าเทคัดย่อ

สารไบโอรีดักที่ฟถูกออกแบบจากความแตกต่างระหว่างของคุณสมบัติด้านสรีระวิทยาและชีวเคมีของเซลล์มะเร็ง เนื้องอกและเซลล์ปกติ มีรายงานว่าในเซลล์ของเนื้องอกมีภาวะไร้ออกซิเจนและการแสดงออกเกินของเอนไซม์รีดักเตสซึ่ง ภาวะดังกล่าวเหมาะแก่การเกิดปฏิกิริยารีดักชั้น มีสารสกัดจากเชื้อราหลายชนิดที่มีฤทธิ์ต้านมะเร็งในหลอดทดลองแต่มี ความเป็นพิษต่อเซลล์ปกติ ซึ่งทำให้เกิดพิษระหว่างแพร่กระจายสู่อวัยวะเป้าหมายในร่างกาย จึงได้มีการออกแบบสารสกัด จากเชื้อราให้มีพิษต่อเซลล์ปกติลดลง โดยการดัดแปรสูตรโครงสร้างทางเคมีให้เป็นสารไบโอรีดักทีฟ ซึ่งตามสมมุติฐาน สารใบโอรีดักที่ฟจะถูกกระตุ้นเฉพาะในเซลล์มะเร็งด้วยปฏิกิริยารีดักชันและปลดปล่อยโครงสร้างที่มีพิษเฉพาะต่อ เซลล์มะเร็ง ในการศึกษานี้โครงสร้างของสารไบโอรีดักทีฟถูกออกแบบให้มีโครงสร้างทางเคมีเพื่อนำส่งที่เชื่อมต่อกับ โครงสร้างที่มีความเป็นพิษต่อเซลล์คือสารสกัดบริสุทธิ์จากเชื้อรา ได้แก่ preussomerin G, preussomerin I, (+)phaseolinone และ (+)-phomenone ส่วนที่ใช้นำส่งมีโครงสร้างเป็น quinone propionic acid ที่มีหมู่ methyl 3 หมู่ ที่ เรียกว่า trimethyl lock ที่เอื้อต่อการเกิดปฏิกิริยากระตุ้นแบบรีดักชัน quinone propionic acid สังเคราะห์จากการทำ ปฏิกิริยาระหว่าง trimethyl hydroquinone methanesulfonic acid และ 3,3-dimethyl acrylic acid ได้สารผลิตภัณฑ์คือ lactone แล้วนำ lactone มาทำปฏิกิริยาต่อกับ*N*-bromosuccinimide ได้ guinone propionic acid หลังจากนั้นสังเคราะห์ สารไบโอรีดักทีฟ ด้วยการทำปฏิกิริยาเอสเทอริฟิเคชันระหว่าง quinone propionic acid กับสารสกัดบริสุทธิ์จากเชื้อรา ทำ การพิสูจน์เอกลักษณ์ของสารที่สังเคราะห์ได้ด้วยวิธีทางสเปกโตเมทรี และทดสอบฤทธิ์ต้านมะเร็งด้วยเทคนิค sulforhodamine และ MTT โดยเปรียบเทียบกับสารสกัดจากเชื้อรา จากการศึกษาพบว่าสารไบโอรีดักที่ฟจากสารสกัด บริสุทธิ์จากเชื้อราทั้ง 4 ชนิดมีความเป็นพิษลดลงในเซลล์ปกติ (Vero cells) และพบความเป็นพิษลดลงในเซลล์มะเร็งที่ ทดสอบ (KB, BC-1, NCI-H187 and MCF-7 cells) ทั้งนี้การดัดแปรสูตรโครงสร้างโดยต่อโครงสร้าง quinone propionic กับหมู่ไฮดรอกซีของสารสกัดบริสุทธิ์จากเชื้อราด้วยพันธะเอสเทอร์อาจเป็นการบดบังหมู่ฟังก์ชันที่สำคัญต่อการเกิดพิษต่อ เซลล์ อย่างไรก็ตามควรศึกษาเพื่อยืนยันต่อไป และอาจศึกษาเพิ่มเติมถึงความสามารถในการเกิดปฏิกิริยารีดักชันสารไบโอ รีดักทีฟที่สังเคราะห์ขึ้นนี้

Abstract

The bioreductive anticancer agent was designed based on the differences of physiological properties and biochemistry between tumor cells and normal cells. It has been reported that tumor cells are hypoxia, overexpressed of reductases and hence optimal for a reduction reaction. Many fungal cytotoxic compounds exhibit good anticancer activity in vitro, but show high toxicity in the normal cells. To lessen their toxicity during biodistribution, the fungal cytotoxic compounds' structures were modified to be bioreductive agents as they are hypothesized to be activated via reduction reaction in body. The bioreductive compounds have been designed consisting of chemical carrier and fungal cytotoxic structures; preussomerin G, preussomerin I, (+)phaseolinone, and (+)-phomenone. The chemical carrier is quinone propionic acid containing trimethyl lock which was reported to facilitate reduction activation. Two reactions have been performed to obtain the quinone propionic acid. Trimethyl hydroquinone was firstly reacted with methanesulfonic acid and 3,3dimethyl acrylic acid yielding corresponding lactone. Then, the lactone was further reacted with Nbromosuccinimide to form quinone propionic acid carrier. The bioreductive compounds were synthesized from the esterification of quinone propionic acid and fungal cytotoxic compounds. The chemical structures were confirmed by using spectrometry. The anticancer activity of these bioreductive agents were also determined based on sulforhodamine and MTT assay and compared to their parent compounds in normal cells and cancer cell lines. It was found that the synthesized bioreductive agents were less active in the normal cells (Vero cells) compared to their parent compounds. Modification of fungal extract compounds by forming ester linkage at the hydroxyl group also led to less cytotoxicity in cancer cells studied (KB, BC-1, NCI-H187 and MCF-7 cells) in stead of showing cytotoxcity as expected from the bioreductive activation. The hydroxyl group of fungal extract compounds was speculated to be important functional group for their cytotoxicity. Further study of this assumption needs to be confirmed. More experiment should be conducted to test whether bioreductive activation of the synthesized bioreductive agents really occurs in the cancer cells.

Keywords: Bioreductive agent, Anticancer agents, Cytotoxic, Preussomerin G, Preussomerin I, (+)-Phaseolinone, (+)-Phomenone