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Figure 4: Attractor radius K. for different delay times 7: diamonds and crosses, epicycloidal attractors
with negative (4 = —0.030 mW fem?) and positive pulse (4 = 0.051 mW /em?); triangles and squares,
hypocycloidal attractors with positive (4 = 0.041 mW /em?) and negative pulse (4 = —0.031 mW /em?),
where Iy = 0.061 mW /em®. Solid and short-dashed curves are prediction of R,(7) from equations (1) and
(2) for stable and unstable hypocycloidal attractors, resp, with by, = 0.215+0.003 mm, ¢, = 4.004+0.11 rad
for negative, and h, = 0.328 £ 0.005 mm, 1, = 0.91 £ 0.07 rad for positive pulse. Similarly, long-dashed
and dotted curves are prediction of R, (7] for stable and unstable epicycloidal attractors, resp. Insert:
function G(r) specifying the experimentally observed shape of the spiral wave front. @(r) increases with
r in the vicinity of the core radius vy, reaches a maximum at r = rg, and becomes negative for r > ro.

T ."I- Ti {

Figure 5: Simulation of epi- and hypocycloidal attractors computed from equations (3) and (4) for positive
pulse (A = 0.0035, duration = 12.197,,) under variation of 7. The measuring point (crosses) was initially
placed close to the unperturbed spiral core. Thick segments correspond to the application of the light
pulses. Scale bar: 20 s.u.
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Figure 6: Attractor radius R, for different 7: triangles, attractors with positive pulse; squares, attractors
with negative pulse (4 = —0.0020, duration = 12.197,), with background value ¢y = 0.01. Solid and

dashed curves: R.(7) for stable and unstable solutions, resp, computed from equation (2) with: h, =
0.097\, i, = 5.026 for a negative pulse; iy, = 0.128)\, o/, = 0.848 for a positive pulse.
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Here m is a positive integer. The function ©(r) (see insert of Fig. 4] and the values I and ¢ are measured
quantities (cf. [17]). The size of the resonance orbit can then be predicted at any time delay 7 by substi-
tuting these data into equations (1) and (2). Linear stability analysis shows that equation (1) describes
stable orbits and equation (2) unstable ones [16]. The computed results are shown in Fig. 4, where each
branch of the dependency F.(7) was obtained for a fixed value of m.

In this figure there are mostly long-dashed branches and mostly short-dashed branches. The mostly
short-dashed curves were computed from equation (2), with a positive sign in front of arccos(h/(2R,)).
Since the change of slope of the ©(r) curve in the interval from rq to rp implies a switching of stability [16],
there is an unstable portion of these curves (short-dashed) and a stable one (solid). Consider the shortest
branch close to the ordinate of Fig. 4 (7/T, < 0.05). Our experimental results suggest that with positive
pulses there exist only hypocycloidal attractors in this interval, whereas epicycloidal ones will not be
stable. In a similar manner, the existence of other sets of hypocycloidal resonance attractors ohserved in
experiments (all squares and triangles in Fig. 4) can be explained with other branches computed according
to equation (2). Note that there are very small unstable branches (e.g., dotted arc-shaped segment at
/Ty = 0.2) at the lower end of each stable branch of epicycloidal resonance attractors, as reported
earlier [16].

Some of these results were complemented by numerical simulations had used the Oregonator
model [19, 20] extended by a term ¢ = ¢(¢) that accounts for the effect of bromide ions produced by the
illumination [21]:

o = = = (fo+é)=
v
5=
Here, the variables w and v correspond to the concentration of the autocatalytic species HBrO, and
the oxidized form of the catalyst, respectively. Due to the immobilization of the catalyst, variable v
does not diffuse in this model. The parameters ¢ = 0.05, ¢ = 0.002 f = 3.5 and [J, = 1 are kept
constant. A series of trajectories of the spiral wave tip simulated under local feedback control is shown
in Fig. 5. These simulations are consistent with the epi- and hypocycloidal resonance attractors observed
experimentally (see Fig. 2a). A numerical study of the dependence of their radius B, on 7, as shown in
Fig. 6, is in good agreement with the theoretical predictions. There is, however, some discrepancy with the
experimental findings (see Fig. 4). In the experiments hypocycloidal resonance attractors are ohserved in
a quite extended range of delay times, whereas the corresponding intervals in theory and simulations are
comparatively narrow. This disagreement becomes more pronounced as 7 increases. A possible reason for
this is the relaxation and delayed response [22] of the spiral wave in experiments following the application
of a light pulse.

— 4 2 .
+ D NV =u, 3
- u 3)

u— (4)

Discussion

Our experimental results show that there are two types of resonance attractars that can be ohserved
for a rigidly rotating spiral wave under local feedback control: an epi- and a hypocycloidal one. Type,



Table 1: Properties of the epi- and hypocycloidal resonance attractor.

Characteristic Property Epicycloidal Attractor Hypocycloidal Attractor
rotation direction of tip and core  coincide opposite

rotation period, Thp =T, < T,

attractor size large small

pulse interval location outer part of the trajectory  inner part of the trajectory
effect of increasing attractor radius decreases attractor radius increases

size and stability of the attractor can be changed by introducing a time delay into the feedback loop. In
Table 1 some of the characteristic properties are compared with each other.

Tip trajectories corresponding to near-resonance conditions of the two attractors remind cne of
the resonance drift induced by periodic external forcing of rigidly rotating spiral waves [23]. If T, and
T, are exactly equal, the perfect resonance is expected, with the core center moving along a straight line.
But the period of modulation induced by the local feedback mechanism is just near-resomance, i.e., either
Top = Ty or Ty << T, therefore the trajectory has either epi- or hypocyeloidal shape.

A control parameter that defines the boundary between the two types of attractors is the initial
distance Ry between measuring point and core center. In fact, the hypocycloidal shape is chserved for
Iy < 0.15A, whereas for larger values of Ry only the epicycloidal one appears to be realized. On the other
hand, Hy must not be too small, i.e., it must be larger than the core radius, r,. Otherwise, with the
measuring point located inside the core no light pulse is triggered. According to ref. [16] the hypocycloidal
resonance attractor is reached for the interval r, < Hy < ro. In our experiments r; = 0.070A and
rg = 0,152\ (see insert of Fig. 4). Hence, the boundary value Ry < 0.15A is in good agreement with
theoretical expectations [16].

Interestingly, most of the properties of the hypocycloidal resonance attractor shown in Table 1,
which refer to the rigidly rotating spiral waves, are very similar to those of the entrainment attractor for
meandering spirals [14, 15], although the dynamics of the rigidly rotating and meandering spirals differ
significantly by the fact that their movement is composed of either one (spatially uniform) or two (not
spatially uniform) rotation frequencies.

To be noticed is the difference in the modulation period. For rigid rotation it is equivalent to the
rotation period at the measuring point T).,, where Ty, < T, for the hypocyeloidal resonance attractor.
On the other hand, for the entrainment attractor of meandering spirals, it is equal or very close to the
period T at the center of the unperturbed hypocycloidal trajectory. Finally, we point to our observation
that the attractor shapes deviate strongly from circular symmetry, if the time delay in the feedback loop
becomes relatively long. To study further instahbilities of the resonance attractor for such long delays is an
interesting challenge for future work.

0O.K., S.K. and C.U. thank the Postgraduate Education and Research Program in Chemistry
funded by the Royal Thai Government and O.K. thanks the Thailand Research Fund for financial support.
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Abstract

Spiral waves rotating rigidly in a thin layer of the light-sensitive Belousov—-Zhabotinsky (BZ) reaction are subjected to a time-
dependent uniform illummation. A non-local feedback algorithm computes the illumination intensity to be proportional to the
average wave activity within a square-shaped sensory domain. The investigations show a broad spectrum of dynamical responses
which results in square- and cross-shaped trajectories of the spiral tip, including reflections at the virtual walls. The geometry of the
sensory domain is crucial in determining size and shape of the tip trajectories. A theoretical approach is proposed to explain the

observed phenomena.
© 2004 Elsevier B.V. All rights reserved.

Controlling the evolution of complex processes in
time and space is a major research issue of nonlinear
dynamics [1,2]. It is important for many dynamical
phenomena including the formation of spatio-temporal
patterns in chemical reactions like the CO oxidation on
platinum surfaces [3.4] or the Belousov-Zhabotinsky
(BZ) reaction [5,6]. Some of the effective control meth-
ods have been applied to chemical waves propagating in
excitable media, such as external (periodic) forcing [7-9].
Methods involving a time-delayed feedback [2], require
more complex algorithms [10,11] that are based on
collecting data on the activity level of the medium.

In this report we investigate spiral waves rotating in
an excitable layer of the BZ reaction. The activity level
in this medium can be measured at one point (local
feedback) [9.12], in a given domain (non-local feedback)
[13,14] and at all points (global feedback) [10]. Of both
theoretical and practical interest is the eflect of shape
and size of the applied ‘sensory domain’ on the dy-
namics of rotating spiral waves under feedback control.
We apply square-shaped domains and find a broad
spectrum of dynamical responses. including square-

" Corresponding author. Fax: +662-2458332,
E-mail address: scokwi@muce mahidol.ac.th (O.-1. Kheowan).

0009-2614/% - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/).cplett. 2004.03 077

shaped and cross-shaped trajectories of the spiral tip.
Numerical simulations using the light-sensitive Orego-
nator model [15,16] reproduce this behaviour. We sug-
gest that the feedback method introduced in this work
offers an efficient tool for controlling also the dynamics
of other excitable media.

We study spiral wave dynamics in thin layers of the
BZ reaction with the light-sensitive Ru[hpy)?r catalyst
[17]. This catalyst promotes the autocatalytic production
of HBr(),, the activator species of the BZ system. The
applied illumination enhances the production of
the bromide ion, an inhibitor species, and thus decreases
the system’s excitability which, in turn, results in slowing
down the wave activity in the medium. This provides an
experimentally accessible method to control spiral wave
dynamics, in that the light intensity influences parame-
ters such as the wavelength and the diameter of the
spiral core.

In our experiments, the Ru[bpy)?f catalyst was 1im-
mobilized n a silica gel matrix [18] (thickness 0.3 mm,
diameter 5 ¢cm) at a concentration of 4.2 mM. The re-
actants and their concentrations (disregarding bromin-
ation of malonic acid) were: NaBrOs (0.20 M), malonic
acid (0.17 M), H,S80,4 (0.39 M) and NaBr (0.09 M)
[12]. The experiments were carried out at an ambient
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temperature of 25+ 1 *C. We created a spiral wave by
using a spot (diameter, 1 cm) of intense light from a cold
light source to break a propagating wave front (this
creates two wave ends) and suppressing one of the open
ends with the light spot to leave a single spiral n the
center of the dish [12]. The reaction layer was uniformly
tluminated from below with a video projector con-
trolled by a computer via a frame grabber. The oxida-
tion waves were observed in transmitted light by a CCD

camera and stored on a computer. The main features of

spiral rotation, the trajectory of spiral tip, 1s determined
by a special computer procedure given in [9].

In our non-local feedback algorithm, the illumination
intensity applied to the reaction layer is given by
Kheowan et al. [13]

I{#t) =1y + kg |Blt) — By), (1)

where Iy is a constant background intensity. B(¢) is the
average grey level of the pixels in the square-shaped
sensory domain

N \ \
B(t) =— Gilt), (2)
Ly }i’; ALy L)

where 0< G; = 255 15 the grey level of a given pixel, and
n 18 the total number of pixels in the domain. Note that a

(]

larger grey level corresponds to higher concentration of

the oxidized form of the catalyst (bright fronts). The
intensity of the feedback illumination [(¢) is controlled
by the gain kg, and the value of B(t). The constant By is
the B(r) averaged over one period of a spiral placed in
the center of the square domain and illuminated with
background intensity fy.

The effects of such non-local feedback on a ngidly
rotating spiral wave are shown in Fig. 1. For a side
length « of the domain significantly smaller than the
spiral wavelength 4 (d = 0.51), the spiral leaves the
center of the sensory domain, where its circular core was
initially placed (arrow in Fig. la), by drifting outwards
until it makes a turn to follow a circular path with a

radius of about 0.764. This motion resembles that ob-
served in earlier reported experiments applying a small
size, circular-shaped sensory domain [13].

For a domain size equal to the spiral wavelength
(d = A), the spiral core first drifts away from the domain
center (Fig. Ib), then it approaches a stable, square-
shaped trajectory with a side length ol about 1.334,
which 1s rotated by about 45% with respect to the do-
main. Note that the drift velocity ol the spiral wave core
changes periodically: 1t 1s slower at the corners and
faster at the sides of the trajectory.

Fig. lc shows the trajectory of the spiral tip in an
experiment with a still larger feedback domain,
d = 1.254. In this case, the spiral tip was initially placed
close to the domain boundary. The feedback control
induces first a drnift towards the center and subsequently
towards the middle region of the adjacent side ol the
domain. This process occurs several times and conse-
quently the spiral tp 1s caught inside the square,
bouncing from and to the *virtual walls’. Fig. la—c in-
dicate that increasing the size d of the feedback domain
has a pronounced eflect on the shape and size of the
spiral tip trajectory. In certain ranges of increasing d,
the size of the square trajectory 1s reduced. Experiments
also show that the trajectories act like attractors: the
spiral tip always approaches them independently from
its mitial position.

We complemented the experiments by numerical
simulations using the Oregonator model [15], extended
by a term ¢¢ = ¢(t) accounting for the effect of bromide
ion produced due to the llumination [16]:

cu 1 3 ) LU 2 \
—=—|u—u - (fo+¢) b Vou, (3)
o« u+tq |

dv

—=u—1i (4)
ct

Here, the variables # and v describe the evolution of the
concentration of the autocatalytic species HBrO; and

= |

Fig. |. Experimental trajectories of a spiml wave tip subjected to the feedback control Eqs. (1) and (2) for different sizes of the sensory domain: (a)
d = 0.54 (A = spiral wavelength) with By = 24, kp, = 0.2, (b)d = .04 with By = 24.5, kp, = 0.8, and (¢) 4 = 1.254 with By = 19, kpp, = 0.45. ) = 0.70
mW em? for all experiments. The domains and the initial spiral core locations are indicated by squares and thick arrows, respectively. The spiral
images are shown for the start of the trajectory in (a) and (b) and the end of the trajectory in (c). Scale bar: | mm.
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the oxidized form of the catalyst, respectively. Due to
the immobilization of the catalyst, variable v does not
dilfuse in this model. The parameters & = 0,03, g = 0.002
and /= 3.5 are kept constant. Non-local feedback 1s
introduced into the model by varying the value of ¢(r)
according to [10]

¢(t) = ¢y + km[B(t) — Bal,

.7 .
B(t) =§/ vds, (6)

£

n

where ¢, is constant (=0.01). The integral B(¢) takes
into account the effect of the average wave activity in the
square-shaped sensory domain §. The constant By refers
to this integral averaged over one period of a spiral
placed in the domain center with constant production
term ¢(t) = ¢y

Fig. 2a shows the result of calculations based on Egs.
(3-(6)with d = A (4] s.u.) and &y, = 0.1, The spiral core
was 1mitially located at the center of the sensory domain.
Switching on the feedback controlinduces the drift of the
spiral core first outwards from the center and then along
a square-shaped trajectory, in good agreement with the

experimental results (Fig. 1b). In the parts of the tra-
jectory labeled 1 and 4 the center of the core drifts ap-
proximately along a straight line. In part 2 the trajectory
starts to bend and to slow down and then turns by 90% in
part 3. Corresponding changes in the illumination in-
tensity ¢»{t) are shown in Fig. 2b. The feedback algorithm
1s turned on at ¢ = 20 (after about 3 rotations) resulting
in large amplhitude oscillations of the ¢» values. To show a
slight shift in the phase of this oscillation, black dots
have been plotied on the abscissa at an interval equal to
the oscillation period measured at the part of the tra-
jectory labeled 1. Using these ‘stroboscopic™ dots, the
phase shift, for example, between points labeled | and 4
can be determined as 0.54n, which agrees well with the
angle difference of the dnft directions (90°) at ponts |
and 4 of the square-shaped trajectory in Fig. 2a.

The oscillations in ¢{¢) are due to corresponding
changes of the value of the integral in Eq. (6), which we
analyze by considering unperturbed spirals (without
feedback) placed inside and outside the quadratic sen-
sory domain. The location of the spiral tip 1s indicated
by black circles labeled with letters P-S, as indicated in
the quadratic insert of Fig. 2¢. These black circles depict

-
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Fig. 2. Spiral wave simulated by Eqgs. (3)-(6) under feedback control derived from a square domain with § = A. The computations were performed by
the explicit Euler method, using a five-point approximation of the Laplacian on a 384 % 384 array with a grid spacing Ax = 0.5 and time step triangle
1 =0.001. (a) Trajectory of spiral wave tip under a feedback control with &p, = 0.10. (b) Value of ¢(r) corresponding to the trajectory in (a). The
feedback was switched on at time = 20. & is the rotation phase. () Analysis of integral (Eq. (6)) as a function of the rotation angle # of the spiral
wave (without feedback) for different locations of the spiral wave core. Each curve is labeled by letters that correspond to those in the square domain
(inset) and indicate the location of the spiral core. By is the average value of B(9) for one rotation of a spiral placed at the domain center. Rotation
phases given by arrows are: oy = 148, g = 1.97. (d) Flow map of spiral core trajectory. Arrows indicate the velocity and the direction of the drift.
Distance between data points is 1 /81, The direction of each vector is determined from the difference between the phase of B at that point (arrow tail)
and a reference phase (in this case x,4). Tts modulus is calculated as the integral of |B(#)-By| over one period of the rotation angle 6.
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the locations of the spiral core along the trajectory in
Fig. 2a. For example, pomts R and S in the insert cor-
respond to the parts of the trajectory in Fig. 2a, labeled
| and 4, respectively.

The B-values are calculated and plotted in Fig. 2c for
one rotation of the spiral (0 < rotation angle < 2m),
without feedback. Here, B can be written as a function
ui 1}11. rotation angle #(t), which is proportional to time

B = Bff} The horizontal line in this graph corre-
qpundq to B, as specified mn the caption. Curves E'U'.n
oscillate with dilferent shape and amplitude for different
locations P-S. Considering the extrema of these curves
B[U’.-__ their high values at location P result in a large
perturbation and therefore, a fast drift of the spiral wave
core, as observed in Fig. 2a. Around location QQ, cor-
responding to one of the corners of the square-shaped
trajectory in Fig. 2a, the values of these extrema drop,
therefore, the drift around the corners 18 slow. In order
to explain the direction of the drift, the phase of curve
E‘[U} must be characterized. Note that all shown curves
cross the reference line, E‘[U} = By, with a positive slope
only once during a rotation period. In order to further
characterize these curves, the value of the rotation angle
at the intersections is defined as the rotation phase z.
One can see that the shapes of the E{U} curves at loca-
tions R and S (with drift directions that are perpendic-
ular to each other) are stmilar, but their phases differ by
about 057 (compare zg and xg in Fig. 2¢). This corre-
sponds well to the phase shift of 0.54xn in the feedback
signal in parts | and 4 of Fig. 2b.

For a more detailed analysis, the local values of

é’[f}} = E‘x_,,.{f}} were determined on a finer grid of core
locations (x, v). This provides the possibility to construct
a flow map shown in Fig. 2d. As described in the caption,
this flow map is based on p}mv.u‘. rupmummg the drift
directions. The integral of E'U Bg| over one period is
taken as a measure for the mdgmludu ol the perturbation
and represents the drif't velocity. Most of the flow vectors
are attracted towards a square trajectory, on which they
are caught in a counterclockwise motion, in agreement
with the observed attractor in Fig. 2a.

(a) (b)

Fig. 3. Simulation results of the spiral wave dynamics under a feedback
control derived from different sizes of the domain: (a) d = 0.54,
ki = 0.10, (b) d = 1.254, kn, =0.20, and (c) 4§ = 24, kp, = 0.50. Tra-
jectories (a) and (b) correspond to experiments shown in Fig. la and ¢,
respectively.

The dynamics of such an attractor changes with the
size of the integration domain. For a rather small do-
main (d = 0.54) one obtains a circular attractor
(Fig. 3a), stmilar to that of Fig. la. Here, the four-fold
geometry of the sensory domain is not reflected in the
shape of the trajectory. For domains larger than the
spiral wavelength, the size of the attractor decreases, as
shown in Fig. 3b where d = 1.254. The 90° turns of the
drift direction close to the virtual walls agree with the
experimental observation (Fig. 1b). An interesting cross-
shaped trajectory 1s created by further increasing the
domain {Fig. 3c).

Our experimental and numerical results demonstrate
that the considered nonlocal feedback algorithm is
highly efficient to control spiral wave dynamics. The
method can be transferred to control such dynamics m
other types of spatially extended systems, e.g. in cardiac
[19] and neuronal tissue [20] or in the context of intra-
cellular calcium dynamics [21]. The size and shape of a
sensor by which we collect information about the ac-
tivity level of a dynamical system turns out to be crucial
and decisive on determining the size and shape of the
spatio-temporal attractor governing the behaviour of
the system under feedback control.
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Spiral wave dynamics under feedback control derived from a variety of sensory domains
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The dynamics of rigidly rotating spiral waves in a reaction laver with light-dependent excitability 15 studied
by numerical integration of a reaction-diffusion equation system with a feedback control. The feedback signal
1z derived from sensory domains with different geometries by introducing an zalgorithm that computes the
illumination intensity to be proportional fo the average wave activity in these domains. It 15 shown that the
shape and size of the trajectories of the spiral wave tip as well as the stability of the spiral rotation depend
sensifively on the choice of the geometry of the sensory domain. The numerically observed effects are comple-
mented by constructing a flow map based on an analysis of the feedback signal.

DOIL: 10.1103/PhysRevE.70.04622

L INTRODUCTION

The implementation of control strategies to mampulate
complex oscillations and spatiotemporal patterns has become
a central 1ssue of nonlinear dynamucs. Feedback methods
provide one of the possible control techniques that vield new
modes of spatiotemporal behavior [1.2]. These techniques
may be designed in different ways. A feedback is global or
nonlocal. in contrast to local techniques, if the control signal
represents a sum of contributions from all or many parts of
the system. Such feedbacks have been used. for mstance, to
control spatiotemporal activity m the Pt-catalvzed oxidation
of CO [3]. suggesting a means for enhancing catalviic effi-
ciency [4], in gas discharges to suppress plasma instabilities
[5], 1n electrochemical systems to influence spatial coupling
among different active sites [6], and in semiconductors in
connection with charge transport phenomena [7]. Propagat-
ing waves [8] and, in particular, spiral waves [9-12] n the
Belousov-Zhabotinsky (BZ) reaction [13,14] have also been
controlled by using these feedback methods, which points to
the possibility of manipulating dvnamical patterns in excit-
able media including excitable biological tissues [15-17]. A
recent advance in this direction 1s the control of seizurelike
events i luppocampal bramm shices with adaptive electric
fields [18]. Thus, the ability to regulate spatiotemporal be-
havior provides both a means of generating desired dynami-
cal patterns and the tools for probing underlying mecha-
nisms.

In this work we perform a numerical study of rigidly ro-
tating spiral waves subjected to a nonlocal feedback derived
from a confined “sensory domain.” A time-dependent spa-
tially uniform modulation of the system’s excitability is
taken to be proportional to the integral light absorption ob-
served within this domain. Of both theoretical and practical
interest are the geometnical features of the applied sensory

PACS number(s): 05.45.—a. 05.65.+b, 47.54.+r

T.

domaimn on the dynamics of the rotating spirals [9-13]. We
apply the feedback with different chapes and sizes of the
domain and find a broad spectrum of dynamical responses,
including various shapes of the spiral tip trajectories and the
switching between their stability properties. A fow map and
a bifurcation diagram are constructed in order to analyze the
observed phenomena.

II. SIMULATION METHOD

Our computations are performed with the light-sensitive
two-variable Oregonator model [19-21], which has been
successfully used to describe the dynamics of the photosen-
sitive BZ system by including a flux term =) for the
light-induced bromide production [21]:

s , 1 2 (u—gq)
o D V-u o Lt (fv ¢)(u+q) .

(1)

o
—=u—uv. )
ot

Here, the vanables & and v describe the evelution of the
concentration of the autocatalytic species HBrO; and the
oxidized form of the catalyst, respectively. D,=1 is the
scaled diffusion coefficient of variable x. The catalyst 1s as-
sumed to be immobilized in a gel matrix; thus_ the varable v
does not diffuse m this model (D,=0). The parameters have
the values e=0.05. g=0.002, and /=35, which are kept con-
stant. The computations were performed by an explicit Euler
method, using the five-point approximation of the Laplacian
on a 384 X 384 array with a grid spacing Ah=05 su. and
time step Ar=0.001 tu._

The feedback signal 1s determined by the integral of wave
activity taken over the sensory domains, expressed as [22

=g+ kp[B(1) - B 3
* Author to whom correspondence should be addressed. Electronic H(1)= o 1 [B(?) ol @)
mail: scokw@muce mahidol ac.th with
1530-3755/2004/70(4)/046221(6)/%22.50 70 046221-1 ©2004 The American Physical Society
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B= JS uds. (4)

where db; is constant (=0.01). Thus. the intensity of the feed-
back signal is controlled by the coefficient &y and depends

linearly on the integral value B of the variable u over the

domain S§. The constant By refers to tlus integral averaged
over one period of a spiral placed in the domain center with
constant flux term &(#) =,

III. RESULTS

A single spiral 15 mduced from the equation system (1)
and (2) by choosing a special mitial condition [23]. The van-
ables v and p are mitially set to zero uniformly in the me-
divm. To create a spiral then we introduce a nonuniform
distribution of the vanables. A superthreshold value =1 1s
given along a line near the boundary of the excitable medium
to mduce a propagating wave. After thus wave has reached
the center of the excitable medium, one-half of the planar
wave 15 erased by resetting u=v=0. Subsequently, the open
end of the planar wave curls mto a spiral wave with 1ts core
located near the center of the excitable medium Without
external forcing and with the above chosen parameter values,
the spiral wave rotates rigidly around a circular core with a
rotation period Tp==8.2 tu. and a wavelength A=4.1 su..
There 15 ample evidence [9-11.22] that for this kind of non-
local feedback a spiral wave core placed initially at the cen-
ter of the sensory domain is destabilized for the case of a
positive coupling constant kg and starts to drift away from
the center, as shown in all of the examples of Fig. 1. A
previous systematic study of circular sensorv domains has
shown that 1t frequently moves asymptotically on a circular
attractor [9].

In our simmlations we find how the shape of this type of
spiral tip trajectories 1s transformed when the shape of the
sensory domain 15 vaned. For a tnangular domam the feed-
back induces the spiral core to dnft away from the domain
center and to make a turn on each side with an overall 120°
change of the dnft direction. Fmally 1t describes a trajectory
with an approximately threefold symmetry [Fig. 1(a)]. An
increase of the number of comers of the sensory domain
results in an increase of the number of turning points of the
drift direction, as shown in Figs. 1(b) and 1(c). For a square-
shaped domam [Fig. 1(b)]. the trajectory describes a square-
shaped pathway, which 1s rotated by about 45° with respect
to the domaimn. A forther increase m the number of domain
corners to form a pentagon [Fig. 1(c)] produces a trajectory
that follows an approximately pentagonal pathway inside the
domain. It appears to be almost circular, because the five
rounded corners of the domam are only famntly reflected. For
perfect symmetry, as for the circular domain in Fig. 1(d). the
trajectory describes a circular pathway around the domain.

Exerting some shear on the square-shaped domain causes
a transformation of the trajectory from a square to a rhombic
pathwayv, as shown m Figs. 1(e) and 1{f). A further decrease
of the acute angle of the thombus induces the trajectory to
form a large oblong excursion around the domam [Fig. 1(g)].

PHYSICAL REVIEW E 70, 046221 (2004)

FIG. 1. Trajectories of the spiral wave tip derived from simula-
tions for different shapes of the sensory domain starting from an
initial location of the spiral core at the domain center. (a) Triangle,
side length 150N, &m=0.05; (b) square. side length 1.ODN. &y
=0.11; (c) pentagon, side length 0.75N, kg=0.15; (d) circle. diam-
eter 1.00N, kp=008; (e}-(zg) rhombus, side length 1.00A and &g
=0.10; acute angles: 80%, 70°, and 60°, respectively. The feedback
mechamism 15 computed from Eqs. (3) and (4). Arrows indicate drift
direction of the spiral core.

Now the drift velocity of the spiral wave core changes dras-
tically along the oblong pathway. It becomes very slow when
the spiral wave core 15 far away from the center of the thom-
bic domain The results demonstrate that the shape of the
sensory domain 1s reflected in the dynamics of the spiral tip
trajectory.

Besides the shape of the domamn 1t 15 also its size that
plays a crucial role for the spiral dynamics, as shown in Fig.
2. We use the square-shaped domain with side length 4. to
study this effect. For a rather small size (d.=0.7\) one ob-
tains a circular attractor [Fig. 2(a)], not reflecting the four-
fold symmetry of the sensory domain The circular trajectory
transforms to a square for &, =1.0h [Fig. 2(b)]. similar to the
one m Fig. 1(b). For domains larger than the spiral wave-
length the size of the attractor decreases, as shown in Fig.
2(c) where d=1.25h.

Note that the drift velocity in Fig. 2(b) 1s larger than that
in Fig. 1(b). This increase is connected with the choice of a
larger feedback coupling strength. In fact, we found that for
fixed size and shape of the sensory domain larger kg values
lead to a faster dnift. as long as the shape of the tip trajectory
1s rather simple as, for mstance, for the case of square do-
mams with size ¢.<<1.5A. For larger d, the tp dvnamics
becomes complex (see below) and the influence of kg, cannot
be easily predicted.

046221-2
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FIG. 2. Trajectories of spiral wave tip under variation of the size
of the square domain. {aj~(h) Side length .=0.70Ax. 1.00A. 1.25k,
1.508, 2.25K, 2,40k, 250X, 3.00N; k=005, 0.15,0.12, 0.20, 0.40,
0.30, 050, 0.75. Arrows indicate the drift direction of the spiral
core. The dashed squares with 4.=\ indicate the approximate loca-
tion of the separatrix of basins of attraction. whereas the dotted
squares depict a reference domain (d,=A). The gray curve in (d)
shows the transient trajectory, before a circular, stable rotation is
achieved at the center (black circle).

Two trajectories are observed for o,=1 50N [Fig. 2(d)]. A
small, flowerlike trajectorv occurs at the center of the do-
main, when the unperturbed spiral core 1s mmtially placed
close to the domamn center. Note that the grav curve i Fig.
2(d) represents the transient trajectory before a circular,
stable rotation (black circle) 1s achieved at the center. For a
larger mitial distance to the domain center, the spiral core 1s
attracted towards a trajectory describing a large square with
rounded corners. Its onentation comncides with that of the
domain, in contrast to the trajectories in Figs 2(b) and 2(c),
which are rotated by about 45° with respect to the domain.
The dashed square with side length A i Fig. 2(d) indicates
the approximate location of the separatnix between two ba-
sins of aftraction that exist for the motion of the spiral core

PHYSICAL REVIEW E 70. 046221 (2004)

center. However, the attractor, which 1s eventually reached. 15
determined not only by the mitial location of the spiral core
but also by the initial location of the tip with respect to the
core center (the inifial phase). Thus the location of the sepa-
ratnx depends on this immitial phase, which slightly blurs this
separating lme. We checked nuwmencally that the blurnng
effect of the initial phase 1z below 0.024h.

An interesting cross-shaped trajectory is created when in-
creasing the domain size to d.,=225k [Fig. 2(e)]. This tra-
jectory can be considered as a combination of four small
pieces of square-shaped trajectonies, wluch are linked to-
gether. With a further increase of 4. to 2,40\, there appear
four trajectories, which are separated from each other [Fig.
2(f)]. Note that the shape of the trajectories changes from a
squarelike to a droplike form. Which of these four possible
stable orbits 1s reached depends now on the mutial location of
the unperturbed spiral core center. The approximate separa-
trices between the basins of attraction of each orbit are
shown by dashed boxes [Fig. 2(f)].

The dynamics of the four attractors in Fig. 2(f) can be
stabilized by enlarging the domam to o,=2.30n [Fig. 2(g)]:
the unpermarbed spiral wave core is placed at four different
locations mside the domain. The feedback mnduces the spiral
wave core o dnft towards four stable pownts (indicated by
arrows), located approximately at the corners of the refer-
ence domain &,=h [dotted square in Fig 2(g)]. At these
pomnts, the spiral rotates rigidly without drift. When the do-
main size 1s further mcreased to ¢, =3.00A, the locations of
these four pomts become agam unstable [Fig. 2(h)]; 1.e.. the
spiral wave drifts again along a droplike pathway. Note that
the drift direction of these droplike attractors is clockwise
and the petals of the loopy trajectories are directed outwards,
in contrast to those in Fig. 2(f). In addition. a new square-
shaped trajectory with mward directed petals appears around
the center of the doman.

The dwvnamics of the trajectories in Fig. 2 can be divided
into two types: stable and unstable spiral rotation. Stable
rotation means that the spiral rotates rigidly without dnft, as
illustrated by the trajectories m Figs. 2(d) (small atiractor at
the center) and 2(g). All other trajectories m Fig. 2 for which
the motion of spiral waves is accompanied by a dnft of the
spiral wave core are considered as an unstable rotation.
These results demonstrate that enlarging the domain size
leads to a series of switches from unstable to stable spiral
rotation and vice versa.

IV. DISCUSSION

Qur discussion is based on the analysis of the integral B
[Eq. (4)] as a function of the rotation angle of spirals placed
at different locations inside or outside the square-shaped con-

trol domain. It has been shown that the phase of the signal B,
which determines the phase of the modulation [Eq. (3)]. pre-
domunantly affects the dnift direction and consequently the
shape of the trajectory [12]. The average area under this
curve is an appropriate measure for the drift velocity in the
range of the sensorv domains considered here [12]. The
phase relation and the average area form the basis of the flow
maps constructed mside and outside the sensory domains as

046221-3



KHEOWAN ef al.

w

Wargh 13- B 0y
Wk ¥ [
-»-_H‘.J-i-

RS

‘z’ LR R A2 ,.,+*"‘;":¢—.
LR T L L g
-y * N ”’ -

(<)

FIG. 3. (a). (b) Vector field plots of the trajectories of the spiral
core center under feedback control derived from a sguare domain
with 4,=h for positive feedback (a) and negative feedback (b). (c)
Trajectory of the spiral wave tip under negative feedback control
with feedback parameters d,=1h and kp=—0.15. The arrow indi-
cates the drift direction of the spiral core. Note that the coefficient
kg is not mvelved in the construction of the vectors in the flow
map.

shown, for mstance, in Fig. 3 for d,=Ak. The flow vectors
observed for positive feedback [Fig. 3(a)]. which corre-
sponds to the simulation results observed for kg >0 m Figs.
1{b) and 2(b), are attracted towards two square-shaped tra-

PHYSICAL REVIEW E 70, 046221 (2004)

jectories (side length about 1k and 3Ah) on which they are
caught in a counterclockwise motion. The flow map unravels
the existence of a discrete set of stable square-shaped orbats,
which appear to be attractors for the spiral core drift. The
mermost trajectory corresponds to the attractor presented
Figs. 1(b) and 2(b). For the flow map observed for negative
feedback [Fig. 3(b})], which 1s obtained by considering the
signal B mirrored with respect to the reference line B=E,
corresponding to negative sign of k4 in Eq. (3). most of the
flow vectors inside the domain spiral slowly into the domain
center to form a stabilized rotation. This stabilization 1s con-
firmed by the simulation result for the tip motion m Fig. 3(c).
In a certamn region outside the domain the vectors flow to-
wards a square-shaped trajectory with a side length of about
2M. These flow maps illustrate how the dynamacs of the spi-
ral wave can be drastically changed by switching the sign of
the feedback gain

Additional flow maps of the spiral core center under
vanation of the domain size are shown in Fig. 4 The flow
map for the domain with 4.=1 30\ 1s depicted mn Fig. 4(a).
Here, most of the vectors are attracted towards two types of
stable states: a fixed point at the center and a square-shaped
orbit in agreement with the trajectories in Fig. 2(d). The ba-
sin of attraction of the two states are separated by the sepa-
ratrix indicated by the dashed square with side length A
Solid, open, and checked circles in this figure mdicate three
types of fixed points: (1) the stable node (solid circle), which
attracts the vector field from all directions. (11) the unstable
node (open circle), which repels the vector field i all direc-
tions, and (111) the saddle point, which atiracts the vector i
one direction but repels it in the direction perpendicular to it.
For the flow map in Fig. 4{a) there 15 one stable node located
at the center of the domain. It corresponds to the stabilization
of rigid rotation and thus to the small attractor in Fig. 2(d). In
addition to the stable node at the center of Fig. 4(a). there
appear four unstable nodes at the corners and four saddle
pomts on the edges of the reference domain (dashed square).

The flow map for a larger doman (4, =2.50\) 1s shown 1
Fig. 4(b). It corresponds to the trajectories in Fig. 2(g). The
locations of the four stable nodes 1n this map coincide with
those of the unstable ones for 4.=1.5A [Fig. 4(a)]. Since the
distribution of neighboring nodes for each of them is equal to
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FIG. 4. Flow maps of the spiral core center under variation of the domain sizes for positive feedback, for (a) d,=1.50k, (b) d,=2.50A,
and (c) 4,=3.00n. Vectors show the drift direction of the spiral core cenfer, which its size indicates the drift velocity. The dashed line
indicates the location of the separatrix, which restricts the basin of each attractor. Solid, open. and checked circles indicate the fixed points:

stable node, unstable node, and saddle point, respectively.
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FIG. 5. Bifurcation of the spiral wave rotation under confined-
domain feedback control. Number of fixed points inside the sensory
domain 15 illustrated as a function of the normalized size of the
domain, d_/k. Distance | from the domain center of the fixed point
1s shown on the y axis. Solid, dashed, and dotted bars indicate the
fixed points: stable node, saddle pomt, and unstable node, respec-
tively. Inserted numbers show the total number of fixed points for
each range of 4. Gray bands indicate the range where no stable
rotating spirals exist.

that for the case d;=1.5A, we find a fourfold symmetric rep-
etition of the pattern of Fig. 4(a). The stability of the four
fixed points is lost when enlarging the domain size by about
0.5\, as shown m Fig. 4(c) for d.=3.0x. Here, all the fixed
points that are stable in Fig. 4(b) become unstable.

The number of fixed points inside the square domain is 9,
25, and 49 for the side lengths d;=1.5A, 2.5k, and 3.0\ m
Figs. 4(a)-4(c), respectively. Note that for domams smaller
than 1.5k, there exists only one unstable fixed point, which is
located at the center of the domain, as shown in Figs.
2(a)—2(c) and Fig. 3(a). However, the domain should not be
too small—i.e., smaller than the spiral core. Because if such
a small domain 15 located inside the core, there will be no
modulation of the signal and consequently no feedback.

The total number of fixed points, F),, can be described as
a function of the the size of the domain d; according to F,
=(2n+1)?, where n=[d,/\—(d;/\ mod 1)]. For example, if
d;=1.5h, then n=1 and therefore F,=9, as shown m Fig
4(a). Furthermore, the number of each type of fixed point is
expressed as (1) number of stable nodes, Fm=}13, (11) munber
of saddle points, F_4,=2n(n+1), and (1i1) number of unstable
nodes, F,,=(n+1)2. One can see clearly that F,=F,,+F,,
+F),. Note that these relationships can be used for d;
=15k For d,<< 1.5\, Fy,=F,,=1 as mentioned above.

A bifurcation diagram characterizing the stability of the
spiral core drift under a square-domain feedback control 1s
shown in Fig. 5. Stable fixed points exist along the the solid
bars mn this diagram. whereas the shaded bands indicate the
ranges of d./A in which no stable fixed point can be ob-

PHYSICAL REVIEW E 70. 046221 (2004)

served. Instead the spiral core moves asymptotically on
closed attractive orbits, as previously illustrated for the tra-
jectories evolving from unstable fixed points in Fig. 2 [ex-
cept for Fig. 2(g) and the small attractor in the nuddle of Fig.
2(d)]. These properties of these orbits have some analogy to
limit cycles in phase space. The number of fixed points in-
creases stepwise with increasing domain size. Focusing on
the stable fixed points (solid bars), their number mcreases as
1, 4, 9...., corresponding to the relation Fm:'r'?2 mentioned
above. In addition, the stability of the fixed points changes
also with enlarging the domain For example, consider the
stability of the fixed point located at the center of the domain
{(distance [=0): the dynamics of thus point is unstable for
d/N<15 and becomes stable for 1.5=d /A<<2.0. For
d./N=2.0 it is unstable until d./\ =3 .5 Note that the saddle
points (dashed bars) keep their characteristics with increas-
mng d;.

V. CONCLUSIONS

Our results demonstrate that the dynamics of the spiral
waves under nonlocal feedback control depends sensitively
on the geometry, shape and size of the sensory domain, from
which the feedback signal 15 derived. The results in Fig. 1
show that the geometry of the sensory domain is reflected in
the shape of the spiral tip trajectory. For a fixed domain
shape—e g a square—a small mcrease of the domain size
resulfs i a decrease of the trajectory size as seen when com-
parmg Fig. 2(b) with 2(c) and Fig. 2(f) with 2(g). Several
shapes of the trajectory can be observed by enlarging the
domain Along the axis of increment of the domain size, the
dynamics can be divided into two types, stable and unstable
rotation, as shown in Figs. 2 and 5.

An explanation of the numerically observed effects is pro-
posed by using flow maps constructed from the analysis of
the feedback signal. The flow maps in Fig. 3 reveal that our
feedback forcing leads to the existence of a discrete set of
stable square-shaped orbits, which appear to be attractors for
the spiral core drift. In addition, the How maps demonstrate
that the local and global dynamics of the spiral wave can be
drastically changed by switching the sign of the feedback
gain [see Figs. 3(a) and 3(b)]. It 1s shown that the shape and
size of the trajectories of the spiral wave tip, as well as the
stability of the spiral rotation, can be changed by varying the
size or shape of the sensory domam. We suggest that the
feedback method introduced in this work offers an efficient
tool for controlling the dynamics of excitable media in biol-
ogy [15-17].
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Abstract

Rigidly rotating spiral waves are investigated in the light sensitive excitable Belousov-Zhabotinsky reaction under local feedback
control. Each light pulse is applied at a moment that corresponds to the passage of the wave front through a particular measuring
point. For a small distance between the measuring point and the initial location of the spiral core, a resonance attractor with hypo-
cycloidal shape is observed, whereas for a larger distance an epicycloidal resonance attractor occurs. The size of the attractor can be
changed by introducing a time delay. Experimental and numerical results are compared with an earlier developed theory on the res-

onance attractor.
@ 2004 Elsevier B.V. All rights reserved.

Controlling the dynamics of spiral waves is important
for many excitable media including chemical systems
like the Belousov-Zhabotinsky (BZ) reaction [1-6], or
biological systems like cardiac tissue [7-10]. One effec-
tive control method is a local feedback algorithm. It
has been suggested that this method can be appled to
eliminate spiral waves in cardiac tissue [8], i.e., il certain
properties of the medium are varied with the period of
rotation of a spiral wave, the spiral wave will be sub-
jected to a drift and can be eliminated at the boundary
of the medium. Such a local feedback has been realized
in the laboratory by disturbing spiral waves in the hight-
sensitive version of the BZ reaction [11] with a sequence
of short light pulses [12-18]. Each stimulus was applied
at an instant corresponding to the passage of the wave
front through a particular measuring point. This local
feedback mechanism was investigated originally for spi-
rals with a ‘meandering’ tip describing a hypocycloidal
trajectory that is characterized by two rotation periods:
To. as measured at the center of the trajectory and T,
as determined far away from it [14].

* Corresponding author. Fax: +66 2 3547151,
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0009-2614/5 - see front matter © 2004 Elsevier B.V. All rights reserved.

doi: 10 1016/.cplett. 2004.10.046

Under this feedback control two dynamical regimes,
called entrainment attractor and resonance attractor,
have been observed [14]. The entramment attractor
occurs if the measuring point is located close to the cen-
ter of the unperturbed trajectory (initial distance R,
about 1/3 of the spiral wavelength [14,15]). The period
of external modulation becomes T, = Ty, and the tip
moves on a hypoceyeloid in perfect synchrony with the
external signal. For larger Ry, the tip is found to move
on the resonance attractor. At this larger distance, the
average period of the triggered external stimuli is close
to T..., and no strict synchronization as in the case of
the entrainment attractor 15 obtained. Both regimes are
stable with respect to a small shift of the measuring
point, which always constitutes the symmetry center of
these attractor orbits [14].

More recently, this kind of local feedback control was
also applied to rigidly rotating spiral waves [16-18],
characterized by only one rotation period. In this case,
only the resonance attractor was observed and mostly
the trajectories of this attractor are epicycloids, i.e., their
petals are directed inwards. However, it was reported in
a numerical study [16] that very small resonance attrac-
tors may assume a hypocycloidal shape, ite., with
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outward directed petals. This latter case has not yet been
investigated in the laboratory, and we show in this Let-
ter that, in fact, hypocycloidal resonance attractors exist
for rigidly rotating spiral waves and that their occur-
rence depends sensitively on the mnitial conditions cho-
sen for the feedback signal. We investigate their
dynamical features under the application of time delays.
The results are corroborated by numerical simulations
and compared with theoretical predictions.

The reaction was carried out in a petri dish (diameter,
5.5 ¢m) containing a thin layer (thickness, (.30 mm) of
stlica gel [17]. The hght sensitive Ru[:bp}'}i_ catalyst
was immobilized in the gel at a concentration of 4.2
mM. The BZ solution without catalyst was poured on
top of the gel. After several minutes an equilibrium
between liquid and gel was established and the following
concentrations of reactants were reached: 0.20 M
NaBrO;, 0.17 M malonic acid, 0.39 M H,80,, and
0.09 M NaBr. The gel and the solution were kept at a
constant temperature of 25+ 1 °C.

A wave front was broken with a spot (diameter, 1 cm)
of intense light from a cold light source. As a conse-
quence, the open ends of the wave begin to form a pair
of spirals. One spiral was suppressed with the light spot
to leave a single spiral in the center of the dish. This pro-
cedure defined the initial condition for all of the experi-
ments. The gel in the petri dish was illuminated from
below with a video projector and controlled by a com-
puter. The pictures of the appearing oxidation waves
were observed in transmitted hght (4 =485 nm), de-
tected by a CCD camera and stored with a computer
program. The spiral rotation was characterized by con-
sidering the trajectory of the spiral tip detected with
image processing techniques, as specified in [3,14,17].

For a given background light intensity
In =0.061 £ 0.001 mchmz._ the spiral tip rotates rigidly
around a closed circle with a diameter of 0.36 £0.03
mm. The unperturbed rotation period 18 T,=
3941 +214 s and the spiral wavelength 1s
A=1.92 20,10 mm. The rigid rotation 1s disturbed by a
sequence of short light pulses (amplitude A, duration 5
s), applied at the moment, when the wave front passes
through a preselected measuring point, or after some time
delay . During the pulse the total light intensity [ is either
increased (positive pulse, > I) or decreased (negative
pulse, I'< Ip).

The hypocycloidal resonance attractor is found to oc-
cur if’ the measuring point is located very close to the
core center of the unperturbed spiral (Fig. la), ie.
Ry < 154, In this example the spiral wave tip asymptot-
ically approaches a five-lobed hypocycloidal trajectory
with its symmetry center coinciding with the measuring
point (Fig. Ib). The ratio of the rotation period at the
measuring point (Tmp) to the unperturbed period,
T/ Ty, is 0.867 and the ratio of the attractor radius
to the spiral wavelength, RJ/A 158 0.117. The light pulses

N (Y

_:\<_Q

Fig. 1. Hypocycloidal (a-b) and epicycloidal (c) resonance attractors of
the rigidly rotating spiral. Initial distance between measuring point
(cross) and unperturbed core center, Ry (a-b) 0.0934 and (c) 0.1554.
I = 0.06]1 mW/iem?;.4 = 0.050 mW/em?. (a) Transient state of trajectory
in (b), which is the stationary attractor several sprial rotations
after starting the feedback. Thick segments indicate application of light
pulses. The dottedline depicts the unperturbed spiral tip tmjectory. Open
and filled arrows indicate the rotation direction of the sprial tip and
thespiral core, resp. The radiusof an attractor R,is defined as the average
of inner and outer radius of the looping trajectory. Scale bar: | mm.

appear in the inner part of the loopy trajectory, and
the drift direction of the spiral core is opposite to that
of the tip rotation.

For Ry = 0.154, the spiral tip describes an epicycloi-
dal orbit centered at the measuring point, and we find
Top/Ty = 1.098, RJA=0.805. The light pulses occur
when the tip moves along the outer part of the loopy tra-
jectory. The sense of rotation is the same for the spiral
core and the spiral tip.

The dynamics of the hypocycloidal attractor was
further studied after introducing a time delay t into
the feedback loop. Examples for positive (4 = 0.040
mWﬁcmz) and negative pulse feedback (4 =—0.031
mWIcmz) are shown in Fig. 2. Starting with =0 in
Fig. 2a, the radius of the hypocycloidal resonance
attractor increases with t. This growth is accompanied
by an increase of the number of lobes in the trajectory,
ie., 5, 6, and 7 lobes for /T, =0, 0.026, 0.053, respec-
tively. If the delay reaches a certain value (o/T, =
0.067), a transition from the hypo- to the epicycloidal
regime takes place. In the range 0.067 < /T, < 0.679
only this regime 1s observed, although a very small
Ry was chosen. Note that the radius of the epicycloidal
attractor decreases with t in agreement with previous
findings [16,17]. At ©/T, = 0.679, however, this radius
becomes so small, that the measuring point is finally
located inside the spiral core and no light pulse 1s trig-
gered any more. Then a further increase of t brings the
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Fig. 2. Trajectories of the spiral tip under variation of the time delay  (a) positive pulse feedback with amplitude A4 = 0.043 mW/em?; (b) negative
pulse feedback with A = —0.031 mW/em®, where I, = 0.06] mW/cm®™. The measuring point (crosses) was initially placed close to the unperturbed
spiral core (Ry < 0.154), except for the two orbits in (b} at T,/ T, =0.805 and 1. Thick segments comespond to the application of light pulses. Scale

bar: 1 mm.

dynamics of the system back to the hypocycloidal re-
gime, where the size of the attractor orbits increases
with © (0.775 < o/Ty < 0.989). Hypocycloidal attractor
becomes again unstable at /T, = 1.038, consequently
the dynamics switches, once more, to the epicycloidal
regime.

Examples ol hypocycloidal resonance attractors ob-
served for negative pulse feedback are shown in Fig.
2bin the range 0.3 < /T, < 0.56. Here, the pulses (indi-
cated by thick segments) occur in the outer part of the
hypocyeloidal trajectory in contrast with the finding
for positive pulse feedback (see Figs. la and 2a), where
the pulses appear in the mner part. However, the time
delay plays a sunilar role here, 1.e.. the radius of the
attractor increases with 1.

Further instabilities of the hypocycloidal attractors
are observed, when a prolonged time delay (to/T, = 1)
1s introduced (Fig. 3). A clear deviation from a circular
symmetric attractor appears for o7, =2 (extended
hypocyeloid, Fig. 3c). With increasing 1 deviations be-
come more pronounced: Apparently, the trajectories in
Fig. 3d-f share a similar feature: they consist of a “head’
(circular, outward loops), and a “tail’ (extended, inward
loops). The length of the tail increases with T

The dependence of the attractor radius R, on the time
delay 1 1s summarized in Fig. 4. The characteristics of
the epicycloidal resonance attractors shown in this
graph (diamonds and crosses) agree well with previous
studies [16.17]. The new results for the hypocycloidal
resonance attractor are represented by squares and tri-
angles (see caption).

A theoretical analysis has previously shown [16] that
several stationary solutions of the attractor radius R,

(b) (c)

Fig. 3. Trajectories of the spiral wave tip observed for large time delays
r, where Iy =0.062 mW/em®, A = 0091 mWiem™ (a) oT,.=0; (b)
dTe=1; (c) ¢Ty=2; (d) o/T,=3; (e) t/T.=4; () t/T,=6. Thick
segments correspond to the application of light pulses. Scale bar: | mm.

exist for each value of the time delay t and that the fol-
lowing equations should be satisfied:

. @(R,) — arccos(h/(2R,)) — . "
= ) ( JII

Tu 2

T O(R,) + arccos(h/(2R;)) — \.
= fm, (2)

Ty n

where m 18 a positive integer. The function @(r) (see in-
set of Fig. 4) and the values & and o are measured quan-
tities (cf. [17]). The size of the resonance orbit can then
be predicted at any time delay t by substituting these
data into Egs. (1) and (2). Linear stability analysis
shows that Eq. (1) describes stable orbits and Eq. (2)
unstable ones [16]. The computed results are shown in



O.-U. Kheowan et al. | Chemical Physics Letters 399 (2004) 506-511 509

T T | T T |\bl T | T
L N
"R B, EO
N ‘\\B‘@
e 0.4
EooRa ‘A0 g i 005
0.6 - \‘:\ \?\ A —
TR N
2 I 1:\“\4‘ 1‘\\0 ]
T RN \ 1
04 L \\'\-\ AN —
> ok N _
B ot S ]
& ALY LN
L e %
02y B\Q N A 3
¥ ] hY A
.e,éé‘ 5 DDDD __9 L.ﬂ\ _,_/ i
LU e T T A T L

0.0 0.z 0.4 0.6 0.8 1.0 1.2
©/Ty

Fig. 4. Attractor radius R, for different delay times t: diamonds and
crosses, epicycloidal attractors with negative (4 = —0.030 mW/em®)
and positive pulse (A = 0.05] mW/em?); trinngles and squares,
hypocyeloidal attractors with positive (A4 = 0.041 mW/em®) and
negative pulse (A = —0.031 mW/em®), where f, = 0.06] mW/em®. Solid
and short-dashed curves are prediction of R,(t) from Eqgs. (1) and (2)
for stable and wunstable hypocycloidal attractors, resp, with
b, =021520003 mm, ,=400x0.11 rad for negative, and
fi, =0.328 £ 0.005 mm, f, =0.91 £0.07 rad for positive pulse. Sim-
ilarly, long-dashed and dotted curves are prediction of R, (t) for stable
and unstable epicycloidal attractors, resp. fnset: function @(r) spec-
ifying the experimentally observed shape of the spiral wave front. &(r)
increases with rin the vicinity of the core radius r,, reaches a maximum
at r = rg, and becomes negative for r > ry.

Fig. 4, where each branch of the dependency R, was
obtained for a fixed value of m.

In this figure there are mostly long-dashed branches
and mostly short-dashed branches. The mostly short-
dashed curves were computed from Eq. (2), with a pos-
itive sign in front of arccos(/(2R,)). Since the change of
slope of the @(r) curve in the interval from r, to ry im-
plies a switching of stability [16]. there is an unstable
portion of these curves (short-dashed) and a stable one
(solid). Consider the shortest branch close to the ordi-
nate of Fig. 4 (¢/T, < 0.05). Qur experimental results
suggest that with positive pulses there exist only hypo-
cycloidal attractors in this interval, whereas epicycloidal
ones will not be stable. In a similar manner, the existence
of other sets of hypocycloidal resonance attractors ob-
served n experiments (all squares and triangles in Fig.
4) can be explained with other branches computed
according to Eq. (2). Note that there are very small
unstable branches (e.g., dotted arc-shaped segment at
o/ Ty = 0.2) connected to the lower end of each stable
branch of epicyeloidal resonance attractors, as reported
earlier [16].

Some of these results were complemented by
numerical  simulations  using  Oregonator  model
[19.20] extended by a term ¢ = ¢(r) that accounts
for the effect of bromide ions produced by the illumi-
nation [21]:

& 1 , . .
gz —u—u? = (fir 4 r,b:I“ q] DV, (3)
o & ) Tut g o
$= w— . (4)
ot o

Here, the variables w and v correspond to the concentra-
tion of the autocatalytic species HBrO, and the oxidized
form of the catalyst, respectively. Due to the immobili-
zation of the catalyst, variable v does not diffuse in this
model. The parameters ¢ =0.05, g = 0002, f=3.5 and
Dy, =1 are kept constant.

A series of trajectories of the spiral wave tip simu-
lated under local feedback control is shown in Fig. 5a.
These simulation results are consistent with  the
epl- and hypocycloidal resonance attractors observed
experimentally (see Fig. 2a). A numerical study of the
dependence of their radius R, on 71, as shown in
Fig. 5b, 1s 1 good agreement with the theoretical predic-
tions. There 15, however, some discrepancy with the
experimental findings (see Fig. 4). In the experiments
hypocycloidal resonance attractors are observed m a
quite extended range of delay times, whereas the corre-
sponding intervals in theory and smmulations are
comparatively narrow. This disagreement becomes
more pronounced as 1 increases. A possible reason for
this is the relaxation and delayed response of the spiral
wave in experiments following the application of a light
pulse [22].

Our experimental results show that there are two
types of resonance attractors that can be observed for a
rigidly rotating spiral wave under local feedback control:
an epi- and a hypocycloidal one. Type, size and stability
of the attractor can be changed by introducing a time de-
lay into the feedback loop. In Table 1 some of the char-
acteristic properties are compared with each other.

Tip trajectories corresponding to near-resonance con-
ditions of the two attractors remind one of the resonance
drift induced by periodic external forcing of rigidly rotat-
ing spiral waves [23]. If T, and T, are exactly equal, the
perfect resonance is expected, with the core center
moving along a straight line. But the period of modula-
tion induced by the local feedback mechanism is just
near-resonance, 1.e., either Tiyp = Ty, or Typ < T, there-
fore the trajectory has either epi- or hypocycloidal shape.

A control parameter that defines the boundary be-
tween the two types of attractors is the initial distance
Ry between measuring point and core center. In fact,
the hypocycloidal shape is observed for Ry <0.154,
whereas for larger values of Ry only the epicycloidal
one appears to be realized. On the other hand, Ry must
not be too small, 1.e., it must be larger than the core ra-
dius, r,. Otherwise, with the measuring point located in-
side the core no light pulse 1s triggered. According to [16]
the hypocycloidal resonance attractor is reached for the
interval r, < Ry < ry. In our experiments r, = 0.0704 and



510

0.0 0.1
b
{ } 0.4: T T T |‘| T I T T T I T T T | T t\l I T T T :
E’ 02 ;_\‘l “" K _;
eP} ‘r_ﬁ@] ﬂﬁ E
) Bt e e T e i
0.0 0.2 0.4 0.6 0.8 1.0 1.2
Ty

O.-U. Kheowan et al. [ Chemical Physics Letters 399 (2004) 506-511

0.7

Fig. 5. (a) Simulation of epi- and hypocycloidal attmetors computed from Egs. (3) and (4) for positive pulse (A4 = 0.0035, duration = 12.197 ) under
variation of t. The measuring point (crosses) was initially placed close to the unperturbed spiral core. Thick segments correspond to the application
of the light pulses. Scale bar: 20 s.u. (b) Attractor radius R, for different t: triangles, attractors with positive pulse; squares, attractors with negative
pulse (4 = —0.0020, duration = 12.197,), with background value ¢ = 0.01. Solid and dashed curves: R,(t) for stable and unstable solutions, resp,
computed from Eq. (2} with: £, = 0.0974, i, = 5.026 for a negative pulse; fi, = 0.128.4, s, = 0.848 for a positive pulse.

Table |
Properties of the epi- and hypocycloidal resonance attractor

Characteristic property

Epicycloidal attractor

Hypocycloidal attrctor

Rotation direction of tip and core Coincide
Rotation period, Ty >T,
Attractor size Large

Pulse interval location
Effect of increasing ©

Quter part of the trajectory
Attractor radius decreases

Opposite

=T,

Small

Inner part of the trajectory
Attractor radius increases

ro=0.1524 (see inset of Fig. 4). Hence, the boundary
value Ry <0.154 is in good agreement with theoretical
expectations [16].

Interestingly, most of the properties of the hypocye-
loidal resonance attractor shown in Table 1, which refer
to the ngidly rotating spiral waves, are very similar to
those of the entrainment attractor for meandering
spirals [14,15], although the dynamics of the ngidly
rotating and meandering spirals differ significantly by
the fact that their movement 1s composed of either one
(spatially uniform) or two (not spatially uniform) rota-
tion frequencies.

To be noticed 1s the difference in the modulation per-
1od. For nigid rotation it 1s equivalent to the rotation per-
iod at the measuring point Tmp where Tmp < Ty for the
hypocyeloidal resonance attractor. On the other hand,
for the entrainment attractor of meandering spirals, 1t
1s equal or very close to the period T, at the center of
the unperturbed hypocycloidal trajectory. Finally, we
point to our observation that the attractor shapes deviate

strongly rom circular symmetry, 1f the time delay in the
feedback loop becomes relatively long. To study further
instabilities of the resonance attractor for such long
delays 1s an interesting challenge for future work.
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