

5. กิตติกรรมประกาศ (Acknowledgements)

ขอขอบพระคุณสำนักงานคณะกรรมการการอุดมศึกษาและสำนักงานกองทุนสนับสนุนการวิจัยที่ได้พิจารณาให้ทุนพัฒนาศักยภาพในการทำงานวิจัยของอาจารย์รุ่นใหม่ปี พ.ศ. 2547 แก่ดิฉัน ขอขอบพระคุณภาควิชาชีววิทยาและคณะวิทยาศาสตร์มหาวิทยาลัยศิลปากร วิทยาเขตพระราชวังสนามจันทร์ ที่ได้สนับสนุนในการทำวิจัยครั้งนี้ ดิฉันขอระลึกถึงพระคุณของ ศาสตราจารย์ ดร. นายแพทย์ กนก ภาวสุทธิ์พิศรี อาจารย์ผู้ประสานวิชาให้ ขอขอบคุณ รองศาสตราจารย์ ดร. เรณุ เวชรัชต์พิมล ภาควิชาชีววิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยศิลปากร วิทยาเขตพระราชวังสนามจันทร์ ที่ได้กรุณาให้คำแนะนำ ผู้ช่วยศาสตราจารย์ ดร. กมลชนก พานิชยการ ภาควิชิต คณะวิทยาศาสตร์ มหาวิทยาลัยศิลปากร วิทยาเขตพระราชวังสนามจันทร์ และผู้ช่วยศาสตราจารย์ ดร. จันทนา กจญกมล ภาควิชาชีววิทยาศาสตร์และเทคโนโลยี คณะวิทยาศาสตร์ มหาวิทยาลัยราชภัฏสวนสุนันทา ที่ได้กรุณาให้คำแนะนำทางสถิติและให้คำแนะนำที่เป็นประโยชน์ต่องานวิจัย ขอขอบคุณ น้องนก-นกธีรา ที่เคยให้กำลังใจเสมอมา ขอบคุณ คุณนงนุช กำลังแพทย์ คุณวิชูรย์ แซ่เง้า และนักศึกษาปริญญาโทของภาควิชาชีววิทยา ที่ได้ช่วยอำนวยความสะดวกและให้ความช่วยเหลือต่างๆ ด้วยดีเสมอมา สุดท้ายนี้ดิฉันขอขอบคุณทุกๆ ท่านในครอบครัว “อารีกิจเสรี” ที่ได้ให้ความเข้าใจและเคยเป็นกำลังใจให้ จนทำให้ดิฉันสามารถทำงานวิจัยสำเร็จได้ด้วยดี

6. เอกสารอ้างอิง (References)

กนก ภาวสุทธิ์พิศรี และ ยินดี กิติยานันท์ 2544 โคลนนิ่ง: เทคโนโลยีสะท้านโลก ยงยุทธ ยุทธวงศ์ และ ศุภชัย หล่อโลหการ บรรณาธิการ โคลนนิ่งในสัตว์ เศรษฐกิจ สำนักงานวิทยาศาสตร์และเทคโนโลยีแห่งชาติ กรุงเทพมหานคร หน้า 97-114

เรณุ เวชรัชต์พิมล 2540 เทคนิคการเพาะเลี้ยงเซลล์สัตว์ ภาควิชาชีววิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยศิลปากร นครปฐม หน้า 65-87

Anderson, S. H. and G. L., Killian. 1994. Effect of oviduct conditioned medium macromolecules on bovine sperm motion and capacitation. *Biol. Reprod.* 51: 795-799.

Areekijserree, M., Thongpan, A. and R., Vejaratpimol. 2005. Morphological study of porcine oviductal epithelial cells and cumulus-oocyte complex. **Kasetsart Journal (Nat. Sci.)**. 39, 136-144.

Areekijserree, M. and R., Vejaratpimol. 2006. *In vivo and in vitro* study of porcine oviductal epithelial cells, cumulus oocyte complexes and granulosa cells: a scanning electron microscopy and inverted microscopy study. **Micron** (In press)

Austin, C. R. 1952. Capacitation of the mammalian sperm. **Nature (London)** 170: 326.

Austin, C. R. 1961. **The Mammalian Egg**. Blackwel scientific publication, Oxford, pp. 125-143.

Barros, C., Berrios, M. and E. L., Herrera. 1973. Capacitation *in vitro* of guinea pig spermatozoa in a saline solution. **J. Reprod. Fertile.** 34: 547-549.

Blandau, R. J. 1980. *In vitro* fertilization and embryo transfer. **Fertil. Steril.** 33: 3-11.

Briske-Anderson, M. J., J. W., Finley and S. M., Newman. 1997. The influence of culture time and passage number on the morphological and physiological development of Caco-2 cells (44093). **Caco-2: Morphology and enzymatic changes. P.S.E.B.M.** 214. 248-257.

Chang, M. C. 1951. Fertilization capacity of spermatozoa deposited into the fallopian tubes. **Nature (Lond)**. 168: 697-698.

David, M. and N., Dekel. 1991. Maturation of the rat cumulus-oocyte complex structure and function. **Mol. Reprod. Dev.** 28: 297- 306.

Dekel, N. and W. H., Beers. 1980. Development of rat oocytes *in vitro*: inhibition and induction of maturation in the presence or absence of cumulus-oophorus. **Dev. Biol.** 75: 247-254.

Eppig, J. J. 1993. Regulation of mammalian oocyte maturation, *In* E.Y. Adashi and P.C.K., Leung (eds.). **The Ovary**. Raven Press, New York. pp. 185-208.

Flemming, A. D. and M. C., and R., Yamagimachi. 1980. Superovulation and superpregnancy in the golden hamster. **Developmental growth and differentiation** 22: 103-110.

Freshney, R. I. 1987. Culture of animal cells: A manual of basic technique. Alan R. Liss, New York. pp. 21-27, 66-84.

Grippo, A. A., Way, A. L. and G. L. Killian. 1995. Effect of bovine ampullary and isthmic oviductal fluid on motility, acrosome reaction and fertility of bull spermatozoa. **J. of Reprod. Fertil.** 105: 57-64.

Hashimoto, S., Saeki, K., Nagao, Y., Minami, N., Yamada, M. and K. Utsumi. 1988. Effects of cumulus cell density during *in vitro* maturation of the developmental competence of bovine oocytes. **Theriogenology** 49 (8): 1451-1463.

Hinrichs, K., 1997. Cumulus expansion, chromatin configuration and meiotic competence in horse oocytes: a new hypothesis. **Equine. Vet. J. Suppl.** 25, 43-46.

Hole, J. W. and K. A., Koos. 1994. **Human Anatomy**. 2nd ed. Wm. C. Brown Communications. Inc., Dubuque. 662 p.

Hyne, R. V. and D. L., Gerbers. 1979. Calcium dependent increase in adenosine 3, 5-monophosphate and induction of the acrosome reaction in guinea pig spermatozoa. **Proc. NaH. Acad. Sci. USA.** 76: 5699 -5703.

Hyttel, P., T. Fair, H. Callesen and T., Greve. 1997. Oocyte growth, capacitation and final maturation in cattle. **Theriogenology** 47: 23-32.

Kamalk, K. A. 1985. Carbohydrate determinants involved in mammalian fertilization. **The American journal of anatomy** 174: 207-223.

King, R. S., Anderson, S. H. and G. L. Killian. 1994. Effect of bovine oviductal estrus-associated protein on the ability of sperm to capacitate and fertilize oocytes. **Journal of Andology** 15: 468-478.

Kitiyanant, Y., C., Thonabulsombat, C., Tocharus, B., Sanitwongse and K., Pavasuthipaisit. 1989. Co-culture of bovine embryos from oocytes matured

and fertilized *in vitro* to the blastocyst stage with oviductal tissues. **J. Sci. Soc. Thailand.** 15: 251-260.

Kitiyanant, Y., C., Tocharus, M., Areekijiseree and K., Pavasuthipaisit. 1995. Swamp buffalo oocytes from transvaginal ultrasound-guided aspiration fertilized and co-cultured *in vitro* with bovine oviductal epithelial cells. **Theriogenology** 43 (1): 250.

Kitiyanant, Y., Thonabulsombat, C., Chongthammakun, S., Tocharus, C., Sricharoen, P., Areekijiseree, M. and K. Pavasuthipaisit. 1991. Pregnancy and birth of calf resulting from bovine oocyte matured, fertilized and cultured in oviductal cells *in vitro*. Abstract of The seventeenth Congress on Science and Technology of Thailand. October 24-26 at Health Science Auditorium Khon Kaen University, Thailand. B-089.

Kidson, A., Schoevers, E., Langendijk, P., Verheijden, J., Colenbrander, B. and M., Bevers. 2003. The effect of oviductal epithelial cell co-culture during *in vitro* maturation on sow oocyte morphology, fertilization and embryo development. **Theriogenology** 59, 1889-1903.

Kitiyanant, Y., Lhuangmahamonkol, S., Areekijiseree, M., Tocharus, C., Thonabulsombat, C. and K., Pavasuthipaisit. 1993. Porcine oviductal support *in vitro* bovine embryo development. **Theriogenology** 39 (1): 246.

Li, R., Norman, R. J., Armstrong, D. T., and R. B., Gilchrist. 2000. Oocyte-secreted factor(s) determine functional differences between bovine mural granulosa cells and cumulus cells. **Biol. Report.** 63, 839-845.

Lowry, H.O., N.J. Rosebrough, A.L. Farr, and R.J. Randall. 1951. Protein measurements with the folin phenol reagent. **J. Biol. Chem.** 193: 265-275.

Lucidi, P., Bernabo, N., Turriani, M., Barboni and B. M., Mattioli. 2003. Cumulus cells steroidogenesis is influenced by the degree of oocyte maturation. **Reprod. Biol. Endocrinol.** 1, 45.

Magnusson, C. 1980. Role of cumulus cells for rat oocytes maturation and metabolism. **Gamete Res.** 3: 133-140.

Mattioli, M., P., Lucidi and B., Barboni, 1998. Expanded cumuli induce acrosome reaction in boar sperm. **Mol. Reprod. Dev.** 51, 445-453.

Mori, T., T., Amano and H., Shimizu. 2000. Roles of gap junctional communication of cumulus cells in cytoplasmic maturation of porcine oocytes cultured *in vitro*. **Biol. Reprod.** 62: 913-919.

Murray, M. K. 1992. Biosynthesis and immunocytochemical localization of an estrogen-dependent glycoprotein and associated morphological alterations in the sheep ampulla oviduct. **Biol. Reprod.** 47: 889-902.

Nagai, T. and R. M., Moor. 1990. Effect of oviduct cells on the incidence of polyspermy in pig eggs fertilized *in vitro*. **Mol. Reprod. Dev.** 26: 377-382.

Nico, B. and H., Tournaye. 1991. The incidence of multiple pregnancy after *in vitro* fertilization and embryo transfer, gamete, or zygote intra-fallopian transfer. **Fertil. Steril.** (55): 134-318.

Nilsson, O. and S., Reinius. 1969. Light and electron microscopic structure of the oviduct. pp. 57-83. *In* E.S.E. Hafez and R.J. Blandau (eds.). **The Mammalian Oviduct**. The University of Chicago Press, Illinois.

Ooba, T., Sricharoen P., M., Areekijserree, Y., Kitiyanant and K., Pavasuthipaisit. 1990. Evaluation of acrosome reaction in bovine sperm by a triple staining technique. **J. Physiol. Sci.** 3(2): 91-104.

Park, C.K. and M. A., Sirard. 1996. The effect of pre-incubation of frozen-thawed spermatozoa with oviductal cells on the *in vitro* penetration of porcine oocytes. **Theriogenology** 46: 1181-1189.

Parrish, J. J., J. Susko-Parrish and M. A., Winner. 1988. First capacitation of bovine sperm by heparin. **Biol. Reprod.** 38: 1171-1188.

Pavasuthipaisit, K., Kitiyanant, Y., Tocharus, C., Thonabulsombat, C., Areekijserree, M., Lhuangmahamongkol, S., Narksompop, N., and P. Prempee. 1993. Biotechnology in farmanimals I. Embryo production *in vitro*

and sexing. Proceeding in the 31st Kasetsart University Annual conference, P.93-106.

Pavasuthipaisit, K., Kitiyanant, Y., Tocharus, C., Thonabulsombat, C., Areekijser, M., Lhuangmahamongkol, S. and Narksompop. 1993. Biotechnology in Farm animals III. Ovum pickup embryo production and hormonal influence. Proceeding in the Second Inter-Congress Symposium of the Asia and Oceania Society for Comparative Endocrinology. 160-1.

Pavlok, A. and A., McLaren. 1972. The role of cumulus cells and the zona pellucida in fertilization of mouse egg *in vitro*. **J. Reprod. Fertile.** 29: 91-97.

Reeves, P. G., M. J., Briske-Anderson and S. M., Newman. 1996. High zinc concentrations in culture media affect copper uptake and transport in differentiated human colon adenocarcinoma cells. **American Institute of Nutrition** 1701-1711.

Romar, R., P., Coy, I., Campos, J., Gadea, C., Matas and S., Ruis. 2001. Effect of co-culture of porcine sperm and oocytes with porcine oviductal epithelial cells on *in vitro* fertilization. **Anim. Reprod. Sci.** 68: 85-98.

Romar, R., P. Coy, S., Ruis, J., Gadea and D., Rath. 2003. Effects of oviductal and cumulus cells on *in vitro* fertilization and embryo development of porcine oocytes fertilized with epididymal spermatozoa. **Theriogenology** 59: 975-986.

Richard, F. J, and M. A., Sirard. 1996. Effects of follicular cells on oocyte maturation II: Theca cell inhibition of bovine oocyte maturation *in vitro*. **Biol. Reprod.** 54. 22-28.

Ruby, D. A., Valdivia and T., Kunieda. 1993. PCR sexing and developmental rate differences in pre-implantation mouse embryos fertilized and cultured *in vitro*. **Molecular reproduction and development** 35: 121-126.

Saeki, K., M., Hoshi, M. L., Rutledge and N. L., First. 1991. *In vitro* fertilization and development of bovine oocytes matured in serum free medium. **Biol. Reprod.** 44: 256-260.

Scott, J., R. and R. T., and G. D., Hodgen. 1990. The ovarian follicle: Life cycle of a pelvic clock. **Clin. Obstet. Gynercal.** 33: 551.

Songthaveesin, C. 1998. Observations of epithelial cell of bovine oviductal ampulla during follicular and luteal phases by scanning electron microscopy. **J. Elect. Micro. Soc. Thailand** 12(2): 105-108.

Staigmiller, R. B. and R. M., Moor. 1984. Effect of follicle cells on the maturation and developmental competence of ovine oocytes matured outside the follicle. **Gamete Res.** 9: 221-229.

Suzuki, H., Jeong, B. and X., Yang. 2000. Dynamic change of cumulus-oocyte cell communication during *in vitro* maturation of porcine oocytes. **Biol. Reprod.** 63:723-729.

Takano, Y., T., Taguchi. I., Suzuki, J. U., Balis and K., Yuri. 2002. Cytotoxicity of heavy metals on primary cultured alveolar type II cells. **Environ. Res.** 89: 138-145.

Vatzias, G., and D. R., Hargen. 1999. Effects of porcine follicular fluid and oviduct-conditioned media on maturation and fertilization of porcine oocytes *in vitro*. **Biol. Reprod.** 60: 42-48.

Verhage, H. G., and R. C., Jaffe. 1986. Hormonal control of the mammalian oviduct: Morphological features and the steroid receptor systems. *In* A.M. Siegler (ed.). **The Fallopian Tube**. Futura, New York. pp. 107-117.

Wegner, C. and G. L., Killian. 1992. Origin of estrus-associated glycoproteins in bovine oviductal fluids. **Molecular Reproduction and Development** 95: 841-854.

Whitaker, M. 1996. Control of meiotic arrest. **Rev. Reprod.** 1, 127-135.

White, K. L., L. F., Hehnke and L. L., Richards. 1989. Early embryonic development *in vitro* by co-culture with oviductal cells in pigs. **Biol. Report.** 41: 425-430.

Whittingham, D. G. and J. D., Biggers. 1967. Fallopian and early cleavage in the mouse. **Nature (London)** 213: 942-943.

Xu, K. P., B. R. Yadav, R. W., Rorie, L. Plante, K.J., Betteridge and W. A., King. 1992. Development and viability of bovine embryos derived from oocytes matured and fertilized *in vitro* and co-cultured with bovine oviductal epithelial cells. **J. Reprod. Fertil.** 94: 33-43.

Yanagimachi, R. 1981. **Mechanisms of Fertilization in Mammals**. In: Mastroanni L. and J. D., Biggers, (eds). *Fertilization and embryonic development in vitro*. Plenum, New York, pp. 181-182.

Yanagimachi, R. 1994. **Mammalian Fertilization**. In: Knobil, E. and Neill J. D. (eds). *The physiology of reproduction*. New York, Raven Press, pp. 189-317.

Yamagimachi, R. and M. C., Chang. 1981. *In vitro* fertilization of golden hamster ova. **J. Exp. Zool.** 156: 361-376.

Out put ที่ได้จากการทดลอง

1. ผลงานวิจัยที่ตีพิมพ์ในวารสารระดับนานาชาติ

1.1 ตีพิมพ์งานวิจัยเรื่อง *In vivo and in vitro study of porcine oviductal epithelial cells, cumulus oocyte complexes and granulosa cells: a scanning electron microscopy and inverted microscopy* ในวารสาร *Micron* เป็นวารสารของประเทศไทยในเมือง米 ที่มี impact factor 1.537 (ปี 2002) (ผลงานวิจัยฉบับเต็มอยู่ในภาคผนวก)

1.2 ตีพิมพ์งานวิจัยเรื่อง "Morphological features of porcine oviductal epithelial cells and cumulus-oocyte complexes" ในวารสาร *The Kasetsart Journal (Nat. Sci.)* Volume 39 Number 1 (January-March 2005) ซึ่งเป็นวารสารที่เป็น International Journal และ post อยู่ใน CABI Publishing และ Thailand Citation Index Centre (TCI) มีค่า Impact factor = 0.06 (2004) (ผลงานวิจัยฉบับเต็มอยู่ในภาคผนวก)

2. กิจกรรมอื่น ๆ ที่เกี่ยวข้อง

2.1 ผู้วิจัยได้นำเสนอผลงานวิจัยรูปแบบโปสเตอร์ในการประชุมวิชาการระดับประเทศเรื่อง "Porcine oviductal epithelial cells and cumulus-oocyte complex observance" ในการประชุม 22th EMST Annual Conference ของ Microscopy Society of Thailand เมื่อวันที่ 2 ถึง 4 กุมภาพันธ์ พ.ศ. 2548 ณ มหาวิทยาลัยบูรพา จังหวัดชลบุรี (ผลงานวิจัยอยู่ในภาคผนวก)

2.2 ผู้วิจัยได้นำเสนอผลงานวิจัยในรูปแบบโปสเตอร์ในการประชุม "นักวิจัยรุ่นใหม่เพบเมรีวิจัยอาวุโส" จัดโดยสำนักงานกองทุนสนับสนุนการวิจัยและสำนักงานการอุดมศึกษา ณ. โรงแรมรีเจน ชะอ้า จังหวัดเพชรบุรี ระหว่างวันที่ 13-15 ตุลาคม พ.ศ. 2548 (ผลงานวิจัยอยู่ในภาคผนวก)

2.3 ผู้วิจัยได้รับเชิญเป็นวิทยากรในหัวเรื่อง "นักวิทยาศาสตร์พนักเรียน วิทยาศาสตร์" ณ หอประชุมใหญ่โรงเรียนพระมานุสรณ์ จังหวัดเพชรบุรี ในวันที่ 18 พฤศจิกายน พ.ศ. 2548 ได้บรรยายถึงเรื่องการเป็นนักวิจัยรุ่นใหม่ของ สกอ. และงานวิจัยที่ได้ศึกษาให้นักเรียนมัธยมปลายสายวิทยาศาสตร์รับฟัง

2.4 ผู้วิจัยจะได้นำเสนอผลงานวิจัยในรูปแบบ Oral presentation ในการประชุมที่จะจัดขึ้นโดยสำนักงานกองทุนสนับสนุนการวิจัยและสำนักงานการอุดมศึกษา ต่อไป

ลงนาม

ឈុំ អ៊ុំ កែវ

ធម. ទរ. មួយ វារីកិចសី
(ដោយណាតូករាជការវិជ្ជាព័ត៌មាន)

ภาคผนวก

ผลงานวิจัยที่ตีพิมพ์ในวารสารระดับนานาชาติ

In vivo and in vitro study of porcine oviductal epithelial cells, cumulus oocyte complexes and granulosa cells: A scanning electron microscopy and inverted microscopy study

Mayuva Areekijseree ^{*}, Renu Vejaratpimol

Department of Biology, Faculty of Science, Silpakorn University, Nakorn Pathom 73000, Thailand

Received 14 December 2005; received in revised form 7 March 2006; accepted 7 March 2006

ology and structure of porcine oviductal epithelial cells (POEC), cumulus-oocyte complexes (COCs) and granulosa cells (GC) were in vivo and in vitro conditions using scanning electron microscopy (SEM) and inverted microscopy. The POEC contained columnar and spherical shaped non-ciliated cells. Both non- and ciliated cells appeared either in groups or distributing among each other. Isolation of cells was observed after culture for 48 h. A total of 921 oocytes from 20 ovaries was isolated resulting in an average of 46 oocyte. They were round in shape, surrounded by zona pellucida with layers of cumulus cells ranging between 89.16 and 144.68 μ m in COCs, they were classified into 4 types; intact-, multi-, partial-cumulus cell layers and completely denuded oocyte. Interestingly, changes in morphology of COCs with intact and multi-cumulus cell layers were observed in the in vitro study. The GCs in the follicular fluid were also round and found as clusters. After culturing in in vitro for 48 h, no change in morphology was observed. The GC appeared in smaller clusters or as single cells and their sizes ranged from 6 to 8 μ m. The results obtained from this study allow us to have a better understanding of the morphology and nature of cells under both in vivo and in vitro conditions. This information is also important for the study of their secretions and compositions, which is of great importance to the use of cells as feeder cells in in vitro fertilization in current studies.

© 2006 Elsevier Ltd. All rights reserved.

Cumulus cell complexes; Granulosa cells; Porcine oviductal epithelial cells; Scanning electron microscopy

Introduction

Human oviductal epithelial cells and granulosa cells can be isolated and cultured in culture medium. Cultures of these cells have been widely used for co-culture because they have a direct effect and which contribute to the success of fertilization (Kitiyanant et al., 1993, 1995; Vatzias and Hargen, 1999; Kidson et al., 2001, 2003; Kidson et al., 2003; Lucidi et al., 2003). In animals that produce several offspring at one time as pigs or rodents, there are some secretions in the reproductive tract of the animals and these secretions were found to facilitate better growth and development of embryos of these species (Kitiyanant et al., 1993). Since the reproductive organs of pigs are not used as human food, they are readily available and can be readily collected from slaughterhouses for

research. Kitiyanant et al. (1993) reported on the use of porcine oviductal epithelial cells (POEC) to support in vitro bovine embryo development. Besides, there is also evidence that porcine oviductal cells can support in vitro maturation in sow oocytes and fertilization (Kidson et al., 2003).

Cumulus cells and GC are cells that are found surrounding an oocyte and lining antral follicles. Both cells promote the penetration of spermatozoa into the oocyte by inducing an acrosome reaction via its expansion of the cell mass (Anderson and Killian, 1994; Mattioli et al., 1998; Romar et al., 2001) leading to a higher rate of in vitro fertilization (Romar et al., 2001, 2003). In addition, these cells are very useful in the determination of the toxic effects of the environment which could be accumulative and lead to abnormal development of an embryo. Moreover, it is ethically more acceptable.

To be able to make the best utilization of cumulus cells, POEC and GC, attempts have been made to thoroughly study their characteristics. Unfortunately, basic knowledge on the morphological aspects of these cells both in vivo and in vitro is poorly characterized, including the

^{*}Corresponding author. Tel.: +66 3424 3429; fax: +66 3425 5820.
E-mail address: Maijakee@yahoo.com (M. Areekijseree).

an oocyte and its cumulus complex during cumulus maturation in vitro. Thus, the work were to establish the culture technique for oocyte complexes (COCs) and GC and to biological features of in vivo and in vitro POEC, by scanning electron microscopy (SEM) and copy.

2. Materials and methods

2.1. Culture medium

Culture medium, consisting of M199 with Earle's salts (Sigma, St Louis MO) supplement with 10% heat-inactivated fetal calf serum (HTFCS), 2.2 mg/mL NaHCO₃ (Sigma, St Louis MO), 1 M Hepes (Sigma, St Louis MO), 100 µg/mL LH, 1 µg/mL estradiol with ethanol and gentamycin sulfate. The culture medium was stored at 4 °C, 5% CO₂, 95% air atmosphere with high humidity for 48 h before use.

2.2. COCs and GC collection and preparation

2.2.1. Ovary collection

Oviducts and ovaries of Large White pigs were obtained from local slaughterhouses. They were removed from slaughter and transported to the laboratory in a thermos containing a saline solution kept at 35 °C. The saline solution consisted of 0.9% supplemented with 100 IU/mL penicillin, 100 µg/mL streptomycin and 250 µg/mL amphotericin B.

2.2.2. Oviduct collection

Oviducts were trimmed free from fat and connective tissues and rinsed 3 times in a washing medium (TALP-HEPES with 10% HTFCS and 50 µg/mL gentamycin). Oviducts were separated into 2 groups. The first group of oviducts were cut into small pieces (2–3 mm) and prepared for SEM (in vivo group), and oviducts were placed in sterile Petri dishes and gently scraped with a sterile glass slide from the isthmus to the ampulla for extracting porcine oviductal epithelial mucosal cells from the lumen of oviduct. The cells were transferred to a 12 mL sterile conical tube containing 10 mL of washing medium. They were rinsed 7 times and then resuspended in the culture medium at a ratio of 1:50. Ten milliliters of the suspension were placed in a 60 mm Falcon culture dish and cultured at 37 °C, 5% CO₂, 95% air atmosphere and high humidity for 48 h. The POEC viability was determined by trypan blue (0.4%, v/v, final concentration) using an inverted

2.2.3. Granulosa cell collection

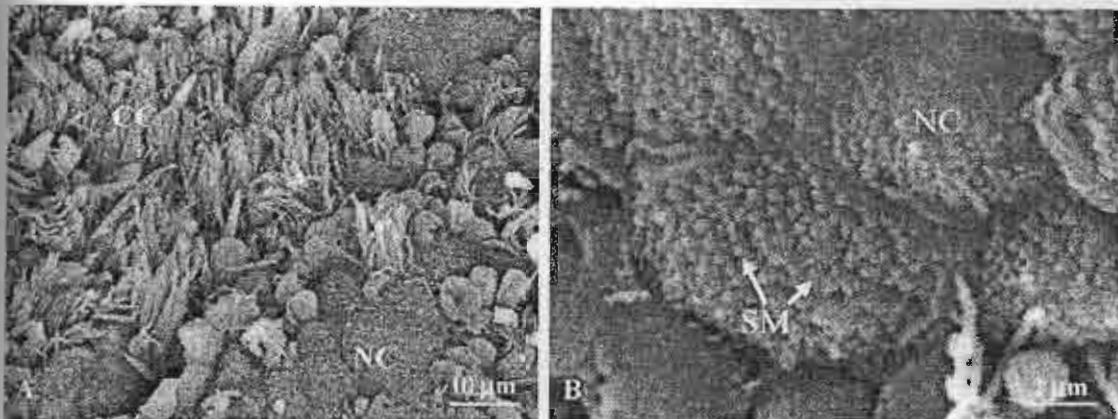
Ovaries of Large White pigs were trimmed free from connective tissues and rinsed 3 times in washing

medium. The follicular contents of selected healthy follicles of 4–6 mm in diameter were aspirated by a 5 mL disposable syringe with an 18-gauge needle containing saline solution. The follicular contents were pooled in sterile Petri dishes. After sedimentation, COCs were recovered under a stereomicroscope. They were allocated to different groups depending on the number of cumulus cells layers. The diameters of COCs were measured. The COCs were washed 2 times with the washing medium and separated into 2 groups. The first group was studied under inverted microscopy and prepared for SEM (in vivo group). The second group was cultured in small drops of culture medium (100 µL) at 37 °C with 5% CO₂, 95% air atmosphere and high humidity for 48 h. After incubation, COCs were studied under inverted microscopy and prepared for SEM (in vitro group). Meanwhile, GC in the follicular fluid were pooled in 12 mL conical tubes. They were washed 7 times with the washing medium and separated into 2 groups. The first group of GC was studied under inverted microscopy and prepared for SEM (in vivo group). The second group was cultured in the culture medium at a ratio of 1:50. Ten milliliters of GC suspension were placed in a 60 mm Falcon culture dish and cultured at 37 °C with 5% CO₂, 95% air atmosphere and high humidity for 48 h. Granulosa cells viability was determined by trypan blue (0.4%, v/v, final concentration) with an inverted microscope and GCs were prepared for SEM (in vitro group).

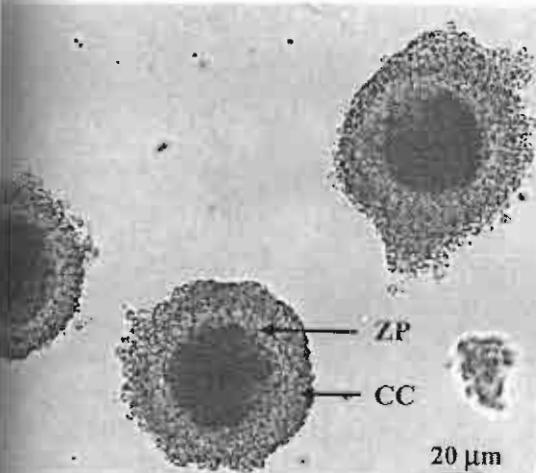
2.3. POEC, GC and COCs preparation for SEM

All samples were pre-fixed in 2.5% glutaraldehyde in 0.1 M phosphate-buffer at pH 7.2 for 2 h, rinsed in phosphate buffer and post-fixed in 1% osmium tetroxide for 24 h. They were then dehydrated in a graded series of ethanol (30%, 50%, 70%, 80%, 90% and absolute ethanol) and dried in a critical point dryer machine. They were then mounted on stubs with conductive carbon tape, coated with gold particle at 20 nm thickness in an ion sputtering, observed and examined under SEM (CamScan Analytical, Maxim 2000S) operating at 10–15 kV.

2.4. Statistical analysis


Mean and standard deviation of the means of each diameter of COCs were calculated. Statistical analysis at 95% significance level was determined using analysis of variance (ANOVA), and multiple comparisons were analyzed by Student-Newman-Keuls (SNK).

3. Results

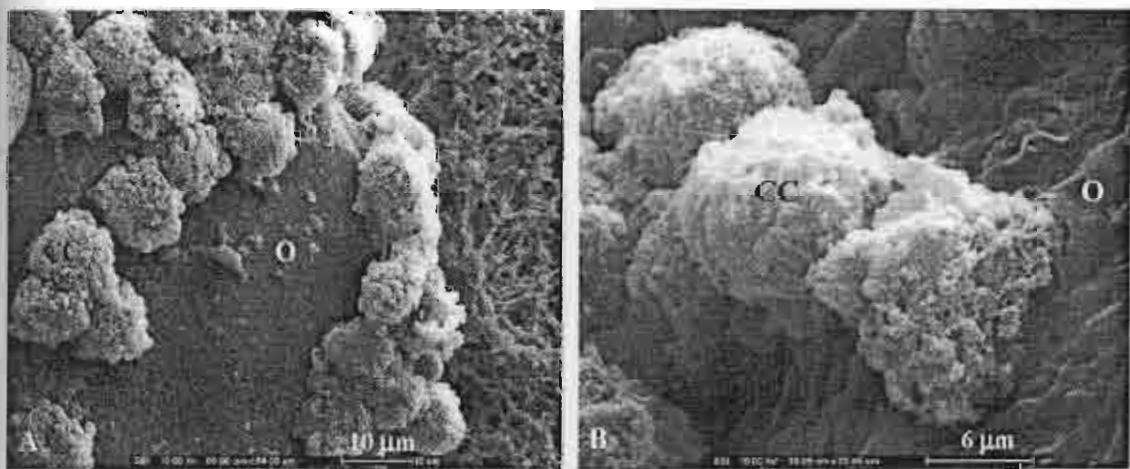

3.1. In vivo study

3.1.1. POEC observation

From SEM observation (Fig. 1A), the surface of porcine oviductal epithelium contained two different cell types, ciliated cells and non-ciliated cells. The ciliated cells appeared either in groups or were found to be distributed among the non-ciliated cells. As could be clearly seen in the micrograph, the cilia of the

Scanning electron micrograph of POEC (A); showing numerous non-ciliated cells (NC) and ciliated cells (CC). At high magnification (B); non-ciliated cells of spherical microvilli (SM) on the apical surface.

Transmission electron micrograph of COCs showing round shape of oocytes surrounded with ZP (ZP) and several layers of cumulus cells (CC).


cells consistently project themselves above the apex of ciliated cells. At high magnification, non-ciliated cells only seen as spherical shape cells with numerous short microvilli (Fig. 1B).

3.1.2. COCs observation

A total of 921 oocytes were isolated from 20 ovaries: an average of 46 oocytes per ovary. Fig. 2 shows observation of the COCs collected from the follicular fluid using inverted microscopy. The oocytes were round in shape and ranged between 89.16 and 144.68 μm in size. They were surrounded by a zona pellucida and several layers of cumulus cells.

By using SEM, the surface appearance of both oocytes and cumulus cells from COCs was observed. As can be seen in Fig. 3A, oocytes and cumulus cells have distinct surface appearance. Similar to what was observed in the oocytes, the cumulus cells were round in shape and they contained no microvilli on the surface membrane (Fig. 3A and B).

Based on the number of cumulus cell layers surrounding the oocyte, these COCs were classified into 4 types as follows (Fig. 4): Type I: Intact cumulus cells layer. The oocytes of this type were at an early development stage. Several compact layers of cumulus cells were seen on the surface of these oocytes and the cytoplasm of the oocytes was homogeneous with a dark zone around the periphery. This complex type was found in secondary follicles (Fig. 4A). Type II: Multi cumulus cell layer. The oocytes contained 2–3 incomplete layers of

Scanning electron micrographs of COCs collected from the follicular fluid (A); the cumulus cells (CC) on surface of the oocyte (O). At high magnification (B); showing the surface of cumulus cells and non-ciliated cells.

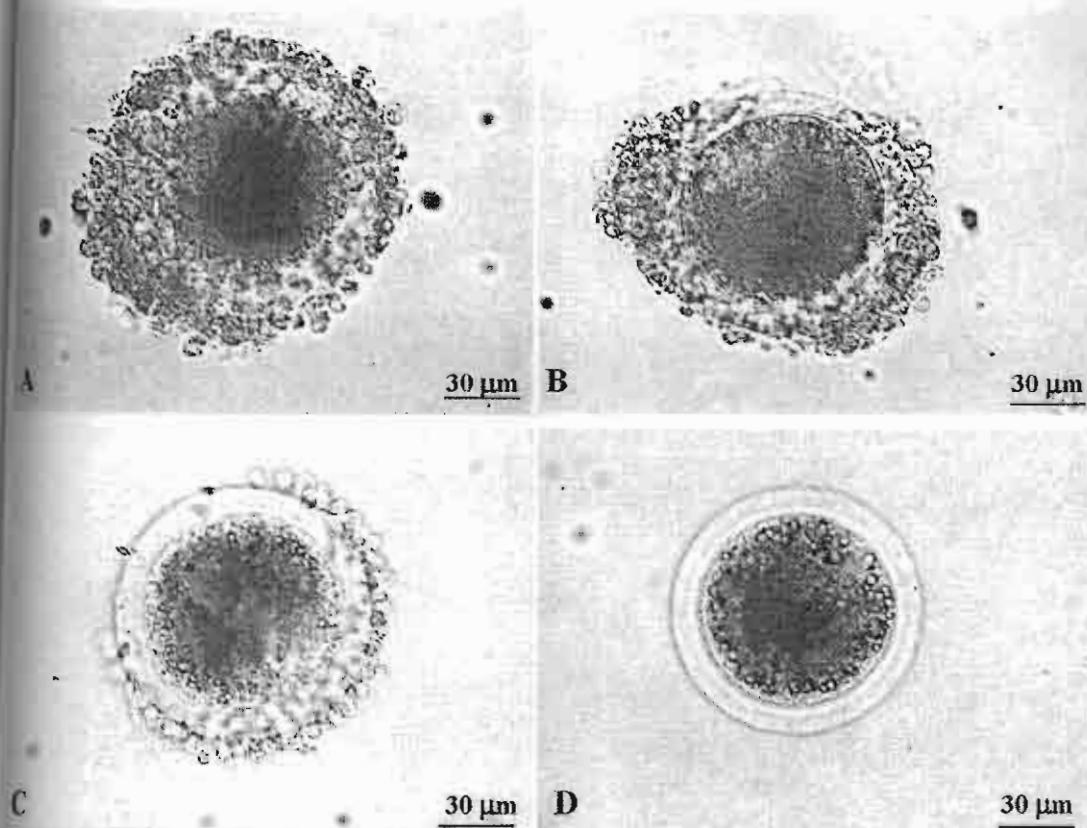


Fig. 4. COCs collected from the follicular fluid (A); intact cumulus cell layer; (B); multi cumulus cell layer; (C); partial cumulus cell layer; and (D); denuded oocyte.

(Fig. 4B). Type III: Partial cumulus cell layer. The oocytes were partially covered with some cumulus cells. The cumulus cells were loosely attached to the zona pellucida. The cytoplasm was faint in color (Fig. 4C). Type IV: Denuded oocyte. The oocytes were completely surrounded by cumulus cells. These oocytes were located in the center of the follicles. The cytoplasm was pale in color (Fig. 4D). It was found that 33.12% of these COCs has completely denuded oocytes, 28.88% were of the partial cumulus cell layer and 18.13% of the multi cumulus cell layer and intact cumulus cell layer. The other types were found at only 18.13% and 19.87%, respectively (Table 1).

The diameters of four types of COCs were measured in 30 COCs ($n = 30$). It was found that, the mean diameter of intact cumulus cell layer from the healthy antral follicles was significantly different from those of multi cumulus

cell layer, partial cumulus cell layer and completely denuded oocyte ($144.68 \pm 8.79 \mu\text{m}$, $122.82 \pm 8.72 \mu\text{m}$, $106.20 \pm 8.72 \mu\text{m}$ and $89.16 \pm 5.69 \mu\text{m}$, respectively) (Fig. 5).

3.1.3. GC observation

Similar to the COCs, GCs were located in the follicular fluid. These cells did not have cilia and were present as either single

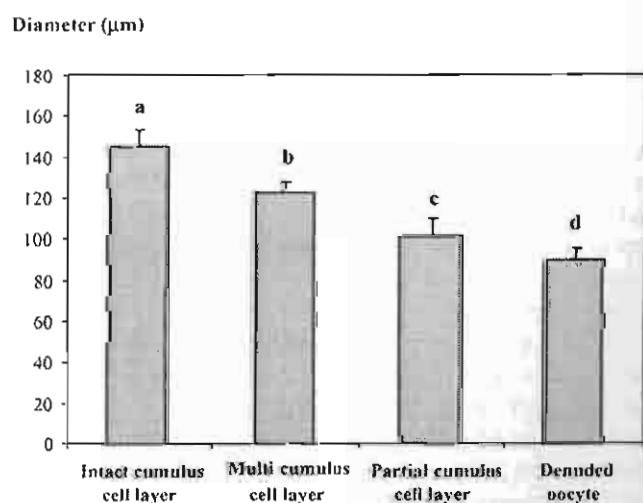
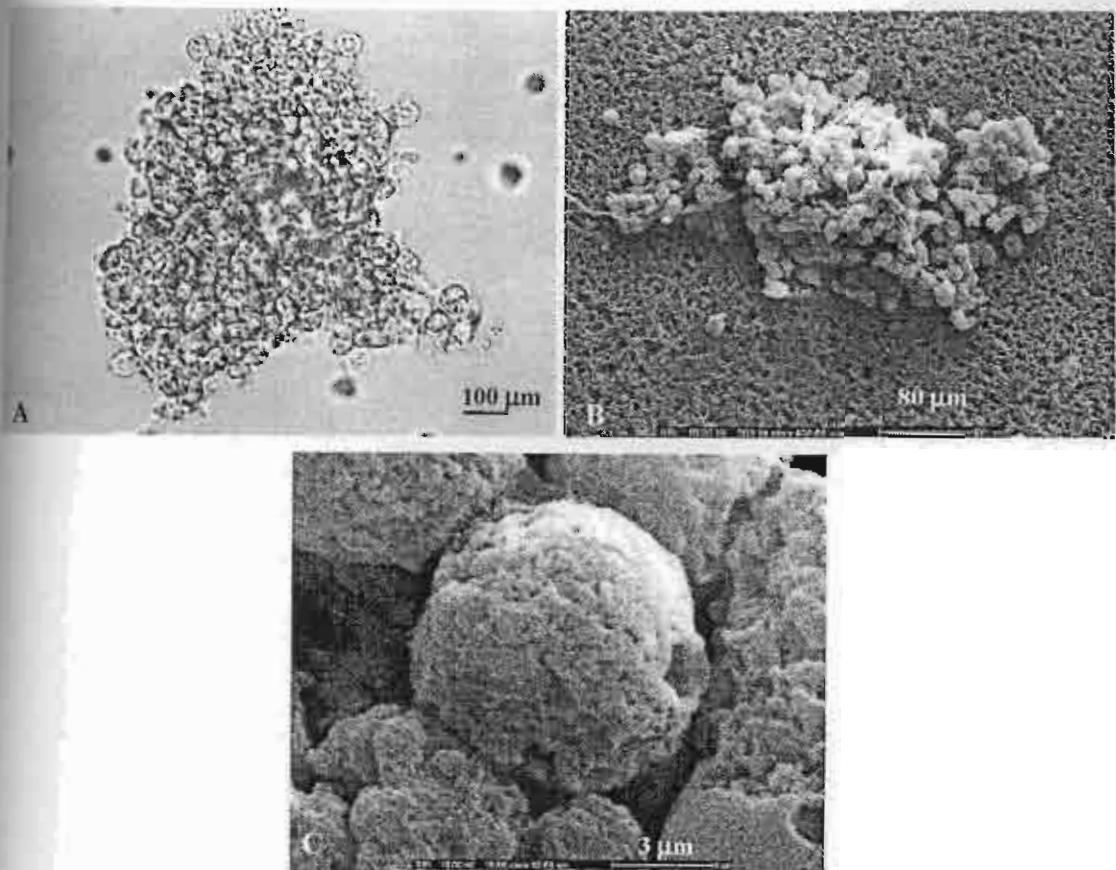



Fig. 5. Mean diameters of the isolated COCs from antral follicles. Different letters above the bar denote statistically significant differences ($P < 0.05$).

and COCs based on number of cumulus cell layers surrounding the oocytes.

	No. of COCs	Percentage (%)
Intact cumulus cell layer	183	19.87
Multi cumulus cell layer	167	18.13
Partial cumulus cell layer	266	28.88
Denuded oocyte	305	33.12
	921	100.00

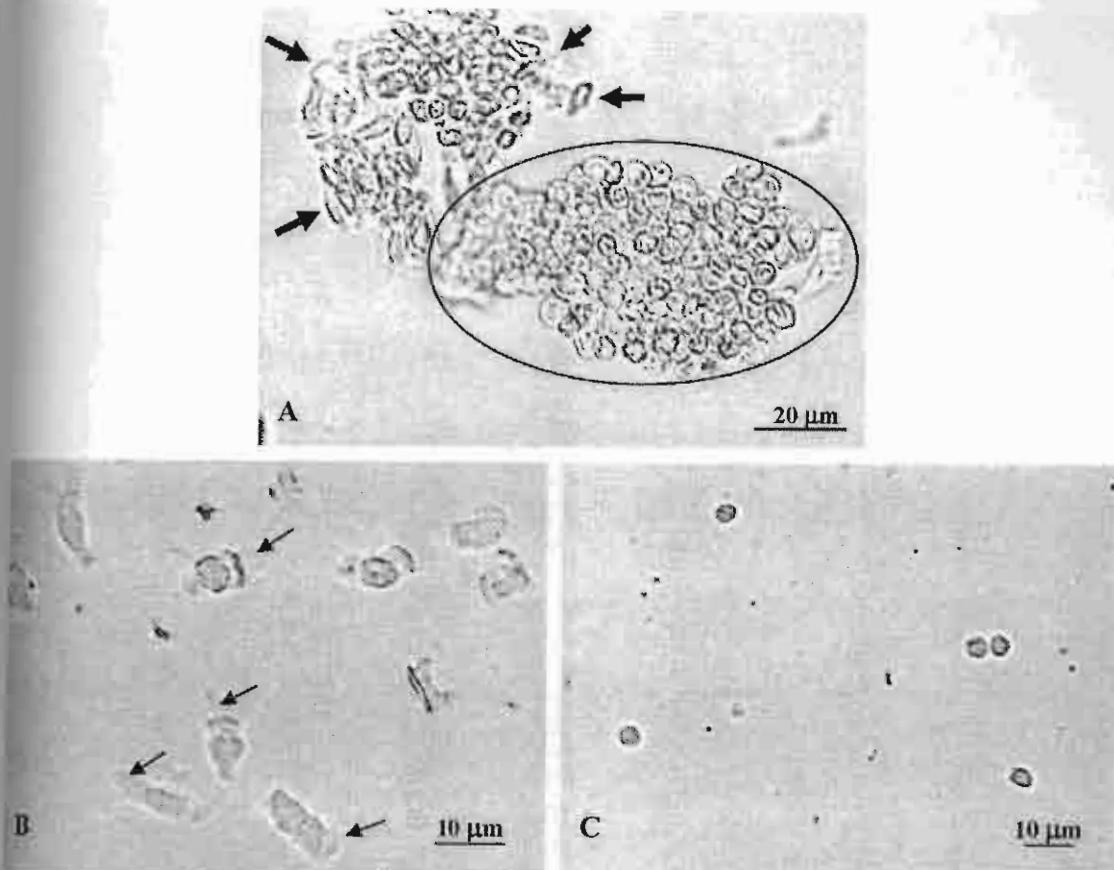
Micrograph of GC (A); and SEM micrograph of GC (B) showing round shape of the cluster GC. At high magnification (C); showing the round shape of the cluster GC without microvilli.

clusters. They were all round in shape and their sizes ranged 6–8 μm (Fig. 6).

3.1.1. *Study of ultrastructures of POEC, COCs and GC*

Inverted microscopic observation of POEC and GC, were cultured in M199 with Earle's salts supplement with 10% FCS, 2.2 mg/mL NaHCO₃, 1 M Hepes, 0.25 mM EGTA, 15 $\mu\text{g}/\text{mL}$ porcine follicle-stimulating hormone, 10 $\mu\text{g}/\text{mL}$ LH, 1 $\mu\text{g}/\text{mL}$ estradiol with ethanol and 50 $\mu\text{g}/\text{mL}$ penicillin, at 37 °C with 5% CO₂, 95% air atmosphere and viability for 48 h, the viability of these cells was found to be 94–95% (Table 2).

Table 2 shows the viability of POEC and GC viability during culturing in the culture medium for 24 h. The data are mean \pm S.E. ($n = 3$ replicates; replicates were different cell batches).


Time (h)	Percentage (%)	POEC	GC
0	100.00	100.00	
24	96.33 \pm 1.25	96.33 \pm 1.70	
	95.00 \pm 0.82	94.00 \pm 0.82	

3.2.1. *POEC observation*

Similar to the observation in the *in vivo* study, after 24 h in culture, POEC were found in clusters (Fig. 7A) and contained two different cell types. They were columnar ciliated cells (Fig. 7A; arrows) and spherical non-ciliated cells (Fig. 7A; in a circle). Following longer in culture (48 h), the movement of columnar ciliated cells (arrows) in isolation from each other (Fig. 7B) and the isolated spherical non-ciliated cells were clearly apparent (Fig. 7C).

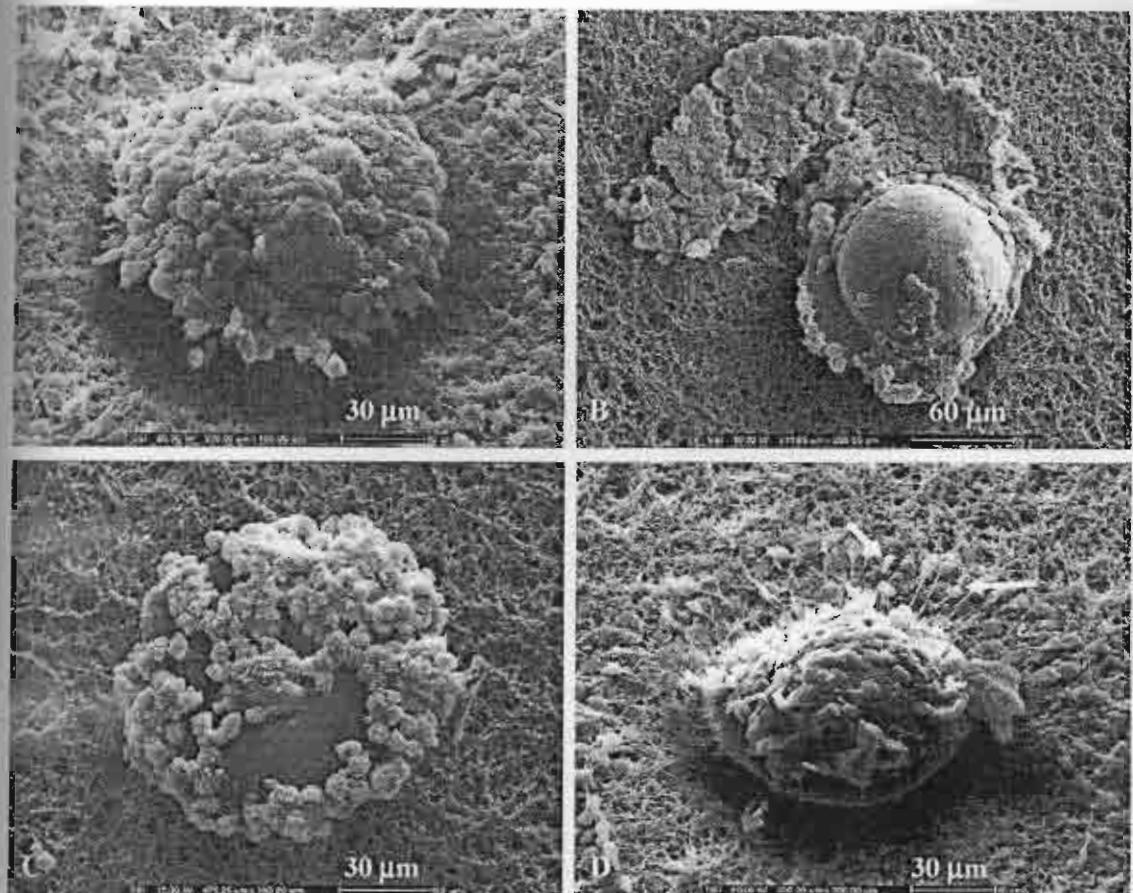
3.2.2. *COCs observation*

Cumulus cells of COCs classified as Type I (intact cumulus layer) and Type II (multi cumulus layer) were collected and cultured in M199 as described in Section 2. After culturing for 24 h, the cell complex was examined by SEM and compared with the cells from the *in vivo* condition. The cumulus cells from COCs Type I and Type II before culturing in the culture medium appeared spherical in shape (Fig. 8A and C). Interestingly, changes in the morphology of the complex were observed after culturing for 24 h. In Type I COCs the cumulus cell layer was peeling off from the oocyte (Fig. 8B), but the cell shape was still round. Moreover, it was also found that COCs Type II contained expanded cumulus cell shape, while the cells remained intact on the surface of the oocytes (Fig. 8D).

Micrographs of POEC in culture medium for 24 h (A) showing columnar ciliated cells (arrow) and round shape non-ciliated cells (in circle); (B and C) POEC in culture medium for 48 h showing moving isolated columnar ciliated cells and spherical cells.

In additional 24 h culture of COCs in the culture medium, it was observed that the round shape cumulus cells, attached to the surface of the oocyte before (Fig. 9A), detached themselves into a teardrop-like shape. They had a mucous end that clearly stuck into the oocyte (Fig. 9B). At magnification, Fig. 10A and B illustrate formation of these cells as a mesh-like structure with numerous cells covering the oocyte. Meanwhile, the elongated cells of COCs Type II were detached from the oocyte (Fig. 11A and B).

Observation

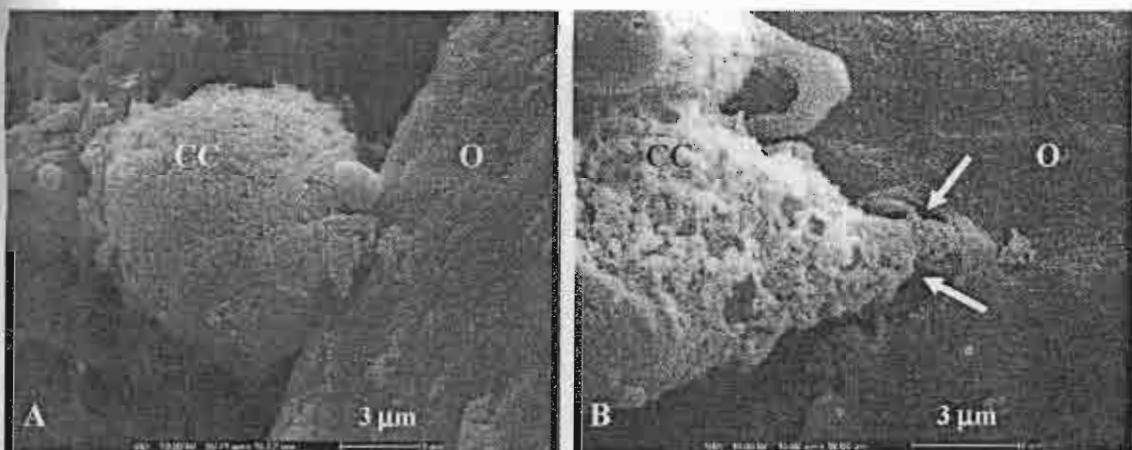

During the culture medium for 48 h, there was no change in morphology of the GC. Similar to those in the *in vivo* condition, the cells were still all round in shape with microvilli but the GC clusters were present as single cells or in smaller clusters (Fig. 12).

Discussion

The difference in morphology and structure of POEC, compared to GC under *in vivo* and *in vitro* conditions was determined using SEM and inverted microscopy. It was found that in *in vivo* condition, POECs were composed of two types of epithelial cells, non-ciliated and ciliated cells. The morphology of the porcine epithelial cells was distinctly

different from bovine. In bovine, oviductal epithelial cells form a "wormlike" structure (Xu et al., 1992) while those in pig were columnar ciliated cells and round the non-ciliated cells.

Since oviduct is the site of fertilization, it is found to contain more synthetic secretions (Murray, 1992) and a high number of columnar ciliated cells corresponding to the transportation of ovulated oocytes. Hole and Koos (1994) reported that, numerous round non-ciliated cells with short microvilli located in the apical surface also corresponded to the presence of secretory substance for nutritional support of embryonic development. A similar result was reported by Areekijssere et al. (2005) who found that POEC underwent changes in both the morphological features and the population of cell types during the estrus cycle. At the follicular phase, POEC contained a greater number of long ciliated cells than at the luteal phase. The luteal phase, however, was filled up with numerous round shaped non-ciliated cells having short microvilli on the apical surface. Under *in vitro* condition, POEC showed moving isolated columnar ciliated cells and non-moving spherical cells in the culture medium. The POEC were used in *in vitro* co-culture to support oocytes maturation and to increase normal fertilization, sperm capacitation and early embryonic development (Kitiyanant et al., 1993; Park and Sirard, 1996; Vatzias and Hargen, 1999; Romar et al., 2001, 2003). Nagai and Moor (1990) also suggested that glycoproteins secreted from non-



Micrographs of COCs showing (A and C) Type I and Type II before culture. Cumulus cells were peeled off (B); or expanded (D) after culture in culture

oviductal epithelial cells could bind to the porcine oocytes and reduce the incidence of polyspermy. Our study exhibited that antral porcine follicular aspiration resulted in the collection of a high number of oocytes associated with cumulus cells. The overall recovery rate was 10.33% per ovary. The COCs were characterized into 4 types according to their accumulation and arrangement of cumulus cells

around the oocytes; intact cumulus cell layer, multi cumulus cell layer, partial cumulus cell layer and completely denuded oocyte at the percentage composition of 19.87%, 18.13%, 28.88% and 33.12%, respectively. The diameters of the 4 types of COCs were 89–145 μ m.

Mori et al. (2000) found that COCs Type I (intact cumulus cell layer) and Type II (multi-cumulus cell layer) had a higher

Micrographs (A; cumulus cells of COCs Type I showing round shape attached to the oocyte surface (cumulus cells: CC, oocyte: O). Cumulus cells of COCs Type I after culturing for 48 h showing; (B); the conical end (arrows) pointed towards the oocyte surface.

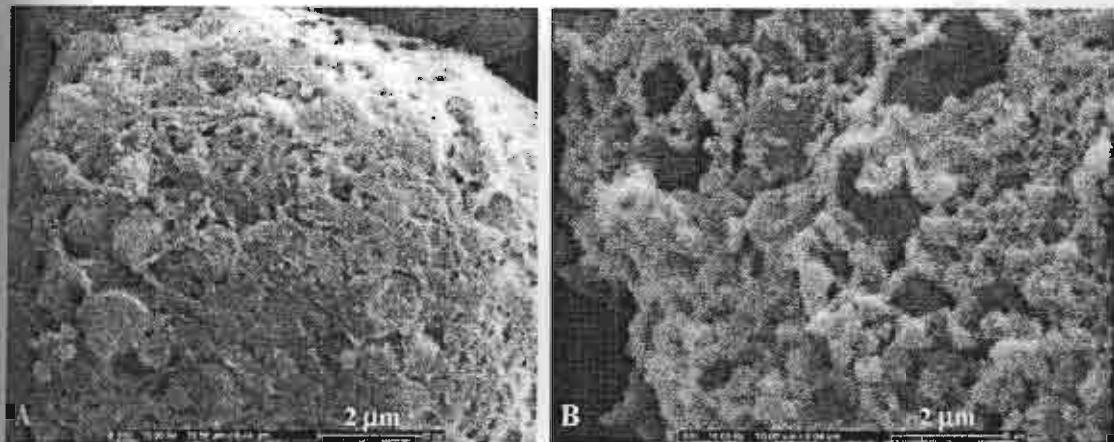


Fig. 10. SEM micrographs of cumulus cells (A and B) showing round shape of cumulus cells having mesh-like structure with numerous fenestrations on the surface.

become mature oocytes in vitro. These types of COCs were fully cultured in the culture medium supplemented with FSH and LH, using cell samples from rat (Magnusson, 1980), bull and Moor, 1984), bovine and swamp buffalo (1989, 1995). Similarly, we cultured the COCs Type II in M199 supplemented with 10% HTFCS, NaHCO₃, 1 M Hepes (Sigma, St Louis MO), urate, 15 μg/mL porcine follicle-stimulating 15 μg/mL LH, 1 μg/mL estradiol with ethanol and amycin sulfate. The SEM study indicated that, 40% of COCs Type I were peeled off and changed from a tear-drop like structure. Meanwhile, COCs showed signs of expansion such as elongation of cumulus cells for 24 h. It indicated that, the oocyte became culturing in the culture medium. After longer time, COCs Type II showed the elongation of cumulus cells and detached from the oocyte.

Generally, the antral follicles have two types of follicular cells called cumulus cells, which are adjacent to the GC lining in the antral follicles. Both cells have functions. The GC were reported to secrete estradiol into the fluid. It is known to function in transmitting low

molecular weight substances, i.e., ion nucleotides and amino acids to oocytes in the young non-reproductive females. These substances are named oocyte maturation inhibitor (OMI) or meiosis arresting factor which arrests oocyte development at the diplotene stage of prophase I, leading to preventing the primary oocytes from progressing to the secondary oocytes (Eppig, 1993; Whitaker, 1996; Li et al., 2000). The cumulus cells play an important role in transmitting and/or modulating the inhibitory activity of the GC on oocytes maturation (Richard and Sirard, 1996). When the COCs were isolated from the antral follicles, this may separate the cumulus cells from the GC. Thus the COCs were cultured in the absence of the GC thereby releasing the suppression of maturing oocytes. As a result, peeling off or expansion of the cumulus cells from the oocytes occurred to allow oocyte maturation after culture for 24 h. Hinrichs (1997) also reported a similar observation in equine oocytes. In vitro maturation of horse oocytes showed a high proportion of oocytes with COCs Type I and Type II in the maturation medium. Our investigation demonstrated that the porcine ovary had around 40 percent of COCs Type I and Type II with the diameter ranging from 120 to 145 μm. Consequently, the morphology and diameters of Type I and Type II could be used as criteria for selection of oocytes for in vitro embryo production.

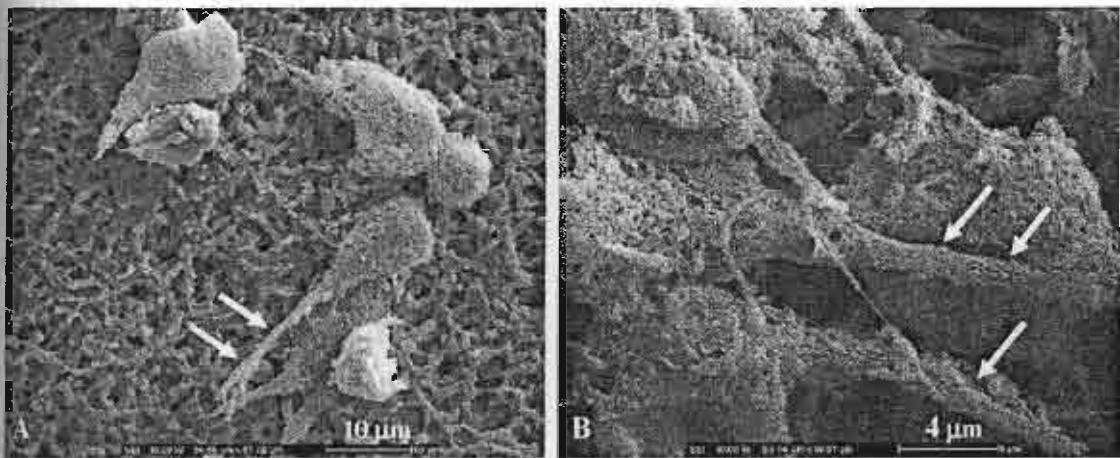
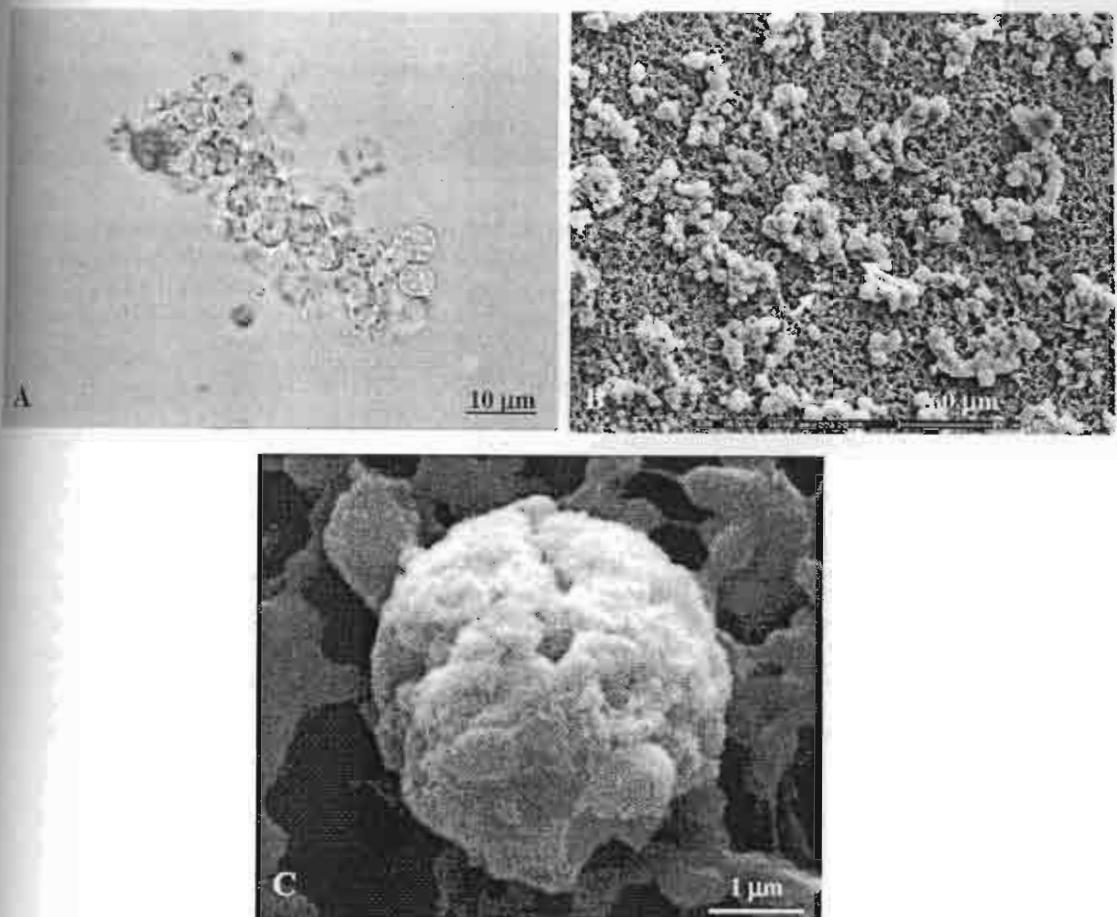



Fig. 11. SEM micrographs of detachable cumulus cells surface showing (A and B) elongation of the end point of cumulus cells (arrows).

Micrographs of GC (A and B); showing small cluster of round shape of GC after culturing for 48 h. At high magnification (C); showing the single round cell without microvilli.

free-floating GC in the follicular fluid were round in shape and were found as clusters. After culturing in *in vitro* for 48 h, no change in the morphology was observed. They were found in smaller clusters or as single cells. However, the GC clusters secreted the substance for oocyte into the culture medium (Richard and Sirard, 1996). The cells and GC conditioned medium could be used as a source of cells for *in vitro* fertilization. Their biochemical compositions and secretion are being further investigated to find the best use of them.

In conclusion, SEM and inverted microscopy are excellent tools for the determination of morphological changes in the *in vitro* study of POEC, COCs and GC. This is important to the future study of their secretions and biochemical compositions. The results could allow us more information on the use of these cells for mammalian *in vitro* fertilization.

ACKNOWLEDGEMENTS

This research was supported by a grant from The Thailand Research Fund (Number: MRG4780028). The authors are grateful to Associated Professor Dr. Surachai Nimgjirawat, Department of Chemistry, Faculty of Science, Silpakorn

University, Thailand) and Dr. Thanaporn Veerapraditsin (Department of Microbiology, Faculty of Science, Silpakorn University, Thailand) for their kind assistance on the manuscript preparation. We are also grateful to Assistant Professor Dr. Kamolchanok Panishkan (Department of Statistic, Faculty of Science, Silpakorn University, Thailand) for the statistical analysis and Miss Nongnuch Gumlungpat (Department of Biology, Faculty of Science Silpakorn University, Thailand) for her assistance in the laboratory.

REFERENCES

- Anderson, S.H., Killian, G.L., 1994. Effect of oviduct conditioned medium on bovine sperm motion and capacitation. *Biol. Reprod.* 51, 795-799.
- Areekijserree, M., Thongpan, A., Vejaratpimol, R., 2005. Morphological study of porcine oviductal epithelial cells and cumulus-oocyte complex. *Kasetsart J. (Nat. Sci.)* 39, 136-144.
- Eppig, J.J., 1993. Regulation of mammalian oocyte maturation. In: Adashi, E.Y., Leung, P.C.K. (Eds.), *The Ovary*. Raven Press, New York, pp. 185-208.
- Hinrichs, K., 1997. Cumulus expansion, chromatin configuration and meiotic competence in horse oocytes: a new hypothesis. *Equine Vet. J. Suppl.* 25, 43-46.
- Hole, J.W., Koos, K.A., 1994. *Human Anatomy*, second ed. Wm.C. Brown Communications Inc., Dubuque, p. 662.

Veren, E., Langendijk, P., Verheijden, J., Colenbrander, B., The effect of oviductal epithelial cell co-culture during in vitro saw oocyte morphology, fertilization and embryo. *Theriogenology* 59, 1889–1903.

Wangnamamonkol, S., Areekijserree, M., Tocharus, C., Thos, C., Pavasuthipaisit, K., 1993. Porcine oviductal support in embryo development. *Theriogenology* 39 (1), 246.

Wichitlombat, C., Tocharus, C., Sanitwongse, B., Pavasuthipaisit, K., Co-culture of bovine embryos from oocytes matured and transferred to the blastocyst stage with oviductal tissues. *J. Sci. Soc.* 31, 251–260.

Tocharus, C., Areekijserree, M., Pavasuthipaisit, K., 1995. Bovine oocytes from transvaginal ultrasound-guided aspiration co-cultured in vitro with bovine oviductal epithelial cells. *Theriogenology* 43 (1), 250.

W. Armstrong, D.T., Gilchrist, F.R.B., 2000. Oocyte-secreted proteins: functional differences between bovine mural granulosa and cumulus cells. *Biol. Report* 63, 839–845.

Baroni, N., Turriani, M., Barboni, B., Mattioli, M., 2003. Cumulus oogenesis is influenced by the degree of oocyte maturation. *Fertilinol.* 1, 45.

1980. Role of cumulus cells for rat oocytes maturation and Gamete Res. 3, 133–140.

Baroni, P., Barboni, B., 1998. Expanded cumuli induce acrosome reaction in sperm. *Mol. Reprod. Dev.* 51, 445–453.

Shimizu, H., 2000. Roles of gap junctional communication cells in cytoplasmic maturation of porcine oocytes cultured in vitro. *Biol. Reprod.* 62, 913–919.

Murray, M.K., 1992. Biosynthesis and immunocytochemical localization of an estrogen-dependent glycoprotein and associated morphological alterations in the sheep ampulla oviduct. *Biol. Reprod.* 47, 889–902.

Nagai, T., Moor, R.M., 1990. Effect of oviduct cells on the incidence of polyspermy in pig eggs fertilized in vitro. *Mol. Reprod. Dev.* 26, 377–382.

Park, C.K., Sirard, M.A., 1996. The effect of pre-incubation of frozen-thawed spermatozoa with oviductal cells on the in vitro penetration of porcine oocytes. *Theriogenology* 46, 1181–1189.

Richard, F.J., Sirard, M.A., 1996. Effects of follicular cells on oocyte maturation. II: Theca cell inhibition of bovine oocyte maturation in vitro. *Biol. Reprod.* 54, 22–28.

Romar, R., Coy, P., Campos, I., Gadea, J., Matas, C., Ruiz, S., 2001. Effect of co-culture of porcine sperm and oocytes with porcine oviductal epithelial cells on in vitro fertilization. *Anim. Reprod. Sci.* 68, 85–98.

Romar, R., Coy, P., Ruiz, S., Gadea, J., Rath, D., 2003. Effects of oviductal and cumulus cells on in vitro fertilization and embryo development of porcine oocytes fertilized with epididymal spermatozoa. *Theriogenology* 59, 975–986.

Staigmiller, R.B., Moor, R.M., 1984. Effect of follicle cells on the maturation and developmental competence of ovine oocytes matured outside the follicle. *Gamete Res.* 9, 221–229.

Vatzias, G., Hargen, D.R., 1999. Effects of porcine follicular fluid and oviduct-conditioned media on maturation and fertilization of porcine oocytes in vitro. *Biol. Reprod.* 60, 42–48.

Whitaker, M., 1996. Control of meiotic arrest. *Rev. Reprod.* 1, 127–135.

Xu, K.P., Yadav, B.R., Rorie, R.W., Plante, L., Betteridge, K.J., King, L.L.W.A., 1992. Development and viability of bovine embryos derived from oocytes matured and fertilized in vitro and cocultured with bovine oviductal epithelial cells. *J. Reprod. Fertil.* 94, 33–43.

ARTICLE

In Press, Corrected Proof, Available online 31 March 2006

Wolfgang Erker, Volker Scheumann, Marco Möller, Wolfgang Knoll, Jürgen Rühe and Heinz Decker

[SummaryPlus](#) | [Full Text + Links](#) | [PDF \(321 K\)](#)

Nanoscale characterization of the interface between bone and hydroxyapatite implants and the effect of silicon on bone apposition • REVIEW ARTICLE

In Press, Corrected Proof, Available online 31 March 2006

Alexandra E. Porter

[SummaryPlus](#) | [Full Text + Links](#) | [PDF \(382 K\)](#)

Morphological features and occurrence of degenerative characteristics in the hypopharyngeal glands of the paper wasp *Polistes versicolor* (Olivier) (Hymenoptera: Vespidae) • ARTICLE

In Press, Corrected Proof, Available online 30 March 2006

Fábio Barros Britto and Flávio Henrique Caetano

[SummaryPlus](#) | [Full Text + Links](#) | [PDF \(567 K\)](#)

Volume-weighted mean volume of the submandibular gland acini in male and female diabetic rats • ARTICLE

In Press, Corrected Proof, Available online 29 March 2006

Ali Noorafshan

[SummaryPlus](#) | [Full Text + Links](#) | [PDF \(236 K\)](#)

In vivo and in vitro study of porcine oviductal epithelial cells, cumulus oocyte complexes and granulosa cells: A scanning electron microscopy and inverted microscopy study • ARTICLE

In Press, Corrected Proof, Available online 29 March 2006

Mayuva Areekijserree and Renu Vejaratpimol

[SummaryPlus](#) | [Full Text + Links](#) | [PDF \(1755 K\)](#)

The venom gland of queens of *Apis mellifera* (Hymenoptera, Apidae): morphology and secretory cycle • ARTICLE

In Press, Corrected Proof, Available online 29 March 2006

Thaisa Cristina Roat, Roberta Cornélio Ferreira Nocelli and Carminda da Cruz Landim

[SummaryPlus](#) | [Full Text + Links](#) | [PDF \(586 K\)](#)

Comment on "Investigation on optical properties of ZnO nanowires by electron energy-loss spectroscopy" • DISCUSSION

In Press, Corrected Proof, Available online 27 March 2006

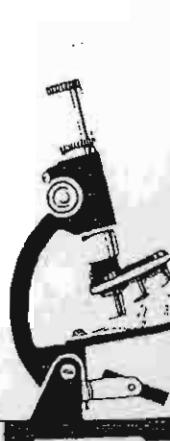
M. Stöger-Pollach and T. Galek

[SummaryPlus](#) | [Full Text + Links](#) | [PDF \(124 K\)](#)

Structure of mammalian spermatozoa in respect to viability, fertility and cryopreservation • REVIEW ARTICLE

In Press, Corrected Proof, Available online 23 March 2006

Sandra Pesch and Martin Bergmann



KASETSART JOURNAL NATURAL SCIENCE

ISSN 0075-5192

Volume 39 Number 1

<http://www.rdi.ku.ac.th>

The Publication of Kasetsart University

The Effects of Edible Coating Ingredient as a Barrier to Moisture and Fat of Fried Breaded Potato	98
..... Worapong Usawakesmamee, Phaisan Wuttijumnong, Manjeet S. Chinnan, Anuvat Jangchud and Nongnuch Raksakulthai	
Effect of Chemical Reagents on Functional Properties of Mungbean Protein Products	109
..... Namthip Wongpratheep Thanong Pukruspan Siree Chaiseri and Vanee Chonhencob	
Design for Bread Baking Temperature Profiles using Neural Network Modeling Approach	119
..... Nantawan Therdthai	
Inhibitory Effects of Mulberry Leaf Lectins to Silkworm Proteases	125
..... Sunanta Ratanapo, Yuwadee Thawalvichit and Amornrat Promboon	
Morphological Features of Porcine Oviductal Epithelial Cells and Cumulus-Oocyte Complex	136
..... Mayuva Areekijserree Amara Thongpan and Renu Vejaratpimol	
Efficacy of Formalin for the Control of White Spot Syndrome Virus Infection in Black Tiger Shrimp (<i>Penaeus monodon</i>)	145
..... Sutep Suwannahong, Niti Chuchird and Chalor Limsuwan	
Effects of Temperature on the Germination of Marine Phytoflagellate Cysts	149
..... Shettapong Meksumpun, Charumas Meksumpun and Shigeru Montani	
Coastal Landuse Change Detection Using Remote Sensing Technique: Case Study in Banten Bay, West Java Island, Indonesia	159
..... Puvadol Doydee	

Morphological Features of Porcine Oviductal Epithelial Cells and Cumulus-Oocyte Complex

Mayuva Areekijseret¹ Amara Thongpan² and Renu Vejaratpimol¹

ABSTRACT

Porcine oviductal epithelial cells (POEC) and cumulus-oocyte complexes (COCs) were observed using inverted microscopy and scanning electron microscopy. At follicular phase, POEC contained a great number of long ciliated cells whereas those at luteal phase consisted mostly of round shaped non-ciliated cells with short microvilli on the apical surface. This change in morphological features of POEC seemed to serve well on their functions as oocyte transporters at follicular phase. As for COCs, they were morphologically classified into 4 types based on the accumulation and arrangement of cumulus cells around the oocytes. These were intact cumulus cell layer, single cumulus cell layer, partial cumulus cell layer and completely denuded oocytes at the percentages of composition of 19.87%, 18.13 %, 28.88 % and 33.12 %, respectively. Cumulus cells attached on the surface of oocytes were teardrop-like shape having the conical ends pointed towards the oocytes membrane surface while free-floating cumulus cells in the follicular fluid and those at the outer layers were round in shape. These POEC and COCs were high potential feeder cells and could be further cultured for *in vitro* fertilization use.

Key words: cumulus-oocyte complexes, morphology, porcine oviductal epithelial cells

INTRODUCTION

Cells in the mammalian female reproductive system, i.e., oviductal epithelial cells and cumulus cells have direct effect and interactions which contribute to the success of fertilization. They are, therefore, high potential cellular materials to be used as cultured feeder-cells for gamete development and *in vitro* fertilization (White *et al.*, 1989; Nagai and Moor, 1990; Kitijyanant *et al.*, 1989, 1993, 1995; Park and Sirard, 1996; Vatzias and Hargen, 1999; Romar *et al.*, 2001, 2003). Since the reproductive organs of pig are not used as human food, they are readily available and can be collected from the slaughter house for research

work. Kitijyanant *et al.* (1993) reported the use of porcine oviductal cells to support *in vitro* bovine embryo development. It is also known that there are some materials in the reproductive tract of animals that produce several offspring at one time, i.e., pig, rodents, could better facilitate the growth and development of embryo in other types of animal in culture. These cells not only help the sperm capacitation and acrosome reaction but also assist the penetration of oocytes and hence, gave higher percentage of *in vitro* fertilization (White *et al.*, 1989; Anderson and Killian, 1994; Hyttel *et al.*, 1997; Park and Sirard, 1996; Romar *et al.*, 2001, 2002). In addition, these cells are very useful in determining the toxic effect of environment

¹ Department of Biology, Faculty of Science, Silpakorn University, Nakorn Pathom 73000, Thailand

² Department of General Science, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand

which could be accumulated and lead to the abnormal development of the embryo. The results of these effects could be clearly seen and evaluated than using the experimental animals and therefore, ethically acceptable.

To be able to make the best use of these cells, attempts are made to thoroughly study the characteristics of them. Unfortunately, basic knowledge on their morphological aspects of these cells are still unknown. This work was aimed to discern the morphological features of porcine oviductal epithelial cells during the estrous cycle and those of cumulus oocytes complex using inverted microscopy and scanning electron microscopy (SEM).

MATERIALS AND METHODS

POEC and COCs collection and preparation

Oviducts and ovaries of Large White pigs were obtained from slaughter house at Nakorn Pathom Province. They were removed within 30 minutes after being slaughtered and transported to the laboratory within 1 hour in a thermos containing 0.9% normal saline.

The oviduct from follicular phases (estrous cycle, day 15) and luteal phases (estrous cycle, day 1-2) were trimmed free from fat and connective tissues and rinsed 3 times in 0.1 M phosphate buffer (pH 7.2). They were cut in small size (2-3 mm) and prepared for SEM observation.

For COCs collection, selected healthy follicles of 2-6 mm in diameter were aspirated using a 5 ml disposable syringe with 18-gauge needle containing 0.9% normal saline and placed in petri dishes. Follicular content was observed under a stereomicroscope and COCs were collected using a pipette of narrow pore size (200 μ m). After aspiration, COCs were washed 3 times in TALP-HEPES supplemented with 10% heat treated fetal calf serum (HTFCS) and 50 mg/ml gentamycin, then observed under an inverted microscope and prepared for SEM observation.

Preparation for scanning electron microscopy

Samples were pre-fixed in 2.5% glutaraldehyde in 0.1 M phosphate-buffer (pH 7.2) for 2 h and post-fixed in 1% osmium tetroxide in the same buffer for 24 h. They were then dehydrated in a graded series of ethanol (30, 50, 70, 80, 90% and absolute ethanol) and dried in a critical point dryer machine (CPD). All samples were mounted on stubs with conductive carbon tape, coated with gold particle at 20 nm thick in an ion sputtering, observed and examined under SEM (CamScan Analytical, Maxim 2000S) operating at 10 kV.

RESULTS

Ultrastructures of POEC

SEM of porcine ampullary oviduct (PAO) showed two different cell types, ciliated and non-ciliated cells. The porcine ampullary oviductal epithelium at the follicular phase contained numerous ciliated cells and some non-ciliated cells. The cilia consistently projected themselves above the apex of the non-ciliated cells (Figure 1A, B and C). At high magnification, non-ciliated cells were clearly seen as spherical shape cells with numerous short microvilli (Figure 1D).

At luteal phase, the number of ciliated cells decreased while non-ciliated cells increased (Figure 2A). At high magnification, the apical surfaces of the non-ciliated cells were round in shape with numerous small microvilli (Figure 2B).

Ultrastructures of COCs

From twenty collected ovaries, 921 oocytes were isolated resulting in the average of 46 oocytes per ovary. Inverted microscopic observation of COCs showed the oocytes from follicular fluid were round in shape and 120-145 μ m in size. They were surrounded with zona pellucida and several layers of cumulus cells (Figure 3A, C). The SEM gave distinct surface appearances of both oocytes and cumulus cells (Figure 3B, D, F, H). Cumulus

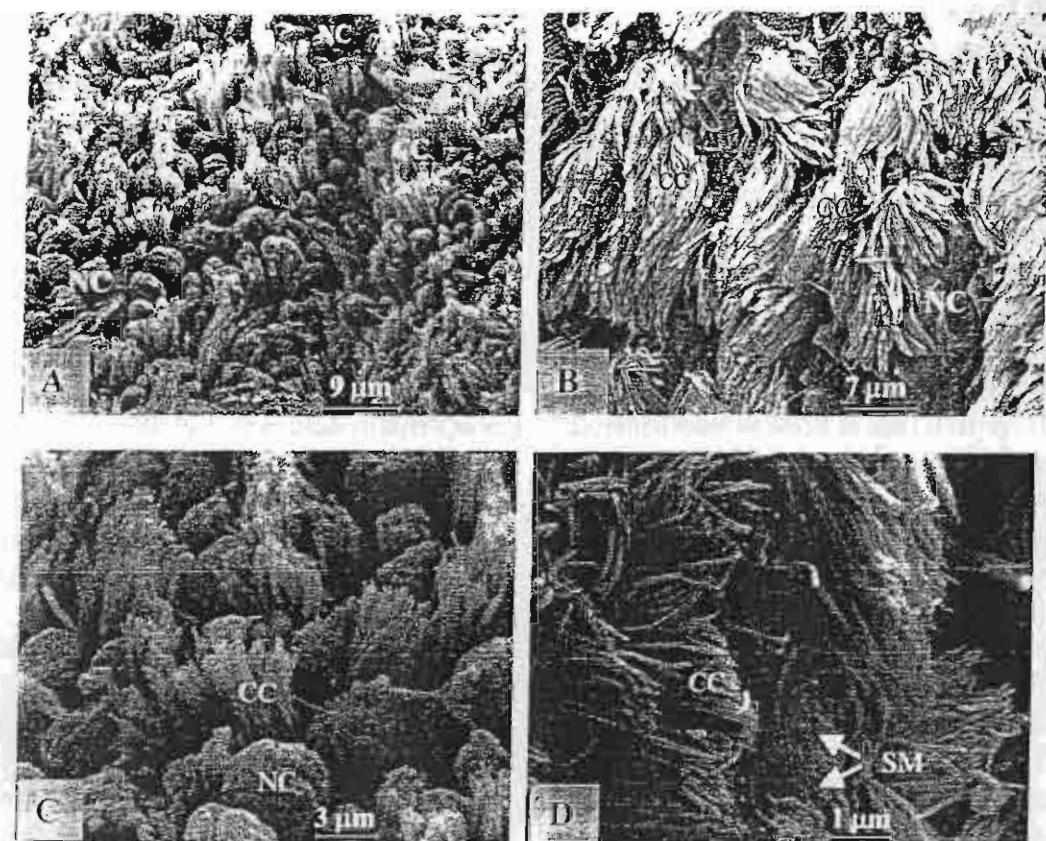


Figure 1 Scanning electron micrographs of POEC at follicular phase. (A, B) showing numerous ciliated cells (CC) and non-ciliated cells (NC). At high magnification (C,D) showing non-ciliated cells (NC) of spherical shape having short microvilli (SM) on the apical surfaces.

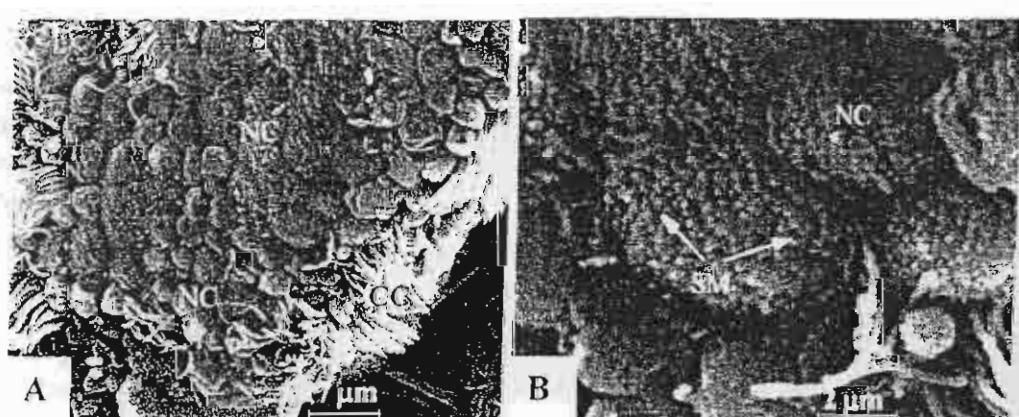


Figure 2 Scanning electron micrographs of POEC at luteal phase showing (A) numerous non-ciliated cells (NC) small number of ciliated cells (CC). At high magnification (B) showing round shape non-ciliated cells (NC) with short microvilli (SM) at the apical surface.

cells were also round in shape and contained no microvilli on the surface membrane. Based on the surrounded cumulus cells of the oocytes, COCs were classified into 4 types as follows:-

Types I- Intact cumulus cells layer- The oocytes were at early development stage having several compact layers of cumulus cell. They were found at secondary follicle part (Figure 3 A,B).

Types II- Single cumulus cell layer- Oocytes were found with one or incomplete two layers of cumulus cell (Figure 3 C,D).

Type III- Partial cumulus cell layer- Oocytes were partially covered with some cumulus cells. The cumulus cells were loosely attached to the zona pellucida. Cytoplasm became fainted in color (Figure 3 E,F).

Type IV- Completely denuded oocyte - Oocytes were completely free from cumulus cells. These oocytes were from follicle atresia. Cytoplasm was pale in color (Figure 3 G,H).

It was found that 33.12% of these COCs was completely denuded oocyte, 28.88% was partial cumulus cell layer type while those of single cumulus cell layer and intact cumulus cell layer types were found at only 19.87% and 18.13 %, respectively (Table 1).

Cumulus cells attached to the oocyte surface were not round in shape like those in the follicular fluid but conformed to a teardrop-like structure having the conical end pointed towards the oocyte surface membrane (Figure 4). The remaining cumulus cells were all round in shape and could be found as a single cell or as a monolayer surrounding the oocyte (Figure 5).

DISCUSSION

Two types of mammalian oviductal epithelial cell, i. e., non-ciliated and ciliated cell, were present in porcine ampullary oviduct (PAO) at both follicular and luteal phases. Ciliated cells in ampulla, however, were found at increased number at the follicular phase than at the luteal

phase. This finding agreed with that of bovine oviductal epithelial cells as reported by Songthaveesin (1998). Although the alternation of population of two types of cell in both phases were similar in these two different species, the morphology of the epithelial cells were distinctly different. In bovine, oviductal epithelial cells form a "wormlike" structure (Xu *et al.*, 1992) while those in porcine were small and round in shape.

Since ampullary oviduct was the site of fertilization, it was found to contain more synthetic secretion than the whole oviduct (Murray, 1992). In the ampullary oviduct at follicular phase, the high number of ciliated cells corresponded to the transporting of ovulated oocytes. At luteal phase, numerous non-ciliated cells with short microvilli at the apical surface also corresponded to the secretory substance for nutritional support of embryonic development (Hole and Koos, 1994). It has been suggested that the cycle of long ciliated and non-ciliated cells population as seen in the mammalian oviduct depends on the levels of circulating estrogen and progesterone (Verhage and Jaffe, 1986). Furthermore, POEC are used as co-culture *in vitro* to support oocytes maturation and increase normal fertilization, sperm capacitation and early embryonic development (White *et al.*, 1989; Nagai and Moor, 1990; Kitiyanant *et al.*, 1993; Park and Sirard, 1996; Vatzias and Hargen, 1999; Romar *et al.*, 2001, 2003). Nagai and Moor (1990) also suggested that glycoproteins secreted from non-ciliated oviductal epithelial cells could bind to the porcine spermatozoa and reduce the incidence of polyspermy. Further studies should be carried out to elucidate the characterization of protein synthesis from non-ciliated POEC during luteal phase.

COCs were collectively characterized into 4 types based on their accumulation and arrangement of cumulus cells around the oocytes. The co-existence of these 4 types of COC were found in all follicular fluid samples collected, even from the similar follicle sizes. However, these 4

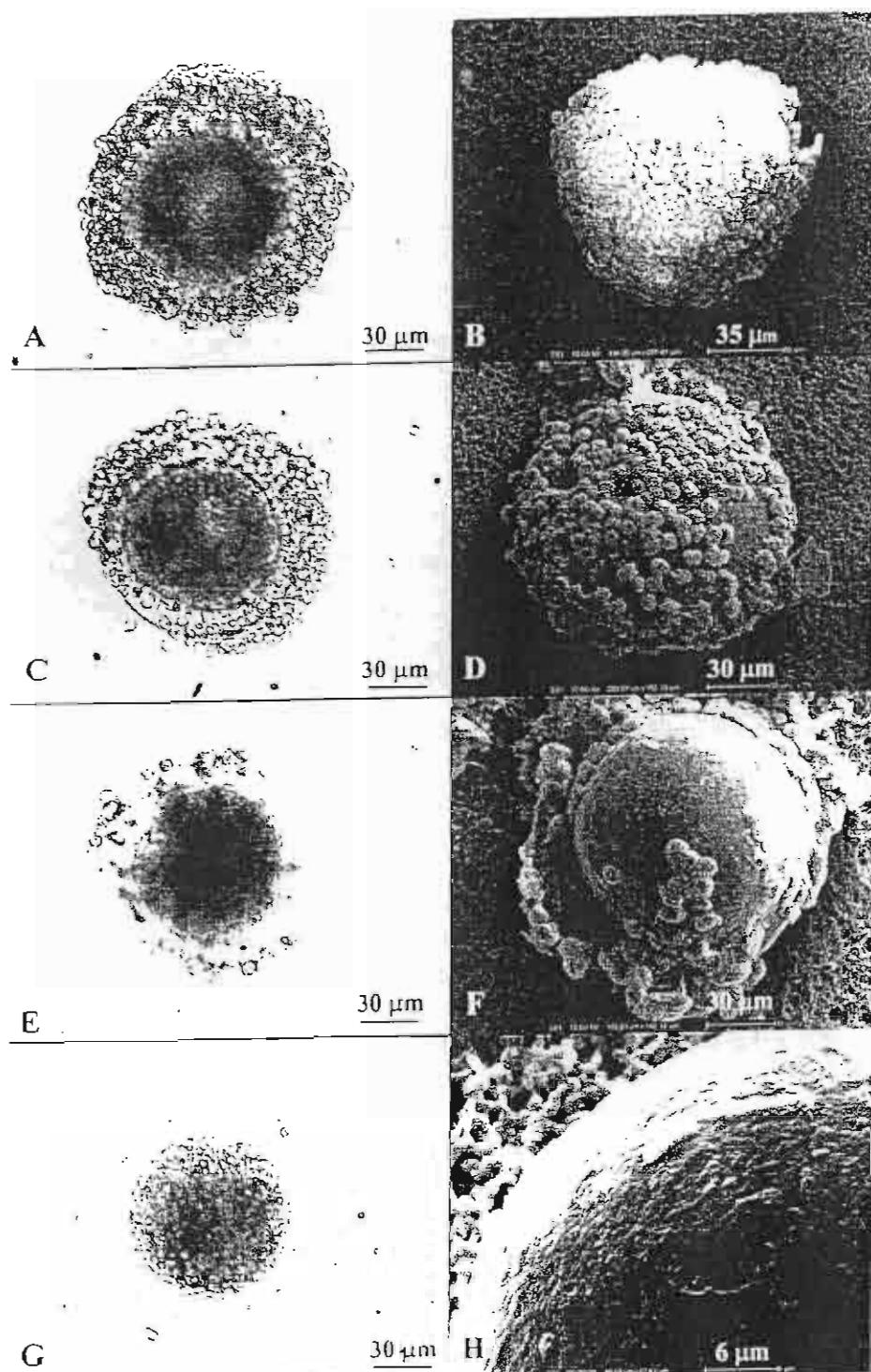


Figure 3. Micrographs and scanning electron micrographs of COCs. (A,B) intact cumulus cell layer, (C,D) single cumulus cell layer, (E,F) partial cumulus cell layer, (G,H) completely demurred oocyte.

Table 1 Classification of COCs based on the types of cumulus cells surrounding oocyte.

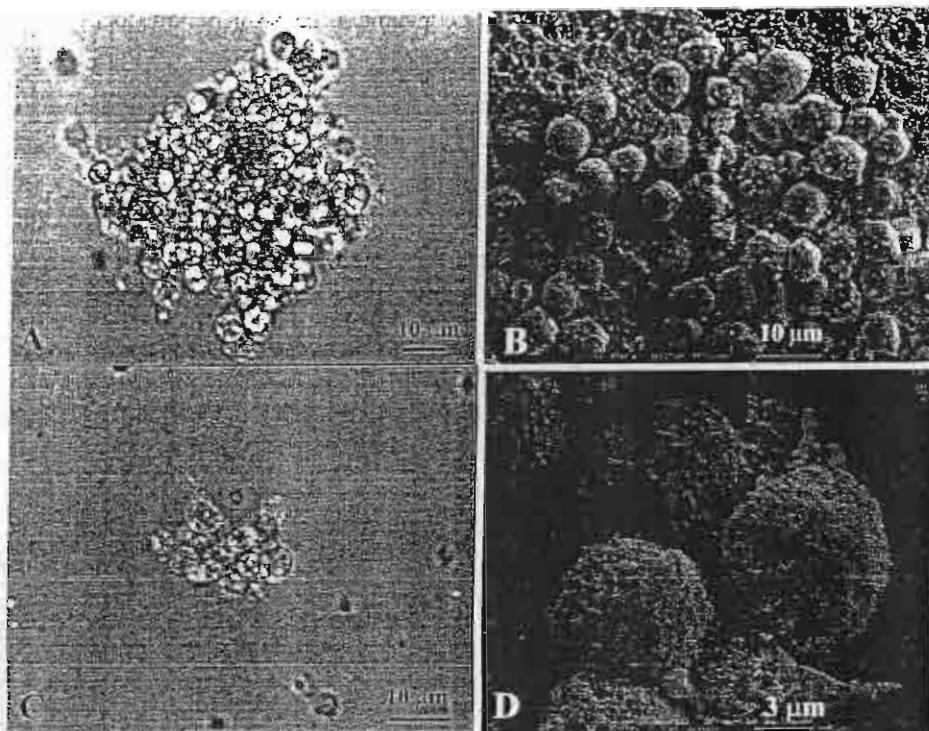

Types	No. of COCs	(%)
Intact cumulus cell layer	183	19.87
Single cumulus cell layer	167	18.13
Partial cumulus cell layer	266	28.88
Completely denuded oocyte	305	33.12
Total	921	100.00

Figure 4 Scanning electron micrographs of COCs. (A) teardrop-like structure of cumulus cells attached to the oocyte surface (cumulus cells: C, zona pellucida: Z, oocytes: O). (B) showing the conical end (arrow) pointed towards the oocyte membrane.

types of COC could be selectively used for different experimental purposes. The partial cumulus cell layer type and the completely denuded oocyte are considered more mature in their natural stage of development and ready for sperm penetration. As for culturing oocyte cells to reach the maturation, Mori *et al.* (2000) found that intact cumulus cell layer type and single cumulus cell layer type had higher potential to become matured oocytes. These types of COC were successfully cultured in the artificial medium supplemented with follicular stimulating hormone (FSH) and leutinizing hormone (LH) using cell samples from rat (Magnusson, 1980), sheep (Staigmiller and Moor, 1984), bovine and swamp buffalo (Kitiyanant *et al.*, 1989, 1995).

Cumulus cells are known to transmit low molecular weight substances, i.e., ion nucleotides and amino acids to oocytes in the young non-reproductive females (Dekel and Beers, 1980). These substances are collectively called oocyte maturation inhibiting factor (or meiosis arresting factor) which arrest the oocyte development at the diplotene stage of prophase I, thereby preventing the primary oocytes from progressing to secondary oocytes (Eppig, 1993). Further study on these molecular secretion from cumulus cells and the oviductal epithelial cells in culture could render us more information on the use of these cells for fertilization control.

Figure 5 Micrographs (A,C) and scanning electron micrographs (B,D) showing the round shape cumulus cells in follicular fluid (free-floating cumulus).

CONCLUSION

These findings indicated that POEC changed both the morphological features and the population of cell types during the estrus cycle. At follicular phase, POEC contained the greater number of long ciliated cells than at luteal phase. The luteal phase, however, was filled up with numerous round shaped non-ciliated cells having short microvilli on the apical surface.

COCs could be collected from the antral follicle of porcine. They were classified according to the surrounding cumulus cells into 4 types, i.e., intact cumulus cell layer, single cumulus cell layer, partial cumulus cell layer, and completely denuded oocytes at the percentage composition of 19.87, 18.13, 28.88 and 33.12%, respectively. The first two types of COC could be further developed into matured eggs in culture while the last two

types were too advanced in their developmental stages and became deteriorated in culture. The first layer of cumulus cells attached to the oocyte membrane were teardrop-like in shape having the conical ends pointed towards the surface membrane while free-floating cumulus cells in the follicular fluid were round in shape and were found both as single cell or forming a monolayer. These cumulus cells could be used as feeder cells for *in vitro* fertilization. Their biochemical compositions and secretion are being further investigated for the best use of them.

ACKNOWLEDGEMENTS

This research was supported by the grant from The Thailand Research Fund (Number: MRG4780028).

LITERATURE CITED

Anderson, S.H. and G.L. Killian. 1994. Effect of oviduct-conditioned medium macromolecules on bovine sperm motion and capacitation. *Biol. Reprod.* 51: 795-799.

Dekel, N. and W.H. Beers. 1980. Development of rat oocytes *in vitro*: inhibition and induction of maturation in the presence or absence of cumulus-oophorus. *Dev. Biol.* 75: 247-254.

Eppig, J.J. 1993. Regulation of mammalian oocyte maturation, pp. 185-208. *In* E.Y. Adashi and P.C.K. Leung (eds.), *The Ovary*. Raven Press, New York.

Hole, J.W. and K.A. Koos. 1994. *Human Anatomy*. 2nd ed. Wm.C. Brown Communications, Inc., Dubuque. 662 p.

Hytte, P., T. Fair, H. Callesen and T. Greve. 1997. Oocyte growth, capacitation and final maturation in cattle. *Theriogenology* 47: 23-32.

Kitiyanant, Y., C. Thonabulsombat, C. Tocharus, B. Sanitwongse and K. Pavasuthipaisit. 1989. Co-culture of bovine embryos from oocytes matured and fertilized *in vitro* to the blastocyst stage with oviductal tissues. *J. Sci. Soc. Thailand* 15: 251-260.

Kitiyanant, Y., C. Tocharus, M. Areekijseret and K. Pavasuthipaisit. 1995. Swamp buffalo oocytes from transvaginal ultrasound-guided aspiration fertilized and co-cultured *in vitro* with bovine oviductal epithelial cells. *Theriogenology* 43 (1): 250.

Kitiyanant, Y., S. Lhuangmahamontol, M. Areekijseret, C. Tocharus, C. Thonabulsombat and K. Pavasuthipaisit. 1993. Porcine oviductal support *in vitro* bovine embryo development. Annual Meeting of the IETS. January 10-12 in Baton Rouge, Louisiana, USA.

Magnusson, C. 1980. Role of cumulus cells for rat oocytes maturation and metabolism. *Gamete Res.* 3: 133-140.

Mori, T., T. Amano and H. Shimizu. 2000. Roles of gap junctional communication of cumulus cells in cytoplasmic maturation of porcine oocytes cultured *in vitro*. *Biol. Reprod.* 62: 913-919.

Murray, M. K. 1992. Biosynthesis and immunocytochemical localization of an estrogen-dependent glycoprotein and associated morphological alterations in the sheep ampulla oviduct. *Biol. Reprod.* 47: 889-902.

Nagai, T. and R.M. Moor. 1990. Effect of oviduct cells on the incidence of polyspermy in pig eggs fertilized *in vitro*. *Mol. Reprod. Dev.* 26: 377-382.

Nilsson, O. and S. Reinius. 1969. Light and electron microscopic structure of the oviduct pp. 57-83. *In* E.S.E. Hafez and R.J. Blandau (eds.), *The Mammalian Oviduct*. The University of Chicago Press, Illinois.

Park, C.K. and M.A. Sirard. 1996. The effect of pre-incubation of frozen-thawed spermatozoa with oviductal cells on the *in vitro* penetration of porcine oocytes. *Theriogenology* 46: 1181-1189.

Romar, R., P. Coy, I. Campus, J. Gadea, C. Matas and S. Ruis. 2001. Effect of co-culture of porcine sperm and oocytes with porcine oviductal epithelial cells on *in vitro* fertilization. *Anim. Reprod. Sci.* 68: 85-98.

Romar, R., P. Coy, S. Ruis, J. Gadea and D. Rath. 2003. Effects of oviductal and cumulus cells on *in vitro* fertilization and embryo development of porcine oocytes fertilized with epididymal spermatozoa. *Theriogenology* 59: 975-986.

Songthavecsin, C. 1998. Observations of epithelial cell of bovine oviductal ampulla during follicular and luteal phases by scanning electron microscopy. *J. Elect. Micro. Soc. Thailand* 12(2): 105-108.

Staigmiller, R.B. and R.M. Moor. 1984. Effect of follicle cells on the maturation and

developmental competence of bovine oocytes matured outside the follicle. *Gamete Res.* 9: 221-229.

Vatzias, G. and D.R. Hargen. 1999. Effects of porcine follicular fluid and oviduct-conditioned media on maturation and fertilization of porcine oocytes *in vitro*. *Biol. Reprod.* 60: 42-48.

Verhage, H.G. and R.C. Jaffe. 1986. Hormonal control of the mammalian oviduct: Morphological features and the steroid receptor systems, pp. 107-117. *In* A.M. Siegler (ed.). *The Fallopian Tube*. Futura, New York.

White, K.L., L.F. Hehnke and L.L. Richards. 1989. Early embryonic development *in vitro* by co-culture with oviductal cells in pigs. *Biol. Report* 41: 425-430.

Xu, K.P., B.R. Yadav, R.W. Rorie, L. Plante, K.J. Betteridge, and W.A. King. 1992. Development and viability of bovine embryos derived from oocytes matured and fertilized *in vitro* and co-cultured with bovine oviductal epithelial cells. *J. Reprod. Fertil.* 94: 33-43.

Porcine oviductal epithelial cells and cumulus-oocyte complex observance

Mayuva Areekijseree,^{a*} Amara Thongpan^b and Renu Vejaratpimol^a

^a Department of Biology, Faculty of Science, Silpakorn University, Nakorn Pathom 73000, Thailand

^b Department of General Science, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand

Abstract-Porcine oviductal epithelial cells (POEC) and cumulus-oocyte complexes (COCs) were observed using light microscopy and scanning electron microscopy. At follicular phase, POEC contained a great number of high ciliated cells whereas those at luteal phase consisted mostly of round shaped non-ciliated cells with short microvilli on the apical surface. This change in morphological features of POEC seemed to serve well on their functions as oocyte transporters at follicular phase. As for COCs, they were morphologically classified into four types based on the accumulation and arrangement of cumulus cells around the oocytes. These were intact cumulus cell layer, single cumulus cell layer, partial cumulus cell layer and completely denuded oocytes at the percentage composition of 19.87%, 18.13%, 28.88% and 33.12%, respectively. Cumulus cells attached on the surface of oocytes were teardrop-like shape having the conical ends pointed towards the oocytes membrane surface while free-floating cumulus in the follicular fluid and those at the outer layers were round in shape. These POEC and COCs are high potential feeder cells and could be further cultured for *in vitro* fertilization use.

Keywords-Cumulus-oocyte complexes, Morphology, Porcine oviductal epithelial cells

* Corresponding author. Tel.: 0-3424-3429, 0-1493-7640; fax: 0-3425-5820; e-mail: Maijackee@hotmail.com

นามสกุล	ชื่อ	เลขหน้า
A		
Abe	Takemi	45
Aeungmaitrepirom	Wanlapa	151
Amongsin	Alongkorn	48
Amornchaiyapitak	Chonlada	155
Amornsakchai	Taweechai	173,174
Ananchuen	Nawarat	240
Ananta	Supon	163
Angsuthanasombat	Chanan	91
Anuchpreeda	Songyot	15
Anukool	W.	249
Anurakpongsatorm	Patana	153
Anusavice	Kenneth J.	129
✓ Aphornratana	Satha	241
Areekjseree	Mayuva	57
Areephong	Jetsuda	17
Arjcharoen	Sutheera	90
Arkaravichien	Tarinee	13
Arora	Manoj K.	223
Arpichantarangkul	Jaradpong	106
Arpornmaeklong	P.	80
Arthan	Dumrongkiet	25
Arunyingmongkol	Kesinee	100
Assabumrungrat	Suttichai	203
Assavanig	Apinya	82
Athisakul	Chainarong	224
Auephanwiriyakul	Sansanee	264
Auewarakul	Prasert	102
Aunpad	Ratchaneewan	37
Auparakkitanon	Saranya	39
Axnér	Eva	60
B		
Bahlo	Melanie	97
Banchuin	Napatawn	110
Bedi	Kavita	119
Belcher	D.	277
Benjakul	Soottawat	137
Boonbumrung	Sumitra	140
Boonkumklaor	Piyanuch	82
Boonsaen	Thirajit	70
Boonsaeng	Vichai	70
Boonsanay	Verawan	92
Boonsri	Pornthip	3

รหัสปอสเตอร์	เรื่อง	หน้าที่
✓ MRG4780028/P0313	<i>Porcine oviductal epithelial cells and cumulus-oocyte complex observance</i>	58
MRG4780060/P0314	<i>The effect of exercise on serum levels of Chondroitin sulfate WF6 epitope in Thoroughbred racehorses</i>	59
MRG4780101/P0315	<i>Ruminal digestibility of leucaena and mulberry foliages in cattle</i>	60
MRG4780201/P0316	<i>The optimal protocol for semen cryopreservation and thawing in domestic cats (<i>Felis catus</i>): a model for semen banking in endangered felids</i>	61
กลุ่มที่ 4: วิทยาศาสตร์การแพทย์พื้นฐานและมะเร็ง		
BRG4580020/P0401	<i>Biochemistry and molecular biology of pyrimidine biosynthesis in human malaria parasite <i>Plasmodium falciparum</i></i>	62
BRG4780004/P0402	<i>Elucidation of molecular structure of <i>Bacillus thuringiensis</i> toxin-induced channels in phospholipid membranes</i>	63
BRG4680009/P0403	<i>Modulating effect of phloracetophenone on biliary excretion of methylmercury in rats</i>	64
BRG4780010/P0404	<i>A Novel leukocyte surface molecule : CD298</i>	65
BRG4780026/P0405	<i>Development of dendritic cell (DC) and cytotoxic T lymphocyte (CTL) and cytokine induced killer cell for cancer and infectious therapy</i>	66
RSA4780018/P0406	<i>The neuroprotective effects of melatonin against hydrogen peroxide induced common oxidative stress mechanism in cultured SH-SY5Y cells</i>	67
RSA4580037/P0407	<i>Chronic metabolic acidosis enhances early osteoblast differentiation while inhibiting late maturation</i>	68
RSA4780003/P0408	<i>Regulation of human β-defensin-2 involved with PLC, calcium, PKC, ERK, JNK, and p38 MAPK in oral epithelial cells</i>	69
RSA4780007/P0409	<i>SPARC promotes migration and fibronectin synthesis in human pulp cells</i>	70
RSA4680002/P0410	<i>Functional analysis of pancreatic-specific promoter of the rat pyruvate carboxylase gene</i>	71
RSA4780010/P0411	<i>Chronic restraint stress impairs ion secretion mediated by sensory neurons in rat colon</i>	72
RSA4680015/P0412	<i>Co-ordinate expression of β-lactamase genes in β-lactam-resistance <i>Burkholderia pseudomallei</i></i>	73
RSA4680004/P0413	<i>Effects of PI3 kinase on invasiveness of high metastatic rat prostatic adenocarcinoma cell line, MLL</i>	74
RSA4680014/P0414	<i>Novel method for producing antibodies using in vivo biotinylated recombinant protein and Streptavidin coated magnetic bead capturing technique</i>	75
MRG4780095/P0415	<i>Cloning of a recombinant A1 domain of human von Willebrand factor from genomic DNA</i>	76
MRG4780018/P0416	<i>Serotonin transporter gene promoter (5-HTTLPR) polymorphism in Thais</i>	77
TRG4780004/P0417	<i>Construction and physiological analysis of <i>Agrobacterium tumefaciens</i> fur mutant in response to oxidative stress</i>	78

กิจกรรมอื่น ๆ ที่เกี่ยวข้อง

การนำเสนอผลงานวิจัยในรูปแบบ Poster ในการประชุมวิชาการ
ระดับประเทศ

22th EMST Annual Conference ของ Microscopy Society of Thailand

เรื่อง “**Porcine Oviductal Epithelial Cells and Cumulus-Oocyte Complex
Observance**”

JOURNAL OF

MICROSCOPY SOCIETY OF THAILAND

AN OFFICIAL PUBLICATION OF MICROSCOPY SOCIETY OF THAILAND

Volume 19 Number 1

ISSN 0857-5285

February 2005

22nd

**ANNUAL CONFERENCE OF
THE MICROSCOPY SOCIETY OF THAILAND**

FEBUARY 2-4, 2005
CHONBURI, THAILAND

Ultrastructural Changes of the Crushes Sciatic Nerve Fibers after <i>Pueraria mirifica</i> Treatment in Rat.....	35
<i>S. Chompoopong, N. Phasuldee, Chongthummakun, T. Wongtawatchai and A. Siriphorn</i>	
Liver Store of Vitamin A was Totally Depleted in Patient with Cerebral Malaria: A Hitherto Unreported Hepatic Involvement Revealed by Fluorescence Microscopy.....	41
<i>W. Ekataksin, N. Chanwimalueang, G. Pattanapen, B. Hanboonkunupakarn, T. Chirachariyavej, P. Radomyos, M. Riganti and E. Pongponratn</i>	
Visualization of Human Arachnocytes for the First Time with Golgi Silver Impregnation: Morphological Comparison of Hepatic Stellate Cells from Pig and Man.....	43
<i>G. Pattanapen, W. Ekataksin, B. Hanboonkunupakarn, N. Chanwimalueang and T. Chirachariyavej</i>	
Scanning Electron Microscopic Study of <i>Acanthamoeba sp.</i> Isolated from Malaysia.....	44
<i>A.G.M. Kamel, D.C.Z. Suriani, A. Norazah, S. Normalawati & H.L. Hing</i>	

POSTER PRESENTATION

Material science

Effect of Sintering Conditions on Morphology of $\text{Bi}_4\text{Ti}_3\text{O}_{12}$ Ceramics Prepared by Nitrate Co-precipitation Process.....	50
<i>P. Pookmanee, S. Bunkird, P. Luangphai and S. Phanichphant</i>	
Morphology and Composition of Diatomaceous Earth (DE) by the SEM and EDXS.....	52
<i>P. Pookmanee, N. Chantaramee, W. Kidroob, R. Intarapoom, W. Supmak, K. Dachkun, W. Jungtanasombut, S. Phipatbanchong, P. Nuamjaroen, N. Topoonyanont and S. Phanichphant</i>	
SEM Studies on Bismuth Titanate Powder Prepared by a Sol-gel Process.....	54
<i>K. Dachkun, P. Luangphai, S. Phanichphant and P. Pookmanee</i>	
Electron Microscopy Investigated of Barium Titanate Powders Synthesized by the Oxalate Method.....	56
<i>S. Phipatbanchong, S. Phanichphant and P. Pookmanee</i>	
SEM Investigation on Ultrafine of $\text{Bi}_4\text{Ti}_3\text{O}_{12}$ Nanopowders Prepared by the Modified Nitrate Co-precipitation Method.....	58
<i>W. Jungtanasombut, P. Luangphai, S. Phanichphant and P. Pookmanee</i>	
Characterization of Aurivillius Bismuth Titanate Powder Synthesized from the Oxalate Coprecipitation Technique.....	60
<i>W. Supmak, S. Phanichphant and P. Pookmanee</i>	
SEM Approach to Zinc Oxide Powders Synthesized by a Low Temperature Hydrothermal Route.....	62
<i>R. Intarapoom, W. Kidroob, P. Luangphai, S. Phanichphant and P. Pookmanee</i>	
The Structural, Magnetic and Morphological Studies of the M-type Barium Ferrites Prepared by a Citrate Process.....	64
<i>S. Ounnunkad, P. Winotai and S. Phanichphant</i>	
The Effect of Calcining Condition on Microstructure and Magnetic Property of $\text{Co}_{0.5}\text{Cu}_{0.5}\text{Fe}_2\text{O}_4$ Fine Powders.....	66
<i>S. Ounnunkad and S. Phanichphant</i>	

The Effects of Preparation Routes on Morphologies of LiCoO ₂ Cathode Materials.....	106
<i>S. Charoenporn, S. Chomkhunngoen and P. Kunthadee</i>	
Influence of Temperature on Morphologies of Lithium Cobalt Oxide Powders Prepared by Sol-Gel Method.....	108
<i>J Chantawan, N. Ponpanngam and P. Kunthadee</i>	
Synthesis and Characterization of Nanocrystalline Titanium Dioxide (TiO ₂) for Photocatalysis Application.....	110
<i>K. Juengsuwattananon, S. Supothina, A. Jaroenworaluck and T. Panyathanmaporn</i>	
TEM Investigation on Silica Diagenesis.....	112
<i>W. Keankeo</i>	
Preparation and Characterization of Porous Silica from Diatomaceous Earth.....	114
<i>A. Intwong, N. Chantaramee and R. Puntharod</i>	
Study of Microstructure and Chemical Properties of Amorphous Silica and Silica Gel Produced from Mixed Acid Treated Glutinous Rice Husks.....	119
<i>J. Jitcharoen, A. Pimmongkon, N. Puewchote and A. Ditprasop</i>	
Properties of 0-3 PSZT/Polymer Composites.....	125
<i>S. Jompruan, G. Rujjanagul, and T. Tunkasi</i>	
Biological science	
Porcine Oviductal Epithelial Cells and Cumulus-Oocyte Complex Observance	127
<i>M. Areekijserree, A. Thongpan and R. Vejaratpimol</i>	
Microvascularization of the Adrenal Glands in the Lylei's Flying Fox (<i>Pteropus lylei</i>).....	132
<i>K. Kanamnouy, P. Sriya, A. Niyomchan, P. Lanlua and S. Sricharoenvej</i>	
Scanning Electron Microscopic Study on Splenic Microvascularization of the Lylei's Flying Fox, <i>Pteropus lylei</i>	134
<i>N. Chompoon, P. Sriya, K. Kanamnouy, P. Lanlua and S. Sricharoenvej</i>	
Fluorescence Microscopy: A Hitherto Unobserved Nature of Arachnocytes.....	136
<i>N. Chunwimalueang, W. Ekataksin, P. Piyachaturawat and T. Chirachariyavej</i>	
Developing A Histology Atlas Largest in the World: <i>Panoramic Reconstruction</i> © Combined with High Resolution Digital Microscopy and Large Format Printing Technology.....	138
<i>B. Hanboonkunupakarn, W. Ekataksin, G. Pattanapenl, C. Ekataksin, N. Chunwimalueang and K. Yamashita</i>	
Pathology of the Murine Respiratory Epithelia Following Selenium Instillation.....	140
<i>D. Cherdwongcharoensuk, A. P. Águas, R. Henrique, S. Upatham and A. S. Pereira</i>	
Relationship of Opioid Receptors to GABAergic Neurons in the Rat Inferior Colliculus.....	141
<i>W. Tongjaroenbuangam, P. Phansuwan-Pujito, S.O. Casalotti, A. Forge and P. Govitrapong</i>	
Electron Microscopic Immunocytochemical Study of Delta Opioid Receptor in the Rat Spiral Ganglion.....	142
<i>U. Showpittapornchai, P. Phansuwan-Pujito, S. Suwanmanee, K. Saeung, S. Casalotti, A. Forge and P. Govitrapong</i>	
Immunohistochemical Study of Dopamine Transporter in the Bovine Pineal Gland.....	143
<i>P. Boontem, P. Phansuwan-Pujito, M. Ebadi and P. Govitrapong</i>	

Poster Presentation

Porcine Oviductal Epithelial Cells and Cumulus-Oocyte Complexes Observance

Mayuva Areekijseret¹, Amara Thongpan², Renu Vejaratpimol¹

¹ Department of Biology, Faculty of Science, Silpakorn University, Nakorn Pathom 73000, Thailand.

² Department of General Science, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.

Abstract

Porcine oviductal epithelial cells (POEC) and cumulus-oocyte complexes (COCs) were observed using light microscopy and scanning electron microscopy. At follicular phase, POEC contained a great number of high ciliated cells whereas those at luteal phase consisted mostly of round shaped non-ciliated cells with short microvilli on the apical surface. This change in morphological features of POEC seemed to serve well on their functions as oocyte transporters at follicular phase. As for COCs, they were morphologically classified into four types based on the accumulation and arrangement of cumulus cells around the oocytes. These were intact cumulus cell layer, single cumulus cell layer, partial cumulus cell layer and completely denuded oocytes at the percentage composition of 19.87%, 18.13%, 28.88% and 33.12%, respectively. Cumulus cells attached on the surface of oocytes were teardrop-like shape having the conical ends pointed towards the oocytes membrane surface while free-floating cumulus in the follicular fluid and those at the outer layers were round in shape. These POEC and COCs are high potential feeder cells and could be further cultured for *in vitro* fertilization use.

Key words

Cumulus-oocyte complexes, Light microscopy, Morphological, Porcine oviductal epithelial cells, Scanning electron microscopy

Background

Cells in the mammalian female reproductive system, i.e., oviductal epithelial cells and cumulus cells have direct effect and interactions which contribute to the success of fertilization. They are, therefore, high potential cellular materials to be used as cultured feeder-cells for gamete development and *in vitro* fertilization [1-9]. Since the reproductive organs of pig are not used as human food, they are readily available and can be collected from the slaughter house for research work. Kitiyanat *et al.* [4] reported on the use of porcine oviductal cells to support *in vitro* bovine embryo development. It is also known that there are some materials in the reproductive tract of animals that produce several offspring at one time, i.e., pig, rodents, could better facilitate the growth and development of embryo in other types of animal in culture. These cells not only help the sperm capacitation and acrosome reaction but also assist the penetration of oocytes and hence, gave higher percentage of *in vitro* fertilization [1, 6, 8-11]. In addition, these cells are very useful in determining the toxic effect of environment which could be accumulated and lead to the abnormal development of the embryo. The results of these effects could be clearly seen and evaluated than using the experimental animals and therefore, ethically acceptable.

To be able to make the best use of these cells, attempts are made to thoroughly study the characteristics of them. Unfortunately, basic knowledge on their morphological aspects of these cells are still unknown in pigs. This work aims to discern the morphological features of porcine oviductal epithelial cells (POEC) during the estrous cycle and those of cumulus-oocyte complexes (COCs) using light microscopy (LM) and scanning electron microscopy (SEM).

Materials and Methods

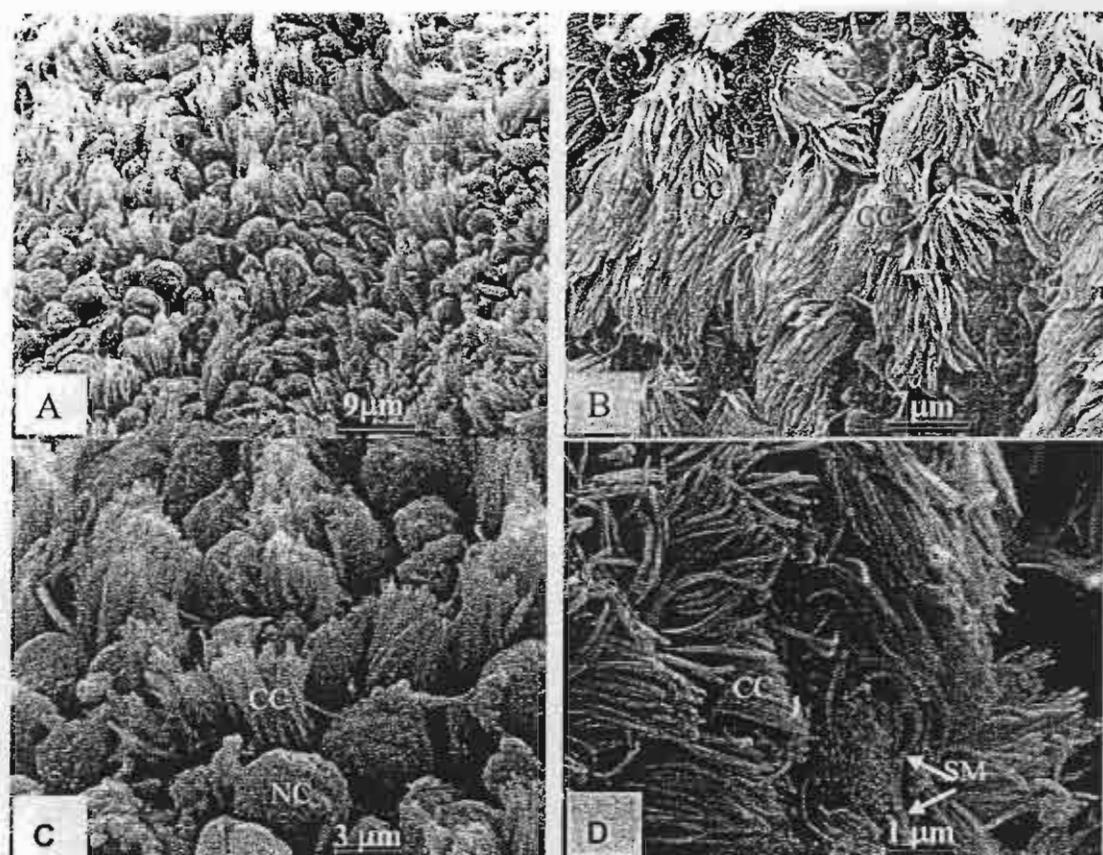
POEC and COCs collection and preparation

Twenty oviducts and twenty ovaries of Large white pigs were obtained from slaughterhouse at Nakorn Pathom Province. They were removed within 30 min after being slaughtered and transported to the laboratory within 1 h in a thermos containing 0.9% normal saline.

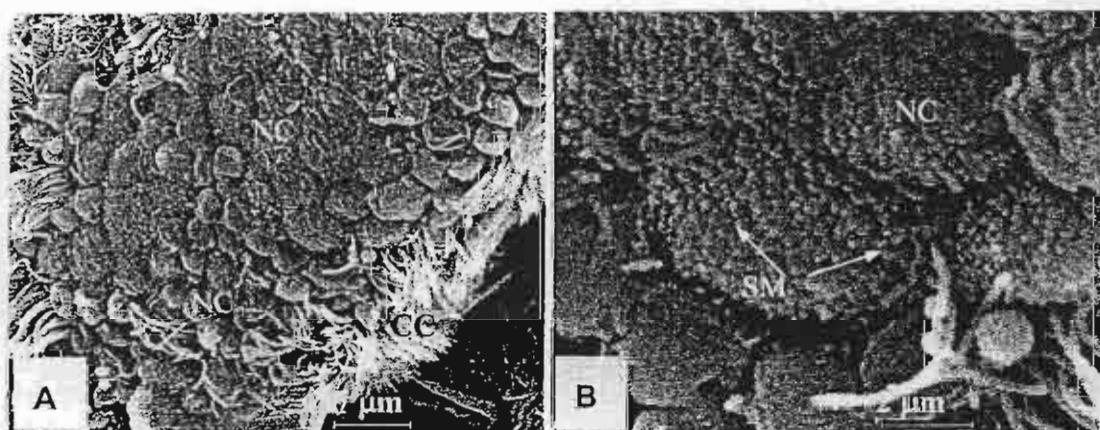
The ampullar part of oviduct from follicular phases (estrous cycle, day 15) and luteal phases (estrous cycle, day 1-2) were trimmed free from fat and connective tissues and rinsed 3 times in 0.1 M phosphate buffer (pH 7.2). They were cut in small size (2-3 mm) and prepared for SEM observation.

For COCs collection, selected healthy follicles of 2-6 mm in diameter were aspirated using a 5 ml disposable syringe with 18-gauge needle containing 0.9% normal saline and placed in petri dishes. Follicular content was observed under a stereomicroscope and COCs were collected using a pipette of narrow pore size (200 μ m). After aspiration, COCs were washed 3 times in TALP-HEPES supplemented with 10% heat treated fetal calf serum and 50 mg/ml gentamycin, then observed under an inverted microscope and prepared for SEM observation.

Preparation for scanning electron microscopy


Samples were pre-fixed in 2.5% glutaraldehyde in 0.1 M phosphate buffer for 2 h and post-fixed in 1% osmium tetroxide in the same buffer for 24 h. They were then dehydrated in a graded series of ethanol (30%, 50%, 70%, 80%, 90% and absolute ethanol) and dried in a critical point dryer machine. All samples were mounted on stubs with conductive carbon tape, coated with gold particles at 20 nm thick in an ion sputtering and examined under SEM (CamScan Analytical, Maxim 2000S) operating at 10 kV.

Results


Ultrastructures of POEC

SEM observation of the porcine ampullary oviduct showed two different cells types, ciliated and non-ciliated cells. The porcine ampullary oviductal epithelium at the follicular phase contained numerous ciliated cells. The cilia consistently projected themselves above the apex of the non-ciliated cells (Figure 1A-C). At high magnification, non-ciliated cells were clearly seen as spherical shape cells with numerous short microvilli (Figure 1C and D).

At luteal phase, the number of ciliated cells were decreased while non-ciliated cells were increased (Figure 2A). At high magnification, the apical surfaces of the non-ciliated cells were round in shape with numerous small microvilli (Figure 2B).

Figure 1. SEM micrographs of the POEC at follicular phase showed (A-B) numerous ciliated cells (CC). An enlargement of (C-D) non-ciliated cells (NC) of spherical shape having short microvilli (SM) on the apical surfaces.

Figure 2. SEM micrographs of the POEC at luteal phase showed (A) numerous non-ciliated cells (NC) and small number of ciliated cells (CC). An enlargement of round shape showed (B) non-ciliated cells (NC) with short microvilli (SM) at the apical surfaces.

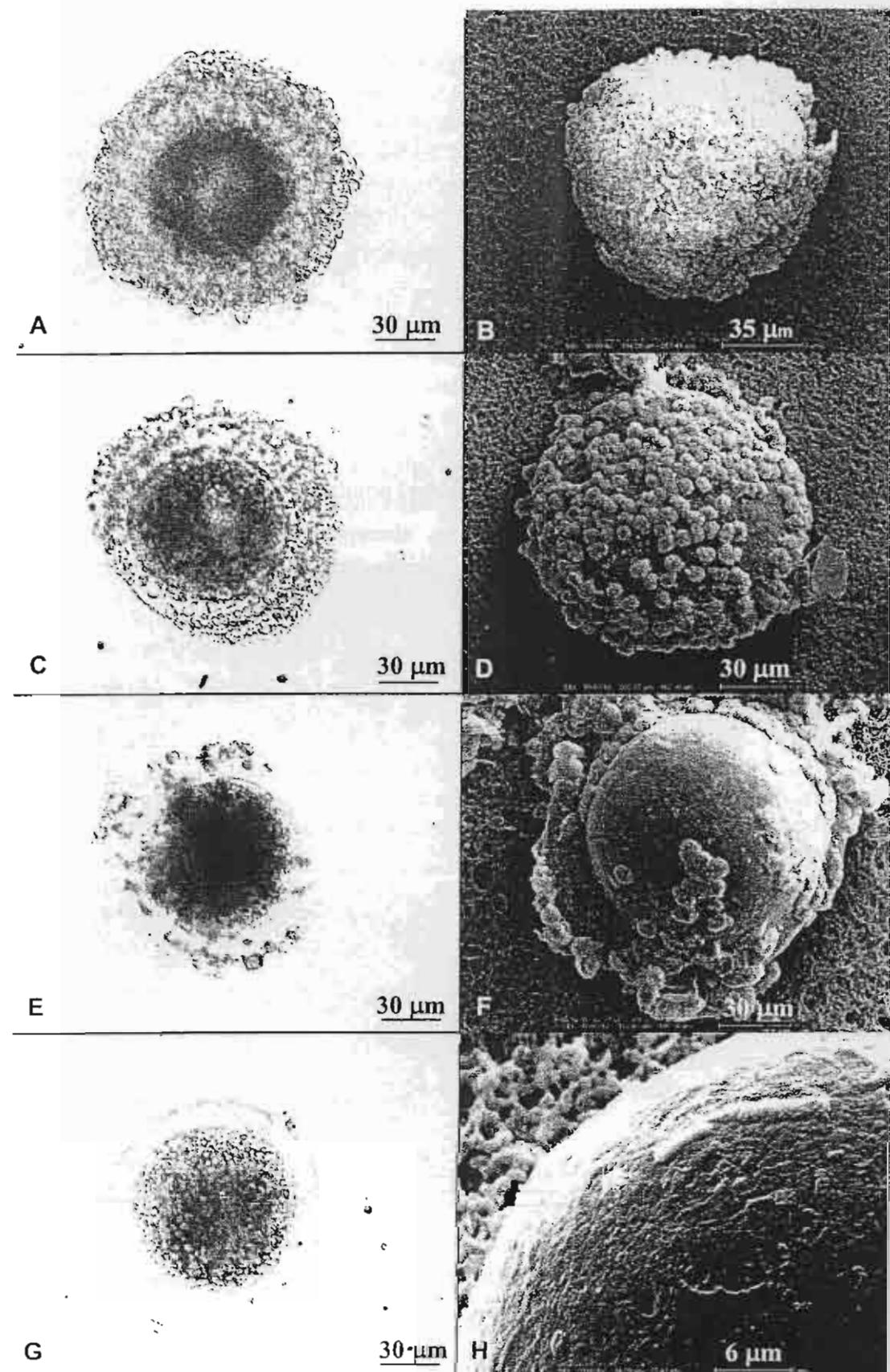
Ultrastructures of COCs

From twenty collected ovaries, 921 oocytes were isolated resulting in the average of 46 oocytes per ovary. LM observation of COCs showed the oocytes from follicular fluid were round in shape and 120-130 μm in size. They were surrounded with zona pelucida and several layers of cumulus cells (Figure 3A, C). SEM demonstrated distinct surface appearances of both oocytes and cumulus cells (Figure 3B, D, F, H). Cumulus cells were also round in shape and contained no microvilli on the surface membrane. Based on the surrounded cumulus cells of the oocytes, COCs were classified into four types as follows:-

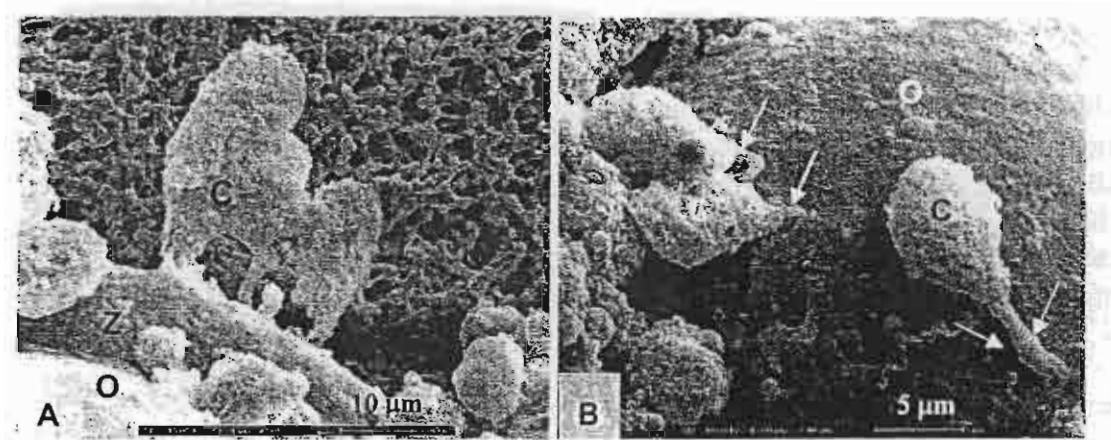
Type I- Intact cumulus cell layer. The oocytes were at early development stage having several compact layers of cumulus cells. They were found at secondary follicle part (Figure 3A-B).

Type II- Single cumulus cell layer. The oocytes were found with one or incomplete two layers of cumulus cells (Figure 3C-D).

Type III- Partial cumulus cell layer. The oocytes were partially covered with some cumulus cells. The cumulus cells were loosely attached to the zona pelucida. The cytoplasmic appearance of these cells was faint (Figure 3E-F).


Type IV- Completely denuded oocyte. The oocytes were completely free from cumulus cells. These oocytes were from follicle atresia. The cytoplasmic appearance of these cells was pale (Figure 3 G-H).

It was found that 33.12% of these COCs was completely denuded oocyte, 28.88% was partial cumulus cell layer type while those of intact cumulus cell layer types and single cumulus cell layer were found at only 19.87% and 18.13%, respectively (Table 1).


Table 1. Classification of COCs based on the types of cumulus cells surrounding oocyte.

Types	No. of COCs	(%)
Intact cumulus cell layer	183	19.87
Single cumulus cell layer	167	18.13
Partial cumulus cell layer	266	28.88
Completely denuded oocyte	305	33.12
Total	921	100.00

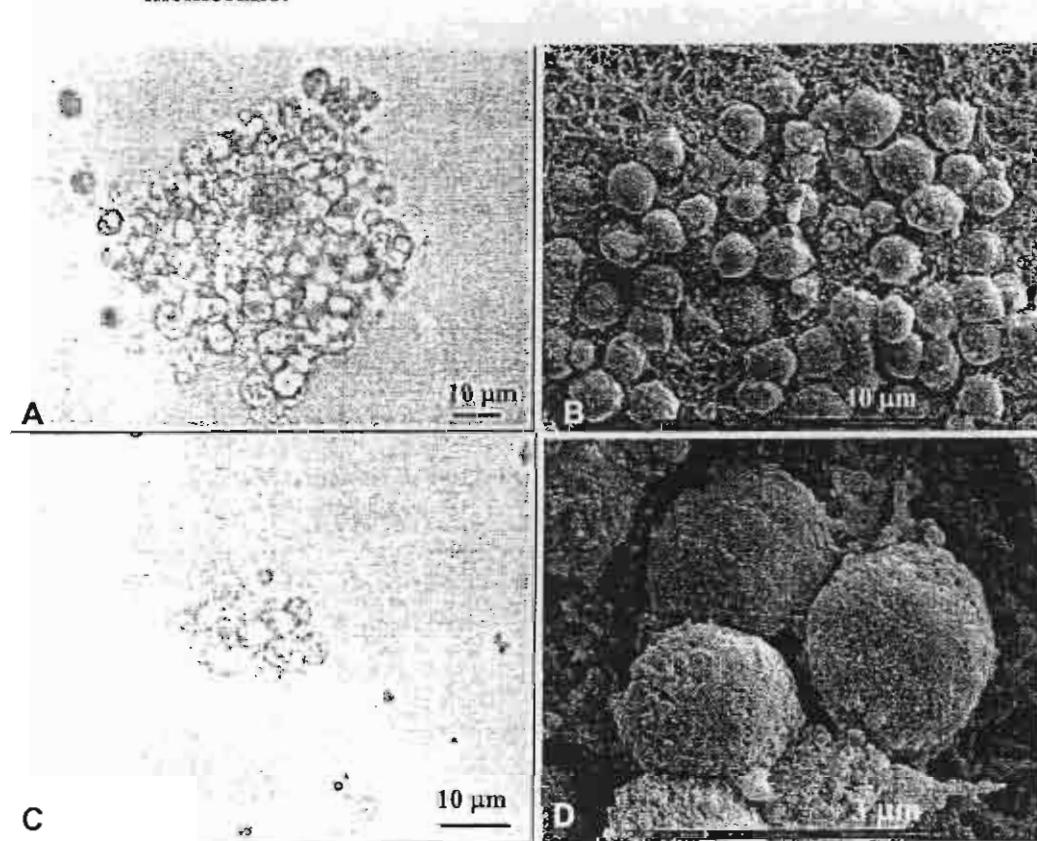

Cumulus cells attached to the oocyte surface were not round in shape like those in the follicular fluid but conformed to a teardrop-like structure having the conical end pointed towards the oocyte surface membrane (Figure 4). The remaining cumulus cells were all round in shape and could be found as a single cell or as a monolayer surrounding the oocyte (Figure 5).

Figure 3. LM and SEM micrographs of COCs showed (A-B) intact cumulus cell layer, (C-D) single cumulus cell layer, (E-F) partial cumulus cell layer, (G-H) completely denuded oocyte.

Figure 4. SEM micrographs of COCs showed (A) teardrop-like structure of cumulus cells attached to the oocytes surface (cumulus cells: C, zona pellucida: Z, oocytes :O), (B) the conical end (arrows) pointed towards the oocyte membrane.

Figure 5. LM (A-C) and SEM micrographs (B-D) showed the round shape cumulus cells in follicular fluid (free-floating cumulus).

Discussion

Two types of mammalian oviductal epithelial cells, i. e., ciliated cell and non-ciliated, were present in porcine ampullary oviduct at both follicular and luteal phases. Ciliated cells in ampulla, however, were found at increased number at the follicular phase than at the luteal phase. This finding agreed with that of bovine oviductal epithelial cells as reported by Songthaveesin [12]. Although the alternation of population of two cell types in both phases were similar in these two different species, the morphology of the epithelial cells were distinctly different. In bovine, oviductal epithelial cells form a "wormlike" structure [13] while those in pig were small and round in shape.

Since ampullary oviduct is the fertilization area, it was found to contain more synthetic secretion than the whole oviduct [14]. In the ampullary oviduct at follicular phase, the high number of ciliated cells corresponded to the transporting of ovulated oocytes. At luteal phase, numerous non-ciliated cells in the small spheres with short microvilli at the apical surfaces corresponded to the secretory substance for nutritional support of embryonic development as also seen by Hole and Koos [15]. It has been suggested that the cycle of high ciliated and non-ciliated cells population as seen in the mammalian oviduct depends on the levels of circulating estrogen and progesterone [16]. Furthermore, POEC were used as co-culture *in vitro* to support oocytes maturation and increase normal fertilization, sperm preparation and early embryonic development [1-9]. Nagai and Moor [2] also suggested that glycoproteins secreted from non-ciliated oviductal epithelial cells could bind to the porcine spermatozoa and reduce the incidence of polyspermy. Further studies should be carried out to elucidate the characterization of protein synthesis from non-ciliated POEC during luteal phase.

COCs were collectively characterized into four types base on their accumulation and arrangement of cumulus cells around the oocytes. The consistent mixing of these four types of COCs were found in all follicle fluid samples collected, even from the similar follicle sizes. However, these four types of COCs could be selectively used for different experimental purposes. The partial cumulus cell layer type and the completely denuded oocyte are considered more mature in their natural stage of development and ready for sperm penetration. As for culturing oocyte cells to reach the maturation, Mori et al. [17] found that intact cumulus cell layer type and single cumulus cell layer type had higher potential to become matured oocytes. These types of COCs were successfully cultured in the artificial medium supplemented with follicular stimulating hormone and leutinizing hormone using cell samples from rat [18], sheep [19], bovine and swamp buffalo [3,5].

Cumulus cells are known to transmit low molecular weight substances, i.e., ion nucleotides and amino acids to oocytes in the young non-reproductive females [19]. These substances are called oocyte maturation inhibiting factor (or meiosis arresting factor) which arrest the oocyte development at the diplotene stage of prophase I, thereby preventing the primary oocytes from progressing to secondary oocytes [20]. Further study on these molecular secretions from cumulus cells and the oviductal epithelial cells in culture could render us more information on the use of these cells for fertilization control.

Conclusions

Our findings indicated that POEC changed both the morphological features and the population of cell types during the estrous cycle. At follicular phase, POEC contained the greater number of high ciliated cells than at luteal phase. The luteal phase, however, was filled up with numerous round shaped non-ciliated cells having short microvilli on the apical surfaces. COCs could be collected from the antral follicle of pig. They were classified according to the surrounding cumulus cells into four types, i.e., intact cumulus cell layer, single cumulus cell layer, partial cumulus cell layer, and completely denuded oocytes at the percentage composition of 19.87%, 18.13%, 28.88%, and 33.12%, respectively. The first two types of COCs could be further developed into mature eggs in culture while the last two types were too advanced in their developmental stages and became deteriorated in culture. The first layer of cumulus cells attached to the oocyte membrane were teardrop-like in shape having the conical ends pointed towards the surface membrane while free-floating cumulus cells in the follicular fluid were round in shape and were found both as single cell or forming a monolayer. These cumulus cells could be used as feeder cells for *in vitro* fertilization.

Acknowledgement

This research was supported by the grant from The Thailand Research Fund (Number: MRG4780028).

References

1. White KL, Hehnke LF, Richards LL. Early embryonic development *in vitro* by co-culture with oviductal cells in pigs. *Biol. Report* 1989, 41: 425-430.
2. Nagai T, Moor RM. Effect of oviduct cells on the incidence of polyspermy in pig eggs fertilized *in vitro*. *Mol. Reprod. Dev* 1990, 26: 377-382.
3. Kitiyanant Y, Thonabulsombat C, Tocharus C, Sanitwongse B, Pavasuthipaisit K. Co-culture of bovine embryos from oocytes matured and fertilized *in vitro* to the blastocyst stage with oviductal tissues. *J. Sci. Soc. Thailand* 1989, 15: 251-260.
4. Kitiyanant Y, Lhuangmahamonkol S, Areekijseree M, Tocharus C, Thonabulsombat, Pavasuthipaisit K. Porcine oviductal support *in vitro* bovine embryo development. *Annual Meeting of the IETS*. January 10-12 in Baton Rouge, Louisiana, USA 1993.
5. Kitiyanant Y, Tocharus C, Areekijseree M, Pavasuthipaisit K. Swamp buffalo oocytes from transvaginal ultrasound-guided aspiration fertilized and co-cultured *in vitro* with bovine oviductal epithelial cells. *Theriogenology* 1995, 43 (1): 250.
6. Park CK, Sirard MA. The effect of pre-incubation of frozen-thawed spermatozoa with oviductal cells on the *in vitro* penetration of porcine oocytes. *Theriogenology* 1996, 46: 1181-1189.
7. Vatzias G, Hargen DR. Effects of porcine follicular fluid and oviduct-conditioned media on maturation and fertilization of porcine oocytes *in vitro*. *Biol. Reprod* 1999, 60: 42-48.
8. Romar R, Coy P, Campos I, Gadea J, Matas C, Ruis S. Effect of co-culture of porcine sperm and oocytes with porcine oviductal epithelial cells on *in vitro* fertilization. *Anim. Reprod. Sci* 2001, 68: 85-98.
9. Romar R, Coy P, Ruis S, Gadea J, Rath D. Effects of oviductal and cumulus cells on *in vitro* fertilization and embryo development of porcine oocytes fertilized with epididymal spermatozoa. *Theriogenology* 2003, 59: 975-986.
10. Anderson SH, Killian GL. Effect of oviduct conditioned medium macromolecules on bovine sperm motion and capacitation. *Biol. Reprod* 1994, 51: 795-799.
11. Hyttel P, Fair T, Callesen H, Greve T. Oocyte growth, capacitation and final maturation in cattle. *Theriogenology* 1997, 47: 23-32.

12. Songthaveesin C. Observations of epithelial cell of bovine oviductal ampulla during follicular and luteal phases by scanning electron microscopy. *J. Elect. Micro. Soc. Thailand* 1998, 12(2): 105-108.
13. Xu KP, Yadav BR, Rorie RW, Plante L, Betteridge KJ, King WA. Development and viability of bovine embryos derived from oocytes matured and fertilized *in vitro* and co-cultured with bovine oviductal epithelial cells. *J. Reprod. Fertil.* 1992, 94: 33-43.
14. Murray M K. Biosynthesis and immunocytochemical localization of an estrogen-dependent glycoprotein and associated morphological alterations in the sheep ampulla oviduct. *Biol. Reprod.* 1992, 47: 889-902.
15. Hole JW, Koos KA. **Human Anatomy**. 2nd ed. WmC. Brown Communications. Inc., Dubuque. 1994 .
16. Verhange H G, Jaffe RC. **Hormonal Control of the Mammalian Oviduct: Morphological Features and the Steroid Receptor Systems: The Fallopian Tube**. (Edited by Siegler AM). Futura, New York 1986.
17. Mori T, Amano T, Shimizu H. Roles of gap junctional communication of cumulus cells in cytoplasmic maturation of porcine oocytes cultured *in vitro*. *Biol. Reprod* 2000, 62: 913-919.
18. Magnusson C. Role of cumulus cells for rat oocytes maturation and metabolism. *Gamete Res* 1980, 3: 133-140.
19. Staigmiller RB, Moor RM. Effect of follicle cells on the maturation and developmental competence of ovine oocytes matured outside the follicle. *Gamete Res* 1984, 9: 221-229.
20. Dekel N, Beers WH. Development of rat oocyte *in vitro*: inhibition and induction of maturation in the presence or absence of cumulus-oophorus. *Dev. Biol* 1980, 75: 247-254.
21. Eppig JJ. **Regulation of Mammalian Oocyte Maturation: The Ovary**. (Edited by Adashi EY, Leung PCK) New York, Raven Press 1993, 185-208.