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Modeling approach can be useful in understanding the behavior, monitoring and improving
of the bioprocess system which is generally very complicated in nature. The potential use of
polynomial regression, dual kriging, backpropagation neural network (BPN) and cascade correlation
neural network (CCLN) in empirically modeling the xylitol production process were studied. The
data used were collected from a continuous xylitol production by Candida mogii cell recycling
where the effects of recycle ratio and aeration rate on the cell biomass and xylitol concentration
were investigated. This research attempted to approximate the relationships between fermentation
conditions (recycle ratio, aeration rate and fermentation time) and outputs of the system (cell
biomass and xylitol cocentration). A separated model was developed for each output of interest.
The entire data were divided into three data sets for building and selecting proper models, and
validating them. Various functional forms of stepwise polynomial regression, various architectures,
training parameters of BPN and CCLN were explored. Generalization capability of the models was
evaluated using the validation data set. The performance of the model was assessed by the
prediction accuracy across all data sets and by the model bias. For the cell biomass predictive
model, the CCLN model was superior to BPN, dual kriging and polynomial regression models in
terms of prediction accuracy and generalization capability with no bias. For the xylitol
concentration predictive model, the BPN model outperforms the CCLN, dual kriging and polynomial
regression models with respect to prediction accuracy. However, this BPN model is very slightly
underestimates the data. Consequencely, care must be taken when using it. On the whole, the
statistical based models as polynomial regression and dual kriing were quite inferior to the
alternative block box modeling techniques such as neural networks in approximate the relationship
of the xylitol production process in this research.

Keywords: Xylitol production; Modeling techniques; Polynomial regression; Backpropagation neural

network; Cascade correlation learning neural networks
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Development and Comparison of Models for Xylitol Production Process

Introduction

Xylitol is a pentahydroxy sugar alcohol that is as approximately sweet as sucrose. It readily
dissolves in water, has pleasant cool and fresh sensation and can reduce the formation of dental
caries (Greenby, 1992). Due to these properties, xylitol has found its wide applications as a
sweetener in various food products such as chewing gum, candies, ice cream, beverages and
some pharmaceutical products. These food products are fast growing products in the current
market. New products are launched to the market every few month. Bakery products, spices,
jams, jellies and dessert represent potential applications of xylitol in food products (Emodi, 1978)
making it of high value to food industry. Study on every aspect of the xylitol production would
therefore be very beneficial. Xylitol can be produced by several processes such as extraction from
fruits and vegetables, chemical reduction of xylose, and bioprocess. Extraction is an uneconomical
method due to high cost and relatively low xylitol content in fruits and vegetables (Washuttl et al.,
1978). Chemical reduction is commercially used (Counsell, 1978) but is very expensive and high
level of contaminants from the production process makes it difficult to be purified. This might limit
its use in the industries. As a result, bioprocess receives more attention from researchers during
the past decade. Xylitol can be fermented from bacteria, fungi or yeast. Yeasts are the best xylitol

producer, particularly Candida spp (Winkelhausen and Kuzmanova, 1998).

Bioprocess is a complicated dynamic system. Understanding process behavior or system
identification such that the process can be well controlled, predicted or redesigned is always a
difficult task. Traditionally, mathematical models are used to represent complex effects of
processing inputs on the productivity or quality of the outputs. Building mathematical models
require a high level of a priori insight about the system that is rarely available due to the complex

and nonlinear behavior of the bioprocess. Consequently, building these types of models is time



consuming and may not well represent the system. |If a certain level of insight about the system
exists, an empirical statistical model such as regression is an alternative. When little knowledge of
the system is known, an empirical black-box model such as artificial neural network (ANN) is a

sound choice.

This research will focus on modeling xylitol production using regressions, dual kriging (a
geostatisical model) and artificial neural networks and compare their performances. It is an
extension of the work of Sirisansaneeyakul and Tochampa on xylitol production using Canida mogii
(Sirisansaneeyakul et al., 20001’2). Regression and response surface methodology (RSM) are the
most popular nonlinear modeling method. Although the regression and RSM have a good
theoretical background and is straightforward to implement, they requires restrictive assumptions
on the error terms and their performance depends on the appropriateness of the polynomial
functional forms. ANN has been recognized as an alternative for modeling nonlinear system in the
past decade. The model requires little or no priori assumption of functional forms and rather it
attempts to learn from the training input-output examples or the so-called “learning by example”. It
is also robust to deviations from traditional statistical assumptions such as independently normal
random errors, common error variance and multicollinearity. An ANN with nonlinear transfer
functions can theoretically model any relationship to an arbitrary accuracy and is thus termed a
universal approximator (Funahashi, 1989; Hornik et al., 1989). A wide range of applications has
utilized these features of ANN. These include pattern classification, speech production and
recognition, function approximation, signal processing, image compression, associative memory,
clustering, combinatorial optimization, nonlinear modeling, and control. ~ANN applications in
bioprocess are more widespread in alcoholic fermentation and recombinant fermentation. It is
observed that all of these applications utilize the most popular backpropagation neural network

(BPN).

This research attempts to explore a potential use of two types of function approximation
ANNSs: BPN and cascade-correlation learning network (CCLN). A BPN is a feedforward multilayer

neural network trained by gradient descent (Rumehart and McClelland, 1986) that minimizes the



total squared error of the output computed by the network. The training algorithm involves three
stages: the feed-forward of input training set, the calculation and backpropagation of the error and
the adjustment of the weights. Drawbacks to BPN are large computational time due to back
propagating the errors and adjusting all the weights simultaneously as well as the difficulty in
selecting the proper architecture, i.e., the number of hidden neurons and hidden layers. The CCLN
was developed by Fahlman and Lebiere (Touretzky, 1990) and incorporates two key ideas:
cascade architecture and the maximization of the correlation between a new unit’'s output and the
residual error during learning. The cascade architecture starts with only input and output neurons
and connection weights are adjusted to minimize the total squared error. Candidate hidden
neurons are then added, one at a time, to reduce the error. Due to its constructive algorithm, the
CCLN will automatically find the proper architecture of the network, however since the final number

of hidden neurons is unbounded an overparameterized network may result (Tang and Wah, 1996).

While regression models have restricted assumptions of the uncorrelated error components,
correlation might exist among the sample data observed from physical phenomena as in
bioprocess. Data close together, in time or in space, are likely to be correlated and should be
modeled as such (Cressie, 1991). Dual kriging is a modeling technique that allows the
incorporation of spatial correlation into the interpolation or estimation process. Accordingly, it might
be an alternative modeling technique to better represent the input-output relationship from xylitol
production which appears to be a set of spatial data. Dual kriging has been adopted in several
applications including mining, environment, physical and chemical compositions and behaviors and
financial analysis. This research will be a pioneer to employ dual kriging in bioprocess modeling.
Though the work centers on xylitol production, the knowledge earned here will definitely be fruitful

to other bioprocesses.



Objectives

1. Examine the potential use of several-order polynomial regression, backpropagation neural

network (BPN), cascade correlation learning network (CCLN) and dual kriging in modeling xylitol

production process.

2. Compare the performance of the best identified regression, dual kriging, BPN and CCLN models

and make a recommendation on xylitol production.



Literature Review

The Occurrence and Properties of Xylitol

Xylitol (CsH1,05) is a naturally occurring pentahydroxy sugar alcohol in many fruits and
vegetables. Yellow plum, strawberry, cauliflower, raspberry, lettuce, spinach, onion, carrot, grape,
and banana are examples of xylitol's natural sources. = Among these, yellow plum is the richest
source, containing almost 1% on a dry basis (Aminoff, et. al, 1978). Yeast, lichens, seaweed and
mushroom are other natural sources of xylitol. Xylitol is also a metabolic intermediate in
mammalian carbohydrate metabolism. In human adults, 5 to15 grams of xylitol can be produce per
day. Since xylitol is metabolized independently of insulin, it will not fluctuate the insulin and
glucose blood levels and thus can be used as diabetic sweetener (Touster, 1974; Bassler, 1978;
Emodi, 1978; Bar, 1991; Makinen,1992). In addition, this property is useful for post-operative or
post-traumatic states of patients as well as for correction of catabolic disorders (peripheral lipolysis,
stimulation of glucogenesis, and degradation of muscle protein) (Forster, 1974; Ritzel and
Brubacher, 1976). As xylitol does not react with amino acid, its utilization for parenteral nutrition is
then possible. Moreover, its metabolism does not involve glucose-6-phosphate dehydrogenase
and is therefore an ideal sweetener for glucose-6-phospahte dehydrogenase-deficient population.
Xylitol has also an anti-ketonic effect and is very well received in post-surgery infusions in patients
with difficulty in metabolizing sugar (Sanronan et al., 1991).

Xylitol possesses many advantageous characteristics and has thereby received much
research attention as food ingredient in the last three decades (Aminoff, et. al, 1978; Emodi, 1978;
Ylikahri, 1979; Pepper and Olinger, 1988; Pepper, 1989). It does not undergo Maillard reaction
which leads to food browning and reduction in nutritional of protein value. The addition of xylitol in
food products can improve the color and taste without undesirable changes during their storage.
Xylitol is as sweet as sucrose, nearly twice as sweet as sorbitol and approximately three times as
sweet as mannitol. Its caloric content is equal to that of sucrose, 17kJ / kg. Xylitol, alone or in
combination with other sugars, is shown to be a beneficial sweetener in yoghurt, jams and frozen
desserts as it provides better texture, color and taste and stability compare to sucrose (Abril et al.,
1982).  Xylitol produces a cool and fresh sensation on oral and nasal cavities as a result of its

negative heat of dissolution. It can then be used as part of coating of confectionary or



pharmaceutical products such as vitamins or expectorants (Pepper and Olinger, 1988) and in the
formulation of dietary complements (Petrovich, 1988).

The most significant characteristic of xylitol in commercial implications is anticariogenic
property. Xylitol is not utilized by the acid producing, cariogenic bacteria in human oral cavity and
therefore inhibits their growth, formation of plaque and deminerization of tooth enamel and the
formation of new dental caries (Bar, 1988). Bar (1991) and Makinen (1992) consider it as the best
alternative sweetener for caries prevention. As a consequence, much is consumed in chewing
gum, confectionary, mouthwash and toothpaste. In toothpaste, xylitol also shows ability to retain

moisture (Mori and Saraya, 1988).

Xylitol Production

Three major procedures are available for xylitol production: solid-liquid extraction, chemical
synthesis and bioprocess.
1. Solid-liquid extraction

Natural xylitol found in fruits, vegetables and other natural sources can be recovered from
by solid-liquid extraction. However, due to its low concentration in these sources, the extraction
becomes difficult and uneconomical (Hyvonen et al., 1982; Pepper and Olinger, 1988).
2. Chemical synthesis

At present, xylitol is commercially produced by chemical synthesis. The general
procedures composes of 4 main steps: (1) acid-catalyzed hydrolysis of plant materials; (2)
purification of the hydrolysate to xylose solution or a pure crystalline xylose; (3) hydrogenation of
the xylose to xylitol; and (4) crystallization of the xylitol (Aminoff et al., 1978). The major raw
materials for manufacturing xylitol are xylans, which are present in hardwoods (birch and beech
trees and some plant structural tissues such as corn-stalks, wheat, flax and rice straw, cotton
seeds, sunflower or coconut hulls, sugarcane bagasse and wood pulp). These materials can be
hydrolyzed to D-xylose and other sugars such as L-arabinose, D-mannose, and D-galactose (Krull
and Inglett, 1980) with D-xylose as a major component (80-85%). These contaminating sugar can
complicate crystallization and purification of xylose. As such, the critical step in the process is
purification of xylose from the hydrolysate. This is achieved by employing ion-exchange
chromatography. Activated carbon is also used to remove color. After that, catalytic hydrogenation

of the purified xylose is carried out. The resulting solution requires chromatographic fractionation



and concentration before crystallization into purified xylitol. The intensive purification and
separation steps are very expensive and thus making the production cost about ten times higher
than that of other sugar alcohols undergone similar process. This limits the commercial use of
xylitol despite its wide range of applications. Other concerns for xylitol production via chemical
method are high pollution levels and waste-treatment.
3. Bioprocess

Biotechnological approach for xylitol production is based on the utilization of
microorganisms and/or enzymes. It is an alterative process that might offer some cost and
environmental friendly advantages over the chemical process. Bacteria, fungi and yeasts are
capable of assimilating and fermenting xylose to xylitol, ethanol, and other compounds. Among
these organisms, the yeasts are considered to be the best xylitol producers and thereby receiving
most attention from researchers. Winkelhausen and Kuzmanova (1998) collected and compared
the performance of xylitol production among various yeast strains from many publications and
concluded that the genus Candida is the best xylitol producers. This summary coincides with the
work of Ojamo (1994) who compared more than 30 yeast strains. The yeast conversion of D-
xylose to xylitol begins with a transport of xylose across the yeast’'s cell membrane. The D-xylose
uptake in Candida moogii ATCC 18364 were found to follow Michaelis-Menten kinetics which
suggested a carrier-mediated facilitated diffusion transport system (Sirisansaneeyakul et. al., 1995).
The xylose metabolism in yeasts was extensively studied and described (Barbosa, et al., 1988;
Rizzi et al., 1988; Prior et al., 1989; Hahn-Hagerdal, 1994). In general, xylose will undergo an
oxido-reductive route via two sequential reactions. Firstly, xylose reductase transforms xylose into
xylitol in the presence of NADH and/or NADPH. Subsequently, xylitol is either secreted from the
cell or oxidized to xylulose by xylitol dehydrogenase in the presence of either NAD+ or NADP+.
Xylulose is then transformed via phosphorylation by xylulokinase to xylulose-5-phosphate which
enters the pentose phosphate pathway (PPP). The PPP consists of an oxidative phase that leads
to NADPH regeneration and a non-oxidative phase that produces glyceraldehydes-3-phosphate
and fructose-6-phosphate. Both non-oxidative products can be converted to pyruvate in the
Embden-Meyerhof-Parnas pathway. Pyruvate can either be decarboxylated and reduced to
ethanol or can enter the tricarboxylic acid cycle. Figure 1 shows a simplified scheme of xylose

metabolism in yeasts.

Some of the metabolic products and the cofactor regeneration are required for cell growth.
One cannot just stop when xylose is converted to xylitol. In order to obtain good yields of xylitol, a



balance between the amount of xylose being converted to xylitol and the amount of xylitol being
available for further metabolism must be obtained (Winkelhausen and Kuzmanova, 1998).
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Figure 1 A simplified scheme of xylose metabolism in yeasts



Process Variables Influencing Xylitol Production

A number of experimental conditions are considered to influence the xylitol production from
the yeasts with respect to yields and productivities (Nigam and Singh, 1995; Parajo et al., 1998a,
1998b; Winkelhausen and Kuzmanova, 1998). These conditions include nutrients, initial cell
concentration, the culture age, temperature, pH, substrate composition and concentration, product

concentration and aeration.
In general, the suitable temperature for xylitol production was observed to be 30°C. When

the yeast was cultured in a range of 30°C and 37°C, the xylitol cocnetration was mostly
temperature independent. From the industrial perspective, lower temperature implies lower costs
and more managerial conditions (Sanchez et al.,, 2004). The proper initial pH value would be
between 4 and 7 depending on the yeast species and fermentation culture (batch or fed-batch or
continuous). D-xylose concentration significantly affects the growth and the fermentation. High
xylose concentration induces xylitol fermentation but inhibits ethanol production. For most yeasts,
the initial xylose concentrations between 100 and 200 g/l would produce the highest yields
(Winkelhausen and Kuzmanova, 1998).

When glucose was used as a co-substrate in xylitol production, many researchers (Nolleau
et al., 1995; Yahashi et al., 1996a, 1996b; Sreenath and Jeffries, 1996) found that it would improve
overall process. In the presence of glucose, xylose could be converted to xylitol more efficiently
leading to faster cell growth than when xylose was the only substrate. On the other hands, other
researchers reported that using glucose as a co-substrate led to faster cell growth but lower xylitol
cocnetration (Silva et al., 1996; Vandeska, 1996). This findings was attributable to a partial
inhibition of xylose reductase in the presence of glucose. The yeasts will consume glucose first
and then use xylose once the glucose is completely utilized.

Xylitol is not produced under fully aerobic conditions while the yeasts fail to grow on xylose
under anaerobic conditions (Parajo et al., 1998b; Faria et al., 2002). Under a limited oxygen
supply, NADH cannot be oxidized to NAD+, resulting in an inhibition of NAD+-linked xylitol
dehydrogenase and thereby a decrease in the oxidation of xylitol to xylulose with an increase in
xylitol accumulation. On the contrary, a sufficient oxygen supply will enable the oxidation of xylitol
to xylulose and thus an increase in cell growth. Consequently, dissolved oxygen (DO) plays a

very important role.



Modeling in Bioprocess

Bioprocess is a complicated dynamic system. Understanding process behavior or system
identification such that the process can be well monitored and controlled, predicted, optimized or
redesigned is always a difficult task. By construction and analysis of certain models, better
knowledge of real-world bioprocess could be achieved. An accurate models is thereby a building
block in improving the performance of a process through control, optimization and redesign.

Modeling techniques are divided into three major types:

1. Mathematic, mechanistic or white box modeling techniques

This type of model is constructed based on the underlying process principles (first
principles) such as mass, energy and momentum balances. Although the model structure comes
from the first principles, the model parameters are obtained from fitting the model structure to
empirical data. However, developing an accurate model requires a considerable knowledge of the
bioprocess physics, chemistry and microbiology that is rarely available. Consequently, the model
constructed may not well represent the system and is too costly in practice since much time and
effort must be consumed during the construction and validation.

2. Empirical modeling techniques

The construction of this type of model is based on empirical data of the process’s behavior.
The structure of the models is generic and cannot be interpreted in terms of mechanistic laws.
However, little process knowledge is required. As a result, the cost of building this model is
bearable. Either experimental data or actual plant data could be used to fit the model. Meanwhile,
the application region of both data types will be different. The process model obtained from
experimental data cannot be directly applicable to a real plant without some modifications. Several
empirical modeling techniques are available. These include polynomial regression models, Taguchi
models, generalized linear models, splines, radial basis functions, kernel smoothing, spatial
correlation models (kriging), frequency-domain approximation, and artificial neural networks.

Barton (1992) suggests the following criteria to be considered in choosing an empirical
modeling technique:
1

The ability to gain insight from the form of the model.

(
(2) The ability to capture the shape of arbitrary smooth functions.
(3) The ability to characterize the accuracy of the fit.

(

)
)
)
4) The robustness of the prediction away from observed (x, y) pairs.

10



(5) The ease of computation of the approximate the function of interest.
(6) The numerical stability of the computations and consequent robustness of prediction to
small changes in the parameters defining function.
(7) The existence of software for computing the model, characterizing its fit, and using it for
prediction.
3. Hybrid modeling techniques

A hybrid modeling technique can start by deriving a model based on the process principles
and then includes black box elements as parts of the white box (Braake et al., 1998). In other
words, the basic structure of the models is from the first principles while important relationships are
modeled by mixed empirical / mechanistic relations. For instance, a structure of a process to be
modeled is known priori and the neural network is trained to estimate the time varying unknown
process variable (te Braake et al., 1998) or Psichogios and Ungar (1991) used a multi-layer feed
forward neural network as the non-parametric estimator for the unknown process parameters in the
first principle model.

This type of model can also obtained by incorporating prior knowledge of a process into a
black box model during process modeling (van Deventer et al., 2004). For example, Lindskog and
Ljung (1994) searched for the combinations or transformations of the input signals corresponding to
physical variables and used the resulting signals in an empirical model.

In this research, only empirical modeling techniques are studied. Three of them are of
interest and will be discussed in details. They are polynomial regression models, artificial neural

networks and spatial correlation models.

Polynomial Regression Models

1. Polynomial regression models

Regression analysis is one of the most widely used of all statistical tools for modeling the
input-output relationship. It serves three major purposes:

(1) to make inferences about the regression parameters

(2) to estimate the mean response for a given set of input variables

(3) to predict a new response for a given set of input variables

The polynomial regression model is the most frequently used curvilinear response model in

practice. There are two types of variables in any regression model: the independent or predictor or

1"



input variables (X) and the dependent or response variables (Y). Polynomial regression models
can contain one, two, or more than two independent variables while each independent variable can
be present in various powers. A polynomial regression model for n observations of pairs (x;, v;)
can be expressed as:

| P
Y, =Z Z:,b’kzk(xijhrgi Fori=1,2 ..,n (1)
in

k=1

where there are p power functions Z,(x;); for example the power function might be 1, x;;, X, XX,

2 3 2 3 . . . .
X/ s X, OF X3 X,y - ﬂk are the regression coefficients which are to be estimated from the observed

pairs of data points via least squares or maximum likelihood estimation. & is a normal random

1

error term with mean E{&} = 0 and common variance 02{8,}= O so that the errors are not

correlated with each other, i.e., the covariance G{€;,E;} = 0 for all i, j; i#}.

When using a polynomial model as an approximation to the true regression function, a
second-order or third-order model is often fitted and the possible adequacy of a lower-order model
is then explored (Neter et al., 1990).

Multicollinearity or intercorrelation, i.e. where the independent variables are correlated
among themselves, is unavoidable in polynomial models especially for high-order polynomials. A
high degree of multicollinearity does not inhibit a good fit nor does it tend to affect the inference
about mean responses or prediction of new responses, provided that these inferences are made
within the region of observations. However, standard interpretations based on the regression
coefficients, such as a large coefficient for a linear term indicating a significant effect of the
independent variable, a large coefficient for a quadratic term indicating a non linear response, and
a large coefficient for a cross product term (xx) indicating a change in the effect of one
independent variable as a function of the value of the other (Barton, 1992), are often unwarranted.
This is due to the large sampling variability of the estimated regression coefficients when the
multicollinearity exists. In order to avoid this situation, all polynomial regression models should be
formulated in terms of deviations, i.e. the independent variable is expressed as a deviation about

its mean (X ) or X, = X, — X (Neter et al., 1990).

2. Strengths and weaknesses of polynomial regression models
Barton (1992) points out that polynomial regression models perform well with criteria (1)
and (3)-(7) in Section "modeling in bioprocess”. While straightforward to implement, the regression

models require restrictive assumptions on the error terms. Their performance also depends on the
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appropriateness of the polynomial functional forms.  Polynomial regressions of all types may
provide good fits but the accuracy of the predicted response will degrade with increasing distance
from the experimental observation. The higher the order of the polynomials, the more rapidly the

accuracy degrades.

3. Its applications in bioprocess

Its applications in bioprocess range from production of citric acid (Chen, 1996),
streptomycin (Saval et al., 1993) and tannin acyl hydolase (Lekha et al., 1994) to cellulose (Shi
and Weimer, 1992). The method has been used in xylitol production from Candida tropicalis
(Horitsu et al., 1992) and Candida duilliermondii (Roberto et al., 1995). However, these works
explored only up to second-order models and none was mentioned on the validity of the underlying

assumptions that is very important for the model reliability.

Classical Kriging and Dual Kriging

Kriging is an estimation technique proposed in 1951 by D.G. Krige, a mining engineer, for
gold deposit evaluations. Similar to polynomial regression, the kriging technique is also associated
with the acronym BLUE, “Best Linear Unbiased Estimator” of a random function and is ‘best’ in
terms of aiming at minimizing the variance of estimation error among all linear estimators (Poirer
and Taniwa, 1991). Geologists and environmental engineers have been using kriging technique to
estimate the measurements or characteristics of hydraulic properties or contaminant concentrations
in air, water, or soil in regions that were inaccessible or unobserved. Later its use was extended to
simulation community. The theory of classical kriging is well-covered by Journel and Huijbregts
(1978). Classical kriging is usually implemented as a local estimation method. That is, its
procedure requires the solution of a new system of equations for each interpolated value.
According to Trochu (1993), a global estimation kriging technique called “dual kriging” was
developed in 1985. Under dual kriging, the kriging system is evaluated only once for the whole
domain by simultaneously using the information provided by all data points. The development of
classical kriging equations and derivation of dual kriging is discussed based on Journel and

Huijbregts (1978), Porier and Taniwa, 1991), and Trochu (1993) as follows.
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1. Theory of classical kriging
Basically, the purpose of kriging is to estimate the value of a random function U(X) at a
specified point or location X, given a set of measurements or computed samples U(X) taken at
location X. for i = 1, 2,..., N. The original theory of kriging was formulated for dealing with one,
two, or three dimensional problems, i.e., when X represents the position vector X = x or X = (x, y)
or X = (x, y, z). However, it can be generalized to an L dimension problem, i.e., X = (x1, x2, xL).
The estimation of U(X) can be obtained as a linear combination of the observed data point

X where i=1,2, ..., N:
N
u*(X)=> A4U(X;) ()
i=1

As a BLUE, a set of weights /1, must be determined in such as way that (1) the expected
values of U(X) and u*(X) are identical, i.e., E[U(X)]=E[u*(X)] and (2) the variance of the
estimation error Var[U (X )—u*(X )] is minimized.

In kriging, the random function U(X) is comprised of the sum of two terms:

U(X)=a(X)+b(X) 3)
where a(X) is a drift function representing the average behavior of U(X) or a(X )= E[U(X )], and

b(X) is a stationary fluctuation with E[b(X )]=0.

The kriging system can be derived so as to minimize the variance of the estimation error under the
constraints of unbiased conditions as follows:

From the unbiased condition, E[U(X )]=E[u*(X )], equation (2) can be expressed as
()= 22 EU(x ) @
Since the drift function represents the expected value of U(X), equation (4) can be represented by
a(X )= ﬁl:/lia(xi) (5)

In general, the drift function is built up from M basis functions, p(X), I=1, 2, ..., M and thus the

conditions of unbiased become
N
p(X)=>4p(X,), 1,2, .., M (6)
i=1

The variance of the estimation error is calculated as follows
Var[U (X )-u*(X)]= o2 =Var[u(X)]-2Cov[U (X ),u*(X)]+Var[u*(X )]
with  Var[U(X)]=o{ )
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Cov[u(X) Cov{ iziu (X, )},U (X )} = ﬁl“zi Cov[u (X ) U(X,)]

Va{zz x>}=igaiacw[u<xi>,u<xj>]

Combining these three terms again, the variance of estimation error can be expressed as

02 =020 -2 ACUU ) UX )+ DS 42,Covu (X U (X, )

i=1 i=1 j=1

This error variance is minimized subject to M unbiased conditions in (6). A Lagrangian

technique is used to convert a constrained minimization problem into an unconstrained one by
introducing M Lagrange multipliers, 4, I=1, 2,..., M, associated with the constraints. The solution

is then characterized by a linear system of N+M equations in N+M unknowns ﬂ,, ZN and U,

- My

i_l/ljc:ov[u(xi),u(xj)]+lhﬂzly, p,(X,)=Colu(x)U(x,)], 1,2, ... N

iij p|(X,-)= p,(X), =1,2, .., M.

This system is called the “kriging system” and can be written in matrix form

i Cii C1N pl(xl) pM(Xl)_ _/21_ i Cl |
CNl CNN pl(XN) 0 Pwm (XN) /1N _ CN
L= ©)
pl(xl) pl(XN) 0 0 H pl(x)
_pM(Xl) pM(XN) 0 0 1 LAwm ] _pM(X)_

where C; denotes the covariance between sample points X, and X, or COV[U (X,)U (X j) ,and C,
is the covariance between sample points X, and a point X, orCov[U(X ),U(X,)], in which the

value of U(X) is to be estimated. Solving this system yields the optimal values of the l,, =1, 2, ..,

N, at the point X.
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2. Dual formulation of kriging

The kriging system of equations (9) depends on the covariance between the sample point
X and the point X. That is, the solution of system l,. will depend on the point X. Therefore, a new
kriging system would be needed for each estimated value. This can be computationally expensive
for large problems. The dual formulation of kriging was developed to provide independent ﬂ., and
thus eliminate this limitation of the classical kriging procedure. Dual kriging can be formulated from

equation (9) as follows. When the matrix in system (9) is inverted, the following expression is

obtained:
I 2’1 ] i | 1T C:1 ]
: Q | R :
ﬂ’N | CN
- |=- - - 4+ - = - - (10)
Hy | pl(x)
: R’ | S :
LHAm | L | i _pM(X)_
By substituting this solution into equation (2), the estimated value u*(X) can be expressed
as:
C, p.(X)
ur(X)=[U(X;) - UXy)IQ| f [+[U(X) - UX)R| (11)
Cy Pu (X)
By the symmetry of the kriging matrix, a new set of coefficients is defined as:
b, u(X,) a, u(X,)
S l=Q i, S |=RT. (12)
by U(Xy) ay, U(Xy)
and thus equation (11) becomes
N M
u*(X):Z;bjCjJrIZl:alpl(x) (13)
= Z

Equation (13) is called dual kriging. The coefficients a, /=1, ..., M and bj, Jj=1, ..., N can be

written in matrix form as:
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b, | u(x,)

: Q | A :

by | u(x,)

-l=- - -+ - = =] - (14)
a, | 0

: R, | B :

law | | | JL 0 ]

where the matrices A and B are arbitrary. By choosing A = R and B = S, the matrix of equation
(10), which is the inverse kriging matrix, appears again in equation (12). Hence, the coefficients

a/s and b;'s are solutions of

[ | 17b ] [U(X)]
o | pl(xi) : :
| by | |U(Xy)
e e (15)
| a 0
pl(xj) | 0 :
i | Jlaw] L 0 |

This system of linear equations together with the dual kriging model in equation (13)

constitutes the dual formulation of kriging.

3. The drift function and the covariance functions

According to Journel and Huijbregts (1978), a polynomial drift function is normally used in
geostatistics applications. This can be a complete polynomial of order k (k dimensions) composed
of all possible subsets of variables of size 1 to k. For example, an order three basis is expressed

as:
L L L L L

L
alx)=a, + X + 2> XX, + DD A XX X, (16)
i=1 i=1 j=i i=1 j=i k=j

It is apparent that dual kriging also requires the knowledge of the covariance between two
points or locations. The covariance between two points or locations is assumed to depend only on
the Euclidean distance h between X and X, and not on the particular positions X; or X; and is
represented by C(h). In general, the covariance function decreases from its maximum value at

C(0) since the degree of correlation between two locations decreases as the distance h between

them increases. Ratle (1998) summarizes two approaches to be used for obtaining the covariance.

17



The first approach is to use an arbitrary theoretical covariance function. These functions are called
shape functions rather than covariance functions since they have no relationship to the actual
covariance. Kriging under these conditions is considered to be an exact interpolator. The other
approach is to use the estimation of an experimental covariance function from the observed data.
Under this condition, kriging is employed as an estimator. However, it is difficult to estimate a
covariance function from the experimental data because it requires the knowledge of the unknown
mean. Consequently, only theoretical covariance will be considered in this research.

Ratle (1998) has described three common theoretical covariance functions. The first
covariance function is the pure nugget effect model which is the limiting case where the
fluctuations around the samples are assumed to be insignificant. This model is appropriate for
noisy data as well as for problems where only a rough estimate of the solution is required. The
pure nugget effect covariance is written as:

C(h)={1 if - h=0; (17)
0 otherwise.

Under the pure nugget effect, there is no correlation between two points regardless of
distance h. The kriging model does not pass anymore through all the data points and it reduces to
a simple polynomial regression on the drift function basis.

The other two models are based on the notion of distance of influence as introduced by
Trochu [11]. The models assume that the correlation or actual covariance between two very
distance points is negligible or zero. The general covariance C(h) may be designed in such a way
that C(h) = 0 if h > d, where d is a predefined threshold. The first model is the linear model. It
assumes that the covariance decreases linearly from a maximal value at h = 0 to zero at h = d.

The linear covariance is expressed as:
1-h/d if h<d,
ch)=[*" . (18)
0 otherwise.

The other model is the cubic covariance. This model ensures continuity by imposing the
nullity of the first derivative of C(h) at the points h = 0 and h = d. Two other conditions are C(0) =
1 and C(d) = 0. The covariance function is defined as:

1-3(h/d)* +2(h/d)’ if h<d;
C(h):{ (b/d)" +2(n/e)

. (19)
0 otherwise.
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4. Strengths and weaknesses of dual kriging

Correlation might exist among the sample data observed from physical or social
phenomena. Data close together, in time or in space, are likely to be correlated and should not be
modeled as statistically independent (Cressie, 1991). The covariance function in dual kriging
allows the incorporation of spatial correlation into the interpolation or estimation process. In
addition, kriging has been suggested to be a useful technique in small sample estimation of
environmental and mining data.(6g'73) It appears that an dual kriging modeling technique can
satisfy Barton’s criteria (1), (3) and (4) for choosing modeling techniques discussed in Section
"modeling in bioprocess”. However, major applications of kriging and dual kriging are in

geostatistics where spatial data are collected from locations defined on two or three dimensions.

As a result, the available software has been also limited to three dimensions.

5. Its applications in bioprocess

Dual kriging has been adopted in several applications including stress analysis (Poirer and
Tinawi, 1991), a contouring program (Trochu, 1993), shrinkage analysis (Mamat et. al., 1995),
modeling of failure behavior for composite materials (Echaabi et al., 1995; 1996), a surrogate for
fitness landscape in evolutionary optimization (Rattle, 1998), and a metamodeling technique for
capital investment evaluation (Chaveesuk, 2000; Cahveesuk and Smith, 2005). However, there is
no implementation in bioprocess modeling. Thus, this research will be the first research group to

employ dual kriging in bioprocess modeling.
Artificial Neural Networks

An artificial neural network (ANN) is a parallel computational model consisting of a large
number of simple, and highly interconnected adaptive processing elements (artificial neurons) in an
architecture inspired by the structure of the biological nervous systems. The majority of the ANNs
are closely related to traditional mathematical and/or statistical models such as non-parametric
pattern classifiers, clustering algorithms, nonlinear filters, and statistical regression models. An
important feature of the ANN lies in its adaptive nature where learning by example becomes a key
factor in solving problems. This feature is very appealing in applications where little is known

about the problem while observed data is readily available. A wide range of applications have
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utilized these features of ANN. These include pattern classification, speech production and
recognition, function approximation, signal processing, image compression, associative memory,
clustering, combinatorial optimization, nonlinear modeling, and control.

ANN is characterized by (1) its architecture (a pattern of connections between the artificial
neurons), (2) its training or learning algorithm (a method of determining the weights of the
connections), and (3) its activation function (a function of the input that each neuron has received)
(Fausett, 1994). Typically, the artificial neurons are organized into a sequence of layers with full or
random connections between layers. Associated with each connection is a weight that represents
the information being used to solve the problem. An example of a two-layer feedforward neural

architecture is illustrated in figure 2 where the net comprises of a hidden layer and an output layer.

Output

lavinr

Hidden layer

Figure 2 Example of a Typical ANN

Each neuron j in the hidden or the output layer sums its input signals x, weighted by the

connection weights w,

» and applies an activation function to determine its output signal y. There

exist many activation functions f(z), ranging from a simple threshold function to complex non linear
functions such as sigmoid, hyperbolic tangent and logistic functions. Figure 3 shows a schematic

representation of a computing neuron.
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Z=Zwuxi f(z)

Neuron j

Figure 3 Schematic Representation of a Computing Neuron

An ANN is trained to learn the relationship between the input and output of a system via
two main types of learning (training) algorithms: supervised and unsupervised. A supervised
learning algorithm adjusts the weights of inter-neuron connections to minimize the difference
between the desired and actual network outputs corresponding to a given input. An unsupervised
learning algorithm does not require the desired or known output. During the training, only input
patterns are presented to the neural network which will adapt the weights of its connections to
cluster the input patterns into groups with similar features.

At the beginning of the training algorithm, a neural network starts with a randomized state
of small initial weights. The weights are then iteratively adjusted until the ANN reaches a fixed and
stable state where the appropriate weights are obtained to solve the problem. Typically, the
algorithm is iterative until a balance between the ability to respond correctly to the input patterns
that are used for training (memorization) and the ability to give good responses to input that is
similar to that used in training (generalization) is achieved. It is common to use two sets of disjoint
data from the same population during training: a training set and a testing set. The training
patterns are used to adjust the weights during training whereas the testing patterns are used to
estimate the generalization ability of the network at intervals during training. As training continues,
the errors on the training set will continue to decrease while the errors on the testing set will
decrease and then increase again when so-called overtraining occurs. Overtraining implies that the
network loses its ability to generalize. One popular training stoppage criterion is, consequently, at

the point where the minimum error on the testing set is reached.
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There are various types of ANN models. This research will focus on supervised training
neural networks. The most popular one used in function approximations of the nonlinear
relationships is the backpropagation network (BPN). Alternative to this backpropagation is the
cascade-correlation learning network (CCLN). Both networks will be examined in this research and

thus deserve more discussion in detail.

1. Backpropagation network

A BPN is a feedforward multilayer neural network trained by the backpropagation training
algorithm. The backpropagation, or the generalized delta rule, training algorithm was first proposed
by Werbos (1974) as part of his Ph.D. dissertation. However, the elucidation of this training
algorithm by Rumelhart et al. (1986) became the key step in reemergence of neural networks as a
tool in solving a wide variety of problems. Basically, the backpropagation training algorithm is a
gradient descent method which attempts to minimize the total squared error of the output computed
by the network. The traditional and most applicable activation function employed in
backpropagation algorithm is the sigmoid function and the hyperbolic tangent (TanH) as shown in

equation (20) and (21), respectively.

fi(2) = —— (20)
1+e7?
1-e™#
f. = 21
D=1 21)

where z is the weighted sum of the input signals to the ith hidden- or output-layer neuron.

This supervised learning algorithm encompasses three stages: the feeding forward of the
input training pattern, the backpropagation of the associated error, and the adjustment of the
weights to reduce the squared error (Fausett, 1994). During the feeding forward, each input
neuron receives an input signal and broadcasts it to the hidden neurons, each of which computes
its activation and sends its output signal to each output neuron. Each output neuron then
computes its activation to form the response of the net for the given input pattern. In the second
stage, the output from each output neuron is compared to the target value to calculate the

associated error. The error correction weight adjustment for each output neuron is then computed
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and propagated back to all neurons in the hidden layer. Similarly, the error correction weight
adjustment for each hidden neuron is computed for updating the weights between the hidden layer
and the input. Finally, the weights for all layers are adjusted simultaneously based on the
computed weight adjustment and the activation of each neuron. The BPN is considered to be a
universal approximator since it can perform any continuous function approximation to an arbitrary
accuracy (Funayashi, 1989; Hornik et al., 1989).

Maijor limitations associated with applying BPN are difficulty in selecting the proper
architecture and learning parameters as well as convergence to local minima and instability

(Leondes, 1998).

2. Cascade-correlation learning network

The cascade-correlation learning algorithm network (CCLN) was developed by Fahlman
and Lebiere (1990) in an attempt to improve a slow pace of learning, which is a major drawback in
BPN during those days.

Fahiman and Lebiere’s CCLN incorporates two key ideas: the cascade architecture and the
maximization of correlation between a new unit’'s output and the residual error during the learning
algorithm. The cascade architecture starts off with input buffers and output units but with no hidden
units. All input buffers and output units are directly connected with an adjustable weight. These
connections are trained to minimize the total squared error. The output units may just produce a
linear sum of their weighted inputs, or they may employ some non-linear activation function,
particularly the hyperbolic tangent as previously described.

When there is no significant reduction in error, candidate hidden units are then added one
at a time to incrementally reduce some residual error. The creation and training of these candidate
units consists of two phases. In the first phase, the input of each candidate hidden unit is
connected to every input buffer and also the output of every previously installed hidden unit
whereas its output is not yet connected to the active network. Each new unit therefore adds a new
one-unit layer to the network, leading to cascade connections. These cascade connections enable
the development of the higher-order feature detecting capability. The weights on the input side of
the new candidate unit are then trained using a gradient ascent to maximize S, the sum over all
output units o of the magnitude of the correlation, or more precisely the covariance, between V, the
candidate unit’s value or activation, and E,, the residual output error observed at unit o. Fahlman

and Lebiere define S as:
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$=3

where o is the network output at which the error is measured,

>, -V)E,, —E_oi (22)

p

p is the training pattern and

V and E_0 are the values of V and E_ averaged over all patterns.

When there is no significant improvement in S, the training is terminated and the candidate
unit is said to be tenured. This training can be thought of as a maximal alignment with the residual
error (Phatak and Koren, 1994). If a candidate hidden unit can be trained to correlate positively
with the error at a given output unit, it will cancel some of the residual error by developing a
negative connection to the corresponding output-layer weight (to be trained later), and vice versa
for the negative correlations (Teng and Wah, 1996). The input side connection weights of the
tenured unit are frozen hereafter. In the second phase, the candidate unit's output is then
connected to all the network’s output units. These weight connections feeding the output units as
well as those from the existing hidden units are trained to minimize the error without
backpropagating the error through the hidden units. Phatak and Koren (1994) consider this phase
as canceling the error as much as possible by exploiting the alignment accomplished in the first
phase. This process is continued, and new units are added until the desirable error is obtained.

Using a CCLN offers two benefits. First, it will automatically find the size and the topology
of the resulting ANN. The problem of overspecifying the number of hidden units, and thus
overtraining, could therefore be alleviated. Second, learning in CCLN is fast since it only updates
the weights for the new candidate hidden units added, and the weights of previously added hidden
units are fixed after they are installed. One problem with the CCLN is that the final number of
hidden units is unbounded due to its dynamically constructive algorithm. Not bounding the number
of hidden units in training may lead to overtraining as well (Teng and Wah, 1996). Another
drawback stems from the cascade architecture. Each new hidden unit will in effect add a new
layer, leading to a very deep structure; the number of connections for the nth hidden unit increases
as O(n). This will give rise to the problem that the generalization performance of the network may
be degraded when n is large as some of these parameters may be irrelevant to the prediction of

the output (Phatak and Koren,1994; Kwok and Yeung, 1997).
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3. Strengths and weaknesses of artificial neural networks

The major strength of ANNs in the development of empirical models lies in the theoretic
ability to universally model any relationship to any degree of accuracy. This helps eliminate
potential error in selecting an appropriate functional form. ANN models are also robust to
deviations from traditional statistical assumptions such as normal random errors, common error
variance, no multicollinearity of independent variables, and no autocorrelation. ANNs can
accommodate a combination of continuous variables and discrete numeric variables. Moreover,
most of ANN paradigms, such as BPN, are global models so that a single neural network could be
developed to model an entire response surface. Lastly, the parallel architecture offers robustness
to data that is incomplete or contains errors. It appears that an ANN modeling technique can
satisfy Barton’s criteria (1) — (5) and (7) for choosing modeling techniques discussed in Section
"modeling in bioprocess”.

In the presence of many favorable features, ANNs also exhibit some drawbacks. These
include the limitation in their approximation capability by finite and imperfect data sets. The
accuracy and precision of an ANN model will depend on the quantity and appropriateness of
training data. Too few training data can result in imprecision and inaccuracy in the ANN models,
particularly when the model is overtrained or used for extrapolation. Finally, the opponents of
ANNSs criticizes them as being “Black Boxes” due to the difficulty in explaining exactly why an ANN

produces a certain output.

4. Its applications in bioprocess

ANN applications in bioprocess are more widespread in alcoholic fermentation (Cleran et
al., 1991; Insa et. al.,, 1995; Oishi et al., 1992; Vlassides et al., 2001; Honda et al., 1998) and
recombinant fermentation (Glassey et al., 1994; Yang, 1992). Only one article has been found to
use genetic algorithms coupling with backpropagation neural networks in xylitol production for
medium optimization (Fang, et al., 2002). It is observed that all of these works utilize the most

popular backpropagation neural network (BPN).
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Research Methodology

This research comprises three parts: (1) data collection and preparation; (2) model

constructions and validations and (3) comparison of model performance

1. Data collection and preparation
1.1 The data from the continuous production of xylitol by Candia mogii ATCC 18364 recycling
system, using xylose as a substrate was collected from Tochampa (1998). In his work, two major

factors affecting the xylitol production were studied :

(1) Recycle ratio
(2) Aeration rate

Each factor was varied at two levels, leading to 4 experiments as shown in table 1.

Table 1 Experimental Design

Experiment Recycle Ratio (R) Aeration rate (vvm)
1 0.50 0.3
2 0.50 1.0
3 0.75 0.3
4 0.75 1.0

In each experiment, the data on biomass (g/l) and xylitol concentration (g/l) were collected from the
start of the fermentation for every 2 or 4 hours up to 60 hours, making up 69 data points. The
data were arranged in an input-output pattern with recycle ratio, aeration rate and fermentation time
as inputs and the cell biomass and xylitol cocnetration as the output. The following table shows all

data collected.
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Table 2 Data from the Continuous Production of Xylitol by Candia mogii ATCC 18364

Time (hr) Recycle Aeration Biomass Xylitol
0 0.5 1.0 6.93 0.07
4 0.5 1.0 8.42 0.37
8 0.5 1.0 8.77 1.97
12 0.5 1.0 9.52 3.42
16 0.5 1.0 11.84 3.54
20 0.5 1.0 14.8 1.77
24 0.5 1.0 18.61 0.24
28 0.5 1.0 20.20 0.20
32 0.5 1.0 21.37 0.15
36 0.5 1.0 22.92 0.15
40 0.5 1.0 23.85 0.13
44 0.5 1.0 25.09 0.20
48 0.5 1.0 24.86 0.20
52 0.5 1.0 2513 0.13
56 0.5 1.0 24.54 0.06
0 0.5 0.3 5.01 0.15
4 0.5 0.3 5.12 0.16
8 0.5 0.3 5.10 0.36
12 0.5 0.3 4.86 0.59
16 0.5 0.3 4.74 0.96
20 0.5 0.3 4.58 1.32
24 0.5 0.3 4.43 1.56
28 0.5 0.3 4.44 1.76
32 0.5 0.3 4.29 1.97
36 0.5 0.3 4.21 2.06
40 0.5 0.3 4.00 1.79
44 0.5 0.3 3.93 1.57
48 0.5 0.3 4.06 1.38
52 0.5 0.3 4.06 1.37
56 0.5 0.3 3.53 1.48
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Table 2 Data from the Continuous Production of Xylitol by Candia mogii ATCC 18364

(continued)

Time (hr) Recycle Aeration Biomass Xylitol
0 0.75 1.0 6.59 0.08
2 0.75 1.0 10.51 0.68
4 0.75 1.0 7.86 1.29
6 0.75 1.0 9.54 1.57
8 0.75 1.0 11.22 1.60
10 0.75 1.0 14.21 1.36
12 0.75 1.0 17.27 0.95
18 0.75 1.0 22.31 0.39
20 0.75 1.0 22.78 0.27
22 0.75 1.0 23.76 0.21
24 0.75 1.0 24.54 0.20
26 0.75 1.0 2525 0.18
28 0.75 1.0 26.18 0.18
30 0.75 1.0 26.07 0.18
32 0.75 1.0 27.05 0.20
34 0.75 1.0 27.55 0.19
36 0.75 1.0 28.07 0.23
42 0.75 1.0 28.02 0.52
44 0.75 1.0 28.63 0.43
46 0.75 1.0 29.47 0.25
48 0.75 1.0 29.32 0.25
50 0.75 1.0 29.88 0.21
52 0.75 1.0 30.05 0.18
0 0.75 0.3 6.99 0.05
4 0.75 0.3 0.99 0.27
8 0.75 0.3 8.21 0.58
12 0.75 0.3 7.92 1.16
16 0.75 0.3 8.64 1.85
20 0.75 0.3 7.68 2.36
24 0.75 0.3 7.55 3.21
28 0.75 0.3 7.48 3.70
32 0.75 0.3 7.63 4.06
36 0.75 0.3 7.80 4.54
40 0.75 0.3 7.35 3.78
44 0.75 0.3 7.24 3.86
48 0.75 0.3 7.60 3.96
52 0.75 0.3 7.91 3.59
56 0.75 0.3 8.10 3.18
60 0.75 0.3 8.49 2.50
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1.2 All 69 data points were randomly divided into three disjointed data sets:
(1) Training or fitting data set for model construction (41 data points)
(2) Testing data set for selection of proper model parameters (14 data points)

(3) Validating data set for estimation of model generalization capability (14 data points)

2. Model Development

In this research, empirical models were constructed to approximate the relationship
between three input factors, i.e., recycle ratio (R), aeration rate (vwm) and fermentation time, and
two output variables or responses, i.e., cell biomass (g/l) and xylitol cocnetration (g/l). One model
was built for one response as shown in figure 4 and 5. Four types of models were examined, i.e.,
polynomial regression, dual kriging, backpropagation neural network (BPN) and cascade correlation

neural network (CCLN).

Recycle ratio

Aeration rate Empirical model Cell biomass

A 4
v

Fermentation time

Figure 4 Empirical model for cell biomass

Recycle ratio

i . Xylitol yield
Aeration rate Empirical model

v

Fermentation time

Figure 5 Empirical model for xylitol concentration

In terms of polynomial regression models, a second-order polynomial regression was
selected to capture the nonlinearity that exists in most bioprocess. SPSS software version 12 was
used to build the second-order stepwise polynomial regression models from the fitting data set. In
order to minimize the multicollinearity effect, each independent or input variable was expressed as

a deviation around its mean. Both forward and backward stepwise regressions were used with the

29



probability to enter and remove of 0.05. The aptness of the polynomial regression model was
investigated using residual plots and a normal probability plot. The variance inflation factor (VIF)
was calculated to examine the presence of muticollinearity. Proper model parameters were
selected based on the test of models on the testing data set.

Dual kriging models were built from the fitting datat set using the code developed by Rattle
(1998). All variables were normalized between —1 and 1. The order of drift basis function, the
covariance function and the Euclidean distance of influence are the key parameters for the dual
kriging metamodel. First and second-order drift functions, three types of covariance models: pure
nugget effect, linear, and cubic covariance functions and various distances of influence (d) varying
between 0.1, 0.2, ..., 1.0 were explored to select the proper parameter values via the testing data
set.

Both BPN and CCLN models were constructed from the fitting data set using NeuralWare
Explorer software. Input neurons were used to represent time, recycle ratio and aeration rate while
an output neuron was used to represent the NPV of each alternative. All variables were
normalized between —1 and 1 to avoid pathological problems during training of the network.
Building a useful ANN model requires proper selection of its architecture and the learning
parameters. Various architectures and the learning parameters for both BPN and CCLN were
investigated via 8 x 2 x 3 x 2 x 3 factorial design or making up of 288 experiments as follows:

(1) Number of hidden neurons : 1, 2, 3,4,5,6,7, 8
(2) Learning rule : delta rule and extended rule
(3) Initial learning rate : 0.1, 0.25 and 0.5
(4)
(5)

Transfer function : sigmoid and TanH transfer function

Random initial weights : change 3 random seeds
Both models utilized the momentum of 0.4 as recommended in default function by
Neuralware (1994). The use of momentum stems from the fact that when a very unusual pair of
training pattern is learned, it is desirable to use small learning rate to avoid a major disruption in
the direction of learning. When the training data are relative similar, it is preferable to train at the
fairly rapid rate. Momentum allows net to make reasonable large weight adjustments as long as
the adjustments are in the same general direction for several patterns while using a smaller
learning rate to prevent a large response to the error from any one training pattern (Fausett, 1994).
In order to avoid overtraining which may lead to the problem of degredation in generalization

capability or model overfitting, Save Best option in Neuralware software was employed. Each
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neural network was trained using the training set for 1,000 iterations and stop to evaluate for their
accuracy with the tesing set. Trainng or learning was stopped when the error measure of the
testing data set continued to increase. The proper architecture and learning parameters were

selected based on the error of this testing data set.

Once the models were built from the fitting data set, their accuracy must be assessed to
select the model with the most appropriate parameter values. This is accomplished by using the
models to predict the response of a testing data set. The predicted response, together with the
actual response, were used to compute the accuracy measures: the root mean square error

(RMSE), defined as follows:

where Y, denotes the actual response value of data point i
Yi denotes the predicted response value of data point i
n denotes the total number of data points

After the proper model parameters were selected, a validation data set was used to assess
the model generalization capability. The extent of model deterioration and overfit (overtrain) were
examined by comparing the error measurements from this independent validation data set with the
ones computed from the fitting data set. A large increase in the magnitude of error measures

indicates overtraining, i.e., memorization of fitting data set with poor generalization capability.

3. Performance Comparison of Various Modeling Techniques

Good estimation model must possess high prediction accuracy as well as be not bias.
Polynomial regression, dual krigning, BPN and CCLN models were then compared based on the
following criteria :

3.1 Prediction accuracy
This is achieved by comparing the error measurements from the testing data set and

independent validation data set with the ones computed from the fitting data set. The lower the
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error measure across all data set, the higher the prediction accuracy of the model. In addition, the

accuracy ccan be evaluated by a plot of the predicted values against the actual value. A 45°
straight line through the origin indicates that the model is highly accuarte.
3.2 Model bias

A good estimator must be unbiased or exhibits as less bias as possible. Bias is a
systematic distribution of residuals (predicted output — actual output). A quantitative method to
point out the bias of the microbial growth models is to compute a bias factor (B;) as follows

(Jeyamkondan et al., 2001) :

If a bias factor is close or equal to 1, the model is unbiased. A bias factor much greater than 1
indicates that the model overestimates the data while a value much less than 1 indicates that it

underestimates the data.

4. Comparison of Biomass Predictive Models and Xylitol Concentration Models

To compare modeling performance of varius responses, the mean absolute percentage

error (MAPE) is generally used.

Yi— yi %100
Yi

M-

Il
N

MAPE =
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Results and Discussions

1. Modeling the cell biomass

1.1 Model parameters

All empirical models were constructed with various structures and / or model parameters to
approximate the relationship between input variables (fermentation time, recycle ratio, and aeration
rate) and a response i.e. cell biomass. Table 3 summarizes the final selection of model

parameters from continuous xylitol production data.

Table 3 The model parameters for cell biomass

Model Type Final Structure or Parameters RMSE (g/l)
Fitting Set Testing Set
Polynomial regression | Second-order stepwise regression 1.50 1.87
Dual kriging First-order drift function with linear 0.00 1.07

covariance function and distances of

influence of 0.9

BPN 1-layer with 7 hidden neurons, TanH 0.78 0.73
transfer function, extended delta rule,
initial learning rate of 0.1, momentum of

0.4

CCLN 5 hidden neurons, TanH transfer 1.04 0.99
function, delta rule, initial learning rate

of 0.1, momentum of 0.4

The final polynomial regression models obtained from a stepwise procedure is as follows:

y; = 0.07331+0.48210x, X5 +11.31331x,X, — 0.00467xZ + 0.26346x, X

where vy, = cell biomass (g/l)
X1 = recycle ratio (R)
X, = aeration rate (vvm)
X3 = fermentation time (hours)
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It is observed that the relationship is nonlinear with only fermentation time included as a
quadratic term in the model. The interaction between recycle ratio and aeration rate, between

recycle ratio and fermentation time, and between recycle ratio and fermentation time, and between

aeration rate and fermentation time exist. The coefficient of determination (R2) for the fitted model
is 0.9743. R-square is a measure of a proportion of total variation in response y, that is explained
by a set of input variables x’s or interactions among them. R-square close to 1 indicates that most
of variability in response y, is explained by the regression model. It appears that this model fits the

fitting data set quite well.

Since regression models are always constructed based on rigid statistical assumptions, the
reliability of these models will definitely depend on the validity of these assumptions as well. The
results from the plot of residuals against predicted values, the normal probability plot of residuals
and the calculation of Variance Inflation Factor (VIF) points out that the model errors are normally
and independently distributed with constant variance and that multicollinearity does not significantly
present. As a result, the model aptness is verified and one can rely on its subsequent use.

As theoretical covariance functions are employed for dual kriging model in this research,
the dual krigning models then become exact interpolators as observed in the error measure of 0 in
the fitting data set. The best dual kriging model identified uses first-order drift function and exhibit
higher prediction accuracy than second-order regression model. Dual kriging requires no rigid
assumption except the unbiased estimator which would then be tested later.

There is no underlying statistical assumption for BPN and CCLN models. As a consequent,
they are ready for validation. It is observed for both BPN and CCLN that hyperbolic tangent
transfer function and a small initial learning rate of 0.1 are proper parameters. Under these sets of
parameters, the models yield the least RMSE in the testing data set. As recommended by
Neuralware (1994), the hyperbolic tangent transfer function works well for a real world data as is
this case. The learning rate is generally set between 0 and 1. Too small learning rate yields slow
learning whereas too large leaning rate may cause a large error reduction and a major disruption
of the direction of learning and thus the net might get stuck in local minimum rather than achieving
global minimum of error. The best BPN model requires 7 hidden neurons while the best CCLN

has 5 neurons. However, the prediction accuracy for these two construction data sets of BPN is

better than that of CCLN.
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1.2 Model validation
The best models selected from section 1.1 were validated using the validation data set. The

results are summarized in table 4.

Table 4 Validations results of various empirical models for cell biomass

Model Type Model Parameters RMSE (g/l)
Fitting Set Validation Set
Regression 2" order polynomial 1.50 2.03
Dual kriging 1% order drift function with linear 0.00 1.93

covariance function and distances of

influence of 0.9

BPN 1-layer with 7 hidden neurons, TanH 0.78 1.59
transfer function, extended delta
rule, initial learning rate of 0.1,

momentum of 0.4

CCLN 5 hidden neurons, TanH transfer 1.04 1.13
function, delta rule, initial learning

rate of 0.1, momentum of 0.4

It is seen that the CCLN model outperforms the regression, dual kriging and BPN models in
terms of prediction accuracy in the validation data set, i.e. the set that has not been used for model
constructions. In other words, the CCLN model exhibits better generalization capability than the
others. Meanwhile, the second order regression model shows the worst generalization capability.
Apart from the dual kriging model which is an exact interpolator, the prediction accuracy of the
BPN model is highest in the fitting data set but this performance deteriorates in the validation data
set. The BPN is quite sensitive to the overparametization and overtraining, leading to a loss in
generalization property. Overparametization refers to too many free parameters or connecting
weights which arise from too many hidden neurons and might subsequently leads to model
overfitting, i.e. performing well in the fitting data but not the validation data. Unlike the BPN, the
CCLN starts off with no hidden neurons and it will automatically find the size and the topology of
the resulting ANN. The problem of overspecifying the number of hidden units and thus overfitting
could therefore be alleviated. The remedies, however, for overparametization and overfitting is by

reducing the network size such as pruning the trained connections with small weights.
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1.3 Comparison of Model Performances

Four types of model were compared based on prediction accuracy and bias as described
below.
1.3.1 Prediction accuracy

Prediction accuracy is one of the criteria for choosing an empirical modeling technique.

Prediction accuracy in terms of RMSE for models developed in section 1.2 is depicted in table 5.

Table 5 Prediction accuracy of various models for cell biomass

Model Type Model Parameters RMSE (g/l)
Fitting Set Testing Set Validation Set
Regression 2" order polynomial 1.50 1.87 2.03
Dual kriging 1% order drift function with linear 0.00 1.07 1.93

covariance function and distances

of influence of 0.9

BPN 1-layer with 7 hidden neurons, 0.78 0.73 1.59
TanH transfer function, extended
delta rule, initial learning rate of

0.1, momentum of 0.4

CCLN 5 hidden neurons, TanH transfer 1.04 0.99 1.13

function, delta rule, initial learning

rate of 0.1, momentum of 0.4

It is observed that the ANN models exhibit higher prediction accuracy than the second-
order regression and dual kriging models across nearly all data sets. The BPN outperforms the
CCLN only in the fitting data set and testing data set but not the validation data set which was
used to assess the generalization capability. However, the choice of an empirical model depends
on the decision problem. Kleijnen and Sargent (2000) assert that a high accuracy model is critical
for prediction while a crude model may suffice for understanding the behavior of the system of
interest. Since this is a prediction problem, the CCLN model might be the best choice in terms of
its accuracy.

Figure 6-9 shows scatter plots between actual value and predicted value of cell biomass for
the fitting data set from regression, dual kriging, BPN and CCLN models with the R2 of 0.97, 1.00,
0.99, and 0.985, repectively. It is quite obvious that dual kriging and BPN have a better fit to the

36



fitting data set or more accurate than the CCLN and regression models. However, Figure 10-13
illustarte scatter plots between actual value and predicted value of cell biomass for the validating
data set from regression, dual kriging, BPN and CCLN models with the R2 of 0.947, 0.95, 0.97, and
0.98, repectively. These results confirm that all model’s accuracy drop from the fitting data set to

the validating one. Overall, the CCLN’s accuracy deteriorates the least compared to the others.
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Figure 6 A scatter plot between actual value and predicted value of cell biomass from

regression model on the fitting data set (R2 = 0.97)
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kriging model on the fitting data set (R2 =1.00)
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Figure 8 A scatter plot between actual value and predicted value of cell biomass from BPN

model on the fitting data set (R2 =0.99)
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Figure 9 A scatter plot between actual value and predicted value of cell biomass from CCLN

model on the fitting data set (R2 = 0.985)
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Figure 10 A scatter plot between actual value and predicted value of cell biomass from

regression model on the validating data set (R2 =0.947)
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krigig model on the validating data set (R2 = 0.95)
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Figure 12 A scatter plot between actual value and predicted value of cell biomass from BPN

model on the validating data set (R2 =0.97)
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model on the validating data set (R2 =0.98)
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1.3.2 Model bias

Table 6 shows bias factor values for both fitting and validating data sets in prediction of cell
biomass. It is observed that all models are not biased in the fitting data set. In fact both
regression and dual kriging are constructed to be unbiased in nature. Dual kriging is perfectly
unbiased with a bias factor value of 1.00 since it is an exact interpolator.  For the validating data
set, it is revealed that all four models slightly underestimated the data. A plot between actual and
predicted observations could also be used to examine the bias type of any models. Figure 14-17
display this plot of regression, dual kriging, BPN and CCLN models for fitting data set while Figure
18-21 exhibit the same plots for validating data set. It is apparent that the predicted values of all
models are pretty much on the actual values indicating that they are unbiased. These results in
the fitting data are congruence with the bias factors. On the other hand, it is revealed in the
validating data set that all models are little biased downwards, i.e., they slightly underestimate the
data (the lower predicted value compared to the actual value) especially the ones with low cell
biomass values which often occurred at the start of the xylitol production process. In general,
neural network models are known to be biased in nature. Their bias is often take the form of
undershoot, i.e. where the network model does not reach the upper and lower extreme of the
actual or target data, especially for the network with sigmoid transfer function (Twomey and Smith,

1996). This can be remedied by training the network on the expanded normalization range.

Table 6 Bias Factor of various models for cell biomass

Model Type Model Parameters Bias Factor (B;)
Fitting Set Validation Set
Regression 2nd order polynomial 1.02 0.95
Dual kriging 1% order drift function with linear 1.00 0.80

covariance function and distances of

influence of 0.9

BPN 1-layer with 7 hidden neurons, TanH 1.02 0.91
transfer function, extended delta
rule, initial learning rate of 0.1,

momentum of 0.4

CCLN 5 hidden neurons, TanH transfer 0.99 0.95

function, delta rule, initial learning

rate of 0.1, momentum of 0.4
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2. Modeling the xylitol concentration

2.1 Model parameters

All empirical models were again constructed with various model parameters to approximate the
relationship between input variables (fermentation time, recycle ratio, and aeration rate) and xylitol
concentration as a response. Table 7 summarizes the final selection of model parameters from

continuous xylitol production data.

Table 7 The model parameters for xylitol cocnetration

Model Type Final Structure or Parameters RMSE (g/l)

Fitting Set Testing Set

Polynomial regression First-order stepwise regression 0.92 0.77

Dual kriging Second-order drift function with linear 0.00 0.23
covariance function and distances of

influence of 0.9

BPN 1-layer with 8 hidden neurons, TanH 0.12 0.1
transfer function, extended delta rule,
initial learning rate of 0.1, momentum of

0.4

CCLN 6 hidden neurons, TanH transfer 0.60 0.33
function, extended delta rule, initial

learning rate of 0.1, momentum of 0.4

The final polynomial regression models obtained from a stepwise procedure is as follows:
y, =0.90080 + 0.09276x, x, —0.06831x, X,

where y, = xylitol concentration (g/l)
X1 = recycle ratio (R)
X, = aeration rate (vvm)
X3 = fermentation time (hours)

It is apparent that the relationship is still nonlinear though there is no quadratic term in the
model. All input variables in the model are in the forms of interaction terms. An interaction

between recycle ratio and fermentation time indicates a change in the effect of recycle ratio as a
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function of the value of fermentation time. Similarly, an interaction between aeration rate and

fermentation time indicates a change in the effect of aeration rate as a function of the value of

fermentation time. The Coefficient of Determination (R2) for the fitted regression model is 0.5331.
That is the variation in response y, is not quite well explained by a set of interactions among input
variables included in the model. Adding more input variables in various powers or interaction terms
may help increase the R-square. However, high R-Square does not imply that the model will be
useful, i.e., with respect to general prediction accuracy (Neter et al., 1990). The results from the
plot of residuals against predicted values, the normal probability plot of residuals and the
calculation of Variance Inflation Factor (VIF) show that all underlying assumptions are valid. That
is, the model errors are normally and independently distributed with constant variance and the

multicollinearity does not exist. Consequently, the model is quite reliable for subsequent use.

Similar to the results for cell biomass prediction, the dual kriging model selected for xylitol
prediction is also an exact interpolator with the error measure of 0 in the fitting data set. However,
this dual kriging model employs second-order drift function and still exhibit higher prediction
accuracy than the regression model across 2 data sets.

For ANN models, both BPN and CCLN models, constructed with hyperbolic tangent transfer
function, extended delta rule and a small initial learning rate of 0.1, yield the smallest RMSE in the
testing data set. The best BPN model requires more hidden neurons that the best CCLN model.
Nevertheless, the prediction accuracy for these two data sets of BPN is much better than that of
CCLN. It is quite remarkable that the RMSEs of the testing data set for regression, BPN and
CCLN models are smaller than those of the fitting data set. It appears that the BPN model

outperforms the others in terms of prediction accuracy.

2.2 Model validation
The best models selected from section 2.1 were validated using the validation data set. The

results are summarized in table 8.
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Table 8 Validations results of various empirical models for xylitol concentration

Model Type Model Parameters RMSE (g/l)
Fitting Set Validation Set
Regression First-order stepwise regression 0.92 0.78
Dual kriging Second-order drift function with 0.00 0.23

linear covariance function and

distances of influence of 0.9

BPN 1-layer with 8 hidden neurons, TanH 0.12 0.16
transfer function, extended delta
rule, initial learning rate of 0.1,

momentum of 0.4

CCLN 6 hidden neurons, TanH transfer 0.60 0.52
function, extended delta rule, initial

learning rate of 0.1, momentum of

0.4

Both polynomial regression and CCLN models exhibit pretty good generalization capability.
Their prediction accuracy does not deteriorate at all from the fitting data set to validation data set.
However, though the accuracy of the dual kriging and BPN models decline slightly, both appears to
be more accurate than the regression and CCLN models. On a whole, the BPN model

outperforms the other models with repect to its prediction accuracy.

2.3 Comparison of Model Performances

Four types of model were compared based on prediction accuracy and bias as described
below.
2.3.1 Prediction accuracy

Table 9 compares the prediction accuracy in terms of RMSE for models developed in
section 2.2. It is apparent that the BPN model possesses considerably higher prediction accuracy

than the dual kriging, CCLN and polynomial regression models.
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Table 9 Prediction accuracy of various models for xylitol concentration

Model Type Model Parameters RMSE (g/l)
Fitting Set Testing Set Validation Set
Regression 2" order polynomial 0.92 0.77 0.78
Dual kriging 1% order drift function with linear 0.00 0.23 0.23
covariance function and distances
of influence of 0.9
BPN 1-layer with 7 hidden neurons, 0.12 0.1 0.16
TanH transfer function, extended
delta rule, initial learning rate of
0.1, momentum of 0.4
CCLN 5 hidden neurons, TanH transfer 0.60 0.33 0.52
function, delta rule, initial learning
rate of 0.1, momentum of 0.4

Figure 22-25 shows scatter plots between actual value and predicted value of xylitol
concentration for the fitting data set from regression, dual kriging, BPN and CCLN models with the
R2 of 0.52, 1.00, 0.99, and 0.71, repectively. Similar to biomass prediction, the dual kriging and
BPN models have a better fit to the fitting data set or are more accurate than the CCLN and
regression models. Figure 26-29 display scatter plots between actual value and predicted value of
xylitol concentration for the validating data set from regression, dual kriging, BPN and CCLN
models with the R2 of 0.58, 0.97, 0.99, and 0.82, repectively. These results reveal that dual
kriging’'s and BPN’s accuracy drop somewhat from the fitting data set to the validating one whereas
those from the regression’s and CCLN’s stay put. However, the overall dual krging’'s and BPN’s

prediction accuracy are higher.
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Figure 22 A scatter plot between actual value and predicted value of xylitol concentration

from regression model on the fitting data set (R2= 0.52)
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Figure 23 A scatter plot between actual value and predicted value of xylitol concentration

from dual kriging model on the fitting data set (R2= 1.00)
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Figure 24 A scatter plot between actual value and predicted value of xylitol concentration

from BPN model on the fitting data set (R2= 0.99)
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Figure 25 A scatter plot between actual value and predicted value of xylitol concentration

from CCLN model on the fitting data set (R2= 0.71)
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Figure 26 A scatter plot between actual value and predicted value of xylitol concentration

from regression model on the validating data set (R2 =0.58)
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Figure 27 A scatter plot between actual value and predicted value of xylitol concentration

from dual kriging model on the validating data set (R2 =0.97)
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Figure 28 A scatter plot between actual value and predicted value of xylitol concentration

from BPN model on the validating data set (R2 =0.99)
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Figure 29 A scatter plot between actual value and predicted value of xylitol concentration

from CCIN model on the validating data set (R2 =0.82)

54



2.3.2 Model bias

Table 10 illustrates bias factor values for both fitting and validating data sets in prediction of
xylitol concentration. It is observed that regression, dual kriging and BPN models are not biased in
the fitting data set whereas the CCLN models are biased upwards. For the validating data set,
dual kriging is slightly biased upwards (overestimates the data) and regression and CCLN models
relatively overestimated the data while the BPN model slightly underestimates the data. A plot
between actual and predicted observations could also be used to examine the bias type of any
models. Figure 30-33 display plots between actual and predicted observations of regression, dual
kriging, BPN and CCLN models, respectively for fitting data set while Figure 34-37 exhibit the same
plots for validating data set. These results are consistent with the bias factor for both data sets. It
is furher discerened that the bias upwards in the validating data set of the regression and CCLN
models often occurs with the lower levels of xylitol concentration or at the start of the process as

seen in the predciton of cell biomass.

Table 10 Bias Factor of various models for xylitol concentration

Model Type Model Parameters Bias Factor (By)
Fitting Set Validation Set
Regression 2nd order polynomial 1.05 1.41
Dual kriging 1St order drift function with linear 1.00 1.19

covariance function and distances of

influence of 0.9

BPN 1-layer with 7 hidden neurons, TanH 0.98 0.87
transfer function, extended delta
rule, initial learning rate of 0.1,

momentum of 0.4

CCLN 5 hidden neurons, TanH transfer 1.29 1.58
function, delta rule, initial learning

rate of 0.1, momentum of 0.4
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Figure 30 A plot between actual and predicted values of xylitol concentration from

regression model on the fitting data set
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Figure 31 A plot between actual and predicted values of xylitol concentration from dual

kriging model on the fitting data set
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Figure 32 A plot between actual and predicted values of xylitol concentration from BPN

model on the fitting data set
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Figure 33 A plot between actual and predicted values of xylitol concentration from CCLN

model on the fitting data set
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Figure 34 A plot between actual and predicted values of xylitol concentration from

regression model on the validating data set
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kriging model on the validating data set
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model on the validating data set

4.0
3.5
3.0
2.5
Xylitol (g/1) 2.0
15
1.0
0.5

0.0

—— Actual

--B=--CCLN

10

11

Observation

Figure 37 A plot between actual and predicted values of xylitol concentration from CCLN

model on the validating data set

59




3. Comparison between biomass predictive models and xylitol predictive models

Table 10 compares the performance of biomass predictive models and xylitol predictive

models in terms of prediction accuracy using mean absolute percentage error (MAPE) and model

bias.

It is recoginized based on prediction accuracy (MAPE) that cell biomass predictive models

are higher. In other words, it is easier to predict the cell biomass than the xylitol concentration. A

reason accounts for this result is that the xylitol concentration value (0-5 g/l) is quite lower than that

(1-30 g/l) of the cell biomass. With such low values, uncertainty in its measurement and rounding

off in calculation may lead to inaccuracy. This might also contribute to the higher in the xylitol

concentration’s model bias than the cell biomass’s.

Table 10 Comparison of the performance of biomass and xylitol predictive models

Prediction Type Model MAPE (%) Model Bias
Fitting Set Validating Set Fitting Set Validating Set
Cell biomass 2" order polynomial 20 19 Unbiased Unbiased
1 order drift function 0 11 Unbiased Slightly
underestimated
3-7-1* BPN 12 12 Unbiased Unbiased
3-5-1* CCLN 16 9 Unbiased Unbiased
Xylitol 1St order polynomial 216 134 Unbiased Fairly
concentration overestimated
2" order drift function 0 39 Unbiased Slightly
overestimated
3-8-1* BPN 28 29 Unbiased Very slightly
underestimated
3-6-1* CCLN 198 124 Slightly Fairly

overestimated

overestimated

* Number of input neurons - number of hidden neurons - number of output neurons of the neural network.
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Conclusions and Recommendations

This research investigates the potential use of 4 types of empirical models i.e. regression,
dual kriging, back propagation neural network (BPN) and cascade correlation neural network
(CCLN) in modeling the relationship between 3 input factors, i.e., recycle ratio, aeration rate, and
fermentation time of the xylitol production from Candida mogii on 2 process outputs, i.e., cell
biomass and xylitol concentration. Each ouput is modeled separately. For cell biomass prediction
model, the 3-5-1 CCLN model outperforms the other 3 models with respect to its generalized
prediction accuracy with RMSE of 1.13 g/l and MAPE of 9% in the validating data set and it
demonstrates an unbiased type. For xylitol concentration prediction model, 3-7-1 BPN model
exhibits highest generalized prediction accuracy with RMSE of 0.16 g/l and MAPE of 22% in the
validating data set. However, this BPN model very slightly underestimates the data. As a
consequence, care must be taken when using this model. All in all, artificial neural network (ANN)
models (BPN and CCLN) are identified to be more accurate and more relaiable than the statistical
models like regression and dual kriging in predicting cell biomass and xylitol concentration in xylitol
production process. In terms of ease of building the models, several commercial softwares are
available for regression as well as ANN models. Nevertheless, ANN model bulding and validation
requires longer time than statistical models. One then needs to tradeoff between its performance

and development time and costs.
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