

รายงานวิจัยฉบับสมบูรณ์

โครงการ ฤทธิ์และกลไกการออกฤทธิ์ของสารบาราคอลในการแก้ไขและป้องกัน ความผิดปกติของทางเดินอาหาร

โดย ผศ.ดร. ฉัตรศรี เดชะปัญญา และคณะ ภาควิชาสรีรวิทยา คณะแพทยศาสตร์ มหาวิทยาลัยศรีนครินทรวิโรฒ

30 กันยายน 2548

สัญญาเลขที่ MRG4680196

รายงานวิจัยฉบับสมบูรณ์

โครงการ ฤทธิ์และกลไกการออกฤทธิ์ของสารบาราคอลในการแก้ไขและป้อังกัน ความผิดปกติของทางเดินอาหาร

คณะผู้วิจัย

- 1. ผศ.ดร. ฉัตรศรี เดชะปัญญา มหาวิทยาลัยศรีนครินทรวิโรฒ
- 2. ผศ.สพ.ญ.ดร. สุทธาสินี ปุญญโชติ จุฬาลงกรณ์มหาวิทยาลัย
- 3. ผศ.ดร. วัชรีวรรณ ทองสะอาด มหาวิทยาลัยศรีนครินทรวิโรฒ

ชื่อนักวิจัยที่ปรึกษา ศาสตราจารย์ ดร. นทีทิพย์ กฤษณามระ ภาควิชาสรีรวิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล

สนับสนุนโดยทบวงมหาวิทยาลัย และสำนักงานกองทุนสนับสนุนการวิจัย

กิตติกรรมประกาศ

ผู้วิจัยขอขอบคุณ สำนักงานคณะกรรมการอุดมศึกษา (สกอ.) และ สำนักงานกองทุน สนับสนุนการวิจัย (สกว.) ที่ให้ทุนพัฒนาศักยภาพในการทำงานวิจัยของอาจารย์รุ่นใหม่ ประจำปี 2546 เพื่อสนับสนุนการทำวิจัย และเปิดโอกาสให้ผู้วิจัยได้ใช้ความรู้ความสามารถของตนเองในการ ทำวิจัยโดยเฉพาะอย่างยิ่งในสาขาวิชาที่ตนเองถนัดและมีความเชี่ยวชาญ เพื่อเป็นการเสริมสร้าง ประสบการณ์การทำวิจัย การพัฒนาทางด้านความคิดและวิชาการ และใช้ความรู้ทางวิชาการที่ได้ เรียนมาให้เกิดประโยชน์มากที่สุด ผู้วิจัยขอขอบคุณเป็นอย่างยิ่งสำหรับ ศาสตราจารย์ นทีทิพย์ กฤษณามระ นักวิจัยพี่เลี้ยงในการให้คำปรึกษาและคำแนะนำ ตลอดจนความช่วยเหลือในทุก ๆ ต้านเป็นอย่างดียิ่งจนกระทั่งผลงานได้รับการตีพิมพ์ในวารสารระดับนานาชาติได้ อีกทั้งยังเกิดความ ร่วมมือในการทำวิจัยต่อไป และท้ายที่สุดขอขอบคุณภาควิชาสรีรวิทยา และคณะแพทุยศาสตร์ ตลอดจนมหาวิทยาลัยศรีนครินทรวิโรฒ ที่ให้การสนับสนุนการทำวิจัย สนับสนุนด้านวัสดุครุภัณฑ์ และเครื่องมือเครื่องใช้ในการทดลองที่จำเป็น ทั้งหมดนี้นับว่ามีส่วนช่วยให้การวิจัยครั้งนี้สำเร็จลุล่วง ไปด้วยดี

สารบัญ

	หน้า
บทคัดย่อ	1
Abstract	2
Executive summary	3
เนื้อหางานวิจัย	
Introduction	8
Material and methods	10
Results	. 13
Discussion	24
References	30
Output ที่ได้จากโครงการ	34
ภาคผนวก	35

ABSTRACT

Project Code: MRG4680196

Project Title: An investigation on effects and mechanism of action of barakol on cure and

prevention of gastrointestinal disorders

Investigator: Chatsri Deachapunya, Sutthasinee Poonyachoti and Watchareewan

Thongsaard

E-mail Address: chatsri@swu.ac.th

Project Period: 1 July 2003 - 30 June 2005

Barakol is a purified extract of Cassia siamea, a plant that has been used as a laxative in traditional medicine. In this study the effects of barakol on anion transport and immunoglobulin A (IqA) secretion across the rat colon epithelium were investigated. Colonic epithelium was mounted in Ussing chambers and bathed with Ringer solution. Addition of 1 mM barakol to the basolateral solution produced a slow increase in lsc in proximal colon and distal colon by 24.5 \pm 2.2 μ A/cm² and 24.2 \pm 1.4 μ A/cm², respectively. Barakol increased lsc in a concentration dependent manner with an EC50 value of 0.4 mM. The barakol-stimulated increase in lsc was inhibited by subsequent treatment with 500 μM diphenylamine-2-carboxylic acid or 400 µM glibenclamide added to the apical solution, and 200 µM burnetanide added to the basolateral solution. Pretreatment of the tissues with 200 μM burnetanide, but not 10 μM amiloride, completely abolished the barakol-increased lsc. Ion substitution experiments showed an inhibition of barakol-stimulated Isc in choride-free solution, but not in bicarbonate-free solution. In addition, pretreatment of tissues with 10 µM tetrodotoxin or 10 μM indomethacin, but not 1 μM atropine or 10 μM hexamethonium, partially inhibited the lsc response by barakol. In the presence of both tetrodotoxin and indomethacin, the barakol-stimulated lsc response was nearly abolished. These results demonstrated the stimulatory effect of barakol on the burnetanide-sensitive chloride secretion in rat colon. The effect of barakol was partially mediated by stimulation of submucosal nerves and through the release of cyclooxygenase metabolites. In addition, barakol markedly stimulated the secretion of IgA both in vivo and in vitro studies in rat colon. All of these findings provide the effect and the mechanism of action of barakol as a secretagogue and its role on enhancement of non-specific mucosal immunity in mammalian colon.

Keywords: Barakol, Cassia siamea, Cl secretion, IgA, laxative, rat colon Ussing chamber

รหัสโครงการ: MRG4680196

ชื่อโครงการ: ฤทธิ์และกลไกการออกฤทธิ์ของสารบาราคอลในการแก้ไขและป้องกันความผิดปกติ

ของทางเดินอาหาร

ชื่อนักวิจัย: ฉัตรศรี เดชะปัญญา สุทธาสินี ปุญญโชติ และ วัชรีวรรณ ทองสะอาด

E-mail Address : chatsri@swu.ac.th

ระยะเวลาของโครงการ : 1 กรกฎาคม 2546 – 30 มิถุนายน 2548

บาราคอลเป็นสารสกัดบริสุทธิ์จากใบและดอกขึ้เหล็กซึ่งเชื่อว่ามีสรรพคุณเป็นยาระบาย การศึกษาครั้งนี้มีวัตถุประสงค์เพื่อศึกษาฤทธิ์และกลไกการออกฤทธิ์ของสารสกัดบาราคอลต่อการ เปลี่ยนแปลงการขับหลั่งสารน้ำและอีเล็กโทรไลต์ในเยื่อบุทางเดินลำไส้ใหญ่ ซึ่งเป็นกลไกหี่สำคัญใน แง่ของการเป็นยาระบาย รวมถึงศึกษาผลของบาราคอลต่อการเปลี่ยนแปลงการขับหลั่งของ immunoglobulin A (IgA) ในลำไส้ใหญ่ของหนูขาว ทำการทดลองโดยนำเยื่อบุลำไส้ใหญ่มาติดดั้ง เข้ากับ Ussing chambers ที่มีสารละลาย Ringer solution อยู่ทั้ง 2 ด้าน และเชื่อมต่อกับเครื่อง voltage clamp เพื่อทำการวัด short circuit current (Isc) และ transepithelial potential difference (PD) การทดลองให้บาราคอล (1mM) ทางด้าน basolateral solution พบว่ามีผลเพิ่ม isc ที่ลำไส้ ใหญ่ส่วนต้นและส่วนปลาย 24.5 ± 2.2 μA/cm² และ 24.2 ± 1.4 μA/cm² ตามลำดับ บาราคอลเพิ่ม lsc ตามความเข้มข้นที่เพิ่มขึ้นโดยมีค่า EC₅₀ 0.4 mM การเพิ่ม lsc ของบาราคอลถูกยับยั้งโดยการ ใส่ diphenylamine-2-carboxylic acid (500 µM) หรือ glibenclamide (400 µM) ทางด้าน apical solution และ burnetanide (200 μM) ทางด้าน basolateral solution การให้ burnetanide (200 μM) ก่อนการให้บาราคอลสามารถยับยั้งผลของบาราคอลในการเพิ่ม Isc ได้อย่างสมบูรณ์ ในขณะที่ amiloride (10 μM) ก่อนไม่มีผลในการยับยั้งผลของบาราคอล ผลของบาราคอลยังถูกยับยั้งใน สารละลายที่ปราศจากคลอไรด์แด่ไม่ถูกยับยั้งในสารละลายที่ปราศจากไบคาร์บอเนต นอกจากนี้การ ให้ tetrodotoxin (10 μM) หรือ indomethacin (10 μM) ก่อนสามารถยับยั้งผลของบาราคอลได้เป็น บางส่วน ในขณะที่การให้ atropine (1 μM) หรือ hexamethonium (10 μM) ก่อนไม่มีผลในการ ยับยั้งผลของบาราคอล จากการทดลองแสดงให้เห็นฤทธิ์ของบาราคอลด่อการกระตุ้นการหลั่ง คลอไรด์ในลำไส้ใหญ่หนูโดยผ่านทาง bumetanide-sensitive pathway โดยมีกลไกการควบคุมผ่าน ระบบประสาททางเดินอาหารในชั้น submucosal และการหลั่ง cyclooxygenase นอกจากนี้บาราคอลยังสามารถกระตุ้นการหลั่ง IgA จากลำไส้ใหญ่ทั้งในหลอดทดลองและตัว สัตว์ทดลอง จากการทดลองทั้งหมดแสดงให้เห็นถึงประโยชน์และสรรพคุณของบาราคอลในการเป็น ยาระบายอย่างอ่อนที่มีกลไกการออกฤทธิ์ที่แน่นอน และยังมีบทบาทสำคัญในการกระตุ้นระบบ ภูมิคุ้มกันของเยื่อเมือกในลำไส้ใหญ่ของสัตว์เลี้ยงลูกด้วยนมอีกด้วย

คำหลัก Cassia siamea, Immunoglobulin A, Ussing technique, การหลั่งคลอไรด์, บาราคอล, ยาระบาย, ลำไส้ใหญ่ของหนู

EXECUTIVE SUMMARY ทุนพัฒนาศักยภาพในการทำงานวิจัยของอาจารย์รุ่นใหม่

1. ความสำคัญและที่มาของปัญหา

ในปัจจุบันความผิดปกติของร่างกายอันมีสาเหตุเบื้องต้นมาจากความผิดปกติของการ ทำงานของระบบทางเดินอาหาร เช่น ท้องเสียหรือท้องผูกเรื้อรัง การติดเชื้อฉวยโอกาสในคนปกติ หรือผู้ป่วยที่มีภูมิคุ้มกันบกพร่อง (Human Immunodeficiency Syndrome) เป็นปัญหาที่สำคัญของ ประเทศซึ่งทำให้เกิดการสูญเสียทางเศรษฐกิจสำหรับการรักษา และสำหรับการสั่งซื้อยาแผนปัจจุบัน ที่ผลิตจากต่างประเทศเข้ามาเป็นจำนวนมาก ความผิดปกติดังกล่าวนั้นมีสาเหตุเกิดมาจากการ ทำงานที่มากหรือน้อยเกินไปของระบบทางเดินอาหารซึ่งประกอบด้วย การหดตัวของกล้ามเนื้อ เรียบ การขับเคลื่อนตัวของลำใส้ การขับหลั่งสารน้ำและอีเล็กโทรไลต์ การดูดซึมสารอาหาร และ ระบบภูมิคุ้มกันของทางเดินอาหาร เป็นตัน โดยการทำงานดังกล่าวนี้อยู่ภายใต้การควบคุมของ ระบบประสาทอัดโนมัติเป็นส่วนใหญ่ และมักจะได้รับผลกระทบมาจากสิ่งแปลกปลอม เช่น จุลินทรีย์ ที่ปนเปื้อนมากับอาหาร เป็นต้น

ในปัจจุบันได้มีการนำสารหลายชนิดในกลุ่ม inorganic acid หรือสารสมุนไพรที่มีถุทธิ์ทาง ชีวภาพ มาช่วยแก้ไข บรรเทา ป้องกันความผิดปกติและลดอาการไม่พึงประสงค์ที่มีสาเหตุมาจาก การทำงานที่ผิดปกติของระบบทางเดินอาหารได้ จากรายงานการศึกษาที่ผ่านมาพบว่ามีสมุนไพร ต่าง ๆ จำนวนมากโดยเฉพาะสมุนไพรจากต่างประเทศในตระกูล senna, sennosides A และ B, cascara sargrada และ danthron ได้ถูกสกัด (crude extract) มาใช้เป็นยาระบาย บรรเทา และ แก้ไขอาการท้องผูก สมุนไพรเหล่านี้มีส่วนประกอบที่สำคัญคือ สารจำพวก anthraquinones ซึ่ง ออกฤทธิ์ส่วนใหญ่ที่ลำใส่ใหญ่โดยเพิ่มการขับเคลื่อนตัวของลำใส่ใหญ่ (peristalsis) และการขนส่ง สารน้ำและอิเล็กโตรไลท์ ดังนั้นจึงมีการใช้สารสมุนไพรนี้กันอย่างแพร่หลายในประเทศไทยในรูปของสมุนไพรนำเข้าจากต่างประเทศซึ่งมีราคาแพง หากเราสามารถนำพืชสมุนไพรที่หาได้ง่ายและ ปลูกได้ทั่วไปในประเทศไทยมาทำการศึกษาอย่างจริงจัง และทำการสกัดสารบริสุทธิ์ (pure compound) จากพืชสมุนไพรเหล่านี้มาทำการศึกษาอย่างจริงจัง และทำการสกัดสารบริสุทธิ์ (pure อวัยวะต่าง ๆ ของร่างกาย ตลอดจนกลไกการออกฤทธิ์แล้ว ก็สามารถที่จะพัฒนาต่อไปเป็นยาที่ใช้ เสริมหรือทดแทนยาแผนปัจจุบัน เพื่อใช้กันในประเทศไทยตลอดจนส่งออกขายยังต่างประเทศ ก็จะ เป็นการพึ่งพาดนเอง ช่วยส่งเสริมและพัฒนาเศรษฐกิจของประเทศให้ดียิ่งขึ้น

ดามความเป็นจริงแล้วตันขี้เหล็ก (Cassia siamea) เป็นพืชสมุนไพรที่จัดอยู่ในตระกูล เดียวกันนี้สามารถปลูกได้ทั่วไปในแถบเอเชียตะวันออกเฉียงใต้ ราคาถูก และหาได้ง่ายในประเทศ ไทย ใบและดอกขี้เหล็กถูกนำมาปรุงอาหารเพื่อรับประทานกันอย่างกว้างขวางโดยเชื่อในสรรพคุณ ว่าสามารถใช้เป็นยาระบายได้ อย่างไรก็ตามยังไม่มีผลงานวิจัยทางวิทยาศาสตร์รองรับอย่างเด่นชัด ผลของการเป็นยาระบายของขี้เหล็กส่วนหนึ่งอาจเป็นผลมาจากสารจำพวก anthraquinones ที่พบ

อยู่ในใบและดอกของขึ้เหล็กเช่นเดียวกัน รวมทั้งสารประกอบอื่น ๆ ที่ยังไม่ทราบแน่ชัด อย่างไรก็ ตามมีรายงานว่าการรับประทานขึ้เหล็กเข้าไปเป็นจำนวนมาก อาจก่อให้เกิดความเป็นพิษต่อตับได้ ในปี ค.ศ. 1969 Hassanali - walji และคณะได้สกัดสารออกฤทธิ์สำคัญตัวหนึ่งจากใบและดอก ขึ้เหล็ก สารสกัดนี้เรียกว่า บาราคอล (barakol) มีชื่อทางเคมี 3α, 4-dihydro-3α, 8-dihydroxy-2, 5dimethyl-1, 4-dioxaphenalene (C₁₃H₁₂O₄) จากรายงานการศึกษาส่วนใหญ่ถึงผลของบาราคอลต่อ การทำงานของระบบประสาทส่วนกลางพบว่า มีฤทธิ์ในการคลายความวิตกกังวล ต้านพฤติกรรม การสบัดหัวที่ถูกกระดุ้นโดยสารสื่อประสาทเซโรโตนิน ลดการหลั่งและลดระดับสารสื่อประสาท โดปามีนในสมอง เป็นต้น ส่วนผลของบาราคอลต่อการทำงานของระบบทางเดินอาหารยังมี การศึกษากันน้อยมาก การศึกษาในห้องปฏิบัติการของทีมผู้วิจัย พบว่าบาราคอลสามารถออกฤทธิ์ เพิ่มการหดตัวของกล้ามเนื้อเรียบลำไส้เล็กที่ถูกกระตุ้นด้วยสนามไฟฟ้าได้ รวมทั้งสามารถด้านฤทธิ์ ของนอร์อิพิเนฟฟรินที่ลดการหดตัวของกล้ามเนื้อ แสดงให้เห็นถึงฤทธิ์ของการเป็นยากลุ่ม prokinetic drug ของบาราคอล นอกจากนี้ยังพบว่าบาราคอลมีความเป็นพิษด่ำ มีค่า LD₅₀์ของหนู ขาวและหนูถีบจักร ~1000-1400 mg/kg และไม่ก่อให้เกิดความเป็นพิษต่อตับและไต จากการให้ บาราคอลในความเข้มข้นสูงถึง 100 mg/kg แก่สัตว์ทดลองเป็นเวลา 30 วัน ดังนั้นบาราคอลจึง น่าจะเป็นสารที่ควรได้รับการศึกษาต่อไป และควรจะมีฤทธิ์ต่อการทำงานของระบบทางเดินอาหาร ในด้านอื่น ๆ ด้วย นอกเหนือจากฤทธิ์ของการเป็นยา prokinetic drug

จากการศึกษาเบื้องต้น (preliminary study) โดยทีมผู้วิจัยพบว่าบาราคอลมีแนวโน้มเพิ่ม การขับหลั่งสารน้ำและอีเล็กโทรไลต์ในเยื่อบุทางเดินลำไส้ใหญ่ ซึ่งเป็นกลไกที่สำคัญในแง่ของการ เป็นยาระบาย จึงมีความสนใจที่จะศึกษาถึงชนิดของไอออนรวมทั้งกลไกการออกฤทธิ์ของ บาราคอลต่อไป และหากบาราคอลมีฤทธิ์เพิ่มการขนส่งสารน้ำและอิเล็กโทรไลต์แล้ว จะคึกษาต่อไป ถึงผลต่อการขับหลั่งสารสำคัญที่มีบทบาทต่อระบบป้องกันของทางเดินอาหาร เช่น secretory Immunoglobulin A (slgA) ซึ่งมักจะหลั่งออกมามากเมื่อมีการเพิ่มการหลั่งสารอีเล็กโทรไลด์ เพื่อ ช่วยทำลายจุลินทรีย์ที่ก่อให้เกิดโรคในทางเดินอาหาร นอกจากนี้การออกฤทธิ์เพิ่มการขับหลั่ง อีเล็กโทรไลต์บางชนิด เช่น คลอไรด์ จะช่วยเพิ่มความเป็นกรดให้กับทางเดินอาหารส่วนลำไส้ใหญ่ ทำให้แบคทีเรียกลุ่ม Lactobacillus เจริญเติบโตส่งผลลดการเจริญของแบคทีเรียที่ก่อให้เกิดโรคที่จะ ลุกลามเข้าสู่ร่างกาย รวมทั้งสามารถลดอุบัติการของการเกิดมะเร็งในลำไส้ใหญ่ส่วนปลายได้อีกด้วย หากบาราคอลมีถุทธิ์เพิ่มการขับหลั่งสารน้ำและอีเล็กโทรไลต์ รวมทั้ง slgA ด้วยกลไกการออกฤทธิ์ที่ แน่นอน ถูกหลักการทางวิทยาศาสตร์ ไม่ก่อให้เกิดความเป็นพิษต่อร่างกาย ก็สามารถนำไปเป็น ข้อมูลพื้นฐานทางการแพทย์ในการพัฒนายาที่ใช้เสริมหรือทดแทนยาแผนปัจจุบัน ในการที่จะช่วย รักษา แก้ไข้ บรรเทาอาการท้องผูก และเพื่อใช้เพิ่มการทำงานของระบบป้องกันของทางเดินอาหาร และลดอัตราเสี่ยงต่อการดิดเชื้อฉวยโอกาสที่ปนเปื้อนมาจากภายนอก โดยเฉพาะอย่างยิ่งผู้ป่วยที่มี ความบกพร่องของระบบประสาททางเดินอาหาร เช่น ท้องผูกแบบเรื้อรัง หรือมีการขยายขนาดของ ลำไส้ใหญ่ (megacolon) ที่มักจะมีการขับเคลื่อนตัวของทางเดินอาหาร หรือการหลั่งสารน้ำและ อีเล็กโทรไลด์ลดลงอย่างมาก รวมทั้งผู้ป่วยมีภาวะของภูมิคุ้มกันด่ำร่วมด้วยจากภาวะเครียดจากทาง

จิตใจ ภาวะเครียดจากการผ่าตัด หรือ ในภาวะของผู้ป่วย HIV ก็จะทำให้เชื้อสามารถเข้าสู่ร่างกาย ได้รวดเร็วยิ่งขึ้น

2. วัตถุประสงค์

- 2.1 ศึกษาฤทธิ์ของสารสกัดบาราคอลต่อการขนส่งสารน้ำและอิเล็กโทรไลด์ผ่านเชลล์เยื่อบุลำไส้ ใหญ่ทั้งส่วนต้นและส่วนปลาย
- 2.2 ศึกษาถึงชนิดของไอออนที่ตอบสนองต่อการออกฤทธิ์ของบาราคอลที่ลำไส้ใหญ่
- 2.3 ศึกษากลไกการออกฤทธิ์ของสารสกัดบาราคอลต่อการขนส่งไอออนผ่านเซลล์เยื่อบุลำไส้ ใหญ่
- 2.4 ศึกษาผลของสารสกัดบาราคอลต่อการเปลี่ยนแปลงปริมาณการขับหลั่งของ immunoglobulin A (IgA)

ระเบียบวิธีการวิจัย

การวิจัยครั้งนี้เป็นการศึกษา in vitro โดยใช้ลำใส้ใหญ่ของหนูขาว หลังจากเปิดช่องท้องเพื่อ นำลำใส้ใหญ่ที่มีความยาวขนาด 10-12 ซม ออกมา ตัดให้เป็นชิ้นเล็ก ๆ แล้วนำมาติดตั้งเข้ากับ Ussing chamber ที่ต่อเข้ากับเครื่อง voltage clamp เพื่อทำการวัดค่าทางไฟฟ้าได้แก่ short circuit current, potential differences และ tissue conductance ที่แสดงถึงการขนส่งไอออนผ่านเซลล์เยื่อ บุลำใส้อย่างต่อเนื่อง โดยทำการศึกษาผลและกลไกการออกฤทธิ์ของสารสกัดบาราคอลต่อการ เคลื่อนผ่านไอออน ซนิดของไอออนที่ตอบสนองต่อการออกฤทธิ์ของบาราคอล ตลอดจนผลของ บาราคอลต่อการขับหลั่ง Immunoglobulin A (IgA) โดยมีการทดลองต่าง ๆ ดังนี้

- 3.1 การศึกษาผลของบาราคอลด่อการขนส่งไอออนผ่านเชลล์เยื่อบุลำใส้ใหญ่ โดยศึกษาผลของ บาราคอลที่ความเข้มขันต่าง ๆ กันต่อการขนส่งไอออนในลำไส้ใหญ่ เพื่อหาค่าความเข้มขัน ที่ทำให้เกิดการตอบสนอง 50% (EC₅₀) ทำการศึกษาทั้งลำไส้ใหญ่ส่วนต้น (proximal colon) และส่วนปลาย (distal colon) ตลอดจนการศึกษาเปรียบเทียบผลของ บาราคอลกับผลของ acetylcholine หรือ cabachol และ norepinephrine ต่อการขนส่ง ไอออนในลำไส้ใหญ่ ตลอดจนดูผลในการต้านฤทธิ์และเสริมฤทธิ์โดยใช้ขนาดความเข้มขัน ของสารต่าง ๆ ที่ให้การตอบสนองสูงสุด
- 3.2 การศึกษาชนิดของไอออนที่เกี่ยวข้องกับผลของบาราคอลในการดูดกลับและขับออก อีเล็กโทรไลต์ โดยใช้สารที่ยับยั้งการทำงานของ ion channel ร่วมกับการทดลองใช้ไอออน อื่นเพื่อทดแทน (ion substitution experiment) เพื่อยืนยันชนิดของไอออนที่คาดว่าจะ เกี่ยวข้องกับการเปลี่ยนแปลงค่า Isc ของเนื้อเยื่อต่อบาราคอล
- 3.3 การศึกษากลุไกการออกฤทธิ์ของบาราคอลต่อการขนส่งไอออน เพื่อดูว่าออกฤทธิ์โดยตรง หรือผ่านการทำงานของระบบประสาท submucosal plexus ในทางเดินอาหาร โดยการใช้ สารที่ยับยั้งการเหนี่ยวนำของกระแสประสาท (tetrodotoxin) และสารที่ยับยั้งตัวรับระบบ

ประสาท cholinergic (atropine) นอกจากนี้ยังศึกษาถึงกลไกการออกฤทธิ์ของบาราคอลที่ อาจเกี่ยวข้องกับการสร้าง prostaglandins โดยใช้สารที่ยับยั้งเอ็นไซม์ cyclooxygenase (indomethacin)

3.4 การศึกษาผลของบาราคอลต่อปริมาณการขับหลั่งของ IgA ที่สามารถตรวจวัดด้วยวิธี Enzyme – linked immunoabsorbent assay (ELISA)

ข้อมูลที่ได้จากการทดลอง จะถูกนำเสนอในรูปค่าเฉลี่ย ± SEM (standard error of mean) เปรียบเทียบผลการทดลองระหว่างกลุ่มควบคุมและกลุ่มที่ให้ยาในขนาดต่าง ๆ โดยใช้ Analysis of Variance (ANOVA) ค่า P < 0.05 ถือว่ามีนัยสำคัญทางสถิติ

4. แผนการดำเนินการวิจัยตลอดโครงการในแต่ละช่วง 6 เดือน

ปีที่ 1 : ช่วง 6 เดือนแรก

- จัดเตรียมอุปกรณ์และเครื่องมือที่ใช้ในงานวิจัย
- ศึกษาผลของสารบาราคอลด่อการขนส่งไอออนผ่านเซลล์เยื่อบุลำไส้ใหญ่ส่วนดันและส่วน ปลาย
- ศึกษาชนิดของไอออนที่เกี่ยวข้องกับผลของบาราคอลในการดูดกลับและขับออก อีเล็กโทรไลต์

ปีที่ 1 : ช่วง 6 เดือนหลัง

- ศึกษากลไกการออกฤทธิ์ของบาราคอลด่อการขนส่งไอออน
- รุวบรวมและวิเคราะห์ข้อมูล
- สรุปผลงานวิจัยและเขียนรายงาน
- จัดทำ manuscript สำหรับดีพิมพ์

ปีที่ 2 : ช่วง 6 เดือนแรก

- ศึกษาผลของบาราคอลด่อการขับหลั่งของ immunoglobulin A (IgA) ในลำไส้ใหญ่ส่วนดัน และส่วนปลาย

<u>ปีที่ 2</u> : ช่วง 6 เดือนหลัง

- รวบรวมและวิเคราะห์ข้อมูล
- สรุปผลงานวิจัยและเขียนรายงาน
- จัดทำ manuscript สำหรับดีพิมพ์

ผลงาน/หัวข้อเรื่องที่จะตีพิมพ์ในวารสารวิชาการระดับนานาชาติในแต่ละปี

ปีที่ 1: ชื่อเรื่องที่คาดว่าจะตีพิมพ์ : Barakol stimulates chloride secretion in rat colonic epithelium

ชื่อวารสารที่คาดว่าจะดีพิมพ์: Journal of Pharmacology and Experimental Therapeutics (impact factor 3.555) หรือ European Journal of Pharmacology (impact factor 2.164)

ปีที่ 2: ชื่อเรื่องที่คาดว่าจะดีพิมพ์ : Effects of barakol on secretion of secretory immunoglobulin A (slgA) in rat colon ชื่อวารสารที่คาดว่าจะดีพิมพ์ : Journal of Pharmacology and Experimental

ชีอวารสารที่คาดว่าจะดีพิมพ์ : Journal of Pharmacology and Experimental Therapeutics (impact factor 3.555) หรือ European Journal of Pharmacology (impact factor 2.164)

เนื้อหางานวิจัย

INTRODUCTION

Barakol is a biologically active compound extracted from leaves and flowers of Cassia siamea, a plant that has been traditionally used for the treatment of fever, skin disease, constipation, diabetes, hypertension and insomnia (Kinghorn and Balandrin, 1992). An alcoholic extract of C. siamea was shown to inhibit central nervous system activity, increase tension in smooth muscle (Arunlakshana, 1949) and decrease blood pressure (Mokasmit, 1981). In 1969, Hassanali-Walji and coworkers originally extracted a biologically active constituent called barakol from C. siamea. The chemical structure of barakol was identified as 3α, 4-dihydro-3α, 8-dihydroxy-2, 5-dimethyl-1, 4-dioxaphenalene (C₁₃H₁₂O₄) or 2, 5-dimethyl-3αH-pyrano-[2, 3, 4-de]-1-benzopyran-3α, 8-diol and a proposed synthetic procedure was described in 1970 (Bycroft et al., 1970). Barakol is a chromone that is not related chemically to anthranoid laxatives derived from Cassia plants. In animal model studies, barakol has been shown to possess hypotensive activity (Suwan et al., 1992), serotonergic receptor antagonist activity (Tongroach et al., 1992) and appears to function as an anxiolytic in exploratory behavioral activities (Thongsaard et al., 1996). Further in vitro studies in the central nervous system have found that barakol inhibits K -stimulated dopamine release from striatal slices of rat brain (Thongsaard et al., 1997). Recent studies in our laboratory have shown that barakol increases smooth muscle contraction in the isolated rat ileum under basal conditions and during electrical field stimulation. In these studies, barakol was found to antagonize norepinephrine-suppressed smooth muscle contraction, suggesting a role for barakol as a prokinetic drug (Poonyachoti et al., 2002; Deachapunya et al., 2005).

The colonic epithelium plays an essential role in the absorption and secretion of water and electrolytes. Its transport function is regulated by a variety of neurotransmitters, hormones and inflammatory mediators. Under basal conditions, the colonic epithelium absorbs fluid from the lumen into the circulation and this process is driven by energy dependent Na⁺ transport. In contrast, colonic secretion is activated by secretagogues that enhance CI transport mechanisms, which in turn create electrochemical and osmotic driving forces for passive cation and water movement into the lumen (Kunzelmann and Mall, 2002). Decreased secretory function or increased fluid absorption by the colon is typically associated with constipation. Since *Cassia siamea* has been used as a laxative.

we hypothesized that its active ingredient, barakol, may exert a laxative effect by stimulating chloride secretion and/or inhibiting NaCl absorption across the colonic epithelium.

Secretory immunoglobulin A (slgA) plays an important role in mucosal immunity in many epithelia such as respiratory, gastrointestinal and genitourinary tracts. In intestine, it is produced from immunoglobulin producing plasma cells resided in laminar propria of small intestine and, to a lesser extent, in the large intestine. It is transported across epithelial cells in a receptor-mediated transcytosis which involve the binding of dimeric IgA to the polymeric immunoglobulin receptor (plgR) on the basolateral membrane of epithelial cells. When translocated to the apical membrane, plgR is proteolytically cleaved and the extracellular domain of the receptor, bound to IgA, is released into the mucosal secretions. This cleaved extracellular membrane of the receptor is known as the secretory component (SC). The secreted IgA, together with the SC, is known as secretory IgA which serves to prevent exogenous antigens, including microorganisms, from attaching to and penetrating the epithelial lining of mucous membranes and helps to promote their degradation and excretion. In addition, during transcytosis, plgR-IgA complexes are important in intracellular virus neutralization and the clearing of antigens from the larmina propria (Rojas and Apodaca, 2002).

Secretion of IgA has been shown to be stimulated by several secretagogues such as cholecystokinin (CCK), substance P (SP) and neurokinin A (NKA) (McGee et al., 1995; Schmidt et al., 1999). The receptors for these neuropeptides have been found on plasma cells (Stanisz et al., 1987; Kimata et al., 1996). In addition, SP and VIP have been known to stimulate water and electrolyte secretion into the colonic lumen. This raises the possibility whether barakol may stimulate the secretion of IgA in the colon.

In the present study, we aimed to investigate the effect of barakol on ion transport across the rat colon epithelium and to determine the mechanisms involved in barakol action. If barakol exerts secretory activity, the effect of barakol on secretion of IgA in the colon will be also examined.

Figure 1 Chemical structure of barakol

MATERIAL AND METHODS

Plant extraction. Barakol was extracted and purified from Cassia siamea in our laboratory by a procedure as described in our previous report (Thongsaard et al., 2001). Briefly, fresh young leaves and flowers of C. siamea were obtained from a local market in Bangkok and the identification confirmed by comparison with the herbarium specimens in the Botany Section, Technical Division, Department of Agriculture, Ministry of Agriculture and Co-operative, Thailand. They were cut into small pieces and boiled in 0.5% sulfuric acid for 30 min. The mixture was blended, filtered, and alkalinized with concentrated NaHCO₃ and then extracted with chloroform. The chloroform extract was further concentrated with 5% acetic acid and neutralized with 25% ammonium hydroxide. The crude barakol was obtained as greenish crystallized yellow needles with 0.3% yield. Concentrated hydrochloric acid was finally added to obtain barakol hydrochloride and the mixture was dried by vacuum filtration to form yellowish crystallized anhydrobarakol hydrochloride. The compound was shown to be a single chemical using thin layer chromatography on silica gel and the identification confirmed by nuclear magnetic resonance (NMR). Barakol was dissolved in distilled water immediately before testing its activity. When anhydrobarakol hydrochloride is dissolved in water, the reaction is reversed and the product used in all the biological experiments is a barakol solution with a pH of 3-4 at the stock concentration (50 mM) (Thongsaard et al., 2001). In the experiment, barakol was freshly dissolved in normal saline, wrapped with aluminum foil and kept on ice, and used within 3 hours after preparation.

Chemicals. Tetrodotoxin, atropine sulphate, hexamethonium, amiloride, glibenclamide, diphenylamine-2-carboxylic acid (DPC), bumetanide, indomethacin, acetazolamide, N-vanillylnonanamide (capsaicin synthetic) and high purity grade salts were obtained from Sigma Chemical Co. (St. Louis, MO, USA). All chemicals were made in aliquots and kept at -20 C before use. Some chemicals were dissolved in dimethyl sulfoxide (DMSO), the final DMSO concentration of which was less than 0.1% (vol/vol).

Animals and tissue preparation. Male Wistar rats (250-300 g) were obtained from National Animal Center, Mahidol University, Thailand. They were housed in stainless-steel cages in a room with a 12-12 hour light:dark cycle and allowed free access to food and water. All animals were taken care in accordance with the International Guiding Principles for Biomedical Research Involving Animals provided by the National Research Council of Thailand.

For experiment, rats were sacrificed with small animal decapitator (Harward, Kent, UK). After a laparotomy incision, the whole colon was removed, rinsed and placed in an ice-cold oxygenated Ringer solution (composition in mM: 118 NaCl, 4.7 KCl, 2.5 CaCl₂, 0.5 MgCl₂, 25 NaHCO₃, 1.0 NaH₂PO₄, 11 D-Glucose; pH 7.4). The colon was longitudinally cut close to the mesentary and the serosal muscle layers were carefully stripped away by blunt dissection to obtain a mucosa-submucosal preparation. The appearance of palm-like foldings was used to distinguish between the distal and proximal colon.

Measurement of electrical parameters. The mucosa-submucosal preparation was mounted in Ussing chambers (0.62 cm²) bathed on the apical and basolateral sides with identical Ringer's solutions at 37° C and gassed with 95% O₂ and 5% CO₂. Transepithelial potential difference (PD) and short circuit current (Isc) were measured with the use of voltage-clamp amplifier (EVC-4000, World Precision Instrument) using Ag/AgCl₂ electrodes connected to the bathing solution via agar bridges. Tissue conductance (G) was calculated using Ohm's law (G = Isc/PD). The tissues were continuously short-circuited, except for a brief interval of open-circuited readings before and after adding any chemicals. The data from the voltage clamp was connected to MacLab 4S A/D converter and recorded with a 400 MHz PowerPc Macintosh. After mounting, the tissues were equilibrated for at least 30 min to achieve a stable Isc before the addition of chemicals. Positive Isc corresponded to the movement of anions from the serosal to mucosal compartments or movement of cations from the mucosal to serosal compartments or a combination of both. In the anion replacement experiments, gluconate salts were substituted for chloride and HEPES buffer

(20 mM) was substituted for HCO₃. Experiments under HCO₃-free conditions were performed in the presence of 100 μM acetazolamide and aerated with 100% O₂.

Measurements of IgA levels. The amount of total rat IgA was estimated in the mucosal (apical) and serosal (basolateral) solutions bathing the tissue preparations as well as in the caecal content. To obtain the barakol effect on secretion of IgA in vitro, the colonic epithelium was mounted in Ussing chamber and the mucosal and serosal solutions were collected at a 5 min period after serosal application of barakol (1 mM), which approximated the maximum barakol response. The solutions collected during a 5 min period prior to addition of barakol were used as control. To determine the effect of barakol on IgA secretion in vivo, rats were intraperitoneally injected with barakol (50 mg/kg in 1 ml normal saline) and 30 min later, the rats were sacrificed and the caecal contents were collected. All collected samples were immediately kept in -70°C until analysis. Before analysis, the ceacal contents were thawed out and diluted with 0.1% trypsin inhibitor cocktails (1 ml/mg of sample). The mixture was homogenized and solubilized by vortex spinning every 15 min for 60 min, after which the homogenate was centrifuged for 15 min at 8,000 rpm and supernatant was collected for measurement of IgA level.

The amount of total IgA was determined by a rat IgA quantitation kit (Bethyl Laboratories, Texas, USA). Briefly, microtitre plates were coated with 100 µl of affinity purified goat anti-rat IgA antibody diluted 1:100 in carbonate buffer pH 9.6 and kept at 4°C overnight. After washing and blocking steps following the standard protocol of enzyme linked immunoabsorbent assay (Bethyl Laboratories), 100 µl of 1:50 diluted sample were added to each well and incubated for 1 hr at room temperature. After a third washing step, each well was added 100 µl of capture antibody, the anti-rat IgA conjugated with horseradish peroxidase diluted 1:20,000 in PBS buffer pH 7.2 for 1 hr at room temperature. Color was then developed by 3,3',5,5' tetramethylbenzidine (TMB) substrate for 5 min and stopped by 2N sulfuric acid. Absorbance was read at 450 nm and 550 nm by ELISA plate reader (Tecan). The amount of IgA was determined from standard curve using a rat IgG reference and expressed as ng/ml/cm² or ng/mg of caecal content.

Data analyses. All values were expressed as means and standard error of mean (SEM), n was the number of different tissue preparations and N was the number of animals in each experiment. The increase in lsc was quantified by subtracting the peak of an lsc response from its respective baseline value before drug administration. The statistical differences between control and treatment means were analyzed using Student's paired or unpaired t-test when appropriate. The differences among groups were analyzed using a

one way analysis of variance followed by Dunnett's multiple comparison. A p-value less than 0.05 was considered statistically significant.

RESULTS

Under basal conditions, after an equilibration period of 30-45 min, the distal colon showed average lsc, PD (lumen negative) and G values of 35.5 \pm 2.4 μ A/cm², -3.7 \pm 0.3 mV and 11.0 \pm 0.8 pS/cm² (n = 44 tissues, N = 17 rats), respectively. The proximal colon exhibited average lsc, PD and G values of 39.6 \pm 5.1 μ A/cm², -2.7 \pm 0.3 mV and 15.3 \pm 1.5 pS/cm² (n = 17 tissues, N = 12 rats), respectively.

Effect of barakol on Isc

Addition of 1 mM barakol to the basolateral solution produced a slow increase in lsc. which peaked in 5-10 min and was sustained for 30-45 min (Fig. 2A), before it gradually returned to the baseline level. The maximal increase in lsc produced by barakol was 24.4 \pm 2.0 μ A/cm² (n = 33 tissues, N = 18 rats) in distal colon and 24.0 \pm 4.6 μ A/cm² (n = 10 tissues, N = 7 rats) in proximal colon. The tissue conductance at the maximal barakol response was not different from its corresponding baseline value (control. 13.3 ± 1.0 pS/cm²; after barakol, 12.8 \pm 1.0 pS/cm²; n = 35 tissues, N = 18 rats). Addition of 0.01 M hydrochloric acid in equal volume to barakol solution (200 µl) did not alter any baseline electrophysiological parameters. Since the tracings and maximal Isc responses to barakol in the distal and proximal colon were not different, the rest of the experiments were performed using distal colon unless otherwise stated. Barakol (10 µM-3 mM) induced a cumulative concentration-dependent increase in lsc with an apparent EC50 value of 0.4 mM (n = 9 tissues, N = 5 rats, Fig. 2B). The barakol-induced increase in lsc was completely inhibited by the Cl channel blocker, diphenylamine-2, 2'-dicarboxylic acid (DPC, 500 μM, n = 4 tissues, N = 3 rats, Fig. 3A) and partially inhibited by glibenclamide (400 μM) added to the apical solution. Glibenclamide produced a 52.6 ± 11.0% decrease in barakol-stimulated Isc (n =5 tissues, N = 4 rat, Fig. 3B). In contrast, the barakol-stimulated increase in Isc was not affected by a subsequent addition of 4, 4-diisothiocyanatostilbene-2, 2-disulfonic acid (DIDS) to the apical solution (n = 5 tissues, N = 4 rats, data not shown). Basolateral addition of burnetanide (200 μM), a Na⁺-K⁺-2Cl⁻ cotransporter inhibitor, completely suppressed the barakol-stimulated lsc (n = 5 tissues, N = 4 rats, Fig. 3C). The lsc response to barakol did not significantly change in the presence of the Na channel blocker amiloride (10 μ M, Fig. 4A) in the apical solution (control, 33.5 \pm 6.8 μ A/cm², n = 6 tissues, N = 4 rats; after amiloride, 32.5 \pm 10.1 μ A/cm²; n = 3 tissues, N = 3 rats). In contrast, pretreatment of tissues with burnetanide (200 μ M, Fig. 4B) abolished the barakol-induced increase in Isc, from 33.5 \pm 6.8 μ A/cm² (n = 6 tissues, N = 4 rats) to 1.0 \pm 3.6 μ A/cm² (n = 3 tissues, N = 3 rats, p<0.01, Fig. 4C).

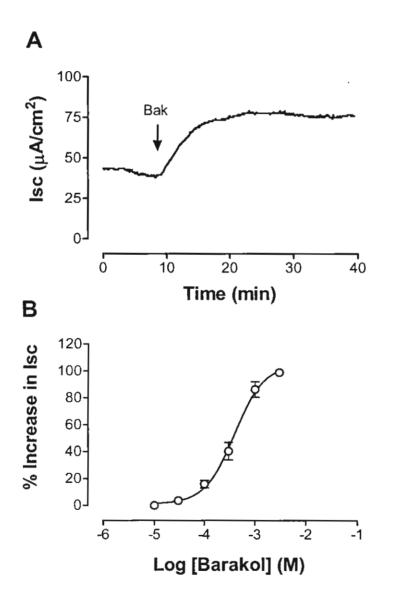


Figure 2 Effect of barakol on lsc in rat colon epithelium. (A) Representative recordings of the lsc response produced by addition of 1 mM barakol (Bak) to the basolateral solution. (B) Concentration-response relationship for barakol-stimulated lsc. The EC₅₀ value was 0.4 mM. Each point represented mean ± SEM.

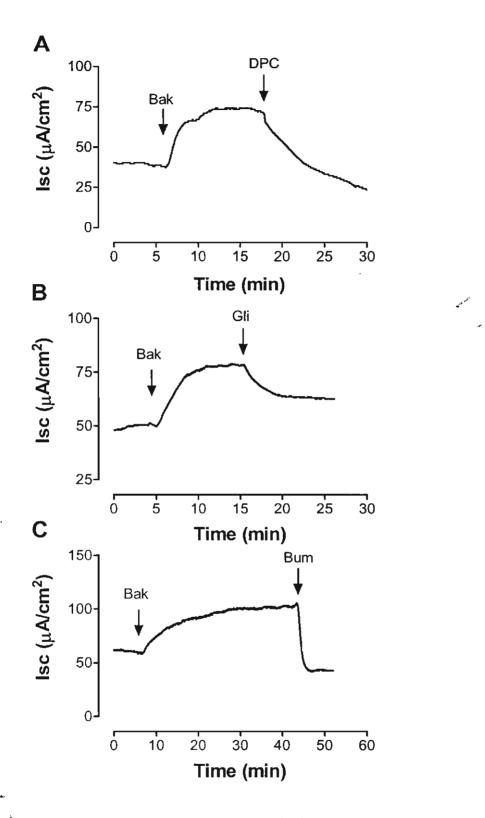


Figure 3 Effect of Cl channel blockers and a Na $^+$ -K $^+$ -2Cl cotransport blocker on the barakol-stimulated lsc. Representative recordings of the lsc response produced by basolateral addition of 1 mM barakol (Bak) were inhibited by (A) apical addition of 500 μM DPC, (B) apical addition of 400 μM glibenclamide (Gli) or (C) basolateral addition of 200 μM burnetanide (Burn).

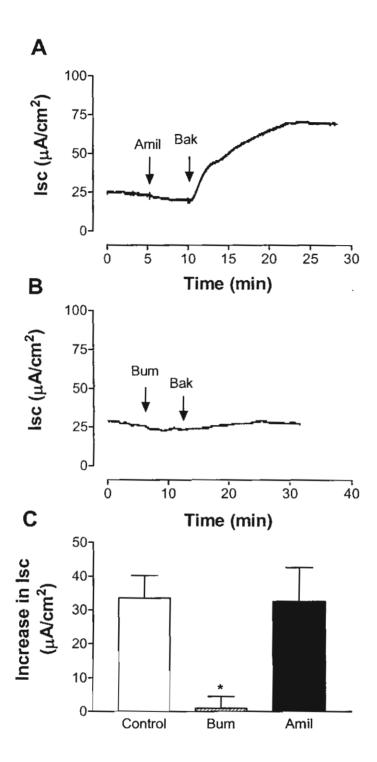


Figure 4 Effect of amiloride and burnetanide on the barakol-stimulated lsc. Representative tracings of the barakol (Bak)-stimulated lsc response after pretreatment with (A) apical addition of 10 μ M amiloride (Amil) or (B) a basolateral addition of 200 μ M burnetanide (Burn). (C) Bar graph illustrating the average maximal increases in lsc response produced by barakol alone (Control) and after pretreatment with burnetanide or amiloride. Values represent means \pm SEM. *P<0.01 when compared to the control value.

Effect of ion substitution on barakol-increased Isc

lon substitution experiments were performed to determine the ionic basis of the Isc response induced by barakol. In normal Ringer's solution, barakol at a concentration of 1 mM produced a mean increase in Isc of 31.1 \pm 2.8 μ A/cm² (n = 24 tissues, N = 13 rats). Replacement of Cl in both apical and basolateral solutions significantly inhibited the maximal Isc response to barakol (7.8 \pm 0.6 μ A/cm², n = 8 tissues, N = 6 rats, p<0.05), whereas replacement of HCO₃ had no effect on the maximal barakol-induced Isc (29.4 \pm 2.6 μ A/cm², n = 5 tissues, N = 4 rats). Replacement of both Cl and HCO₃ significantly inhibited the maximal Isc response to 2.6 \pm 0.7 μ A/cm² (n = 5 tissues, N = 4 rats, p<0.05, Fig. 5).

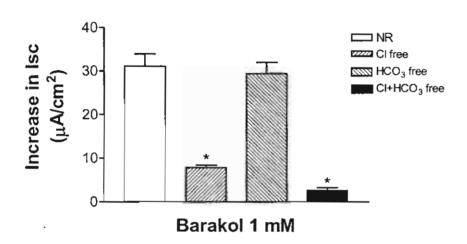


Figure 5 Effect of Cl and HCO₃ substitution on the barakol-stimulated Isc. In standard Ringer's solution (NR), barakol at a concentration of 1 mM produced a mean increase in Isc of 31 μA/cm². Replacement of Cl (Cl free) or both Cl and HCO₃ (Cl-HCO₃ free) inhibited the maximal Isc response to barakol by 74% and 91% respectively, whereas replacement of HCO₃ (HCO₃ free) had no effect on barakol response. Values were means ± SEM. *P<0.01 when compared to the control value of NR.

Effects of submucosal neuronal blockers and indomethacin on barakol-increased Isc

To assess whether barakol activation of CI secretion was mediated by submucosal neurons and prostaglandin synthesis, the tissues were pretreated with neuronal blockers or indomethacin for 5 minutes followed by basolateral addition of barakol (1 mM). The effect of barakol alone on control tissues is shown in figure 6 (30.4 \pm 3.2 μ A/cm², n = 22 tissues, N = 11 rats). Tetrodotoxin (TTX, 10 μ M) significantly decreased the basal lsc from 51.9 \pm

13.0 μ A/cm² to 33.2 \pm 9.9 μ A/cm² and subsequent addition of barakol resulted in an Isc response that was 60% lower than that in control tissues (11.8 \pm 4.2 μ A/cm², n = 5 tissues, N = 4 rats, p<0.05). In contrast, pretreatment with the muscarinic receptor antagonist atropine (1 μ M) in the basolateral solution did not significantly change the basal Isc or reduce the barakol-induced increase in Isc (24.7 \pm 6.4 μ A/cm², n = 4 tissues, N = 4 rats). In addition, hexamethonium pretreatment (10 μ M) did not significantly alter the barakol-stimulated Isc (n = 5 rats, N = 4 rats, data not shown). Pretreatment of tissues with the cyclooxygenase inhibitor indomethacin (10 μ M) in both apical and basolateral solutions significantly reduced the barakol-stimulated Isc response by 60% (12.3 \pm 7.1 μ A/cm², n = 7 tissues, N = 6 rats, p<0.05). The barakol-stimulated Isc response was decreased by 90% in the presence of indomethacin and TTX (4.95 \pm 1.1 μ A/cm², n = 4 tissues, N = 4 rats, p<0.05, Fig. 6). In addition, pretreatment with dihyphendamine (10 μ M), a histamine (H₁) receptor blocker, did not change the barakol-stimulated Isc (n = 3 tissues, N = 3 rats, data not shown).

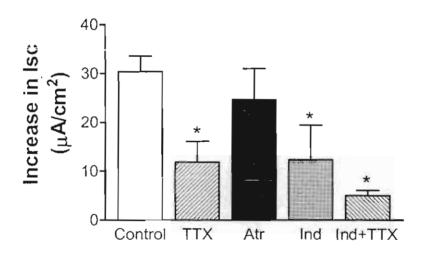


Figure 6 Effect of submucosal neuronal blockers and indomethacin on the barakol-stimulated lsc. Bar graph illustrating the maximal lsc response to barakol alone (Control) and after pretreatment with 10 μ M tetrodotoxin (TTX), 1 μ M atropine (Atr), 10 μ M indomethacin (Ind) or a combination of Ind and TTX (Ind+TTX). Values were mean \pm SEM. *P<0.05 when compared to the control value.

Effect of sensory neuron blocker on barakol-increase Isc

In our findings, barakol was shown to stimulate CI secretory pathway partially due to stimulation of submucosal neurons. This stimulation was not dependent on motor cholinergic pathway. To further investigate whether barakol-stimulated CI secretion may involve sensory neuron, the sensory neurons were chemically denervated following pretreatment of the tissues with capsaicin synthetic (3 μ M and 10 μ M) added to the basolateral solution. Capsaicin at the concentration of 3 μ M increased the amplitude of Isc by 24.7 \pm 6.4 μ A/cm² (n = 4 tissues, N = 4 rats) when added to the basolateral solution. A subsequent addition of capsaicin (10 μ M) had no further increase in Isc response, suggesting a successfully denervation of sensory nerve. In the presence of capsaicin, a small Isc response induced by barakol (1 mM) was observed (8.9 \pm 2.7 μ A/cm² n = 4 tissues, N = 4 rats, p<0.05, Fig. 7A and 7B), which accounted for an inhibition of 72% of barakol response alone (30.4 \pm 3.2 μ A/cm², n = 9 tissues, N = 22 rats). In addition, barakol pretreatment completely abolished the capsaicin-induced increase in Isc (Fig. 7C).

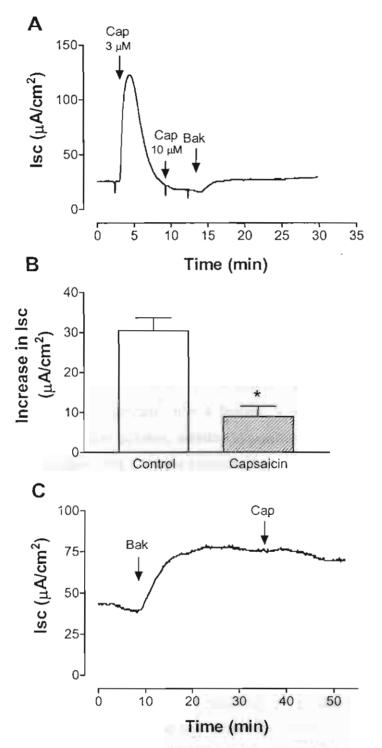


Figure 7 Effect of capsaicin on the barakol-stimulated Isc. (A) Representative tracing showing the Isc produced by basolateral addition of 3 and 10 μ M capsaicin (Cap). Subsequent addition of 1 mM barakol (Bak) showed a small Isc response. (B) Bar graph illustrating the average maximal increases in Isc response produced by barakol alone (Control) and after pretreatment with capsaicin (3 μ M). Values represent means \pm SEM. *P<0.01 when compared to the control value. (C) Representative Isc showing that addition of 1 mM barakol abolished the increase in Isc produced by 3 μ M capsaicin.

Effect of barakol on the immunoglobulin A (IgA) secretion

Secretagogues including substance P and cholecystokinin which stimulates electrolytes and water secretion have been shown to increase the secretion of IgA into the lumen of porcine ileum (Schmidt et al., 1999). Since barakol had a potential effect on stimulation of Cl secretion, we therefore investigated whether barakol could induce the secretion of IgA cross the colonic epithelium. By using the Ussing apparatus and voltage clamp techniques, the concentration of IgA in the mucosal (apical) and serosal (basolateral) solutions bathing the colonic epithelium could be determined before and after barakol treatment. Under normal Ringer solution, the level of IgA content in the mucosal and serosal solution bathing the colonic epithelium was $65.5 \pm 16.5 \text{ ng/ml/cm}^2$ (n = 4 tissues, N = 4 rats) and $32.2 \pm 7.2 \text{ ng/ml/cm}^2$ (n = 4 tissues, N = 4 rats), respectively. A serosal addition of barakol (1 mM) for 5 min produced a marked increase in the IgA concentration in the mucosal solution by 301.8 ± 15.8 ng/ml/cm² (n = 4 tissues, N = 4 rats, P<0.01) and in the serosal solution by 327.6 \pm 11.1 ng/ml/cm² (n = 4 tissues. N = 4 rats, P<0.01). Replacement of Cl significantly increased the IgA content in the mucosal solution (205.9 \pm 31.4 ng/ml/cm², n = 4 tissues, N = 4 rats, P<0.01), but not in the serosal solution (66.2 \pm 8.5 ng/ml/cm², n = 4 tissues, N = 4 rats) compared to the normal Ringer solution. Under CI-free solution, addition of barakol (1 mM) had no effect on the IgA level in the mucosal solution (186.4 \pm 27.4 ng/ml/cm², n = 4 tissues, N = 4 rats) but showed a small increase in the serosal IgA level (153.9 \pm 36.1 ng/ml/cm², n = 4 tissues, N = 4 rats). However, the change of serosal IgA responses to barakol in CI-free solution significantly lowered than that in normal Ringer solution (Fig. 8). In both normal Ringer and CI-free solutions, application of barakol had no effect on tissue conductances (normal Ringer: before barakol 13.3 \pm 1.0 pS/cm²; after barakol 12.8 \pm 1.0 pS/cm², n = 35 tissues, N = 18 rats; Cl free: before barakol 9.9 \pm 1.7 pS/cm², after 10.8 \pm 1.7 pS/cm², n = 12 tissues, N = 6 rats). In addition, the tissue conductances in CI-free solution before and after barakol addition was not different from its corresponding values in normal Ringer solution (Fig. 9).

To confirm the barakol effect on IgA secretion *in vivo* study, the amount of IgA was determined from caecal content collected from killed rats, 30 min after a peritoneal injection of barakol at the dose of 50 mg/kg. The dose of barakol used in this study was the dose that showed anxiolytic effect in our previous study (Thongsaard et al., 2001). Barakol treatment markedly increased the caecal IgA content to 172.2 ± 26.0 ng/mg (n = 4 tissues, N = 4 rats) from 36.3 ± 1.5 ng/mg (n = 5 tissues, N = 5 rats) in the normal saline control rats, Fig. 9). In addition, the tissue conductance of colonic epithelium taken from normal saline-treated control

rats (22.7 \pm 5.0 pS/cm², n = 4 tissues, N = 4 rats) and barakol-treated rats (24.6 \pm 6.5 pS/cm², n = 4 tissues, N = 4 rats) did not show significant changes.

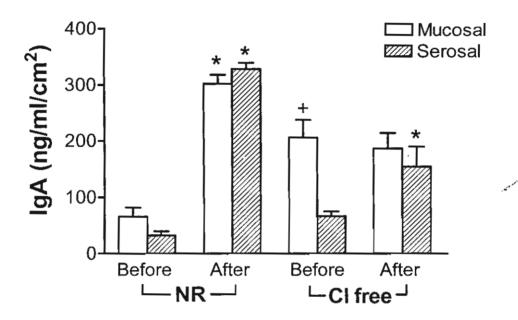


Figure 8 Effect of barakol on the secretion of IgA in isolated rat colon under standard normal Ringer solution and CI-free solution. The concentration of IgA was determined from mucosal and serosal solutions bathing the colonic epithelium before and after barakol treatment for 5 min. In normal Ringer's solution (NR), a basolateral addition of barakol (1 mM) produced a marked increase in the level of IgA in both musocal and serosal solutions. Replacement of CI (CI free) increased the IgA level in mucosal solution, but not in the serosal solution. Addition of barakol (1 mM) had no effect on the IgA level in mucosal solution but showed a small increase in serosal IgA. Values were means ± SEM. *P<0.01 when compared to the control value before barakol addition. *P<0.01 when compared to the corresponding value under normal Ringer's solution.

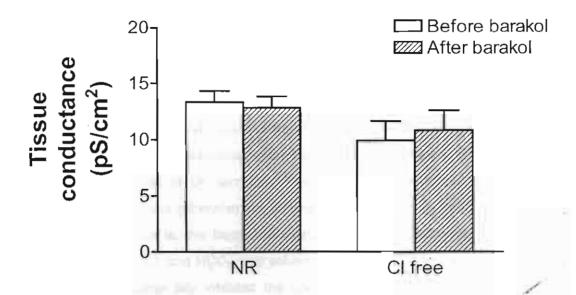


Figure 9 Transepithelial conductance of colonic tissues under normal Ringer solution (NR) and CI-free solution (CI free). The tissue conductance was determined immediately before and after addition of barakol into the basolateral solution of for 5 min. Values were mean ± SEM.

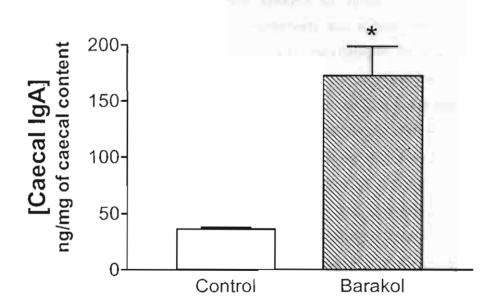


Figure 10 Effect of barakol on the level of IgA secretion isolated from caecal content. Bar graph illustrates the concentration of IgA isolated from caecal content using ELISA technique. The dramatically increase of the IgA secretion was seen 30 min after an intraperitoneal injection of barakol compared with normal saline-injected control rats. Values were mean ± SEM. *P<0.01 when compared to the control value.

DISCUSSION

Effect of barakol on chloride secretion

In the present study, the direct effect of barakol on the ion absorption and secretion was studied in vitro using serosal muscle-stripped colonic epithelium. Barakol was shown to increase Isc in both proximal and distal colon by the same magnitude. The increased Isc was due to an activation of CI secretion. This was supported by the findings that CI channel blockers, DPC and glibenclamide, inhibited the barakol-induced increase in Isc. In ion substitution experiments, the barakol-stimulated Isc was abolished in CI-free solution and further inhibited in CI and HCO₃-free solutions. In addition, pretreatment with the loop diuretic burnetanide completely inhibited the barakol-stimulated Isc. All of these findings were consistent with stimulation of transepithelial CI secretion in human and rat colon (Dharmsathaphorn et al., 1985; Ko et al., 2002; Kunzelman and Mall., 2002). The finding that the increase in Isc by barakol was not affected by the presence of the Na⁺ channel blocker amiloride, indicating that barakol did not stimulate electrogenic Na⁺ absorption.

CI secretion in mammalian colon involves CI uptake across the basolateral membrane by a Na⁺-K⁺-2Cl⁻ cotransport mechanism and subsequent efflux across the apical membrane through Cl channels. CFTR is the predominant Cl channel that plays a role in Cl secretion in many epithelia including the colonic epithelium (Kunzelmann and Mall, 2002). CFTR is a cAMP-mediated Cl channel that has previously been shown to be inhibited by DPC and glibenclamide (Sheppard and Welsh, 1992). On the other hand, DIDS has been shown to block Ca2+-activated Cl channel but had no effect on the activity and conductance of CFTR (Anderson et al., 1992; Schultz et al., 1999). Since the present study showed that the barakol-induced increase in Isc was completely inhibited by DPC and partly inhibited by glibenclamide, it is most likely that CFTR was the apical Cl exit pathway for barakol-stimulated CI secretion. The insensitivity of the barakol response to DIDS further confirmed the involvement of CFTR-mediated CI secretion, and suggested that the Ca2+ activated Cl channel was not involved in the lsc response to barakol. The barakoi-stimulated increase in lsc was also abolished by burnetanide, an inhibitor of Na -K-2Cl cotransporter, suggesting that barakol-stimulated Cl uptake was mediated by this mechanism. Moreover, the alleviation of barakol-stimulated Cl secretion by CFTR Cl channel blockers and burnetanide indicated that the cellular mechanism of barakol may involve the cAMP dependent pathway. Our finding was consistent with CI secretion induced by other plant-derived bioactive compounds, especially flavonoid baicalein.

Baicalein has been shown to stimulate Cl secretion across rat colonic epithelium by activation of the cAMP-dependent apical Cl channel and the basolateral K channels (Ko et al., 2001). From studies in human colonic cancer cells (T84 cells), baicalein was found to potentiate the Ca²⁺-mediated Cl secretion via an accumulation of cAMP and activation of protein kinase A activity (Yue et al. 2004). However, the signaling mechanisms involving either intracellular Ca²⁺ or cAMP and protein kinase A in the mediation of barakol-stimulated Cl secretion could not be ruled out and are subject to further investigation.

Most of the naturally occurring laxatives exert their effects on the colonic epithelium by stimulating Cl secretion and/or inhibiting Na absorption, resulting in an accumulation of fluid and subsequent increased colonic motility. The increased Cl secretion by anthranoid laxatives, anthraquinone and sennosides, is due to disruption of epithelial tight junctions, leading to increased permeability of the epithelium (Wanitschke, 1980; Ewe, 1980). Their chemical structures related to junctional disruption have not been indicated. Although the direct effect of barakol on tight junction permeability was not examined in the present study, an increase in junctional permeability was unlikely to account for barakol-stimulated Cl secretion, since changes in tissue conductance were relatively small. The suppressive actions of anthranoid laxatives on Na absorption could result from decreased ATP production or a direct inhibition of the Na, K-ATPase activity in the basolateral membrane (Wanitschke, 1980; Wanitschke and Karbach, 1988). Reduced Na⁺, K⁺-ATPase activity would, in turn, decrease net Na absorption across the epithelium. In this study, the barakol-induced increases in lsc were not affected by amiloride, indicating that the barakol effect was not due to activation of epithelial Na channels. This finding may be due to the fact that Na channels normally play a relatively minor role in Na absorption across the proximal and distal colon in rats (Kunzelmann and Mall, 2002). However, a question still remains as to whether barakol may have some effects on Na +H or Cl-HCO3 exchange, since the activities of these electroneutral transporters could not be detected by measurement of Isc.

To identify whether the barakol response involved neurotransmitter release from nerves within the submucosal plexus or was the result of a direct effect on the epithelium, the tissues were pretreated with tetrodotoxin to block the neuronal Na channel activity and inhibit action potential propagation. A substantial portion of basal Isc (36%) was inhibited following addition of tetrodotoxin, suggesting that it was sustained by endogenous release of neurotransmitters from the submucosal plexus. Pretreatment with tetrodotoxin inhibited the barakol-induced increase in Isc by 48%, confirming that barakol-stimulated CI secretion

was partially mediated through the activation of submucosal nerves. In contrast, the lack of effect of the muscarinic cholinergic receptor blocker atropine or the nicotinic receptor blocker hexamethonium on the barakol-stimulated lsc response argued against involvement of the acetylcholine-containing submucosal neurons in barakol action on Cl secretion in the rat. The tetrodotoxin-insensitive barakol response suggested that barakol may act directly on the colonic epithelial cells to stimulate Cl secretion.

To further test whether the barakol activation of CI secretion was due to prostaglandin release, tissues were pretreated with the cyclooxygenase inhibitor, indomethacin, to block the synthesis of prostaglandins. Prostaglandins are normally released in response to a variety of stimuli. They have been known to activate CI secretion directly via prostanoid receptors located in rat colonic epithelial cells (Brown et al., 1992). The present findings demonstrated that indomethacin inhibited the effect of barakol on Isc by 62%, suggesting that its sustained stimulatory effect on CI secretion was partially mediated through the release of prostaglandins. The combined presence of indomethacin and tetrodotoxin nearly abolished (90%) the stimulatory effect of barakol on CI secretion, indicating that the direct interaction of barakol with epithelial cells may account in part for its response.

The synthesis and release of prostaglandins are known to be part of the mechanisms of the anthranoid laxatives. Damage to epithelial cells caused by anthranoids induces the release of histamine and serotonin from monocytes, mast cells and other intestinal monocytes, leading to increased biosynthesis of prostaglandin (Yagi et al., 1988; Nijs et al., 1992). Prostaglandin release, in turn, accelerates the large intestine transit and alters fluid absorption and secretion (Leng-Peschlow, 1986). In addition, the release of inflammatory mediators, especially histamine, is known to stimulate CI secretion in colonic epithelium (Traynor et al., 1993; Yue et al., 2004). However, inflammatory mediators were unlikely to be responsible for the actions of barakol since the histamine antagonist diphenhydramine did not alter the lsc response to barakol.

From the present findings, it seemed that barakol response was substantially mediated by enteric nerves within the submucosal plexus. Being insensitive to atropine and hexamethonium, barakol actions may be mediated by other neurotransmitter substances of the noncholinergic pathways. Candidates including vasoactive intestinal peptide (VIP), substance P and calcitonin gene-related peptide (CGRP) that are among several neurotransmitters present in enteric nerves and sensory neurons of the small and large intestine (Cooke, 1994). These substances have been shown to be capable of inducing CI

and neurotransmitters (McGee et al., 1995; Schmidt et al., 1999). In salivary gland, stimulation of autonomic nerve lining closely to plasma cells has been shown to stimulate IgA secretion (Carpenter et al., 2004). The IgA is uptaked by binding to dimeric or polymeric immunoglobulin receptors located on the basolateral membrane, the receptors are endocytosed and transported to the apical membrane where it is cleaved to release into the mucosal solution as secretory IgA (sIgA) containing secretory component (SC). Although the secretory component was not determined in the present study, the IgA detected in the mucosal solution was likely the sIgA. Basically, the increase of total IgA in the intestinal lumen was due to an increase of sIgA. In contrast, the IgA in the basolateral solution resulted from the locally produced IgA from plasma cells. In our studies, barakol (1 mM) was shown to cause fivefold increase of the total IgA level in the apical solution and tenfold increase in the basolateral solutions of colonic epithelium. The IgA response by barakol was observed within 5 min suggesting the acute effect of barakol on the secretion of pre-existing IgA in the colonic tissues.

In our previous studies, barakol was found to antagonize the inhibitory effect on norepinephrine-induced smooth muscle contraction (Deachapunya et al., 2005). It was also shown in the present study that barakol stimulated Cl secretion partially through noncholinergic motor and sensory neurons. Substance P, vasoactive intestinal peptide and calcitonin gene-related peptide (CGRP) are deserved to be candidates for mediating the barakol-stimulated IqA secretion because these substances have been shown to activate IgA and Cl secretion in large intestine (Cooke, 1994; Schmidt et al., 1999). Although the exact mechanism of barakol stimulation of IgA secretion is unknown, the increase in IgA by barakol may possibly due to an indirect activation of plasma cells through modulation of noncholinergic neurotransmission or direct plasma cell activation, resulting in the release of IgA from plasma cells. The increase in IgA secretion reflected the increased serosal IgA. Furthermore, the more produced IgA may be transported across epithelial cells and released as secretory IgA in the mucosal solution. In this study, the increase in junctional permeability was unlikely to account for the leakiness of IgA through paracellular pathway since the tissue conductance was unchanged upon barakol stimulation. However, the transportation of IgA through paracellular pathway could not be excluded in this study.

Since barakol and other secretagogues have been shown to stimulate Cl secretion as well as IgA secretion, we further investigate whether the secretion of IgA in the colon is dependent on Cl secretion. In this study, the changes of bathing solutions from standard Ringer solution to Cl-free Ringer solution produced a markedly increase in the mucosal IgA

and small increase in the serosal IgA. The mechanism responsible for increased IgA secretion in CI-free solution was still unknown. However, application of barakol had no effect on the mucosal IgA, suggesting that barakol-stimulated IgA secretion across the colonic epithelium was CI dependent. About twofold increase in the serosal IgA was observed in CI-free solution, indicating the capability of barakol to activate plasma cells under this condition.

In vivo study, the dramatically increase of the IgA level in caecal content was observed after intraperitoneally barakol injection, but not in normal saline injection, confirming the effect of barakol on IgA secretion in vitro. Although the IgA in blood circulation was not measured, the locally release of IgA from plasma cells was suspected. Previous study has demonstrated that intraperitoneal injection of barakol inhibits the orally bacteria Salmonella enteritidis colonization and translocation to intestinal Peyer's patches and spleen (Poonyachoti et al., 2004). These findings reflect the protective role of local IgA on bacterial infection.

IgA is the major immunoglobulin in the mucosal colon and appears to be the first line for host defense mechanism against external pathogens. The increased IgA level in response to barakol stimulation both *in vitro* and *in vivo*, suggesting an important role of barakol in enhancement of non-specific mucosal immunity. These findings may be useful for therapeutic use of barakol in the protection of human and animals from gastrointestinal bacterial and viral infection.

ACKNOWLEDGEMENT

This work was fully supported by The Thailand Research Fund (MRG4680196) awarded to C. Deachapunya. I greatly appreciate Professor Scott M. O'Grady from the University of Minnesota, USA, and Professor Nateetip Krishnamra from Mahidol University, for their valuable comments and suggestions of this study.

FUTURE DIRECTIONS

- 1. To study the modulatory effect of barakol on sensory neuron-mediated chloride secretion in rat colon
- 2. To study the intracellular signaling pathways of barakol-stimulated Cl secretion.
- 3. To study the regulation and mechanism of secretory IgA secretion in intestine

REFERENCES

Anderson MP, Sheppard DN, Berger HA and Welsh MJ (1992) Chloride channels in the apical membrane of normal and cystic fibrosis airway and intestinal epithelia. *Am J Physiol* 263:L1-L14.

Arunlakshana O (1949) Pharmacological study of the leaves of *Cassia siamea*. *Siriraj Hosp.Gaz.*,1: 434-444.

Brown DR, Parsons AM and O'Grady SM (1992) Substance P produces sodium and bicarbonate secretion in porcine jejunal mucosa through an action on enteric neurons. *J Pharmacol Exp Ther* 261:1206-1212.

Bycroft BW, Hassanali – walji A, Johnson AW and King TJ (1970) The structure and synthesis of barakol: a novel dioxaphenalene derivative from *Cassia siamea*. *J Chem Soc* 12:1686-1689.

Carpenter GH, Proctor GP, Ebersole LE and Garrett, JR (2004) Secretion of IgA by rat parotid and submandibular cells in response to autonomimetic stimulation in vitro. *Int Immunopharmacol* 4: 1005-1014.

Cooke HJ (1994) Neuroimmune signaling in regulation of intestinal ion transport. Am J Physiol 266:G167-G178.

Deachapunya C, Thongsaard W and Poonyachoti S (2005) Barakol suppresses the spontaneous smooth muscle contraction in rat ileum. *Journal of Ethnopharmacology* 101: 227-232.

Dharmsathaphorn K, Mandel KG, Masui H and McRoberts JA (1985) Vasoactive intestinal polypeptide-induced chloride secretion by a colonic epithelial cell line. Direct participation of a basolaterally localized Na⁺,K⁺,Cl⁻ cotransport system. *J Clin Invest* 75(2):462-471.

Esfandyari Ţ, Macnaughton WK, Quirion R, St Pierre S, Junien JL and Sharkey KA (2000) A novel receptor for calcitonin gene-related peptide (CGRP) mediates secretion in the rat colon: implications for secretory function in colitis. *FASEB J* 14:1439-1446.

Ewe K (1980) The physiological basis of laxative action. Pharmacol 20 (Suppl. 1):2-20.

Hassanali - Walji A, King TJ and Wallwork SC (1969) Barakol, a novel dioxzphenalene derivative from Cassia siamea. J Chem Soc - Chem Commun 12:678.

Kimata H, Yoshida A., Ishioka C et al, (1996) Vasoactive intestinal peptide enhances immunoglobulin production and growth in human plasma cells via mechanisms that may involve protein kinase C. J Clin Endocrinol Metab 81: 3024-3032.

Kinghorn AD and Balandrin MF (1992) Human traditional agents from plants. American Chemical Society, Washington DC.

Ko WH, Law VW, Yip WC, Yue GG, Lau CW, Chen ZY and Huang Y (2002) Stimulation of chloride secretion by baicalein in isolated rat distal colon. *Am J Physiol* 282 (3):G508-G518.

Kunzelmann K and Mall M (2002) Electrolyte transport in the mammalian colon: Mechanisms and implications for disease. *Physiol Rev* 82:245-289.

Leng-Peschlow E., 1986. Dual effect of orally administered sennosides on large intestine transit and fluid absorption in the rat. *J Pharm Pharmacol* 38:606-610.

McGee D, Eran M, McGhee JR and Freier S (1995) Substance P accelerates secretory component-mediated transcytosis of IgA in the rat intestine. Advances in Mucosal Immunologý Edited by J Mestecky et al., 643-646.

Nijs G, De Witte P, Geboes K and Lemli J (1992) Influence of rhein anthrone and rhein on small intestine transit in rats: Evidence of prostaglandin mediation. *Eur J Pharmacol* 218:199-203.

Poonyachoti S, Kramomtong I, Niyomtham W and Deachapunya C (2004) Effect of barakol on the secretory immunoglobulin A secretion against *Salmonella* Enteritidis translocation to the systemic organs of Wistar rat. *Thai J Vet Med* 34(2): 133-134.

Poonyachoti S, Thongsaard W and Deachapunya C (2002) The prokinetic effects of barakol in rat intestine. *The Pharmacologist* 44(2):A35-36 (abstract).

Riegler M, Castagliuolo I, So PT, Lotz M, Wang C, Wlk M, Sogukoglu T, Cosentini E, Bischof G, Hamilton G, Teleky B, Wenzl E, Matthews JB and Pothoulakis C (1999) Effects of substance P on human colonic mucosa in vitro. *Am J Physiol* 276:G1473-G1483.

Rojas R and Apodaca G (2002) Immunoglobulin transport across polarized epithelial cells. Nature Reviews Molecular Cell Biology 3: 944-956.

Schmidt PT, Eriksen L, Loftager M, Rasmussen TN and Holst JJ (1999) Fast acting nervous regulation of immunoglobulin A secretion from isolated perfused porcine ileum. *Gut* 45: 679-685.

Schultz BD, Singh AK, Devor DC and Bridges RJ (1999) Pharmacology of CFTR chloride channel activity. *Physiol Rev* 70 (Suppl. 1):S109-S144.

Sheppard DN and Welsh MJ (1992) Effect of ATP-sensitive K⁺ channel regulators on cystic fibrosis transmembrane conductance regulator chloride currents. *J Gen Physiol* 100:573-591.

Stanisz AM, Scicchitano R, Dazin P, et al, (1987) Distribution of substance P receptors on murine spleen and Peyer's patch T and B cells. *J Immunol* 139: 749-754.

Suwan G, Sudsuang R, Ghumma - Upakorn D and Werawong C (1992) Hypertensive effects of barakol estracted from leaves of *Cassia siamea* Lam. in rats and cats. *Thai J Physioi Sci* 5:53-65.

Thongsaard W, Chainakul S, Bennett GW and Marsden CA (2001) Determination of barakol extracted from *Cassia siamea* by HPLC with electrochemical detection. *J Pharmaceu Biomed Ana* 25:853-859.

Thongsaard W, Deachapunya C, Pongsakorn S, Boyd EA, Bennett GW and Marsden CA (1996) Barakol: A potential anxiolytic extracted from *Cassia siamea*. *Pharmacol Biochem Behav* 53:753-758.

Thongsaard W, Pongsakorn S, Sudsuang R, Bennett GW and Marsden CA (1997) Barakol, a natural anxiolytic, inhibits striatal dopamine release but not uptake in vitro. *Eur J Pharmacol* 319:157-164.

Tongroach P, Jantarayota P, Tantisira B, Kunluan P, Tongroach C and Chaichantipyuth C (1992) Barakol, a neuroactive compound from Cassia siamea. In Proceeding of the First JSPS-NRCT Joint Seminar in Pharmaceutical Sciences: Advance in Research on Pharmacologically Active Substances from Natural Sources pp 21, Chiangmai, Thailand.

Traynor TR, Brown DR and O'Grady SM (1991) Regulation of ion transport in porcine distal colon: effects of putative neurotransmitters. *Gastroenterology* 100:703-710.

Traynor TR, Brown DR and O'Grady SM (1993) Effects of inflammatory mediators on electrolyte transport across the porcine distal colon epithelium. *J Pharmacol Exp Ther* 264:61-66.

Wanitschke R (1980) Influence of rhein on electrolyte and water transfer in the isolated colonic mucosa. *Pharmacol* 20 (Suppl. 1):21-26.

Wanitschke R and Karbach U (1988) Influence of rhein on rat colonic Na⁺,K⁺-ATPase and permeability in vitro. *Pharmacol* 36 (Suppl. 1):98-103.

Yagi T, Miyawaki Y, Nishikawa T, Yamauchi K and Kuwano S (1988) Involvement of prostaglandin E-like material in the propulsive action of rhein anthrone, the intraluminal active metabolite of sennoside A and B in mice. *J Pharm Pharmacol* 40:27-30.

Yue GGL, Yip TWN, Huang, Y and Ko WH (2004) Cellular mechanism of Ca²⁺-mediated Cl secretion by the flavonoid baicalein in intestinal epithelia. *J Biol Chem* 279:39310-39316.

OUTPUT ที่ได้จากโครงการ

- 1. ผลงานดีพิมพ์ในวารสารวิชาการนานาชาติ จำนวน 2 ฉบับ
 - Deachapunya, C., Thongsaard, W. and Poonyachoti, S. Barakol suppresses norepinephrine-induced inhibition of spontaneous longitudinal smooth muscle contractions in isolated rat small intestine. *Journal of Ethnopharmacology*, 101(1-3): 227-232, 2005. (impact factor ปี 2004 เท่ากับ 1.420)
 - Deachapunya, C., Thongsaard, W., Poonyachoti, S. and Krishnamra, N. Barakol extracted from Cassia siamea stimulates chloride secretion. Journal of Pharmacology, Experimental and Therapeutics 314(2): 732-737, 2005. (impact factor ปี 2004 เท่ากับ 4.335)
- 2. ผลงานตีพิมพ์บทคัดย่อในวารสารวิชาการในประเทศ จำนวน 1 ฉบับ
 - Poonyachoti S, Kramomtong I, Niyomtham W and Deachapunya C (2004) Effect of barakol on the secretory immunoglobulin A secretion against *Salmonella* Enteritidis translocation to the systemic organs of Wistar rat. *Thai J Vet Med* 34(2): 133-134.
- เสนอผลงานเรื่อง Barakol extracted from Cassia siamea stimulates chloride secretion in rat colon ในการประชุม นักวิจัยรุ่นใหม่ พบ เมธีวิจัยอาวุโส สำนักงานกองทุนสนับสนุนการวิจัย ณ โรงแรมเฟลิกซ์ จังหวัดกาญจนบุรี ระหว่างวันที่ 14 -16 มกราคม 2548

ภาคผนวก

Available online at www.sciencedirect.com

Journal of Ethnopharmacology 101 (2005) 227-232

www.elsevier.com/locate/jethpharm

Barakol suppresses norepinephrine-induced inhibition of spontaneous longitudinal smooth muscle contractions in isolated rat small intestine

Chatsri Deachapunya a,*, Watchareewan Thongsaard a, Sutthasinee Poonyachoti b

Department of Physiology, Faculty of Medicine, Srinakharinwirot University. Sukhumvit 23, Wattana, Bangkok 10110, Thailand
Department of Physiology, Faculty of Veterinary Medicine, Chulalongkorn University. Henri Dimant Rd., Patumwan, Bangkok 10340, Thailand

Received 19 August 2004; received in revised form 23 March 2005; accepted 27 April 2005 Available online 25 July 2005

uract

The present study aimed to investigate the purgative effects of barakol, the purified extract of Cassia siamea Lam., on the longitudinal both muscle contractions of the rat ileum. The extract increased the force of spontaneous muscle contractions in a concentration-dependent ener ($EC_{50} = 0.3 \, \text{mM}$). Saxitoxin ($0.3 \, \mu \text{M}$) abolished the stimulatory effects of barakol, a result indicating a neural mechanism of action. addition, atropine ($10 \, \mu \text{M}$) but not propanolol ($10 \, \mu \text{M}$) or phentolamine ($10 \, \mu \text{M}$), partially inhibited barakol-induced smooth muscle stractions suggesting that cholinergic nerves were involved. The motor effects of barakol were further examined in muscle strips treated attacholamines to suppress spontaneous contractile activity and decrease muscle tone. Norepinephrine or dopamine ($10 \, \mu \text{M}$) decreased amplitude of spontaneous contractions by 72% and 18%, respectively. Pretreatment of the tissues with barakol ($10 \, \mu \text{M}$) significantly treased the inhibitory effect of norepinephrine by 60%, but not that of dopamine. Its ability to potentiate attropine- and saxitoxin-sensitive mactions and inhibit the antimotility actions of norepinephrine suggests that barakol may increase longitudinal smooth muscle contractions decreasing the inhibitory effect of norepinephrine on excitatory cholinergic motor neurons. Barakol may produce a purgative action in all intestine which may be clinically important in patients with intestinal hypomotility disorders.

words: Cassia siamea; Intestinal motility; Constipation

Introduction

Barakol is a biologically active constituent extracted in the leaves and flowers of Cassia siamea Lam. (or mna siamea Lam. Irwin & Barneby) of the family Cae-priniaceae. This plant is widely cultivated in southant Asia including Thailand and traditionally used to at insomnia, diabetes, fever, hypertension and constinion (Satyavati et al., 1979; Kinghorn and Balandrin, 92). Alcoholic extracts of Cassia siamea have been own to possess central nervous system (CNS) depressant

activity, decrease spontaneous locomotor activity, increase smooth muscle tone (Arunlakshana, 1949) and decrease blood pressure (Mokasmit, 1981). Barakol was first isolated by Hassanali-Walji et al. (1969) and its chemical structure (3a, 4-dihydro-3a, 8-dihydroxy-2, 5-dimethyl-1, 4-dioxaphenalene or 2,5-dimethyl-3αH-pyrano-[2,3,4-de]-1-benzopyran-3α,8-diol) was identified by Bycroft et al. (1970). In animal models, harakol produces hypotension (Suwan et al., 1992), suppresses serotonergic activity as shown by decreasing 5-hydroxytryptophan-induced head shake behavior (Tongroach et al., 1992) and possesses anxiolytic activity on the elevated plus maze, a behavioral test for anxiolytic drugs (Thongsaard et al., 1996). Barakol also suppresses K⁺-stimulated endogenous dopamine release from striatal slices of the rat brain (Thongsaard et al., 1997). These data suggest that barakol can alter CNS activity. However, little is known about its

E-mail address: chatsri@swu.ac.th (C. Deachapunya).

78-8741/5 - see front matter © 2005 Elsevier Ireland Ltd. All rights reserved. ic.10.1016/j.jep.2005.04.017

Abbreviations: CNS, central nervous system; DA, dopamine; ENS, eric nervous system; NE, norepinephrine

Corresponding author. Tel.: +66 2 260 2122 4x4701;

^{: +66 2 260 1533.}

fects on the peripheral nervous system, another potential of barakol action.

Gastrointestinal secretory and motor functions are regsted by the enteric nervous system (ENS; Guyton and 11, 1996). The myenteric ganglionated plexus (also termed erbach's plexus) within the ENS modulates propulsive for activity along the intestinal tract. Stimulation of enteric plinergic neurons within the gut wall as well as those origiing in the vagus increases intestinal motility by promoting istalsis. On the other hand, noradrenergic neurotransmisin the gut is generally associated with decreased motility inge, 1996; Curry and Tatum-Butler, 1996). Decreases intestinal motility induced by psychological stress or ppathic constipation may be mediated by norepinephrine E) and possibly the related catecholamine, dopamine (DA; ukada et al., 2002). Catecholamines may reduce motility pugh direct actions on intestinal myocytes or by suppressexcitatory neurotransmission to smooth muscle (McEvoy, 00). As barakol modulates dopaminergic transmission in CNS, it is possible that it may alter the inhibitory effects catecholamines on intestinal motor function. Therefore, aim of the present study was to investigate the effect barakol on spontaneous longitudinal smooth muscle conctions in the isolated rat ileum. An additional objective to determine the mechanism by which barakol alters inhibitory actions of NE and DA on smooth muscle ntractility.

Materials and methods

Drugs and chemicals

Barakol was extracted and purified from Cassia siamea in laboratory as previously described (Thongsaard et al., 11). Briefly, a Cassia siamea plant was collected from Ladkrabang area of Bangkok, Thailand in August. The harium specimen was authenticated by Wongpakam S., lant taxonomist, deposited, and given voucher specimen mber A011432 by the Department of Botany, Faculty of ence, Chulalongkorn University, Bangkok, Thailand. The ves and flowers were cut into small pieces and boiled twice 0.5% sulfuric acid for 30 min. The mixture was blended, filed, and alkalinized with concentrated sodium bicarbonate I subsequently extracted with chloroform. The chloroform ract was further concentrated with 5% acetic acid and neufized with 25% ammonium hydroxide. The crude barakol ract was obtained as greenish crystallized yellow needles' th 0.3% yield. Concentrated hydrochloric acid was finally fed to obtain barakol hydrochloride and the mixture was ed by vacuum filtration to form yellowish crystals of anhyus barakol hydrochloride. The purity of the compound s confirmed by thin layer chromatography on silica gels I nuclear magnetic resonance. When anhydrous barakol frochloride was dissolved in water, it converted to barakol a solution at pH 3-4 in the stock concentration of 50 mM.

Prior to each experiment, barakol was freshly dissolved in normal saline solution, kept on ice and in the dark to prevent oxidation, and used within 3 h after preparation.

Arterenol bitartrate (norepinephrine), atropine sulfate, acetylcholine, dopamine hydrochloride, propanolol, phentolamine and saxitoxin were purchased from Sigma Chemical. St. Louis, MO, USA. Other chemicals and analytical grade salts were purchased from Fisher Scientific, Loughborough, UK. All drugs were dissolved in distilled water and maintained in concentrated stock solutions. Aliquots were diluted immediately before the start of each experimental session.

2.2. Animals

Male Wistar rats (250–300 g) were obtained from the National Laboratory Animal Center, Thailand. They were housed in stainless-steel cages in a room with a 12 h light:12 h dark cycle and allowed access to food (National Laboratory Animal Center, Thailand) and tap water ad libitum. All animals were sacrificed by decapitation. After a laparotomy incision, a portion of the ileum was removed and placed in an oxygenated physiological salt solution approximating the composition of rat extracellular fluid (composition in mM: 118 NaCl, 4.7 KCl, 2.5 CaCl₂, 0.5 MgCl₂, 25 NaHCO₃, 1.0 NaH₂PO₄, 11 D-glucose; pH 7.4).

2.3. Measurement of smooth muscle contractility

Ileal segments were longitudinally cut along the antimesenteric border and placed in oxygenated ice-cold physiological salt solution. They were pinned out as a flap, with the mucosa uppermost and a 3×10 mm muscle strip was cut parallel to the longitudinal muscle layer of the ileum. The strip therefore contained the longitudinal smooth muscle, from which isometric recordings were made, as well as the circular smooth muscle and both the myenteric and submucosal plexuses.

Intestinal strips were oriented in the plane of the longitudinal muscle and mounted in 15 ml organ baths containing physiological salt solution that was gassed with 95% O₂ and 5% CO₂ and maintained at 37 °C. Tissues were mounted under an initial tension of 9.8 millinewtons (mN). Strips were equilibrated for 45 min and the bathing media was changed every 15 min. Mechanical activity was recorded isometrically with a strain gauge force transducer (Maclab Model FT-100, AD Instruments, NSW, Australia) connected to a BRIDGE amplifier and a MacLab® 4S A/D converter (AD Instruments) and monitored with a 400 MHz PowerPC MacIntosh computer.

The average peak amplitude and frequency of contractions occurring after administration of each drug or drug concentration was determined and compared to average contraction amplitudes measured prior to drug administration. Due to the acidity of the barakol solution, the effect of 0.1 M hydrochloric acid was determined on spontaneous muscle contractions as a drug-free vehicle control. Hydrochloric acid, in a

tyroduce changes in either the amplitude or frequency of maneous muscle contractions. In experiments with catedamines, 1 mM barakol was added to the bathing medium min before addition of 10 µM NE or DA. In experiments high pharmacological blocking drugs, 10 µM of propanolol, entolamine, or atropine or 0.3 µM of saxitoxin was adminsted 10 min before addition of barakol or catecholamines.

Data analysis

The results were expressed as mean \pm S.E.M, with n noting the number of tissue preparations tested and N the a number of animals used in each experiment. Significant ferences between a single control and treatment means or analyzed by paired or unpaired two-tailed Student's t-its. P < 0.05 was considered statistically significant. Data analyzed using the PRISM software program (Graph-Software, Inc., San Diego, CA, USA).

Results

! Effects of barakol on spontaneous longitudinal ooth muscle contractions

Intestinal strips oriented in the plane of the longitudinal scle exhibited spontaneous, phasic contractions without nificant oscillations in tone. After a 45 min equilibration od, the average amplitude of longitudinal contractions 13.23 ± 0.10 mN relative to baseline tension in a repretative group of 78 tissues from 16 rats.

Barakol, at a bath-concentration of I mM, increased the confined of muscle contractions which reached a maximal tenn within 1-2 min without significant changes in contractifrequency. The maximal force of contraction was mainted up to 5 min and then gradually returned to pre-drug time values (Table I, Fig. 1A). Barakol increased spontatus contractions of ileal strips in a concentration dependent nner with an EC₅₀ value of 0.3 mM (n=4-22 tissues, 4-8 rats) (Fig. 2). It was 600-fold less potent in increascontractions than acetylcholine, which had an EC₅₀ te of 0.5 μ M (n=4-15 tissues, N=4-6 rats). Barakol was

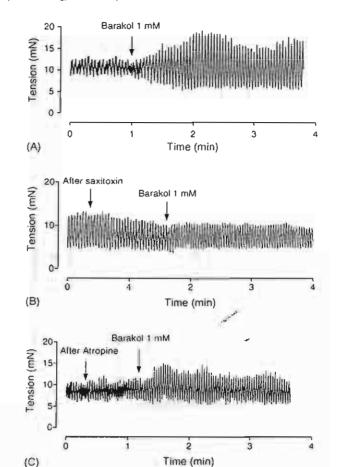
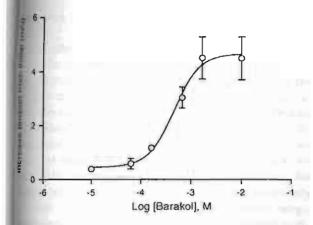


Fig. 1. Representative tracings of spontaneous ileal smooth muscle contractions in response to barakol treatment. (A) Effect of 1 mM barakol alone. (B) Lack of effect of barakol in a tissue pretreated with 0.3 μ M saxitoxin, a neural Na⁴ channel blocker. (C) Partial inhibition of barakol action in a tissue pretreated with the muscarinic cholinergic antagonist atropine (10 μ M). Records are representative of responses in 4–28 tissues from 4–9 rats.


also less effective in increasing contraction amplitude than acetylcholine. At a concentration of 1 mM, it produced a $48.03 \pm 8.76\%$ increase in contraction amplitude relative to baseline values measured prior to barakol addition (n=20 tissues, N=5 rats). In comparison, 10μ M acetylcholine produced maximal contractions that were $180.90 \pm 26.29\%$ over baseline (n=8 tissues, N=4 rats). Barakol (1 mM) did not

effect of various drugs on the amplitude of longitudinal smooth muscle contractions in rat ileal strips

ni	N rats	Before drug treatment ²	After drug treatment ^a	Average change
tylcholine (10 µM)	4	12.35 ± 1.08	34.69 ± 3.63*	22.34 ± 2.84
akol (1 mM)	5	9.41 ± 0.89	13.92 ± 0.78°	4.52 ± 0.78
eninephrine (10 µM)	6	11.66 ± 2.65	3.23 ± 1.08°	-8.33 ± 2.84
arrine (10 µM)	6	10.29 ± 0.88	8.43 ± 0.98*	-1.86 ± 0.69
pine (10 µM)	9	12.45 ± 0.69	10.49 ± 0.59	-1.96 ± 0.39
panolol (10 µM)	7	12.74 ± 0.78	12.54 ± 0.78	-0.20 ± 0.01
nto lamine (10 µM)	4	13.62 ± 1.18	13.97 ± 1.18	0.29 ± 0.20
ltoxin (0.3 μM)	4	7.64 ± 0.88	7.55 ± 0.88	-0.01 ± 0.01

Values represent the mean ± S.E.M amplitude of spontaneous smooth muscle contractions, expressed in millinewtons.

P<0.05 compared to contractile force before drug treatment (Student's t-test).

1 Concentration—effect relationship of barakol in increasing the ampliatiometric contractions in rat ileal strips. Each point represents the ±5.E.M change in isometric tension in response to each concentration and relative to the amplitude of spontaneous contractions occurring rang administration. The data were obtained in 4-15 tissues from 4-9

the concentration-effect relationship of acetylcholine measing intestinal contractions.

Effects of pharmacological blockers on muscle contractions

assess the mechanisms underlying the procontractile an of barakol on intestinal strips, its action was exam-In tissues pretreated with different pharmacological is. At 0.3 μM, the axonal conduction blocker saxin had no effect on the amplitude of basal contractions; ever, it completely inhibited the stimulatory effect of kol on muscle contractions by 98% (n = 4 tissues, N = 4. At a bath concentration of 10 μM, neither the αmeeptor blocker phentolamine nor the β-adrenoceptor sker propanolol altered the amplitude of smooth muscontractions under baseline conditions or after treatment barakol. The muscarinic cholinergic receptor blocker mine (10 µM) decreased the amplitude of spontaneous metions by $14.60 \pm 2.50\%$ of initial values (n = 28 tis-N=9 rats; Table 1) and abolished the contractile effect of Mcholine. Barakol-induced spontaneous muscle contracwere decreased by 41.80 ± 1.20% in tissues pretreated atropine (n = 28 tissues, N = 9 rats; Fig. 1C).

Effects of barakol on norepinephrine- or minine-suppressed smooth muscle contractions

The catecholamines NE and DA, at bath concentrations using from $0.1-10\,\mu\text{M}$, decreased the force of spontants contractions in a concentration-dependent manner. $10\,\mu\text{M}$, NE and DA decreased contractile force by $57\pm14.94\%$ (n=9 tissues, N=6 rats) and $17.67\pm3.93\%$, = 14 tissues, N=6 rats) respectively (Table 1). Pretreatment is sues with 1 mM barakol decreased the inhibitory action

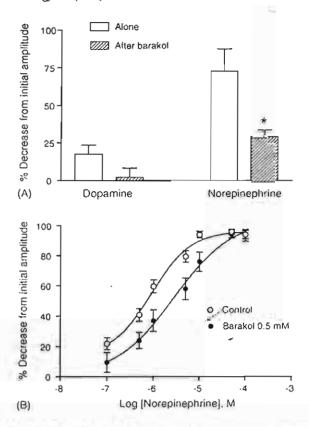


Fig. 3. (A) Effect of barakol on muscle contractions suppressed by catecholamines. (A) Dopamine (DA) or norepinephrine (NE) at a bath concentration of 10 μ M inhibited spontaneous muscle contractions by 18% and 73%, respectively. In tissues pretreated with 1 mM barakol, DA or NE respectively inhibited the amplitude of spontaneous muscle contractions by 2% and 29% (P < 0.05) relative to the contraction amplitude determined prior to catecholamine administration. (B) The concentration–response relationship of NE in depressing the amplitude of spontaneous contractions in tissues untreated (\bigcirc) or pretreated (\bigcirc) with 0.5 mM barakol. Barakol produced a 3-fold dextral shift in the NE concentration-effect curve without diminishing the maximum effect produced by NE. Values represent the mean \pm S.E.M percentage of inhibition produced by NE based on the amplitude of the spontaneous contractions measured prior to NE addition.

of 10 μ M NE from 72.57 \pm 14.94% (n = 9 tissues, N = 6 rats) to 29.02 \pm 4.32% (n = 7 tissues, N = 4 rats, P < 0.05). In contrast, barakol pretreatment did not significantly decrease the inhibitory action of 10 μ M DA (Fig. 3).

At a bath concentration of $0.5 \,\mathrm{mM}$, barakol decreased the potency of NE in inhibiting spontaneous contractions (EC₅₀ for NE in absence and presence of barakol=0.92 and 2.80 μ M, respectively; n=7-11 tissues, N=5-7 rats, Fig. 3B). However, it did not alter the maximum inhibitory effect of NE on spontaneous muscle contractions (96.41 \pm 3.76 and 104.2 \pm 8.64% in absence and presence of barakol, respectively; n=7-11 tissues, N=5-7 rats). Barakol had no significant effect on either the potency and maximal inhibitory effect of DA on contraction amplitude (DA EC₅₀=12.4 and 15.3 μ M, maximal inhibition of 97.81 \pm 12.21 and 102.41 \pm 4.10%, respectively in absence and presence of barakol; n=5 tissues, N=5 rats).

Discussion

Anthranoids derived from herbal plants are widely used as utives. The most well-known anthranoid laxatives, the sendes, are extracted from the leaves, roots, pods or even the mle plant of the species including Cassia siamea, Cassia mand Cassia acutifolia. Other bioactive anthranoids may mafter metabolic processing by commensal bacteria in the intestine, after extraction from different parts of Casinlants, or as a result of the method chosen for extraction inz, 1993). Barakol, extracted from young leaves of the usia spp. plant, is a chromone that is not related chemically inthranoids (Bycroft et al., 1970). It alters dopaminergic serotonergic transmission in the CNS (Thongsaard et al., 7; Grider et al., 1998). Given the overlapping complement eurotransmitters in the CNS and ENS (Hansen, 2003), hypothesized that it would potentially alter enteric neuunsmission as well. Indeed, receptors for plant-derived chotropic drugs such as the cannabinoids or opioids are sent in the ENS and mediate gastrointestinal function nwee, 2001; Kromer, 1990). Although Cassia siamea at preparations have been traditionally used as laxative es, the barakol extract has never been assessed for laxaactivity.

The use of intestinal muscle strips in this in vitro study perred us to examine the direct intestinal actions of barakol
he absence of drug-biotransforming bacteria or metabolic
hs. The observation that barakol affects intestinal motor
tion in vitro indicates that it is biologically active per
md does not require bioactivation by the intestinal flora
hetabolic processes. This stands in contrast to the anthrahetabolic processes. This stands in contrast to the anthrahetabolic processes. This stands in contrast to the anthrahetabolic processes by intestinal flora (De Witte and Lemli,
hetabolic by intestinal flora (De Witte and Lemli)

Using the isolated longitudinal smooth muscle contracsassay, barakol was found to augment spontaneous muscle tractions, but was considerably less potent and effective acetylcholine. Furthermore, it did not alter the potency aximum contractile effects of acetylcholine. This finding tests that barakol does not impair cholinergic neurotranssion in intestinal strips. Indeed, the contractile effects arakol were inhibited by both saxitoxin and atropine, sult indicating that barakol may increase the force of bth muscle contractions in part by facilitating cholinergic amission at myoneural junctions. Its action may be mediby excitatory neurotransmitter substances in addition cetylcholine. Substance P, serotonin, and histamine are ang several enteric neurotransmitters which stimulate contions in gastrointestinal smooth muscle (Hansen, 2003). involvement of excitatory, non-cholinergic transmitters trakol action is a subject worthy of future study.

spontaneous muscle contractions were not affected by a β-adrenergic antagonists and it is therefore unlikely endogenous NE tonically modulates motor function, at

least in the intestinal strip preparation. Nevertheless, adrenergic nerve fibers innervate both myenteric neurons and the intestinal smooth muscle and NE affects several gastrointestinal functions, including intestinal motility (Liu and Coupar, 1997). Indeed, NE has been implicated as a causal factor in some dysmotility syndromes, such as postoperative ileus or constipation. NE inhibited the amplitude of spontaneous contractions to a greater degree than DA. The antimotility effects of NE have been attributed to direct relaxant actions on smooth muscle cells and an indirect action to decrease the release of acetylcholine and other excitatory transmitters at myoneural synapses (Bolton, 1979). Barakol significantly decreased the inhibitory effect of NE but not DA on contraction amplitude. It slightly decreased the potency, but not the maximal effect produced by NE and did not alter the concentration-effect relationship for DA in depressing smooth muscle contractions. It is possible that barakol might act either as a weak adrenoceptor blocker or more likely, as a functional antagonist of NE action, but this hypothesis must be tested through further pharmacological analysis.

In general, the mechanisms of action of stimulant laxatives including the anthranoid derivatives encompass two independent mechanisms: increases in colonic motility, and alterations in colonic absorption and secretion (Leng-Peschlow, 1986). Barakol action was not investigated in a colonic smooth muscle preparation, but it is conceivable that barakol could possess antimotility activity in this gut segment as it does in the ileum. The effects of barakol on colonic absorption and secretion are presently under investigation. Furthermore, it remains to be determined whether the stimulatory effect of barakol on smooth muscle contractions in vitro can be extrapolated to an acceleration of intestinal transit in vivo. If it is proven to stimulate coordinated intestinal motor activity, barakol may represent an herbal laxative that is superior to the anthranoids. Indeed, the biologically-active anthranoid rhein anthrone appears to increase gut motility at least in part by damaging epithelial cells in the intestinal mucosa which in turn elicits the release of motility-enhancing cytokines or inflammatory mediators such as histamine and serotonin from monocytes, mast cells and other intestinal immunocytes (Nijs et al., 1992; Siegers et al., 1993). Epithelial cell damage may be involved in the increased incidence of colonic adenocarcinoma that has been associated with the chronic use of anthranoid laxatives (Siegers et al., 1993).

In summary, the results of this study clearly demonstrate that barakol increases the amplitude of spontaneous smooth muscle contractions in the isolated rat ileum. These results provide a pharmacological basis for the use of barakol, a biologically active compound extracted from Cassia siamea, as an herbal medicine for treatment of intestinal hypomotility. Although the precise mechanism(s) underlying the promotility actions of barakol require further characterization, it may be concluded from this study that barakol may act by promoting the release of stimulatory neurotransmitters such as acetylcholine or suppressing the effects of inhibitory transmitters such as norepinephrine on intestinal smooth

contractility. Adrenergic receptor blockers adminisa combination with cholinergic agonists have effecbeen used to alleviate postperative ileus or constipation and Passaro, 1990). The promotility actions of may have clinical importance, particularly in dystystates involving elevated sympathetic outflow to the multract, such as those secondary to stress and chronic whice constipation.

wledgements

swork was supported in part by research grants from that inwirot University and the Thailand Research Fund 4680196). The authors highly appreciate Professor R Brown, Department of Biomedical Science, Factor Veterinary Medicine, University of Minnesota, USA Taluable help in the correction of this manuscript. We mak Miss Piyanoot Tapaneeyaphan and Miss Potjaporn and dee for their help in the preparation of experiments.

rences

- prima, O., 1949. Pharmacological study of the leaves of Cassia Siriraj Hospital Gazette 1, 434–444.
- I.B., 1979. Mechanisms of action of neurotransmitters and other mines on smooth muscle. Physiological Reviews 59, 606-616.
- H.W., Hassanali-walji, A., Johnson, A.W., King, T.J., 1970. The rand synthesis of barakol: a novel dioxaphenalene derivative Carsia siamea. Journal of Chemical Society 12, 1686-1689.
- C.E., Tatum-Butler, D., 1996. Laxative products. In: Handbook imprescription Drugs, vol. 225-244, 11th ed. American Pharma-al Association, Washington, DC, 83-97.
- P. Lemli, L., 1990. The metabolism of anthranoid laxatives.
- 1. 1993. The senna drug and its chemistry. Pharmacology 47
- Foxx-Orenstein, A.E., Jin, J.G., 1998. 5-Hydroxytryptamine explor agonists initiate the peristaltic reflex in human, rat, and a pig intestine. Gastroenterology 115, 370–380.
- A.C., Hall, J.E., 1996. The autonomic nervous system: the all medulla. In: Textbook of Medical Physiology, 9th ed. W.B. lers Company, Philadelphia, Pensylvania, pp. 769-781.
- M.B., 2003. The enteric nervous system III: a target for pharmacological Toxicology 93, 1-13.
- m-Walji, A., King, T.J., Wallwork, S.C., 1969. Barakol, a novel suphrnalene derivative from *Cassia stamea*. Journal of Chemical city and Chemistry Communication 12, 678.
- m, A.D., Balandria, M.E., 1992. Human Medicinal Agents from American Chemical Society, Washington, DC.

- Kromer, W., 1990. Endogenous opioids, the enteric nervous system and gut motility. Digestive Diseases and Sciences 8, 361-373.
- Lange, R.L., 1996. Antidiarrheal products. In: Handbook of Nonprescription Drugs, vol. 245-260, 11th ed. American Pharmaceutical Association, Washington, DC.
- Leng-Peschlow, E., 1986. Dual effect of orally administered sennosides on large intesine transit and fluid absorption in the rat. Journal of Pharmacy and Pharmacology 38, 606-610.
- Liu, L., Coupar, I.M., 1997. Characterization of pre- and post-synaptic α-adrenoreceptors in modulation of rat ileum longitudinal and circular muscle activities. Naunyn-Schmiedberg's Archrive of Pharmacology 356, 248-256.
- Livingston, E.H., Passaro Jr., E.P., 1990. Postoperative ileus. Digestive Diseases and Sciences 35, 121-132.
- McEvoy, G.K., 2000. AHFS Drug Information 2000. American Society of Health-System Pharmacists, Bethesda, MD.
- Mokasmit, M., 1981. Hypertensive effects of Thai medicinal plants. Newsletter of National Research Council of Thailand 22, 3-4.
- Nijs, G., de Witte, P., Ceboe, K., Lemli, J., 1992. Influence of rhein anthrone and rhein on small intestine transit rate in rats: evidence of prostaglandin mediation. European Journal of Pharmacology 218, 199-203.
- Pertwee, R.G., 2001. Cannabinoids and the gastrointestinal tract. Gut 48, 859-867.
- Satyavati, G.V., Roana, M.K., Sharma, M., 1979. Medicinal Plants of India. Indian Council of Medical Research, New Delhi.
- Siegers, C.P., von Hertzberg-Lottin, E., Otte, M., Schneider, B., 1993. Anthranoid laxative abuse-a risk for colorectal cancer? Gut 34, 1099-1101.
- Suwan, G., Sudsuang, R., Ghumma-Upakorn, D., Werawong, C., 1992. Hypertensive effects of barakol extracted from leaves of Cassia siamea Lam. in rats and cats. Thai Journal of Physiological Science 5, 53-65.
- Thongsaard, W., Chainakul, S., Bennett, G.W., Marsden, C.A., 2001. Determination of barakol extracted from Cassia siumea by HPLC with electrochemical detection. Journal of Pharmaceutical and Biomedical Analysis 25, 853-859.
- Thongsaard, W., Deachapunya, C., Pongsakorn, S., Boyd, E.A., Bennett, G.W., Marsden, C.A., 1996. Barakol: A potential anxiolytic extracted from Cassia siamea. Pharmacology Biochemistry and Behavior 53, 753-758.
- Thongsaard, W., Pongsakorn, S., Sudsuang, R., Bennett, G.W., Kendall, D.A., Marsden, C.A., 1997. Barakol, a natural anxiolytic, inhibits striatal dopamine release but not uptake in vitro. European Journal of Pharmacology 319, 157-164.
- Tongroach, P., Jantarayota, P., Tantisira, B., Kunluan, P., Tongroach, C., Chaichantipyuth, C., 1992. Barakol, a neuroactive compound from Cassia siamea. In: Proceedings of the First JSPS-NRCT Joint Seminar in Pharmaceutical Sciences: Advances in Research on Pharmacologically Active Substances from Natural Sources, Chiangmai, Thailand, P21.
- Tsukada, F., Sawamura, K., Kohno, H. Ohkubo, Y., 2002. Mechanism of inhibition of small intestinal motility by restraint stress differs from that with norepinephrine treatment in rats. Biology Pharmacology Bulletin 25, 122-124.

arakol Extracted from Cassia siamea Stimulates Chloride ecretion in Rat Colon

hatsri Deachapunya, Sutthasinee Poonyachoti, Watchareewan Thongsaard, and meetip Krishnamra

ment of Physiology, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand (C.D., W.T.); Department of sology, Faculty of Veterinary Science, Chulalongkom University, Bangkok, Thailand (S.P.); and Department of Physiology, auty of Science, Mahidol University, Bangkok, Thailand (N.K.)

ceived February 1, 2005; accepted April 28, 2005

ESTRACT

restol is a purified extract of *Cassia siamea*, a plant that has an used as a laxative in traditional medicine. In this study, the ect of barakol on anion transport across the rat colon epidum was investigated. Colonic epithelium was mounted in sing chambers and bathed with Ringer's solution. Addition 1 mM barakol to the basolateral solution produced a slow rease in short-circuit current (Isc) in proximal colon and tal colon by 24.5 ± 2.2 and $24.2 \pm 1.4 \,\mu\text{A/cm}^2$, respectively. Takol increased Isc in a concentration-dependent manner nan EC₅₀ value of 0.4 mM. The barakol-stimulated increase sc was inhibited by subsequent treatment with 500 μ M henylamine-2-carboxylic acid or 400 μ M glibenclamide ded to the apical solution and 200 μ M burnetanide added to basolateral solution. Pretreatment of the tissues with 200

 $\mu\rm M$ burnetanide, but not 10 $\mu\rm M$ amiloride, completely abolished the barakol-increased lsc. Ion substitution experiments showed an inhibition of barakol-stimulated lsc in chloride-free solution but not in bicarbonate-free solution. In addition, pretreatment of tissues with 10 $\mu\rm M$ tetrodotoxin or 10 $\mu\rm M$ indomethacin, but not 1 $\mu\rm M$ atropine or 10 $\mu\rm M$ hexamethonium, partially inhibited the lsc response by barakol. The present results demonstrated the stimulatory effect of barakol on the burnetanide-sensitive chloride secretion in rat colon. The effect of barakol was partly mediated by the stimulation of submucosal nerves and through the release of cyclooxygenase metabolites. These findings thus provide an explanation for the underlying mechanism of barakol as a secretagogue in mammalian colon.

Barakol is a biologically active compound extracted from aves and flowers of Cassia siamea, a plant that has been aditionally used for the treatment of fever, skin disease, astipation, diabetes, hypertension, and insomnia (Kingmand Balandrin, 1992). It was originally extracted by asanali-Walji et al. in 1969. Its chemical structure was entified as $3\alpha,4$ -dihydro- $3\alpha,8$ -dihydroxy-2,5-dimethyl-1,4-exaphenalene ($C_{13}H_{12}O_4$) or 2,5-dimethyl- $3\alpha H$ -pyrano-3,4-de]-1-benzopyran- $3\alpha,8$ -diol (Fig. 1), and a proposed othetic procedure was described in 1970 (Bycroft et al., 970). In animal model studies, barakol has been shown to assess hypotensive activity (Suwan et al., 1992) and seroto-

nergic receptor antagonist activity (Tongroach et al., 1992), and it appears to function as an anxiolytic in exploratory behavioral activities (Thongsaard et al., 1996). Further in vitro studies in the central nervous system have found that barakol inhibits K⁺-stimulated dopamine release from striatal slices of rat brain (Thongsaard et al., 1997). Recent studies in our laboratory have shown that barakol increases smooth muscle contraction in the isolated rat ileum under basal conditions and during electrical field stimulation. In these studies, barakol was found to inhibit norepinephrine-suppressed smooth muscle contraction, suggesting a role for barakol as a prokinetic drug (Poonyachoti et al., 2002).

The colonic epithelium plays an essential role in the absorption and secretion of water and electrolytes. Its transport function is regulated by a variety of neurotransmitters, hormones, and inflammatory mediators. Under basal conditions, the colonic epithelium absorbs fluid from the lumen into the circulation, and this process is driven by energy-dependent Na⁺ transport. In contrast, colonic secretion is activated by secretagogues that enhance Cl⁻ transport mechanisms,

This work was fully supported by The Thailand Research Fund KG4680196) awarded to C.D.

This work was presented as a poster in the 14th World Congress of Pharcology Meeting; 2002 July 7-12, San Francisco, CA (Deachapunya C, ongsaard W, and Poonyachoti S (2002) Barakol stimulates chloride secren in rat colon. The Pharmacologist 44:A35].

Article, publication date, and citation information can be found at p://jpet.aspetjournals.org.

doi:10.1124/jpet.105.084210.

IBREVIATIONS: DPC, diphenylamine-2-carboxylic acid; DIDS, 4,4-diisothiocyanatostilbene-2,2-disulfonic acid; PD, potential difference; lsc, ort-circuit current; G, tissue conductance; TTX, tetrodotoxin; CFTR, cystic fibrosis transmembrane conductance regulator.

Fig. 1. Chemical structure of barakol.

ch in turn create electrochemical and osmotic driving es for passive cation and water movement into the lumen inzelmann and Mall, 2002). Decreased secretory function increased fluid absorption by the colon is typically associd with constipation. Since Cassia siamea has been used as a rative, we hypothesized that its active ingredient, baramay exert a laxative effect by stimulating chloride secreand/or inhibiting NaCl absorption across the colonic thelium. Therefore, the aim of the present study was to estigate the effect of barakol on ion transport across the colon epithelium and to determine the mechanisms inved in barakol action.

Materials and Methods

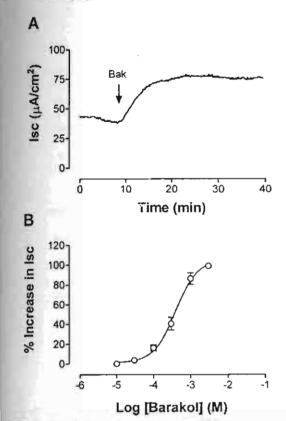
Plant Extraction. Barakol was extracted and purified from Cassiamea by a method modified in our laboratory (Thongsaard et 2001). Briefly, fresh young leaves and flowers of Cassia siamea. obtained from Ladkrabang, Bangkok, Thailand. The herbarium dmens were authenticated, deposited, and given the voucher men number A001432 by the Department of Botany, Faculty of rce, Chulalongkorn University, Bangkok, Thailand. They were into small pieces and boiled in 0.5% sulfuric acid for 30 min. The mire was blended, filtered, and alkalinized with concentrated IICO3 and then extracted with chloroform. The chloroform extract further concentrated with 5% acetic acid and neutralized with ammonium hydroxide. The crude barakol was obtained as hish crystallized vellow needles with a 0.3% yield. Concentrated bochloric acid was finally added to obtain barakol hydrochloride, the mixture was dried by vacuum filtration to form yellowish stallized anhydrobarakol hydrochloride. The compound was n to be a single chemical using thin-layer chromatography on gel, and the identification was confirmed by nuclear magnetic spance. Barakol was dissolved in distilled water immediately testing its activity. When anhydrobarakol hydrochloride is solved in water, the reaction is reversed, and the product used in the biological experiments is a barakol solution with a pH of 3 to the stock concentration (50 mM) (Thongsaard et al., 2001). In the periment, barakol was freshly dissolved in normal saline, wrapped h aluminum foil, and kept on ice, and it was used within 3 h after paration.

Chemicals. Tetrodotoxin, atropine sulfate, hexamethonium, loride, glibenclamide, diphenylamine-2-carboxylic acid (DPC), diisothiocyanatostilbene-2,2-disulfonic acid (DIDS), bumetanide, yphendamine, indomethacin, acetazolamide, and high-purity de salts were obtained from Sigma-Aldrich (St. Louis, MO). All micals were made in aliquots and kept at -20°C before use. Some micals were dissolved in dimethyl sulfoxide, the final dimethyl foxide concentration of which was less than 0.1% (v/v).

Animals and Tissue Preparation. Male Wistar rats (250-300 were obtained from National Animal Center, Mahidol University, ngkok, Thailand. They were housed in stainless steel cages in a m with a 12-h light/dark cycle and allowed free access to food and ther. All animals were taken care of in accordance with the Inter-

national Guiding Principles for Biomedical Research Involving Animals provided by the National Research Council of Thailand.

For the experiment, rats were sacrificed with a small animal decapitator (Harward, Kent, UK). After a laparotomy incision, the whole colon was removed, rinsed, and placed in an ice-cold oxygenated Ringer's solution (118 mM NaCl, 4.7 mM KCl, 2.5 mM CaCl₂, 0.5 mM MgCl₂, 25 mM NaHCO₃, 1.0 mM NaH₂PO₄, and 11 mM D-glucose; pH 7.4). The colon was longitudinally cut close to the mesentery, and the serosal muscle layers were carefully stripped away by blunt dissection to obtain a mucosa-submucosal preparation. The appearance of palm-like foldings was used to distinguish between the distal and proximal colon.


Measurement of Electrical Parameters. The mucosa-submucosal preparation was mounted in Ussing chambers (0.62 cm²) bathed on the apical and basolateral sides with identical Ringer's solutions at 37°C and gassed with 95% O2 and 5% CO2. Transepithelial potential difference (PD) and short-circuit current (Isc) were measured with the use of an EVC-4000 voltage-clamp amplifier (World Precision Instruments, Inc., Sarasota, FL), using Ag/AgCl₂ electrodes connected to the bathing solution via agar bridges. Tissue conductance (G) was calculated using Ohm's law (G = Isc/PD). The tissues were continuously short-circuited, except for a brief interval of open-circuited readings before and after adding any chemicals. The data from the voltage clamp was connected to a MacLab 4S A/D converter and recorded with a 400-MHz PowerPC Macintosh. After mounting, the tissues were equilibrated for at least 30 min to achieve a stable Isc before the addition of chemicals. Positive Isc corresponded to the movement of anions from the serosal to mucosal compartments or movement of cations from the mucosal to serosal compartments or a combination of both. In the anion replacement experiments, gluconate salts were substituted for chloride, and 20 mM HEPES buffer was substituted for HCO3. Experiments under HCO3-free and Cl--HCO3-free conditions were performed in the presence of 100 µM acetazolamide and bubbled with 100% O2.

Data Analyses. All values were expressed as means and standard error of mean (S.E.M.); n was the number of different tissue preparations, and N was the number of animals in each experiment. The increase in Isc was quantified by subtracting the peak of an Isc response from its respective baseline value before drug administration. The statistical differences between control and treatment means were analyzed using Student's paired or unpaired t test when appropriate. The differences among groups were analyzed using a one way analysis of variance followed by Dunnett's multiple comparison. A p value of less than 0.05 was considered statistically significant.

Results

Under basal conditions, after an equilibration period of 30 to 45 min, the distal colon showed average Isc, PD (lumen negative), and G values of $35.5 \pm 2.4 \,\mu\text{A/cm}^2$, $-3.7 \pm 0.3 \,\text{mV}$, and $11.0 \pm 0.8 \,\text{pS/cm}^2$ ($n=44 \,\text{tissues}$, $N=17 \,\text{rats}$), respectively. The proximal colon exhibited average Isc, PD, and G values of $39.6 \pm 5.1 \,\mu\text{A/cm}^2$, $-2.7 \pm 0.3 \,\text{mV}$, and $15.3 \pm 1.5 \,\text{pS/cm}^2$ ($n=17 \,\text{tissues}$, $N=12 \,\text{rats}$), respectively.

Effect of Barakol on Isc. Addition of 1 mM barakol to the basolateral solution produced a slow increase in Isc, which peaked in 5 to 10 min and was sustained for 30 to 45 min (Fig. 2A) before it gradually returned to the baseline level. The maximal increase in Isc produced by barakol was $24.4 \pm 2.0 \ \mu \text{A/cm}^2$ (n=33 tissues, N=18 rats) in distal colon and $24.0 \pm 4.6 \ \mu \text{A/cm}^2$ (n=10 tissues, N=7 rats) in proximal colon. The tissue conductance at the maximal barakol response was not different from its corresponding baseline value (control, $13.3 \pm 1.0 \ \text{pS/cm}^2$; after barakol, $12.8 \pm 1.0 \ \text{pS/cm}^2$, $n=35 \ \text{tissues}, N=18 \ \text{rats}$). Addition of 0.01 M

2. Effect of barakel on Isc in rat colon epithelium. A, representative dings of the Isc response produced by addition of 1 mM barakel (Bak) to baselateral solution. B, concentration-response relationship for tel-stimulated Isc. The EC₅₀ value was 0.4 mM. Each point represed mean ± S.E.M.

frochloric acid in equal volume to barakol solution (200 μ l) not alter any baseline electrophysiological parameters. ce the tracings and maximal Isc responses to barakol in distal and proximal colon were not different, the rest of experiments were performed using distal colon unless rwise stated. Barakol (10 µM-3 mM) induced a cumulaconcentration-dependent increase in Isc with an appar- EC_{50} value of 0.4 mM (n = 9 tissues, N = 5 rats; Fig. 2B). barakol-induced increase in Isc was completely inhibited the Cl⁻ channel blocker DPC (500 μ M; n = 4 tissues, N =its; Fig. 3A) and partially inhibited by glibenclamide (400) added to the apical solution. Glibenclamide produced a $3 \pm 11.0\%$ decrease in barakol-stimulated Isc (n = 5 ues, N = 4 rat; Fig. 3B). In contrast, the barakol-stimued increase in Isc was not affected by a subsequent addiof DIDS to the apical solution (n = 5 tissues, N = 4 rats). colateral addition of bumetanide (200 μM), a Na+-K+cotransporter inhibitor, completely suppressed the akol-stimulated Isc (n = 5 tissues, N = 4 rats; Fig. 3C). Isc response to barakol did not significantly change in presence of the Na+ channel blocker amiloride (10 µM; 4A) in the apical solution (control, 33.5 \pm 6.8 μ A/cm² 6 tissues, N = 4 rats; after amiloride, 32.5 ± 10.1 cm^2 , n=3 tissues, N=3 rats). In contrast, pretreatment issues with bumetanide (200 µM; Fig. 4B) abolished the akol-induced increase in Isc, from 33.5 \pm 6.8 μ A/cm² (n = ssues, N=4 rats) to 1.0 \pm 3.6 μ A/cm² (n=3 tissues, N=its, p < 0.01; Fig. 4C).

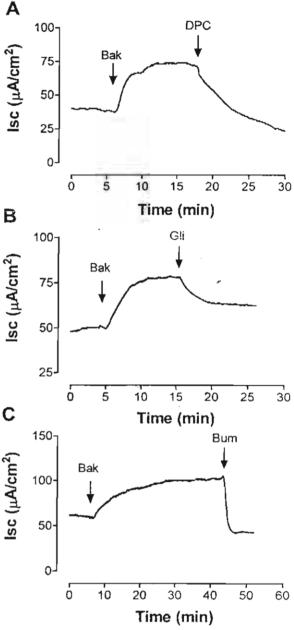
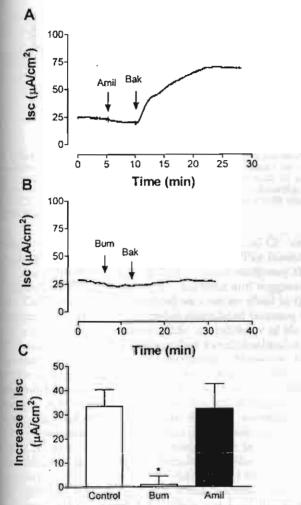
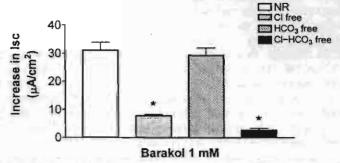



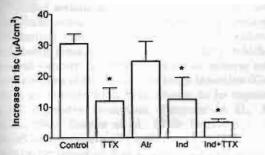
Fig. 3. Effect of Cl⁻ channel blockers and a Na⁺-K⁺-2Cl⁻ cotransport blocker on the barakol-stimulated Isc. Representative recordings of the Isc response produced by basolateral addition of 1 mM barakol (Bak) were inhibited by (A) apical addition of 500 μ M DPC, (B) apical addition of 400 μ M glibenclamide (Gli), or (C) basolateral addition of 200 μ M burnetanide (Bum).

Effect of Ion Substitution on Barakol-Increased Isc. Ion substitution experiments were performed to determine the ionic basis of the Isc response induced by barakol. In normal Ringer's solution, barakol at a concentration of 1 mM produced a mean increase in Isc of $31.1 \pm 2.8 \,\mu\text{A/cm}^2$ (n=24 tissues, N=13 rats). Replacement of Cl^- in both apical and basolateral solutions significantly inhibited the maximal Isc response to barakol ($7.8 \pm 0.6 \,\mu\text{A/cm}^2$, n=8 tissues, N=6 rats, p<0.05), whereas replacement of HCO_3^- had no effect on the maximal barakol-induced Isc ($29.4 \pm 2.6 \,\mu\text{A/cm}^2$, n=5 tissues, N=4 rats). Replacement of both Cl^- and HCO_3^- significantly inhibited the maximal Isc response to $2.6 \pm 0.7 \,\mu\text{A/cm}^2$ (n=5 tissues, N=4 rats, p<0.05; Fig. 5).

Effect of amiloride and bumetanide on the barakol-stimulated Isc. entative tracings of the barakol (Bak)-stimulated Isc response retreatment with (A) apical addition of 10 μ M amiloride (Amil) or insolateral addition of 200 μ M bumetanide (Bum). C, bar graph sting the average maximal increases in Isc response produced by alone (Control) and after pretreatment with bumetanide or inde. Values represent means \pm S.E.M. *, P < 0.01 when compared the control value.

ffects of Submucosal Neuronal Blockers and Indothacin on Barakol-Increased Isc. To assess whether skol activation of CI - secretion was mediated by submul neurons and prostaglandin synthesis, the tissues were reated with neuronal blockers or indomethacin for 5 min wild by basolateral addition of barakol (1 mM). The effect arckol alone on control tissues is shown in Fig. 6 (30.4 ± "Ncm², n = 22 tissues, N = 11 rats). Tetrodotoxin (TTX; μ M) significantly decreased the basal Isc from 51.9 \pm 13.0 $82 \pm 9.9 \,\mu\text{A/cm}^2$, and the subsequent addition of barakol alted in an Isc response that was 60% lower than that in trol tissues (11.8 \pm 4.2 μ A/cm², n = 5 tissues, N = 4 rats, (0.05). In contrast, pretreatment with the muscarinic eptor antagonist atropine (1 µM) in the basolateral soluand not significantly change the basal Isc or reduce the skol-induced increase in Isc (24.7 \pm 6.4 μ A/cm², n=4mes, N = 4 rats). In addition, hexamethonium pretreat-10 μM) did not significantly alter the barakol-stimuid Isc (n = 5 tissues, N = 4 rats; data not shown). Preatment of tissues with the cyclooxygenase inhibitor




Fig. 5. Effect of Cl⁻ and HCO₃⁻ substitution on the barakol-stimulated Isc. In standard Ringer's solution (NR), barakol at a concentration of 1 nIM produced a mean increase in Isc of 31 μ A/cm². Replacement of Cl⁻ (Cl fee) or both Cl⁻ and HCO₃⁻ (Cl-HCO₃ free) inhibited the maximal Isc response to barakol by 74 and 91%, respectively, whereas replacement of HCO₃⁻ (HCO₃ free) had no effect on barakol response. Values were means \pm S.E.M. *, P < 0.01 when compared with the control value of NR.

indomethacin (10 μ M) in both apical and basolateral solutions significantly reduced the barakol-stimulated Isc response by 60% (12.3 \pm 7.1 μ A/cm², n=7 tissues, N=6 rats, p<0.05). The barakol-stimulated Isc response was decreased by 90% in the presence of indomethacin and TTX (4.95 \pm 1.1 μ A/cm², n=4 tissues, N=4 rats, p<0.05; Fig. 6). In addition, pretreatment with 10 μ M dihyphendamine, a histamine (H₁) receptor blocker, did not change the barakol-stimulated Isc (n=3 tissues, N=3 rats; data not shown).

Discussion

In the present study, the direct effect of barakol on the ion absorption and secretion was studied in vitro using serosal muscle-stripped colonic epithelium. Barakol was shown to increase Isc in both proximal and distal colon by the same magnitude. The increased Isc was due to an activation of Clsecretion. This was supported by the findings that Cl - channel blockers, DPC and glibenclamide, inhibited the barakolinduced increase in Isc. In ion substitution experiments, the barakol-stimulated Isc was abolished in Cl--free solution and further inhibited in Cl -- and HCO3-free solutions. In addition, pretreatment with the loop diuretic bumetanide completely inhibited the barakol-stimulated Isc. All of these findings were consistent with stimulation of transepithelial Cl secretion in human and rat colon (Dharmsathaphorn et al., 1985; Ko et al., 2002; Kunzelman and Mall, 2002). The finding that the increase in Isc by barakol was not affected by the presence of the Na+ channel blocker amiloride indicates that barakol did not stimulate electrogenic Na+ absorption.

Cl⁻ secretion in mammalian colon involves Cl⁻ uptake across the basolateral membrane by a Na⁺-K⁺-2Cl⁻ cotransport mechanism and subsequent efflux across the apical membrane through Cl⁻ channels. CFTR is the predominant Cl⁻ channel that plays a role in Cl⁻ secretion in many epithelia, including the colonic epithelium (Kunzelmann and Mall, 2002). CFTR is a cAMP-mediated Cl⁻ channel that has previously been shown to be inhibited by DPC and glibenclamide (Sheppard and Welsh, 1992). On the other hand, DIDS has been shown to block Ca²⁺-activated Cl⁻ channel but had no effect on the activity and conductance of CFTR (Anderson et al., 1992; Schultz et al., 1999). Since the present study showed that the barakol-induced increase in Isc was completely inhibited by DPC and partly inhibited by gliben-

Effect of submucosal neuronal blockers and indomethacin on the bl-stimulated Isc. The bar graph illustrates the maximal Isc rest to barakol alone (Control) and after pretreatment with 10 μ M atropine (Atr), 10 μ M indomethacin (Ind), or a combination of md TTX (Ind + TTX). Values were mean \pm S.E.M. *, P < 0.05 when we with the control value.

mide, it is most likely that CFTR was the apical Cl exit Iway for barakol-stimulated Cl secretion. The insensiof the barakol response to DIDS further confirmed the Ivement of CFTR-mediated Cl secretion and suggested the Ca2+-activated Cl- channel was not involved in the response to barakol. The barakol-stimulated increase in was also abolished by bumetanide, an inhibitor of Na+-2Cl cotransporter, suggesting that barakol-stimulated uptake was mediated by this mechanism. Moreover, the viation of barakol-stimulated Cl secretion by CFTR Cl anel blockers and bumetanide indicated that the cellular hanism of barakol may involve the cAMP-dependent hway. Our finding was consistent with Cl secretion ined by other plant-derived bioactive compounds, especially unoid baicalein. Baicalein has been shown to stimulate secretion across rat colonic epithelium by the activation be cAMP-dependent apical Cl channel and the basolat-K+ channels (Ko et al., 2002). From studies in human mic cancer cells (T84 cells), baicalein was found to potenthe Ca2+-mediated Cl- secretion via an accumulation of If and activation of protein kinase A activity (Yue et al., (4). However, the signaling mechanisms involving either facellular Ca2+ or cAMP and protein kinase A in the ediation of barakel-stimulated Cl secretion could not be ied out and are subject to further investigation.

fost of the naturally occurring laxatives exert their effects the colonic epithelium by stimulating Cl - secretion and/or biting Na absorption, resulting in an accumulation of and subsequent increased colonic motility. The inand Cl secretion by anthranoid laxatives anthraquinone I sennosides is due to disruption of epithelial tight juncma, leading to increased permeability of the epithelium , 1980; Wanitschke, 1980). Their chemical structures lated to junctional disruption have not been indicated. Alough the direct effect of barakol on tight junction permeility was not examined in the present study, an increase in actional permeability was unlikely to account for barakolmulated Cl secretion since changes in tissue conductance re relatively small. The suppressive actions of anthranoid tatives on Na absorption could result from decreased ATP iduction or a direct inhibition of the Na+,K+-ATPase acfity in the basolateral membrane (Wanitschke, 1980; Wanwhite and Karbach, 1988). Reduced Na+,K+-ATPase activwould, in turn, decrease net Na+ absorption across the mbelium. In this study, the barakol-induced increases in were not affected by amiloride, indicating that the barakol effect was not due to activation of epithelial Na⁺ channels. This finding may be due to the fact that Na⁺ channels normally play a relatively minor role in Na⁺ absorption across the proximal and distal colon in rats (Kunzelmann and Mall, 2002). However, a question still remains as to whether barakol may have some effects on Na⁺-H⁺ or Cl⁻-HCO₃⁻ exchange, since the activities of these electroneutral transporters could not be detected by measurement of Isc.

To identify whether the barakol response involved neurotransmitter release from nerves within the submucosal plexus or was the result of a direct effect on the epithelium, the tissues were pretreated with tetrodotoxin to block the neuronal Na+ channel activity and inhibit action potential propagation. A substantial portion of basal Isc (36%) was inhibited following the addition of tetrodotoxin, suggesting that it was sustained by endogenous release of neurotransmitters from the submucosal plexus. Pretreatment with tetrodotoxin inhibited the barakol-induced increase in Isc by 48%, confirming that barakol-stimulated Cl secretion was partially mediated through the activation of submucosal nerves. In contrast, the lack of effect of the muscarinic cholinergic receptor blocker atropine or the nicotinic receptor blocker hexamethonium on the barakol-stimulated Isc response argued against involvement of the acetylcholine-containing submucosal neurons in barakol action on Cl secretion in the rat. The tetrodotoxin-insensitive barakol response suggested that barakol may act directly on the colonic epithelial cells to stimulate Cl secretion.

To further test whether the barakol activation of Cl- secretion was due to prostaglandin release, tissues were pretreated with the cyclooxygenase inhibitor indomethacin to block the synthesis of prostaglandins. Prostaglandins are normally released in response to a variety of stimuli. They have been known to activate Cl - secretion directly via prostanoid receptors located in rat colonic epithelial cells (Brown et al., 1992). The present findings demonstrated that indomethacin inhibited the effect of barakol on Isc by 62%, suggesting that its sustained stimulatory effect on Cl secretion was partially mediated through the release of prostaglandins. The combined presence of indomethacin and tetrodotoxin nearly abolished (90%) the stimulatory effect of barakol on CI secretion, indicating that the direct interaction of barakol with epithelial cells may account in part for its response.

The synthesis and release of prostaglandins are known to be part of the mechanisms of the anthranoid laxatives. Damage to epithelial cells caused by anthranoids induces the release of histamine and serotonin from monocytes, mast cells, and other intestinal monocytes, leading to increased biosynthesis of prostaglandin (Yagi et al., 1988; Nijs et al., 1992). Prostaglandin release, in turn, accelerates the large intestine transit and alters fluid absorption and secretion (Leng-Peschlow, 1986). In addition, the release of inflammatory mediators, especially histamine, is known to stimulate Cl⁻⁻ secretion in colonic epithelium (Traynor et al., 1993; Yue et al., 2004). However, inflammatory mediators were unlikely to be responsible for the actions of barakol since the histamine antagonist diphenhydramine did not alter the Isc response to barakol.

From the present findings, it seemed that barakol response was substantially mediated by enteric nerves within the submucosal plexus. Being insensitive to atropine and hexame-

m, barakol actions may be mediated by other neuromitter substances of the noncholinergic pathways. indates include vasoactive intestinal peptide, substance d calcitonin gene-related peptide (CGRP), which are several neurotransmitters present in enteric nerves enery neurons of the small and large intestine (Cooke, These substances have been shown to be capable of ng Cl -dependent secretion (Traynor et al., 1991; et al., 1992; Riegler et al., 1999; Esfandyari et al., The effect of substance P involved in barakol response mently under investigation. Possible involvement of exmy, noncholinergic transmitters in barakol action is also meet worthy of future study.

fact that a decrease in Cl secretory activity in the is one explanation for the increased incidence of contion in the elderly; therefore drugs that increase fluid through modulating ion channel activity could be ficial for the treatment of constipation. Barakol, shown be present study to have a stimulatory effect on electroand water secretion, could thus be therapeutically useful management of age-related changes in colonic funcfor constipation associated with physiological or psychoal stress. By increasing the Cl secretion in both proxiand distal colon, barakol could work as a laxative by masing colonic volume and motility.

aconclusion, we have shown in rat colonic epithelium that akol stimulated chloride secretion without affecting elecnic sodium absorption. The transport mechanisms inand basolateral Na+-K+-2Cl- cotransporters and apical channels. Although not specifically addressed in this b, some increase in K+ channel activity was also likely as means to sustain the electrical driving force for Cl exit s the apical membrane. The barakol-stimulated Isc was tially controlled by enteric nerves within the submucosal as and partially mediated by the release of cyclooxygenmetabolites. Our findings provided a mechanistic explaon for the action of the active compound barakol and the tive effect of Cassia siamea plant extract.

nowledgments

le highly appreciate Professor Scott M. O'Grady, Department of mal Science and Physiology, University of Minnesota, for valucomments and corrections of this manuscript.

son MP, Sheppard DN, Berger RA, and Welsh MJ (1992) Chloride channels in apical membrane of normal and cystic fibrosis airway and intestinal epithelia. Physiol 263:L1-L14

a DR, Parsons AM, and O'Grady SM (1992) Substance P produces sodium and rbonate secretion in percine jejunal mucosa through an action on enteric J Pharmacol Exp Ther 261:1206-1212

ft BW, Hassanali-Walji A, Johnson AW, and King TJ (1970) The structure and thesis of barakol; a novel dioxaphenalene derivative from Cassia siamea, Chem Soc 12:1686-1689.

ce HJ (1994) Neuroimmune signaling in regulation of intestinal ion transport. n J Physiol 266:G167-G178.

Dharmsathaphorn K, Mandel KG, Masui H, and McRoberts JA (1985) Vasoactive intestinal polypeptide-induced chloride secretion by a colonic epithelial cell line. Direct participation of a basolaterally localized Na⁺,K⁺,Cl⁻ cotransport system. J Clin Investig 75:462-471.

Esfandyari T, Macnaughton WK, Quirion R, St Pierre S, Junien JL, and Sharkey KA (2000) A novel receptor for calcitonin gene-related peptide (CGRP) mediates secretion in the rat colon: implications for secretory function in colitis. FASEB J

14-1439-1446

Ewe K (1980) The physiological basis of laxative action. Pharmacology 20 (Suppl Hassanali-Walji A, King TJ, and Wallwork SC (1969) Barakol, a novel dioxaphe-

nalene derivative from Cassia siamea. J Chem Soc Chem Commun 12:678. Kinghorn AD and Balandrin MF, editors (1992) Human Traditional Agents from

Plants. American Chemical Society, Washington DC.

Ko WH, Law VW, Yip WC, Yue GG, Lau CW, Chen ZY, and Huang Y (2002) Stimulation of chloride secretion by baicalein in isolated rat distal colon. Am JPhysiol 282:G508-G518.

Kunzelmann K and Mall M (2002) Electrolyte transport in the mammalian colon:

mechanisms and implications for disease. Physiol Rev 82:245-289.

Leng-Peschlow E (1986) Dual effect of orally administered sennosides on large intestine transit and fluid absorption in the rat. J Pharm Pharmacol 38:606-610.

Nijs G, De Witte P, Geboes K, and Lemli J (1992) Influence of rhein anthrone and rhein on small intestine transit in rats: Evidence of prostaglandin mediation. Eur J Pharmacol 218:199-203.

Poonyachoti S, Thongsaard W, and Deachapunya C (2002) The prokinetic effects of

barakol in rat intestine (Abstract). The Pharmacologist 44:A35-A36.
Riegler M, Castagliuolo I, So PT, Lotz M, Wang C, Wlk M, Sogukoglu T, Cosentini E.
Bischof G, Hamilton G, et al. (1999) Effects of substance P on human colonic mucosa in vitro. Am J Physiol 276:G1473-G1483.

Schultz BD, Singh AK, Devor DC, and Bridges RJ (1999) Pharmacology of CFTR chloride channel activity. *Physiol Rev* 70 (Suppl 1):S109-S144.

Sheppard DN and Welsh MJ (1992) Effect of ATP-sensitive K* channel regulators on

cystic fibrosis transmembrane conductance regulator chloride currents. J Gen Physiol 100:573-591

Suwan G, Sudsuang R, Ghumma-Upakorn D, and Werawong C (1992) Hypertensive effects of barakol extracted from leaves of Cassia siamea Lam. in rats and cats. Thai J Physiol Sci 5:53-65.

Thongsaard W, Chainakul S, Bennett GW, and Marsden CA (2001) Determination of barakol extracted from Cassia siamea by HPLC with electrochemical detection. J Pharm Biomed Anal 25:853-859.

Thongsaard W, Deachapunya C, Pongsakorn S, Boyd EA, Bennett GW, and Marsden CA (1996) Barakol: a potential anxiolytic extracted from Cassia siamea. Pharmacol Biochem Behav 53:753-758.

Thongsaard W, Pongsakorn S, Sudsuang R, Bennett GW, and Marsden CA (1997) Barakol, a natural anxiolytic, inhibits striatal dopamine release but not uptake in vitro, Eur J Pharmacol 319:157-164.

Tongroach P, Jantarayota P, Tantisira B, Kunluan P, Tongroach C, and Chaichantipyuth C (1992) Barakol, a neuroactive compound from Cassia siamed, in Pro ceeding of the First JSPS-NRCT Joint Seminar in Pharmaceutical Sciences: Advance in Research on Pharmacologically Active Substances from Natural Sources, 1992 Dec 3-5; Chiangmai, Thailand. pp 21, Faculty of Pharmacy, Chiangmai University, Chiangmai, Thailand.

Traynor TR, Brown DR, and O'Grady SM (1991) Regulation of ion transport in porcine distal colon: effects of putative neurotransmitters. Gastroenterology 100:

703-710.

Traynor TR, Brown DR, and O'Grady SM (1993) Effects of inflammatory mediators on electrolyte transport across the porcine distal colon epithelium. J Pharmacol Exp Ther 264:61-66.

Wanitschke R (1980) Influence of rhein on electrolyte and water transfer in the isolated colonic mucosa. Pharmacology 20 (Suppl 1):21-26.

Wanitschke R and Karbach U (1988) Influence of rhein on rat colonic Na*,K*-

ATPase and permeability in vitro. Pharmacology 36 (Suppl 1):98-103.

Yagi T, Miyawaki Y, Nishikawa T, Yamauchi K, and Kuwano S (1988) Involvement of prostaglandin E-like material in the propulsive action of rhein anthrone, the intraluminal active metabolite of sennoside A and B in mice. J Pharm Pharmacol

Yue GGL, Yip TWN, Huang Y, and Ko WH (2004) Cellular mechanism of Ca2 mediated Cl secretion by the flavonoid baicalein in intestinal epithelia. J Biol Chem 279:39310-39316.

Address correspondence to: Dr. Chatsri Deachapunya, Department of Physiology, Faculty of Medicine, Srinakharinwirot University, Sukhumvit 23, Wattana, Bangkok 10110, Thailand. E-mail address: chatsri@swu.ac.th