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Modeling approach can be useful in understanding the behavior, monitoring and improving 

of the bioprocess system which is generally very complicated in nature.  The potential use of 
polynomial regression, dual kriging, backpropagation neural network (BPN) and cascade correlation 
neural network (CCLN) in empirically modeling the xylitol production process were studied.  The 
data used were collected from a continuous xylitol production by Candida mogii cell recycling 
where the effects of recycle ratio and aeration rate on the cell biomass and xylitol concentration 
were investigated.  This research attempted to approximate the relationships between fermentation 
conditions (recycle ratio, aeration rate and fermentation time) and outputs of the system (cell 
biomass and xylitol cocentration).   A separated model was developed for each output of interest.  
The entire data were divided into three data sets for building and selecting proper models, and 
validating them.  Various functional forms of stepwise polynomial regression, various architectures, 
training parameters of BPN and CCLN were explored.  Generalization capability of the models was 
evaluated using the validation data set.  The performance of the model was assessed by the 
prediction accuracy across all data sets and by the model bias.  For the cell biomass predictive 
model, the CCLN model was superior to BPN, dual kriging and polynomial regression models in 
terms of prediction accuracy and generalization capability with no bias.  For the xylitol 
concentration predictive model, the BPN model outperforms the CCLN, dual kriging and polynomial 
regression models with respect to prediction accuracy. However, this BPN model is very slightly 
underestimates the data.  Consequencely, care must be taken when using it.  On the whole, the 
statistical based models as polynomial regression and dual kriing were quite inferior to the 
alternative block box modeling techniques such as neural networks in approximate the relationship 
of the xylitol production process in this research.    
Keywords: Xylitol production; Modeling techniques; Polynomial regression; Backpropagation neural 
network; Cascade correlation learning neural networks  



 

 

Contents 
 

 Page 
Introduction 1 
Objectives of research 4 
Literature reviews 5 
Research methodology 26 
Results and discussions 33 
Conclusions 61 
References 62 
OUTPUT 69 
 



Development and Comparison of Models for Xylitol Production Process 

 
 

Introduction 
 

Xylitol is a pentahydroxy sugar alcohol that is as approximately sweet as sucrose. It readily 

dissolves in water, has pleasant cool and fresh sensation and can reduce the formation of dental 

caries (Greenby, 1992).  Due to these properties, xylitol has found its wide applications as a 

sweetener in various food products such as chewing gum, candies, ice cream, beverages and 

some pharmaceutical products.  These food products are fast growing products in the current 

market.  New products are launched to the market every few month.  Bakery products, spices, 

jams, jellies and dessert represent potential applications of xylitol in food products (Emodi, 1978) 

making it of high value to food industry.  Study on every aspect of the xylitol production would 

therefore be very beneficial.  Xylitol can be produced by several processes such as extraction from 

fruits and vegetables, chemical reduction of xylose, and bioprocess.  Extraction is an uneconomical 

method due to high cost and relatively low xylitol content in fruits and vegetables (Washuttl et al., 

1978).  Chemical reduction is commercially used (Counsell, 1978) but is very expensive and high 

level of contaminants from the production process makes it difficult to be purified.  This might limit 

its use in the industries.  As a result, bioprocess receives more attention from researchers during 

the past decade.  Xylitol can be fermented from bacteria, fungi or yeast.  Yeasts are the best xylitol 

producer, particularly Candida spp (Winkelhausen and Kuzmanova, 1998).   

 Bioprocess is a complicated dynamic system.  Understanding process behavior or system 

identification such that the process can be well controlled, predicted or redesigned is always a 

difficult task.  Traditionally, mathematical models are used to represent complex effects of 

processing inputs on the productivity or quality of the outputs.  Building mathematical models 

require a high level of a priori insight about the system that is rarely available due to the complex 

and nonlinear behavior of the bioprocess.  Consequently, building these types of models is time 
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consuming and may not well represent the system.  If a certain level of insight about the system 

exists, an empirical statistical model such as regression is an alternative.  When little knowledge of 

the system is known, an empirical black-box model such as artificial neural network (ANN) is a 

sound choice.  

This research will focus on modeling xylitol production using regressions, dual kriging (a 

geostatisical model) and artificial neural networks and compare their performances.  It is an 

extension of the work of Sirisansaneeyakul and Tochampa on xylitol production using Canida mogii 

(Sirisansaneeyakul et al., 20001,2).   Regression and response surface methodology (RSM) are the 

most popular nonlinear modeling method. Although the regression and RSM have a good 

theoretical background and is straightforward to implement, they requires restrictive assumptions 

on the error terms and their performance depends on the appropriateness of the polynomial 

functional forms.  ANN has been recognized as an alternative for modeling nonlinear system in the 

past decade. The model requires little or no priori assumption of functional forms and rather it 

attempts to learn from the training input-output examples or the so-called “learning by example”.  It 

is also robust to deviations from traditional statistical assumptions such as independently normal 

random errors, common error variance and multicollinearity.  An ANN with nonlinear transfer 

functions can theoretically model any relationship to an arbitrary accuracy and is thus termed a 

universal approximator (Funahashi, 1989; Hornik et al., 1989).  A wide range of applications has 

utilized these features of ANN.  These include pattern classification, speech production and 

recognition, function approximation, signal processing, image compression, associative memory, 

clustering, combinatorial optimization, nonlinear modeling, and control.  ANN applications in 

bioprocess are more widespread in alcoholic fermentation and recombinant fermentation.  It is 

observed that all of these applications utilize the most popular backpropagation neural network 

(BPN). 

This research attempts to explore a potential use of two types of function approximation 

ANNs: BPN and cascade-correlation learning network (CCLN).  A BPN is a feedforward multilayer 

neural network trained by gradient descent (Rumehart and McClelland, 1986) that minimizes the 
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total squared error of the output computed by the network.  The training algorithm involves three 

stages: the feed-forward of input training set, the calculation and backpropagation of the error and 

the adjustment of the weights.  Drawbacks to BPN are large computational time due to back 

propagating the errors and adjusting all the weights simultaneously as well as the difficulty in 

selecting the proper architecture, i.e., the number of hidden neurons and hidden layers.  The CCLN 

was developed by Fahlman and Lebiere (Touretzky, 1990) and incorporates two key ideas: 

cascade architecture and the maximization of the correlation between a new unit’s output and the 

residual error during learning.  The cascade architecture starts with only input and output neurons 

and connection weights are adjusted to minimize the total squared error.  Candidate hidden 

neurons are then added, one at a time, to reduce the error.   Due to its constructive algorithm, the 

CCLN will automatically find the proper architecture of the network, however since the final number 

of hidden neurons is unbounded an overparameterized network may result (Tang and Wah, 1996). 

While regression models have restricted assumptions of the uncorrelated error components, 
correlation might exist among the sample data observed from physical phenomena as in 
bioprocess.  Data close together, in time or in space, are likely to be correlated and should be 
modeled as such (Cressie, 1991).  Dual kriging is a modeling technique that allows the 
incorporation of spatial correlation into the interpolation or estimation process.  Accordingly, it might 
be an alternative modeling technique to better represent the input-output relationship from xylitol 
production which appears to be a set of spatial data.  Dual kriging has been adopted in several 
applications including mining, environment, physical and chemical compositions and behaviors and 
financial analysis.  This research will be a pioneer to employ dual kriging in bioprocess modeling.  
Though the work centers on xylitol production, the knowledge earned here will definitely be fruitful 
to other bioprocesses. 
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Objectives 
 

1. Examine the potential use of several-order polynomial regression, backpropagation neural 

network (BPN), cascade correlation learning network (CCLN) and dual kriging in modeling xylitol 

production process. 

2. Compare the performance of the best identified regression, dual kriging, BPN and CCLN models 

and make a recommendation on xylitol production. 
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Literature Review 
 

The Occurrence and Properties of Xylitol 
 
Xylitol (C5H12O5) is a naturally occurring pentahydroxy sugar alcohol in many fruits and 

vegetables.  Yellow plum, strawberry, cauliflower, raspberry, lettuce, spinach, onion, carrot, grape, 
and banana are examples of xylitol’s natural sources.    Among these, yellow plum is the richest 
source, containing almost 1% on a dry basis (Aminoff, et. al, 1978).  Yeast, lichens, seaweed and 
mushroom are other natural sources of xylitol.  Xylitol is also a metabolic intermediate in 
mammalian carbohydrate metabolism.  In human adults, 5 to15 grams of xylitol can be produce per 
day.  Since xylitol is metabolized independently of insulin, it will not fluctuate the insulin and 
glucose blood levels and thus can be used as diabetic sweetener (Touster, 1974; Bassler, 1978; 
Emodi, 1978; Bar, 1991; Makinen,1992).  In addition, this property is useful for post-operative or 
post-traumatic states of patients as well as for correction of catabolic disorders (peripheral lipolysis, 
stimulation of glucogenesis, and degradation of muscle protein)   (Forster, 1974; Ritzel and 
Brubacher, 1976).  As xylitol does not react with amino acid, its utilization for parenteral nutrition is 
then possible.  Moreover, its metabolism does not involve glucose-6-phosphate dehydrogenase 
and is therefore an ideal sweetener for glucose-6-phospahte dehydrogenase-deficient population.  
Xylitol has also an anti-ketonic effect and is very well received in post-surgery infusions in patients 
with difficulty in metabolizing sugar (Sanronan et al., 1991). 

Xylitol possesses many advantageous characteristics and has thereby received much 
research attention as food ingredient in the last three decades (Aminoff, et. al, 1978; Emodi, 1978; 
Ylikahri, 1979; Pepper and Olinger, 1988; Pepper, 1989).  It does not undergo Maillard reaction 
which leads to food browning and reduction in nutritional of protein value.  The addition of xylitol in 
food products can improve the color and taste without undesirable changes during their storage.  
Xylitol is as sweet as sucrose, nearly twice as sweet as sorbitol and approximately three times as 
sweet as mannitol.  Its caloric content is equal to that of sucrose, 17kJ / kg.  Xylitol, alone or in 
combination with other sugars, is shown to be a beneficial sweetener in yoghurt, jams and frozen 
desserts as it provides better texture, color and taste and stability compare to sucrose (Abril et al., 
1982).    Xylitol produces a cool and fresh sensation on oral and nasal cavities as a result of its 
negative heat of dissolution.  It can then be used as part of coating of confectionary or 
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pharmaceutical products such as vitamins or expectorants (Pepper and Olinger, 1988) and in the 
formulation of dietary complements (Petrovich, 1988). 
 The most significant characteristic of xylitol in commercial implications is anticariogenic 
property.  Xylitol is not utilized by the acid producing, cariogenic bacteria in human oral cavity and 
therefore inhibits their growth, formation of plaque and deminerization of tooth enamel and the 
formation of new dental caries (Bar, 1988).   Bar (1991) and Makinen (1992) consider it as the best 
alternative sweetener for caries prevention.  As a consequence, much is consumed in chewing 
gum, confectionary, mouthwash and toothpaste.  In toothpaste, xylitol also shows ability to retain 
moisture (Mori and Saraya, 1988). 
 
Xylitol Production 
  

Three major procedures are available for xylitol production: solid-liquid extraction, chemical 
synthesis and bioprocess. 
1. Solid-liquid extraction 
 Natural xylitol found in fruits, vegetables and other natural sources can be recovered from 
by solid-liquid extraction.  However, due to its low concentration in these sources, the extraction 
becomes difficult and uneconomical (Hyvonen et al., 1982; Pepper and Olinger, 1988).   
2. Chemical synthesis 
 At present, xylitol is commercially produced by chemical synthesis.  The general 
procedures composes of 4 main steps: (1) acid-catalyzed hydrolysis of plant materials; (2) 
purification of the hydrolysate to xylose solution or a pure crystalline xylose; (3) hydrogenation of 
the xylose to xylitol; and (4) crystallization of the xylitol (Aminoff et al., 1978).  The major raw 
materials for manufacturing xylitol are xylans, which are present in hardwoods (birch and beech 
trees and some plant structural tissues such as corn-stalks, wheat, flax and rice straw, cotton 
seeds, sunflower or coconut hulls, sugarcane bagasse and wood pulp).  These materials can be 
hydrolyzed to D-xylose and other sugars such as L-arabinose, D-mannose, and D-galactose (Krull 
and Inglett, 1980) with D-xylose as a major component (80-85%).  These contaminating sugar can 
complicate crystallization and purification of xylose.  As such, the critical step in the process is 
purification of xylose from the hydrolysate.  This is achieved by employing ion-exchange 
chromatography.  Activated carbon is also used to remove color.  After that, catalytic hydrogenation 
of the purified xylose is carried out.  The resulting solution requires chromatographic fractionation 



7 

 

and concentration before crystallization into purified xylitol.   The intensive purification and 
separation steps are very expensive and thus making the production cost about ten times higher 
than that of other sugar alcohols undergone similar process.  This limits the commercial use of 
xylitol despite its wide range of applications.  Other concerns for xylitol production via chemical 
method are high pollution levels and waste-treatment. 
3. Bioprocess 
 Biotechnological approach for xylitol production is based on the utilization of 
microorganisms and/or enzymes.  It is an alterative process that might offer some cost and 
environmental friendly advantages over the chemical process.  Bacteria, fungi and yeasts are 
capable of assimilating and fermenting xylose to xylitol, ethanol, and other compounds.  Among 
these organisms, the yeasts are considered to be the best xylitol producers and thereby receiving 
most attention from researchers. Winkelhausen and Kuzmanova (1998) collected and compared 
the performance of xylitol production among various yeast strains from many publications and 
concluded that the genus Candida is the best xylitol producers.  This summary coincides with the 
work of Ojamo (1994) who compared more than 30 yeast strains. The yeast conversion of D-
xylose to xylitol begins with a transport of xylose across the yeast’s cell membrane.  The D-xylose 
uptake in Candida moogii ATCC 18364 were found to follow Michaelis-Menten kinetics which 
suggested a carrier-mediated facilitated diffusion transport system (Sirisansaneeyakul et. al., 1995).  
The xylose metabolism in yeasts was extensively studied and described (Barbosa, et al., 1988; 
Rizzi et al., 1988; Prior et al., 1989; Hahn-Hägerdal, 1994).   In general, xylose will undergo an 
oxido-reductive route via two sequential reactions.  Firstly, xylose reductase transforms xylose into 
xylitol in the presence of NADH and/or NADPH.  Subsequently, xylitol is either secreted from the 
cell or oxidized to xylulose by xylitol dehydrogenase in the presence of either NAD+ or NADP+.  
Xylulose is then transformed via phosphorylation by xylulokinase to xylulose-5-phosphate which 
enters the pentose phosphate pathway (PPP).  The PPP consists of an oxidative phase that leads 
to NADPH regeneration and a non-oxidative phase that produces glyceraldehydes-3-phosphate 
and fructose-6-phosphate. Both non-oxidative products can be converted to pyruvate in the 
Embden-Meyerhof-Parnas pathway.  Pyruvate can either be decarboxylated and reduced to 
ethanol or can enter the tricarboxylic acid cycle.  Figure 1 shows a simplified scheme of xylose 
metabolism in yeasts.   

Some  of  the metabolic  products  and  the  cofactor  regeneration  are  required  for  cell  growth.  
One  cannot  just  stop when  xylose  is  converted  to  xylitol.    In order  to obtain good yields of  xylitol, a 
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balance  between  the  amount  of  xylose  being  converted  to  xylitol  and  the  amount  of  xylitol  being 
available for further metabolism must be obtained (Winkelhausen and Kuzmanova, 1998). 

 

Figure 1   A simplified scheme of xylose metabolism in yeasts 
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Process Variables Influencing Xylitol Production 
 
A number of experimental conditions are considered to influence the xylitol production from 

the yeasts with respect to yields and productivities (Nigam and Singh, 1995; Parajo et al., 1998a, 
1998b; Winkelhausen and Kuzmanova, 1998).  These conditions include nutrients, initial cell 
concentration, the culture age, temperature, pH, substrate composition and concentration, product 
concentration and aeration.   

In general, the suitable temperature for xylitol production was observed to be 30°C.  When 

the yeast was cultured in a range of 30°C and 37°C, the xylitol cocnetration was mostly 
temperature independent.  From the industrial perspective, lower temperature implies lower costs 
and more managerial conditions (Sanchez et al., 2004).  The proper initial pH value would be 
between 4 and 7 depending on the yeast species and fermentation culture (batch or fed-batch or 
continuous).  D-xylose concentration significantly affects the growth and the fermentation.  High 
xylose concentration induces xylitol fermentation but inhibits ethanol production.  For most yeasts, 
the initial xylose concentrations between 100 and 200 g/l would produce the highest yields 
(Winkelhausen and Kuzmanova, 1998).   

When glucose was used as a co-substrate in xylitol production, many researchers (Nolleau 
et al., 1995; Yahashi et al., 1996a, 1996b; Sreenath and Jeffries, 1996) found that it would improve 
overall process.  In the presence of glucose, xylose could be converted to xylitol more efficiently 
leading to faster cell growth than when xylose was the only substrate.  On the other hands, other 
researchers reported that using glucose as a co-substrate led to faster cell growth but lower xylitol 
cocnetration (Silva et al., 1996; Vandeska, 1996).  This findings was attributable to a partial 
inhibition of xylose reductase in the presence of glucose.  The yeasts will consume glucose first 
and then use xylose once the glucose is completely utilized.    

Xylitol is not produced under fully aerobic conditions while the yeasts fail to grow on xylose 
under anaerobic conditions (Parajo et al., 1998b; Faria et al., 2002).  Under a limited oxygen 
supply, NADH cannot be oxidized to NAD+, resulting in an inhibition of NAD+-linked xylitol 
dehydrogenase and thereby a decrease in the oxidation of xylitol to xylulose with an increase in 
xylitol accumulation.  On the contrary, a sufficient oxygen supply will enable the oxidation of xylitol 
to xylulose and thus an increase in cell growth.   Consequently, dissolved oxygen (DO) plays a 
very important role. 
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Modeling in Bioprocess 
 
Bioprocess is a complicated dynamic system.  Understanding process behavior or system 

identification such that the process can be well monitored and controlled, predicted, optimized or 
redesigned is always a difficult task.  By construction and analysis of certain models, better 
knowledge of real-world bioprocess could be achieved.  An accurate models is thereby a building 
block in improving the performance of a process through control, optimization and redesign.    

Modeling techniques are divided into three major types: 
1. Mathematic, mechanistic or white box modeling techniques 
 This type of model is constructed based on the underlying process principles (first 
principles) such as mass, energy and momentum balances.  Although the model structure comes 
from the first principles, the model parameters are obtained from fitting the model structure to 
empirical data.  However, developing an accurate model requires a considerable knowledge of the 
bioprocess physics, chemistry and microbiology that is rarely available.  Consequently, the model 
constructed may not well represent the system and is too costly in practice since much time and 
effort must be consumed during the construction and validation.   
2. Empirical modeling techniques 
 The construction of this type of model is based on empirical data of the process’s behavior.  
The structure of the models is generic and cannot be interpreted in terms of mechanistic laws.  
However, little process knowledge is required.  As a result, the cost of building this model is 
bearable.  Either experimental data or actual plant data could be used to fit the model.  Meanwhile, 
the application region of both data types will be different.  The process model obtained from 
experimental data cannot be directly applicable to a real plant without some modifications.  Several 
empirical modeling techniques are available.  These include polynomial regression models, Taguchi 
models, generalized linear models, splines, radial basis functions, kernel smoothing, spatial 
correlation models (kriging), frequency-domain approximation, and artificial neural networks. 

Barton (1992) suggests the following criteria to be considered in choosing an empirical 
modeling technique:  

(1) The ability to gain insight from the form of the model. 
(2) The ability to capture the shape of arbitrary smooth functions. 
(3) The ability to characterize the accuracy of the fit. 
(4) The robustness of the prediction away from observed (x, y) pairs. 
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(5) The ease of computation of the approximate the function of interest. 
(6) The numerical stability of the computations and consequent robustness of prediction to 

small changes in the parameters defining function. 
(7) The existence of software for computing the model, characterizing its fit, and using it for 

prediction. 
3. Hybrid modeling techniques 
 A hybrid modeling technique can start by deriving a model based on the process principles 
and then includes black box elements as parts of the white box (Braake et al., 1998).  In other 
words, the basic structure of the models is from the first principles while important relationships are 
modeled by mixed empirical / mechanistic relations.  For instance, a structure of a process to be 
modeled is known priori and the neural network is trained to estimate the time varying unknown 
process variable (te Braake et al., 1998) or Psichogios and Ungar (1991) used a multi-layer feed 
forward neural network as the non-parametric estimator for the unknown process parameters in the 
first principle model.   

This type of model can also obtained by incorporating prior knowledge of a process into a 
black box model during process modeling (van Deventer et al., 2004).  For example, Lindskog and 
Ljung (1994) searched for the combinations or transformations of the input signals corresponding to 
physical variables and used the resulting signals in an empirical model. 

In this research, only empirical modeling techniques are studied.  Three of them are of 
interest and will be discussed in details.  They are polynomial regression models, artificial neural 
networks and spatial correlation models. 

 
Polynomial Regression Models 
 
1.  Polynomial regression models 

Regression analysis is one of the most widely used of all statistical tools for modeling the 
input-output relationship. It serves three major purposes:  

(1) to make inferences about the regression parameters 
(2) to estimate the mean response for a given set of input variables 
(3) to predict a new response for a given set of input variables 
The polynomial regression model is the most frequently used curvilinear response model in 

practice.  There are two types of variables in any regression model: the independent or predictor or 
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input variables (X) and the dependent or response variables (Y).  Polynomial regression models 
can contain one, two, or more than two independent variables while each independent variable can 
be present in various powers.  A polynomial regression model for n observations of pairs (xi, yi) 
can be expressed as: 

i

p

k
ijkk

l

j
i xZY εβ += ∑∑

== 11
)(  For i = 1, 2, …, n       (1) 

where there are p power functions Zk(xij); for example the power function might be 1, xi1, xi2, xi1xi2, 

xi1
2, xi1

3, or xi3
2xi4

3.   βk are the regression coefficients which are to be estimated from the observed 

pairs of data points via least squares or maximum likelihood estimation. εi is a normal random 

error term with mean E{εi} = 0 and common variance σ2{εi}= σ2 so that the errors are not 

correlated with each other, i.e., the covariance σ{εi,εj} = 0 for all i, j; i≠ j.   
 When using a polynomial model as an approximation to the true regression function, a 
second-order or third-order model is often fitted and the possible adequacy of a lower-order model 
is then explored (Neter et al., 1990).  

Multicollinearity or intercorrelation, i.e. where the independent variables are correlated 
among themselves, is unavoidable in polynomial models especially for high-order polynomials.  A 
high degree of multicollinearity does not inhibit a good fit nor does it tend to affect the inference 
about mean responses or prediction of new responses, provided that these inferences are made 
within the region of observations. However, standard interpretations based on the regression 
coefficients, such as a large coefficient for a linear term indicating a significant effect of the 
independent variable, a large coefficient for a quadratic term indicating a non linear response, and 
a large coefficient for a cross product term (xixj) indicating a change in the effect of one 
independent variable as a function of the value of the other (Barton, 1992), are often unwarranted.  
This is due to the large sampling variability of the estimated regression coefficients when the 
multicollinearity exists.  In order to avoid this situation, all polynomial regression models should be 
formulated in terms of deviations, i.e. the independent variable is expressed as a deviation about 
its mean ( X ) or XXx ii −=  (Neter et al., 1990). 
 
2.  Strengths and weaknesses of polynomial regression models 

Barton (1992) points out that polynomial regression models perform well with criteria (1) 
and (3)-(7) in Section ”modeling in bioprocess”.  While straightforward to implement, the regression 
models require restrictive assumptions on the error terms.  Their performance also depends on the 
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appropriateness of the polynomial functional forms.   Polynomial regressions of all types may 
provide good fits but the accuracy of the predicted response will degrade with increasing distance 
from the experimental observation.  The higher the order of the polynomials, the more rapidly the 
accuracy degrades. 
 
3. Its applications in bioprocess 

Its applications in bioprocess range from production of citric acid (Chen, 1996), 
streptomycin (Saval et al., 1993) and tannin acyl hydolase (Lekha et al., 1994) to cellulose (Shi 
and Weimer, 1992).  The method has been used in xylitol production from Candida tropicalis 
(Horitsu et al., 1992) and Candida duilliermondii (Roberto et al., 1995).  However, these works 
explored only up to second-order models and none was mentioned on the validity of the underlying 
assumptions that is very important for the model reliability. 
 
Classical Kriging and Dual Kriging  

  
Kriging is an estimation technique proposed in 1951 by D.G. Krige, a mining engineer, for 

gold deposit evaluations.  Similar to polynomial regression, the kriging technique is also associated 
with the acronym BLUE, “Best Linear Unbiased Estimator” of a random function and is ‘best’ in 
terms of aiming at minimizing the variance of estimation error among all linear estimators (Poirer 
and Taniwa, 1991).  Geologists and environmental engineers have been using kriging technique to 
estimate the measurements or characteristics of hydraulic properties or contaminant concentrations 
in air, water, or soil in regions that were inaccessible or unobserved.  Later its use was extended to 
simulation community.  The theory of classical kriging is well-covered by Journel and Huijbregts 
(1978).  Classical kriging is usually implemented as a local estimation method.  That is, its 
procedure requires the solution of a new system of equations for each interpolated value.  
According to Trochu (1993), a global estimation kriging technique called “dual kriging” was 
developed in 1985.  Under dual kriging, the kriging system is evaluated only once for the whole 
domain by simultaneously using the information provided by all data points.  The development of 
classical kriging equations and derivation of dual kriging is discussed based on Journel and 
Huijbregts (1978), Porier and Taniwa, 1991), and Trochu (1993) as follows. 
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1. Theory of classical kriging 
Basically, the purpose of kriging is to estimate the value of a random function U(X) at a 

specified point or location X, given a set of measurements or computed samples U(Xi) taken at 
location Xi for i = 1, 2,…, N.  The original theory of kriging was formulated for dealing with one, 
two, or three dimensional problems, i.e., when X represents the position vector X = x or X = (x, y) 
or X = (x, y, z).  However, it can be generalized to an L dimension problem, i.e., X = (x1, x2, …, xL). 

The estimation of U(X) can be obtained as a linear combination of the observed data point 
Xi where i =1, 2, …, N: 

  ( ) ( )∑
=

=
N

i
ii XUXu

1
* λ               (2) 

As a BLUE, a set of weights λi must be determined in such as way that (1) the expected 
values of U(X) and u*(X) are identical, i.e., ( )[ ] ( )[ ]XuEXUE *=  and (2) the variance of the 
estimation error ( ) ( )[ ]XuXUVar *−  is minimized. 
 In kriging, the random function U(X) is comprised of the sum of two terms: 

  ( ) ( ) ( )XbXaXU +=                   (3) 
where a(X) is a drift function representing the average behavior of U(X) or ( ) ( )[ ]XUEXa = , and 
 b(X) is a stationary fluctuation with ( )[ ] 0=XbE . 
The kriging system can be derived so as to minimize the variance of the estimation error under the 
constraints of unbiased conditions as follows: 

From the unbiased condition, ( )[ ] ( )[ ]XuEXUE *= , equation (2) can be expressed as 

  ( )[ ] ( )[ ]∑
=

=
N

i
ii XUEXUE

1
λ              (4) 

Since the drift function represents the expected value of U(X), equation (4) can be represented by 

  ( ) ( )∑
=

=
N

i
ii XaXa

1
λ               (5) 

In general, the drift function is built up from M basis functions, pl(X), l=1, 2, …, M and thus the 
conditions of unbiased become 

  ( ) ( )∑
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i
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1
λ ,  l=1, 2, …, M           (6) 

 The variance of the estimation error is calculated as follows 
( ) ( )[ ] ( )[ ] ( ) ( )[ ] ( )[ ]XuVarXuXUCovXUVarXuXUVar R **,2* 2 +−==− σ    

with ( )[ ] ( )
2

XUXUVar σ=  
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Combining these three terms again, the variance of estimation error can be expressed as 
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 This error variance is minimized subject to M unbiased conditions in (6).  A Lagrangian 
technique is used to convert a constrained minimization problem into an unconstrained one by 

introducing M Lagrange multipliers, μl, l=1, 2,…, M, associated with the constraints.  The solution 

is then characterized by a linear system of N+M equations in N+M unknowns λ1, …, λN and μ1, 

…, μM: 
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This system is called the “kriging system” and can be written in matrix form 
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where Cij denotes the covariance between sample points Xi and Xj, or ( ) ( )[ ]ji XUXUCov , , and Ci 
is the covariance between sample points Xi and a point X, or ( ) ( )[ ]iXUXUCov , , in which the 

value of U(X) is to be estimated.  Solving this system yields the optimal values of the λi, i=1, 2, .., 
N,  at the point X. 
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2. Dual formulation of kriging 
The kriging system of equations (9) depends on the covariance between the sample point 

Xi and the point X.  That is, the solution of system λi will depend on the point X.  Therefore, a new 
kriging system would be needed for each estimated value.  This can be computationally expensive 

for large problems.  The dual formulation of kriging was developed to provide independent λi and 
thus eliminate this limitation of the classical kriging procedure.  Dual kriging can be formulated from 
equation (9) as follows.  When the matrix in system (9) is inverted, the following expression is 
obtained: 

( )

( )⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−⋅

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−+−−−=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

Xp

Xp

C

C

SR

RQ

M

N

T

M

N

M

M

M

M

1

1

1

1

|
|
|

|
|
|

μ

μ

λ

λ

           (10) 

By substituting this solution into equation (2), the estimated value u*(X) can be expressed 
as: 

( ) ( ) ( )[ ] ( ) ( )[ ]
( )

( )⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅⋅+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅⋅=

Xp

Xp
RXUXU

C

C
QXUXUXu

M

N

N

N MLML
1

1

1

1*       (11) 

 By the symmetry of the kriging matrix, a new set of coefficients is defined as: 
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and thus equation (11) becomes 
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 Equation (13) is called dual kriging.  The coefficients al, l=1, …, M and bj, j=1, …, N can be 
written in matrix form as: 
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where the matrices A and B are arbitrary.  By choosing A = R and B = S, the matrix of equation 
(10), which is the inverse kriging matrix, appears again in equation (12).  Hence, the coefficients 
al’s and bj’s are solutions of  
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 This system of linear equations together with the dual kriging model in equation (13) 
constitutes the dual formulation of kriging. 
 
3. The drift function and the covariance functions 

According to Journel and Huijbregts (1978), a polynomial drift function is normally used in 
geostatistics applications.  This can be a complete polynomial of order k (k dimensions) composed 
of all possible subsets of variables of size 1 to k.  For example, an order three basis is expressed 
as: 
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It is apparent that dual kriging also requires the knowledge of the covariance between two 
points or locations.  The covariance between two points or locations is assumed to depend only on 
the Euclidean distance h between Xi and Xj, and not on the particular positions Xi or Xj and is 
represented by C(h).  In general, the covariance function decreases from its maximum value at 
C(0) since the degree of correlation between two locations decreases as the distance h between 
them increases.  Ratle (1998) summarizes two approaches to be used for obtaining the covariance.  
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The first approach is to use an arbitrary theoretical covariance function.  These functions are called 
shape functions rather than covariance functions since they have no relationship to the actual 
covariance.  Kriging under these conditions is considered to be an exact interpolator.  The other 
approach is to use the estimation of an experimental covariance function from the observed data.  
Under this condition, kriging is employed as an estimator.  However, it is difficult to estimate a 
covariance function from the experimental data because it requires the knowledge of the unknown 
mean.  Consequently, only theoretical covariance will be considered in this research. 

Ratle (1998) has described three common theoretical covariance functions. The first 
covariance function is the pure nugget effect model which is the limiting case where the 
fluctuations around the samples are assumed to be insignificant.  This model is appropriate for 
noisy data as well as for problems where only a rough estimate of the solution is required.  The 
pure nugget effect covariance is written as: 
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Under the pure nugget effect, there is no correlation between two points regardless of 
distance h.  The kriging model does not pass anymore through all the data points and it reduces to 
a simple polynomial regression on the drift function basis. 

The other two models are based on the notion of distance of influence as introduced by 
Trochu [11].  The models assume that the correlation or actual covariance between two very 
distance points is negligible or zero.  The general covariance C(h) may be designed in such a way 
that C(h) = 0 if h > d, where d is a predefined threshold.  The first model is the linear model. It 
assumes that the covariance decreases linearly from a maximal value at h = 0 to zero at h = d.  
The linear covariance is expressed as: 
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The other model is the cubic covariance.  This model ensures continuity by imposing the 
nullity of the first derivative of C(h) at the points h = 0 and h = d.  Two other conditions are C(0) = 
1 and C(d) = 0.  The covariance function is defined as: 
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4.  Strengths and weaknesses of dual kriging 
Correlation might exist among the sample data observed from physical or social 

phenomena.  Data close together, in time or in space, are likely to be correlated and should not be 
modeled as statistically independent (Cressie, 1991).  The covariance function in dual kriging 
allows the incorporation of spatial correlation into the interpolation or estimation process.  In 
addition, kriging has been suggested to be a useful technique in small sample estimation of 
environmental and mining data.(69,73)   It appears that an dual kriging modeling technique can 
satisfy Barton’s criteria (1), (3) and (4) for choosing modeling techniques discussed in Section 
”modeling in bioprocess”.   However, major applications of kriging and dual kriging are in 
geostatistics  where spatial data are collected from locations defined on two or three dimensions.  
As a result, the available software has been also limited to three dimensions.   
 
5. Its applications in bioprocess 

 Dual kriging has been adopted in several applications including stress analysis (Poirer and 
Tinawi, 1991), a contouring program (Trochu, 1993), shrinkage analysis (Mamat et. al., 1995), 
modeling of failure behavior for composite materials (Echaabi et al., 1995; 1996), a surrogate for 
fitness landscape in evolutionary optimization (Rattle, 1998), and a metamodeling technique for 
capital investment evaluation (Chaveesuk, 2000; Cahveesuk and Smith, 2005).  However, there is 
no implementation in bioprocess modeling.  Thus, this research will be the first research group to 
employ dual kriging in bioprocess modeling.   
 
Artificial Neural Networks 
 

An artificial neural network (ANN) is a parallel computational model consisting of a large 
number of simple, and highly interconnected adaptive processing elements (artificial neurons) in an 
architecture inspired by the structure of the biological nervous systems.  The majority of the ANNs 
are closely related to traditional mathematical and/or statistical models such as non-parametric 
pattern classifiers, clustering algorithms, nonlinear filters, and statistical regression models.  An 
important feature of the ANN lies in its adaptive nature where learning by example becomes a key 
factor in solving problems.  This feature is very appealing in applications where little is known 
about the problem while observed data is readily available.  A wide range of applications have 
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utilized these features of ANN.  These include pattern classification, speech production and 
recognition, function approximation, signal processing, image compression, associative memory, 
clustering, combinatorial optimization, nonlinear modeling, and control.   

ANN is characterized by (1) its architecture (a pattern of connections between the artificial 
neurons), (2) its training or learning algorithm (a method of determining the weights of the 
connections), and (3) its activation function (a function of the input that each neuron has received) 
(Fausett, 1994).  Typically, the artificial neurons are organized into a sequence of layers with full or 
random connections between layers. Associated with each connection is a weight that represents 
the information being used to solve the problem.  An example of a two-layer feedforward neural 
architecture is illustrated in figure 2 where the net comprises of a hidden layer and an output layer.  

 
 

Figure 2  Example of a Typical ANN 
 

Each neuron j in the hidden or the output layer sums its input signals xi weighted by the 
connection weights wij, and applies an activation function to determine its output signal yj. There 
exist many activation functions f(z), ranging from a simple threshold function to complex non linear 
functions such as sigmoid, hyperbolic tangent and logistic functions.  Figure 3 shows a schematic 
representation of a computing neuron.  
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Figure 3  Schematic Representation of a Computing Neuron 
 

An ANN is trained to learn the relationship between the input and output of a system via 
two main types of learning (training) algorithms: supervised and unsupervised.  A supervised 
learning algorithm adjusts the weights of inter-neuron connections to minimize the difference 
between the desired and actual network outputs corresponding to a given input.  An unsupervised 
learning algorithm does not require the desired or known output.  During the training, only input 
patterns are presented to the neural network which will adapt the weights of its connections to 
cluster the input patterns into groups with similar features.   

At the beginning of the training algorithm, a neural network starts with a randomized state 
of small initial weights.  The weights are then iteratively adjusted until the ANN reaches a fixed and 
stable state where the appropriate weights are obtained to solve the problem. Typically, the 
algorithm is iterative until a balance between the ability to respond correctly to the input patterns 
that are used for training (memorization) and the ability to give good responses to input that is 
similar to that used in training (generalization) is achieved.  It is common to use two sets of disjoint 
data from the same population during training: a training set and a testing set.  The training 
patterns are used to adjust the weights during training whereas the testing patterns are used to 
estimate the generalization ability of the network at intervals during training.  As training continues, 
the errors on the training set will continue to decrease while the errors on the testing set will 
decrease and then increase again when so-called overtraining occurs. Overtraining implies that the 
network loses its ability to generalize.   One popular training stoppage criterion is, consequently, at 
the point where the minimum error on the testing set is reached. 
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 There are various types of ANN models.  This research will focus on supervised training 
neural networks. The most popular one used in function approximations of the nonlinear 
relationships is the backpropagation network (BPN).  Alternative to this backpropagation is the 
cascade-correlation learning network (CCLN). Both networks will be examined in this research and 
thus deserve more discussion in detail. 
 
1. Backpropagation network 

A BPN is a feedforward multilayer neural network trained by the backpropagation training 
algorithm.  The backpropagation, or the generalized delta rule, training algorithm was first proposed 
by Werbos (1974) as part of his Ph.D. dissertation.  However, the elucidation of this training 
algorithm by Rumelhart et al. (1986) became the key step in reemergence of neural networks as a 
tool in solving a wide variety of problems.  Basically, the backpropagation training algorithm is a 
gradient descent method which attempts to minimize the total squared error of the output computed 
by the network. The traditional and most applicable activation function employed in 
backpropagation algorithm is the sigmoid function and the hyperbolic tangent (TanH) as shown in 
equation (20) and (21), respectively. 
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where z is the weighted sum of the input signals to the ith hidden- or output-layer neuron. 
  

This supervised learning algorithm encompasses three stages: the feeding forward of the 
input training pattern, the backpropagation of the associated error, and the adjustment of the 
weights to reduce the squared error (Fausett, 1994).  During the feeding forward, each input 
neuron receives an input signal and broadcasts it to the hidden neurons, each of which computes 
its activation and sends its output signal to each output neuron.  Each output neuron then 
computes its activation to form the response of the net for the given input pattern.  In the second 
stage, the output from each output neuron is compared to the target value to calculate the 
associated error.  The error correction weight adjustment for each output neuron is then computed 
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and propagated back to all neurons in the hidden layer.  Similarly, the error correction weight 
adjustment for each hidden neuron is computed for updating the weights between the hidden layer 
and the input.  Finally, the weights for all layers are adjusted simultaneously based on the 
computed weight adjustment and the activation of each neuron.  The BPN is considered to be a 
universal approximator since it can perform any continuous function approximation to an arbitrary 
accuracy (Funayashi, 1989; Hornik et al., 1989). 

Major limitations associated with applying BPN are difficulty in selecting the proper 
architecture and learning parameters as well as convergence to local minima and instability 
(Leondes, 1998). 
 
2.  Cascade-correlation learning network 

The cascade-correlation learning algorithm network (CCLN) was developed by Fahlman 
and Lebiere (1990) in an attempt to improve a slow pace of learning, which is a major drawback in 
BPN during those days.   

Fahlman and Lebiere’s CCLN incorporates two key ideas: the cascade architecture and the 
maximization of correlation between a new unit’s output and the residual error during the learning 
algorithm. The cascade architecture starts off with input buffers and output units but with no hidden 
units.  All input buffers and output units are directly connected with an adjustable weight.  These 
connections are trained to minimize the total squared error.  The output units may just produce a 
linear sum of their weighted inputs, or they may employ some non-linear activation function, 
particularly the hyperbolic tangent as previously described. 

When there is no significant reduction in error, candidate hidden units are then added one 
at a time to incrementally reduce some residual error.  The creation and training of these candidate 
units consists of two phases.  In the first phase, the input of each candidate hidden unit is 
connected to every input buffer and also the output of every previously installed hidden unit 
whereas its output is not yet connected to the active network.  Each new unit therefore adds a new 
one-unit layer to the network, leading to cascade connections.   These cascade connections enable 
the development of the higher-order feature detecting capability.  The weights on the input side of 
the new candidate unit are then trained using a gradient ascent to maximize S, the sum over all 
output units o of the magnitude of the correlation, or more precisely the covariance, between V, the 
candidate unit’s value or activation, and Eo, the residual output error observed at unit o. Fahlman 
and Lebiere define S as: 
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where    o is the network output at which the error is measured, 
 p is the training pattern and  
 V and oE are the values of  V and Eo averaged over all patterns. 

 
When there is no significant improvement in S, the training is terminated and the candidate 

unit is said to be tenured.  This training can be thought of as a maximal alignment with the residual 
error (Phatak and Koren, 1994).  If a candidate hidden unit can be trained to correlate positively 
with the error at a given output unit, it will cancel some of the residual error by developing a 
negative connection to the corresponding output-layer weight (to be trained later), and vice versa 
for the negative correlations (Teng and Wah, 1996).  The input side connection weights of the 
tenured unit are frozen hereafter.  In the second phase, the candidate unit’s output is then 
connected to all the network’s output units.  These weight connections feeding the output units as 
well as those from the existing hidden units are trained to minimize the error without 
backpropagating the error through the hidden units.  Phatak and Koren (1994) consider this phase 
as canceling the error as much as possible by exploiting the alignment accomplished in the first 
phase.  This process is continued, and new units are added until the desirable error is obtained. 

Using a CCLN offers two benefits.  First, it will automatically find the size and the topology 
of the resulting ANN.  The problem of overspecifying the number of hidden units, and thus 
overtraining, could therefore be alleviated.  Second, learning in CCLN is fast since it only updates 
the weights for the new candidate hidden units added, and the weights of previously added hidden 
units are fixed after they are installed.  One problem with the CCLN is that the final number of 
hidden units is unbounded due to its dynamically constructive algorithm.  Not bounding the number 
of hidden units in training may lead to overtraining as well (Teng and Wah, 1996).  Another 
drawback stems from the cascade architecture.  Each new hidden unit will in effect add a new 
layer, leading to a very deep structure; the number of connections for the nth hidden unit increases 
as O(n).  This will give rise to the problem that the generalization performance of the network may 
be degraded when n is large as some of these parameters may be irrelevant to the prediction of 
the output (Phatak and Koren,1994; Kwok and Yeung, 1997).    
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3.  Strengths and weaknesses of artificial neural networks 
The major strength of ANNs in the development of empirical models lies in the theoretic 

ability to universally model any relationship to any degree of accuracy.  This helps eliminate 
potential error in selecting an appropriate functional form.  ANN models are also robust to 
deviations from traditional statistical assumptions such as normal random errors, common error 
variance, no multicollinearity of independent variables, and no autocorrelation.   ANNs can 
accommodate a combination of continuous variables and discrete numeric variables.  Moreover, 
most of ANN paradigms, such as BPN, are global models so that a single neural network could be 
developed to model an entire response surface.  Lastly, the parallel architecture offers robustness 
to data that is incomplete or contains errors.  It appears that an ANN modeling technique can 
satisfy Barton’s criteria (1) – (5) and (7) for choosing modeling techniques discussed in Section 
”modeling in bioprocess”.    

In the presence of many favorable features, ANNs also exhibit some drawbacks.  These 
include the limitation in their approximation capability by finite and imperfect data sets.  The 
accuracy and precision of an ANN model will depend on the quantity and appropriateness of 
training data.  Too few training data can result in imprecision and inaccuracy in the ANN models, 
particularly when the model is overtrained or used for extrapolation.  Finally, the opponents of 
ANNs criticizes them as being “Black Boxes” due to the difficulty in explaining exactly why an ANN 
produces a certain output. 

 
4. Its applications in bioprocess 

ANN applications in bioprocess are more widespread in alcoholic fermentation (Cleran et 

al., 1991; Insa et. al., 1995; Oishi et al., 1992; Vlassides et al., 2001; Honda et al., 1998) and 

recombinant fermentation (Glassey et al., 1994; Yang, 1992).  Only one article has been found to 

use genetic algorithms coupling with backpropagation neural networks in xylitol production for 

medium optimization (Fang, et al., 2002).   It is observed that all of these works utilize the most 

popular backpropagation neural network (BPN). 
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Research Methodology 
 

This research comprises three parts: (1) data collection and preparation; (2) model 
constructions and validations and (3) comparison of model performance 
 
1. Data collection and preparation 
1.1 The data from the continuous production of xylitol by Candia mogii ATCC 18364 recycling 
system, using xylose as a substrate was collected from Tochampa (1998).  In his work, two major 
factors affecting the xylitol production were studied : 

(1) Recycle ratio  
(2) Aeration rate 

Each factor was varied at two levels, leading to 4 experiments as shown in table 1.   

Table 1  Experimental Design 

Experiment Recycle Ratio (R) Aeration rate (vvm) 
1 0.50 0.3 
2 0.50 1.0 
3 0.75 0.3 
4 0.75 1.0 

 

In each experiment, the data on biomass (g/l) and xylitol concentration (g/l) were collected from the 
start of the fermentation for every 2 or 4 hours up to 60 hours, making up 69 data points.  The 
data were arranged in an input-output pattern with recycle ratio, aeration rate and fermentation time 
as inputs and the cell biomass and xylitol cocnetration as the output.  The following table shows all 
data collected. 
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Table 2  Data from the Continuous Production of Xylitol by Candia mogii ATCC 18364 

Time (hr) Recycle Aeration  Biomass Xylitol 

0 0.5 1.0 6.93 0.07 

4 0.5 1.0 8.42 0.37 

8 0.5 1.0 8.77 1.97 

12 0.5 1.0 9.52 3.42 

16 0.5 1.0 11.84 3.54 

20 0.5 1.0 14.8 1.77 

24 0.5 1.0 18.61 0.24 

28 0.5 1.0 20.20 0.20 

32 0.5 1.0 21.37 0.15 

36 0.5 1.0 22.92 0.15 

40 0.5 1.0 23.85 0.13 

44 0.5 1.0 25.09 0.20 

48 0.5 1.0 24.86 0.20 

52 0.5 1.0 25.13 0.13 

56 0.5 1.0 24.54 0.06 

0 0.5 0.3 5.01 0.15 

4 0.5 0.3 5.12 0.16 

8 0.5 0.3 5.10 0.36 

12 0.5 0.3 4.86 0.59 

16 0.5 0.3 4.74 0.96 

20 0.5 0.3 4.58 1.32 

24 0.5 0.3 4.43 1.56 

28 0.5 0.3 4.44 1.76 

32 0.5 0.3 4.29 1.97 

36 0.5 0.3 4.21 2.06 

40 0.5 0.3 4.00 1.79 

44 0.5 0.3 3.93 1.57 

48 0.5 0.3 4.06 1.38 

52 0.5 0.3 4.06 1.37 

56 0.5 0.3 3.53 1.48 
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Table 2  Data from the Continuous Production of Xylitol by Candia mogii ATCC 18364 
(continued) 

Time (hr) Recycle Aeration Biomass Xylitol 

0 0.75 1.0 6.59 0.08 
2 0.75 1.0 10.51 0.68 
4 0.75 1.0 7.86 1.29 
6 0.75 1.0 9.54 1.57 
8 0.75 1.0 11.22 1.60 
10 0.75 1.0 14.21 1.36 
12 0.75 1.0 17.27 0.95 
18 0.75 1.0 22.31 0.39 
20 0.75 1.0 22.78 0.27 
22 0.75 1.0 23.76 0.21 
24 0.75 1.0 24.54 0.20 
26 0.75 1.0 25.25 0.18 
28 0.75 1.0 26.18 0.18 
30 0.75 1.0 26.07 0.18 
32 0.75 1.0 27.05 0.20 
34 0.75 1.0 27.55 0.19 
36 0.75 1.0 28.07 0.23 
42 0.75 1.0 28.02 0.52 
44 0.75 1.0 28.63 0.43 
46 0.75 1.0 29.47 0.25 
48 0.75 1.0 29.32 0.25 
50 0.75 1.0 29.88 0.21 
52 0.75 1.0 30.05 0.18 
0 0.75 0.3 6.99 0.05 
4 0.75 0.3 0.99 0.27 
8 0.75 0.3 8.21 0.58 
12 0.75 0.3 7.92 1.16 
16 0.75 0.3 8.64 1.85 
20 0.75 0.3 7.68 2.36 
24 0.75 0.3 7.55 3.21 
28 0.75 0.3 7.48 3.70 
32 0.75 0.3 7.63 4.06 
36 0.75 0.3 7.80 4.54 
40 0.75 0.3 7.35 3.78 
44 0.75 0.3 7.24 3.86 
48 0.75 0.3 7.60 3.96 
52 0.75 0.3 7.91 3.59 
56 0.75 0.3 8.10 3.18 
60 0.75 0.3 8.49 2.50 
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1.2 All 69 data points were randomly divided into three disjointed data sets: 
(1) Training or fitting data set for model construction (41 data points) 
(2) Testing data set for selection of proper model parameters (14 data points) 
(3) Validating data set for estimation of model generalization capability (14 data points) 

 
2.  Model Development 
  

In this research, empirical models were constructed to approximate the relationship 
between three input factors, i.e., recycle ratio (R), aeration rate (vvm) and fermentation time, and 
two output variables or responses, i.e., cell biomass (g/l) and xylitol cocnetration (g/l).  One model 
was built for one response as shown in figure 4 and 5. Four types of models were examined, i.e., 
polynomial regression, dual kriging, backpropagation neural network (BPN) and cascade correlation 
neural network (CCLN).   

 

Figure 4  Empirical model for cell biomass 

 

Figure 5  Empirical model for xylitol concentration 
 

In terms of polynomial regression models, a second-order polynomial regression was 
selected to capture the nonlinearity that exists in most bioprocess.  SPSS software version 12 was 
used to build the second-order stepwise polynomial regression models from the fitting data set.   In 
order to minimize the multicollinearity effect, each independent or input variable was expressed as 
a deviation around its mean.   Both forward and backward stepwise regressions were used with the 
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probability to enter and remove of 0.05.  The aptness of the polynomial regression model was 
investigated using residual plots and a normal probability plot.  The variance inflation factor (VIF) 
was calculated to examine the presence of muticollinearity.  Proper model parameters were 
selected based on the test of models on the testing data set. 

Dual kriging models were built from the fitting datat set using the code developed by Rattle 
(1998).  All variables were normalized between –1 and 1.  The order of drift basis function, the 
covariance function and the Euclidean distance of influence are the key parameters for the dual 
kriging metamodel. First and second-order drift functions, three types of covariance models: pure 
nugget effect, linear, and cubic covariance functions and various distances of influence (d) varying 
between 0.1, 0.2, …, 1.0 were explored to select the proper parameter values via the testing data 
set. 

Both BPN and CCLN models were constructed from the fitting data set using NeuralWare 
Explorer software.  Input neurons were used to represent time, recycle ratio and aeration rate while 
an output neuron was used to represent the NPV of each alternative.  All variables were 
normalized between –1 and 1 to avoid pathological problems during training of the network.  
Building a useful ANN model requires proper selection of its architecture and the learning 
parameters.  Various architectures and the learning parameters for both BPN and CCLN were 
investigated via 8 x 2 x 3 x 2 x 3 factorial design or making up of 288 experiments as follows: 

(1) Number of hidden neurons : 1, 2, 3, 4, 5, 6, 7, 8 
(2) Learning rule : delta rule and extended rule 
(3) Initial learning rate : 0.1, 0.25 and 0.5 
(4) Transfer function : sigmoid and TanH transfer function 
(5) Random initial weights : change 3 random seeds 

Both models utilized the momentum of 0.4 as recommended in default function by 
Neuralware (1994).  The use of momentum stems from the fact that when a very unusual pair of 
training pattern is learned, it is desirable to use small learning rate to avoid a major disruption in 
the direction of learning.  When the training data are relative similar, it is preferable to train at the 
fairly rapid rate.  Momentum allows net to make reasonable large weight adjustments as long as 
the adjustments are in the same general direction for several patterns while using a smaller 
learning rate to prevent a large response to the error from any one training pattern (Fausett, 1994).  
In order to avoid overtraining which may lead to the problem of degredation in generalization 
capability or model overfitting, Save Best option in Neuralware software was employed.  Each 
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neural network was trained using the training set for 1,000 iterations and stop to evaluate for their 
accuracy with the tesing set.  Trainng or learning was stopped when the error measure of the 
testing data set continued to increase. The proper architecture and learning parameters were 
selected based on the error of this testing data set. 

Once the models were built from the fitting data set, their accuracy must be assessed to 
select the model with the most appropriate parameter values.  This is accomplished by using the 
models to predict the response of a testing data set.  The predicted response, together with the 
actual response, were used to compute the accuracy measures: the root mean square error 
(RMSE), defined as follows: 
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where   iy   denotes the actual response value of data point i 
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iy   denotes the predicted response value of data point i 
 n  denotes the total number of data points  
  
 After the proper model parameters were selected, a validation data set was used to assess 
the model generalization capability.  The extent of model deterioration and overfit (overtrain) were 
examined by comparing the error measurements from this independent validation data set with the 
ones computed from the fitting data set.  A large increase in the magnitude of error measures 
indicates overtraining, i.e., memorization of fitting data set with poor generalization capability.  
 
3. Performance Comparison of Various Modeling Techniques 
 
 Good estimation model must possess high prediction accuracy as well as be not bias.  
Polynomial regression, dual krigning, BPN and CCLN models were then compared based on the 
following criteria : 
3.1 Prediction accuracy  

This is achieved by comparing the error measurements from the testing data set and 
independent validation data set with the ones computed from the fitting data set.  The lower the 
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error measure across all data set, the higher the prediction accuracy of the model.  In addition, the 

accuracy ccan be evaluated by a plot of the predicted values against the actual value.  A 45° 
straight line through the origin indicates that the model is highly accuarte. 
3.2 Model bias 

A good estimator must be unbiased or exhibits as less bias as possible.  Bias is a 

systematic distribution of residuals (predicted output – actual output).  A quantitative method to 

point out the bias of the microbial growth models is to compute a bias factor (Bf) as follows 

(Jeyamkondan et al., 2001) : 
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If a bias factor is close or equal to 1, the model is unbiased.  A bias factor much greater than 1 

indicates that the model overestimates the data while a value much less than 1 indicates that it 

underestimates the data.   

4. Comparison of Biomass Predictive Models and Xylitol Concentration Models 
 
 To compare modeling performance of varius responses, the mean absolute percentage 
error (MAPE) is generally used. 
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 Results and Discussions 
 

1. Modeling the cell biomass 
 
1.1 Model parameters 

All empirical models were constructed with various structures and / or model parameters to 
approximate the relationship between input variables (fermentation time, recycle ratio, and aeration 
rate) and a response i.e. cell biomass.  Table 3 summarizes the final selection of model 
parameters from continuous xylitol production data.   

Table 3  The model parameters for cell biomass 

RMSE (g/l) Model Type Final Structure or Parameters 
Fitting Set Testing Set 

Polynomial regression Second-order stepwise regression 1.50 1.87 
Dual kriging First-order drift function with linear 

covariance function and distances of 
influence of 0.9 

0.00 1.07 

BPN 1-layer with 7 hidden neurons, TanH 
transfer function, extended delta rule, 
initial learning rate of 0.1, momentum of 
0.4 

0.78 0.73 

CCLN 5 hidden neurons, TanH transfer 
function, delta rule, initial learning rate 
of 0.1, momentum of 0.4 

1.04 0.99 

 

 The final polynomial regression models obtained from a stepwise procedure is as follows: 
 31

2
321321 26346.000467.031331.1148210.007331.0 xxxxxxxy +−++=  

where y1 = cell biomass (g/l) 
 x1 = recycle ratio (R) 
 x2 = aeration rate (vvm) 
 x3 = fermentation time (hours) 
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 It is observed that the relationship is nonlinear with only fermentation time included as a 
quadratic term in the model.  The interaction between recycle ratio and aeration rate, between 
recycle ratio and fermentation time, and between recycle ratio and fermentation time, and between 

aeration rate and fermentation time exist.  The coefficient of determination (R2) for the fitted model 
is 0.9743.  R-square is a measure of a proportion of total variation in response y1 that is explained 
by a set of input variables x’s or interactions among them.  R-square close to 1 indicates that most 
of variability in response y1 is explained by the regression model.  It appears that this model fits the 
fitting data set quite well.   

  Since regression models are always constructed based on rigid statistical assumptions, the 
reliability of these models will definitely depend on the validity of these assumptions as well.   The 
results from the plot of residuals against predicted values, the normal probability plot of residuals 
and the calculation of Variance Inflation Factor (VIF) points out that the model errors are normally 
and independently distributed with constant variance and that multicollinearity does not significantly 
present.   As a result, the model aptness is verified and one can rely on its subsequent use.   
 As theoretical covariance functions are employed for dual kriging model in this research, 
the dual krigning models then become exact interpolators as observed in the error measure of 0 in 
the fitting data set.  The best dual kriging model identified uses first-order drift function and exhibit 
higher prediction accuracy than second-order regression model.  Dual kriging requires no rigid 
assumption except the unbiased estimator which would then be tested later.    

There is no underlying statistical assumption for BPN and CCLN models.  As a consequent, 

they are ready for validation.  It is observed for both BPN and CCLN that hyperbolic tangent 

transfer function and a small initial learning rate of 0.1 are proper parameters.  Under these sets of 

parameters, the models yield the least RMSE in the testing data set.  As recommended by 

Neuralware (1994), the hyperbolic tangent transfer function works well for a real world data as is 

this case.  The learning rate is generally set between 0 and 1.  Too small learning rate yields slow 

learning whereas too large leaning rate may cause a large error reduction and a major disruption 

of the direction of learning and thus the net might get stuck in local minimum rather than achieving 

global minimum of error.  The best BPN model requires 7 hidden neurons while the best CCLN 

has 5 neurons.  However, the prediction accuracy for these two construction data sets of BPN is 

better than that of CCLN. 
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1.2 Model validation 
 The best models selected from section 1.1 were validated using the validation data set. The 
results are summarized in table 4.  
 

Table 4  Validations results of various empirical models for cell biomass 
 

RMSE (g/l) Model Type Model Parameters 
Fitting Set Validation Set 

Regression 2nd order polynomial 1.50 2.03 
Dual kriging 1st order drift function with linear 

covariance function and distances of 
influence of 0.9 

0.00 1.93 

BPN 1-layer with 7 hidden neurons, TanH 
transfer function, extended delta 
rule, initial learning rate of 0.1, 
momentum of 0.4 

0.78 1.59 

CCLN 5 hidden neurons, TanH transfer 
function, delta rule, initial learning 
rate of 0.1, momentum of 0.4 

1.04 1.13 

 

 It is seen that the CCLN model outperforms the regression, dual kriging and BPN models in 
terms of prediction accuracy in the validation data set, i.e. the set that has not been used for model 
constructions.  In other words, the CCLN model exhibits better generalization capability than the 
others.  Meanwhile, the second order regression model shows the worst generalization capability.  
Apart from the dual kriging model which is an exact interpolator, the prediction accuracy of the 
BPN model is highest in the fitting data set but this performance deteriorates in the validation data 
set.  The BPN is quite sensitive to the overparametization and overtraining, leading to a loss in 
generalization property.  Overparametization refers to too many free parameters or connecting 
weights which arise from too many hidden neurons and might subsequently leads to model 
overfitting, i.e. performing well in the fitting data but not the validation data.  Unlike the BPN, the 
CCLN starts off with no hidden neurons and it will automatically find the size and the topology of 
the resulting ANN.  The problem of overspecifying the number of hidden units and thus overfitting 
could therefore be alleviated.  The remedies, however, for overparametization and overfitting is by 
reducing the network size such as pruning the trained connections with small weights. 
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1.3 Comparison of Model Performances 
 Four types of model were compared based on prediction accuracy and bias as described 
below. 
1.3.1 Prediction accuracy 
 Prediction accuracy is one of the criteria for choosing an empirical modeling technique.  
Prediction accuracy in terms of RMSE for models developed in section 1.2 is depicted in table 5.   
 

Table 5  Prediction accuracy of various models for cell biomass 
 

RMSE (g/l) Model Type Model Parameters 
Fitting Set Testing Set Validation Set 

Regression 2nd order polynomial 1.50 1.87 2.03 
Dual kriging 1st order drift function with linear 

covariance function and distances 
of influence of 0.9 

0.00 1.07 1.93 

BPN 1-layer with 7 hidden neurons, 
TanH transfer function, extended 
delta rule, initial learning rate of 
0.1, momentum of 0.4 

0.78 0.73 1.59 

CCLN 5 hidden neurons, TanH transfer 
function, delta rule, initial learning 
rate of 0.1, momentum of 0.4 

1.04 0.99 1.13 

 

It is observed that the ANN models exhibit higher prediction accuracy than the second-
order regression and dual kriging models across nearly all data sets.  The BPN outperforms the 
CCLN only in the fitting data set and testing data set but not the validation data set which was 
used to assess the generalization capability.   However, the choice of an empirical model depends 
on the decision problem.  Kleijnen and Sargent (2000) assert that a high accuracy model is critical 
for prediction while a crude model may suffice for understanding the behavior of the system of 
interest.  Since this is a prediction problem, the CCLN model might be the best choice in terms of 
its accuracy. 
 Figure 6-9 shows scatter plots between actual value and predicted value of cell biomass for 
the fitting data set from regression, dual kriging, BPN and CCLN models with the R2 of 0.97, 1.00, 
0.99, and 0.985, repectively.  It is quite obvious that dual kriging and BPN have a better fit to the 
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fitting data set or more accurate than the CCLN and regression models.  However, Figure 10-13 
illustarte scatter plots between actual value and predicted value of cell biomass for the validating 
data set from regression, dual kriging, BPN and CCLN models with the R2 of 0.947, 0.95, 0.97, and 
0.98, repectively.  These results confirm that all model’s accuracy drop from the fitting data set to 
the validating one.  Overall, the CCLN’s accuracy deteriorates the least compared to the others.   
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Figure 6   A scatter plot between actual value and predicted value of cell biomass from 
regression model on the fitting data set (R2 = 0.97) 
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Figure 7 A scatter plot between actual value and predicted value of cell biomass from dual 
kriging model on the fitting data set (R2 = 1.00) 
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Figure 8   A scatter plot between actual value and predicted value of cell biomass from BPN 
model on the fitting data set (R2 = 0.99) 
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Figure 9 A scatter plot between actual value and predicted value of cell biomass from CCLN 
model on the fitting data set (R2 = 0.985) 
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Figure 10   A scatter plot between actual value and predicted value of cell biomass from 
regression model on the validating data set (R2 = 0.947) 
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Figure 11   A scatter plot between actual value and predicted value of cell biomass from dual 
krigig model on the validating data set (R2 = 0.95) 
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Figure 12   A scatter plot between actual value and predicted value of cell biomass from BPN 
model on the validating data set (R2 = 0.97) 
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Figure 13   A scatter plot between actual value and predicted value of cell biomass from CCLN 
model on the validating data set (R2 = 0.98) 



42 

 

1.3.2 Model bias 
 Table 6 shows bias factor values for both fitting and validating data sets in prediction of cell 
biomass.  It is observed that all models are not biased in the fitting data set.  In fact both 
regression and dual kriging are constructed to be unbiased in nature.  Dual kriging is perfectly 
unbiased with a bias factor value of 1.00 since it is an exact interpolator.    For the validating data 
set, it is revealed that all four models slightly underestimated the data.   A plot between actual and 
predicted observations could also be used to examine the bias type of any models.  Figure 14-17 
display this plot of regression, dual kriging, BPN and CCLN models for fitting data set while Figure 
18-21 exhibit the same plots for validating data set.  It is apparent that the predicted values of all 
models are pretty much on the actual values indicating that they are unbiased.  These results in 
the fitting data are congruence with the bias factors.  On the other hand, it is revealed in the 
validating data set that all models are little biased downwards, i.e., they slightly underestimate the 
data (the lower predicted value compared to the actual value) especially the ones with low cell 
biomass values which often occurred at the start of the xylitol production process.  In general, 
neural network models are known to be biased in nature.  Their bias is often take the form of 
undershoot, i.e. where the network model does not reach the upper and lower extreme of the 
actual or target data, especially for the network with sigmoid transfer function (Twomey and Smith, 
1996).  This can be remedied by training the network on the expanded normalization range. 
 

Table 6  Bias Factor of various models for cell biomass 
  

Bias Factor (Bf) Model Type Model Parameters 
Fitting Set Validation Set 

Regression 2nd order polynomial 1.02 0.95 
Dual kriging 1st order drift function with linear 

covariance function and distances of 
influence of 0.9 

1.00 0.80 

BPN 1-layer with 7 hidden neurons, TanH 
transfer function, extended delta 
rule, initial learning rate of 0.1, 
momentum of 0.4 

1.02 0.91 

CCLN 5 hidden neurons, TanH transfer 
function, delta rule, initial learning 
rate of 0.1, momentum of 0.4 

0.99 0.95 
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Figure 14   A plot between actual and predicted values of cell biomass from regression model 
on the fitting data set 

 
 

 
 

Figure 15   A plot between actual and predicted values of cell biomass from dual kriging 
model on the fitting data set 
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Figure 16   A plot between actual and predicted values of cell biomass from BPN model on the 
fitting data set 

 

 
 

Figure 17   A plot between actual and predicted values of cell biomass from CCLN model on 
the fitting data set 
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Figure 18   A plot between actual and predicted values of cell biomass from regression model 
on the validating data set 

 
 

 
 

Figure 19   A plot between actual and predicted values of cell biomass from dual kriging 
model on the validating data set 
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Figure 20   A plot between actual and predicted values of cell biomass from BPN model on the 
validating data set 

 
 

 
 

Figure 21   A plot between actual and predicted values of cell biomass from CCLN model on 
the validating data set 
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2. Modeling the xylitol concentration 
 
2.1 Model parameters 

All empirical models were again constructed with various model parameters to approximate the 
relationship between input variables (fermentation time, recycle ratio, and aeration rate) and xylitol 
concentration as a response.  Table 7 summarizes the final selection of model parameters from 
continuous xylitol production data.   

Table 7  The model parameters for xylitol cocnetration 

RMSE (g/l) Model Type Final Structure or Parameters 
Fitting Set Testing Set 

Polynomial regression First-order stepwise regression 0.92 0.77 
Dual kriging Second-order drift function with linear 

covariance function and distances of 
influence of 0.9 

0.00 0.23 

BPN 1-layer with 8 hidden neurons, TanH 
transfer function, extended delta rule, 
initial learning rate of 0.1, momentum of 
0.4 

0.12 0.11 

CCLN 6 hidden neurons, TanH transfer 
function, extended delta rule, initial 
learning rate of 0.1, momentum of 0.4 

0.60 0.33 

 

 The final polynomial regression models obtained from a stepwise procedure is as follows: 
 32312 06831.009276.090080.0 xxxxy −+=  
where y2 = xylitol concentration (g/l) 
 x1 = recycle ratio (R) 
 x2 = aeration rate (vvm) 
 x3 = fermentation time (hours) 
 
 It is apparent that the relationship is still nonlinear though there is no quadratic term in the 
model.  All input variables in the model are in the forms of interaction terms.  An interaction 
between recycle ratio and fermentation time indicates a change in the effect of recycle ratio as a 



48 

 

function of the value of fermentation time.  Similarly, an interaction between aeration rate and 
fermentation time indicates a change in the effect of aeration rate as a function of the value of 

fermentation time.  The Coefficient of Determination (R2) for the fitted regression model is 0.5331.  
That is the variation in response y2 is not quite well explained by a set of interactions among input 
variables included in the model.  Adding more input variables in various powers or interaction terms 
may help increase the R-square.  However, high R-Square does not imply that the model will be 
useful, i.e., with respect to general prediction accuracy (Neter et al., 1990).  The results from the 
plot of residuals against predicted values, the normal probability plot of residuals and the 
calculation of Variance Inflation Factor (VIF) show that all underlying assumptions are valid.  That 
is, the model errors are normally and independently distributed with constant variance and the 
multicollinearity does not exist.   Consequently, the model is quite reliable for subsequent use.   

 Similar to the results for cell biomass prediction, the dual kriging model selected for xylitol 
prediction is also an exact interpolator with the error measure of 0 in the fitting data set.  However, 
this dual kriging model employs second-order drift function and still exhibit higher prediction 
accuracy than the regression model across 2 data sets.      

For ANN models, both BPN and CCLN models, constructed with hyperbolic tangent transfer 

function, extended delta rule and a small initial learning rate of 0.1, yield the smallest RMSE in the 

testing data set.  The best BPN model requires more hidden neurons that the best CCLN model.  

Nevertheless, the prediction accuracy for these two data sets of BPN is much better than that of 

CCLN.  It is quite remarkable that the RMSEs of the testing data set for regression, BPN and 

CCLN models are smaller than those of the fitting data set.  It appears that the BPN model 

outperforms the others in terms of prediction accuracy. 

2.2 Model validation 
 The best models selected from section 2.1 were validated using the validation data set. The 
results are summarized in table 8.  
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Table 8  Validations results of various empirical models for xylitol concentration 
 

RMSE (g/l) Model Type Model Parameters 
Fitting Set Validation Set 

Regression First-order stepwise regression 0.92 0.78 
Dual kriging Second-order drift function with 

linear covariance function and 
distances of influence of 0.9 

0.00 0.23 

BPN 1-layer with 8 hidden neurons, TanH 
transfer function, extended delta 
rule, initial learning rate of 0.1, 
momentum of 0.4 

0.12 0.16 

CCLN 6 hidden neurons, TanH transfer 
function, extended delta rule, initial 
learning rate of 0.1, momentum of 
0.4 

0.60 0.52 

 

 Both polynomial regression and CCLN models exhibit pretty good generalization capability.  

Their prediction accuracy does not deteriorate at all from the fitting data set to validation data set.     

However, though the accuracy of the dual kriging and BPN models decline slightly, both appears to 

be more accurate than the regression and CCLN models.  On a whole, the BPN model 

outperforms the other models with repect to its prediction accuracy. 

  
2.3 Comparison of Model Performances 
 Four types of model were compared based on prediction accuracy and bias as described 
below. 
2.3.1 Prediction accuracy 

Table 9 compares the prediction accuracy in terms of RMSE for models developed in 

section 2.2.  It is apparent that the BPN model possesses considerably higher prediction accuracy 

than the dual kriging, CCLN and polynomial regression models. 
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Table 9  Prediction accuracy of various models for xylitol concentration 
 

RMSE (g/l) Model Type Model Parameters 
Fitting Set Testing Set Validation Set 

Regression 2nd order polynomial 0.92 0.77 0.78 
Dual kriging 1st order drift function with linear 

covariance function and distances 
of influence of 0.9 

0.00 0.23 0.23 

BPN 1-layer with 7 hidden neurons, 
TanH transfer function, extended 
delta rule, initial learning rate of 
0.1, momentum of 0.4 

0.12 0.11 0.16 

CCLN 5 hidden neurons, TanH transfer 
function, delta rule, initial learning 
rate of 0.1, momentum of 0.4 

0.60 0.33 0.52 

 
 

 Figure 22-25 shows scatter plots between actual value and predicted value of xylitol 
concentration for the fitting data set from regression, dual kriging, BPN and CCLN models with the 
R2 of 0.52, 1.00, 0.99, and 0.71, repectively.  Similar to biomass prediction, the dual kriging and 
BPN models have a better fit to the fitting data set or are more accurate than the CCLN and 
regression models.  Figure 26-29 display scatter plots between actual value and predicted value of 
xylitol concentration for the validating data set from regression, dual kriging, BPN and CCLN 
models with the R2 of 0.58, 0.97, 0.99, and 0.82, repectively.  These results reveal that dual 
kriging’s and BPN’s accuracy drop somewhat from the fitting data set to the validating one whereas 
those from the regression’s and CCLN’s stay put.  However, the overall dual krging’s and BPN’s 
prediction accuracy are higher.   
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Figure 22  A scatter plot between actual value and predicted value of xylitol concentration 
from regression model on the fitting data set (R2 = 0.52) 
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Figure 23  A scatter plot between actual value and predicted value of xylitol concentration 
from dual kriging model on the fitting data set (R2 = 1.00) 
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Figure 24   A scatter plot between actual value and predicted value of xylitol concentration 
from BPN model on the fitting data set (R2 = 0.99) 
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Figure 25  A scatter plot between actual value and predicted value of xylitol concentration 
from CCLN model on the fitting data set (R2 = 0.71) 
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Figure 26  A scatter plot between actual value and predicted value of xylitol concentration 
from regression model on the validating data set (R2 =0.58) 
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Figure 27  A scatter plot between actual value and predicted value of xylitol concentration 
from dual kriging model on the validating data set (R2 =0.97) 
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Figure 28  A scatter plot between actual value and predicted value of xylitol concentration 
from BPN model on the validating data set (R2 =0.99) 
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Figure 29  A scatter plot between actual value and predicted value of xylitol concentration 
from CClN model on the validating data set (R2 =0.82) 
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2.3.2 Model bias 
 Table 10 illustrates bias factor values for both fitting and validating data sets in prediction of 
xylitol concentration.  It is observed that regression, dual kriging and BPN models are not biased in 
the fitting data set whereas the CCLN models are biased upwards.  For the validating data set, 
dual kriging is slightly biased upwards (overestimates the data) and regression and CCLN models 
relatively overestimated the data while the BPN model slightly underestimates the data.   A plot 
between actual and predicted observations could also be used to examine the bias type of any 
models.  Figure 30-33 display plots between actual and predicted observations of regression, dual 
kriging, BPN and CCLN models, respectively for fitting data set while Figure 34-37 exhibit the same 
plots for validating data set.  These results are consistent with the bias factor for both data sets.  It 
is furher discerened that the bias upwards in the validating data set of the regression and CCLN 
models often occurs with the lower levels of xylitol concentration or at the start of the process as 
seen in the predciton of cell biomass.   
 

Table 10  Bias Factor of various models for xylitol concentration 
  

Bias Factor (Bf) Model Type Model Parameters 
Fitting Set Validation Set 

Regression 2nd order polynomial 1.05 1.41 
Dual kriging 1st order drift function with linear 

covariance function and distances of 
influence of 0.9 

1.00 1.19 

BPN 1-layer with 7 hidden neurons, TanH 
transfer function, extended delta 
rule, initial learning rate of 0.1, 
momentum of 0.4 

0.98 0.87 

CCLN 5 hidden neurons, TanH transfer 
function, delta rule, initial learning 
rate of 0.1, momentum of 0.4 

1.29 1.58 
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Figure 30   A plot between actual and predicted values of xylitol concentration from 
regression model on the fitting data set 

 
 

 
 

Figure 31   A plot between actual and predicted values of xylitol concentration from dual 
kriging model on the fitting data set 
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Figure 32   A plot between actual and predicted values of xylitol concentration from BPN 
model on the fitting data set 

 
 

 
 

Figure 33   A plot between actual and predicted values of xylitol concentration from CCLN 
model on the fitting data set 
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Figure 34   A plot between actual and predicted values of xylitol concentration from 
regression model on the validating data set 

 
 

 
 

Figure 35   A plot between actual and predicted values of xylitol concentration from dual 
kriging model on the validating data set 
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Figure 36   A plot between actual and predicted values of xylitol concentration from BPN 
model on the validating data set 

 
 

 
 

Figure 37   A plot between actual and predicted values of xylitol concentration from CCLN 
model on the validating data set 
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3. Comparison between biomass predictive models and xylitol predictive models 
 Table 10 compares the performance of biomass predictive models and xylitol predictive 
models in terms of prediction accuracy using mean absolute percentage error (MAPE) and model 
bias.  It is recoginized based on prediction accuracy (MAPE) that cell biomass predictive models 
are higher.  In other words, it is easier to predict the cell biomass than the xylitol concentration.  A 
reason accounts for this result is that the xylitol concentration value (0-5 g/l) is quite lower than that 
(1-30 g/l) of the cell biomass.  With such low values, uncertainty in its measurement and rounding 
off in calculation may lead to inaccuracy.  This might also contribute to the higher in the xylitol 
concentration’s model bias than the cell biomass’s. 
 

Table 10  Comparison of the performance of biomass and xylitol predictive models 
 
Prediction Type Model MAPE (%) Model Bias  
  Fitting Set Validating Set Fitting Set Validating Set 
Cell biomass 2nd order polynomial 20 19 Unbiased Unbiased 

 1st order drift function  0 11 Unbiased  Slightly 
underestimated 

 3-7-1* BPN 12 12 Unbiased  Unbiased 

 3-5-1* CCLN 16 9 Unbiased  Unbiased 

Xylitol 
concentration 

1st order polynomial 216 134 Unbiased  Fairly 
overestimated 

 2nd order drift function  0 39 Unbiased  Slightly 
overestimated 

 3-8-1* BPN 28 22 Unbiased  Very slightly 
underestimated 

 3-6-1* CCLN 198 124 Slightly 
overestimated 

Fairly 
overestimated 

* Number of input neurons - number of hidden neurons - number of output neurons of the neural network.
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Conclusions and Recommendations 
 

This research investigates the potential use of 4 types of empirical models i.e. regression, 
dual kriging, back propagation neural network (BPN) and cascade correlation neural network 
(CCLN) in modeling the relationship between 3 input factors, i.e., recycle ratio, aeration rate, and 
fermentation time of the xylitol production from Candida mogii on 2 process outputs, i.e., cell 
biomass and xylitol concentration.   Each ouput is modeled separately.  For cell biomass prediction 
model, the 3-5-1 CCLN model outperforms the other 3 models with respect to its generalized 
prediction accuracy with RMSE of 1.13 g/l and MAPE of 9% in the validating data set and it 
demonstrates an unbiased type.  For xylitol concentration prediction model, 3-7-1 BPN model 
exhibits highest generalized prediction accuracy with RMSE of 0.16 g/l and MAPE of 22% in the 
validating data set.  However, this BPN model very slightly underestimates the data.  As a 
consequence, care must be taken when using this model.  All in all, artificial neural network (ANN) 
models (BPN and CCLN) are identified to be more accurate and more relaiable than the statistical 
models like regression and dual kriging in predicting cell biomass and xylitol concentration in xylitol 
production process. In terms of ease of building the models, several commercial softwares are 
available for regression as well as ANN models.   Nevertheless, ANN model bulding and validation 
requires longer time than statistical models.  One then needs to tradeoff between its performance 
and development time and costs.   
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