1. Introduction

26

27 The export of Thai mango (Mangifera indica L.) exhibits increasing trend due to the high value 28 added to the commodity. In 2004, the export value per kilogram of mango increased about 58% compared to the export value in 2003 (Office of Agriculture Economics, 2005). This increasing trend 29 30 initiates the awareness of Thai agro-industries about the regulation of trading countries. One of the 31 major threats to the premium markets such as Japan and Australia for Thai mango is the presence of 32 oriental fruit fly (Dacus dorsalis H.) inside the fruit. Since cancellation of ethylene dibromide (EDB) 33 fumigation from the past two decades, non-chemical quarantine treatments, e.g., vapor heat treatment 34 (VHT) and hot water dipping became the common methods to control this pest. Recently, an interest 35 of electromagnetic treatments, for instant, microwave and radio frequency, to control oriental fruit fly 36 in fruits has emerged. Microwave rapidly generates heat in food materials and may be used as an 37 alternative to conventional VHT which has drawback due to its slow come-up period. 38 According to Thai regulation for mango export, general guideline to disinfest oriental fruit fly in 39 mango using VHT was accomplished by monitoring the cold spot of mango at 47°C for 20 min 40 during VHT. This treatment achieved thermal death time higher than 5D (equivalent to LT_{99,999}) for 41 the first instars (16.45 min) and the egg of oriental fruit fly (<8.91 min) (Jang, 1986), but slightly 42 lower than 5D for the third instars (22.3 min) (Jang, 1991). An increase in internal temperature of 43 mango up to 47°C by VHT would take longer than 45 min, hence the fruit would be susceptible to heat damage. With rapid heating by microwave, a concept of high-temperature-short-time (HTST) 44 treatment is possible to shorten treatment time while retaining lethality effect higher than 5D. The 45 HTST concept is extensively used in food processing to minimize thermal degradation of food 46 47 quality (Stumbo, 1973; Lund, 1977; and Holdsworth, 1997) and may be applicable for insect 48 quarantine process. Tang et al. (2000) proposed the HTST thermal quarantine methods using radio 49 frequency to control codling moth larvae in in-shell walnuts to be a temperature range of 50-54°C. 50 The third instars codling moth in cherry was also studied (Ikediala et al., 1999). The 915 MHz

Elsevier 2 of 18

microwave treatment on cherries can achieve the fruit temperatures of 45, 50, and 55°C but quality of 51 52 fruit was promising with treatments of temperature less than 50°C. With regard to mango quarantine treatment, HTST could give several advantages over the 53 54 conventional heating in term of shortening of come-up time, equivalent or better quality retention, 55 energy minimization, and insect mortality assurance due to high temperature treatment. Varith and 56 Kiatsiriroat (2004) studied the microwave heating on Chokanan mango with 2,450 MHz / 800 W-57 microwave oven and found an increase of internal temperature up to 46°C within 40 s. Heat 58 distribution inside the fruit depended on fruit orientation, microwave power and treatment time. The 59 horizontal positioned mango treated with 50% microwave power yielded better heat distribution than 60 the vertical one. Continuing to this work, our purpose was to develop a full microwave-vapor heat treatment (MVHT) for oriental fruit fly quarantine process in Namdokmai Si Thong mango which is 61 the export variety. The first experiment explored the lacking information of thermal death and 62 63 quality kinetics at temperature higher than 48°C. The MVHT process was then developed based on 64 thermal death and quality kinetics. Finally, experiments were conducted to confirm the MVHT quarantine method along with measurement of changes in mango quality after the MVHT process. 65 66 2. Materials and Methods 67 68 2.1 Materials 69 Namdokmai Si Thong mangoes freshly harvested from two orchards in Chiang Mai, Thailand, were 70 used in this research. The first orchard provided domestic-graded mango while the second orchard 71 offered export-graded one. The domestic-graded mangoes were primarily used for insect mortality 72 study while the export graded-mangoes were used for a study of changes in quality after MVHT. 73 During fruiting stage, intact export-graded mango was enfolded with horticultural envelope while the 74 domestic graded one was enfolded with the regular white paper. This yielded a major difference in 75 color of skin where domestic-graded mango dominated the green color while the export-graded 76 mango dominated the yellow one (Table 1). Other physical-chemical properties of mango between

5 OLD

two orchards were not different. After harvesting, each lot of mango was stored at 13°C / 90%RH 77 for 48 h prior to the experiment. The experiment was accomplished within 72 h to avoid effect of 78 79 ripening. Each mango weighed between 300-330 g/fruit with maturity of 80% (commercially estimated). Firmness was characterized with two parameters; failure force at rupture point and 80 81 apparent elastic modulus (ASAE Standards, 2003). Details of firmness measurement were discussed 82 further. Eight hours prior to the test, the samples were equilibrated in room condition of 25°C / 83 60%RH. Thermo-physical properties of domestic- and export-graded mangoes measured at the room condition (25°C / 60%RH) are presented in Table 1. 84 85 86 2.2 Mass rearing of oriental fruit fly 87 Oriental fruit fly pupae were reared in the Department of Plant Protection, Maejo University, in 88 screen cages at 25-27°C / 70%RH. Flies that emerged were provided with sugar, hydrolyzed yeast 89 protein, and water. Eggs were collected from mature females (10-14 days old) during 1-h period. 90 Eggs used in mortality study were transferred into agar gel box (size of 30x55x20 mm) while those 91 used in infestation experiment were transferred in the mango fruit. 92 93 2.3 Preliminary study of mortality rate and quality acceptability 94 Mortality rate of oriental fruit fly eggs were studied using hot water immersion technique. Two hundred eggs were incubated on a thin layer of agar gel inside the plastic boxes (fifty eggs each). For 95 96 each treatment, four incubated boxes were immersed into water bath model MD16-G (Julabo 97 Labortechnik GmbH, Germany) with an accuracy of ±0.5°C under the controlled temperature of 46, 98 48, 51, and 55°C for 2, 5, 12 and 20 min. This resulted in a total of 3200 eggs. It is noted that an 99 increase in medium temperature within ±0.5°C of the desired temperature required approximately 10 100 min. Therefore, all mortality treatments were subjected to the additional come-up time of 10 min; 101 bringing on the actual immersion time of 12, 15, 22 and 30 min. It was also assumed that thermal

Elsevier 4 of 18

102 lethality effect on insect during come-up period was less significant than that during holding period 103 and was negligible. 104 For quality acceptability, four mangoes (domestic graded) per treatment were immersed in hot water 105 bath under the desired temperatures of 46, 48, 51, and 55°C for 2, 5, 12 and 20 min, equivalent to the 106 mortality study. The experiment was replicated twice, resulting in a total of 128 fruits. To reach 107 temperature within ±0.5°C of the designated temperature, the extra five minutes were required so that 108 the actual elapsed time were 7, 10, 12 and 20 min. After hot water immersion, treated mango was 109 hydro-cooled with 25°C sprayed water for 30 min. All treated mangoes were then stored at 13°C / 110 90%RH for 3 days before assessing the heat damage by percent of browning area. Details of heat 111 damage assessment are discussed in section 2.6. 112 To quantify the acceptable temperature and time for quarantine treatment, Thermal-Death-Time 113 (TDT) plot of insect mortality was established, overlaying with Thermal-Quality-Time (TQT) plot. 114 TDT plot exhibited ranges of insect mortality while TQT plot indicated percent of damage area on 115 mango peel. Acceptable quarantine process was an area in overlay plot where the insect was 100% 116 killed and no damage on mango. Treatments of acceptable temperature and time were selected for 117 further full-quarantine process development in the next experiment. 2.4 Development of MVHT Quarantine Process 119 120 For MVHT process development on mango, preheat during come-up period was accomplished by 121 microwave treatment adapted from Varith and Kiatsiriroat (2004) where Chokanan mango treated 122

118

123

124

125

126

127

with MW power of 400 W for 40 sec increased its internal temperature at the cheek area up to 46°C. Export-graded mango was treated with MW power of 50% using 2,450 MHz / 800 W microwave oven model R-254 (Sharp Co., Ltd., Japan). MW preheat treatment was divided into 2 steps. Firstly, the mango was placed in horizontal position on a polypropylene support at center of the oven and rotated while being heated with MW power of 400 W for 40 s (Figure 1a). Secondly, the mango was placed approximately 20 mm away from the exit of waveguide without rotation (Figure 1b). The

128

129

130

131

132

133 134

135

136

137

138

139

140

141

25°C water of 1800 cm³ was placed beside the mango to absorb microwave after penetrating through the mango and to reduce the microwave reflection back to the mango. This step provided a virtual 1-D radiation focusing at the mango cheek which was the thickest part and subjected to the slowest heating during conventional VHT heating. Finally, mango was transferred to a vapor (saturated steam) cabinet for VHT holding process where temperature inside was controlled at 55±1°C using temperature controller and solid state relay. During treatments, mangoes were sampled in 4-5 periods and cut in-half for a thermography imaging. Then, thermography images of the sectional mangoes were quickly taken for step-wised heat distribution during MW and VHT periods using thermal imaging camera model IR FlexCam™ (Infrared Solutions, Inc., MN, USA). After MW treatment, the slowest heating spot during MVHT process was identified and used as a reference for holding temperature during VHT. After preheating and holding period of MVHT, the mango was cooled down with showering water of 25°C for 30 min. All MVHT preliminary experiments were replicated six times with six mangoes each. Treated mangoes were stored at 13°C / 90%RH for 24 h for assessment of percent damage on peel and flesh. Figure 1 schematically demonstrated the steps of MVHT quarantine treatment on mango.

142 143

144

146

147

148

149

150

151

152

153

2.5 Confirmation experiments on MVHT and VHT quarantine processes: insect mortality and

145 fruit quality

Two selected time-temperature combination in acceptable range of TDT and TQT curve were selected for the infestation experiment. Each domestic-graded mango was infested with fifty eggs onto the flesh slice, about 23 mm deep from the peel, and sealed with clear tape to prevent leakage of water into infested area. Two MVHTs and one conventional VHT using 55°C saturated vapor were selected for quarantine treatments. Experiment was replicated twice which led to a total of 48 mangoes with 2,400 eggs. Treated mangoes were then stored at 25°C / 70% RH to observe an emergence of larvae. Morality rate of oriental fruit fly egg (reciprocal of percent of egg emergence) was reported.

154 For quality changes over a period of storage time, two selected MVHT and one VHT treatments were 155 performed on 48 export-graded mangoes with two replications of six fruits per treatment. After 156 treatment, mangoes were stored at 13°C / 80%RH for 15 days. Quality measurements, namely, color of peel and flesh, firmness, tritratable acid (TA), total soluble solid content (TSS) and ratio of 157 158 TA/TSS were determined on two mangoes from each replication for every third day. Quality 159 parameters were analyzed using Analysis of Variance (ANOVA) using StatView™ version 5.0 (SAS 160 Institute, Inc., NC) with 95% confident interval. Quality parameters were reported significantly 161 different when p<0.05.

162

163

174

2.6 Quality measurement methods

164 Color: Spectroscopy model MiniScan XE (Hunter Associates Laboratory, Inc., Reston, VA) was 165 used to measure color of mango. Measuring condition was set using 10/45° angle with D65 166 illuminant. Spectroscopy was standardized with white and black plates following the factory protocol. 167 CIE scale (L*-a*-b*) was reported as the color parameters. Measured parameter L* indicated 168 lightness with scale from 0 to 100; a* indicated red (-a*) to green (+a*); and b* indicated yellow (-b*) 169 to blue (+b*) scale. Firmness: Firmness of mango was determined by two means under penetration test; 1. maximum 170 171 force at rupture; and 2. apparent elastic modulus followed the guideline of ASAE S386.4 DEC00 172 (ASAE Standards, 2003). Stainless steel probe with a diameter of 6 mm and radius of curvature of 173 indenter about 66.9 mm was used to penetrate mango flesh to 10 mm in depth. Cross-head speed was

175 $E = \frac{0.338K_u^{\frac{3}{2}}F(1-\mu^2)}{D^{\frac{3}{2}}} \left(\frac{4}{d}\right)^{\frac{1}{2}}$ [1]

set at 1 mm/s. Apparent elastic modulus (E) was calculated using Equation 1 as:

where E= apparent modulus of elasticity (Pa); D=deformation (m); μ =Poisson's ratio (assumed to be 0.45); F=force (N); K_{μ} =dimensionless factor (=1.351 for a flat surface-indenter test); and d=diameter of curvature of the spherical indenter.

Elsevier 7 of 18

179 Tritratable acid (TA): TA was determined by indicator method followed the guideline of AOAC

180 942.15. (AOAC, 1996).

181 Total soluble solid content (TSS): TSS was determined by hand refractometer model N-1a (Atego

182 Co., Ltd, Japan).

183 Heat damage assessment: Heat damaged on treated mango was assessed from percent of browning

area of the peel or whitening area of the flesh. While being placed on a graphical paper, the mango

was captured by a digital camera and then transferred into Adobe® Acrobat Professional® version 6.0

for the area determination using area measuring tool (Figure 2). Percent of damage and non-damage

187 on each mango was assessed from:

$$\%$$
 damage = $\frac{Browning \ or \ whitening \ area \ of \ damage}{Total \ area}$ [2]

189

190

191

188

185 186

3. Results and Discussion

3.1 Preliminary study on mortality rate and quality acceptability

Table 2 shows that oriental fruit fly in egg stage was susceptible to heat tolerance at 46°C up to 12 min. Our results agreed with the data presented by Jang (1986) that gave a calculated lethality time in egg stage of 8.91 min and yielded thermal death rate of 5D (LT_{99,999}). However, the thermal death

195 rate data of egg above 48°C were absent. Since our result indicates that the temperature higher than

196 48°C with holding time at least 2 min yielded 100% mortality, these treatments were promising for

197 the holding condition for further MVHT quarantine treatment of mango.

198 Table 3 indicates that the mangoes undergoing treatment at 51°C with holding time up to 12 min

199 were not damage due to heat. Mangoes subjected to heat at 51°C for 20 min and 55°C for 5 min were

200 slightly susceptible to damage less than 5%. With temperature of 55°C for holding time longer than 5

201 min, heat damage on mango increased no more than 15%. The TDT and TQT overlay plot (Figure 3)

202 shows the shaded area of quarantine treatment. Therefore to assure non-damaged quarantined fruit,

203 the upper boundary of quality acceptance was approximately at 55°C for short period of time for 2

Elsevier