v

mm‘uwaNmmammmimmmvlﬂmu

ou (auj (6\/)2
E, =—+— +| — (2.31)
ox Oox Ox
2
, :z+i(1j 232
r 2\r

a

wazmeldiiaulrvasvedinadadlildasdanuduiusues £, dail

(]+2E1)+(]+2E2)+(1+2E3)=1 (2.33)
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Ao A A o
2. JIUIVUURSNE) B NN IV B

{ =Y ] ' ] { 0/ ' a J o Y a
WaRasanmswavaszeslnasuriedanduifianuduanasanvasesinaiioiuilvvaiia
Qs 1 v a v J Q- 1 Qs v 1 k3 v
nIguuazEedidinaliiiaanuiduuszanueisaiuniuradsldnann lyudaluasudu lu
\ : & a a_a \aa \ v
faude lWandunsfasanngefesnomslnanmslurienbenduld

2.2.3 mﬂwamﬂun’aﬁﬁmmju‘lﬁ

da & A Y ae & ' < A
mﬂmmnmumsﬂuwaﬂﬂ%quvl,@ﬂmmiﬁﬂmlummamm:umaamﬂu 2 Luuaa

MIMABLUUAIAILAZNNT IAALU LD DS TAAINDT Ad%h

2.2.3.1 mslwauvuayaa my?uﬁaz‘iﬂwgiu‘lﬁ (Steady Flow in a Compliant Tube)

Asanmswazasvaslvamoluvienfendguld  lasvmeSuduanuaunoluus:
mmﬁumﬂuaﬂﬁaﬁﬂ'ﬂMﬁﬁuﬁaﬁfuﬁa%ﬂ&iﬁmsmﬁUw,maagﬂi'lwadﬁaé’dgﬂ 2.5 1584370

o A @ A | o o A = " a a &
ANUABNNINLVINDUANNINUAININAUNNIIDBN QGVLNLﬂ@ﬂ']va%aLﬂﬂmu

Initial Extermal pnesane = 0

= 0 Clerw

r A A a o X
3UN 2.5 vieHlangunlull nvlwaifiadu ( Fung, 1997)

A a o ' ' Aa & o Aa
Waliaanuauanasavvadvanislure azfansinadnlasazlva lunisdund
anNani b msiasInunaNnuanmele  war M yuanﬁavl,ajmwﬁ'uﬁa:ﬁﬂﬁl,ﬁﬂmnﬁﬂgﬂ

&
‘UEIG‘Y]E]’U%@]GLLE‘I@(‘ISL%E‘]J 2.6

With Now
E xieinal pressure = 0

Pg Py =Py

Flow in an clastic tube of length 1

{ a ' o da X
31 2.6 wydnssn milnavesvasinameluriedanduiiiadu (Fung, 1997)
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Ao A A o
2. JIUIVUURSNE) B NN IV B

[ . o o { o &
ﬂ’l’]NﬁNW%‘D%&W’J’Nﬂ’NN@%@]’N (transmural pressure) LLazamwm‘s‘lmﬁm@“uummimmm

ldasit (Fung, 1997)

= = ——Q (2.34)

{ . o 3
lagi Q fa 8aIMIWMA, m/s

AIFNNGIN mmJﬁﬂuLLﬂmgﬂJi’wwaMaﬁﬂﬁ ﬁuﬁ%ﬁwﬁmﬂugﬂwﬂamaa@L'Jm
é’aﬁfuﬁuﬁﬁﬁﬂﬁwamaﬁﬁ@mjuuﬂsﬁu AUANNABANATANITZRINIAMNABNIITILRZAITN

v
v A

AuNINaan ;NI ﬂu"l,mau

. X 1
p) = p(0) £ o |——a 2:35)
Sl

ANTA AR AN Lﬁ%sL%LLu’J LWL WNNTITNANTOA WD va@ﬂ(ﬂ H|

_ p(xX)r(x)

p = > (2.36)
h

a A o o @ & A P

Lo h A AIMUAWBIVDINUI ﬂ']'ﬁ']ﬂl%ﬂ'.]’]wil']'.l@nllLL%'JLLT]%LLNZLL?G@NZJQ’]‘?NV] n1InvI

danuaisamuInmldlasaumivasgn (Hook's Law) a9f
ey = —2 (2.37)

A A, [ o A o o o a A a £ ) A
lasn E ﬂammimgaa mamaq‘n‘lmmwm ANULATHN (egy) TAaTMluMUVINLD V89

FuN3 (2.36) Usznavulidie 2 daufan s aamuLLNbLaz ALK TANAIRUNNT

1 (04 — VO
E 06 rr

Tagf vV fe 8A318% Poisson 93UNaNTILNNAN O, aziidiasuin aulng

a a 2 a a a a :
MU AsuLYaIANATEATIAAIIN Ogy NIIRIAINLATHABNNTUUUNIIINAINTT
wWasuwlasvasialinnsdinIalisudu r,

o A o o ¢ ;AN ' o
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@ ),

VO ro

(2.38)

TIWFNNT (2.38), (2.37) e (2.36) Wndronuazlaanuannuiszninesalviauazanuan

-1

7
r(x)=r,|1- E—th(x) (2.39)

£
=

WNUATFNNNT (2.39) RIMUENNNT (2.34) 2= FHAANNFNNUTVBIANUABLALEATINT LRAA 96

o

&
Jh

, _ 8u -
(1-=Lp)*dp=—"L-Qudx (2.40)
Eh )

Waiinstwuae Saulafiway (boundary conditions) 1% p = p,1ile x=0 uaz
p=p, Wax=L m3duiiiniasunis (2.39) 90 p, 1§ p, nMImutuiievasauniuas

v a % P A v @ o A v o o ¢
“(]N(ﬂ’m%l’a’]&laﬁltvl@]ﬂ’]ivl,“lﬁaﬂvlul,ﬂm“ﬁdLauﬂUﬂ’J’m(ﬂuﬂa@]m pO _pL I@]Uﬂ?’]m@uﬁuwuﬁ

fusamslnacsit
Eh v, - v 2 8u . -
= 1-—"pn(L —11-—"p(0 =———L 2.41
3 Zh p(L) h p(0) - Q (2.41)

NNIRANTMINT L8 b1 981949 LT UNITHIANVIA NN RN ABTITHINANARUAZDAIINIT
Taan LB ardn

NANNFUNUTIZRIITATNUANNanT anwase IDu T duaz laaiguns

r=r,+ap/2
Wa 1, Aa Jadvadnie
o fa AnaNvaInNuEan UBD Yo

AIHUANNAULANG1ITERIIM el ez muanvimﬂugmﬁ

& _dpdr_2dr

(2.42)
dc drdcx oadx

unuagNMT (2.42) Tu (2.35) 3ai3pananlndazle
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ae ad A o
2. JIWIVYUNSN) YNNIV E

Jdr 1dr dua
padar_ldar | aHa (2.43)
dx 5 dx T Q

NFIRVINTDANPINDRIZNY X 92 LANAVAINTEUALNTA
20ua -
(r(x))’ = ——’uQx + const (2.44)
V4

Walimsimuavauiwa x = 0,7(x) = a(0) aswudasf iy #(0)° Waunud x = L
luauns (2.44) a2ldnansit
20ual - 5 5
—Q:[r(o)] ~[r@)] (2.45)
T
~ U Qs 1l tdltﬂ ] v o U
aniuwldimilnauvuasdineluventanguld susnduinldannauniy 2.41) uaz
(2.45) lagluauns (2.41) WadasmMImanusunuiueianuawtazdann s inad ldwg
o P o o ¢ v A o o A = A 1Y P
LEUBUAZANNNT (2.45) LM Iwn anusuRusvatall AU aannsinanidudadu lasfinns

A [ A a & < v a A o o a o o w
WRswUaIva9803nT aNtnadu dunaliian sl asuwulainisdiuuessadontnasvi
“wlad (Fung, 1997)

2.2.3.2 mﬂnmwuaaafamna?nw?uﬁaﬁmmju?ﬁ (Oscillatory Flow in a

Compliant Tube)

1 1 v dld 3 dl a J 0/ I
mﬂm*‘uawaa"lmamﬂuwaﬁwqu"[m nigduunrasanuHAeln aegl 2.7 1w
@ = A a & A ' o & da &
anum:gﬂu,uumwmmaamaavlmamﬂmumulu‘naquu anwagluuueNUTINAa Y
1 [l 1 1 o g; ﬂ/‘&/ 1 { -
IUREARZTIITTHZMULUINNG X a:ﬁﬂumﬂvluLmﬂumﬁmuagﬂumim‘éwuﬂawmmaaiﬂﬁ

N

i

i

L 2 = 2D =
Xyl l.\"""-y -—'—"":__! lS,/ :

e

u=ulnt), v=vixrni

31 2.7 LLamms"Lm"ua\madvlmuuuﬁ'aﬁmaﬂwiaﬁﬁwﬂ;uvl,@i"
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[ dl a J 1 A ] g: a l&’ Q/g: g = Cll
AIULIININAVUANN ﬂ’lu"namv\ﬂquum:mmuvlﬂmluumLmuLLaﬂuLmeu n13In

= a J a ' dld a &) nﬂl a dl 1
A210L3VINTT IRALAATBINNANNABANATa NN AN BT UARY WazUTIATLNUULK

o \ ' A ¢, . A & i A a v
pnenatasuadnlol (sine wave) uazadulalsil (cosine wave) Fvananiniouliaglugy

(2
v A

293N ILENIULUIEBEA (exponentials) ba@ath

px,r,0) = P(r)e'™ ')
u(x,r,t) = U(r)e™ ')
v(x, 1, 1) = V (r)e' ) (2.46)

Wo @ AsanuniveInIeasdalan wWanisassdalanayluviadanuimiannniin

Wholumsiienzdluzdusumadnldiuwdos unudd adlusunsaiugy  (2.9) uaz

(2.10) ale

2 . .
d U+1dU_zpa)U:_£p 247)
a2 rdr o op pe

2 .

1 14
av ZJF_I‘W_ _2+ﬂ y =P (2.48)
dr rdr |, H pdr
ar.v_ie., (2.49)
a r c

= @, \ = N
azAnlad 2 imanusnuasauns aglugdvasaumausias  Sawidrld anwms
< oA o \ va ° P ' £ o
Wendwiialdaunisegluzduuinasguldlinsnuadidindsdng g aunn dsuaaslu

FUMT (2.50) 1aunulugunis (2.47), (2.48) uaz(2.49)

Q= P2 n=""Lac=a" (2.50)

M V2 a

dumaunudlvaglunanves ¢ sunsaiuquns 3 nnoiu

d’U 14U 1
— it —+U=—p (2.51)
dc*  ¢dg pc
2 .
1 Ad
asyv 1dv - - iAdp 252)

d{z ’ ¢dg " 52 pawdl
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ar v _ieay (2.53)
d¢ ¢ cA

a a & d o g & a = \ = =
ﬁ]’]ﬂaﬂ’]jzwE]%VL?JGUE]‘ULT@]L&JE}Q’J’]UL?’J”N%\?L‘U%Q%U ﬂ?@]ﬂ\?ﬂ@’]\j‘ﬂadﬂaazwﬂ’gqulj?

PN AU LAIANTAYINAY @ 8NNV LA LA LTAI%

r=a,¢ =4,
U(a),V(a)=0

r=0,6=0
U(0), V(0) = finite

a

° A A9 o v &
faauraIRNAITINNTaw A uIaN ez e aadh

_ ay 7
U(r)—AJo(§)+Bﬂ(l.QzWZ)JO(A{) (2.54)
_ 47 ay 7
V)= AT+ B (G0 (255)
P(r)=BJ,(2) (2.56)
a

laaf A uaz B iudrndsiiudrasiuasiatmuadiasn y

LATNNTHIAIAD LA BN TUNUAN

wlddwasdinaula ﬂmsﬂizmma@gﬂmmﬁa

U(r) = AJy(£) + B(—) 257)
pc
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Ao A A o
2. JIUIVUURSNE) B NN IV B

ior
2pc’
P(r) = B(cons tant) (2.59)

Vi = 4" 1 )+ B2 (2.58)
cA

Wavadlnasaa laile Smslnaduuuy fully develop  uazldunaiaasuasniny
' o & A o vaa .
E‘quumvxumﬂu G Falluauds138a (zamir, 2000)

2+z(2v-1)

(2.60)
z(2v—-g)

=3 v A o { 1 [ A IS
anuldhfidaudsananns (2.60) Ndnadaunainaivasanuliontgude z Fuiu
T etanm laan

z=—" (2.61)

° A v X ] { o 1Y
FIWIBLDIDOWY Z muagﬂuw]ﬂ’a’ml,%’mﬁu (o} 1%L'ﬂa&]°ﬂa\7 ma@vlﬁaLLﬂ$Nu{1'ﬂa ﬂ’]"ﬂa\‘ivl,ﬁa

' L AN A A = a %
Tnaruran i anunianusiua9nauwnn beain

, _ Eh

Cy = % (2.62)

o

@ Ao o so =« A &
5]51;@@]’] Z NFUNBDINUAIULIINIUAI

E
s = Jo_ 2 (Coy? (2.63)

AMVL3INRY ¢ NTANURIanT ldann

= 2 c (2.64)
(1-v)z ° '
waz g Aa saudslNarmuassil
T -
AJy(A)

A ' v o ¢ = a AV vaa ) <
Lua‘mmmmawwuwaamﬂ%a‘[ugﬂmaam’]miﬂuﬂsmmﬂvlimm:vl@ ALY

uIUNUABANTIFIER u, lumTlnauuuaddafa
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u(xrt) 4\, s Jo(6) | ia(t=x/c)

u A Jo(A)

N

e (2.66)

wazlumesdsnuazldanumiauumialdennuigege u, lumslnauuuas

v(x,r,t) _2am L—Gg eia)(t—x/c) 2.67)
u, iNc|a
wasifinsisviaila r=a a2 leiin
v(x,r,t) 2aw io(t—x/c)
= 1-G 2.68
» ; Azc[ gle (2.68)

s

mImaanmiinalugduestiinunl3id smansonldannaanmilnadedasnig
Twanuuasdn g, a9ft

x,t 8 io(t—x/c
950 _ -—[1-Ggle ( ) (2.69)
A
q,
o o & [ o ~ ' )
mawddgywminawuunasazdagdaumiliagluzlues sumaumas Sanndnld
& o = { { a & d {
TN LUTLGAWINTH BIATE190UVI ANLIIA U NI uLaziNanl1uDvaInIT
paadalantUfunllazdnadaniui3l w38 8a3INT I WAz ANNARANATaNBENIlINNT
RTINS URouilasrniavasriatianandfouilas FenazsinuiRsande ldan1sasne
WUUNRBIVBINT IARTRAT

2.24 mmdanlzuuudiaasnivadiadans (Selection Criteria of Mathematical Model)

uwundiaasneadaaaad AesruuauMIAILAN Wie JUuLLIaIRNIIAILNAgN T
v J 3 A a 6 < 1 2
1R 0UnUEITI n1IRTINTInaaaasvadling laonaluazutsldaindszianvasnsing
LT

'
A

- My avasvedaunuuaaal luld (incompressible flow) Wanedd Mylnasianii

AMNaRLURuuLYad USurasaziianmsiufunndasdasuin anaiusanaz laditadale wie
' a o A oA Aa , A a

AAMBNNERAI A NITIRAVBIVDIIAE UITLANARAIANVARILUKAIN lasdndniTinavad

°naamm%’@ﬁﬁLflumi"l,m**uawaﬂmﬂi:mwﬁqué’uvl,&i"l@i”
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- milnsvesvasinauuulifanuniia (inviscid flow) wunefis 2alnafifianudae
muﬂ%aﬁm’]mﬁmﬂuguﬁﬁaL’%famﬁﬂaf;hwﬁodwaﬂmlu?mmms

- mylwanuuiiutan (turbulent  flow) wanads mylwavas maﬂm"ﬁﬁmﬁm&mﬂﬂuaa
yoslnandaniludnwaswiofianeliwinon Jnsinaeuiduasuazdnsiaswuasluuudu
andiunitives veslvaludigining anvmenislvaves veslnaifow
95 Wetrudazdumsinauuuil Megratumsinasasinanuuiiidraass mslwavesonmea
luvieauidudu

- m3lnaunugesdd (2D) wie swdd (3D) mslwa 2 36 naneds Mmylnasianidn
mylnatedandliunszwmududsiiwuainsnaeunauasle dragnswasnslng 2 Aamaitn
mslnavesinfidud sundanslnavaserneriuinuasiatasdududu nlne 2 Aanisil
AU ANNAU Lﬂﬁuuuﬂaﬂﬂmuqﬂﬁﬁmsmw FIUNT e 3 86 nuudIFuINT AR
wWasnudaslule 3 ﬁﬂmuﬁawauﬁumﬂ%aa:aanmlugﬂmammmu anBMeMIAaNT WA
lu 3 fians Lﬁuu’%nmﬁmaa"l,mﬁ']é'ovlmLﬁngw’avﬁaLi‘imlaavlmﬂtzmi'@]qﬁmnﬁﬂmwaami
Inaigu evmadznzgnu iDudu
PMIUAZRNNIT

o o

M InadsziAnas 9aen lanaunwlunsdwi s diaasazs
nIDNNAB1989%9

3
a o & v A ° ' A
muqumww:'ﬂmmmwﬂuﬂtymmsvlmauu ﬂLLﬂX%Z@]ﬂG&Jﬂ’]SS:H@’]LL%%(‘I R

sanTaudslanan 9asi

2.2.4.1 szuuRnAa19dy
gﬂmeaoaumsmuqﬂﬂ9ﬁ%’sumﬂﬁmmn@i'mﬁ‘mﬁaamm:uuﬁﬁ'ﬂﬁ'm’éa g‘ﬂﬁ 28 1w
1881928IN T ERNABN9D

- Cartesian Coordinate #3889 Anaanniiufiiasnsdeesunuasaindemuuas i

- Cylindrical Coordinate mangfsRnAsNIBI89NTINTzENGIBnLNwIuANNEY Seid)

LLE‘K&!M

- Spherical Coordinate #aN8IRNAB198928INTINAY

Y v

- Curvilinear Orthogonal #ansfisinaesdsvasdulasnaanuldunduzmnasy

Y Aa o o

- Non-Orthogonal #ansfisdinasnidsaana iduamnasy

XA :%:“t“
S
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2. JIUIVUURSNE) B NN IV B

v
av A

A va e v oa & > A < ' S A va o
mnaanhwnwmqawuagﬂu ansaems adslunuissiidurieansinszuenisienldnng
81984N39n32VaN (cylindrical coordinate) waninihaaninas1sdsusrFansLiulunmsdrwaim

A8 NMIULITIVBINTANUIUAIT

2.2.4.2 n3aB9ANay (Numerical Grid)
mildniaziimaudlawumsdwimeanibusiuginssumdudsiivatosiu

m3lwaludunsiing gunsniisfiavensa sansoudedenldeil

- Structured grid wIaniauuulassains daznaudionguvainia (LI ILAZUIIH) 71
am%ﬂmﬂmjuvlajé'@ﬁ'mad LL@iﬁ]x@T@]ﬁ’Uauﬁ%ﬂLL@iazé]’Tﬂa\‘lﬂE\jNa‘uLﬁﬂd%ﬁ\‘iﬂ%\‘i AINEAILu
U 29 nSauuuitesidtadlagsrnunesdoulediu n3a asimdumn %au@iazﬁgmzﬁﬁm
S ANGHER el fNTURING Uas 6 q@ém%’umuﬁ?l Lﬂun’%@ﬁdwﬁﬁqmzmﬂhmi@ﬂu
TUTUNT Uae LWASNTBITTULRNMINTAGA (algebraic equation) (HulassainsnTuuy
Lmuﬁmsmﬁmauﬁﬁﬂi:%ﬂ%mwayjuwniﬁvlﬁﬁugﬂiﬂaﬁvlajsﬁ'usﬁau wanddalRufe
AILANMINIZBAIVINTA IAEN wazwininanszaeainia limunzanazrilinig

PFNPaLAANANALARDURID ﬁﬂﬁmmﬁﬂtymvlsjgmﬁ (diverge)

g‘ﬂﬁ 2.9 M3l Structured Grid

v
A v A

nIauuulassaseigainsutstoseantanilu 3 Uszan fa

H-grid 1lunTaniiansuzdudindsuniiduuontaauasuaadlugl 2.10

BT

= -
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2. UIFBUIEN BNV

O-grid lluntafifioalflusnsuzdurnaunlidndudassulagamoramiaasuaadlugy
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TErey . 1L 1
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= =

— i - - -

3+ |

T
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T
f'||

31t 2.11 m3l4 Structured Grid upY O-Grid
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31t 2.12 m3l4 Structured Grid uuY C-Grid

wanitaannsandusuulaseanaual09d

[

- Block-structured grid 1Hun3afdaidungudeuriunslulawn suniimanieniuise

¥ A

il
\3un8nat1991 composite grids 38 chimera grids @931 2.13 TanIadszinniiliada

2]

L 2D

v

Tawndapurnnitgaslawwnislulaiwnrasnisdiwimuazudaz lawwngoslisndudasd
AMUAZLAUALYINNY FBINNITANWIDAANNLAN Db USIIsI08d0vaIudaz LAl ﬁmwﬁ@mju
anniniauuy lawsisuazaunsnih iddszgndldlany juiandudauniaiagiiafond

v s Ade A A A o 9o ] & Ada
lduddaddaidofadouldunsuen uazannlumahanldiungnseuindislidunfion

N
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I
TETL
[
Lia}
i

51l 2.13 M314 Block - Structured Grid
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2. UIFBUIEN BNV

- Unstructured grid ﬂ%aﬂ%@ﬁl‘l&iL‘ﬂ‘lﬂﬂidﬁ%/’]\‘iLﬂuﬂ%ﬂﬁl"ﬁ'ﬁ’Uﬂ’]‘iLﬂa‘F_luLL‘iJm‘ﬁlvl,liL‘f]ugﬂLL‘Ll‘Uﬁ"U
Iﬂsaa‘i”wﬁfﬁu%auﬁmamslugﬂ 2.14 ﬂ%@Lmuf:ﬁ**ﬁaﬁﬁalﬁﬁugﬂiwo%’usﬁaﬂﬁaLLa:mmsn’l*‘ﬁ
AU dicretization wuvlwuAld waBiouiud® FVM uaz FEMASISRuLSunaswietudnis
suuunlnuile Lmzvl,ajﬁﬁj"m‘hﬁ'ﬂsluf%'awaaa‘hmuq@“ﬁwﬁﬂﬂ@ﬂﬁ"’;vl,ﬂazlﬂuﬂ’%w,l,uu
uagunse Anasuluougesdd uasniannnasy Tuawswiad algorith fsnwnsald
shensalagsaludfsusaliuamnusndoauasndaluancildieiiszuuaumiise diaf
Idlunsdwnldiduuonuny  Idadsfedasiimaiudunisasudazan  uazduni
dradssuondmn  dlnisaienia  wazwIumT  pre-processing  finwgsenns

IR aa LT

31t 2.14 m3l4 Unstructured Grid

2.25 n1sviAaasinow (Discretization Method)

o . . . Y A adq o (% ° A ¢ Aadd
M discretization azdpafanislWinunzauniuzluuurasLULnaIn e diamaaEIEA
foultasit

1. Admeeulnlud dwWiwasisud (Finite Difference Method ; FDM) lEfwsumslnaianie
athiflanAuANULANG1928908198476aLitad (spectral method) lun13duIT4 (computational
. o &Aoo . .

domain) azgnuiveaniduiuiinia fesuvessunisaiuguluglesszunaumMIayRusazgn
Urzanmannd1rasgandainsdmaeuuazalndifss  Idadfeiolumahluldnuuaiould
o A o v A A ' o o A . o o [

Aundauuulasiass daidsfelimunaldivnuizlngudenld

2. Amadulwlud 2eagu (Finite Volume Method; FVM) lEarsaniumisinanaaans
PSunaslasNansannmediuaasvauaidunan (boundary element method) Faauf laazan
mnaumimquﬁaglugﬂﬁuﬁmm (control volume approach) uazidudaaundILrLL
¢ = v AaA U Qs 1 dl 0/ v U 1 = |l§/ Qs a £ a
Aanansvastiinasmiugy  defideldnuUisndudenlduszgUivainializunufinagnsde
waddaifedasnlumaildzgndlddmivng 3 Salduazdionluniswamw anuwing
3. Atmadulnludg 88uud (Finite Element Method; FEM) TdRansannumsinalasusisgin
Aansanaanduutias 9 (Cellular Automata) AseAU FV lasfiutsiuiiiin Volume daauaz

o o 1 & 1 U o a dl & v 2= dld 1 L U

andnwmlasardy Jliwdsdmannliniy ndenlddulasiasildladnununiizdiedudan

WA AT TENUWI WA INTNT UL ENTA TN
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2. UIFBUIEN BNV

fnsedenuaziduauing mMivh Discretization udazitazlddiaaumilonn s wmiudgninig
Twauuudeann anmaianldAnaa98s NIaLaATARAI INFAINEIITIITULED NITRINALRAE

FIARURINITYN IA LA LUINNTEIALAVAIZNEG 0 1S

2.2.6 35Bauwan (SIMPLEC Method: Semi-Implicit Method for Pressure-Link Quations
— Consistent ;Van Doormal and Raithby (1984))

wdtniefldlumssummidiaey  sesuuusissadesasulasnisandisuduuas
fmmmaiialildsaaufiuriass ldwanmsvesnSatnuientas 1w nsunueBuaue
ANBINNNAK WIAIAMULTT MULWILNT U LEZANULIINULWITAL v IddIaau1aInNank
Platauunuaranlddneuiiuiismasmnusuazanusimuumunuesunsad  lagan
FUMINILAN (2.9) Uax(2.10) ludruasaunslaLauey Plifausaftasanusldudng uas
Mwnuaduniidng gaauaaslugd 2.15 musadisuliaglugdvainisfaniln (discretized form)

1aaat

| |
| |
' N T+l
| |
| |
| |

e i — — — j+1

g‘ﬂﬁ 2.15 NIRAUAGIURUIVBINIAFAT 1N
a; u; ;= Zanbunb + (pl—l,J —PrJ )Ai,.] (2.70)

drjVej = Zanb"nb + (PI,H —PrJ )A],j 2.71)

1. HAUAAT p* L3N

2. WA IIMFUNT U* UAZ V* IINFUNITINEN

a; U, ; = Zanbunb T\l —Prs )4, T, (272)
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2. ywisuaznnuiifates
a],jV;,j = Zanbv:b + (p;,J—l - p;,J )Al,j (2.73)
WNUAT (2.72) waz (2.73)lu (2.70) waz (2.71) azle
a; ; (”i,J - ui*,J ) = Z A (unb - ”:b )"' [(p[—I,J - p;—l,J )_ (pI,J - p:,J )]Ai,J (2.74)
a ; (vl,j _V;,j ): Zanb (an _V:b)"' [(pI,J—l - p;,J—l )_ (p[,J _p;,J )]Al,j (2.75)
3. lFdanudn putly sanuawEudn p* udn
p=p +p' (2.76)

4. gdrenuSwn e lwldanusnuiass o) v

u=u +u'
2.77)
v=v"4+y
5. lgeud lvvasanuandanunualuaunisanusa
' ' ’ '
a, U ;= Zanbunb + (pl—l,J —Pry )Ai,J (2.78)
= S+l 1
a Vi = 2,9V T\Pr g — P14 (2.79)
il Zanbu;b WAz Zanbv;b wua l azvildsumImsdsudrvasanuiiimie
/ _d ( ! ! )
U, =4, ;\Pra Py (2.80)
r ' '
Vi _dl,j(pI,J—lpl,J) (2.81)
lagfi
A
,J
d,=—=— (2.82)
a; _Zanb
A
d, ’ (2.83)

_ 1,]
g
dr;— Z Dp
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2. JIUIVUURSNE) B NN IV B

TasmsltarunaivasanusiazldrrvainnuisNuiasiasaunis
o ’ '
U, ; =u; , + di,J (pI—I,J - pI,J) (2.84)

1 ' '
Vij =Vt dl,j (pI,J—l _pl,J) (2.85)
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2.16 mauddgminyivaniolurefndenguldazidunsuddymiszniig malnauaznns
a . % [ 1% av & a o A g o o @

wasuudasgusinson g wdvazdadldluniided azdanuaniiduaindsdan luns

LLrTﬂrymiwﬁmwhamivlmLLa:mSLﬂasJuLLaJaagihf'lwawia

START

- Initial guess p*, u®, v*, ¢*
A

STEP I: Calculate pseudo-velocities

” Eanputhy + bi s

b= =g
id

A Zagpvis + by,

Vpp= ——
1.

4@2,3

STEP I: Solve pressure equation

g P =PI ¥ G L Pre s A P A s Prae H B

jp

P
r
STEP 3: Solve discretised momentum equations
e ay i g = Eanpuby + (PYo10 PO A+ biy
P _r',‘ -y ag, vy, = g vip + (PY s =P ) A+ by
Vvt =g
v
1

STEP 4 Solve pressure correction equation
AP =8 Pt a1 s P

e P e Prrs1 + 8y

P
i

STEP 5: Correct velocities
Ui g=wti g+ di g (Pro P
vi = vt dn i (P =P

A

STEP 6 Solve all other discretised transport equations

agrs=ar st are et e bt anse i bnae H by

31N 2.16 Lmugﬁmiﬁﬂmmﬁw’i%ﬁﬁmwﬁn
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UNN 3

ﬂ’]‘Sﬁ%’NLUJiJ?S’}aE)Gﬂ'lﬂﬂiﬁ@]ﬂ”lﬁ(ﬂi{

nsaILuUitasadisaartudunisiienaunisadamanifinaidluluuns 2 a0
AU N AR U B ENTL TGI8 TaazliTuaaunan eja%iﬁv'mm 3 TUABY A TUADUNBNNNT
1/92128HA (pre-processing) TUAEUN LTINS (processing) WAz A BUNEINNTUSENINE (post-
processing) Tugruasdunounannsszaians TunIEsuuUIaeIn I e wsadyw N3
fnuadanlurevie FouluSudu WAZA AFNUAVBITZULNIEAIN TuaauaIn1TUsTnaNa ALY
3%‘11'151,%\1éﬁLamL°1T'1mf‘hmmmﬁmaumﬂaumsmqu Namadmiﬁ'}mmﬁiﬁazgﬂﬁﬂmLLamLLa:

Tz aulut e o unaInIUTzuIaNa

-
3.1 2umawnawnni1sseviana (Pre-Processing)

mnﬁﬂzymmawiaﬁmmﬂuvlﬁ 1a8N13918098NTWNIINBAINBIVIBLRI AR BARTaw L
a o = : a % o &
BuduuazFanlrrauad ivauiymiash

3.1.1  n138319 Geometry Model

mysfanuuiaeslunsinmiid 2 sude mssnuuinaasasmsivavosvedlna
muluvaudaniauaznoluvieiangu lasnisimuasuiavadv 2195 9NV AV DI T
Lﬁaﬂlmﬁaﬁmimmmmahmﬁmuﬂiﬁviaﬁmmméfumuquﬁﬂmumﬁ'u 25 455103 (1917)
517 200 §aRLuaT (Taw, 2524) @95A2NuNWIT0IY0 2 TUIA Aa HanwI
1 fasuas was 1.1 Sadiuas mylwanslurefiforsanluwnuissidsnwmsvananiing
Inadunvusnunassauduiiuguinais Foiwninuetanlufguunasezgioldinng
fwraldIasidn aziunsaouuuiiaes 2 Hdvasmsinariurendanieiniadinsaa

= I
RGN IGHE) a9t 3.1

l 12.7mm / wiall

Symmetry Flow /

31U 3.1 nwaiiad 293riaudan3I lNAAANURUIVBINIIYI
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3. NIATWULUTIRINWARAFITAT

1 I3 1 [l Q/g; =Y 1 L ' 1 0/ { a l&’
mmmumaaamaamﬁ@%qu%uu ﬁlzwm'smﬂumumawmmnuﬂumﬂmﬁmmu
1 (3 1 & Y ' a a
ﬂ'1Ul%'ﬂﬂ%x‘lﬁﬂ']‘iﬂ’]‘lﬁ%@]ﬂ’]']ll‘lﬁ%’mﬂ\‘lﬂ?J mslm'ﬂaﬁmwwm 2 U1 fa Yiaru 1 Nafiuas

ez 1.1 YaRLNAT mehaawaaﬁaﬁmmjuvlﬁuamﬁagﬂ 3.2

a <3 6 oA [l vd a o
31]‘7] 3.2 ﬂ’]WﬁLﬂ@]‘ﬁ"llﬂ\‘W]ﬂEl(ﬂ‘lﬁEIQHVL@W]WQ]’]?TM’]Q'J']N%%W“UE]x‘lN‘Hn‘l‘V]ﬂ
= L A ] o [J
3.1.2 ﬂ’75lﬂaﬂ7ﬂﬂ5ﬂﬂ7ﬂiﬂﬂ')5ﬁ'l%?m

INMIRIBUUINRININM BN a9na lUuadnIdwlundaiinand
@‘h@laumnaumsmuquﬁ’;ﬁ%mn%aéhLaﬂn%ﬁaouﬂﬂ@L;Jumsﬁwmmaamﬂuﬁ’mﬂﬁm‘i%
dxa3lninsw (discretization) lasuialaluun s sduniiaeng g mansauuulasiainems

AV o ° c; ° ' A a £
LLamlugﬂ 3.3 WRTHARREN EANNNITANUI AL T UHALARE A mwmqwmmﬂﬂmLaquao
° A a A ' ' aAc Sga '
NIAUI D LuaamanmmmmﬂmLLa:mSLﬂawuﬂaogﬂmwamalummwuwm@vm
wninaansgadlunuy 2 88 aaum st nSawuulaeging (structured grid) Taduansoue
N30 MANZFNBRIN AN TANUI AT THINIIATITA NN WA

NWIBRHININLY 130 1DuFnasy Iudured a9 IMaLlInIaMULRILAK x YN

100 LA WRZ OIULWILNK y WINNU 20 toa @awidunniviotih w9 N3@ @ULWILNG X

WAL 100 LA Las @NNWWILNYK y LYINNU 5 Loa
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3. NIATWULUTIRINWARAFITAT

WIN®
Interface

(YD) \

A o y a LA o
E‘ll‘YI 3.3 MINAUADTII NIA LLﬂtﬂ’ﬁLL‘U\‘Iﬂ‘i&l’]@]il%ﬂ’]'iﬂ’]u’)m

ilasnnuuuiaendidisriiaieludnsfaunussznine mylnavesasinady
ﬂﬂiLUﬁmuLLﬂaagﬂiwwaaﬁa 398 dudasiinmIsmunadinvassuiasiazldlunsdiwam
aaniu 2 Ysunaslaaiinuadn dauﬁﬂummLLﬁaéﬁaﬁﬁaahuﬁﬂuwﬁfaﬁﬁﬂmjuvlﬁ wae §Iuf
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313  mammuatonluyauae

lumiﬁazﬁﬁmmmﬁmaumww:mnawmimquﬁ’u wananmstnuadanla
USnervauuuinsadiionlrvenadaiudfsdylunsuenfinaaasvaailym U
3.4 ugasmatuaidawlrreuinavesuunesvasnwiteil
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3. NIATWULUTIRINWARAFITAT

x=L
x=0 Wall 1
Wall 2 Wall 3
Inlet Interface Outlet
Centerline

317 3.4 mstmuadenlvreuinavesnuuiiae
mMIfwkevsuIasNNInat Ny lalagssduaasii

a a o o a a v &
n. Laauvl,"u“uam*‘m N9 (Inlet) ﬂ’]iﬂ’]ﬂuﬂl,da%vl,"ll"llﬂ‘l_ll,"ﬂ@l Amands n1s

o i A % [ [ o oA = @ - %
ﬂ"l‘ﬁ%@ﬂ']“ﬂmU?ﬂﬂﬂ?iqﬁﬂﬂﬁlﬁﬂgiugﬂ’ﬂE]Gﬂ']']ll@]%%iaﬂ”ﬂ&ll,i’ﬂ%“ﬂ'lL?JW‘HE]GY]E]LWE]‘YH]Z "

=

fMuI A aaUNdaIns T inantaneaiduaunuwazdmafiivuaaiewlavauiae

NN BN19DINIRNNNT

p = Pcos ()

Wunslwaranuaniildsuudssarnnsrinisinlusnsmndueduniediule ladfis
OATUIUTIUYNY @

. Gewlwveviwafinisean (Outlet)y nsimuationlvauwafinessndsy
m3lwewessaulsinmssanvesvialuawdssiiazminuadl

p=0

a. Qawlvvavwafings (Wall) lunsfanonwisriadanduldlasuisaanidu

3 A% A8 AIUAWNIT FRURIENITBAZAIRUK LasRIN8astBuanIANRUANIY N1TVIAVDI
& A o . A « & o o o A o &

anuNkviandunsuazda e dugud aInuan s urandunIkazananaie

u=v=0

: v & A o P A A A o A '
aﬂu@quuuuuﬂwuﬂﬂavlllllﬂ']ﬁl,'ﬂaUuLLﬂaUluLLu')LLﬂu NLL@]ﬂ']iLllaEluLLﬂaﬂluLLu']TﬂNmaﬂ‘ﬂa

WINUAIT I AW [V ARINITD AR UL 1
u=0 v+0
A AL a ° A AL a
3. Gaulvveuiwa AAUAITIN  (Interface) MIMvuaianluvauua ANWAL

Tn  lasinsTuusinseinlasssnaldiianialfonudas awiavasviadanusslunwuwirsai

a & o &
VaInNatnNavBaItib
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3. MIFTNULLTIRDINNATRAMFNT

u=0 v=0

2
Aa

ANnRITINRINITULTIannsluriaTIndy TaunsmiuuatduisiawniuwaninIzindantts
Viaﬁﬁﬂﬁl,ﬁ@mnﬂﬁﬂuuﬂmgﬂi'}a
d ° = |
2. Hawluvauiasuaunas (Symmetry) ATALARININABIYIE NTRNNNAT

JDULWILLNURN mmﬁ’mu@"lﬁé’f’a HRUNITAD

3.1.4  MITAIABAANSNAK
msﬁwuﬂlﬁau"l"uL%uﬁua:ﬁaaﬁmuﬂﬁamwL%’JLLa:mmﬁuﬁaué’maﬂﬂugﬁ 3.5
=* ' o o ° A Aa ae A« aL '
s’m"lﬂmgﬂﬁwaa'ﬂaﬂaummimmmmaamnﬂm_}wmwawm Tuauida ﬂuLﬂuﬂru_,mmuag

AunaaIwREnziBNUIIlanudaglumsswismidiaey o alas

A Y
GawluiSuen

x,t=0

v

x=L,t

px:L,t

P ° = Y °
31]"{] 3.5 LLﬁ@Nﬂ'ﬁﬂ’]‘lﬁuﬂNﬂuvLmLill@]W‘lIﬂ\‘lLLUU‘ﬂﬁﬂaﬂ

fuiunstmuadnsuduldnulgm lunsdidnsinisiwawuuesadasines lasRansom
{ 4 o a . { & ' {
ANND Tesn9Bsanna e (Zamir, 1998) N13.34 4.74 5.78 uas 6.67 \Hursweinrnunnn

° A a ) ) Aa A A = o
mvl,ﬂgaﬂﬂsamQu’lumiwmsmﬁnumﬂmmﬂums‘lmmaotaaﬂmﬂlumamaaﬂ HIlBLIa0

lumsinuuazanzas At uaadlaasnsng 3.1
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3. NIATWULUTIRINWARAFITAT

M139N 3.1 uReILAuaza1was At lunslidinuuuusiaasvasviand 3

Womersley o T At(s)
Q
3.34 0.0692 | 90.751 | 5.672
4.74 0.1393 | 45.083 | 2.818
5.78 0.20713 | 30.319 | 1.895
6.67 0.2758 | 22.768 | 1.423

Wiof 1 uaz 2
Womersley o T At(s)
Q
3.34 0.0692 | 86.977 | 5.436
4.74 0.1393 | 43.186 | 2.699
5.78 0.20713 | 29.043 | 1.815
6.67 0.2758 | 21.809 | 1.363
Mof 3

MItrnadaITaIANNaBINAUNN g ianinldiAadasns Inafinsaiadns g

N p =Pcos(@f) 1 P NoaTMIInadd 9aduaadluaisng 3.2
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Q P Re

1L/min 0.326 835

2L/min 0.653 1670

3L/min 0.979 2450

4L/min 1.423 3250

5L/min 1.779 4064
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(Coupling between fluid dynamics and wall motion)
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3.3 aumannadin1siszulana (Post-Processing)
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1aaasan 10 1 0.8 83 41 0.5
waaalRoALAsIWIA WY 3 40 3 22 20 0.9
AROALRDALAIVUIANAI 1 600 5 13 10 0.8
ARALADALAIVUIALAN 0.6 1800 5 13 1 0.08
HROALRALAINDY 0.02 4x10" 125 0.5 0.2 0.4
7AaaaLaoanay 0.008 12x10° 600 0.1 0.1 1
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w1 1N 12.5 1 1.2 56 40 0.7
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317 5.1 Wlsuifisuanuaumeluveudenianaamslne 1-5 fasdauwfi (Re = 835 - 4067)

Axial velocity (m/s)

Pressure (N/mz)
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Motivation

Pulsatile Flow within a Compliant vessel
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Technical Review

Mathematical Modeling (1950s-80s)

* Model several type of elastic material

* Solution presented in the form of analytical solution
» Mainly focus on wave propagation characteristic

* No fluid dynamics perspective

Numerical Modeling (1980s-present)
* Apply the mathematical modeling from above with

the fluid flow modeling
* Focus on specific application/problem or location
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Open Issues

* Detail study of pulsatile flow structure in a
compliant wall has not been carried out

* Influence of flow patterns, flow instabilities on
the pressure drop and energy loss and tube
deformation

» Effect of compliant vessel wall on the
hemodynamics

Goals and Objectives

Overall Goals

— Study the relationship between fluid dynamic structures and resulting
pressure drop/energy loss

— Understand the difference in behavior of these structures within rigid
and compliant wall

Specific Objectives

— Develop a computational methodology to model wall compliance
effect on fluid dynamics in a simplified configuration

— Study flow structures (primary flow, secondary flow, recirculation,
and flow separation/reattachment) of a TCPC connection with
compliant vessel modeling
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Governing Equations

Continuity Equation %0 +V. (pV)
t

0

Momentum Equations

alpu) .(puv)z—g—iW'(ﬂVuFE

ot

(a )+v (va):—Z‘;’Jrv-(ﬂvv)JrF
o) 2] e
RECEOES

Compliant Tube Modeling and Assumption

Hooke’s Law € = (0 00 — V(U +o )) h

m\~ m\~

(O- _V(O- +O—a@))

xx

Assumption

1. Tube has thin wall and uniform thickness and
initially straight
2. No stress in the lateral axis

__Eh e _r(x)-r,
s 2 00 —
1-v° 7, v,
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Coupling between Fluid Dynamics and
Wall Motion

Governing Parameters

Reynolds Number Re, = PYD . Tnertia Force/Shear Force

10}
Womersley Number a=_[P%R —  Transient Inertia Force /

Shear Force

Young Modulus E=

——  Tube Deformation &
Wave Speed
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Numerical Modeling

Fluid : InWefikee

D00 ke
Centerline

=1x103 kg/ms

Outlet

Incompressible

Steady Flow within a Compliant Tube

1-D Laminar Steady Flow in a Compliant Tube (Fung, Y.C., 1996)

Enl(i_av )V _(1_a o) Lo 84
3%{( Ehp(L)] (1 Ehp(O)j} o LQ

a(x>=ao[1—g‘;1p<x)}

Radial Stress in very small compared with the circumferential stress
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Model Validation
Pressure drop and deformation comparison between
numerical model and analytical model (Fung, Y.C., 1996)
12F A CFD - F A CFD
] 4 Theoretical (Fung 1996) a 14.5_— The tical (Fung 1

_ o.sf— — g - * E

£ o6k E ® 135k E

z °°f ] § 1a:

% o S o E § B E

£ o2f n —— E = F AT ——

* of R e | Suasf |
02 — — 12 - E
04 ' ' 1sF 3
-] S S PP R L. M B 1 M B L

[+ 0.05 0.1 018 0z [+ 50 100 150 200

Axial distance {m) Axial distance({mm)
Numerical Results
\ e — }';—_; > 7E E
ahhs 220 Wall Displacement Radial Velocity

Dia. 2.54 cm P e
Length =20 cm i E
E =50 N/m? o ] oo E
Re = 854 ok T B
WOmeI'Sley =3.34 o Axialdisa'.;nce[m] o o 0% axial distance (m) o2
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Pressure and Velocity Comparison

0.7

E P 1"
06k — — ——u atx=0cm |]
05 E u at x=10cm |
SF u at x=20cm j30
0a E R - u rigid 1
T 03 x \ =z
E g ] E
E 021 / ] <
g F 10§
2 01F 1°3
il | ¢
£ of A4,
- =
01 1
02f ]
g —-10
03 ]
-0.4 L I T R : .
48 50 100 150
Time (s)
Womersley = 3.34
14r T T ! 1
E — — — —u atx=0cm |]
12 F R u at x=10cm (]
o 2 u at x=20cm |
E [ - u rigid ]
F N 1
8F /A E
7 | E
g ofF 1N E
5 ¢ \ ]
PR . i
S F “ (7PN E
3 . 13
s 2F /A e
K \ 4 N =
of 3 i A\ 73
F X 77 N\ A
E Nizo=” s ]
2F ) E
4 E
} F 1 T 1 T ]
65 50 100 150
Time (s)

Womersley = 3.34
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Centerline Velocity Pattern
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Velocity Propagation

45F T T ! —
JE — — — —u atx=0cm |J
S u at x=10cm |
35E u at x=20cm
g —-—-—-— u rigid E
3 = ~ E
D25F n g
Q) E I \ =
§ oF S 3
-~ = / \ /7
B1sfp / \ /3
S B / | "
F \ / \ / 1
g 05E AT / - f A
e AN 7 v / B
E/ ~O 2 AR A
of N / WA
F N V4 SO -
0.5 F NI y=e h E
E N E
K= - E
E | I I L1 1

0 10 20 30 40

Time (s)
Womersley = 6.67

» Deformation cause secondary flow and separation at
the vessel wall

 Flow rate over an oscillatory period is not zero

* Maximum velocity is greater than rigid tube

« Maximum velocity attenuate along the axial direction
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Recommendation for Future Work

— An elastic model with lateral and circumferential
stress and deformation in all direction

— 3-D modeling

wuudaeddyanarvavm T nauuunasnieluva ﬁﬁﬂ%gf'%?@” 83



ANWIN

NMANKIN V.

UNAMNIVY

Two Dimensional Numerical Model of Flow in a Compliant Tube

The 4™ National Meeting on Biomedical Engineering, August 25-26, 2005
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NMARKIN A.

Tﬂama?mmm%amﬁ%’a waztand@1sdsznaunisusseny

US-Thai Biomedical Engineering Symposium 2005
Chulalongkorn University, THAILAND
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Pulsatile flow through a compliant tube pla;

in several applications especially blood flow within human body.
This phenomenon is more complex than flow inside a rigid tube
because of the interactive between flow and motion of the wall.
Furthermore, it has been evidenced that the fluid mechanic Inlet: p = Pcos(r) Outlet: p=0
parameters plays an important role to the clinical informatio
Two dimensional modeling of the oscillatory flow within a Wall 1 Wall24=0 v=0
straight compliant tube are being developed to observe the flow

characteristic and affect of the compliant in detail. This study will

provide us a better understanding role of the flow-wall interaction

and can be applied with the vascular disease diagnostic in the

future.

e fluid is driven by illatory inlet f ure and the
al velocity is zero at the interface.

The fluid flow is governed by the Navier’s Stoke equations.
The pressure distribution of the fluid is coupled with the solid
yall motion by using Hooke’s law.

Conservation of Mass

Flwse (Ui}

Momentum Equation

Flowrae 0 (U]

ST, The results of the numerical modeling agree with the

e theoretical result. The flow structures reveal that velocity and

efommation pressure waves travel at different wave speed. Moreover, the

volume flow rate over a periodic cycle appears to be higher

than the oscillatory flow within a rigid tube. However, the

Two dimensional numerical models are built using structured volume flow rate of the oscillatory flow within a compliant
grid and the solution can be obtained by the finite volume tube attenuates along the traveling

method using the CFDRC™ software.

The financial support for this research project from the
hailand Research Fund is gratefully acknowledged.

Centerline
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Computational Study in
Cardiovascular Engineering

US-Thai Biomedical Engineering
Symposium 2005

Asst. Prof. Yottana Khunatorn

Mechanical Engineering
Chiang Mai University

Catheter Design

Artherosclerosis Modeling TCPC Connection LV Simulation
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Applications of Computational in
Biomedical Related Area

Glucose/Blood Gas Sensor ]
Drug Delivery

O9 ]

Cell Division

Flow in Pulmonary Arteries
* 2-D Numerical Modeling of Oscillating

U d UAVY O O O
D Numerical Modeling of Bloog
OW withir % ."..' V © C
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Congenital Heart Disease

* The congenital heart disease is the most common major
birth defect in live birth.

* CHD occurs in approximately 8 of 1000 live birth

a O S
blood to the SVC.
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Numerical Results @ SVC:IVC = 50%:50%

0
X (cm)

Pressure D Across the Connection

Pressure drop across the connection 25/75

Pressure (Pascal)

Model

—e— Experiment —=— Upwind Solution —— Central Solution
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1-D Modeling of flow in pulmonary arteries

Left carotid artery Wain Puimonary Artwry

Pulmonary Rtgh’l carotid artery < \ Left subclavian artery

Aery — -_—

Qorightkng) = +— Ascending Aorta
Superior '

vena cava ¢ ‘ S
lemu:‘;rgﬁ{en* Artery (to left ng)
Right inferior —¢=» : X, et superorinerin
Pulmanary vien Z Pulmonary vien
~ ; Left atrium

Right atrium £ -
Bicuspid
(Mitral) valve
Tricusnid Left
valve ventricle
.uxygen-puur blood
. oxygen-rich blood

Lot L ight Rdmanary Araios

Labar Arturlen

Descending aorta

( : (Wiener et al., 1966)
March 28, 2004)

S = Cross sectional area

Transmural pressure

- Friction Factor
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1-D Governing Equations

a = compliant coefficient

Vessel deformation

The velocity, pressure, and cross sectional area are solved
numerically using the Mac Cormack method

Boundary Conditions

-\) Qf

— — N
vy
oadudny
y
Joadmun
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Pressure and Blood Flow Rate

Blood pressure of model
0.34925

— — — —Blood pressure of clinical

0.31325 —--—- Blood flow rate of model

0.19775 Blood flow rate of clinical

3
=1

N
=1

Pressure, nmHg
D
S
Blood flow rate, cm”3/sec

%)
=1

Time, sec

— hdodel
===+ Clinical

w
i

w

Cross sdction, cr?

1 1
03 0.4
Time |, sec
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2-D Modeling

1. Look into the flow characteristics in more
detail

2. Study the relationship between pressure,
flow, deformation, and wall shear stress

3. Study the relationship between pressure
and velocity wave

Fluid Governing Equations
ot r or

ox

Momentum Equation
0, ) O,

0“v
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Compliant Tube Modeling and Assumption
Hooke’s Law €o0 = (000 _V(G o @ ))

(O-.\‘.\‘ r V(O-rr + 0{9{9 ))

Assumption

1. Tube has thin wall and uniform thickness and
initially straight
2. No stress in the lateral axis

Eh ey _r(»-s,
- 06 =
1-v- 7, r

o

rr

Coupling between Fluid Dynamics and

Wall Motion

Update the
Numerical grid

Initial and Solve Fluid Calculate the Solution u, v, p,
Boundary parameters, ——» vessel vessel
Conditions u, v, p deformation deformation
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Numerical Modeling

- No Stress .
- No Displacement - Free Displacement - No Displacement

Wall 1
Wall 2 Wall 3

Fluid : Water
Inlet Outlet

£ =1000 kg/m?3
p = Peosdt H=1x103 kg/ms

Incompressible

Newtonian Fluid

Numerical Results

Wall Displacement

T T T
oot ] oooorsE E

00001 F 3

0.0005] ]

sE05 B

sE0s E

\
Displacement (m)
Velocity v (mis)

00005 |- 4
00001 |- E

4 0001 4 -0.00015 |- 3

D 00 O©

L
005

L L L L
005 o1 &5 . BH 02
e 4 Axial distance (m)

|
o7
Axial distance (m)
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Pressure and Velocity Comparison

e
3

o
=Y

[
o

o
~

o
w
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o
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o S
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o
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Time (s)
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Time (s)

Womersley = 3.34
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Centerline Velocity Pattern

(=] | FEEE FRTE FRER1 FRRT1 RNRRY RRURN FRATL FNURN SRNRN RRNA ARREA A N

0

at x= 0cm
at x=10cm
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1
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Time (s)
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Velocity Propagation

g
il SR R R |

B LA RARAS ERRRS RARRE EANAR RERES RRRRN
NN ENNE FEETN SSEN ANSSN ANNN1 SRREN AW

Velocity (cm/s)
] - ; N 5]

g
o

9
= o
© RN LARRN RAREE S

—
Time (s)

Womersley = 6.67

Past: Fundamental understanding of flow in the
simple models has been studied

Past, Present, and F re

implemented clinically and provide us a
better health and treatment
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AMANWIN 9.

IMNYINTUITTINYNLAL

Biomedical Engineering Activities at Faculty of Engineering, Chiang Mai
University, Thailand
Lectured at

Department of Biomedical Engineering, Columbia University, New York, USA
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Biomedical Engineering Activities
in Faculty of Engineering,

Chiang Mai University, Thailand

By

Dr. Nat VORAYOS

Dr. Yottana KHUNATORN

Abstract

Established in 1964 as one of the very first universities outside the capital Bangkok, Chiang
Mai University (CMU) has been Thailand’s oldest, largest, and most renowned institute of higher
education. A house of 17 Faculties including Faculty of Engineering and 3 Research Institutes
(Sciences and Technology, Health Sciences, and Social Sciences) has offered 87 undergraduate-level
programs and 140 graduate and doctorate programs to the nation. Recently, there are significant
interest from staff and researcher in Faculties of Engineering, Sciences, and Medicines to establish the
biomedical engineering research group to more effectively collaborate with one another in terms of
research activities and academic programs. Additionally, we would like to extend our collaboration to
our colleagues in the international level as well.

The profiles of CMU will be introduced as the first part of the seminar. Secondly, the numerical
modeling of the pulsatile flow within a compliant vessel will be presented. One dimensional modeling of
blood flow from the right ventricle to the arteries at both lung was developed. The behavior of cross
sectional area changing, blood velocity distribution, blood pressure distribution and changing in blood
flow rate, and other parameters that affect the changing in cross section area were studied. Next, the
two dimensional modeling of the oscillatory flow within a straight compliant tube are being researched
to observe the flow characteristic and affect of the compliant in detail. The fluid governing equations
are coupled with the solid wall motion. The preliminary results of the velocity field according to the
variation of the oscillatory pressure are demonstrated. Thirdly, the presentation of the activities in bio-
imaging researches will be presented in the video format.

Lastly, the overview of other major activities in the biomedical engineering at the faculty of

engineering, CMU will be presented.
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Biomedical Engineering

Chiang Mai University

Research Activities

Medical Imaging

Bioinformatics

Cell and Tissue Engineering

Biomechanics

Biomedical Instrumentation
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Biomechanic

» Assistive Devices

— Passive standing-wheelchair
* FEM Analysis of the Retainer

» Computational study in Cardiovascular Engineering
— Numerical of Blood Flow in the Pulmonary Circulation
— Pulsatile Flow in a Compliant Tube

Biomedical Instrumentation

» Surada Stereotactic Instrument

— neurosurgical operative device for directing the
probe or radiation beam to a target in human brain
which is invisible from outside

_ i
il

o a e o 6 ! d’ﬂ 1 i
LLUU?I’IQENL‘IN@FJLEJ?/‘.UENH751‘V§NLLUUW@@W’IE/Z%?’IEWIS!@%E‘,/%IZ@ 104



ANWIN

Biomedical Instrumentation

» Rapid Prototyping Technology for Dentistry
 Patient Monitoring System Using SNMP Protocol

* The Development of ECG Card Monitoring via
Computer Network, Mobile Telephone, and Pocket
PC

Numerical Modeling of Pulsatile
Flow in a Compliant Tube

Asst. Prof. Yottana Khunatorn

Mechanical Engineering
Chiang Mai University
THAILAND
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Overview

» Numerical Study of TCPC Connection

* 1-D Numerical Modeling of Blood Flow
in Pulmonary Arteries

* 2-D Numerical Modeling of Oscillating
Flow within a Compliant Vessel
(Preliminary Result)

Congenital Heart Disease

» The congenital heart disease is the most common major
birth defect in live birth.

* CHD occurs in approximately 8 of 1000 live birth

Most Common Cardiac Defects

» Atrial Septal Defect (ASD)

A hole between left atrium and right atrium

* Ventricular Septal Defect (VSD)

A hole between left ventricle and right ventricle

* Tricuspid Atresia

Tricuspid valve didn't develop normally or absent.

o a o o & | Aa ' %
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Tricuspid Atresia

A, E 1B. ne.

Treatment

Blalock-Taussig Shunt 6 months — 1 year old

Glenn Shunt or Bidectional Glenn Shunt (BDG)
< 2years old

Fontan Operation 2-4 yrs old
— Atrio-Pulmonary Connection

— Total Cavopulmonary Connection

LaR caresd anary

Pulmenary Rnh,l carotid arary \ Lt subclanan wtery
A e’ - e

florght g | =, o Ptendng Aola
Superar 1l .
Vel CE ¢ i r Palmesary
[
pm"“’ & J ' Adtary ot kng)
et e Lt pperieiobinis
imemary wan o
by = Lek atrim
Right atrium
r | Esuigid
Wudral) valve
Trtysped @
valve

[ Epe—

mi'?:.?‘:‘mf p [ vryorech bood
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Fontan Operation

Total Cavopulmonary Connection

This connection bypasses both the
right atrium and the right ventricle
from the circulation. The atrial
partition is used to divert the IVC
blood to the SVC.

Y (cm)

g
Y (cm)

RPA

ve
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Offset Model @ SVC:IVC = 50%:50%
F";e:f‘ k: ’\“‘l":“
e P i i
G - i B
k!
= oo i
SVC@
LPA
‘ RPA‘
ﬁlvc
Pressure Drop Across the Connection
Pressure drop across the connection 50/50
200
180 4
50%
2 160 4
2
£
5 1404
g
]
£ 50%
100 4
80 ‘ ‘ ‘ ‘
0 ! Model ~ ° 4
—e— Experiment —s— Upwind Solution —a— Central Solution

o a o o 6 i Aa 1 v
LL?JU?I’IL"?ENL%dﬂ?tﬂ"ﬂ’ﬂ@dﬂ751ﬂﬂLLUUWE\Iﬁ.ﬂ’IE/Z%?’IE]WZ!WW%/%’Zﬂ 109



ANWIN

Pressure (Pascal)

220

200 -

180

160 -

140 4

120 4

100 -

80

Pressure Drop Across the Connection

Pressure drop across the connection 25/75

25%

75%

~ 4

0 1 2 3
Model

—e— Experiment —s— Upwind Solution —— Central Solution

Previous Study Summary & Conclusion

Simplified TCPC model presented

* “Optimal” connection is at no offset connection for
equal flow rate ratio and 1-diameter offset distance
for unequal flow rate ratio.

* Overall pressure drop indicative of energy loss and
thus “efficiency” of model
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Compliant Tube Modeling

* Numerical Analysis of Fluid Dynamic in a flexible Tube

* 1-D modeling provides a rough perspective on the
relationship between tube deformation and pressure and
velocity magnitude

* 2-D modeling gives us a detail of velocity and pressure
distribution throughout the flow field

1-D Modeling

Left carotid artery

Waia Pmenary Artwy ight Vewicly
|
Rtghl carotid artery = Left subclavian art
i subclavian artery
o onary — -—
) —o- _
(to right lung) i +— Ascending Aorta
Superior

vena cava | ~___—— Pulmonary
superior  —= Artery (toleft ung)
u monary vien

Right inferioy —e== J f N _Left superiorinerion
Pulmanary vien #Pulmanary vien

Leﬁ atrium

Right atrium
Bicuspid
Ml!ral) valve
Tntusmd Left
ventricle
Ri htvemncla
b .uxygen poor blood

Inferior
Vena cava

.nxygen -rich blood

.
f k Descending aorta

(http://www.acsr.ac.th/webmasters/web_3/story3.html

_3/story3. (Wiener et al., 1966)
March 28, 2004)
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1-D Governing Equations

Conservation of Mass

S = Cross sectional area

Momentum Equation

p = p;— p, Transmural pressure

— N
F = —87[Eﬁu Friction Factor

P

1-D Governing Equations

Vessel deformation

a = compliant coefficient

The velocity, pressure, and cross sectional area are solved
numerically using the Mac Cormack method
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1-D Boundary Conditions

_.n _n
U=, U=t
N _Qn
S=5 S=S,
o
= e
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Clinical Information
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Extracted Boundary Conditions
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Cross-Sectional Area

Cross section
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1-D Conclusion

» The overview of the relationship between tube deformation
and pressure and flow rate was observed with reasonable
accuracy

* 1-D modeling results agree with the clinical data with minor
differences, which caused by

= Simplification of the tube deformation model
= Accuracy of the boundary conditions extraction from the
clinical data
= Improve this model to present the affect of any anomaly occurs
downstream
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2-D Modeling (Preliminary phase)

1. Look into the flow characteristics in more
detail

2. Study the relationship between pressure, flow,
deformation, and wall shear stress

3. Study the relationship between pressure and
velocity wave

Fluid Governing Equations

Conservation of Mass

a£+lapw+aﬂ:0
ot r oOr ox

Momentum Equation

(av ov ﬁvj op 821/ 1ov v 62v
pl—+v—tu—|=F——+ Yy —5+————F+—5
or or ox o Tla2 ror 20 52

[au Ou 6u) op 82u 1 Ou 62u
pl—+v—+tu—|=F ——+py —5+—+—%x
o6 or Ox X Ox ol ror g2

mehaaﬂ%am”omwaamﬁwmwuw”aa?mfﬂm’iaﬁﬁwgju'l@” 116



ANWIN

Compliant Tube Modeling

1. No displacement in the axial direction
2. No stress in the lateral axis

En &
1-o® 7}

p:

Coupling between Fluid Dynamics and
Wall Motion

1. Fluid parameters, u, v, p, are solved

2. The deformation of the vessel is
calculated

3. Numerical grid is updated according to
the deformation

4. Repeat the calculation
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Numerical Modeling

Wall 1
Wall 2 Wall 3
Interface
Inlet Outlet
Centerline

Steady Flow within Compliant Tube Modeling

1-D Laminar Steady Flow in a Compliant Tube (Fung, Y.C., 1996)

Enl(i_a oV (a0 o) L 8k
3%{(1 Ehp(L)j [l Ehp(O)] }dp wSL
a -1
a(x) = ao[l —E‘;lp(x)}

Radial Stress in very small compared with the circumferential stress

LLUU??’IQENLfd@ﬁtﬁ?fﬂ!adﬂ751ﬁNLLUUWVQﬁfﬂ’IElZ%YI’QWdﬁﬂﬁqu'ulZﬂy 118



ANWIN

Pressure (N/m’)
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Model Validation

Pressure drop and deformation comparison between
numerical model and analytical model (Fung, Y.C., 1996)
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Pulsatile Flow in Compliant Tube

LLUU??’IQENLfd@ﬁtﬁ?fﬂ!adﬂ751ﬁNLLUUWVQﬁfﬂ’IElZ%YI’QWdﬁﬂﬁqu'ulZﬂy 119



ANWIN

Pulsatile Flow in Compliant Tube

Preliminaries Conclusion

* The velocity variation is observed close to the wall
and may affect the wall shear stress

* The detail parametric analysis is on progress

* The wall motion will be included into the TCPC
modeling to simulate more reality phenomena of the
blood flow
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