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Dynamics of Spiral Waves under Feedback Control in the Light-Sensitive Belousov-

Zhabotinsky Reaction

On-Uma Kheowan, Supichai Kantrasiri, Chananate Uthaisar, Prapin Wilairat, Stefan C. Muller
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Abstract

For non-local feedback control, spiral waves rotating rigidly in a thin layer of the light-sensitive
Belousov—Zhabotinsky (BZ) reaction are subjected to a time dependent uniform illumination. A non-local
feedback algorithm computes the illumination intensity to be proportional to the average wave activity
within a square-shaped sensory domain. The investigations show a broad spectrum of dynamical
responses which results in square- and cross-shaped trajectories of the spiral tip, including reflections at
the virtual walls. The geometry of the sensory domain is crucial in determining size and shape of the tip
trajectories. The experimental results are complemented by numerical simulations, where the feedback
signal is derived from sensory domains with different geometries. A theoretical approach, by constructing a

flow map based on an analysis of the feedback signal, is proposed to explain the observed phenomena.

In local feedback, the rigidly rotating spiral waves are investigated under an application of a
sequence of short light pulses. Each light pulse is applied at a moment that corresponds to the passage of
the wave front through a particular measuring point. For a small distance between the measuring point
and the initial location of the spiral core, a resonance attractor with hypocycloidal shape is observed,
whereas for a larger distance an epicycloidal resonance attractor occurs. The size of the attractor can be
changed by introducing a time delay. Experimental and numerical results are compared with an earlier

developed theory on the resonance attractor.

Keywords: Spiral wave; Belousov—Zhabotinsky (BZ) reaction; feedback control
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I. Spiral wave dynamics controlled by a square-shaped sensory
domain

Introduction

Controlling the dynamics of spiral waves is important for many excitable media including chemical
systems like the CO oxidation on platinum surfaces [1], the Belousov-Zhabotinsky (BZ) reaction [2, 3] or
biological systems like neuronal [4] or cardiac tissue [3, 6]. Effective control methods include external
(periodic) forcing [7, 8, 9] or more complex feedback algorithms [10] that are based on collecting data on
the activity level of the system and transforming this information to a spatially uniform modulation of the
excitability of the medium. The activity level can be measured at one point (local feedback) [9, 11], in a
given domain (nonlocal feedback) [12, 13] and at all points (global feedback) [14]. Of hoth theoretical and
practical interest is the effect of shape and size of the applied “sensory domain™ on the dynamics of rotating
spiral waves under feedback control. Here we apply square-shaped domains and find a broad spectrum of
dynamical responses, including square-shaped and cross-shaped trajectories. Numerical simulations using
the light-sensitive Oregonator model [15, 16] reproduce this behaviour. We suggest that the feedback
method introduced in this work offers an efficient tool for controlling also the dynamics of other excitable
media.

Experimental method and results

We study spiral wave dynamics in thin layers of the BZ reaction with the light-sensitive Rul:bpy)g+
catalyst [17, 18]. This catalyst promotes the autocatalytic production of HBrOs,, the activator species of
the BZ system. The applied illumination enhances the production of the bromide ion, an inhibitor species,
and thus decreases the system’s excitability which, in turn, results in slowing down the wave activity in
the medium. This provides an experimentally accessible method to control spiral wave dynamics [18], in
that the light intensity influences parameters such as the wavelength and the diameter of the spiral core.

In our experiments, the Ru(bpy)i+ catalyst was immobilized in a silica gel matrix [19] (thickness
0.3 mm, diameter 5 cm) at a concentration of 4.2 mM. The reactants and their concentrations (disregarding
bromination of malonic acid) were: NaBrOy (0.20 M), malonic acid {0.17 M), Ho50, (0.39 M) and NaBr
(0.0% M) [17, 15]. The experiments were carried out at an ambient temperature of 25 & 1°C. We created a
spiral wave by using a spot (diameter, 1 em) of intense light from a cold light source to break a propagating
wave front (this creates two wave ends) and suppressing one of the open ends with the light spot to leave
a single spiral in the center of the dish [11]. The reaction layer was uniformly illuminated from below with
a video projector controlled by a computer via a frame grabber. The oxidation waves were ohserved in
transmitted light by a CCD camera and stored on a computer. The main features of spiral rotation, the
trajectory of spiral tip, is determined by a special computer procedure given in ref. 9.

In our non-local feedback algorithm, the illumination intensity applied to the reaction layer is
given by [12]

() = T + ksal B(t) — B, 1)

where Ij is a constant background intensity. B(t) is the average grey level of the pixels in the square-shaped
sensory domain:

B(t) = ~ ) Gi(t), (2)

where 0 < (7; < 255 is the grey level of a given pixel, and n is the total number of pixels in the domain.
Note that a larger grey level corresponds to higher concentration of the oxidized form of the catalyst
(bright fronts). The intensity of the feedback illumination [(t) is controlled by the gain kg, and the value
of B(t). The constant By is the B(t) averaged over one period of a spiral placed in the center of the square
domain and illuminated with background intensity Iq.

The effects of such nonlocal feedback on a rigidly rotating spiral wave are shown in Fig. 1. For a
side length d of the domain significantly smaller than the spiral wavelength A (d = 0.5)), the spiral leaves
the center of the sensory domain, where its circular core was initially placed [arrow in Fig. 1(a)], by drifting
outwards until it makes a turn to follow a circular path with a radins of about 0.76A. This motion resembles
that obszerved in earlier reported experiments applying a small size, circular-shaped sensory domain [12].

For a domain size equal to the spiral wavelength (d = A), the spiral core first drifts away from the
domain center [Fig. 1(b)], then it approaches a stable, square-shaped trajectory with a side length of about



Figure 1: Experimental trajectories of a spiral wave tip subjected to the feedback control Egs. (1-2) for
different sizes of the sensory domain: (a) d = 0.5\ (A = =piral wavelength) with By = 24, kg, = 0.2, (b)
d= 1.0\ with Bo =245, kg, = 0.8, and (c) d = 1.25A with By = 19, kg, = 0.45. [o = 0.70 mW cm? for all
experiments. The domains and the initial spiral core locations are indicated by squares and thick arrows,
respectively. The spiral images are shown for the start of the trajectory in (a) and (b) and the end of the
trajectory in (c). Scale bar: 1 mm.

1.33)\, which is rotated by about 45 degrees with respect to the domain. Note that the drift velocity of the
spiral wave core changes periodically: it is slower at the corners and faster at the sides of the trajectory.

Figure 1(c) shows the trajectory of the spiral tip in an experiment with a still larger feedback
domain, d = 1.25A. In this case, the spiral tip was initially placed close to the domain boundary. The
feedback control induces first a drift towards the center and subsequently towards the middle region of the
adjacent side of the domain. This process oceurs several times and consequently the spiral tip is caught
inside the square, bouncing from and to the “virtual walls”. Figs. 1{a-c) indicate that increasing the size
d of the feedback domain has a pronounced effect on the shape and size of the spiral tip trajectory. In
certain ranges of increasing d, the size of the square trajectory is reduced. Experiments also show that
the trajectories act like attractors: the spiral tip always approaches them independently from its initial
position.

Numerical results and discussion

We complemented the experiments by numerical simulations using the Oregonator model [15, 16],
extended by a term ¢ = @(¢) accounting for the effect of bromide ion produced due to the llumination [20]:

du 1 a u—gq 9 .
yril ;[u—u —(ft—l—r,_-e)“_'_q]—i—"? 1, (3)
'J\

u_; = u-u (4)

Here, the variables u and v describe the evolution of the concentration of the antocatalytic species HBrO,
and the oxidized form of the catalyst, respectively. Due to the immohilization of the catalyst, variable
v does not diffuse in this model. The parameters = = 0.05, ¢ = 0.002 and f = 3.5 are kept constant.
Nonlocal feedback is introduced into the model by varying the value of ¢(#) according to [14]

&(1) do + kg B(t) — Bo), (5)

B = %jwss (6)

where ¢q is constant (=0.01). The integral B (t) takes into account the effect of the average wave activity
in the square-shaped sensory domain S. The constant B refers to this integral averaged over one period
of a spiral placed in the domain center with constant production term ¢(t) = ¢q.

Figure 2(a) shows the result of calculations based on Egs. (3-6) with d = A (41 s.u.) and kj, = 0.1.
The spiral core was initially located at the center of the sensory domain. Switching on the feedback control
induces the drift of the spiral core first outwards from the center and then along a square-shaped trajectory,
in good agreement with the experimental results [Fig. 1(b)]. In the parts of the trajectory labeled 1 and 4
the center of the core drifts approximately along a straight line. In part 2 the trajectory starts to bend and
to slow down and then turns by 90° in part 3. Corresponding changes in the illumination intensity @(#)
are shown in Fig 2(b). The feedback algorithm is turned on at ¢ = 20 (after about 3 rotations) resulting in
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Figure 2: Spiral wave simulated by Eqs. (3-6) under feedback control derived from a square domain with
d = A. The computations were performed by the explicit Euler method, using a five-point approximation
of the Laplacian on a 384 = 384 array with a grid spacing /\x = 0.5 and time step /At = 0.001. (a)
Trajectory of spiral wave tip under a feedback control with kg, = 0.10. (b) Value of ¢(t) corresponding to
the trajectory in (a). The feedback was switched on at time = 20. o is the rotation phase. (c) Analysis of
integral [Eq. (6)] as a function of the rotation angle # of the spiral wave (without feedback) for different
locations of the spiral wave core. Each curve is labeled by letters that correspond to those in the square
domain (insert) and indicate the location of the spiral core. By is the average value of B (#) for one rotation
of a spiral placed at the domain center. Rotation phases given by arrows are: ap = 1.48, ag = 1.97. (d)
Flow map of spiral core trajectory. Arrows indicate the velocity and the direction of the drift. Distance
between data points is 1/8A\. The direction of each vector is determined from the difference between the
phase of B at that point (arrow tail) and a reference phase (in this case w/4). Its modulus is caleulated
as the integral of |B|:9:| — Bﬂ over one period of the rotation angle 8.

large amplitude oscillations of the ¢ values. To show a slight shift in the phase of this oscillation, black dots
have been plotted on the abscissa at an interval equal to the oscillation period measured at the part of the
trajectory labeled 1. Using these ‘stroboscopic’ dots, the phase shift, for example, hetween points labelad
1 and 4 can be determined as 0.547, which agrees well with the angle difference of the drift directions
(90°) at points 1 and 4 of the square-shaped trajectory in Fig 2(a).

The ozcillations in ¢(t) are due to corresponding changes of the value of the integral in Eq. (6),
which we analyze by considering unperturbed spirals (without feedback) placed inside and outside the
quadratic sensory domain. The location of the spiral tip is indicated by black circles labeled with letters
P-5, as indicated in the quadratic insert of Fig. 2{c). These black circles depict the locations of the spiral
core along the trajectory in Fig. 2(a). For example, points R and S in the insert correspond to the parts
of the trajectory in Fig. 2(a), labeled 1 and 4, respectively.

The B-values are calculated and plotted in Fig. 2(c) for one rotation of the spiral (0 < rotation
angle 8 < 27}, without feedback. Here, B can be written as a function of the rotation angle #(t), which is
proportional to time t, 1. e. B = B(#). The horizontal line in this graph corresponds to Bg, as specified
in the caption. Curves B(#) oscillate with different shape and amplitude for different locations P-S.
Considering the extrema of these curves Q(Q}, their high values at location P result in a large perturhation
and therefore a fast drift of the spiral wave core, as observed in Fig. 2(a). Around location (), corresponding
to one of the corners of the square-shaped trajectory in Fig. 2(a), the values of these extrema drop, therefore
the drift around the corners is slow. In order to explain the direction of the drift, the phase of curve B(#)
must be characterized. Note that all shown curves cross the reference line, B(#) = By, with a positive



Figure 3: Simulation results of the spiral wave dynamics under a feedback control derived from different
sizes of the domain (a) d = 0.5\, ks = 0.10, (b) d = 1.25A, by = 0.20, and (c) d = 2\, ks = 0.50.

Trajectories (a) and (b) correspond to experiments shown in Figs. 1{a) and (c), respectively.
L3 L) L L o

slope only once during a rotation period. In order to further characterize these curves, the value of the
rotation angle at the intersections is defined as the rotation phase o. One can see that the shapes of the
B(#) curves at locations R and S (with drift directions that are perpendicular to each other) are similar,
but their phases differ by about 0.57 [compare np and ng in Fig. 2(c)]. This corresponds well to the phase
shift of 0.547 in the feedback signal in parts 1 and 4 of Fig. 2(b).

For a more detailed analysis, the local values of B(#) = B, ,(f) were determined on a finer grid
of core locations (x,y). This provides the possibility to construct a flow map shown in Fig 2(d). As
deseribed in the caption, this How map is based on phases representing the drift directions. The integral
of |B (#) — Bu| over one period is taken as a measure for the magnitude of the perturbation and represents
the drift velocity. Most of the flow vectors are attracted towards a square trajectory, on which they are
caught in a counterclockwise motion, in agreement with the observed attractor in Fig. 2(a).

The dynamics of such an attractor changes with the size of the integration domain. For a rather
small domain (d = 0.5A) one obtains a circular attractor [Fig. 3(a)], similar to that of Fig. 1(a). Here, the
four-fold geometry of the sensory domain is not reflected in the shape of the trajectory. For domains larger
than the spiral wavelength, the size of the attractor decreases, as shown in Fig. 3(b) where d = 1.25A. The
90 degree turns of the drift direction close to the virtual walls agree with the experimental observation
[Fig. 1(b)]. An interesting cross-shaped trajectory is created by further increasing the domain [Fig. 3(c)].

Our experimental and numerical results demonstrate that the considered nonlocal feedback algo-
rithm is highly efficient to control spiral wave dynamics. The method can be easily transferred to control
the dynamics of spatially extended systems of other types, eg. in biology [4, 5]. The size and shape
of a sensor by which we collect information about the activity level of a dynamical system turns out to
be erucial and decisive on determining the size and shape of the spatiotemporal attractor governing the
behaviour of the system under feedback control.
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II. Spiral wave dynamics under feedback control derived from a
variety of sensory domains

Introduction

The implementation of control strategies to manipulate complex osecillations and spatiotemporal
patterns has become a central issue of nonlinear dynamics. Feedback methods provide one of the paossible
control techniques that yield new modes of spatiotemporal behaviour [1, 2]. These techniques may he
designed in different ways. A feedback is global or nonlocal, in contrast to local techniques, if the control
signal represents a sum of contributions from all or many parts of the system. Such feedbacks have heen
used, for instance, to control spatiotemporal activity in the Pt-catalyzed oxidation of CO [3], suggesting
a means for enhancing catalytic efficiency [4]; in gas discharges to suppress plasma instabilities [5]; in
electrochemieal systems to influence spatial coupling among different active sites [6]; and in semiconductors
in connection with charge transport phenomena [7]. Propagating waves [8] and, in particular, spiral
waves [9, 10, 11, 12] in the Belousov-Zhabotinsky (BZ) reaction [13, 14] have also been controlled by using
these feedback methods, which points to the possibility of manipulating dynamical patterns in excitable
media including excitable biological tissues [15, 16, 17]. A recent advance in this direction is the control
of seizure-like events in hippocampal brain slices with adaptive electric fields [18]. Thus, the ability to
regulate spatiotemporal behaviour provides hoth a means of generating desired dynamical patterns and
the tools for probing underlying mechanisms.

In this work we perform a numerical study of rigidly rotating spiral waves subjected to a nonlocal
feedback derived from a confined “sensory domain”. A time-dependent spatially uniform modulation of
the system’s excitability is taken to be proportional to the integral light absorption observed within this
domain. Of both theoretical and practical interest are the geometrical features of the applied sensory
domain on the dynamics of the rotating spirals [0, 10, 11, 12, 13]. We apply the feedback with different
shapes and sizes of the domain and find a broad spectrum of dynamical responses, including various
shapes of the spiral tip trajectories and the switching between their stability properties. A flow map and
a bifurcation diagram are constructed in order to analyze the observed phenomena.

Simulation method

Our computations are performed with the light-sensitive two-variable Oregonator model [19, 20,
21], which has been successfully used to describe the dynamics of the photosensitive BZ system by including
a flux term ¢ = (t) for the light-induced bromide production [21]:

el 72 lu—u2— v ﬁ—(u—qj

g = Du‘? H+t_[ (f+h:|(u+q) ) (1)
v :
a = uw—1n. (EII

Here, the variables u and © describe the evolution of the concentration of the autocatalytic species HBrO,
and the oxidized form of the catalyst, respectively. [}, = 1 is the scaled diffusion coefficient of variable wu.
The catalyst is assumed to be immobilized in a gel matrix, thus variable v does not diffuse in this model
(D), = 0). The parameters have the values ¢ = 0.05, ¢ = 0.002, and f = 3.5, which are kept constant.
The computations were performed by an explicit Euler method, using the five-point approximation of the
Laplacian on a 384 x 384 array with a grid spacing /A h = 0.5 s.u. and time step A = 0.001 tu.

The feedback signal is determined by the integral of wave activity taken over the sensory domains,
expressed as [22)

#(t) = b0 + kysl B(t) — Bal (3)

B= f udS, (4)
5

where ¢ is constant (=0.01). Thus, the intensity of the feedback signal is controlled by the coefficient kg

with

and depends linearly on the integral value B of the variable # over the domain S. The constant By refers
to this integral averaged over one period of a spiral placed in the domain center with constant Hux term
o(t) = ¢o.

Results



Figure 1: Trajectories of the spiral wave tip derived from simulations for different shapes of the sensory
domain starting from an initial location of the spiral core at the domain center. (a) Triangle, side length
1.50A, kg, = 0.05; (b) square, side length 1.00A, ky, = 0.11; (c) pentagon, side length 0.75A, kp = 0.15;
(d) circle, diameter 1.00A, kg, = 0.08; (e-g) rhombus, side length 1.00A and k4, = 0.10; acute angles: 80°,
70° and 607, resp. The feedback mechanism is computed from Eqgs. (3)-(4). Arrows indicate drift direction
of the spiral core.

A single spiral is induced from the equation system (1)-(2) by choosing a special initial condi-
tion [23]. The variables v and v are initially set to zero uniformly in the medium. To create a spiral then
we introduce a nonuniform distribution of the variables. A super-threshold value u = 1 is given along
a line near the boundary of the excitable medium to induce a propagating wave. After this wave has
reached the center of the excitable medium, one half of the planar wave is erased by resetting u = v = 0.
Subsequently, the open end of the planar wave curls into a spiral wave with its core located near the center
of the excitable medium. Without external forcing and with the above chosen parameter values, the spiral
wave rotates rigidly around a circular core with a rotation period Tj, = 8.2 t.u. and a wavelength A = 4.1
s.1. There is ample evidence [9, 10, 11, 22] that for this kind of nonlocal feedback a spiral wave core placed
initially at the center of the sensory domain is destabilized for the case of a positive coupling constant ks
and starts to drift away from the center, as shown in all of the examples of Fig. 1. A previous systematic
study of circular sensory domains has shown that it frequently moves asymptotically on a circular attractor
[9].

In our simulations we find, how the shape of this type of spiral tip trajectories is transformed
when the shape of the sensory domain is varied. For a triangular domain the feedback induces the spiral
core to drift away from the domain center and to make a turn on each side with an overall 120° change of
the drift direction. Finally it describes a trajectory with an approximately threefold symmetry [Fig. 1(a)].
An increase of the number of corners of the sensory domain results in an increase of the number of turning
points of the drift direction, as shown in Figs. 1(b)-1(c). For a square-shaped domain [Fig. 1(b)], the
trajectory describes a square-shaped pathway, which is rotated by about 45 degrees with respect to the
domain. A further increase in the number of domain corners to form a pentagon [Fig. 1(c)] produces a
trajectory that follows an approximately pentagonal pathway inside the domain. It appears to be almost
circular, because the five rounded corners of the domain are only faintly reflected. For perfect symmetry,
as for the circular domain in Fig. 1(d), the trajectory describes a cireular pathway around the domain.

Exerting some shear on the square-shaped domain canses a transformation of the trajectory from
a square to a thombic pathway, as shown in Figs. 1(e) and 1(f). A further decrease of the acute angle of
the rhombus induces the trajectory to form a large oblong excursion around the domain [Fig. 1(g)]. Now
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Figure 2: Trajectories of spiral wave tip under variation of the size of the square domain. {a-h) Side length
d. = 0.70A, 1.00A, 1.25A, 1.50A, 2.25A, 2.40A, 2.50A, 3.00A; kg = 0.05, 0.15, 0.12, 0.20, 0.40, 0.50, 0.50,
0.75. Arrows indicate the drift direction of the spiral core. The dashed squares with d. = A indicate
the approximate location of the separatriz of basins of attraction, whereas the dotted squares depict a
reference domain (d, = A). The gray curve in (d) shows the transient trajectory, before a circular, stable
rotation is achieved at the center (black circle).

the drift velocity of the spiral wave core changes drastically along the oblong pathway. It becomes very
slow when the spiral wave core is far away from the center of the rhombic domain. The results demonstrate
that the shape of the sensory domain is reflected in the dynamics of the spiral tip trajectory.

Besides the shape of the domain it is also its size that plays a crucial role for the spiral dynamics,
as shown in Fig. 2. We use the square-shaped domain with side length d. to study this effect. For a rather
small size (d, = 0.7A) one obtains a circular attractor [Fig. 2(a)], not reflecting the fourfold symmetry of
the sensory domain. The circular trajectory transforms to a square for d. = 1.0A [Fig. 2(b)], similar to
the one in Fig. 1(b). For domains larger than the spiral wavelength the size of the attractor decreases, as
shown in Fig. 2(c) where d = 1.25\.

Note that the drift velocity in Fig. 2(b) is larger than that in Fig. 1(b). This increase is connected
with the choice of a larger feedback coupling strength. In fact, we found that for fixed size and shape of
the sensory domain larger kyy values lead to a faster drift, as long as the shape of the tip trajectory is
rather simple as, for instance, for the case of square domains with size d, < 1.5\, For larger d, the tip
dynamiecs becomes complex (see below) and the influence of ks, cannot be easily predicted.

Two trajectories are observed for d, = 1.50A [Fig. 2(d)]. A small, flower-like trajectory occurs at
the center of the domain, when the unperturbed spiral core is initially placed close to the domain center.
Note that the gray eurve in Fig. 2(d) represents the transient trajectory before a circular, stable rotation
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Figure 3: (a,b) Vector field plots of the trajectories of the spiral core center under feedback control derived
from a square domain with d. = A for pesitive feedback (a), and negative feedback (b). (¢) Trajectory of
the spiral wave tip under negative feedback control with feedback parameters d, = 1A and kg, = —0.15.
The arrow indicates the drift direction of the spiral core. Note that the coeflicient gy i= not involved in
the construction of the vectors in the How map.

(black circle) is achieved at the center. For a larger initial distance to the domain center, the spiral core
is attracted towards a trajectory describing a large square with rounded corners. Its orientation coincides
with that of the domain, in contrast to the trajectories in Figs. 2(b) and 2(c), which are rotated by about
45 degrees with respect to the domain. The dashed square with side length A in Fig. 2(d) indicates the
approximate location of the separatrix between two basins of attraction that exist for the motion of the
spiral core center. However, the attractor, which is eventually reached. is determined not only by the
initial location of the spiral core but also by the initial location of the tip with respect to the core center
(the initial phase). Thus the location of the separatrix depends on this initial phase, which slightly blurs
this separating line. We checked numerically that the blurring effect of the initial phase is below 0.024),

An interesting cross-shaped trajectory is created when increasing the domain size to d, = 2.25A
[Fig. 2(e})]. This trajectory can be considered as a combination of four small pieces of square-shaped
trajectories, which are linked together. With a further increase of d, to 2.40, there appear four trajectories,
which are separated from each other [Fig. 2(f)]. Note that the shape of the trajectories changes from a
square- to a drop-like form. Which of these four possible stable orbits is reached depends now on the
initial location of the unperturbed spiral core center. The approximate separatrices between the basins of
attraction of each orbit are shown by dashed boxes [Fig. 2(f)].

The dynamics of the four attractors in Fig. 2(f) can be stabilized by enlarging the domain to
de = 2.50A [Fig. 2(g)], the unperturbed spiral wave core iz placed at four different locations inside the
domain. The feedback induces the spiral wave core to drift towards four stable points (indicated by
arrows), located approximately at the corners of the reference domain d, = A [dotted square in Fig. 2(g)].
At these points, the spiral rotates rigidly without drift. When the domain size is further increased to
d, = 3.00, the locations of these four points become again unstable [Fig. 2(h)], i.e., the spiral wave drifts
again along a drop-like pathway. Note that the drift direction of these drop-like attractors is clockwise and
the petals of the loopy trajectories are directed outwards, in contrast to those in Fig. 2(f). In addition, a
new square-shaped trajectory with inward directed petals appears around the center of the domain.



. RAsAeme®SB bk Ao ey aasd
(A) STMIryJagdsddtivant (D) bdampwhkdsaatiihe ooaa  (C) i
M AT 1ottt P T e '
TREEEL Y A rR AN foartne £ F L P e b Ly SETet Ly
M R RS U R R R L T il I LT rinl 21 s PR SRt T Al PN Ll
e I R T T R A Y-S £t Fyyylpes el 1% oy T Ty T
ool LR N 42 SR TR SRt cisg $1.41 It T e Y gl
o
1: :Jr""' ¥ Jre h\?‘*"‘- :'F Py "i AT o Ko o ""*ﬁ'\.‘:\ ;*:?KKK‘_A_‘:‘: LI
R IDIDE B 5 g il B e T Lt R Atk ey R RS R T AR
g™ z i - i'£-a-""\-l- " AR R Y sty A :5 ".'C\.,.i:::‘; R ';NR
S A B i R s i PVl OO o T e
SuEa ...;hn rjre e R A T Lo | I ﬁ La5aeanaaral i
L] I L] Lo Mn b A L
R » » e+ Ly war i b A * Ly,
I O3 rgmee ) TN £elt gLy Liypr g i N S E RN S SR R R ST
I L P I B W ol ¥ a#ﬁ? 3 w7 at‘_,.]"'!ﬁ._.,rr‘_l"'!'tk‘,r,q'?'tﬂ
e I B LS ENY T yaxt .a-.v.-ﬂ‘*'tkq eSS ur#ﬁmwkkrrf.ﬂk""e—frgﬂ"“‘
a*“ii‘#}h&{-é#i@‘t"*“*t* PULE RS 3] aAatting fxA PP TR i L Vinipiig L
A W Y N UNMNENG g N TN, e G O A e 2P K " '&--p—»-,qﬁ— il ;Sa--vuﬂl
B A L S e R e A Ay, o]+ A g a +*+JJJ+ .__p—pa#-r'r; e YT ]
Eat gy gy E b b %4 H P 1 YUy
RS LSS E ol S T e ROt S E s PR TR gt
® Feuwgy EFE VNG UL B W BENE g o B g ¥ Fraaw Fyuy T
e o & 0 & 0

Figure 4: Flow maps of the spiral core center under variation of the domain sizes for positive feedback,
for (a) d. = 1.50A, (b) d. = 2.50A, and (c) d. = 3.00\. Vectors show the drift direction of the spiral core
center, which its size indicates the drift velocity. The dashed line indicates the location of the separatrix,
that restricts the hasin of each attractor. Closed, open, and checked circles indicate the fixed points: stable
node, unstable node and saddle point, respectively.

The dynamics of the trajectories in Fig. 2 can be divided into two types: stable and unstahle
spiral rotation. Stable rotation means that the spiral rotates rigidly without drift, as illustrated by the
trajectories in Fig. 2(d) (small attractor at the center) and 2(g). All other trajectories in Fig. 2, for which
the motion of spiral waves 1s accompanied by a drift of the spiral wave core, are considered as an unstable
rotation. These results demonstrate that enlarging the domain size leads to a series of switches from
unstable to stable spiral rotation and vice versa.

Discussion

Our discussion is hased on the analysis of the integral B [Eq. (4)] as a function of the rotation
angle of spirals placed at different locations inside or outside the square-shaped contrel domain. It has
been shown that the phase of the signal B, which determines the phase of the modulation [Eq. (3)],
predominantly affects the drift direction and consequently the shape of the trajectory[12]. The average
area under this curve is an appropriate measure for the drift velocity in the range of the sensory domains
considered here[12]. The phase relation and the average area form the basis of the flow maps constructed
inside and outside the sensory domains as shown, for instance, in Fig. 3 for d, = A. The flow vectors
observed for positive feedback [Fig. 3(a)], which corresponds to the simulation results observed for ks, = 0
in Figs. 1(b) and 2(b), arve attracted towards two square-shaped trajectories (side length about 1A\ and 3.A)
on which they are caught in a counterclockwise motion. The flow map unravels the existence of a discrete
set of stable square-shaped orbits, which appear to be attractors for the spiral core drift. The innermost
trajectory corresponds to the attractor presented in Figs. 1(b) or 2(b). For the flow map observed for
negative feedback [Fig. 3(b)], which is obtained by considering the signal B mirrored with respect to the
reference line B = By corresponding to negative sign of by, in Eq. (3), most of the flow vectors inside the
domain spiral slowly into the domain center to form a stabilized rotation. This stabilization is confirmed
by the simulation result for the tip motion in Fig. 3(c). In a certain region outside the domain the vectors
flow towards a square-shaped trajectory with a side length of about 2\. These flow maps illustrate, how
the dynamics of the spiral wave can be drastically changed by switching the sign of the feedback gain.

Additional flow maps of the spiral core center under variation of the domain size are shown in
Fig. 4. The flow map for the domain with d, = 1.50\ is depicted in Fig. 4(a). Here, most of the vectors
are attracted towards two types of stable states: a fixed point at the center and a square-shaped orbit in
agreement with the trajectories in Fig. 2(d). The basin of attraction of the two states are separated by
the separatrix indicated by the dashed square with side length A. Closed, open, and checked circles in this
figure indicate three types of fixed points: 1) the stable node (closed cirele), which attracts the vector field
from all directions, ii) the unstable node (open circle), which repels the vector field in all directions, and
1i1) the saddle point, which attracts the vector in one direction but repels it in the direction perpendicular
to it. For the flow map in Fig. 4(a) there is one stable node located at the center of the domain. It
corresponds to the stabilization of rigid rotation and thus to the small attractor in Fig. 2(d). In addition
to the stable node at the center of Fig. 4(a), there appear four unstahle nodes at the corners and four
saddle points on the edges of the reference domain (dashed square).

The flow map for a larger domain (d, = 2.50A) is shown in Fig. 4(b). It corresponds to the
trajectories in Fig. 2(g). The locations of the four stable nodes in this map coincide with those of the
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Figure 5: Bifurcation of spiral wave rotation under confined-domain feedback control. Number of fixed
points inside the sensory domain is illustrated as a function of the normalized size of the domain, d, /A.
Location of the fixed point is shown on the y-axis. Solid, dashed and dotted bars indicate the fixed points:
stable node, saddle point and unstable node, respectively. Inserted numbers show the total number of
fixed points for each range of d.. Gray bands indicate the range where no stable rotating spirals exist.

unstable ones for d. = 1.5\ [Fig. 4(a)]. Since the distribution of neighboring nodes for each of them is
equal to that for the case d. = 1.5A, we find a four-fold symmetric repetition of the pattern of Fig. 4(a).
The atahility of the four fixed points is lost when enlarging the domain size by about 0.5A, as shown in
Fig. 4(c) for d, = 3.0\, Here, all the fixed points that are stable in Fig. 4(h) become unstable.

The number of fixed points inside the square domain is 9, 25, and 49 for the side lengths d,=1.5A,
2.5\, and 3.0 in Figs. 4({a)-4(c), respectively. Note that for domains smaller than 1.5}, there exists only
one unstable fixed point, which is located at the center of the domain, as shown in Figs. 2(a)-2(c) and
Fig. 3(a). However, the domain should not be too small, i.e., smaller than the spiral core. Because if such
a small domain is located inside the core, there will be no modulation of the signal and consequently no
feedback.

The total numher of fixed points, F),, can be described as a function of the the size of the domain
d. according to F,, = (2rn+1)2, where n = [d./A— (d./A mod 1)]. For example, if d.=1.5A, then n = 1 and
therefore Fj, =9, as shown in Fig. 4(a). Furthermore, the number of each type of fixed point is expressed
as 1) number of stable nodes, F., = n?, i) number of saddle points, F.4, = 2n(n + 1), and iii) number
of unstable nodes, Fy,, = (n + 1]2. One can see clearly that F,, = Fi.,, + Fegn + Fun. Note that these
relationships can be used for d, = 1.5A, For d, < 1.5A, Fl, = Fun, = 1 as mentioned above,

A hifurcation diagram characterizing the stability of the spiral core drift under a square-domain
feedback control is shown in Fig. 5. Stable fixed points exist along the the solid bars in this diagram,
whereas the shaded bands indicate the ranges of d./A in which no stable fixed point can be observed.
Instead the spiral core moves asymptotically on closed attractive orbits, as previcusly illustrated for the
trajectories evolving from unstable fixed points in Fig. 2 [except for Fig. 2(g) and the small attractor in
the middle of Fig. 2(d)]. These properties of these orbits have some analogy to limit cycles in phase space.
The number of fixed points increases stepwise with increasing domain size. Focusing on the stable fixed
points (solid hars), their number increases as 1, 4, 9,..., corresponding to the relation F,,, = n® mentioned
above. In addition, the stability of the fixed points changes also with enlarging the domain. For example,
consider the stability of the fixed point located at the center of the domain (distance | = 0): the dynamics
of this point is unstable for d./A < 1.5 and becomes stable for 1.5 < d./\ < 2.0. For d,/A = 2.0 it
is unstable until d /A = 3.5. Note that the saddle points (dashed bars) keep their characteristics with
increasing d..

Conclusions

Our results demonstrate that the dynamics of the spiral waves under nonlocal feedback control
depends sensitively on the geometry, shape and size of the sensory domain, from which the feedback signal
is derived. The results in Fig. 1 show that the geometry of the sensory domain is reflected in the shape of
the spiral tip trajectory. For a fixed domain shape, e.g., a square, a small increase of the domain size results



in a decrease of the trajectory size as seen when comparing Fig. 2(b) with 2{c) and Fig. 2(f) with 2(g).
Several shapes of the trajectory can he observed by enlarging the domain. Along the axis of increment of
the domain size, the dynamics can be divided into two types, stable and unstable rotation, as shown in
Figs. 2 and 5.

An explanation of the numerically ohserved effects is proposed by using flow maps constructed
from the analysis of the feedback signal. The flow maps in Fig. 3 reveal that our feedback forcing leads
to the existence of a discrete set of stable aquare-shaped orbits, which appear to be attractors for the
spiral core drift. In addition, the flow maps demonstrate that the local and global dynamics of the spiral
wave can be drastically changed by switching the sign of the feedback gain [see Figs. 3(a) and 3(b)]. It
is shown that the shape and size of the trajectories of the spiral wave tip, as well as the stability of the
spiral rotation can be changed by varving the size or shape of the sensory domain. We suggest that the
feedback method introduced in this work offers an efficient tool for controlling the dynamics of excitable
media in biology [15, 16, 17].

O.K., S K. and PW. thank the Postgraduate Education and Research Program in Chemistry
funded by the Royal Thai Government and (.K. thanks the Thailand Research Fund for financial support.
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II1. Hypocycloidal resonance attractor for rigidly rotating spiral
waves

Introduction

Controlling the dyvnamics of spiral waves is important for many excitable media including chemical
systems like the Belousov-Zhabotinsky (BZ) reaction [1, 2, 3, 4, 5, 6], or biological systems like cardiac
tissue [7, 8, 9, 10]. One effective control methods is a local feedback algorithm. It has been suggested that
this method can be applied to eliminate spiral waves in cardiac tissue [8], ie., if certain properties of the
medium are varied with the period of rotation of a spiral wave, the spiral wave will be subjected to a drift
and can be eliminated at the boundary of the medium. Such a local feedback has heen realized in the
laboratory by disturbing spiral waves in the light-sensitive version of the BZ reaction [11] with a sequence
of short light pulses [12, 13, 14, 15, 16, 17, 18]. BEach stimulus was applied at an instant corresponding
to the passage of the wave front through a particular measuring point. This local feedback mechanism
was investigated originally for spirals with a *meandering” tip describing a hypoecycloidal trajectory that
is characterized by two rotation periods: T}, as measured at the center of the trajectory and T, as
determined far away from it [14].

Under this feedback control two dynamical regimes, called entrainment attractor and resonance
attractor, have been observed [14]. The entrainment attractor oceurs, if the measuring point is located close
to the center of the unperturbed trajectory (initial distance Ry about 1/3 of the spiral wavelength [14, 15]).
The period of external modulation becomes T, == Th. and the tip moves on a hypocyeloid in perfect
synchrony with the external signal. For larger R, the tip is found to move on the resonance attractor.
At this larger distance, the average period of the triggered external stimuli is close to T, and no strict
synchronization as in the case of the entrainment attractor is obtained. Both regimes are stable with
respect to a small shift of the measuring point, which always constitutes the symmetry center of these
attractor orbits [14].

More recently, this kind of local feedback control was also applied to rigidly rotating spiral
waves [16, 17, 1&], characterized by only one rotation period. In this case, only the resonance attrac-
tor was observed and mostly the trajectories of this attractor are epicycloids, i.e., their petals are directed
inwards. However, it was reported in a numerical study [16] that very small resonance attractors may
assume a hypocycloidal shape, i.e., with outward directed petals. This latter case has not vet been investi-
gated in the laboratory, and we show in this letter that, in fact, hypocycloidal resonance attractors exist for
rigidly rotating spiral waves and that their oceurrence depends sensitively on the initial conditions chosen
for the feedback signal. We investigate their dynamical features under the application of time delays. The
results are corroborated by numerical simulations and compared with theoretical predictions.

Experimental method

The reaction was carried out in a petri dish {diameter, 5.5 em) containing a thin layer (thickness,
0.30 mm) of silica gel [17]. The light sensitive Ru(bpy)3* catalyst was immobilized in the gel at a concen-
tration of 4.2 mM. The BZ sclution without catalyst was poured on top of the gel. After several minutes
an equilibrium between liquid and gel was established and the following concentrations of reactants were
reached: 0.20 M NaBrOg, 0.17 M malonic acid, 0.39 M Ho304, and 0.09 M NaBr. The gel and the solution
were kept at a constant temperature of 256 + 1 “C.

A wave front was broken with a spot (diameter, 1 cm) of intense light from a cold light source. As
a consequence, the open ends of the wave hegin to form a pair of spirals. One spiral was suppressed with
the light spot to leave a single spiral in the center of the dish. This procedure defined the initial condition
for all of the experiments. The gel in the petri dish was illuminated from below with a video projector and
controlled by a computer. The pictures of the appearing oxidation waves were chserved in transmitted
light (A = 485 nm), detected by a CCD camera and stored with a computer program. The spiral rotation
was characterized by considering the trajectory of the spiral tip detected with image processing techniques,
as specified in [3, 14, 17].

Results
For a given background light intensity Iy = 0.061 & 0.001 mW fem?, the spiral tip rotates rigidly
around a closed circle with a diameter of 0.36 £ 0.03 mm. The unperturbed rotation period is T, =

30.41 + 2.14 s and the spiral wavelength is A = 1.92 + 0.10 mm. The rigid rotation is disturbed by a
sequence of short light pulses (amplitude A, duration 5 s), applied at the moment, when the wave front



Figure 1: Hypocycloidal (a-b) and epicycloidal (¢) resonance attractor of the rigidly rotating spiral. Initial
distance between measuring point (cross) and unperturbed core center, Ra: (a-bh) 0.003)\ and () 0.155A.
Iy = 0.061 mW fem?; A = 0.050 mW /cm?. (a) Transient state of trajectory in (b), which is the stationary
attractor several spiral rotations after starting the feedback. Thick segments indicate application of light
pulses. The dotted line depicts the unperturbed spiral tip trajectory. Open and full arrows indicate the
rotation direction of the spiral tip and the spiral core, resp. The radius of an attractor H. is defined as
the average of inner and outer radius of the looping trajectory. Scale bar: 1 mm.

Figure 2: Trajectories of the spiral tip under variation of the time delay 7. (a) Positive pulse feedback
with amplitude 4 = 0.043 mW/em?; (b) negative pulse feedback with 4 = —0.031 mW /em?, where
Iy = 0.061 mW/cm?®. The measuring point (crosses) was initially placed close to the unperturbed spiral

core (Ry < U.lS;\j. except for the two orbits in (b) at T',,,/T,, = 0.805 and 1. Thick segments correspond

to the application of light pulses. Scale bar: 1 mm.



(b) (c)

(e)

Figure 3: Trajectories of the spiral wave tip observed for large time delays 7, where Iy = 0.062 mW /em?,
A=0.091 mW/em?. (a) 7/Tu =0, (b) 7/Tu =1, (¢) 7/Tu =2, (d) 7/Tw = 3, (&) 7/Tu = 4, and (f) 7/T,,

= 6. Thick segments correspond to the application of light pulses. Secale bar: 1 mm.

passes through a preselected measuring point, or after some time delay 7. During the pulse the total light
intensity [ is either increased (positive pulse, I = Ijj) or decreased (negative pulse, I < Ij).

The hypocyecloidal resonance attractor is found to occur, if the measuring point is located very
close to the core center of the unperturbed spiral (Fig. 1a), i.e., Bp < 0.15\. In this example the spiral wave
tip asymptotically approaches a five-lobed hypocycloidal trajectory with its symmetry center coinciding
with the measuring point (Fig. 1b). The ratio of the rotation period at the measuring point (T,,,) to the
unperturbed period, T /Ty, is 0.867 and the ratio of the attractor radius to the spiral wavelength, I, /A,
is 0.117. The light pulses appear in the inner part of the loopy trajectory, and the drift direction of the
spiral core is opposite to that of the tip rotation.

For Ry = 0.15A, the spiral tip describes an epicyecloidal orbit centered at the measuring point, and
we find Trup/Ty = 1.098, R, /A = 0.805. The light pulses occur when the tip moves along the outer part
of the loopy trajectory. The sense of rotation is the same for the spiral core and the spiral tip.

The dynamics of the hypocyeloidal attractor was further studied after introducing a time delay
7 into the feedback loop. Examples for pesitive (4 = 0.040 mW/em?) and negative pulse feedback
(A= —0.031 mW/em?) are shown in Fig. 2. Starting with 7 = 0 in Fig. 2a, the radius of the hypocycloidal
resonance attractor increases with 7. This growth is accompanied by an increase of the number of lobes
in the trajectory, i.e., 5, 6, and 7 lobes for +/7T,=0, 0.026, 0.053, respectively. If the delay reaches a
certain value (7 /T, = 0.067), a transition from the hypo- to the epicycloidal regime takes place. In the
range 0.067 < 7/T, < 0.679 only this regime is observed, although a very small Fy was chosen. Note that
the radius of the epicycloidal attractor decreases with 7 in agreement with previous findings [16, 17]. At
/Ty = 0.679, however, this radius hecomes so small, that the measuring point is finally located inside
the spiral core and no light pulse is triggered any more. Then a further increase of v brings the dynamics
of the system back to the hypocycloidal regime, where the size of the attractor orbits increases with =
(0.775 < /T, < 0.989). Hypocycloidal attractor becomes again unstable at 7/T, = 1.038, consequently
the dynamics switches, once more, to the epicycloidal regime.

Examples of hypocyeloidal resonance attractors observed for negative pulse feedback are shown in
Fig. 2b in the range 0.3 < 7 /T, < 0.56. Here, the pulses (indicated by thick segments) occur in the outer
part of the hypocyeloidal trajectory in contrast with the finding for positive pulse feedback (see Figs. la
and 2a), where the pulses appear in the inner part. However, the time delay plays a similar role here, ie.,
the radius of the attractor increases with 7.

Further instabilities of the hypoeycloidal attractors are observed, when a prolonged time delay
(v/Ty > 1) is introduced (Fig.3). A clear deviation from a circular symmetric attractor appears for /T,
= 2 (extended hypocycloid, Fig. 3c). With increasing 7 deviations become more pronounced: Apparently,
the trajectories in Figs. 3d-f share a similar feature: they consist of a ‘head’ (circular, outward loops), and
a ‘tail’ (extended, inward loops). The length of the tail increases with .

The dependence of the attractor radius R, on the time delay 7 is summarized in Fig. 4. The char-
acteristics of the epicyeloidal resonance attractors shown in this graph (diamonds and crosses) agree well
with previous studies [16, 17]. The new results for the hypocycloidal resonance attractor are represented
Ly squares and triangles (see caption).

Comparison with theory

A theoretical analysis has previously shown [16] that several stationary solutions of the attractor
radius [, exist for each value of the time delay 7 and that the following equations should be satisfied:



