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Influence of Inorganic Scalants on Fouling of Nanofiltration Membrane

ABSTRACT

Inorganic scalants affects nanofiltration (NF) membrane fouling and permeate flux decline. Crossflow
bench-scale filtration tests were conducted using solution containing 10-mg/L natural organic matter
(NOM) and different types of inorganic compounds. The results showed that divalent cation (i.e.
CaZ+) of chloride salts caused greater flux decline than monovalent cation (i.e. Na+). According to
mathematic fouling models, the solution flux decline trends of both cations corresponded with cake
formation model, especially at high ionic strength. Flux decline curve divalents (CazJr and Mg2+) of
sulfate salts related to pore blocking model. Different anions (i.e. chloride, carbonate, sulphate, and
phosphate) exhibited different flux decline trends. Solution flux curve of carbonate, sulphate, and
phosphate salts dominated pore blocking module, whereas that of chloride salt indicated cake
formation model. Different mechanisms of fouling of these salts related to their solubility. The pC-pH
diagram reflected the possibility inorganic scalant formation. Investigation of membrane foulants by
different methods, including Fourier Transform Infrared Spectrophotometer (FTIR), Scanning
Electron Microscope (SEM), Energy Dispersive Spectrometer (EDS) and X-ray Diffractometer
(XRD), indicated a deposition of NOM and inorganic scalants, on membrane surface, leading to

membrane fouling and flux decline.

Keywords : Membrane fouling, Inorganic salts, Permeate flux, Inorganic scale, Nanofiltration

membrane, Natural Organic Matter
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[
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2.4.1 UANHUZVOUHONIDA
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2.4.2 YN@NwHnlwana (Molecular Weight)
g‘ Y a ad a I @ £ A Y o
v Tuanavedd1sounIgnsssuma Huiledenianas ldvinms
ANBININTQAALYOUTDNTBY TAsdUNANITANDIYDIBATINTNTOIHIUITONT O
. - ' a AdAa S Y Vo 9 a
Nilson and Digiano (1996) Wua13aun3dniimiin luanavinalng i line
Y A 09: dy A cy 9 A ' o Y a
MIYAAULIUIBONTOIUT TUID Polysulfone N4HIHBI91MH 1IN TutananuInnd a1 1vnausa
2K A 4?1 Y ] LY
AIHIINVUA T
Lin e al (2000) HAAINANITNAADIIINITYAANDENTULTIVBUTONT DAY

Y
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NIZUIUMID NI 1WA FY Lﬂﬂﬂlummmﬂmiﬁ)um8J‘V|N‘ﬁi'a'1J°m@muumuﬂimaf3ammﬂ°lﬁmu
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Tasimanaaod lugaimiin Iuanavua 6.5 — 22.6 kDa

2.4.3 ANNVNTHYRIATAZANE (Concentration)

anududuvessdunidmesssund fnadenseaduveatonses g
wn felduiuileiondn iilesnnluszunlalas laminla 4 imﬁaswuuaaaiu@aﬁuﬂﬁu
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Mldimsazaudivesansazatsng o Fagumely Boundary Layer %umzﬁ’qﬁﬁhqqﬂ’hm
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v Y
Boundary Layer 4azAuudunasvedingy

24.4 mmu‘swmﬂizq (Ionic Strength)
. Y o =2 o A [ A
Hong and Elimelech (1997) lashinmsfnyimsgaduigonsoaun Ty suiiioannain
a J a { 1 3’ 1 1 Q‘
ANULUTUOIAITBUNTININEITNIA MNvINuraaih 3 uras WuNMSINAUTNTUYEY
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M37%u Double Layer gniiudalimiu dlddulinnuvunanas diwasenisanasvesnan
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24.5 qmﬂgﬁuaz o (Temperature and pH)
v Y
mamugurgiveniuaazownlugie 15-30 esruvaded $181donsmady
A A 2 v sl ¢ A A & A ag 2
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4
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2.4.6 aMNNINNY (Operating Conditions)
o 4 J @ <3

ﬂ'ﬂw\lfﬂiVIWQWM‘IJ@QiZ‘U‘ULg’E)ﬂi@Q lligljl,!,'ﬂ ANUAU uazmmlsammmi"lwamn

] Y v
YN (Crossflow velocity) uazu,iuﬁauﬁmﬂﬁumﬂﬁmwmiﬁmu MIANANUAULATE VYN
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Tﬂammﬁ”lwasummamamwmu mewaimﬂﬂmsqmmiwu mmmmmmi"lwammxm
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A o Y [ A 9
Vo ugnInd Mlrmsanaivesdnsims lvaliaiiosas
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2.5.1 nalnmsnaugn)agl¥uina (Size Exclusion)
A ~ Ad A A o ™
waﬂimgmuuﬂumumgmaﬂﬂa Tuuadsguna 150 — 300 A1aAY G1W150AA
d‘d ] 1 d' ] Y Y 1 di
uanmwmumiwagmwumgw3;wuaqwamm“lﬂwwmaaﬂm"lﬂ WU EONTRIUUU T
#10159N309 Total organic carbon (TOC), 13 Trihalomethane (THM), mmmzﬁn, & uazans
{ a I 1
azaw"laaauﬂizmﬁm Ay 90-95 %,  91-98 %, 85-95 %, 90-97 % LAZNINNIT 70 % AW
a9y (Watson and Hornburg. 1989 ; Duranceau et al. 1992 ; Kabsch-Korbutowicz et al. 1994 ;

Mattaraj and Kilduff. 2003)

2.5.2 ﬂ’ﬂN!!ﬂﬂﬂ'Nﬂl’Nﬂizi} (Charge Interaction)
A a a 9 A = A a [ A 9 a 1
L‘L!i’Ninﬂ’]_l'iLTJmN?ﬂﬂ?ﬂl@ﬂlﬂﬂﬂiﬂﬂﬁ]%ﬂ‘]Ji%i]“ﬂlﬂﬂﬁ]?ﬂ?ﬁﬂﬂi%iﬂﬂ?iﬂﬁﬁjullﬁﬂg
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3J"Iﬂﬂ§]$1/l”Iclﬁlﬂﬂll'iﬂﬂﬁﬂll"lﬂ"llu 'E’)fﬂﬂnlﬁﬂﬁ"m!ﬁﬂwaﬂhlllllWaZJ"IﬂLW'i"Ixﬂ"ILEJ@ﬂﬁ@\‘il!‘]J‘]JLﬂILlllﬂTi
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Gl%t!idﬂu‘lflq\iﬁ]z‘ﬂﬂmﬂﬂmitmﬂ@’Jlei’Nu”li’)@ﬂmN‘Vl”Icl‘Vi@1ﬁ]ﬁ]zNﬂimwuﬂluﬂjﬂﬂma@ﬂqmgqﬂ
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2.6 HULDIADINIANAFTAS T1HSVIEONTO

2.6.1 931N MaVeINIZUIUMIPRAINTF AR UNAU
o a 4 o
HUUS 100N NAAAMNAATUOY Londale 15 1umsdnyInsiinuaeanszuiumsooa lu
a [ [ 1Y { $ @ @ J 1 @ 2’ [ 4
FAAUAGY ATUATN 2.4 FUAAIANNFURUTIZHINNOATINTFUV IR IUEDINNILTY

=1

v E2
(Water Flux, J,) fuanuauilinuszuunazanuauess ludn aeil
J, =L,(AP - Ar) (2.4)

Taeh

A o = J & A 2. -
A9 DNIINTFUUDIUIWIULEDNITON 115D Water Flux (L.m "h )

P

[

JV
a g’ ] A -2, -1 -1
L, f® Fulszansveans Inavessiwiuigensea (L.m"h kPa)

)

1 [ 3’ ~ 1 9 d'
AP 79 ANUUANANTENINUTIAUYDIUINOYAUALATUUDUIDNTOI (kPa)
A 1 1 (% a 091 d' 1 9 d'
A A0 ﬂ:nmmfmNizmnmmuaafﬂmﬂGUammagﬂuazmwmwaﬂim (kPa)
~ I~ AN v I~ a a d‘ d'
NFTUNITIN 2.4 Lﬂuﬁumﬁ‘vluaﬂymmﬂumqmﬂﬁLummﬂwaﬂim TagmmznszuIu
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Y A Y v 0 = 4 A A o
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1 tﬂl = ! a g % Lﬂ'd A v
VPIFTALAYHIUEDNTON (58N Salt Flux (JS) STUVU00A INFARUNALNA AITZUOATING
=< oy 1 4‘ A =) (Y a1 c‘
FUUDIUTINIUYDNTDI 115D Water Flux (Jv) (O Tuvazi@edny Salt Flux (JS) AITUANIAT LA

d? [ -Y) 9 9 9 1 Id? [ [
Salt FluX(JS) LUYUBYNUANVYNUUVDIFTITALAUVIFISUY Lmzulmuﬂummu

a = ¢ ay &
2.6.2 fnﬁﬂﬁi’)Qﬁnﬁi’)uﬂiﬂlﬂ1ﬂﬁ§53~l‘lﬂﬂﬂ?ﬂ!ﬂﬂﬂﬁ@\?!!‘ﬂ‘ﬂuﬂ:u
{ [ o 4 v g
INMSANHIVDY Mattaraj and Kilduff (2003) Aevesnumsgadubeniowduilumain
a s J a vq o a 4
fl]'lﬂ'ﬁ'lfl"E'J“L!'V]iEJ'I/]'N‘ﬁﬁill‘]ﬂ@gluﬂi$°1J'Juﬂ']5ﬂ5@\ul'ﬂﬂu'liu Ulﬂcl‘]ﬂ,lfﬂ‘]Ji]'lﬁ'f]\?ﬂ']\iﬂmﬁﬁ'lﬁ@ﬁell@\i

FATIMIFUAINITONTOIAIANMTN 2.5

J,=L,(AP-o0Ax)=

Qperm
2.5
y (2.5)
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[

Taeg J, @D 0ATIMIFURIUBONTOI (L.m ~h')
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[

4 Y 1
Ao duilszansveams lvavo i uEenied (L.m~ h' kPa")



AP A9 MANUUANAINYBIANNAURASLA UM

pP.,+P
( Seed reten) _p (kPa)

B perm

4
% a A %

yszaniuesuseauend Iuaniauny 1 —

o ﬁ 9 perm
mem

Az fio MANuLeNANYeIIaUead luan (7, — 7, ) (kPa)

perm

3 9 Y I a A o a g A Ay y ] A
i]3WiuUlﬂ’)'Wi1ﬂ1“]5ﬁ15a3@'lﬁ]kﬂuﬁ1ﬁﬁ]u‘ﬂifJ“I/IN‘ﬁiiiJG]ﬂG]L!ﬁ'J ﬁ'\iﬂhlﬂflnﬂﬂ1iﬂ1ulﬁlﬁlﬂi’f]\1
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i]$1h3f‘I'O‘Uﬂ'Jﬁlu'lllagﬂ'lﬂﬁﬂusllﬁlﬁlﬂaﬂllicﬁﬂﬁ\?ﬂu!ﬂﬁluﬂﬂﬂa1ﬁﬁfJﬂ')'l Solute Flux agNAUNINL

o R A S A Y Yy 9 A =
Naﬂﬂ!6]]@\1E]ﬁf!"lﬂ'lf!'G]fllW'ICI,!Lﬂﬂﬂi@\?%ﬂ\iﬂ’]ﬂﬁﬂﬁ’liaga'lﬂ (JV) AUAINUNUVUUDITITASAYNHY

) aquaasluaunsn 2.6

erm

AU (Permeate: C,

nC o
7 2 LwnCoem (2.6)

s v perm
A,

Y 1
daumMImIadignaza1wesndIniil (Rejection) 1ABNIINTOINIUIIONTBIIZANALIAIYNAZAIY

' g’ 4 a a o w o Y
AN €] 9BNITNUN Gdﬁﬁﬂi%ﬁﬂ‘ﬁﬂ'lWiuﬂ'liﬂ'lﬁ]@ﬁ1§a$a1ﬂﬁ1iﬂiﬂﬂ1u3m]lﬂi]1ﬂﬁﬂﬂ1§ 2.7-29

Cperm

Rfeed = 1_— (27)
C_/éed
Cperm

R reten = 1 - (2.8)
Creten
Cperm

R =  l-—rm 2.9)
Cmem

Tasd R 9 0AFINIINIIAAINNAZAIBODNINU (%)

A
ﬂ U
C  fo aAnudutunaveutonsed (mg.L")
=
A

C 9 ANUTUTUVDITINUNN (me. L") (Mattaraj and Kilduff, 2003)
g j

reten
Y] U J (% d‘ d' U
2.6.3 aﬂﬂmmzmnam1nﬁ"l?iauaznmﬂaauﬂnaumaﬂmaqa
v ' ]
ADATIAIUTZHINOATINT Inaveuiwazmsnaouiinduves luanavesdignazaiy
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[ v Jdo o A o A 1 =KX o oy A
ANVANNUTNUNTYAAUUUEDNTDI UUAD AN J/k NWﬂLLﬁﬂQﬂQ@@]ﬁ'lﬂ?ﬁllcl”iﬁ‘llﬂx‘]uﬁ/qui Tuvme
=S = A A Y] [ r; o Yy a % 9 1 1 d‘c’u
WYINUNUNTLAADUNNAVVDIAIYNAS AN Vl'lﬁlﬁiliﬂﬂ'lﬁlﬂﬂﬂ"li@‘@ﬂuulﬂ’q\‘] aIUA J/k Nna

KX o 31 d‘ﬁ) [ A A o o A o A
LLﬁﬂQﬂQﬂ@ﬁTﬂ"lﬁhlﬂﬁ“U@\iu"I‘VI‘L!’E)EJ ‘]J§$ﬂ@‘]Jﬂ‘]_lﬂﬁmﬁﬂu%ﬂﬁﬂﬂlﬂ\i@n@,ﬂﬁgﬁ”lﬂﬂf;(\i Hune Tone
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1 A -z 09} | d‘ 1 ti! ] dy d'
1 JV 19 ﬂ”If‘]@]i?ﬂ"lihlﬁa"llﬂ\TL!"IN"IL!LEJ’EJﬂiﬂﬂ@lﬂﬁuﬂﬁulﬂwuﬂiﬂﬂﬁ”ﬂl"ﬁﬂ

ﬁ”lu’Jmllﬁ}ﬁ]WﬂﬁilﬂﬁWIiJﬂg]ﬁllﬂﬂ Darcy (Darcy’s Law) AU 2.10

J, = (2.10)

Tagh AP Ao mvedanudunanad (kPa)
A 1 A gl
U Ao MANUHLAYDII (kPa.s)
A 1 9 4' 1 1 -1
r Ao MAaNUAIUMUYBUEDNTIHU 1Y (m)

m

1 1] a 1 - { Y {
A k Ao dulszanTueamsmiamuia (ms’) lagaunsanaz laanaunmsn 2.11

UD 2 0.33
J (2.11)

k :1.62£
d

h

A ]

Tﬂﬂﬁ U f9 ANN53U09015 11UV (m.s )
D Ao dunlszAnsmsuns (m’s’)
d, Ao mmmaﬂmaqa (m)
L o a7we11v0dms lvalunuivng (m)

1 { Y { [ y
Taga1 D aunsonaev lannaunsn 2.12 a9il

oo kT

= —2 2.12
6mur, 2.12)

Taoh &k

o

A ' = 23 -1
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A
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o 4
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A
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1 =) gl
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7 19 ﬂil‘ll’e)ﬂf)lgﬂm(m)

15



16

2.6.4 HUUS18DINIYANUVDITTUIHONTD VLN Y
HUUTIADINTYARUYDINTNTOI TARMUINININMITNTOWVY dead end N IdidU0 Tag

[ 4

Hermia (1982) Tasaumsnlfudasnnuduiusdmsuna lnmsgadunuiiveusensosdisn

4
v A

=1 9
e laaatl

S W,
dt

Taeii 1 & oA Aefivesn13gady (fouling coefficient) ﬂ%‘uﬂﬁjﬁ)ﬂﬂaqﬂmiQﬂﬁuﬂlﬂﬂléﬂﬂiEN n %4
whiumasiidmsumsnseslifinae

Tasfimasfives » whdy 0 wemsnalamsnsesfierdessumsiamnuuivesdenses
(cake formation model)

masiives » iy 1 ueaanalnmsnsesierdestumsiiagaduveseymauuiveude
ﬂimﬁizstmmﬁumﬁuw?amgmﬂmifﬂmJNﬁ'mﬁuaQﬁuﬁmmx?]aﬂsaw‘iﬂﬁ’gﬁm%}ummwuwm
N9 ﬂS?NﬂJ”Iﬂ;l:i}u (intermediate standard blocking)

masiives » Y 15 uaasna lnmsnsesferfesiumsiagaduveseymaluguesiia
ﬁumﬁiaﬂiENﬁﬂﬁ’ﬂ?mmmmgﬁmmﬂaﬂm (pore constriction or standard blocking)

MAeiived n Ay 2 waasnalnmsnsesnsdesiueymafinnaznounufiveutionse

o y o Yo 4 o . :
uazﬂ@gﬁumg%ﬂim‘wﬂ,wfﬂm’Jugﬂlau%ﬂimﬁmmuaﬂm (pore blocking or complete blocking)

) o { a o A { < a 4 .
ﬁ'ﬂ’i3‘]_JﬂT§ﬂﬁf]\TﬁLﬂﬂiﬂﬂﬂﬁﬂuuui%‘ﬂﬂﬁﬁﬂ'ﬂﬂ\lLi’J“U“L!N’J“U’f]\‘i!ﬁﬂﬂif]ﬂ (crossflow operation)
o v Y v o A
LLUU%Wﬁﬂx‘lﬂﬂVlﬂﬂﬁQﬂﬁull‘UU crossflow f;ﬂlﬂiflTJ‘i%EJﬂGﬂﬂﬂUﬂWiﬂTLuui%‘U‘ULL‘UU dead end

Y
operation ST

Yoo
dt

v [ 9 I
Tagh A1 & IMAUAIAINVEINIYAAY (fouling coefficient) AUBGAUNA INNITQARUUDUTONTDY 1 AN
* 0 o 1 I < a A
J FAUAMNANENAAINANNG VO crossflow UHHNIUDIUYDNTDI
GﬂiNﬁ 2.1 LLﬁﬂ\iﬁﬁNﬁ?ﬂLl‘U‘]ﬁhﬁ@\?ﬂﬁq@]ﬁuﬂlﬁ]QﬂWiﬂiﬂ\iuUU dead end 1% crossflow
. v o d 1w A v Jd 1w ' A
operation Iﬂﬂﬂ??ﬂﬁi\l‘wu‘ﬁﬂlBQﬂW@ﬁiTﬂWilﬂaﬂullﬂﬁﬁﬂlﬁ]\‘i”I/\lﬁﬂ“]ﬂ“l/ﬂﬂ‘ﬂNaﬂmﬂlﬁ]ﬂﬂ'lﬂﬂﬂﬂlﬁ]ﬂﬂﬁq@

@ @ 1 J v o o a 4
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M3 2.1 Lm*ufﬁmmmiqﬂﬁummmiﬂiamuu dead end t101& crossflow operation

Model Dead end operation Crossflow operation
. dJ dJ v *
Pore Blocking dtv =—k,J, " =—k,(J,—-J")
(Complete Pore Blocking)
Pore Constriction d;llv __ kBJf'S (J.) dc}]v _ _kBJiJ.S J, _J*)
(Standard Blocking) ! t
Intermediate Blocking ﬂ = —k.J(J @/, =—k.J (J, —J"
d e/vtJ) dt chty =)
Cake formation dtv :_ijf(JV_J ) dtv :_kDJvz(Jv—J )

Taei k, k, k. uag k, 19100 A1AsRveInIsgaduauuuitassuesna lnnsgadu
o dyl I Ay Y a o v 9 @
nnuuudeesia & zdusmin ldnnmsinsziszriedeyadaiinslua
a ° A 4 :
YO UNDUONINNINARDIAZUU TN NAAmMdas laeaz 1ikasInveInUARIANA DY
gnAaIdotiooNgn 130 sum of squared error (SSE) laol¥misudeumsuuy  Fourth-order

Runge-Kutta routine 4taz 19 solver lumsudaums

2.6.5 !!‘]J'Ufﬁ1’m)Qﬂ?.lnwgﬁlm1uﬂlﬂﬂﬂ1§Qﬂ€fu!m‘Ui’)1§ﬂ§N (Resistance-in-series Model)
' P .
NTUNITAUNHVDN Darcy Glu’ﬁ'juslli’)\?ﬂ1?]31“9?]}11!1/]11!‘1]@\1L§6ﬂ§@\1ﬁu Lﬁﬂﬁﬂ'ﬁ
9 Aa v Aa A ' 9 A a tg ) Yy Y
GlGHQTHﬂULﬂﬂﬂTﬁQ@]@uV]N?ﬂlﬂﬂ!ﬂﬂﬂﬁ@\i ﬂ’]ﬂ')qll@nuvnucﬂlﬂﬂsuuﬁlgllll1@11&1!1/“’]35?’1311]@”1!7”1!
A v 2 " a v v a 1 v 2 v ~
VOUYDNITOUNIUU  UAICUAITUATUMIUBDULNA TINNTTYAAULNNIUHNINIY BINTAITUATUNIUN

9 v
AATUNHARDAIA LA TUMUTIN sataaluaun1In 2.13
- AP
=
u(r, +r, + Fo+ 7, + 7.)

J (2.13)

Taeh

Ao MoaTIMIlva (L.m .h' kPa )

<

A 1 [ d'
AP A9 AMaNuauUnanas (KPa)

A 1 A :j
L A9 MANUYUAVIIU (kPa.s)

= 1 Y A a A -1
r A9 AMANUAIUMUNNAINYDNTDY (m )

Y

1 Y { a 74 . . . -
F o A0 AMANNAIUNMUNINAIINGY Concentration Polarization (m™)
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H F4
Ve ﬁf) ﬂ1ﬂ31mﬁWHﬂ1uﬂLﬂﬂ%1ﬂ%uﬂl@ﬁ!fl]ﬁ (m_l)

A [ 9 ~ v A kY 9 -1
v . A9 ﬂ1ﬂ31uﬂ1u1ﬂﬂﬁlﬁﬂﬂmﬂﬂﬁﬁluqﬁﬂa'maaﬂllﬂ (m)

al

r, Ao manudunui liawisodwesnld (m") (Cho er al. 2000)

o o oA a 1
mﬂﬂ"ﬁﬁﬂ‘kﬂ"lﬁ’)\i Cho et al. (2000) wuNAuNedeNNanFNanawnnIINAINI
9 dgl 1 9 [ A a d? [ ~ Y
AMUNMUITINGIVUY Tﬂammmmumumm NNAYUIZUINNITINTDN (?J‘]_]‘VI 2.3) Useznauaie

1 9 d' a d‘ a 42’ d‘ 1 (% 3 =
L. A NUAIUMUNINAINYDNTD (rm) NAVUIINYDNTIDILAASHAT UUHUVUIA

]
=

9 o A ' [ A Aa o ISP VA A
gngunlglumsfauenasNuanaany Bensoanlymagngudl U », gInIugoNIodnll
yagugulnan

1 A
2. mmm&’mmuﬁmﬂmﬂﬂ?’umm Concentration Polarization (7,) {NAYINNIT
) 4
AzauAUITUTUYDIRINazA1e DS NUHIMTIBENT09 n18ludY Boundary dwaliusduood
TuAnga WsoNAMIAaNAIV0IA1S
1 9 d‘Q 3 a dgl 4‘ a a 9 4‘ =
3. AnuiumuiiannFuvena (r,) MauNAleUTNUAIMINIBENTBAT
Yy ¥ A dg’ A1 a A o w A ' oy N o Y a
ANUAINTUNZIIY IulArIUIadIfAveIMsazatsvesasniedluti wsldnyuzaaienaine
4?} A A a 9 A
YUNUTNURIMUUTONTDI
H H 4
4. MANUMUMUNIAANMIYATUBENEDY (7,) NAINMIAFUNINATUTIY
a 9 A £ o A& = Y Y 9 =
Amihveutensosdimsgaduiiamnsonazaeon Id lagldmsad
5. AANNATUMUANAINMIAATUOINDNT (r,,) INANINMIRATY 19

=& a [ To A [ :JI = 1 o 9 a2 Y
0177 “IN"U%G]mluuﬂgﬂﬂlﬂ@ﬂiﬂiﬂﬂuuﬂﬂ%f?ﬂll1iﬂﬂ?ﬂ’ﬂﬂﬁ%fﬂﬂﬂ’wﬁﬁlﬂhqﬂ

clean H,0 solution clean H,0

NaOH

cleaning

rg water flush

r,  pressure release

time

v v F4
57 2.3 unummuaaemIn A UMULIUEYNTNINATUINNITYARY (Cho ef al. 2000)
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Bowen ef al. (1995) WUOYNAVDIAITOUNI INNFTTUMANUNAQUAIMTIIve 180N 09
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= 1 a @ A 9):1 a ' A A Yy 9
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1@ tiafianasniiga
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Lin ef al. (2000) WD1M3gadLvaudonIouuw Tu Jusgnuiimiin luanauazyue
a 4 aa g’ % a % a
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a 9 4' [ a 1Y o YA Y 1Y 4
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a A J a a o o .
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Nilson and Digiano (1996) WUNA159UNIINWFIINANUIMIN Twanalvg awisn
o Y a o d‘ o Y [ 4 d‘ 3’ v d' A dgl
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% 4 1 a L4 Av A 4 o a @
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3.

1

3.

[\

8.
9.

21 msniiilflumsnaaes

. Acetic acid (CH,COOH), Analytical reagent, Carlo Erba reagent

. Calcium chloride (CaCl,), Analytical univar reagent, APS Finechem

. Calcium carbonate (CaCO,), Analytical univar reagent, APS Finechem

. Calcium phosphate (Ca,(PO,),), Laboratory reagent, Himedia laboratory Pvt. Limited
. Calcium sulfate dehydrate (CaSO,.2H,0), Laboratory unilab reagent, APS Finechem

. Magnesium sulphate hydrated (MgSO,.7H,0), Reagent grade, Scharlau

. Sodium chloride (NaCl), Analytical univar reagent, APS Finechem
. Sodium hydroxide (NaOH), Analytical univar reagent, Ajax Finechem

. Sodium metabisulphite (Na,S,0,), Analytical univar reagent, APS Finechem

22 qinsal

4 &
SEUVHONTOIVVDIS 19 (Reverse Osmosis Membrane)

. “l;'mﬁ’e)ﬂi DUV U (Nanofiltration Membrane Module) 1111 Cross-flow bench scale

TnnesuLIa 100, 400, Az 1000 NaAANT
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2.3 IAT9N9UATITH

1. 1n509 a0 ¥ (Wissenschaftlich-Technische Werkstatten GMBH, 15 LINADTUN)

2.

RREEGT)

3.

4.

sz

INTDIIATNINNISG ﬁﬂ‘l/\lﬁ1 (Wissenschaftlich-Technische Werkstatten GMBH,“lJi sIN{
1n509 UV-Visible Spectrophotometer (Shimadzu Corporation ’a': U UV mini 1240, Yszimne

115091A3129 Total Organic Carbon (TOC) (Shimadzu Corporation ‘aj: U TOC-VCPH,
1u)



5. 1504 Ton Chromatography (IC) (Metrohm Herisaw ’:; U 761 Compact IC, UszmaAan
4 o
IO TLAUA)
6. 11309 Scanning Electron Microscope (SEM) 148¢ Energy Dispersive Spectrometer (EDS)
(Leo Co., Ltd U 1455VP)
7. 19509 X-ray Diffractrometer (XRD) (Bruker A.G. Co., Ltd i:u D8 Advane)
8. 1309 Fourier Transform Infrared Spectrophotometer (FT-IR) (Model: FTIR Spectrum

GX)
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water
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pump "
sand filtration Reservoir cation exchange
tank #1-200L  submersible pump oen
filtered and softened water
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nndimes mitiald
Wio 7.04
ﬁ?ﬁﬂﬁﬂﬂﬂ‘ﬁﬂﬁhﬂ (Total organic carbon) 4.54 mg.L-1
MIPANAUNEAI UV,., (UV Absorbance) 0.185 cm’”
MIRANAUUAITUNZ (Specific UVA (UV,,, /TOC)) 407L.mg . m"'
mai1 i (Conductivity) fiammgd 25°C 319 4 S.cm’
AVYY (Turbidity) 6.58 NTU
A7UNTZAN (Hardness) 15 mg as CaCO,/L
ANuiuA1 (Alkalinity) i.e. HCO, 8 mg as CaCO,/L
Fapaden (Ca™) 13.5 mg as CaCO,/L
Usuaumniien (Mg™) 1.5 mg as CaCO,/L
USuanaelsa (1) 54mgCl/L
UTunudamla (s0,”) 93.25 mg SO,”/L
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1 |
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5 |
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= Y (v o ya o o a 7 A . A
7 0.01 M Innangarsazarelnamesdiuiuusiaesneaslamans sila pore blocking Tagnm k,

1

= 0246 h ' war J = 323 LMH (L/m7h)  aumsanuduiusiewiluaunsdil

a, _ —0.246(J, —32.3)
dt

H o a 4 v ! { !
M3197 4.3 MIdraoanAliamansvena lnmsgaduszniglesontlszypasias looouilszyg

Model Pore blocking Pore constriction Intermediate Cake formation
Parameter ka J SSE ke J SSE ke J SSE ko J SSE
Concentration (1/h) (LMH) 1/(m.h)"?| (LMH) (1/m) | (LMH) (him? | (LMH)
0.01 M NaCl 0.246 323 5.31 0.968 30.2 5.756 45 29.5 5.41 108 29 5.474
0.05 M NaCl 0.355 331 3.895 1.5 32 5.683 7.08 31.6 4.906 156 30.6 3.693
0.01 M CaCl, 0.337 30.5 6.406 1.41 28.9 8.925 6.96 28.6 7.765 153 27 5.955
0.05 M CaCl, 0.343 29.6 6.716 1.44 27.9 8.684 6.84 27.2 7.389 150 253 5.645

9 [ { + { o a 4
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.‘g 20 ¢ CaCl2 (Cake formation)

5 15 - O CaCO3 (Pore blocking)

o 10 - A CaSO04 (Pore blocking)

» 0 Ca3(P0O4)2 (Pore blocking)
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Y o a J @ a 4
ﬂ"lﬁ"lﬂﬁ 4.4 Wﬂﬂ1'§%1ﬁﬁ)\‘lﬂ1\1ﬂﬂ!ﬁﬁ?ﬁﬁﬁ"llf]\iﬂﬁllﬂﬂ1§@‘ﬂﬁu"11@\‘lﬁ13@uuﬂ§ﬂ (1.S.=0.01 M)

Model Pore blocking Pore constriction Intermediate Cake formation
Parameter ka J SSE ks J SSE ke J SSE ko J SSE
Concentration (1/h) (LMH) 1/(m.n)"?[ (LMH) (1m) | (LMH) (hm? | (LMH)
0.01 M CaCl, 0.337 30.5 6.406 1.41 28.9 8.925 6.96 28.6 7.765 153 27 5.955
0.01 M CaCO, 0.307 27.2 24.81 1.23 24.31 27.55 8.34 26.81 33.96 216 26.36 38.26
0.01 M CaSO, 0.31 25.9 8.386 1.52 24.88 13.136 8.34 253 19.781 212 24.97 30.424
0.01 M Ca3(POy), 0.212 19.9 66.92 1.35 21.21 153.8 6.48 19.9 170.8 165.7 19.81 244.2
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50
45
40
35
30
25
20

— Model

Solution flux (LMH)

15 ¢ CaCl2 (Cake formation) >
10 | o CaCO3 (Pore blocking)
5 - A CaSO04 (Pore blocking)
0 0 Ca3(P04)2 (Pore blocking)
T T T T

0 100 200 300 400 500
Operating period (min)
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Y o a J Y a J
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Model Pore blocking Pore constriction Intermediate Cake formation
Parameter Ka J SSE ks J SSE ke J SSE Kp J SSE

Concentration (1/h) (LMH) 1/(m.h)"?| (LMH) (1/m) | (LMH) (him%) | (LMH)

0.05 M CaCl, 0.343 29.6 6.716 1.44 279 8.684 6.84 27.2 7.389 150 253 5.645
0.05 M CaCOg 0.309 26.7 27.09 1.27 2413 31.13 8.22 26 35.52 223.9 259 41
0.05 M CaSO, 0.305 25.25 6.979 1.32 22.8 9.285 8.46 25.1 22.59 223.8 24.91 37.55

0.05 M Ca3(POy), 0.19 6.34 2.847 1.13 6.74 59.94 6.76 8.07 145 179.6 3.81 279.5
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a o 1 4 v o J
ABARAAS UAININYUDIN pore blocking model 1 cake formation model ANNANHUTVDINA 1N

E4
~

% 1 a 1 3 Y o
MIgadUYDILAaz Tave loooullizyg uaauiuaums ldaa

“il]tv = —0.31(J, —25.9) (For CaSO,) (0.01 M)
dJ

= —0.194(J, ~24.04) (For MgS0,) (0.01 M)
dJ

- = —0305(J, ~25.25) (For CaSO,) (0.05 M)
dJ

= —0203(J,-23.98) (For MgS0,) (0.05 M)

10 mg/L NOM, pH 7

Solution flux (LMH)
N
(@) ]

— Model
20 - ¢ 0.01 M CaS04 (Pore blocking)
15 - O 0.01 M MgSO4 (Pore blocking)
10 - A 0.05 M CaSO04 (Pore blocking)
5 - 0 0.05M MgSO4 (Pore blocking)

0 100 200 300 400 500
Operating period (min)

H a 1 [ 4
517 4.14 wanvoswiialooouiszyaaenmsanasvesnland

o a 4 1 a 1
1314 4.6 Wafﬂiﬁ]Tﬁf]\ﬁ/lNﬂﬂm%"’ﬂfW]i531’131\1%1&@"“@\11@@@1&ﬂ3$%ﬂ

Q



57

Model Pore blocking Pore constriction Intermediate Cake formation
Parameter Ka J SSE ks J SSE ke J SSE ko J’ SSE
Concentration (1/h) (LMH) 1/(m.h)"?| (LMH) (1/m) | (LMH) (him? | (LMH)
0.01 M CaS0, 0.31 25.9 8.386 1.52 2488 | 13136 | 8.34 25.3 19.781 212 24.97 | 30.424
0.01 M MgSO, 0.194 | 24.04 13.07 0.93 2298 | 27.66 468 22.21 36.63 103.8 19.91 51.67
0.05 M CaS0, 0.305 | 2525 | 6.979 1.32 22.8 9.285 8.46 25.1 2259 | 2238 | 24.91 37.55
0.05 M MgSO, 0.203 | 2398 1254 | 0934 | 2231 24.91 48 2183 | 3562 108 19.34 | 50.87
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, 2 - . 47
CaSO,, (Anhydrite) < Ca™ + SO, ; K, = 10
CaSO, -2H,0,, (gypsum) < Ca’* + SO;” + 2H,0 ; K, = 107
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ABSTRACT

The influence of inorganic scalants and NOM on nanofiltration (NF) membrane
fouling was investigated by a crossflow bench-scale test cell. Mathematical fouling
models were used to determine kinetics and fouling mechanisms of NF membrane. It
was observed that, with natural organic matter (NOM) at a concentration of 10 mg/L,
divalent cation (Ca®") exhibited greater flux decline than monovalent (Na") while solution
flux curves dominated cake formation model, especially at high ionic strength. For
inorganic scalants of polyanions, i.e. carbonate, sulphate, and phosphate, solution flux
curves were relatively fit well with pore blocking model, possibly due to precipitated
species formed and blocked on membrane surface and/or pores. For different divalent
cations (Ca®" and Mg*"), calcium showed greater flux decline than magnesium, possibly
due to higher concentration of precipitated calcium species than that of precipitated
magnesium species based on the pC-pH diagram.

Keywords:  Nanofiltration; inorganic scalants; natural organic matter; fouling;
membrane fouling model

1. Introduction

Nanofiltration (NF) membrane can be employed in several applications, including
drinking water treatment, wastewater treatment and reclamation, as well as industrial
water treatment, to produce high water quality. NF process in drinking water treatment is
found to be very effective in removal of natural organic matters (NOM), as known as
disinfection by-product (DBP) precursors during chlorination process. The NF membrane
has also been applied to water softening due to rejection efficiency for manovalent and

multivalent ions in hard water. A limitation in the use of NF process is potential of
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membrane fouling which significantly causes permeate flux decline, an increase of
operation cost, and a decrease of membrane lifetime. The possible causes of NF
membrane fouling depend on various factors, for example, membrane properties,
feedwater characteristics, types of solutes, and operating conditions. Of these, NOM
containing in feedwater is found as a major foulant for NF membrane (Seidel and
Elimelech, 2002 and Schafer et al, 1998). Additionally, inorganic compounds can be
responsible for flux decline. Hong and Elimelech (1997) found that an increase of NaCl
concentration or a presence of divalent cations increased membrane fouling. Alkaline
earth metal cations, for example, calcium (Ca*") and magnesium (Mg2+) ions, led to more
fouling problems on membrane when combined with polyanions, such as carbonate
(CO5™), sulphate (SO4>), and phosphate (PO,>) ions (Dydo et al., 2003). Membrane
fouling characteristics were described by many researchers as pore blockage, pore
constriction, and cake formation (Hermia, 1982; Bowen et al.,1995; Field et al.,1995; and
Peng, et al, 2004). However, the fouling characteristics and influence of inorganic
scalants with NOM on NF membrane fouling are required more exploration to be a basis
of fouling prevention or membrane cleaning.

The objective of this study was to understand the influence of inorganic scalants
and NOM on NF membrane fouling. Mathematical fouling models were used to
determine kinetics of membrane fouling and to describe fouling behaviors during

nanofiltraion.

2. Theory
2.1 Fouling models of dead-end operation

Hermia (1982) has developed mathematical fouling models to explain permeate
flux reduction in the dead-end operation during filtration. These fouling models have
been used for further membrane research fields (i.e. Bowen et al. (1995); Field et al.
(1995)). The mathematical fouling models based on dead-end operation can be
illustrated as follows:

d.
;V kI (1)
t

where J, is the solution (permeate) flux, & is the rate constant or fouling coefficient, t is

the operating period, # is the dimensionless filtration constant: (1) cake formation model
corresponds to n = 0, (2) intermediate blocking model corresponds to n = 1, (3) pore

constriction or standard blocking model corresponds to n = 1.5, and (4) complete pore
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blocking corresponds to n = 2.0. For a dead-end operation, permeate flux caused by

crossflow velocity is not included in the mathematical fouling models.

2.2 Fouling models of crossflow operation

The difference between dead-end and crossflow operation is caused by crossflow
velocity on the membrane surface. For crossflow operation, the solution flux (J')
associated with the back-transport mass transfer (i.e. crossflow velocity) is corporated in
the fouling mechanism models. The mathematical models can be described in the
following equations.

2.2.1 Pore blocking model (or complete pore blocking model)

The rate of change in the number of open pores is assumed to be proportional to

the rate of particle convection to the membrane surface.

dJ a AC, . J N .
dtv - _ block ““m ™~ bulk O(JV_J): _kA(Jv_J) (2)

where o001 1 the pore blocking efficiency, Cpy is the concentration in the bulk solution,

Ay 1s the membrane area, J, is the initial solution flux, J' is solution flux associated with
the back-transport mass transfer, , is the initial number of pores, and k4 is the kinetic
rate for the pore blocking model (min™).

2.2.2 Pore constriction model (or standard blocking model)

The rate of change in the pore volume is assumed to relate to the rate of particle

convection to the membrane surface.

de _ (2 a pore Am Cbulk Jo )0'5

o Ry SO, =T = —kp ), =) 3)

where . 1s the standard pore block efficiency, 7, is initial pore radius of membrane,

and kp 1is the kinetic rate for the pore constriction model (LMH_O'S.min_1 or m >’ min”

0.5)'

2.2.3 Intermediate blocking model

The rate of change in the cake thickness (limit on the membrane surface) is
assumed to relate with the rate of particle convection to the membrane surface.

dJ R . .
= Aq C, . J(J -J )=k J (S, - T 4
dt (Rm+RC)‘5C m " bulk v( v ) C v( v ) ()
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where ¢, is the depth of the particle cake (m), R, is the resistance of the membrane (m™),
R. is the resistance of the cake (m™"), and k¢ is the kinetic rate for the intermediate
blocking model (LMH "min"" orm™).

2.2.4 Cake formation model

The hydraulic resistance caused by the particle cake is assumed to be proportional
to the cake mass, mcqke.

dJ & o 2 . 2 .
Y o= e OWR J J —J :—kJ J _J 5
dt Rm']o v( v ) D v( v ) ()

where, a4 1s the specific resistance of cake layer (m/mg), and £p is the kinetic rate for

the cake formation model (LMH >.min"" or min/m?).

3. Experimental
3.1 Inorganic Scalants

Inorganic scalants used in this study were NaCl, CaCl,, CaCO;, Ca3(POs);
CaS04.2H,0, and MgS0,4.7H,0. Solutions having inorganic scalants were prepared for
ionic strengths of 0.01 M and 0.05 M. Conductivity meter was used to measure

conductivity for feed solutions and samples during filtration.

3.2 Natural Organic Matter

Natural organic matter (NOM), obtained from surface water reservoir at Ubon
Ratchathani’s  University, Thailand, was isolated by field reverse osmosis (RO)
membrane. This method was previously studied by Sun ef al. (1995) and Serkiz and
Perdue (1990). The concentrated NOM after RO isolation were prepared about 10 mg/L
NOM and pH of 7 for all filtration experiments.

3.3 Nanofiltration Membrane

Nanofiltration thin-film membrane (TFM), obtained from GE Osmonics, Inc., was
used to determine system performance under crossflow operation system. This
membrane has a model number of HL 2540F1072 (series 7933937). According to the
manufacturer’s information, the membrane has a molecular weight cutoff (MWCO) of
150-300 Da, determined with uncharged organic molecules (i.e. glucose and sucrose
compounds). The operating pH condition is in the range of 3.0 - 9.0 while the cleaning

pH condition is in the range of 1.0-10.0. This membrane has relatively low for chlorine
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resistance about 0.1 ppm. The maximum operating temperature is about 50 °C.
Nanofiltration membrane sheets were stored in 1% Na,S,05 and kept in 4 °C to minimize

bacterial activities.

3.4 Crossflow Bench-Scale Test Cell

Figure 1 shows the schematic diagram of crossflow bench-scale test cell with
recycle loop. This system was previously studied by Kilduff et al. (2004). This system
consists of a stainless steel test cell (SEPA, Osmonics) that houses a single membrane

sheet of 0.014 m” with a maximum operating pressure of 1,000 psi. A high-pressure

Pressurized membrane
by hydraulic hand pump

- 0t ©

[
L I

@ Membrane
Test Cell
Pressure guage | 10 - um filter [] Gear pump
Concentrate line
Reservoir ’ g%z
Piston pump l Permeate flow
Concentrate flow ¢ ~1+ Iil

Balance
Back-pressure valve

Figure 1 Schematic Diagram of Crossflow Bench-Scale Test Cell

stainless steel piston feed pump (30 mL/min @ 3,000 psi, Eldex, model CC-100-S-4 (No.
19351), Napa, CA, USA) was used for membrane operating pressures while a high
capacity booster recycle pump (Gear pump: Model 75211-35, Cole-Parmer Instrument,

Co., Vernon Hills, IL, USA) was used to adjust a high crossflow velocity in the recycle
loop. Hydraulic hand pump was used to hold the system pressure at the top of bench-
scale test cell. Mesh feed spacer was used to create hydrodynamic flow conditions
similar to that employed in full-scale spiral-wound elements. Inlet temperature was
approximately 25 °C. Recovery was operated at 85% during filtration experiments, and
crossflow velocity of 0.1 m/s, similar to that of full-scale membrane (Allgeier and

Summers, 1995), corresponding to a flowrate of 530 mL/min in the recycle loop.
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3.5 Fitration Experiments

Membrane sheets were initially rinsed with cleaned DI water and then transferred
to the bench scale test cell. The membrane sheets were then cleaned with citric acid
solution of pH 3-4, and followed with sodium hydroxide solution of pH 10 for 30-min
each. The system was rinsed with cleaned DI water and was subsequently tested for 30-
min membrane compaction with initial water flux of 45 LMH (Lm~h™"). Clean water
flux, J,, was subsequently determined before NOM solution was used to the system.

Prior to filtration experiments, NOM solution was initially used to flush the
crossflow bench-scale system. The piston feed pump was subsequently used to adjust an
initial solution flux about 45 LMH and water recovery of 85% (Q,/Or = 0.85). The
transmembrane pressure was initially recorded and kept constant during filtration
experiments. Permeate and retentate flow was periodically measured by using analytical
balance (Model BL-2200H, Shimadzu, Japan) in order to determine solution flux and
recovery throughout filtration experiments. Permeate and retentate samples were
collected to determine total organic carbon (TOC) and conductivity rejection. After
filtration termination (500 minutes), two steps of cleaning were performed; firstly, a
hydrodynamic cleaning, and secondly, a chemical cleaning. For hydrodynamic cleaning,
DI water was used to recirculate in the recycle loop for 30 minutes with increasing
crossflow velocity of 0.25 m/s, higher than the velocity of operation. After the cleaning,
clean water flux was determined with operating pressures. For chemical cleaning, DI
water with pH of 10 (using NaOH) and followed with pH of 3 (using HCI), was used to
recirculate the system for 30-min each. Clean DI water was flushed to clean the system

and water flux associated with operating pressures was then determined.

4. Results and Discussion
4.1 Influence of Monovalent and Divalent Cations on Solution Flux

Mono- and di-valent cations can cause fouling effects on nanofiltration membrane
(Hong and Elimelech, 1997; Schafer, et al. 1998). Figure 2 presents the influence of
monovalent and divalent cations of chloride salts on solution flux. Dot points were the
experimental data while solid lines were fitted with fouling models of crossflow
operation. It was observed that monovalent (Na*) and divalent (Ca*") cations caused flux
reduction from 26.1% (I.S. NaCl of 0.01 M) to 35.2% (I.S CaCl, of 0.05 M). Solutions

containing CaCl, showed greater flux decline than that containing NaCl. This finding
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indicated that calcium ion has a marked effect on membrane fouling. Similar results
were observed by Hong and Elimelech (1997) and Schafer, et al. (1998). For monovalent
cation, the experimental results were fitted with pore blocking model (at low ionic
strength of 0.01 M) while the results were followed with cake formation (at high ionic

strength of 0.05 M). This was possibly dominated by reduced charge repulsion between
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o A 0.01 M CaCl2 (Cake formation)
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Figure 2 Influence of monovalent and divalent inorganic scalants on solution flux

positively charged Na" and negatively charged NOM, thus resulting an increase of NOM
accumulation on the membrane surface. However, an increase of ionic strength from
0.01 M to 0.05 M can also decrease charge repulsion between positively charged Na" and
negatively charged membrane, thus decreased conductivity rejection from 25.3% to
13.7%. This can possibly decrease double layer thickness on membrane matrix as
reported by Braghetta ef al. (1997). For divalent cation, the effect of calcium ion and
NOM interaction could dominate solution flux decline on the membrane surface. It was
found that the rejection of conductivity increased from 24.4% to 38.2% with increasing
ionic strength from 0.01 M to 0.05 M.

Table 1 shows the model parameters from fouling models for monovalent and
divalent cations. It was observed that the experimental data were relatively fitted with

cake formation model for calcium chloride solution (both low and high ionic
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Table 1 Model parameters from fouling models for monovalent and divalent inorganic scalants

Model Pore blocking Pore constriction Intermediate Cake formation
Parameter Ka J SSE ks J SSE ke J SSE ko J SSE
Concentration (am) | wvH) 1Um.n)"?|  LMH) (m) | avh) (hmd) | (LMH)
0.01 M NaCl 0246 | 323 5.31 0968 | 302 | 5756 45 295 541 108 29 5474
0.05 M NaCl 0355 | 3341 3.895 15 32 5683 | 7.08 316 | 4.906 156 306 | 3693
0.01 M CaCl, 0337 | 305 | 6406 | 1.41 289 | 8925 | 696 286 | 7.765 153 27 5.955
0.05 M CaCl, 0343 | 296 | 6716 | 144 279 | 8684 | 684 272 | 7.389 150 253 | 5645

strength). These results were based on minimizing sum squared errors (SSEs) between

experimental data and estimated data from fouling models (Z ( modety = vimeasuredy) ) -

However, the SSEs were not significantly different for each fouling model.

4.2 Influence of Inorganic Scalants on Solution Flux
Figure 3 illustrates the influence of inorganic scalants on solution flux (I.S. = 0.01

M). Inorganic scalants used in this study were chloride (CI7), carbonate (CO3”"), sulphate
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Figure 3 Influence of inorganic scalants on solution flux (I.S. = 0.01 M)
(SO47), and phosphate (PO4>") with interaction with positively charged calcium ion. It

was observed that solutions having different inorganic scalants exhibited different

solution flux decline. Solution having phosphate species showed the greatest flux decline
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while solution having chloride species exhibited the least flux decline. The relative flux

declines (1- J / J, ) were estimated about 33.6%, 40%, 43%, and 51.1% for CI', CO5%,

SO,”", and PO4> species, respectively. Based on mathematical fouling models, the
experimental data were relatively fitted with pore blocking model for all solutions having
Cngf, SO427, and PO, scalants, suggesting inorganic scalants accumulated on the
membrane surface and/or pores, thus decreasing solution flux.

Table 2 shows model parameters from fouling models for inorganic scalants (I.S.
= 0.01 M). For each mathematical fouling model, pore blocking model was fitted well

with experimental data based on minimized SSEs for C032_, SO42_, and PO43_ species.

Table 2 Model parameters from fouling models for inorganic scalants (I1.S.=0.01 M)

Model Pore blocking Pore constriction Intermediate Cake formation
Parameter ka J SSE ks J SSE ke J SSE ko J SSE
Concentration (1/h) (LMH) 1/(m.h)"?| (LMH) (1m) | (LMH) (him® | (LMH)
0.01 M CaCl, 0.337 30.5 6.406 1.41 28.9 8.925 6.96 28.6 7.765 153 27 5.955
0.01 M CaCO,4 0.307 27.2 24.81 1.23 24.31 27.55 8.34 26.81 33.96 216 26.36 38.26
0.01 M CaSO, 0.31 25.9 8.386 1.52 24.88 13.136 8.34 253 19.781 212 24.97 30.424
0.01 M Ca3(POy), 0.212 19.9 66.92 1.35 21.21 153.8 6.48 19.9 170.8 165.7 19.81 244.2

However, solution flux of phosphate species was not fitted well at the beginning of the
run, thus causing the highest SSEs when compared with other solutions. From the
solution flux decline, these results were possibly due to decreased membrane pores from
inorganic fouling on membrane surface/pores, thus reduced permeate volume. However,
this phenomena was not significantly affected with solution having calcium chloride,
possibly due to cake formation from Ca-NOM interaction dominated solution flux curve.
Figure 4 exhibits the influence of inorganic scalants on solution flux (I.S. = 0.05
M). Experimental results showed similar trend with low ionic strength of 0.01 M. From
this figure, it was obvious that solution having phosphate scalant showed the greatest flux

decline. The relative flux declines (1- J/J,) were estimated about 35.2%, 41.6%,

43.9%, and 71.6% for CI", CO5>", SO4*", and PO,>~ species, respectively. An increase of
ionic strength from 0.01 M to 0.05 M increased flux decline from 51.1% to 71.6% for

phosphate species. Table 3 shows model parameters from fouling models for inorganic
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Figure 4 Influence of inorganic scalants on solution flux (I.S. = 0.05 M)

scalants (I.S. = 0.05 M).

Based on minimized SSEs, the pore blocking model was

relatively fitted well with the experimental data of CO32_, SO42_, and PO43_ species.

Table 3 Model parameters from fouling models for inorganic scalants (I.S.=0.05 M)

Model Pore blocking Pore constriction Intermediate Cake formation
Parameter Ka J SSE ks J SSE ke J SSE Kp s SSE

Concentration (1/h) (LMH) 1/(m.h)"?| (LMH) (1/m) | (LMH) (hm%) | (LMH)

0.05 M CaCl, 0.343 29.6 6.716 1.44 279 8.684 6.84 27.2 7.389 150 25.3 5.645
0.05 M CaCOg 0.309 26.7 27.09 1.27 2413 31.13 8.22 26 35.52 223.9 259 41
0.05 M CaSO, 0.305 25.25 6.979 1.32 22.8 9.285 8.46 251 22.59 223.8 24.91 37.55

0.05 M Ca3(POy), 0.19 6.34 2.847 1.13 6.74 59.94 6.76 8.07 145 179.6 3.81 279.5

This indicated that inorganic scalants showed significant effect on membrane fouling,

thus increased solution flux decline.

Solutions having phosphate species had greater

solution flux decline than those of other species. The solution flux (J') associated with

the back-transport mass transfer was approximately 6.34 LMH based on mathematical

pore blocking model while the solution fluxes (J*) were about 26.7 and 25.25 LMH for

solutions having carbonate and sulphate species, respectively. This exhibited significant

differences between inorganic species on nanofiltration fouling. Figure 5 exhibited the
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pC-pH diagram on calcium phosphate scalant (I.S. = 0.05 M). The concentration lines

were analyzed based on MINEQL+ program for chemical equilibrium system. For ionic

-~ CaHPO4 (aq)

—o- Ca5(PO4)30H (s)
¢ CaHPO4 (s)

18 —+ Ca3(P04)2 (s)

20 4 T T T T T T
0 2 4 6 8 10 12 14

pH

Figure 5 The pC-pH diagram on calcium phosphate scalant (I.S. = 0.05 M)

strength of 0.05 M and pH of 7, phosphate scalant showed higher concentrations of
precipitated species than those of dissolved species. The precipitated species could be
CaHPO4(s), Cas(PO4);0H(s), and Ca3(PO4)2(s), which showed relatively high
concentration. However, the concentrations of these species were dependent on pH
value. From this figure, the precipitated species could be Cas(PO4);OH(s) if the pH of
solution was greater than 9.5. The solubility product constants (Ks,) were reported as

follows (Sawyer et al., 2003):

CaHPO,,, < Ca** + HPO; ; K, = 3x107

Ca,(PO,),OH,, < 5Ca* + 3P0} + OH™; K, = 8x107

Ca,(PO,),, < 3Ca* + 2PO}; K, = 1x107

sp

It was observed that the solubility products of phosphate species were relatively
low, thus indicating the capacity of phosphate precipitation on membrane surface. It was

noticed that solution flux curve was relatively fitted with pore blocking model for most
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divalent inorganic scalants. This suggested that divalent inorganic scalants could form
precipitated species due to relatively high ion concentrations, thus suggesting a
precipitated fouling on membrane surface and/or pores, thus decreasing permeate

volume.

4.3 Influence of Different Divalent Inorganic Scalants on Solution Flux
Figure 6 shows the influence of different divalent inorganic scalants on solution

flux. Calcium and magnesium represents different divalent species which interact with
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Figure 6 Influence of divalent inorganic scalants on solution flux

sulphate inorganic scalants for both low and high ionic strengths. It was observed that
solution flux curve of calcium species showed greater flux decline than that of
magnesium species for both low and high ionic strengths. An increase of ionic strength
from 0.01 M to 0.05 M showed no significant effect on solution flux for both calcium

sulphate and magnesium sulphate. The relative flux declines (1- J/J, ) of calcium were

determined about 43% and 43.9% for ionic strengths of 0.01 M and 0.05 M, respectively.

For magnesium, the relative flux declines (1- J/J,) were estimated about 40.9% and

41.8% for ionic strengths of 0.01 M and 0.05 M, respectively. Based on mathematical
fouling model, pore blocking model was relatively fitted with experimental data for both
inorganic species. Table 4 presents model parameters from fouling models for different
divalent inorganic scalants. It was observed that pore blocking model showed minimized

SSEs compared with other mathematical fouling models (i.e. pore constriction,
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intermediate, and cake formation). The results indicate that precipitated species
dominated solution flux decline when compared with Ca-NOM interaction forming cake

Table 4 Model parameters from fouling models for different divalent inorganic scalants

Model Pore blocking Pore constriction Intermediate Cake formation
Parameter Ka J SSE ks J SSE ke J SSE ko J SSE
Concentration (1/h) (LMH) 1/(m.h) 2| (LMH) (m) | (LMH) (him?) | (LMH)
0.01 M CaSO, 0.31 25.9 8.386 1.52 2488 | 13136 | 8.34 253 | 19.781 212 2497 | 30.424
0.01 M MgSO0, 0.194 | 24.04 | 13.07 0.93 2298 | 27.66 468 22.21 3663 | 1038 | 19.91 51.67
0.05 M CaSO0, 0.305 | 2525 | 6.979 1.32 228 9.285 8.46 25.1 2259 | 2238 | 24.91 37.55
0.05 M MgSO0, 0203 | 2398 | 1254 | 0934 | 22.31 24.91 48 21.83 | 3562 108 19.34 | 50.87

on membrane surface. Figure 7 presents the pC-pH diagram on calcium sulphate scalant.
For low 1onic strength of 0.01 M, precipitated species (CaSO4.2H,0(s) and CaSOy (s))
showed relatively high concentrations on membrane surface. It was possible that the
precipitated species (CaS0O4.2H,0(s) and CaSO4 (s)) could cause membrane fouling
corresponding to the mathematical fouling model based on pore blocking model. This
suggests a reduction of membrane pores, thus decreased permeate volume. For high
ionic strength of 0.05 M, the precipitated species (CaSOy(s)) could easily form due to
higher concentration than the CaS04.2H,O(s) species. The different forms of
precipitated species were possibly dependent on solubility-product constants. It was

reported that the solubility-product
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Figure 7 The pC-pH diagram on calcium sulphate scalant

constants of CaSOy (Sawyer et al. 2003), CaSO4.2H,0) (Drever, 1988), and CaSOs(aq)
(Drever, 1988) were as follows (Sawyer et al., 2003):

14
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CaSO

i (Anhydrite) < Ca®™ + SO;7; K, = 107

sp

CaSO, -2H,0,,, (Gypsum) < Ca® + SO; + 2H,0; K, = 107+

s)

Ca™ + SO;” < CaSO; K = 10*%

4(aq)

It was observed that the solubility-product constants of CaSOs4) and CaSO4.2H,0
sy were relatively low about 10*7 and 10_4'58, respectively. The dissolved CaSOuq)

species had relatively high solubility-product constant (about 10%%*

). This suggests that
the precipitated species could be easily formed when compared with the dissolved CaSOj4
(aq) Species. For low ionic strength of 0.01 M, the precipitated CaSO4.2H>Os) species
could be easily formed based on high concentration in the pC-pH diagram while the
precipitated CaSOsy) could dominate on membrane surface for high ionic strength of 0.05
M.

Figure 8 presents the pC-pH diagram on magnesium sulphate scalant. For low
ionic strength of 0.01 M and pH 7, dissolved magnesium species (Mg”") had higher
concentration than precipitated species (i.e. Epsomite (MgSO4.7H,O()) and Mg(OH)y)).
However, the precipitated magnesium species of Mg(OH),) had higher concentration
than that of Epsomite (MgSO4.7H,O()) when pH was greater than 9. For high ionic
strength of 0.05 M, the concentrations of dissolved magnesium (Mg2+), Mg(OH)y)), and
epsomite (MgSO4.7H,O()) were not significantly different when pH was about 7.
However, at high ionic strength of 0.05 M, the precipitated species of MgSO4.7H,Oy)
showed greater concentration than that of low ionic strength of 0.01 M but solution flux
curves of low and high ionic strength exhibited no significant difference. The

experimental results suggested that precipitated species of MgSO4.7H,Os) could be
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Figure 8 The pC-pH diagram on magnesium sulphate scalant

formed on the membrane surface because the experimental data were relatively fitted
well with pore blocking model. However, the precipitated magnesium species showed no
significant effect on solution flux and presented less solution flux decline than the

precipitated calcium.

5. Conclusions

The influence of inorganic scalants and NOM on NF fouling was dependent on
number of ion valency (monovalent and divalent cations), types of inorganic scalants
(chloride, carbonate, sulphate, and phosphate) and different divalent inorganic scalants
(calcium and magnesium). Mathematical fouling models were successfully used to
determine kinetics and fouling mechanisms on the NF membrane surface. For chloride
inorganic scalant, solution flux curve of divalent cation (Ca®") showed greater flux
decline than that of monovalent cation (Na"). For divalent cation, experimental data were
relatively fitted well with cake formation model while experimental results dominated
cake formation model for monovalent cation (Na") with high ionic strength of 0.05 M.
This was possibly caused by reduced charged repulsion between positive charges (Na"
and/or Ca’") and negatively charged NOM, thus increasing NOM mass accumulation on
the membrane surface. For carbonate, sulphate, and phosphate scalants, pore blocking
model dominated solution flux curve, suggesting precipitated species accumulated on
membrane surface and/or pores, thus decreased solution flux. Phosphate scalant showed
greater flux decline than sulfate and carbonate scalants for both low and high ionic

strength, suggesting easily formed a precipitated phosphate scalant on the membrane

14
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surface and /or pores. The precipitated phosphate species would be CaHPOu(s), Cas(PO4)
3OH(s), and Ca3(PO4),(s), which showed relatively high concentration based on the pC-
pH diagram of calcium phosphate scalant. For different divalent inorganic scalants
(calcium and magnesium), calcium showed greater flux decline than magnesium,
possibly due to higher concentration of precipitated calcium species than that of

precipitated magnesium species based on the pC-pH diagram.
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