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Methodology

» Morphological Granulometries

— Morphological operations involving image S and
structuring element ¥
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Methodology

» Morphological Granulometries

— Let €2(¢) be arca of S © t£ where ¢ 1s a real number and
€2(0) 1s arca of S

— Q) 1s called a size distribution

— Normalized size distribution @©(¥) = Q(r) / €2(0), and
dD(r)/dt are called grarmilometric size distribution or
pattern spectrum of image S
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Methodology
* Morphological Granulometric Analysis of WBC

Structuring Element Used in the Experiments

0 1 1 0
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Methodology
» Morphological Granulometric Analysis of WBC
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Data Descriptions

» Data set : 20 Myeloblasts, 9 Promyelocytes, 139 Myelocytes,
33 Metamyelocytes, 45 Bands, and 185 PMNs

» Classified by Dr. C. William Caldwell, Professor of
Pathology and Director of the Pathology Lab at the Ellis-
Fischel Cancer Center, U. of Missouri, U.S.A.
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Data Descriptions

Sample grayscale and corresponding hand-segmented

images of white blood cells

Myeloblast Promyelocyte Myelocyte
\{. F' = -
LR e 9

b
PMN

Metamyelocyte Band
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Data Descriptions

» 06 features are extracted from each single-cell image

arca of cell,
— nuclei-to-cytoplasm ratio,
— maximum value of a pattern spectrum,

— location where the maximum value of a pattern spectrum

oceurs,
— first granulometric moments, and

— second granulometric moments
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Feature Extraction

Cell Class Input Images & Featur
ﬂ Pattern Spectrum‘z) cemres
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Experimental Results

Classifier: Neural Network with 1 hidden layer consisting of

10 nodes

Training Mecthod: Levenberg-Marquardt (LM) algorithm

Stopping Criteria: Max # epochs = 100, MSE = 10-¢

Performance Evaluation: 5-fold cross validation
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Classifier: Artificial Neural Networks

+ Computational Node

* @isan offset

* fi1s a nonlinear function

+ Eg flx)=tanh(fx), £>0
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Artificial Neural Networks

+ Artificial Neural Networks: Universal Approximator

see O—> 01

LN ] &H og}g
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Training & Testing

» Neural Network (Model) Training and Testing

Training
Trammng Model Model
—| g - =
Images (eneration Storage

(known class)

Testing (Recognition)

Decision

Test Feature
—p s
Images Extraction

(unknown class)
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. . All images
Cross Validation ° B

Divide data
. Test Set

into 3 groups

N-Fold Cross Validation

E.g 3-Fold Cross Validation

Test.  Result of Cross
Classifer  validation 1

Classifer

Test  Result of Cross
Classifer  Validation 2

Classifer

Test  Result of Cross
Classifer  Validation 3

Clazsifer
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Experimental Results

+ Training by setting Desired output 0.9 and 0.1

Traming Testing

Myelo Meta Band PMN : 0 Myelo Meta Band

Mylo 0 2 533 0 | pyelo
Meta 0 ; 45 ) ; S Meta
Band 0 0 () 39 Band

PNMN 0 I 2 ) PMIN

Classification rate (Train) = 90.6
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Experimental Results

n.
o Trained by setting Desired output 4, =1-—-"— and 0.1

Traming =l Testing

Alg

;"-\(.‘-_t;l’lﬂl Blast Pro Myelo Meta Band PMN Ac:ml Pro Myelo Meta Band PMN
Blast 0 { { 0 i i Blast
Pro i 27 9 ( { { Pro
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Conclusion

* Mophological-based features
» Unbias the classifiers using a priori information of # samples
» About 75 % classification rate
» Rely on hand-segmented images
* Future works
— incorporate automatic cell segmentation

— apply other classifiers
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Fuzzy Clustering Patch-Based
Automatic Nucleus Segmentation of

Bone Marrow White Blood Cells
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Methodology
* GOAL : Segment nucleus of each cell

— Tools:
» Fuzzy Clustering
+ Mathematical Morphology
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Methodology
* Fuzzy C-Mecans Algorithm

— Goal: Partition data into ¢ clusters with fuzzy
pseudopartition P = {4, 4,, ..., 4_} where 4, contains
membership grades of all x, to cluster i by minimizing ./, (P)
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Methodology
» Bayes Classiflier

Assign an input vector X to class Cp if yy(x) > y(x) for all j+ k
p(x|C,)P(C,)
p(x)

v, (x) =P(C, ‘x) =

Assuming Normal distribution

ﬁﬂp[%(xuﬁr Z;(XP-;;)]

In(y,(x))=— %I In(27) — %Ilnd Z:

L (x ) E (x ) + InP(C,)
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Experimental Results

Proposed Segmentation Algorithm

1. Median Filtering
2. Oversegmentation (Patch Generation)

Use FCM to oversegment images = patches
3. Patch Combining

For each patch
Center of patch < 60% of average = Nucleus
Otherwise = Non-nucleus
4. Final Touching
Morphological Operators: Opening and Closing
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Experimental Results

» Proposed Segmentation Algorithm

: Median

. Filter

( —

W
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| Algorithm -

—

Input Image
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Experimental Results

Gray-level image Expert’'s hand-segmented image Algorithm’s nuclei- segmented umage
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Experimental Results
» Evaluation Measure (Segmentation Error)

- Nl +N2

* Total number of pixels in the image

Seg

N, 18 the number of pixels m which the algorithm’s decision 1s “Non-

Nucleus” but the expert’s decision 1s “Nucleus”

N, 1s the number of pixels m which the algorithm’s decision 1s

“Nucleus” but the expert’s decision 1s “Non-Nucleus”
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Experimental Results

» Evaluation Measure (Segmentation Error)

Myeloblast Promyelocyte Myelocyte Metamyelocyte

923

Average Segmentation Error = 10.20 %
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Experimental Results

* Initial use of segmented nucleus in classification
— Only 1 feature (area nucleus)
— Bayes classifier with 10-fold cross validation

— Using feature from automatic-segmented images

+ Classification rates: 59.55 % on training sets, 59.63 % on test sets

— Using feature from hand-segmented images

+ Classification rates: 55.09 % on traming sets, 55.22 % on test sets
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Conclusion
* A new nuclei-segmentation technique based on fuzzy
clustering and mathematical morphology
» Use patch-based rather than pixel-based
» Promising classification performance
» Future works
— Segment cytoplasm

— Segment multi-cell images
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Outline

+ Introduction

+  White Blood Cell Classification using NN and Morphological Features

— Data Descriptions
— Experimental Results
— Conclusion

¢+ Training NN to Count WBC via a Minimum Counting Error Objective

Function

— Data Descriptions
— Experimental Results

— Conclusion
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Introduction

»  White blood cells grouped into discrete classes by age

 Numbers of cells in different classes aid doctors in

diagnosis, e.g., AIDS, leukemia, cancers.

» Nuclei change shape and size with age

—> Mophological techniques
» Experts can produce counts that vary by as much as 15%

» No automated system for WBC differential counting in

bone marrow
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Introduction

» Sample image
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Introduction

» Sample grayscale and corresponding hand-segmented

images of white blood cells

Myeloblast Myelocyte
¢ -
& ® b T
b
|
Metamyelocyte Band PMN
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Methodology

* Morphological Granulometries

— Morphological operations involving image S and
structuring element £

Erosion: (Se E)=n{S—e:e € E}
Dilation: (Se E)=U0{E +ts5:5 € S}
Closing: Se E=(S@®(-E))e(—E)
Opening: SOE=UJo0E)e l
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Methodology

» Morphological Granulometries

— Morphological operations involving image S and
structuring element ¥
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Methodology

» Morphological Granulometries

— Let €2(¢) be arca of S © t£ where ¢ 1s a real number and
€2(0) 1s arca of S

— Q) 1s called a size distribution

— Normalized size distribution @©(¥) = Q(r) / €2(0), and
dD(r)/dt are called grarmilometric size distribution or
pattern spectrum of image S
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Methodology
* Morphological Granulometric Analysis of WBC

Structuring Element Used in the Experiments

0 1 1 0
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Methodology
» Morphological Granulometric Analysis of WBC

1.0 10 10
08 0g 0s
=l S 08 & 06
£ os £ s <os
0z 0z 0z
e 1 B 11 168 21 26 31 36 41 46 D'01 B 11 16 21 26 31 36 41 46 D'01 B 1 16 21 26 31 36 41 46
Structuring Elament Size, t Structuring Element Size, t Structuring Element Size, t
Myeloblast Promyelocyte Myelocyte
1.0 1 1
08 0.8 08
£ 06 S06 £ 06
& & &
204 & 04 204
0z 0.2 0z
U'01 6 11 16 21 26 31 36 41 46 L 1T 6 11 16 21 26 31 36 41 48 L 1 6 11 16 21 26 31 36 41 46
Structuring E lement size, t Structuring Element Size, t Structuring Element Size, t
Metamyelocyte Band PMN

©Copyright by Nipon Theera-Umpon 2004

' 0 o ~ = o i & d’
mmwmuuasmuumwmaa@mﬂuYwmsrgmmuacaZuwmlumwmmamm 134



JIANWIN

Department of Electrical Engineering, Chiang Mai University Nipon Theera-

Umpon
“Computational Intelligence in Automatic Vhite Blood Cell Counting” P

nipon@iece.org

Data Descriptions

» Data set : 20 Myeloblasts, 9 Promyelocytes, 139 Myelocytes,
33 Metamyelocytes, 45 Bands, and 185 PMNs

» Classified by Dr. C. William Caldwell, Professor of
Pathology and Director of the Pathology Lab at the Ellis-
Fischel Cancer Center, U. of Missouri, U.S.A.
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Data Descriptions

6 features are extracted from each single-cell image

arca of cell,

nuclei-to-cytoplasm ratio,

maximum value of a pattern spectrum,

location where the maximum value of a pattern spectrum

ocCurs,

first granulometric moments, and

second granulometric moments
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Experimental Results

» NN with 1 hidden layer consisting of 10 nodes
» Levenberg-Marquardt (LM) algorithm
» Max # epochs = 100, MSE = 10-¢

o 5-fold cross validation
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Experimental Results

» Desired output 0.9 and 0.1

Traming Testing

Alg Alg

Ac tu; Blast | Pro | Myelo | Meta | Band | PMN | , tu; Blast | Pro | Myelo | Meta | Band | PMN
\: 1

Blast | 80 0 0 0 0 0 Blast | 16 0 1 0 3 0

Pro 2 26 7 1 0 0 Pro 1 1 7 0 0 0
Myelo 0 2 535 8 1 10 Myelo 0 (i} 116 8 0 9
Meta 0 5 45 08 5 9 Meta 0 0 17 9 3 4
Band 0 0 1 0 140 39 Band 0 0 0 4 17 24
PMN 0 0 12 (i} 8 714 PMN 0 0 7 6 20 152

Classification rate (Train) = 90.66 % Classification rate (Test) = 72.16%
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Experimental Results

+ Desired output d, =1- :j and 0.1

2
A J .
Tramimg J-1 Testing

Alg Alg

~ | Blast | Pro | Myelo | Meta | Band | PMN || . T | Blast | Pro | Myelo | Meta | Band | PMN
Actual as 1o yelo cta an Actual 4

4

Blast 80 0 0 0 0 0 Blast 19 0 0 0] 0 1

Pro 0 27 (8] 0 0 Pro 1 3 4 1 0 0
Myelo 0 15 508 16 2 15 Myelo 2 4 114 14 1 4
Meta 0 0 50 72 7 3 Meta 0 0 17 10 4 2
Band 0 0 0 4 139 37 Band 0 0 0 3 28 14
PMN 0 0 22 19 63 036 PMN 0 0 4 9 20 152

Classification rate (Train) = 84.80 % Classification rate (Test) = 75.64 %
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Conclusion

* Mophological-based features
» Unbias the classifiers using a priori information of # samples
» About 75 % classification rate
» Rely on hand-segmented images
* Future works
— incorporate automatic cell segmentation

— apply other classifiers
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Training Neural Networks to Count WBC via a Minimum
Counting Error Objective Function

— Use feed-forward classification network trained with back-
propagation algorithm

— New training scheme running in the batch mode to achieve
the minimum counting error
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Data Descriptions

» Data set contains 33 Myeloblasts, 61 Promyelocytes, 77
Myelocytes, 93 Metamyelocytes, 128 Bands, and 134
PMN.

» 10 features are extracted from each single-cell image

» 0 features extracted from nucleus shape, i.e., circularity,

elongation, thickness variance, and Fourier descriptors 3,
12, and 15

» 4 features are texture features, i.e., light number of patches
in nucleus, energy of cytoplasm region, and correlation and
variance in a cell
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Sigma Count

* X, =[x, %, .- Xp, | : input vector
— P : number of features
—  : number of classes
— N number of input vectors
- C,,, , - number of cells assigned to the g™ class by expert

» Define sigma count of the ¢ class as

N
Csigmag = 210(”, . 0=12,..Q
n=
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Minimum Count Error Objective Function

* Minimum count error objective function is defined as

1Q N 2 1Q 2
E= 2 || ZOgn| Cexpg| = 2 P2 [Csigma,q - Cexp,q]
g=1L\n=1 q=1

* Partial of E with respect to weight w;, is

ok _3 [ Coxpal gaoq,n
awﬁ = sigma.q — “expql| 2, awﬁ

» Factor ooy, /ow}; 1s found in the standard back-propagation
algorithm

* There arc no cell level desired outputs
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Evaluation Measures

6
Z ] ‘Cexp,q —Calgq

Evaluation ;: CountingRate = | 1- %= x 100%

6
% Corpa
q=1

* C,,,has 2 types : crisp and sigma count

+ Crisp count assumes classifier assigns each mput cell to one class
(maximum output)

+ There are 12 percentage values measured

— percVal = { crClTr, crClTe, ccClTr, scClTe, scClTr, scClTe,
crCoTr, crCoTe, ccCoTr, scCoTe, scCoTr, scCoTe }

— where cr = classification rate, cc = crisp count rate, sc = sigma
count rate, Cl = classification NN, Co = counting NN

— Tr = traning set, and Te = test set
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Algorithm
Use 4-fold cross-validation
For(i=1tod4) foldltod™*
Initial initClassNet;
Train initClassNet using LM algorithm for 5 epochs;
InitEp = 5;
While (initEp < 50)
Train initClassNet using LM algorithm for 5 epochs;
Initialize classNet and countNet with initClassNet;
Train classNet using gradient descent for 50 epochs;
Train countNet using gradient descent for 50 epochs;
Test clussNet & countNet on training & fest sets;
Calculate percValfil[initEp];
initEp = initEp+5;
End While (initEpoch < 50),
End For (i =1to 4);
Average the evaluation measures in percVal, over 4 folds;
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Experimental Results

» Use network with 1 hidden layer containing 12 hidden
neurons

* Tl — 10_49 Helass — 102
» Activation function = sigmoid
» Classification network is trained to output 1 at the output

nodc corresponding to the actual class, and 0°s at the other
output nodcs
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Experimental Results

» Classification rates on training set

Clagsification Performance (T raining)
85 T T T T T T

0

==l

80

= Counting MN
= = Classification NN

% Correct Classification

nBr

10 15 20 25 30 Ik 40 45 50
Epochs Used to Initialize NN
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Experimental Results

* Classification rates on test set

Classification Performance (Testing)

72

np
b

-~
o

m
@

= Counting NN
= = Classification MM

m
[=:)

% Correct Classfication

o
=

10 15 20 25 0 35 40 45 a0
Epochs Used to Inttialize NI
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Experimental Results

» Crisp counting rates on training set

Counting Performance (Training, Crisp Count)

96

94

i)
[

]
=]

% Correct Counting
o
o

i3]
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10 15 20 25 30 35 40 45 a0

Epochs Used to Initialize NM
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Experimental Results

» Sigma counting rates on training sct

Counting Perfarmance (Training, Sigma Count)

92

% Correct Counting

10 15 20 25 30 35 40 45 a0
Epochs Used to Initialize NI
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Experimental Results

» Crisp counting rates on test set

Counting Performance (Testing, Crisp Count)
a7 T T T .

a6

% Correct Counting
oo un)
e m

o
]

o
%]
~

4
t = Counting NN 1
r = = Classification NM

10 15 20 25 30 35 40 45 50
Epochs Used to Intialize NI

a1
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Experimental Results

» Sigma counting rates on test set

Counting Performance (Testing, Sigma Count)

o
[

% Correct Counting

1]

r ==
a0+ r = Counting NN
/ — = Classification MM

79
10 15 20 25 30 35 40 45 50

Epochs Used to Intialize MM
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Conclusion

» Counting network achieved more accurate counts than
classification network

» Counting network has poorer classification performance
s In this particular problem, main goal = accurate counts
» Classification is only an indirect tool to achieve that goal

* Going directly to main goal is a good way to solve the
problem
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