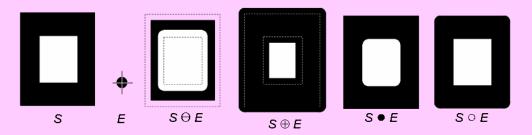


Nipon Theera-Umpon nipon@ieee.org

Methodology

- Morphological Granulometries
 - Morphological operations involving image S and structuring element E



©Copyright by Nipon Theera-Umpon 2005

Department of Electrical Engineering, Chiang Mai University "Computer Applications in Automatic White Blood Cell Counting"

Nipon Theera-Umpon nipon@ieee.org

Methodology

- Morphological Granulometries
 - Let $\Omega(t)$ be area of $S \circ tE$ where t is a real number and $\Omega(0)$ is area of S
 - $-\Omega(t)$ is called a size distribution
 - Normalized size distribution $\Phi(t) = \Omega(t) / \Omega(0)$, and $d\Phi(t)/dt$ are called granulometric size distribution or pattern spectrum of image S

Nipon Theera-Umpon nipon@ieee.org

Methodology

Morphological Granulometric Analysis of WBC

Structuring Element Used in the Experiments

0	1	1	0
1	1	1	1
1	1	1	1
0	1	1	0

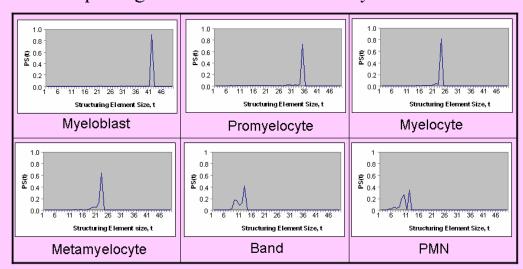
©Copyright by Nipon Theera-Umpon 2005

Department of Electrical Engineering, Chiang Mai University "Computer Applications in Automatic White Blood Cell Counting"

Nipon Theera-Umpon nipon@ieee.org

Methodology

Morphological Granulometric Analysis of WBC



©Copyright by Nipon Theera-Umpon 2005

Nipon Theera-Umpon nipon@ieee.org

Data Descriptions

- Data set: 20 Myeloblasts, 9 Promyelocytes, 139 Myelocytes, 33 Metamyelocytes, 45 Bands, and 185 PMNs
- Classified by Dr. C. William Caldwell, Professor of Pathology and Director of the Pathology Lab at the Ellis-Fischel Cancer Center, U. of Missouri, U.S.A.

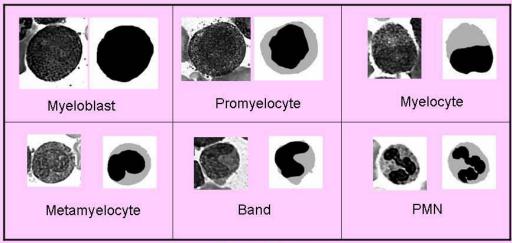
©Copyright by Nipon Theera-Umpon 2005

Department of Electrical Engineering, Chiang Mai University "Computer Applications in Automatic White Blood Cell Counting"

Nipon Theera-Umpon nipon@ieee.org

Data Descriptions

Sample grayscale and corresponding hand-segmented images of white blood cells



©Copyright by Nipon Theera-Umpon 2005

Nipon Theera-Umpon nipon@ieee.org

Data Descriptions

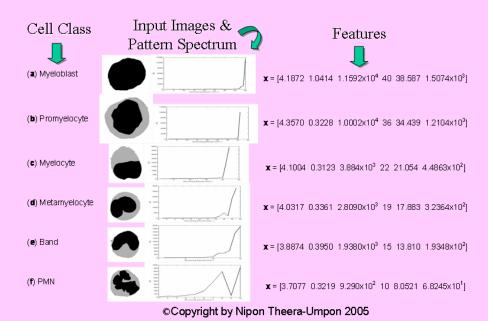
- 6 features are extracted from each single-cell image
 - area of cell,
 - nuclei-to-cytoplasm ratio,
 - maximum value of a pattern spectrum,
 - location where the maximum value of a pattern spectrum occurs,
 - first granulometric moments, and
 - second granulometric moments

©Copyright by Nipon Theera-Umpon 2005

Department of Electrical Engineering, Chiang Mai University "Computer Applications in Automatic White Blood Cell Counting"

Nipon Theera-Umpon nipon@ieee.org

Feature Extraction



Nipon Theera-Umpon nipon@ieee.org

Experimental Results

- Classifier: Neural Network with 1 hidden layer consisting of 10 nodes
- Training Method: Levenberg-Marquardt (LM) algorithm
- Stopping Criteria: Max # epochs = 100, MSE = 10^{-6}
- Performance Evaluation: 5-fold cross validation

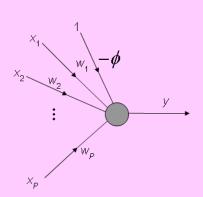
©Copyright by Nipon Theera-Umpon 2005

Department of Electrical Engineering, Chiang Mai University "Computer Applications in Automatic White Blood Cell Counting"

Nipon Theera-Umpon nipon@ieee.org

Classifier: Artificial Neural Networks

Computational Node



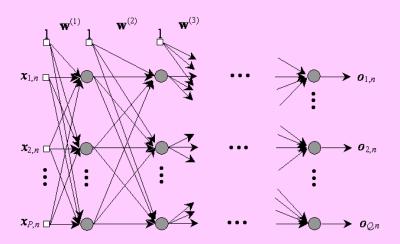
$$y = f\left(\sum_{i=1}^{p} \mathbf{w}_{i} \mathbf{x}_{i} - \boldsymbol{\phi}\right)$$

- ϕ is an offset
- f is a nonlinear function
- E.g. $f(x) = \tanh(\beta x)$, $\beta > 0$

Nipon Theera-Umpon nipon@ieee.org

Artificial Neural Networks

Artificial Neural Networks: Universal Approximator



©Copyright by Nipon Theera-Umpon 2005

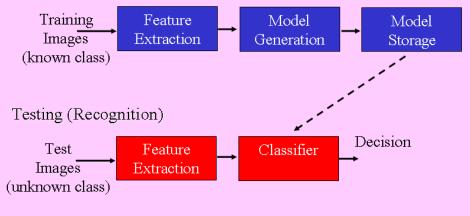
Department of Electrical Engineering, Chiang Mai University "Computer Applications in Automatic White Blood Cell Counting"

Nipon Theera-Umpon nipon@ieee.org

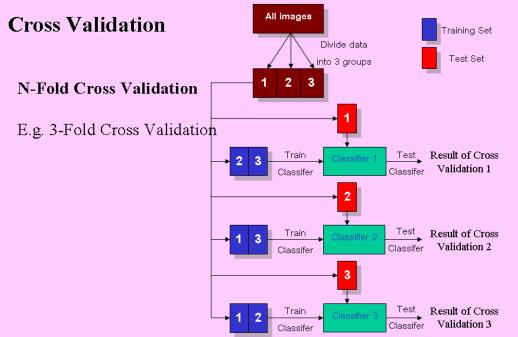
Training & Testing

Neural Network (Model) Training and Testing

Training



Nipon Theera-Umpon nipon@ieee.org



Department of Electrical Engineering, Chiang Mai University "Computer Applications in Automatic White Blood Cell Counting"

Nipon Theera-Umpon nipon@ieee.org

Experimental Results

©Copyright by Nipon Theera-Umpon 2005

Training by setting Desired output 0.9 and 0.1

Training Testing

$\begin{array}{c} \text{Alg} \\ \rightarrow \\ \text{Actual} \\ \downarrow \end{array}$	Blast	Pro	Myelo	Meta	Band	PMN	$\begin{array}{c} \operatorname{Alg} \\ \to \\ \operatorname{Actual} \\ \downarrow \end{array}$	Blast	Pro	Myelo	Meta	Band	PMN
Blast	80	0	0	0	0	0	Blast	16	0	1	0	3	0
Pro	2	26	7	1	0	0	Pro	1	1	7	0	0	0
Myelo	0	2	535	8	1	10	Myelo	0	6	116	8	0	9
Meta	0	5	45	68	5	9	Meta	0	0	17	9	3	4
Band	0	0	1	0	140	39	Band	0	0	0	4	17	24
PMN	0	0	12	6	8	714	PMN	0	0	7	6	20	152
Clas	Classification rate (Train) = 90.66 %							assific	ation	rate (T	'est) =	72.16	%

Nipon Theera-Umpon nipon@ieee.org

Experimental Results

Trained by setting **Desired output** $d_j = 1 - \frac{n_j}{\sum_{j=1}^{6} n_j}$ and **0.1** Training

Alg → Actual ↓	Blast	Pro	Myelo	Meta	Band	PMN	Alg → Actual ↓	Blast	Pro	Myelo	Meta	Band	PMN
Blast	80	0	0	0	0	0	Blast	19	0	0	0	0	1
Pro	0	27	9	0	0	0	Pro	1	3	4	1	0	0
Myelo	0	15	508	16	2	15	Myelo	2	4	114	14	1	4
Meta	0	0	50	72	7	3	Meta	0	0	17	10	4	2
Band	0	0	0	4	139	37	Band	0	0	0	3	28	14
PMN	0	0	22	19	63	636	PMN	0	0	4	9	20	152
Cla	Classification rate (Train) = 84.80 %					Classification rate (Test) = 75.64 %							

©Copyright by Nipon Theera-Umpon 2005

Department of Electrical Engineering, Chiang Mai University "Computer Applications in Automatic White Blood Cell Counting"

Nipon Theera-Umpon nipon@ieee.org

Conclusion

- Mophological-based features
- Unbias the classifiers using a priori information of # samples
- About 75 % classification rate
- Rely on hand-segmented images
- Future works
 - incorporate automatic cell segmentation
 - apply other classifiers

Nipon Theera-Umpon nipon@ieee.org

Fuzzy Clustering Patch-Based Automatic Nucleus Segmentation of Bone Marrow White Blood Cells

©Copyright by Nipon Theera-Umpon 2005

Department of Electrical Engineering, Chiang Mai University "Computer Applications in Automatic White Blood Cell Counting"

Nipon Theera-Umpon nipon@ieee.org

Methodology

- GOAL: Segment nucleus of each cell
 - Tools:
 - · Fuzzy Clustering
 - Mathematical Morphology

Nipon Theera-Umpon nipon@ieee.org

Methodology

Fuzzy C-Means Algorithm

$$\mathbf{v}_{i} = \frac{\sum_{k=1}^{n} [A_{i}(\mathbf{x}_{k})]^{m} \mathbf{x}_{k}}{\sum_{k=1}^{n} [A_{i}(\mathbf{x}_{k})]^{m}}, \quad i = 1, 2, ..., c, \text{ and } m > 1 \text{ (real)}$$

$$J_m(P) = \sum_{k=1}^n \sum_{i=1}^c \left[A_i(\mathbf{x}_k) \right]^m \left\| \mathbf{x}_k - \mathbf{v}_i \right\|^2$$

- Goal: Partition data into c clusters with fuzzy **pseudopartition** $P = \{A_1, A_2, ..., A_c\}$ where A_i contains membership grades of all \mathbf{x}_k to cluster i by minimizing $J_m(P)$

©Copyright by Nipon Theera-Umpon 2005

Department of Electrical Engineering, Chiang Mai University "Computer Applications in Automatic White Blood Cell Counting"

Nipon Theera-Umpon nipon@ieee.org

Methodology

Bayes Classifier

Assign an input vector \mathbf{x} to class C_k if $y_k(\mathbf{x}) \ge y_j(\mathbf{x})$ for all $j \ne k$

$$y_k(\mathbf{x}) = P(C_k | \mathbf{x}) = \frac{p(\mathbf{x} | C_k)P(C_k)}{p(\mathbf{x})}$$

Assuming Normal distribution

$$p(\mathbf{x}|C_k) = \frac{1}{(2\pi)^{d/2} |\Sigma_k|^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_k)^T \Sigma_k^{-1} (\mathbf{x} - \boldsymbol{\mu}_k)\right)$$

$$\ln(y_k(\mathbf{x})) = -\frac{d}{2}\ln(2\pi) - \frac{d}{2}\ln(|\Sigma_k|)$$
$$-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_k)^T \Sigma_k^{-1}(\mathbf{x} - \boldsymbol{\mu}_k) + \ln(P(C_k))$$

Nipon Theera-Umpon nipon@ieee.org

Experimental Results

- Proposed Segmentation Algorithm
 - 1. Median Filtering
 - 2. Oversegmentation (Patch Generation)

Use FCM to oversegment images ⇒ patches

3. Patch Combining

For each patch

Center of patch $\leq 60\%$ of average \Rightarrow Nucleus

Otherwise ⇒ Non-nucleus

4. Final Touching

Morphological Operators: Opening and Closing

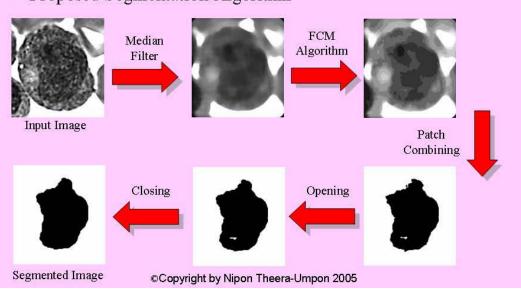
©Copyright by Nipon Theera-Umpon 2005

Department of Electrical Engineering, Chiang Mai University "Computer Applications in Automatic White Blood Cell Counting"

Nipon Theera-Umpon nipon@ieee.org

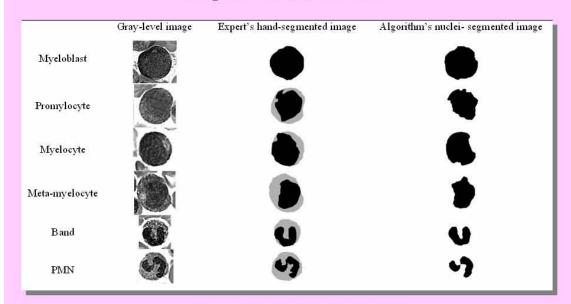
Experimental Results

Proposed Segmentation Algorithm



Nipon Theera-Umpon nipon@ieee.org

Experimental Results



©Copyright by Nipon Theera-Umpon 2005

Department of Electrical Engineering, Chiang Mai University "Computer Applications in Automatic White Blood Cell Counting"

Nipon Theera-Umpon nipon@ieee.org

Experimental Results

Evaluation Measure (Segmentation Error)

$$E_{\rm Seg} = rac{N_1 + N_2}{
m Total~number~of~pixels~in~the~image}$$

 N_1 is the number of pixels in which the algorithm's decision is "Non-Nucleus" but the expert's decision is "Nucleus"

 N_2 is the number of pixels in which the algorithm's decision is "Nucleus" but the expert's decision is "Non-Nucleus"

Nipon Theera-Umpon nipon@ieee.org

Experimental Results

Evaluation Measure (Segmentation Error)

	Myeloblast	Promyelocyte	Myelocyte	Metamyelocyte	Band	PMN
Segmentation Error (%)	9.23	16.07	14.73	10.21	8.60	7.01

Average Segmentation Error = 10.20 %

©Copyright by Nipon Theera-Umpon 2005

Department of Electrical Engineering, Chiang Mai University "Computer Applications in Automatic White Blood Cell Counting"

Nipon Theera-Umpon nipon@ieee.org

Experimental Results

- Initial use of segmented nucleus in classification
 - Only 1 feature (area nucleus)
 - Bayes classifier with 10-fold cross validation
 - Using feature from automatic-segmented images
 - Classification rates: 59.55 % on training sets, 59.63 % on test sets
 - Using feature from hand-segmented images
 - Classification rates: 55.09 % on training sets, 55.22 % on test sets

Nipon Theera-Umpon nipon@ieee.org

Conclusion

- A new nuclei-segmentation technique based on fuzzy clustering and mathematical morphology
- Use patch-based rather than pixel-based
- Promising classification performance
- Future works
 - Segment cytoplasm
 - Segment multi-cell images

©Copyright by Nipon Theera-Umpon 2005

Department of Electrical Engineering, Chiang Mai University "Computer Applications in Automatic White Blood Cell Counting"

Nipon Theera-Umpon nipon@ieee.org

Acknowledgments

Thanks to...

- Dr. C. William Caldwell of Ellis-Fishel Cancer Center, University of Missouri for providing the data and ground truth,
- Dr. James Keller and Dr. Paul Gader for contribution through many technical discussions,
- The Ministry of University Affairs and the Thailand Research Fund for their supports

Nipon Theera-Umpon nipon@ieee.org

Related Publications

- N. Theera-Umpon, "Fuzzy Clustering Patch-Based Automatic Nucleus Segmentation of Bone Marrow White Blood Cells," ECTI Transactions on Electrical Eng., Electronics, and Communications ,In Press.
- N. Theera-Umpon, "Fuzzy Clustering Patch-Based Automatic Nucleus Segmentation of Bone Marrow White Blood Cells," 27th Electrical Engineering Conference, pp.125–128,Khon Kaen, Thailand, November 2004. [Best Paper Award]
- N. Theera-Umpon, "Automatic White Blood Cell Classification using Biased-Output Neural Networks with Morphological Features," Thammasat International Journal of Science and Technology, Vol. 8, No. 1, pp.64-71, January 2003.
- N. Theera-Umpon and P. D. Gader, "System Level Training of Neural Networks for Counting White Blood Cells", IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews, Vol. 32, No. 1, pp. 48-53, February 2002.
- N. Theera-Umpon, "Automatic White Blood Cell Classification in Bone Marrow Images using Morphological Features," Proceedings of the 25th Electrical Engineering Conference, pp. DS108-112, Prince of Songkla University, Thailand, November 2002.
- N. Theera-Umpon, E. R. Dougherty, and P. D. Gader, "Non-Homothetic Granulometric Mixing Theory with Application to Blood Cell Counting", *Pattern Recognition*, Vol. 34, No. 12, pp. 2547–2560, December 2001.

 N. Theera-Umpon and P. D. Gader, "Counting White Blood Cells Using Morphological Granulometries", *Journal of Electronic Imaging*, Vol.9, No.2, pp.170–177, April 2000.
- N. Theera-Umpon and P. D. Gader, "Training Neural Networks to Count White Blood Cells via a Minimum Counting Error Objective Function", Proceedings of the 15th International Conference on Pattern Recognition, pp. 299–302, Barcelona, Spain, September 2000.
- N. Theera-Umpon and P. D. Gader, "White Blood Cell Counting in Bone Marrow Images Via Classification-Free Granulometric Methods", *Proceedings of the SPIE Conference on Nonlinear Image Processing X*, Vol. 3646, pp. 260–269, San Jose, California, U.S.A., January 1999.

ภาคผนวก ฉ.

เอกสารประกอบการบรรยายพิเศษ

• จากการได้รับเชิญไปเป็นวิทยากรในการบรรยายพิเศษในหัวข้อ Computational Intelligence in Automatic White Blood Cell Counting ณ Kagawa University ประเทศญี่ปุ่น เมื่อเดือน ตุลาคม 2547 โดยมีคณาจารย์ และนักศึกษาระดับปริญญาตรี และบัณฑิตศึกษาของ Kagawa University เข้า ร่วมรับฟังการบรรยาย (บรรยายเป็นภาษาอังกฤษ)

Nipon Theera-Umpon nipon@ieee.org

Computational Intelligence in Automatic White Blood Cell Counting

Nipon Theera-Umpon, Ph.D. nipon@ieee.org

> Chiang Mai University THAILAND

Special Lecture @ Kagawa University, JAPAN October 2004

©Copyright by Nipon Theera-Umpon 2004

Department of Electrical Engineering, Chiang Mai University "Computational Intelligence in Automatic White Blood Cell Counting"

Nipon Theera-Umpon nipon@ieee.org

Outline

- Introduction
- White Blood Cell Classification using NN and Morphological Features
 - Data Descriptions
 - Experimental Results
 - Conclusion
- Training NN to Count WBC via a Minimum Counting Error Objective Function
 - Data Descriptions
 - **Experimental Results**
 - Conclusion

Nipon Theera-Umpon nipon@ieee.org

Introduction

- White blood cells grouped into discrete classes by age
- Numbers of cells in different classes aid doctors in diagnosis, e.g., AIDS, leukemia, cancers.
- Nuclei change shape and size with age ⇒ Mophological techniques
- Experts can produce counts that vary by as much as 15%
- No automated system for WBC differential counting in bone marrow

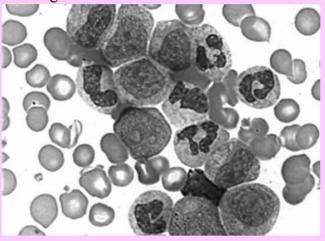
©Copyright by Nipon Theera-Umpon 2004

Department of Electrical Engineering, Chiang Mai University 'Computational Intelligence in Automatic White Blood Cell Counting"

Nipon Theera-Umpon nipon@ieee.org

Introduction

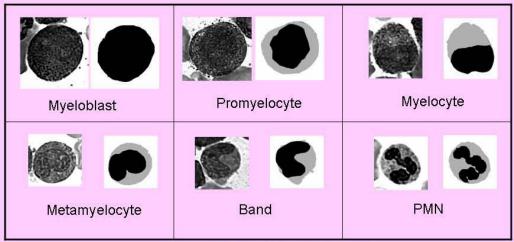
Sample image



Nipon Theera-Umpon nipon@ieee.org

Introduction

Sample grayscale and corresponding hand-segmented images of white blood cells



©Copyright by Nipon Theera-Umpon 2004

Department of Electrical Engineering, Chiang Mai University 'Computational Intelligence in Automatic White Blood Cell Counting"

Nipon Theera-Umpon nipon@ieee.org

Methodology

- Morphological Granulometries
 - Morphological operations involving image S and structuring element E

Erosion: $(S \ominus E) = \bigcap \{S - e : e \in E\}$

Dilation: $(S \oplus E) = \bigcup \{E + s : s \in S\}$

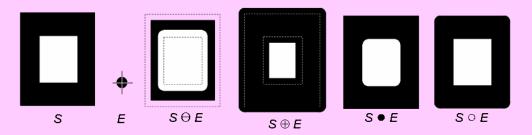
Closing: $S \bullet E = (S \oplus (-E)) \ominus (-E)$

Opening: $S \circ E = (S \ominus E) \oplus E$

Nipon Theera-Umpon nipon@ieee.org

Methodology

- Morphological Granulometries
 - Morphological operations involving image S and structuring element E



©Copyright by Nipon Theera-Umpon 2004

Department of Electrical Engineering, Chiang Mai University "Computational Intelligence in Automatic White Blood Cell Counting"

Nipon Theera-Umpon nipon@ieee.org

Methodology

- Morphological Granulometries
 - Let $\Omega(t)$ be area of $S \circ tE$ where t is a real number and $\Omega(0)$ is area of S
 - $-\Omega(t)$ is called a size distribution
 - Normalized size distribution $\Phi(t) = \Omega(t) / \Omega(0)$, and $d\Phi(t)/dt$ are called granulometric size distribution or pattern spectrum of image S

Nipon Theera-Umpon nipon@ieee.org

Methodology

Morphological Granulometric Analysis of WBC

Structuring Element Used in the Experiments

0	1	1	0
1	1	1	1
1	1	1	1
0	1	1	0

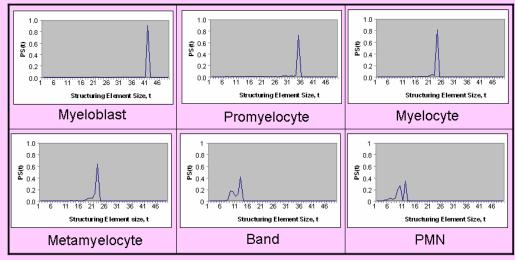
©Copyright by Nipon Theera-Umpon 2004

Department of Electrical Engineering, Chiang Mai University "Computational Intelligence in Automatic White Blood Cell Counting"

Nipon Theera-Umpon nipon@ieee.org

Methodology

Morphological Granulometric Analysis of WBC



©Copyright by Nipon Theera-Umpon 2004

Nipon Theera-Umpon nipon@ieee.org

Data Descriptions

- Data set: 20 Myeloblasts, 9 Promyelocytes, 139 Myelocytes, 33 Metamyelocytes, 45 Bands, and 185 PMNs
- Classified by Dr. C. William Caldwell, Professor of Pathology and Director of the Pathology Lab at the Ellis-Fischel Cancer Center, U. of Missouri, U.S.A.

©Copyright by Nipon Theera-Umpon 2004

Department of Electrical Engineering, Chiang Mai University "Computational Intelligence in Automatic White Blood Cell Counting"

Nipon Theera-Umpon nipon@ieee.org

Data Descriptions

- 6 features are extracted from each single-cell image
 - area of cell,
 - nuclei-to-cytoplasm ratio,
 - maximum value of a pattern spectrum,
 - location where the maximum value of a pattern spectrum occurs,
 - first granulometric moments, and
 - second granulometric moments

Nipon Theera-Umpon nipon@ieee.org

Experimental Results

- NN with 1 hidden layer consisting of 10 nodes
- Levenberg-Marquardt (LM) algorithm
- Max # epochs = 100, MSE = 10^{-6}
- 5-fold cross validation

©Copyright by Nipon Theera-Umpon 2004

Department of Electrical Engineering, Chiang Mai University "Computational Intelligence in Automatic White Blood Cell Counting"

Nipon Theera-Umpon nipon@ieee.org

Experimental Results

Desired output 0.9 and 0.1

Training

Testing

$\begin{array}{c} \text{Alg} \\ \rightarrow \\ \text{Actual} \\ \downarrow \end{array}$	Blast	Pro	Myelo	Meta	Band	PMN	$\begin{array}{c} \text{Alg} \\ \rightarrow \\ \text{Actual} \\ \downarrow \end{array}$	Blast	Pro	Myelo	Meta	Band	PMN
Blast	80	0	0	0	0	0	Blast	16	0	1	0	3	0
Pro	2	26	7	1	0	0	Pro	1	1	7	0	0	0
Myelo	0	2	535	8	1	10	Myelo	0	6	116	8	0	9
Meta	0	5	45	68	5	9	Meta	0	0	17	9	3	4
Band	0	0	1	0	140	39	Band	0	0	0	4	17	24
PMN	0	0	12	6	8	714	PMN	0	0	7	6	20	152
Clas	Classification rate (Train) = 90.66 %						Classification rate (Test) = 72.16%						

Nipon Theera-Umpon nipon@ieee.org

Experimental Results

Desired output $d_j = 1 - \frac{n_j}{\sum_{j=1}^{6} n_j}$ and 0.1 Training

Testing

Alg → Actual ↓	Blast	Pro	Myelo	Meta	Band	PMN	Alg → Actual ↓	Blast	Pro	Myelo	Meta	Band	PMN
Blast	80	0	0	0	0	0	Blast	19	0	0	0	0	1
Pro	0	27	9	0	0	0	Pro	1	3	4	1	0	0
Myelo	0	15	508	16	2	15	Myelo	2	4	114	14	1	4
Meta	0	0	50	72	7	3	Meta	0	0	17	10	4	2
Band	0	0	0	4	139	37	Band	0	0	0	3	28	14
PMN	0	0	22	19	63	636	PMN	0	0	4	9	20	152
Clas	Classification rate (Train) = 84.80 %						Classification rate (Test) = 75.64 %						

©Copyright by Nipon Theera-Umpon 2004

Department of Electrical Engineering, Chiang Mai University "Computational Intelligence in Automatic White Blood Cell Counting"

Nipon Theera-Umpon nipon@ieee.org

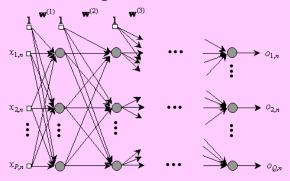
Conclusion

- Mophological-based features
- Unbias the classifiers using a priori information of # samples
- About 75 % classification rate
- Rely on hand-segmented images
- Future works
 - incorporate automatic cell segmentation
 - apply other classifiers

Nipon Theera-Umpon nipon@ieee.org

Training Neural Networks to Count WBC via a Minimum **Counting Error Objective Function**

- Use feed-forward classification network trained with backpropagation algorithm
- New training scheme running in the batch mode to achieve the minimum counting error



©Copyright by Nipon Theera-Umpon 2004

Department of Electrical Engineering, Chiang Mai University "Computational Intelligence in Automatic White Blood Cell Counting"

Nipon Theera-Umpon nipon@ieee.org

Data Descriptions

- Data set contains 33 Myeloblasts, 61 Promyelocytes, 77 Myelocytes, 93 Metamyelocytes, 128 Bands, and 134 PMNs.
- 10 features are extracted from each single-cell image
- 6 features extracted from nucleus shape, i.e., circularity, elongation, thickness variance, and Fourier descriptors 3, 12, and 15
- 4 features are texture features, i.e., light number of patches in nucleus, energy of cytoplasm region, and correlation and variance in a cell

Nipon Theera-Umpon nipon@ieee.org

Sigma Count

- $\mathbf{x}_n = [\mathbf{x}_{1,n} \mathbf{x}_{2,n} \dots \mathbf{x}_{P,n}]$: input vector
 - -P: number of features
 - Q: number of classes
 - -N: number of input vectors
 - $-C_{exp, q}$: number of cells assigned to the q^{th} class by expert
- Define sigma count of the qth class as

$$c_{sigma,q} = \sum_{n=1}^{N} o_{q,n}$$
 , $q = 1, 2, ..., Q$

©Copyright by Nipon Theera-Umpon 2004

Department of Electrical Engineering, Chiang Mai University "Computational Intelligence in Automatic White Blood Cell Counting"

Nipon Theera-Umpon nipon@ieee.org

Minimum Count Error Objective Function

Minimum count error objective function is defined as

$$E = \frac{1}{2} \sum_{q=1}^{Q} \left[\left(\sum_{n=1}^{N} o_{q,n} \right) - c_{exp,q} \right]^2 = \frac{1}{2} \sum_{q=1}^{Q} \left[c_{sigma,q} - c_{exp,q} \right]^2$$

• Partial of E with respect to weight w_{ji} is

$$\frac{\partial \mathsf{E}}{\partial \mathsf{W}_{ji}} = \sum_{q=1}^{\mathsf{Q}} \left[\left[c_{sigma,q} - c_{\mathsf{exp},q} \right] \begin{bmatrix} \mathbf{N} & \partial o_{q,n} \\ \sum\limits_{n=1}^{\mathsf{N}} \partial w_{ji} \end{bmatrix} \right]$$

- Factor $\partial o_{\mathbf{q},n}/\partial w_{jj}$ is found in the standard back-propagation algorithm
- There are no cell level desired outputs

Nipon Theera-Umpon nipon@ieee.org

Evaluation Measures

Evaluation: Counting Rate =
$$\begin{bmatrix} \frac{6}{\sum\limits_{q=1}^{6} \left| c_{exp,q} - c_{alg,q} \right|} \\ 1 - \frac{\frac{6}{\sum\limits_{q=1}^{6} \left| c_{exp,q} \right|}}{\frac{6}{\sum\limits_{q=1}^{6} \left| c_{exp,q} \right|}} \end{bmatrix} \times 100\%$$

- $C_{alg,q}$ has 2 types: crisp and sigma count
- Crisp count assumes classifier assigns each input cell to one class (maximum output)
- There are 12 percentage values measured
 - percVal = { crClTr, crClTe, ccClTr, scClTe, scClTr, scClTe, crCoTr, crCoTe, ccCoTr, scCoTe, scCoTr, scCoTe }
 - where cr = classification rate, cc = crisp count rate, sc = sigma count rate, Cl = classification NN, Co = counting NN
 - Tr = training set, and Te = test set

©Copyright by Nipon Theera-Umpon 2004

Department of Electrical Engineering, Chiang Mai University "Computational Intelligence in Automatic White Blood Cell Counting"

Nipon Theera-Umpon nipon@ieee.org

Algorithm

Use 4-fold cross-validation

```
For (i = 1 \text{ to } 4) /* fold 1 to 4 */
    Initial initClassNet;
    Train initClassNet using LM algorithm for 5 epochs;
    InitEp = 5;
    While (initEp \leq 50)
       Train initClassNet using LM algorithm for 5 epochs;
       Initialize classNet and countNet with initClassNet;
       Train classNet using gradient descent for 50 epochs;
       Train countNet using gradient descent for 50 epochs;
       Test classNet & countNet on training & test sets;
       Calculate percVal[i][initEp];
       initEp = initEp + 5;
    End While (initEpoch \leq 50);
 End For (i = 1 \text{ to } 4);
 Average the evaluation measures in percVal, over 4 folds;
```


Nipon Theera-Umpon nipon@ieee.org

Experimental Results

- Use network with 1 hidden layer containing 12 hidden neurons
- $\eta_{\rm cnt} = 10^{-4}, \ \eta_{\rm class} = 10^{-2}$
- Activation function = sigmoid
- Classification network is trained to output 1 at the output node corresponding to the actual class, and 0's at the other output nodes

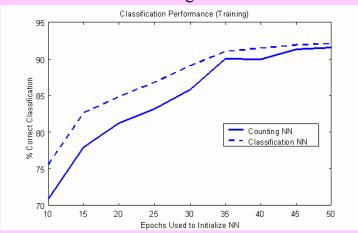
©Copyright by Nipon Theera-Umpon 2004

Department of Electrical Engineering, Chiang Mai University "Computational Intelligence in Automatic White Blood Cell Counting"

Nipon Theera-Umpon nipon@ieee.org

Experimental Results

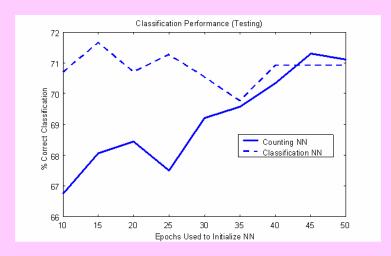
Classification rates on training set



Nipon Theera-Umpon nipon@ieee.org

Experimental Results

Classification rates on test set



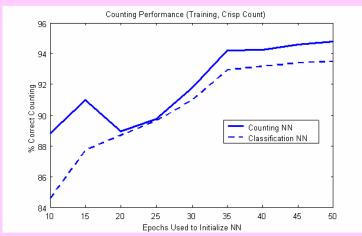
©Copyright by Nipon Theera-Umpon 2004

Department of Electrical Engineering, Chiang Mai University "Computational Intelligence in Automatic White Blood Cell Counting"

Nipon Theera-Umpon nipon@ieee.org

Experimental Results

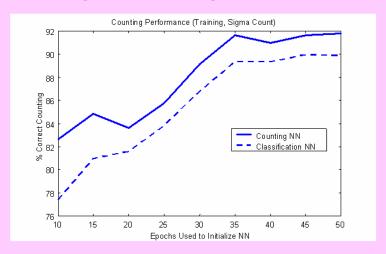
Crisp counting rates on training set



Nipon Theera-Umpon nipon@ieee.org

Experimental Results

Sigma counting rates on training set



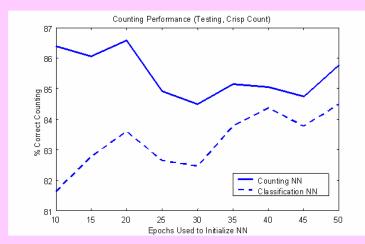
©Copyright by Nipon Theera-Umpon 2004

Department of Electrical Engineering, Chiang Mai University "Computational Intelligence in Automatic White Blood Cell Counting"

Nipon Theera-Umpon nipon@ieee.org

Experimental Results

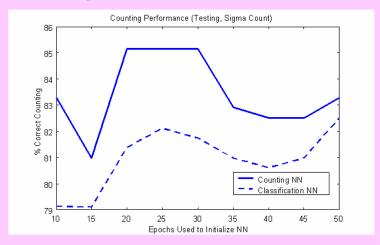
Crisp counting rates on test set



Nipon Theera-Umpon nipon@ieee.org

Experimental Results

Sigma counting rates on test set



©Copyright by Nipon Theera-Umpon 2004

Department of Electrical Engineering, Chiang Mai University "Computational Intelligence in Automatic White Blood Cell Counting"

Nipon Theera-Umpon nipon@ieee.org

Conclusion

- Counting network achieved more accurate counts than classification network
- Counting network has poorer classification performance
- In this particular problem, main goal = accurate counts
- Classification is only an indirect tool to achieve that goal
- Going directly to main goal is a good way to solve the problem

Nipon Theera-Umpon nipon@ieee.org

Acknowledgments

Thanks to...

- Dr. C. William Caldwell of Ellis-Fishel Cancer Center. University of Missouri for providing the data and ground truth.
- Dr. James Keller and Dr. Paul Gader for contribution through many technical discussions,
- Ministry of University Affairs and the Thailand Research Fund for their supports

©Copyright by Nipon Theera-Umpon 2004

Department of Electrical Engineering, Chiang Mai University "Computational Intelligence in Automatic White Blood Cell Counting"

Nipon Theera-Umpon nipon@ieee.org

Related Publications

- N. Theera-Umpon, 'Fuzzy Clustering Patch-Based Automatic Nucleus Segmentation of Bone Marrow White Blood Cells," 27th Electrical Engineering Conference, Khon Kaen, Thailand, November 2004.
- N. Theera-Umpon, "Automatic White Blood Cell Classification using Biased-Output Neural Networks with Morphological Features," Thammasat International Journal of Science and Technology, Vol. 8, No. 1, pp.64-71, January 2003.
- N. Theera-Umpon and P. D. Gader, "System Level Training of Neural Networks for Counting White Blood Cells", IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews, Vol. 32, No. 1, pp. 48-53, February 2002.
- N. Theera-Umpon, "Automatic White Blood Cell Classification in Bone Marrow Images using Morphological $Features, "\it Proceedings of the 25th Electrical Engineering Conference, pp. DS108-112, Prince of Songkland (March 1998) and the conference of the proceedings of the 25th Electrical Engineering Conference, pp. DS108-112, Prince of Songkland (March 1998) and the conference of the c$ University, Thailand, November 2002.
- N. Theera-Umpon, E. R. Dougherty, and P. D. Gader, "Non-Homothetic Granulometric Mixing Theory with Application to Blood Cell Counting", Pattern Recognition, Vol. 34, No. 12, pp. 2547-2560, December 2001.
- N. Theera-Umpon and P. D. Gader, "Counting White Blood Cells Using Morphological Granulometries", Journal of Electronic Imaging, Vol.9, No.2, pp.170-177, April 2000.
- N. Theera-Umpon and P. D. Gader, "Training Neural Networks to Count White Blood Cells via a Minimum Counting Error Objective Function", Proceedings of the 15th International Conference on Pattern Recognition, pp. 299–302, Barcelona, Spain, September 2000.
- N. Theera-Umpon and P. D. Gader, "White Blood Cell Counting in Bone Marrow Images Via Classification-Free Granulometric Methods", Proceedings of the SPIE Conference on Nonlinear Image Processing X, Vol. 3646, pp. 260-269, San Jose, California, U.S.A., January 1999.