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2. บทคัดย่อ

วิทยาการหุ่นยนต์มีศักยภาพมหาศาลที่จะเปลี่ยนวิถึชีวิตของเราในปัจจุบันไปในทางที่ดีขึ้น แต่อุปสรรคสำคัญ
ประการหนึ่งในการพัฒนาวิทยาการด้านนี้ให้เกิดผลสัมฤทธิ์ คือความยากในการคิดค้นอัลกอริทึมสำหรับการรับรู้
(perception) และการทำความเข้าใจสภาพแวดล้อมของหุ่นยนต์ โครงการนี้มีจุดประสงค์ที่จะพัฒนาอัลกอริทึมสำหรับ
การมองเห็นของหุ่นยนต์ (machine vision) เพ่ือการรับรู้และการทำความเข้าใจสภาพแวดล้อมของหุ่นยนต์ โดยแบ่ง
งานเป็น 2 ส่วน กล่าวคือ ส่วนแรกเป็นส่วนพื้นฐาน ประกอบด้วยการคิดค้นอัลกอริทึมใหม่ ๆ และการพัฒนา
ซอฟท์แวร์ไลบรารีเพ่ือสังเคราะห์ข้อมูลจากฉาก (scene) 3 มิติที่ได้จากกล้องจับภาพ 1 ตัว (monocular camera)
หรือกล้องจับภาพ 3 ตัวที่จับภาพพร้อมกัน (trinocular stereo camera) ส่วนที่สองเป็นการใช้ผลลัพธ์จากส่วนแรก
เพื่อคิดค้นและพัฒนาวิธีการใหม่ ๆ ในการทำความเข้าใจเนื้อหาของฉาก ตัวอย่างเช่น คิดค้นวิธีการตรวจหามือคนที่
ปรากฏในลำดับภาพวิดีโอ คิดค้นวิธีการวิเคราะห์ภาพ 2 มิติเพื่อหาโครงสร้างเครือข่ายบางชนิด เช่น แผนที่ที่ประกอบ
ด้วยถนนสายต่าง ๆ เป็นต้น คณะผู้วิจยัมีเป้าหมายให้ผลลัพธ์ที่ได้จากโครงการน้ี เป็นก้าวหนึ่งในการพัฒนาความ
สามารถในการรับรู้ของหุ่นยนต์ เพ่ือการใช้ประโยชน์ของเทคโนโลยีแขนงนี้ในรูปแบบต่าง ๆ ในอนาคต

Robotics technology has the potential to revolutionize our lives, but one of the largest obstacles to widespread
adoption of robots that live and work with us is a lack of algorithms for perception and understanding of the
environment. In this project, we develop machine vision algorithms for a variety of tasks related to perception
and understanding of the environment. In the foundational part of the project, we have developed new algorithms
and software libraries for extracting information about a three-dimensional scene from trinocular stereo as well
as monocular video streams. Building on the base software libraries, we have also developed new approaches
to understanding the contents of a scene, including a method for detecting human hands in video sequences and
extracting network-like structures from 2D images. The work is a step along the path to improved perceptual
abilities for interactive robotic applications.

Keywords: Structure from motion, stereo vision, robot vision, hand tracking, network extraction, statistical mod-
eling.
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2.3 สาขาวิชาท่ีทำงานวิจัย
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2.6 ปัญหาที่ทำการวิจัย และ ความสำคัญของปัญหา

Over the past 30 years, robotics technology has developed to the point that robotics products are moving out
of the laboratory and into retail markets. Robotics technology is expanding to keep us safe, keep us healthy,
and eliminate dangerous and tedious tasks from our lives.

However, although massive amounts of cheap compute power will be available to robotics applications
in the near future, the algorithms we have for exploiting this massive compute power are sorely lacking.
When compared to humans (or even rats), modern technology is most glaringly deficient in perception and
understanding of the environment. The gap in visual perception abilities between animals and machines is
perhaps the greatest obstacle robotics practitioners face today.

Machine vision research aims to close this crucial gap. In this project, we aim to develop machine vision
algorithms for structure learning and scene understanding, towards ultimately endowing robotic applications
with the ability to interact with the environment and humans in that environment.

2.7 วัตถุประสงค์

Our project has the following goals, all involving the use of low-cost trinocular and monocular video cameras
to extract 3D information from 2D image data, isolate objects of interest in an image, and track objects of
interest over time.

- Develop methods for extracting information about a three-dimensional scene from the motion of a
trinocular camera rig through that environment.

- Develop methods for tracking human hands in a monocular video sequence.

- Develop methods for extracting network-like structures from 2D images.

Our early work focused on the use of trinocular camera rigs to extract 3D information from the world, and
our more recent work has focused on developing a set of modules for extracting useful information from
simpler, lower-cost monocular camera images.

2.8 ระเบียบวิธีวิจัย

In the first year of the project, we built a trinocular stereo camera rig and developed a collection of software
libraries for capturing images trinocular and monocular images, manipulating images, extracting features
from those images, and obtaining correspondences between features over time. In the second year of the



project, we applied the software libraries to the machine vision applications described in the objectives:
extracting 3D information from 2D images, detecting human hands, detecting human faces, and extracting
network structures from images.

2.9 ผลการวิจัย

We have made significant progress on all of the goals of the project, leading to several publications in
refereed international conferences and journals. The results may be summarized as follows:

(a) We have developed a new sensor model for extracting 3D line segments from images obtained by a
trinocular stereo camera rig and tested the model in a series of simulation experiments.

(b) We have developed a new sensor model for extracting 3D points from images obtained by a trinocular
stereo camera rig and tested the model in a series of real-world experiments using the hardware
constructed under this grant.

(c) We have developed a new approach to detecting human hands in low-resolution images based on
the Viola and Jones cascade technique and a Mahalanobis classifier. We have tested this system on
monocular video sequences of crowded scenes.

(d) We have developed a new approach to extracting network-like structures from 2D images. The technique
has many applications in computer and robot vision; thus far we have tested the system on extraction
of road networks from satellite images.



3. เน้ือหางานวิจัย

3.1 Sensor model for 3D line segments

Our algorithm, VL-SLAM, is based on the “FastSLAM” family of algorithms proposed by Montemerlo, Thrun
and colleagues [14]. At each point t ∈ 1 . . . T , the robot performs an action ut taking it from position st−1 to st

and uses its sensors to obtain an observation zt. We seek a recursive estimate of

p(s0:t,Θ | u1:t, z1:t) (1)

where Θ is a map containing the positions of each of a set of point landmarks. Rather than estimate the distribution
(1) analytically, we approximate the posterior with a discrete set of Mt samples (sometimes called particles){

< s
[m]
0:t ,Θ

[m]
0:t >, where each index m ∈ 1 . . .Mt

}
. (2)

Here s
[m]
0:t is the specific robot trajectory from time 0 to time t associated with particle m, and Θ[m]

0:t is the
stochastic landmark map associated with particle m (the map is derived from s

[m]
0:t , z1:t, and u1:t). FastSLAM

(and VL-SLAM) use the sequential Monte Carlo techniques of sequential importance sampling and importance
resampling. First, for each particle, we sample from some proposal distribution

π(s0:t,Θ0:t | z1:t, u1:t) (3)

to obtain a temporary set of particles for time t, then evaluate the importance weight w[m] for each temporary
particle, where

w(s0:t,Θ0:t) =
p(s0:t,Θ0:t | u1:t, z1:t)
π(s0:t,Θ0:t | u1:t, z1,t)

. (4)

The importance weights are normalized to sum to 1, then we sample Mt particles, with replacement, from the
temporary particle set according to the normalized weights.

VL-SLAM extends FastSLAM with a new sensor model for 3D line segments and a new proposal distribution
π(·) appropriate for environments with highly ambiguous observation-model correspondences. We first describe
the 3D line segment sensor model then VL-SLAM proposal distribution.

3.1.1 VL-SLAM 3D Line Segment Sensor Model

After each robot motion ut, a set of trinocular stereo images is captured, and a set zt of landmark measurements
(line segments) is extracted from those images. These line segment measurements, along with the measured motion
ut, are used to update each particle’s map and position estimate.

Our system assumes a calibrated stereo camera rig with three pinhole cameras. It can handle general fundamen-
tal matrices (the images need not be perfectly rectified), but we do assume that one camera is roughly horizontally
displaced and a second camera is roughly vertically displaced from a third (reference) camera.

The basic 2D feature in our system is the line segment. We extract line segments using Canny’s method [3]
following the implementation in VISTA [10]. The edge detector first performs nonmaxima suppression, links the
edge pixels into chains, and retains the strong edges with hysteresis. Once edge chains are extracted from the
image, we approximate each chain by a sequence of line segments. Short line segments, indicating edges with
high curvature, are simply discarded in the current system.

We use a straightforward stereo matching algorithm similar to the approach of [19]. For each line segment in
the reference image, we compute the segment’s midpoint, then consider each segment intersecting that midpoint’s



epipolar line in the horizontally displaced image. Segments not meeting line orientation and disparity constraints
are discarded. Each of these potential matches determines the location and orientation of a segment in the third
image. If such a consistent segment is indeed found in the third image, the potential match is retained; otherwise
it is discarded. If at the end of this process, we have one and only one consistent match, we assume it correct;
otherwise, the reference image line segment is simply ignored.

Now our goal is to estimate a three-dimensional line from the three observed two-dimensional lines. Infinite lines
have four instrinsic parameters, so it would make sense to use a four-dimensional representation of a lines. However,
since VL-SLAM uses a Kalman filter to combine landmark observations, we require a linear parameterization of
landmarks, and no linear four-dimensional representation of lines exists [1]. Instead we represent lines with six
components: a 3D point representing the midpoint of the observed line segment and a 3D vector whose direction
represents the direction of the line and whose length represents the distance from the line segment’s midpoint
to one of its endpoints. This 6D representation behaves well under linear combination, so long as the direction
vectors are flipped to have a positive dot product.

First we obtain a maximum likelihood estimate of the infinite 3D line’s parameters assuming Gaussian mea-
surement error in the image using Levenberg-Marquardt minimization [11]. As an initial estimate of the line’s
parameters, we use the 3D line (uniquely) determined by two of the 2D line segment measurements. Once the
infinite line has been estimated, we find the segment’s extrema and midpoint using the observed data.

Through each step of the 3D line estimation process, we maintain explicit Gaussian error estimates. We begin
by assuming spherical Gaussian measurement error in the image with a standard deviation of one pixel. Arranging
the n (x, y) coordinates of the pixels in a line as a column vector x, the covariance of x is simply Σx = I2n×2n.
Since the vector of parameters l describing the 2D line best fitting x is a nonlinear function l = f(x), the
covariance of l is Σl = JΣxJ

T , where J is the Jacobian matrix ∂f
∂x evaluated at x.

The maximum likelihood estimate of the 3D line obtained from the three 2D line segments l = (l1, l2, l3) is
clearly not a simple function, since it is computed by an iterative optimization procedure. However, if l = f(L)
is the function mapping from the parameter space to the measurement space, it turns out that, to first order, L̂ is
a random variable with covariance matrix (JT ΣlJ)−1, where J is the Jacobian matrix ∂l

∂L [6]. The rank of the
resulting covariance matrix is only four, however, so to constrain the remaining two degrees of freedom, we add
to the rank-deficient covariance matrix a covariance matrix describing the expected error in our estimate of the
segment’s midpoint and another covariance matrix describing the expected error in our estimate of the segment’s
length. This gives us a full-rank covariance matrix that restricts matching line segments to not only be similar in
terms of their supporting infinite line, but also to overlap and have similar length.

Once the six-dimensional representation of an observed 3D line is estimated from a trinocular line correspon-
dence, it is necessary to transform that line from camera coordinates into robot coordinates, since the reference
camera is in general translated and rotated relative to the robot itself. It is also necessary to transform landmarks
from robot coordinates into world coordinates, when the robot’s position is determined, for instance, and from
world coordinates back to robot coordinates, when a landmark in the map is considered as a possible match for
an observed (robot coordinate) landmark. In each of these cases, the transformed line L′ = t(L) is computed as
a nonlinear function of the original line, and the transformed line’s covariance is propagated by ΣL′ = JΣLJ

T ,
where J is the Jacobian matrix ∂t

∂L evaluated at L.

3.1.2 VL-SLAM Proposal Distribution

The proposal distribution π(·) (3) can be any distribution that is straightforward to sample from. However, it is
best if π(·) closely approximates the full joint posterior (1), in which case the importance weights will be nearly
uniform, and most particles will “survive” the resampling step. In FastSLAM 1.0 [14], the proposal distribution



is simply p(st | st−1, ut), i.e. the motion model predicting st given a previous position st−1 and action ut. The
authors observe that this proposal distribution, while simple to sample from, does not take into account the current
observation zt. This leads to FastSLAM 2.0, in which the proposal distribution is p(st | s[m]

0:t−1,Θ
[m]
0:t−1, u1:t, z1:t).

This distribution takes not only the previous robot pose st−1 and current action ut into account, but also considers
the current map Θ0:t−1 and new observation zt. In the general case, this distribution could be quite difficult to
sample from, but the authors find that by linearizing the sensor model and applying the Markov assumption, the
proposal distribution can be approximated to first order by a Gaussian distribution whose mean and covariance
can be calculated from known quantities, if the correspondence between the observation zt and the current map
Θ0:t−1 is known. When the correspondences are unknown (the usual case in SLAM), FastSLAM 2.0 assumes
the maximum likelihood correspondence or draws a sample from a probability distribution over all possible
correspondences. When the observations and landmarks are sparse, as is the case in the FastSLAM environment,
this is straightforward, and FastSLAM 2.0 is much more successful than FastSLAM 1.0, since it uses the available
set of particles wisely [14].

In VL-SLAM, however, each observation consists of on the order of 100 individual 3D line segments, and
typically the landmark database contains several potential matches for each observed line. This means that it is
impossible to consider even a small fraction of the possible correspondences for each particle. In practice, to limit
the computational complexity, we must draw a single correspondence from the set of all possible correspondences
without considering too many alternatives. But how can we choose a likely correspondence for a given observation?

In VL-SLAM, when propagating a particle forward from time t− 1 to time t, we first fraw a sample s′t from
the robot’s motion model to establish a correspondence between the observed line segments and the current map
(resembling FastSLAM 1.0), then from that intermediate sample point, assuming the established correspondence,
sample again, from the FastSLAM 2.0 proposal distribution. As in FastSLAM 2.0, the proposal distribution is
closer to the full joint posterior distribution, concentrating more of the temporary particles in regions of high
probability according to the full joint posterior.

To calculate the importance weights for the the VL-SLAM proposal distribution, we first introduce random
variables nt indicating the correspondence between the line segments observed at time t and the map. In VL-
SLAM, the mth particle’s map Θ[m]

0:t is a deterministic function of the sampled trajectory s
[m]
0:t , the sampled

correspondences n[m]
1:t , and the observations z1:t, so we rewrite the desired full joint posterior as

p(s0:t, n1:t | u1:t, z1:t). (5)

Now, assuming we have a good estimate of the full joint posterior at time t − 1, the VL-SLAM proposal
distribution can be written as the product

p(s[m]
t | n[m]

t , s
′[m]
t , s

[m]
0:t−1, n

[m]
0:t−1, z1:t, u1:t)× p(n[m]

t | s′[m]
t s

[m]
0:t−1, n

[m]
1:t−1, z1:t−1, u1:t)×

p(s′[m]
t | s[m]

0:t−1, n
[m]
1:t−1, z1:t−1, u1:t)× p(s[m]

0:t−1, n
[m]
0:t−1 | u1:t−1, z1:t), (6)

where s′t represents the intermediate sample drawn from the motion model. For the mth particle, the importance
weight is the ratio of the expressions in (5) and (6), which, with several applications of Bayes’ rule and the Markov
assumption, can be closely approximated as (details ommitted):

w
[m]
t =

p(s[m]
t | s[m]

t−1, ut)p(zt | s[m]
0:t , n

[m]
1:t , z1:t−1)

p(s[m]
t | zt, s

′[m]
t , n

[m]
1:t , s

[m]
0:t−1, z1:t−1, u1:t)p(s

′[m]
t | s[m]

t−1, ut)
(7)

Following [14], we linearize the sensor model and motion model, which leads to straightforward Gaussian approx-
imations for each of the terms in (7).

Except for the sensor model and proposal distribution just described, VL-SLAM is similar to FastSLAM
(see [14] for details). Once correspondences and the sampled pose are determined for an individual particle, each



(a) (b) (c)

รูปที่ 1: Sample trinocular image set captured in simulation. (a) Reference image. (b) Horizontally aligned image.
(c) Vertically aligned image.

observed landmark is combined with its corresponding map landmark using an extended Kalman filter, or initialized
as a new landmark in the map. To achieve fast search for landmarks corresponding to a given observation, each
particle’s map is stored in a binary k-D tree whose leaves are the 3D line segments with associated Gaussian
uncertainties. However, to minimize total memory requirements and to enable constant-time copying of maps
during the resampling stage, the particles are allowed to share subtrees.

As we shall see in the next section, the diversity of possible correspondences introduced by the first sampling
step (as in FastSLAM 1.0), combined with the use of the current observation zt in the proposal distribution (as
in FastSLAM 2.0), allows VL-SLAM to outperform both FastSLAM 1.0 and FastSLAM 2.0 on a challenging
synthetic testbed.

3.1.3 Experimental Results

To enable rigorous testing of VL-SLAM in an environment with a precisely known ground truth, we implemented
a virtual reality simulation allowing a virtual robot to move through a virtual world rendered with OpenGL from
a VRML model. We chose as an environment a publically-available 3D model of Housestead’s fort, a Roman
garrison from the 3rd century A.D. on Hadrian’s Wall in Britain [2]. A sample view from our virtual trinocular
stereo rig is shown in รูปที่1.

We teleoperated our virtual robot through this virtual world in a long loop of about 300m. At approximately
1m intervals, the virtual camera rig was instructed to capture a set of stills from its three cameras. The virtual
camera models a real 10cm baseline, 70◦ field of view trinocular rig we recently built in our lab. To make the
dataset somewhat challenging, we simulated the effects of a traveling on an imperfect outdoor surface, so that the
robot’s vertical (Z) position varied approximately ±0.04m from 0, its pitch and roll varied ±2.5 degrees from 0,
and its yaw varied ±3 degrees from its expected course.

This environment is an interesting testbed for VL-SLAM because, on the one hand, it generates many long,
strong, straight edges that should be useful for localization. On the other hand, it is highly textured, creating
a large number of edges, and the textures are highly repetitive in many places, leading to many ambiguities for
correspondence algorithms. It is also large enough to preclude fine-grained grid-based techniques and noisy enough
to preclude the use of flat-earth or three-degree-of-freedom assumptions.

We compared VL-SLAM with our own implementations of FastSLAM 1.0 and 2.0. As previously discussed,
FastSLAM 2.0 was not designed to handle large observations with highly uncertain correspondences. In our
implementation, we simply obtain the maximum likelihood correspondence assuming the robot is at the position
obtained by propagating s

[m]
t−1 forward in time according to odometry to obtain ŝ

[m]
t . With this caveat about
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รูปที่ 2: Log likelihood of line observations according to the best particle’s sampled robot position and map,
averaged over 320 sets of observations.
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รูปที่ 3: Map constructed by VL-SLAM (a), compared to the the map assuming perfect knowledge of the robot’s
trajectory (b).



the FastSLAM 2.0 results, รูปที่2 shows one measure of each algorithm’s performance: the log-likelihood of
the observation data given the best particle’s robot trajectory sample and map; Figure 3 shows the final map
according to the best VL-SLAM particle. All of the localization algorithms do much better than the baseline
(odometry-only) algorithm. Due to its commitment to robot position ŝ[m]

t when determining correspondences in
our implementation, FastSLAM 2.0 fares rather poorly. Since FastSLAM 1.0 samples from the motion model
before obtaining a correspondence, it performs much better, but VL-SLAM, which combines the best features of
both algorithms, outperforms them both.

3.2 Sensor model for 3D points

We have also developed a sensor model for vision-based SLAM that, rather than using 3D line segments, uses 3D
points as landmarks for localization and mapping.

3.2.1 Trinocular KLT as a sensor model for FastSLAM

In FastSLAM, the sensor model is fully described by the conditional probability p(zt | st,Θt−1, nt), explicitly
conditioning on nt, the set of correspondences between observations zt and landmarks stored in Θt−1. The
distribution is assumed to be a deterministic measurement function f(Θt−1, st, nt) corrupted by Gaussian noise.

In our case, the observations are sets of 3D points in robot-relative coordinates, estimated by triangulation with
a trinocular stereo vision rig. Our 3D point extraction procedure begins by obtaining 2D KLT (Kanade-Lucas-
Tomasi) corner features [13] from each of three calibrated images simultaneously captured by the trinocular camera
rig. We then find sets of corresponding features across the three images and triangulate to obtain an estimate of
the putative feature’s 3D position relative to the robot.

The basic idea of using KLT as a 2D feature detector is to find points with a complex local gradient field.
Complexity of the gradient field is measured by the smaller eigenvalue of the matrix

Z =

(
g2

x gxy

gxy g2
y

)
(8)

in which the quantities are integrals of the squared gradient (in the case of g2
x and g2

y) or the integral of the
product of x and y gradients (gxy) in a neighborhood around the point of interest. A point is selected as a KLT
feature if the smaller eigenvalue λ2 of Z is a local maximum and above some threshold λ. The motivation is that
image points meeting the criterion have a local gradient structure that cannot be described by a single eigenvector
(as would be the case for a simple edge), but have a more complex corner-like structure that should be easy to
detect under various imaging conditions.

After extracting a set of KLT feature points from each of the three images acquired at time t, we attempt to
find triples of corresponding points as a necessary step prior to triangulation. For each KLT point p1,i detected
in image 1, we search image 2 for potentially corresponding points. For each point p2,j in image 2 close enough
to the epipolar line corresponding to p1,i, we triangulate using the calibrated intrinsic and extrinsic parameters of
the camera rig to predict the putative object feature’s appearance in image 3. If a suitable KLT point p3,k exists
in image 3, we consider the triple (p1,i, p2,j , p3,k) a candidate match and continue searching for other possible
matches for p1,i. If no consistent triples or more than one consistent triple is found for p1,i, we throw it out. On
the completion of this simple correspondence algorithm, we have a set of corresponding triples of 2D points that
can then used for 3D estimation. Typically we begin with about 200 KLT points in each image and end up with
about 20 corresponding triples.



(a) (b) (c)

รูปที่ 4: Trinocular image set captured in the lab. (a) Reference image. (b) Horizontally aligned image. (c)
Vertically aligned image.

The last step of obtaining a sensor measurement is to estimate a 3D landmark in robot-relative coordinates given
each triple of corresponding 2D KLT points. For each correspondence (p1, p2, p3), we obtain an initial estimate
of the 3D position P by triangulating from p1 and p2, then we use the Levenburg-Marquardt nonlinear least
squares optimization algorithm [11] to find the 3D position P maximizing the likelihood of the 2D observations
(p1, p2, p3) assuming spherical Gaussian error in the measured image coordinates. We also obtain an estimate
of confidence in the 3D point landmark position P by propagating the assumed measurement error through the
maximum likelihood estimation procedure using the standard first-order approximation [6].

After 2D feature detection, correspondence estimation, and triangulation, we obtain a set of 3D point landmark
observations with associated error covariance matrices. The set of landmarks with covariances makes up zt, the
robot’s observation at time t, which is input to FastSLAM. From this point on, our system is identical to Thrun et
al.’s FastSLAM 1.0 algorithm [14].

3.2.2 Experimental methods

To test KLT-based FastSLAM, we performed an experiment in the Image and Vision Computing Laboratory at
SIIT. The room is a typical laboratory with desks, bookshelves and computers. Figure 4 shows an image set
captured in the lab with the 10cm-baseline trinocular camera rig that was used in the experiment.

In this experiment, rather than mounting the rig on a robot, we simulated robot motions by manually moving
a camera tripod. The simulated robot’s position st in world coordinates at time t is defined as a vector with six
degrees of freedom st = (x, y, z, φ, θ, ψ)T . Here the x and y axes span a plane parallel to the floor of the lab, and
z is the vertical distance of the reference camera’s origin from the ground plane. The remaining three variables
represent the robot’s orientation. φ, θ and ψ stand for pitch, roll and yaw of the camera rig, respectively. During
the experiment, due to the flat floor, z, pitch, and roll was always equal to zero throughout the experiment.

The camera rig cannot move itself, so in the experiment we roughly pushed or rotated the rig by hand from its
original position to the next destination position in order to emulate a real robot move. Since each move of the rig
is not perfect, the rig normally reaches a position slightly away (in terms of x, y and yaw, we do not measure z,
pitch and roll since they are assumed to be zero in the experiment) from its destination position. So we treated the



-6000

-5000

-4000

-3000

-2000

-1000

 0

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28

Th
e 

be
st

 lo
g 

lik
el

ih
oo

d 
ac

cu
m

ul
at

ed
 o

ve
r p

re
vi

ou
s 

fra
m

es

Frame

Odometry
100 particles

1000 particles
10000 particles

รูปที่ 5: Log likelihood of observation sequence given the model.

difference of the original position and the desired destination position as robot odometry, and the difference of the
original position and the actually reached position as a true move. To make the experiment simpler, we composed
camera rig odometry so that each odometric move involves only translation or only rotation. More specifically,
odometry is of the form (x, y, 0, 0, 0, 0)T for translation, and (0, 0, 0, 0, 0, ψ)T for rotation.

The actual path of the camera rig consisted of 29 positions D0, D1, . . . , D28 marked on the floor of the lab. At
first the rig was positioned at D0, which we defined to be the origin of the world coordinate system. The rig was
then moved to each destination. Along the way, at each position, we measured the true position T1, T2, . . . , T28

of the rig and captured a trinocular image set. The simulated odometry measurements O1, O2, . . . , O28 were
computed as Oi = Di − Ti−1.

In this indoor experiment the robot’s path was approximately composed of a 4 meter forward translation from
O1 to O10 (roughly 0.4 meters per move), a 180 degree rotation from O11 to O18 (roughly 22.5 degrees per move),
and finally a 4 meter forward translation from O19 to O28 (roughly 0.4 meters per move).

Image sets (29 frames including the initial state) and odometry (28 six dimensional vectors) were collected in
the lab. They were used as the input for KLT-Based FastSLAM to estimate the path of the camera rig and generate
a 3D metric map of the lab. We ran the algorithm with 100, 1000 and 10000 particles. In order to compare the
algorithm’s performance against a baseline, we also ran the same mapping algorithm purely using odometry as the
estimate of the camera position.

3.2.3 Experimental results

Log likelihood is a measure of accuracy of the current landmark observation given the previous observation. It is
given by

log
(
p(zt | s[m]

t ,Θ[m]
t−1)

)
∼ −1

2
ln
∣∣∣2πQ[m]

t

∣∣∣− 1
2
(zt − ẑ[m]

t )TQ
[m]−1
t (zt − ẑ[m]

t ), (9)

with covariance
Q

[m]
t = G

[m]T
t Σ[m]

t−1G
[m]
t +Rt, (10)

where ẑt is an estimation of the new observation zt, Σt−1 is the covariance of the landmark before the new
observation is made, Gt is the Jacobian of the sensor model with respect to the landmark, and Rt is the
covariance of the Gaussian noise of the new observation [14].
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รูปที่ 6: Projection of the 3D metric map into 2D planes. The boundary of the lab is shown as a rectangle in the
figures. (a) KLT point landmarks projected into x− y plane, the top view of landmarks. (b) KLT point landmarks
projected into y − z plane, the side view of landmarks.

For each particle of each sequence of observation, we calculated the accumulated log likelihood, which is an
addition of log likelihood over all the past sequences. It tells the degree of consistency of the map recorded in a
particle. For each sequence of observation, we chose the particle that has the best (largest) value of accumulated
log likelihood. The result is shown in รูปที่5. As the number of the particle used in the FastSLAM algorithm
increases, the accumulated log likelihood becomes better. The result tells that the particle filter is working properly
in the experiment, i.e. with more particles, the better localization of the camera rig and estimate of landmark
positions for each observation sequence is achieved.

รูปที่6 shows 2D projections of the generated 3D map of the lab using 1000 particles. Only KLT point landmarks
that were observed more than twice over all the observation sequences are plotted since landmarks observed only
once tend to be noisy observations. Point landmarks in the map captured the actual distribution of edges and
corners of objects seen in the lab.

In รูปที่7, the estimated path of the camera rig is shown.

3.3 Hand detection in monocular video

The next main machine vision module we have developed is a hand detection system.
รูปที่8 depicts our hand detection system’s architecture schematically. A scan window sweeps over the input

image at multiple scales. Each resulting image patch is classified as either hand or non-hand by a boosted classifier
cascade [16, 9]. To further reduce false positive detections using a priori knowledge of hand color and geometry,
each positive detection from the classifier cascade is further processed by a skin detection module, a feature
extractor, and a simple classifier based on Mahalanobis distance to the “average” hand. We describe each of the
modules in turn.
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รูปที่ 7: Path of the camera rig projected onto the x− y plane. Each move is represented as a vector. The rig was
put at (x, y) = (0, 0) initially and was moved 28 times while taking an image set after each move. (a) True path
of the camera rig. (b) Estimated path of the camera rig using 1000 particles.

รูปที่ 8: Hand detection system architecture.

(a)

(b)

รูปที่ 9: Haar-like features used to construct weak classifiers in the boosted classifier cascade. (a) Viola and Jones
features. (b) Lienhart and Maydt features.



Algorithm Train-Cascade
Given: P0, a set of k positive examples

N0, an initial set of k negative examples
αp, the desired true positive rate per stage
αf , the desired false positive rate per stage

Returns: C, a cascade of ensemble classifiers
C ← H0 ← AdaBoost(P0,N0, αp, αf )
i← 0
Repeat:

Test C on new, known-to-be-negative examples
Ni ← The top k false positives from test
Pi ← (Pi−1 − positives dropped by Hi−1)
Hi ← AdaBoost(Pi,Ni, αp, αf )
C ← C with Hi appended to the cascade
i← i+ 1

Until performance is “good enough”
Return C

รูปที่ 10: Cascade training algorithm. The algorithm utilizes the AdaBoost routine, which, given a training set
〈P,N〉, finds a combination of weak threshold classifiers obtaining a true positive rate of at least αp and a false
positive rate at most αf on that training set.

3.3.1 Boosted classifier cascade

The core of our object detection system is the cascade of boosted classifiers originally proposed by Viola and Jones
[15, 16] and later modified by Lienhart and Maydt [9, 8]. The cascade reduces processing time while preserving
classifier accuracy through the use of a sequence of classifiers tuned for reasonably low false positive rates but
extremely high detection rates. The cascade quickly rejects most detection windows unlikely to contain the object
of interest and spends more compute time on the detection windows most likely to contain the object of interest.

Each stage in the cascade uses the “boosting” ensemble learning method [5] to induce a strong nonlinear
classification rule that is a linear combination of the “votes” of multiple weak threshold classifiers, each considering
the output of a single Haar wavelet-like filter at a fixed location in the detection window. Viola and Jones’ original
method [15] uses Freund and Shapire’s “discrete” Adaboost algorithm [5] with a set of five types of Haar-like
features for the weak threshold classifiers (รูปท่ี9(a)). Lienhart and colleagues’ method [9, 8] uses the “gentle”
Adaboost algorithm and additional Haar-like features (รูปที่9(b)). Here we refer to both types of classifier as a V&J
cascade.

The first step in constructing a V&J cascade for object detection is to obtain a large training set of images
containing or not containing the object of interest. We then extract an initial set P0 of positive detection windows
and an initial set N0 of negative detection windows and execute the procedure Train-Cascade, detailed in รูปที่10.

3.3.2 Bayesian skin detector

Our skin detector is a Bayesian maximum likelihood classifier based on color histograms [18, 7]. The classifier
estimates the class S ∈ {skin, nonskin} of a single pixel based only on its observed color x measured in some



color space. This simple method is extremely efficient and surprisingly effective. We let

ŝ = arg max
s

P (X = x | S = s),

where the likelihood P (X | S) is modeled by a color histogram estimated from training data we obtained in a
pilot study. Our color histograms have two dimensions, namely the hue and saturation axes of the HSV color
space, which we quantize into 162 = 256 bins.

3.3.3 Feature extraction

The output of the Bayesian skin detector is a binary image in which one value represents skin pixels and the other
value represents non-skin pixels. We have found that a few simple features extracted from this binary image allow
surprisingly accurate classification. The particular features we extract are:

3.1 The area (in pixels) of the largest connected component of skin pixels.

3.2 The length of the perimeter of the largest connected component of skin pixels.

3.3 The eccentricity of the largest connected component of skin pixels.

3.4 The number of pixels in the largest skin component intersecting the detection window boundary.

Clearly, when the area feature is especially large or especially small, the given image patch is unlikely to
contain a hand. The perimeter length and eccentricity features provide additional information about the shape of
the detected skin “blob.” Finally, since a properly detected hand will only intersect the boundary of the detection
window at the wrist, the boundary feature provides information about how wrist-like the boundary is.

When combined with a reasonable classifier, these four features are sufficient to correct most of the V&J
cascade’s mistakes. We next describe our classifier.

3.3.4 Mahalanobis classifier

Given a feature vector x consisting of the area, perimeter, eccentricity, and boundary features, we must determine
whether x represents a true hand or a false positive. We tackle this problem by applying a threshold θ to the
dissimilarity of the given feature vector x from the mean feature vector μ. Our dissimilarity measure is the
Mahalanobis distance

d(x) = (x− μ)T Σ−1(x− μ).

Here the mean hand feature vector μ, covariance matrix Σ, and distance threshold θ are estimated from a training
set.

Once we obtain a final classification for each possible detection window, the positively detected hands could
then be forwarded to another component in an integrated application, for example a gesture recognition module.
In the current paper we simply evaluate the efficacy of the proposed algorithm on a series of video segments.

3.3.5 Experimental methods

Here we describe an experiment in which we captured video sequences of humans walking in an indoor environment
then evaluated the hand detection system on those video sequences.



รูปที่ 11: Example training images scaled to 24×24.

3.3.5.1 Data acquisition

For purposes of training and testing the hand detection system, we captured four video sequences of four different
people walking in and out of a moderately cluttered laboratory environment. The video sequences were captured
at 15 frames per second with an IEEE 1394 Web camera, and each sequence lasted approximately three minutes.

After video acquisition, we manually located all visible hands in every image of all four sequences, for a total
of 2246 hands. We designated the first 2000 as training examples and reserved the remaining 246 for testing.

Our criteria for positioning the detection window on the hand was that that the hand should be roughly at the
center of the window while taking up about 50% of the pixel area of selection window (see รูปที่11 for examples).

As already described, the cascade learning algorithm, at step i, requires a set Ni of negative examples that do
not contain hands for training. For this purpose, we randomly selected eight frames from the training data that did
not contain and hands. The OpenCV implementation of the V&J cascade (see below) scans these eight images to
produce new negative examples for training at each stage.

3.3.5.2 Boosted classifier training

To train the classifier cascade, we used Linehart and Maydt’s approach [9] as implemented in OpenCV [4].
With 2000 positive hand examples and 8 background images for negative examples, we trained 30 stages using
GentleBoost, αp = 0.995, and αf = 0.5. This took two weeks on a 3 GHz Pentium 4 PC with 1 GB of RAM.

We found that the classifier’s training set performance peaked at 26 stages, so we used only the first 26 stages,
comprising 763 weak classifiers, in subsequent analysis.

3.3.5.3 Skin detector training

To train the skin detector, we selected 10 images containing one or more humans from a set of independent video
sequences captured under various lighting conditions at several different locations. We manually marked the skin
pixels in each image, extracted the hue (H) and saturation (S) of the resulting 70,475 skin and 1,203,094 non-skin



รูปที่ 12: ROC curve between true positive rate and false positive rate

pixels, quantized the H-S values into 16 bins, and constructed two 2D histograms: one for skin pixels, and one for
non-skin pixels.

3.3.5.4 Gathering data to train the post-processor

We ran OpenCV’s performance testing utility, which had been modified to produce true positive and false positive
image patches, on all labeled images from the training set with a detection window scale factor of 1.1. The
resulting image patches were scaled to the standard size of 24×24. Then, we randomly selected 1000 true positive
and 1000 false positive image patches for the training process of post-processor system.

3.3.5.5 Parameter estimation for the post-processor

To estimate the parameters of the Mahalanobis distance-based post processor, we applied skin detection to the
2000 training patches, eliminated all connected skin components smaller than 36 pixels, and filled in holes with
a morphological opening operator. We then extracted features (area, eccentricity, perimeter, and boundary pixel
count) for the largest connected skin blob in each of the 2000 patches. We randomly split the true positives into
two groups, using the first 500 for mean and covariance calculation and using the remaining 500 to determine
the best Mahalanobis distance threshold. Using the ROC curve in รูปที่12 to explore the tradeoff between true
positives and false positives, we selected the point where the false positive rate was as low as possible (18%) while
maintaining a 100% true positive rate.

3.3.6 Results

To analyse the performance of our system, we selected 4 frames from a video sequence which had never been used
in the training process, and fed it to our system. We manually classified the detections at each stage of the system
as a false positive or true positive. We found that the classifier cascade, by itself, performed relatively poorly, but
that the post processing system was extremely effective in eliminating false positives produced by the classifier
cascade.

ตารางท่ี1 shows that without the post-processing system, the false positive rate is too high for practical appli-
cation. ตารางท่ี2, on the other hand, shows that when we add post processing to our system, the false positive rate
decreases rapidly.

Image 1 and 2 in รูปที่13 illustrate example detection results from our complete system. In both images, we
observe that regions on the person’s head, especially in the chin and neck areas, are detected as hands by the



Number of Number of
Image True Positives False Positives
1 1 22
2 2 35
3 1 19
4 1 18

ตารางที่ 1: Test results without post-processing

Number of Number of
Image True Positives False Positives
1 1 2
2 2 5
3 1 6
4 1 2

ตารางที่ 2: Test results with post-processing

system. The most probable reason for this kind of false positive is that we did not include such image patches as
negative examples during training of the boosted classifier cascade. We only used background images to generate
negative examples. Unfortunately, not even the post-processing system can reject this kind of false positive because
the shape of the skin blobs in those regions are very similar to the shape of skin blobs in patches actually
containing hands. We believe that including human body parts other than hands as negative training examples will
eliminate these types of false positives.

3.4 Extracting network-like structures from 2D images

The next machine vision module we have constructed is capable of extracting network-like structures from 2D
images. The technique is based on quadratic snakes. We apply it to the task of extracting roads from satellite
images, but the technique could be used in a variety of map-reading tasks.

3.4.1 Quadratic snake model

This section provides a brief overview of the quadratic snake proposed by Rochery et al. [12]. An active contour
or snake is parametrically defined as

γ(p) =
[
x(p) y(p)

]T
, (11)

where p is the curvilinear abscissa of the contour and the vector
[
x(p) y(p)

]T
defines the Cartesian coordinates

of the point γ(p).
The energy functional is given by

Es(γ) = Eg(γ) + λEi(γ), (12)

where Eg(γ) is the geometric energy and Ei(γ) is the image energy of the contour γ. λ is a free parameter
determining the relative importance of the two terms.

To apply the method to road extraction, we define the geometric energy functional to be

Eg(γ) = L(γ) + αA(γ)− β

2

∫∫
t(p) · t(p′) Ψ (‖γ(p)− γ(p′)‖) dp dp′, (13)



Image 1 Image 2

รูปที่ 13: Preliminary results on test data from the hand detector.

where L(γ) is the Euclidean length of γ over Ω, A(γ) is the area enclosed by γ, t(p) is the unit-length tangent to
γ at point p, and Ψ(z), given the distance z between two points on the contour, is used to weight the interaction
between those two points (see below). α and β are constants weighting the relative importance of each term.
Clearly, for positive β, Eg(γ) is minimized by contours with short length and parallel tangents. If α is positive,
contours with small enclosed area are favored; if it is negative, contours with large enclosed area are favored.

The interaction function Ψ(z) is a smooth function expressing the radius of the region in which parallel tangents
should be encouraged and anti-parallel tangents should be discouraged. Ψ(·) needs to be tuned for the road width
and road width variability expected in an image. During snake evolution, weighting by Ψ(z) in Equation 13
discourages two points with anti-parallel tangents (the opposite sides of a putative road) from coming too close to
each other.

The image energy functional Ei(γ) is defined as

Ei(γ) =
∫

n(p) · ∇I(γ(p)) dp

−
∫∫

t(p) · t(p′) ∇I(γ(p)) · ∇I(γ(p′)) Ψ(‖γ(p)− γ(p′)‖) dp dp′,
(14)

where I : Ω → [0, 255] is an image and ∇I(γ(p)) is the gradient of I evaluated at γ(p).
The first linear term favors anti-parallel normal and gradient vectors, encouraging counterclockwise snakes to

shrink around or clockwise snakes to expand to enclose dark regions surrounded by light roads.1 The quadratic
term favors nearby point pairs with two different configurations, one with parallel tangents and parallel gradients
and the other with anti-parallel tangents and anti-parallel gradients.

3.4.2 GVF external force

To encourage rapid convergence to a minimum of the energy functional, we adopt Xu and Prince’s gradient vector
field (GVF) [17] technique. The GVF is a vector field

V GVF(x) =
[
u(x) v(x)

]T
1For dark roads on a light background, we simply negate the linear term. In the rest of the paper, we assume light roads on dark background.



minimizing the energy functional

E(V GVF) =
∫

Ω

μ(u2
x(x) + u2

y(x) + v2
x(x) + v2

y(x))

+ ‖∇Ĩ(x)‖2 ‖V (x)−∇Ĩ(x)‖2 dx,
(15)

where Ĩ is a preprocessed version of image I , typically an edge image of some kind. The first term inside the
integral encourages a smooth vector field whereas the second term encourages fidelity to ∇Ĩ . μ is a free parameter
controlling the relative importance of the two terms.

We obtain Ĩ using oriented filtering and Canny edge detection. We use elongated Laplacian of Gaussian filters
that emphasize road-like structures, deemphasize non-road-like structures, and, to a certain extent, fill in short gaps
where a road has low contrast with the background. The resulting binary Canny image is ideal because it only
includes information about road-like edges that have survived sharpening by the oriented filters. The GVF field on
top of the sharpened edge image is ideal because it points toward the road-like edges from a long distance, and,
during snake evolution, it pushes the snake in an appropriate direction. This speeds evolution and makes it easier
to find suitable parameters to obtain fast convergence.

3.4.3 Cooperating quadratic snakes

A single quadratic snake is unable to extract enclosed regions and multiple disconnected networks in an image. We
address this limitation by introducing a family of cooperating snakes that are able to split, merge, and disappear as
necessary. Due to the area term αA(γ) in Equation 14, specifying the points on γ in a counterclockwise direction
creates a shrinking snake and specifying the points on γ in a clockwise direction creates a growing snake. An
enclosed region (loop or a grid cell) can be extracted effectively by initializing two snakes, one shrinking snake
covering the whole road network and another growing snake inside the enclosed region.

Splitting a snake We split a snake into two snakes whenever two of its arms are squeezed too close together,
i.e. when the distance between two snake points is less than dsplit and those two points are at least k snake points
from each other in both directions of traversal around the contour. dsplit should be less than 2η, where η is the
maximum step size.

Merging two snakes The merging algorithm selects points having high curvature and merges two snakes when
1) two selected points are closer than a prescribed minimal merging distance dmerge, 2) the traversal direction
(clockwise or counterclockwise) of the two snakes is the same, and 3) the tangents at the two high curvature
points are nearly anti-parallel. High curvature points are those with κγ(p) > 0.6κmax

γ , where κmax
γ is the maximum

curvature for any point on γ. When these conditions are satisfied, the two snakes are combined into a single snake
by deleting the high curvature points and merging at the holes.

Limiting the merge decision to high curvature points ensures that merging only occurs if two snakes have
semi-circular tips of their arms facing each other. It might seem that merging at low curvature points should also
be permitted. However, as already explained, snakes normally repel each other due to the quadratic term in the
internal energy (Equation 13). Consequently, low curvature segments can approach each other when high-gradient
features allow the external energy to overcome the geometric energy. When this occurs for low curvature segments,
the two snakes are most likely positioned on different sides of a road and merging should not be allowed. There
are several other (rare) cases when snakes face each other at low curvature parts. However they should not be
merged in those cases either.



(a) (b) (c) (d)

รูปที่ 14: Experimental results. (a) Original test image, from Google Earth. (b) Ground truth. (c) Segmentation
after convergence with a single snake. (d) Segmentation after convergence with a snake family allowing split,
delete, and merge.

Considering only the high curvature points also saves computational costs. In particular, the merging procedure
requires computation of the angle between tangents only for the selected points. The number of those points
usually does not exceed 10% of the total number of points.

The conditions that the traversal direction of two snakes should be the same and that the tangents at the two
high curvature points should be anti-parallel reflect the fact that in our system, nested snakes form a tree structure.
We initialize all the snakes at the first level with the same direction of traversal. The second level has the opposite
direction of traversal and so on. When two snakes from the same level merge, we assign the resulting snake the
same direction. Snakes from two consecutive levels do not merge. Growing and shrinking behavior is controlled
by the area constant (α) and the weight on the geometric energy (β).

Deleting a snake A snake γ is deleted if it has perimeter less than Ldelete.

3.4.4 Experimental results

To evaluate the proposed method for extraction of roads from satellite imagery, we used the image shown in
รูปที่14(a). We manually determined the ground truth segmentation for the image (รูปที่14(b)), then compared the
performance of a single quadratic snake with the performance of the multiple snake approach described in Section
2. We first performed several experiments to tune the system’s parameters. Then, for each experimental condition,
we initialized the contour to a rounded rectangle surrounding the entire image then ran the snake update equation
until convergence.

The single snake took 579 iterations to converge, and the snake family took 500 iterations to converge. The
resulting segmentations of the image into road and non-road pixels are shown in รูปที่14(c) and (d), respectively.
Compared to the ground truth, the family of multiple cooperating snakes is considerably better than the single
snake. The single snake obtained precision of 0.4641 and recall of 0.9324, compared to the snake family, which
obtained precision 0.6233 and recall 0.9240.

The excessive detection of the closed region in รูปที่14(f) as road is due to the fact that it is surrounded by
a loop, preventing the snake from entering the interior region. This problem can be easily solved with manual
initialization of a clockwise snake inside the enclosed region.
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Abstract—SLAM, the problem of a mobile robot building a
map of its environment while simultaneously having to determine
its location within that map, is one of the current fundamental
challenges of robotics. Although a great deal of success has been
achieved with laser range finders as sensors and a planar world
assumption, low-cost commercial robots will benefit from robust
SLAM using cameras only. Towards the goal of a robust, six
degree-of-freedom, vision-based SLAM algorithm, we describe
the application of “FastSLAM” [1] to the problem of estimating
a map from observations of 3D line segments using a trinocular
stereo camera rig. By maintaining not only multiple hypotheses
about the robot’s position in space, but also maintaining multiple
maps corresponding to those possible position hypothesis, the
algorithm has the potential to overcome the systematic map
errors induced by incorrect correspondence estimation.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is one of
the most active areas in mobile robotics research. The task
is to construct a metric map of the robot’s workspace from
noisy sensor readings, while simultaneously estimating the
robot’s location from the partial map and noisy odometry
measurements.
The difficulty of the SLAM problem depends on the

characteristics of the robot’s environment, the characteristics
of its sensors, and the level of map detail required by the
application. The environment could be relatively benign, say,
if it is indoors with flat floors and good traction for robot
wheels. But it could also be quite subversive, for instance, in
the case of aircraft and submarines.
The most common sensors in use today are laser range

finders and video cameras. Lasers have some key benefits:
they are accurate and provide range information directly.
However, they are heavy, expensive, and primarily two-
dimensional (although, of course, more than one plane could
in principle be scanned). Cameras, on the other hand, are
lightweight, small, and cheap, but are fairly difficult to work
with. In particular, extracting range information from cameras
normally requires triangulation from multiple perspectives or
a great deal of prior knowledge.
The last characteristic, the level of detail required by the

application, could be fairly coarse. In the case of a robotic
wheelchair whose job is to get its occupant from place to
place in a home, the detailed shape and size of pieces of fur-
niture would probably not be relevant. But other applications

would require an enormous amount of accurate detail in their
maps. Imagine an autonomous land mine detector operating
in a dense jungle. This robot would not only have to make
certain that not a single square foot of jungle is missed, but
would also require extremely detailed knowledge of the many
obstructions preventing it from navigating between points.
To date, the majority of SLAM research has focused on

two-dimensional maps acquired from laser range scanning.
Several successful systems have been demonstrated; most use
either a 2D occupancy grid [2], [3] or a database of landmarks
in the plane [1], [4].
We are primarily interested in building real-time, vision-

based SLAM systems for complex environments requiring
motion estimates with 6 degrees of freedom. As for laser-
based systems, the common choices for vision-based mapping
are again either occupancy grids or landmark databases. But
now we are dealing with 3D occupancy grids and databases
of 3D landmarks. Although 3D volumetric grids have been
shown to make realistic, detailed maps [5], [6], they require a
prohibitive amount of memory and processing for large-scale
environment mapping. So here we focus on SLAM algorithms
for learning of 3D landmark databases from video data.
Zhang and Faugeras [7] were among the early pioneers

in this area. Using mobile robots equipped with trinocular
stereo camera rigs, they were able to successfully map small
indoor environments. They modeled the world as a collection
of straight line segments and tracked the lines’ positional
uncertainty with Kalman filters.
Se, Lowe, and Little [8] demonstrate the use of SIFT (scale

invariant feature transform) point features as landmarks for
the SLAM problem. They also used a trinocular stereo camera
rig, and modeled the positional uncertainty of the landmarks
with Kalman filters.
Davison, Cid, and Kita [9] demonstrate a single-camera

SLAM algorithm capable of learning a set of 3D point
features. Their algorithm uses an ingenious mix of particle
distributions with the extended Kalman filter to overcome
the initial range uncertainty arising from the use of only one
camera.
All of the vision-based approaches estimate camera motion

(either with or without the help of odometry) then update a
map. Motion estimation and map updating both depend crit-
ically on solving a correspondence problem, either between



features in successive camera frames or between observed
features and map features. This is clearly a problem when
ambiguities lead to correspondence errors. If erroneous cor-
respondences are used to estimate motion, motion estimates
can be thrown off, causing the map to be updated from an
incorrect position, in turn leading to systematic drift in the
map.
In a series of recent papers (summarized in [1]), Monte-

merlo, Thrun, and colleagues have proposed an interesting
way around this same problem for laser range finder-based
SLAM systems. The idea is to maintain multiple possible
maps corresponding to multiple possible data association
hypotheses. Their algorithm, “FastSLAM,” uses a particle
filter for sampling from the space of possible robot paths,
but unlike previous systems based on particle filters (e.g. [3]),
each particle maintains its own map. The new approach yields
impressive results in mapping a large outdoor environment,
and with appropriate optimization, is suitable for real-time
implementation.
In this paper, we explore the possibility of using a similar

approach to maintain multiple correspondence hypotheses in
the realm of 3D visual landmark-based SLAM. The land-
marks in our case are 3D line segments obtained from a
trinocular stereo vision system. We find that the method
is indeed capable of maintaining the robot’s location while
constructing a consistent landmark map.

II. LANDMARK-BASED SLAM WITH STEREO VISION

Following [1], our algorithm maintains at time t a set of
particles, each representing a possible robot path from time 0
to time t. Associated with each particle is a candidate position
st for the robot at time t and a map, represented as a k-D
tree of landmarks with associated Gaussian uncertainties.
In our system, after each robot motion ut, a set of

trinocular stereo images is captured, and a set zt of landmark
measurements (line segments) is extracted from those images.
These line segment measurements, along with the measured
motion ut, are used to update each particle’s map and position
estimate.

A. Landmark extraction
Our algorithm assumes a calibrated stereo camera rig

with three pinhole cameras. To simplify matching, we further
assume that the three cameras share the same image plane,
that the first and second cameras are rectified so that the
epipolar lines correspond to the same rows in each image,
and that the first and third cameras are rectified so that the
epipolar lines correspond to the same columns in each image.

a) 2D line segment extraction: The basic 2D feature
in our system is the line segment. We extract line segments
using Canny’s method [10] following the implementation in
VISTA [11]. The edge detector first performs nonmaxima
suppression, links the edge pixels into chains, and retains the
strong edges with hysteresis. Once edge chains are extracted
from the image, we approximate each chain by a sequence
of line segments. Short line segments, indicating edges with
high curvature, are simply discarded in the current system.

b) Stereo matching: We use a straightforward stereo
matching algorithm similar to the approach of [7]. For
each line segment in the reference image, we compute the
segment’s midpoint, then consider each segment intersecting
that midpoint’s epipolar line in the second image. Segments
not meeting line orientation and disparity constraints are
discarded. Each of these potential matches determines the
location and orientation of a segment in the third image. If
such a consistent segment is indeed found in the third image,
the potential match is retained; otherwise it is discarded. If at
the end of this process, we have one and only one consistent
match, we assume it correct; otherwise, the reference image
line segment is simply ignored.

c) 3D line representation: Now our goal is to esti-
mate a three-dimensional line from the three observed two-
dimensional lines. As we shall see in the next section, each
landmark in our map is represented by a point with an asso-
ciated Gaussian uncertainty. Furthermore, landmark positions
and uncertainties are updated using the Kalman filter update
rule. Since the Kalman filter update requires inversion of
the measurement covariance matrix, the most straightforward
approach is to use a minimal 3D line representation. In
particular, we represent a line as a 4-vector L = (σ, σ, r, σ)T ,
where, assuming P is the projection of the origin onto L, the
parameters σ, σ, and r describe P in spherical coordinates,
and σ is the rotation of L around the line through the origin
and P .

d) 3D line estimation: Since 2D lines have two in-
trinsic parameters and 3D lines have four intrinsic param-
eters, we have 6 independent nonlinear equations in four
unknowns. Assuming Gaussian measurement error in the
image, maximum likelihood estimation of the 3D line’s
parameters becomes a nonlinear least squares problem, which
we solve with Levenberg-Marquardt minimization [12]. As an
initial estimate of the line’s parameters, we use the 3D line
(uniquely) determined by two of the 2D measurements.

e) Error propagation: Through each step of the 3D
line estimation process, we maintain explicit Gaussian error
estimates. We begin by assuming spherical Gaussian measure-
ment error in the image with a standard deviation of one pixel.
Arranging the n (x, y) coordinates of the pixels in a line as a
column vector x, the covariance of x is simply Σx = I2n×2n.
Since the vector of parameters l describing the 2D line best
fitting x is a nonlinear function l = f(x), the covariance of l
is Σl = JΣxJT , where J is the Jacobian matrix ∂f

∂x evaluated
at x.
The maximum likelihood estimate of the 3D line L̂ =

(σ, σ, r, σ)T obtained from the three 2D line segments l =
(l1, l2, l3) is clearly not a simple function, since it is computed
by an iterative optimization procedure. However, if l = f(L)
is the function mapping from the parameter space to the
measurement space, it turns out that, to first order, L̂ is a
random variable with covariance matrix (JT ΣlJ)×1, where
J is the Jacobian matrix ∂l

∂L [13].
f) Numerical stability: Unfortunately, the minimal 4-

parameter representation of 3D lines leads to covariance ma-



trices that are very nearly singular, creating numerical stability
problems. To understand the issue, consider a horizontal line
on the ground one meter to the right of the robot, running
parallel to the robot’s line of sight. If the line is observed at
a distance of 10 meters, a small error in our estimate of the
direction of that line translates to a large error in our estimate
of r, the length of the projection of the origin (the robot’s
position) onto the line. At the same time, that small error in
estimating the orientation of the line translates to a very small
error in σ, the rotation in the plane of the projection of the
origin onto the line. This situation means our error ellipses
tend to be quite elongated with high condition numbers. To
prevent numerical problems when the covariance matrices
are inverted, we enforce constraints on the condition number
and minimum singular value of each covariance matrix. In
particular, we let USUT be the singular value decomposition
of the positive definite covariance matrix Σ. If σ1 is the largest
singular value of Σ, and σn is the smallest singular value of Σ,
we construct an adjusted singular value matrix S ′ by adding
to each of the singular values σi the smallest nonnegative
quantity σ guaranteeing that the smallest adjusted singular
value σ′

n = σn + σ is above a small threshold and that the
new condition number σ′

1/σ
′

n is below another threshold. We
then replace Σ with the better-conditioned matrix US ′UT .

g) Line transforms: Once the four-dimensional repre-
sentation of an observed 3D line is estimated from a trinocular
line correspondence, it is necessary to transform that line
from camera coordinates into robot coordinates, since the
reference camera is in general translated and rotated relative
to the robot itself. It is also necessary to transform landmarks
from robot coordinates into world coordinates, when the
robot’s position is determined, for instance, and from world
coordinates back to robot coordinates, when a landmark in the
map is considered as a possible match for an observed (robot
coordinate) landmark. In each of these cases, the transformed
line L′ = t(L) is computed as a nonlinear function of
the original line, and the transformed line’s covariance is
propagated by ΣL′ = JΣLJT , where J is the Jacobian matrix
∂t
∂L evaluated at L.

B. Particle update

Here we follow Montemerlo and colleagues’ “FastSLAM
1.0” algorithm [1], adapted to the case of line segments as
landmarks. FastSLAM’s goal is to estimate the posterior

p(st,Σ | zt, ut, nt)

where st is the robot’s path from time 0 to time t, Σ is
the map (a list of landmark positions and covariances), zt is
the set of observed landmarks from time 0 to t, ut is the
robot’s assumed motion from time 0 to t, and nt is the set of
correspondences between the observed features zt and stored
features σt in the map.
FastSLAM is efficient, despite estimating a posterior over

the robot’s path from time 0 to t, because the posterior can

be factored

p(st,Σ | nt, zt, ut) = p(st | nt, zt, ut)
N∏

n=1

p(σn | st, nt, zt)

since the individual feature estimates in the map are condi-
tionally independent given the robot’s path and a correspon-
dence between map features and observations.
In FastSLAM, the distribution p(st | nt, zt, ut) is approxi-

mated by a particle filter. Each particle in the filter represents
one possible robot path st from time 0 to t. Since the map
feature estimates p(σn | st, nt, zt) themselves depend on the
robot path, each particle also carries with it an extended
Kalman filter (EKF) for each of the landmarks in the map.
Here we provide a capsule summary of the FastSLAM

algorithm as adapted to our system. For details of FastSLAM,
the reader should refer to [1]. At each time step t, the robot
performs an action ut, captures a set of images, and extracts
a set of 3D line segments zt from the image set as described
in section II-A. Each particle m in the particle filter is then
updated with the new robot action ut and zt as follows:
1) Using the particle’s previous state estimate st×1, we
draw a sample st from the motion model p(st |
st×1, ut), which is approximated by a Gaussian dis-
tribution around the position ŝt we would obtain if the
robot exactly performed action ut from position st×1.

2) Assuming the sampled position st, for each observed
landmark zti, we find the most likely correspondence
with a stored landmark, i.e.

n̂ti = arg max
nti

p(zti | nti, n̂
t×1, st, zt×1, ut)

3) For each observed landmark, if the probability of the
observation given the most likely correspondence p(zti |
n̂ti, n̂

t×1, st, zt×1, ut) is below threshold, we add it to
the map as a new landmark. If the probability is above
threshold, we combine the new observation with the old
landmark position estimate using the extended Kalman
filter update equation.

4) Over all the observed landmarks, we calculate the
importance weight w[m]

t , assuming conditional indepen-
dence of the individual observations zti:

w
[m]
t =

∏
i

p(zti | n̂ti, n̂
t×1, st, zt×1, ut)

After the particles are updated, we then resample the particles,
with replacement, proportional to the importance weights
calculated in step 4. above. The updated particles with large
weights, indicating a high degree of consistency between
observed and stored landmarks, are more likely to survive
the resampling step than those particles with small weights,
indicating less consistency between observed and stored land-
marks.

III. EXPERIMENTAL METHODS
We tested the vision-based SLAM algorithm in simulation

with a virtual robot moving through a virtual world, rendered
with OpenGL from a VRML model. Our simulator allows



us to test localization and mapping algorithms in arbitrar-
ily complex environments, with a known ground truth (the
VRML model itself). We plan to release this simulator as
open source software in the near future.
For our SLAM experiments, we chose as an environment a

publically-available 3D model of Housestead’s fort, a Roman
garrison from the 3rd century A.D. on Hadrian’s Wall in
Britain [14]. A sample view from our virtual trinocular stereo
rig is shown in Figure 1.
This environment is an interesting test of vision-based

SLAM algorithms because, on the one hand, it generates
many long, strong, straight edges that should be useful for
localization. On the other hand, it is highly textured, creating a
large number of edges, and the textures are highly repetitive in
many places, leading to many ambiguities for correspondence
algorithms.
We teleoperated our virtual robot through this virtual world

in a long loop of about 300m. At approximately 1m intervals,
the virtual camera rig was instructed to capture a set of
stills from its three cameras. To make the problem more
challenging, we simulated the effects of a traveling on a
rough outdoor surface, so that the robot’s vertical (Z) position
varied approximately ±0.04m from 0, its pitch and roll varied
±2.5 degrees from 0, and its yaw varied ±3 degrees from its
expected course.
To enable the robot to view a large portion of the nearby

environment, while also accurately estimating the depth of
objects at reasonable distance, we used a fairly long stereo
baseline (1m) and a fairly wide angle lens (70 degrees
horizontal field of view). A more realistic setup achieving
similar accuracy would require using more than one camera
rig with narrow fields of view and more narrow baselines.
We plan to release the data set with ground truth to

interested researchers via the WWW.

IV. RESULTS
We report the results of three experiments here. First, to

determine whether the 3D line segment sensor is accurate
enough to support map building assuming known positions,
we ran the mapping algorithm as described earlier, but with
the known “true” simulated robot positions rather than the
positions estimated by the SLAM algorithm. This resulted in
a 3D line map whose projection into the plane is shown in
Figure 2(a).
In a second experiment, we sought to obtain a lower bound

on performance. We ran the mapping algorithm as described,
but rather than estimating the robot’s position from sensor
data, we simply assumed the robot motions as described
by the simulated odometry measurements were correct. This
resulted in an extremely bad 3D map, whose projection into
the plane is shown in Figure 2(b). Clearly, this map would
be nearly useless for navigation.
In the final, third experiment, we ran our adaptation of

FastSLAM on the same sensor data. We used 100 particles,
each estimating the robot’s position with 6 degrees of free-
dom. The result of one run is shown in Figure 2(c). Although

the map is far from the “perfect” map of Figure 2(a), it is
clear that the SLAM algorithm enables recovery from some
of the distortions caused by bad odometry data in Figure 2(b).

V. CONCLUSION
In this paper, we have shown that Thrun, Montemerlo, and

colleagues’ FastSLAM algorithm, originally designed for 2D
laser-based SLAM, is quite feasible for vision-based SLAM
with 3D lines as landmarks. With the help of a straightforward
line segment correspondence algorithm, the trinocular stereo
camera sensor produces 3D landmarks suitable for use by
FastSLAM’s particle filter for weighting the importance of
sampled robot positions. By maintaining multiple robot path
hypotheses and a separate maximum likelihood map for each
hypothesized path, the algorithm can potentially overcome
the thorny problem of systematic error induced by erroneous
correspondences.
However, there are serious issues to address. With a good

3D line representation and a sufficiently large number of
particles in the filter, it should be possible to achieve, very
nearly, the “perfect” map shown in Figure 2(a). The main
problem is that in its current implementation, our algorithm is
too slow. The run time is dominated by particle update step 2),
namely the determination of the most likely correspondence
for an observed landmark. This is partially due to the fact
that we do not currently attempt to keep the k-D trees storing
our landmark databases balanced, but even more so due to
the fact that the measurement error for the 4-dimensional
representation of 3D lines tends to be large, for the same
reasons causing the numerical instability in Section II-A. This
means that a large fraction of landmarks in the k-D tree
must be considered as potentially corresponding features, and
the full comparison is fairly expensive. The large number
of observation-map feature comparisons in turn limits the
number of particles we can use while maintaining a run time
within range of real time performance. Thrun et al. [1] cite
good performance for their FastSLAM 1.0 algorithm with 100
particles, but their problem is only a 3 degree of freedom
problem, whereas ours is a 6 degree of freedom problem,
most likely requiring far more particles to achieve similar
performance.
With these issues in mind, in our current research, we are

currently exploring better 3D line representations, as well as
the use of Montemerlo, Thrun, and colleagues’ “FastSLAM
2.0” algorithm, which promises a dramatic decrease in the
number of particles necessary by focusing the particle filter’s
proposal distribution in regions more likely to be consistent
with the observed sensor measurements.
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(a) (b) (c)
Fig. 1. Sample trinocular image set captured in simulation. (a) Reference image. (b) Horizontally aligned image. (c) Vertically aligned image.

−200 −150 −100 −50 0 50 100
−40

−20

0

20

40

60

80

100

120

140

(a)

−80 −60 −40 −20 0 20 40 60
0

50

100

150

−80 −60 −40 −20 0 20 40 60 80
−20

0

20

40

60

80

100

120

140

(b) (c)
Fig. 2. Mapping results for Housestead’s fort. (a) 2D projection of the 3D map obtained with perfect localization. (b) Raw map obtained assuming the
location predicted by odometry. (c) Map estimated by the vision-based SLAM algorithm.
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Abstract— In the simultaneous localization and mapping
(SLAM) problem, a mobile robot must build a map of its environ-
ment while simultaneously determining its location within that
map. We propose a new algorithm, for visual SLAM (VSLAM), in
which the robot’s only sensory information is video imagery. Our
approach combines stereo vision with a popular sequential Monte
Carlo (SMC) algorithm, the Rao-Blackwellised particle filter, to
simultaneously explore multiple hypotheses about the robot’s
six degree-of-freedom trajectory through space and maintain a
distinct stochastic map for each of those candidate trajectories.
We demonstrate the algorithm’s effectiveness in mapping a large
outdoor virtual reality environment in the presence of odometry
error.

Keywords—Localization, mapping, stereo vision, Rao-
Blackwellised particle filter, visual landmarks

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is the
problem of a mobile robot constructing a metric map from
noisy sensor readings while simultaneously estimating its
location from the partial map and noisy odometry measure-
ments. SLAM is one of the fundamental challenges for mo-
bile robotics research. Altough recent years have seen great
advances in 2D mapping with laser range finders, exclusively
vision-based SLAM (VSLAM) is still limited to relatively
small scale, highly structured indoor environments.

We are interested in taking VSLAM beyond the typical
office building environment into larger, but still structured,
environments such as college campuses, office parks, and
shopping malls. Potential application areas include security,
inspection, landscape maintenance, agriculture, and personal
service.

Achieving this goal without giving the robot an a-priori
map requires new technology. The majority of vision-based
SLAM research to date has focused on automatic construction
of occupancy grids or topological maps (see [8] for a survey),
both of which are inappropriate for large-scale metric mapping.
The ideal approach would construct a sparse 3D representation
of the environment.

Early VSLAM systems did use sparse features, but they
typically compressed the map to 2D. For example, Kriegman,
Triendl, and Binford’s system [11] uses a stereo sensor to
extract vertical lines from the environment. Observed lines
are used to reduce odometric uncertainty using an extended

Kalman filter (EKF), then the observations are in turn used
to update an environment map containing 2D point features
representing the observed vertical lines. Yagi, Nishizawa, and
Yachida’s system [21] took a similar approach but used a single
omnidirectiona vision sensor and accumulation of measure-
ments over time, rather than stereo, to determine the positions
of vertical line landmarks. These systems and others have
amply demonstrated the efficacy of VSLAM based on line
landmarks in constrained indoor environments with smooth
floors.

Faugeras and colleagues [1], [22] were the first to develop
a VSLAM system storing a sparse 3D map. Their system first
constructs a “local” 3D line segment map of the current scene
using trinocular stereo. It explicitly represents the uncertainty
about each feature’s robot-relative pose in the form of a
covariance matrix. The new local map is registered against
the current global map and used to update an estimate of
the robot’s position using an EKF. Finally, assuming the
robot’s position, the global map is be updated with the freshly
observed features, again using EKFs.

Se, Lowe, and Little [16] demonstrate the use of SIFT
(scale invariant feature transform) point features as landmarks
for the VSLAM problem. Their system also uses a trinocular
stereo camera rig and models the positional uncertainty of the
landmarks with Kalman filters.

Sim and Dudek [17] take a different approach; rather than
prespecifying the features (lines, points, corners, and so on)
that should be used for map building and localization, their
system learns generative models for the appearance of salient
features during exploration.

Until quite recently, most VSLAM systems limited them-
selves by separating the motion estimation and map estimation
problems. Typically, at each step, the robot’s location would
be estimated via Bayesian inference or some other estimation
technique, then that position would be assumed for the map
update. While this approach leads to fast algorithms, not
considering alternative robot poses when estimating landmark
positions is suboptimal. Other researchers in the robotics
community took a formal probabilistic approach and explored
the possibility of representing, at each point in time, the full
joint posterior distribution over robot trajectories and landmark
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positions. Smith, Self, and Cheeseman [19] introduced the
“stochastic map,” which represents not only the positions of
landmarks in the world with their associated uncertainties, but
also the uncertainty of the robot’s position, the covariance be-
tween each pair of landmarks, and the covariance between the
robot’s position and each landmark. This seminal theoretical
work inspired many successful SLAM systems, e.g. [2], [7],
[12]. In a particularly impressive demonstration of the power
of the stochastic map approach, Davison and colleagues [5],
[6] have solved the VSLAM problem with point landmarks
extracted from a single camera without odometry. Their system
runs in real time at 30 Hz.

While the stochastic map very accurately represents all of
the available information about landmark and robot positions
(within the limits of the Gaussian approximation), the method
unfortunately cannot scale to the thousands of landmarks
needed for large-scale environments, due to the size of the
full covariance matrix.

Murphy [13], however, recognized that in SLAM, map
elements are conditionally independent given the robot’s tra-
jectory through time. He used this insight in the design of
the Rao-Blackwellised particle filter (RBPF), in which the
joint posterior over robot trajectories and maps is represented
by a set of samples or particles, each particle containing
one possible robot trajectory and the corresponding stochastic
map. The fact that the robot’s trajectory is fixed for a given
particle has an important consequence: all of the covariances
between different map elements in the stochastic map become
0. For a landmark map, this means the covariance matrix for
each individual landmark is sufficient to represent all of the
available knowledge of the environment.

Murphy only demonstrated the RBPF on a toy problem, but
more recent work has applied the technique to the real world
with immense success. Montemerlo, Thrun, and colleagues
[20] use the RBPF and 2D point landmarks measured by a
laser scanner to construct large-scale 2D maps. In their system,
each particle represents a possible robot trajectory, set of data
associations, and landmark map. The maps are stored in a
tree structure that allows sharing subtrees between particles,
allowing a real-time implementation that scales to thousands
of landmarks. Eliazar and Parr [9] also use the RBPF and
a laser scanner for SLAM, but build a 2D occupancy grid
rather than a landmark database. Their algorithm also requires
a sophisticated data structure that allows sharing maps between
particles.

Even more recently, researchers have begun to apply the
RBPF to the VSLAM problem. Sim et al. [18] extract SIFT
point features from stereo data and combine the observations
with visual odometry to build 3D landmark maps. According
to the authors, this state-of-the art system has constructed the
largest and most detailed VSLAM map ever, in a large indoor
laboratory environment.

In our work, we take a similar approach, combining the
RBPF with vision sensors, except that we use 3D line seg-
ments for localization and map building, rather than the more
commonly used point features [18], [20]. Line parameters can

be estimated more accurately than points, since the estimate in-
corporates more observed data. This means it may be possible
to obtain more accurate robot localization from line landmarks
than point landmarks, depending on the characteristics of the
robot’s workspace. Lines also provide more information about
the environment’s geometry than do points, allowing more
sophisticated inference about the structure of the world. How-
ever, lines also have an important disadvantage with respect
to points: they are less distinctive, making it more difficult to
find correct correspondences between a set of observed lines
and the lines in a stored model. We overcome this difficulty
by sampling many possible poses from the robot’s motion
model, obtaining a different possible observation-model cor-
respondence given each robot pose, and allowing the “fittest”
correspondences to survive in the particle filter.

Our algorithm is called VL-SLAM (Visual Line-based
SLAM). Here we describe VL-SLAM and demonstrate its
effectiveness in a series of experiments. The main contri-
butions of this paper are 1) an effective sensor model for
line landmarks obtained from a stereo camera rig, 2) a new
proposal distribution for the RBPF that overcomes the limi-
tations imposed by highly uncertain correspondences, and 3)
experimental evidence of the feasibility of VL-SLAM using
realistic, albeit synthetic, data.

II. VL-SLAM
VL-SLAM is based on the “FastSLAM” family of algo-

rithms proposed by Montemerlo, Thrun and colleagues [20].
At each point t ∈ 1 . . . T , the robot performs an action ut

taking it from position st−1 to st and uses its sensors to obtain
an observation zt. We seek a recursive estimate of

p(s0:t,Θ | u1:t, z1:t) (1)

where Θ is a map containing the positions of each of a set
of point landmarks. Rather than estimate the distribution (1)
analytically, we approximate the posterior with a discrete set
of Mt samples (sometimes called particles){

< s
[m]
0:t ,Θ

[m]
0:t >, where each index m ∈ 1 . . .Mt

}
. (2)

Here s[m]
0:t is the specific robot trajectory from time 0 to time t

associated with particle m, and Θ[m]
0:t is the stochastic landmark

map associated with particle m (the map is derived from s
[m]
0:t ,

z1:t, and u1:t). FastSLAM (and VL-SLAM) use the sequential
Monte Carlo techniques of sequential importance sampling
and importance resampling. First, for each particle, we sample
from some proposal distribution

π(s0:t,Θ0:t | z1:t, u1:t) (3)

to obtain a temporary set of particles for time t, then evaluate
the importance weight w[m] for each temporary particle, where

w(s0:t,Θ0:t) =
p(s0:t,Θ0:t | u1:t, z1:t)
π(s0:t,Θ0:t | u1:t, z1,t)

. (4)

The importance weights are normalized to sum to 1, then we
sample Mt particles, with replacement, from the temporary
particle set according to the normalized weights.



VL-SLAM extends FastSLAM with a new sensor model for
3D line segments and a new proposal distribution π(·) appro-
priate for environments with highly ambiguous observation-
model correspondences. We first describe the 3D line segment
sensor model then VL-SLAM proposal distribution.

A. VL-SLAM 3D Line Segment Sensor Model

After each robot motion ut, a set of trinocular stereo images
is captured, and a set zt of landmark measurements (line
segments) is extracted from those images. These line segment
measurements, along with the measured motion ut, are used
to update each particle’s map and position estimate.

Our system assumes a calibrated stereo camera rig with
three pinhole cameras. It can handle general fundamental
matrices (the images need not be perfectly rectified), but we
do assume that one camera is roughly horizontally displaced
and a second camera is roughly vertically displaced from a
third (reference) camera.

The basic 2D feature in our system is the line segment.
We extract line segments using Canny’s method [4] following
the implementation in VISTA [14]. The edge detector first
performs nonmaxima suppression, links the edge pixels into
chains, and retains the strong edges with hysteresis. Once edge
chains are extracted from the image, we approximate each
chain by a sequence of line segments. Short line segments,
indicating edges with high curvature, are simply discarded in
the current system.

We use a straightforward stereo matching algorithm similar
to the approach of [22]. For each line segment in the reference
image, we compute the segment’s midpoint, then consider
each segment intersecting that midpoint’s epipolar line in
the horizontally displaced image. Segments not meeting line
orientation and disparity constraints are discarded. Each of
these potential matches determines the location and orientation
of a segment in the third image. If such a consistent segment is
indeed found in the third image, the potential match is retained;
otherwise it is discarded. If at the end of this process, we
have one and only one consistent match, we assume it correct;
otherwise, the reference image line segment is simply ignored.

Now our goal is to estimate a three-dimensional line from
the three observed two-dimensional lines. Infinite lines have
four instrinsic parameters, so it would make sense to use
a four-dimensional representation of a lines. However, since
VL-SLAM uses a Kalman filter to combine landmark obser-
vations, we require a linear parameterization of landmarks,
and no linear four-dimensional representation of lines exists
[1]. Instead we represent lines with six components: a 3D
point representing the midpoint of the observed line segment
and a 3D vector whose direction represents the direction of
the line and whose length represents the distance from the
line segment’s midpoint to one of its endpoints. This 6D
representation behaves well under linear combination, so long
as the direction vectors are flipped to have a positive dot
product.

First we obtain a maximum likelihood estimate of the
infinite 3D line’s parameters assuming Gaussian measurement

error in the image using Levenberg-Marquardt minimization
[15]. As an initial estimate of the line’s parameters, we use the
3D line (uniquely) determined by two of the 2D line segment
measurements. Once the infinite line has been estimated, we
find the segment’s extrema and midpoint using the observed
data.

Through each step of the 3D line estimation process,
we maintain explicit Gaussian error estimates. We begin by
assuming spherical Gaussian measurement error in the image
with a standard deviation of one pixel. Arranging the n (x, y)
coordinates of the pixels in a line as a column vector x, the
covariance of x is simply Σx = I2n×2n. Since the vector of
parameters l describing the 2D line best fitting x is a nonlinear
function l = f(x), the covariance of l is Σl = JΣxJ

T , where
J is the Jacobian matrix ∂f

∂x evaluated at x.
The maximum likelihood estimate of the 3D line obtained

from the three 2D line segments l = (l1, l2, l3) is clearly
not a simple function, since it is computed by an iterative
optimization procedure. However, if l = f(L) is the function
mapping from the parameter space to the measurement space,
it turns out that, to first order, L̂ is a random variable with
covariance matrix (JT ΣlJ)−1, where J is the Jacobian matrix
∂l
∂L [10]. The rank of the resulting covariance matrix is only
four, however, so to constrain the remaining two degrees of
freedom, we add to the rank-deficient covariance matrix a
covariance matrix describing the expected error in our estimate
of the segment’s midpoint and another covariance matrix
describing the expected error in our estimate of the segment’s
length. This gives us a full-rank covariance matrix that restricts
matching line segments to not only be similar in terms of their
supporting infinite line, but also to overlap and have similar
length.

Once the six-dimensional representation of an observed 3D
line is estimated from a trinocular line correspondence, it is
necessary to transform that line from camera coordinates into
robot coordinates, since the reference camera is in general
translated and rotated relative to the robot itself. It is also
necessary to transform landmarks from robot coordinates into
world coordinates, when the robot’s position is determined,
for instance, and from world coordinates back to robot coordi-
nates, when a landmark in the map is considered as a possible
match for an observed (robot coordinate) landmark. In each
of these cases, the transformed line L′ = t(L) is computed as
a nonlinear function of the original line, and the transformed
line’s covariance is propagated by ΣL′ = JΣLJ

T , where J is
the Jacobian matrix ∂t

∂L evaluated at L.

B. VL-SLAM Proposal Distribution

The proposal distribution π(·) (3) can be any distribution
that is straightforward to sample from. However, it is best if
π(·) closely approximates the full joint posterior (1), in which
case the importance weights will be nearly uniform, and most
particles will “survive” the resampling step. In FastSLAM 1.0
[20], the proposal distribution is simply p(st | st−1, ut), i.e. the
motion model predicting st given a previous position st−1 and
action ut. The authors observe that this proposal distribution,



(a) (b) (c)
Fig. 1. Sample trinocular image set captured in simulation. (a) Reference image. (b) Horizontally aligned image. (c) Vertically aligned image.

while simple to sample from, does not take into account the
current observation zt. This leads to FastSLAM 2.0, in which
the proposal distribution is p(st | s[m]

0:t−1,Θ
[m]
0:t−1, u1:t, z1:t).

This distribution takes not only the previous robot pose st−1

and current action ut into account, but also considers the
current map Θ0:t−1 and new observation zt. In the general
case, this distribution could be quite difficult to sample from,
but the authors find that by linearizing the sensor model and
applying the Markov assumption, the proposal distribution can
be approximated to first order by a Gaussian distribution whose
mean and covariance can be calculated from known quantities,
if the correspondence between the observation zt and the
current map Θ0:t−1 is known. When the correspondences are
unknown (the usual case in SLAM), FastSLAM 2.0 assumes
the maximum likelihood correspondence or draws a sample
from a probability distribution over all possible correspon-
dences. When the observations and landmarks are sparse, as is
the case in the FastSLAM environment, this is straightforward,
and FastSLAM 2.0 is much more successful than FastSLAM
1.0, since it uses the available set of particles wisely [20].

In VL-SLAM, however, each observation consists of on the
order of 100 individual 3D line segments, and typically the
landmark database contains several potential matches for each
observed line. This means that it is impossible to consider
even a small fraction of the possible correspondences for each
particle. In practice, to limit the computational complexity, we
must draw a single correspondence from the set of all possible
correspondences without considering too many alternatives.
But how can we choose a likely correspondence for a given
observation?

In VL-SLAM, when propagating a particle forward from
time t − 1 to time t, we first fraw a sample s′t from the
robot’s motion model to establish a correspondence between
the observed line segments and the current map (resembling
FastSLAM 1.0), then from that intermediate sample point,
assuming the established correspondence, sample again, from
the FastSLAM 2.0 proposal distribution. As in FastSLAM 2.0,
the proposal distribution is closer to the full joint posterior
distribution, concentrating more of the temporary particles in
regions of high probability according to the full joint posterior.

To calculate the importance weights for the the VL-SLAM
proposal distribution, we first introduce random variables nt

indicating the correspondence between the line segments ob-
served at time t and the map. In VL-SLAM, the mth particle’s
map Θ[m]

0:t is a deterministic function of the sampled trajectory
s
[m]
0:t , the sampled correspondences n[m]

1:t , and the observations
z1:t, so we rewrite the desired full joint posterior as

p(s0:t, n1:t | u1:t, z1:t). (5)

Now, assuming we have a good estimate of the full joint
posterior at time t − 1, the VL-SLAM proposal distribution
can be written as the product

p(s[m]
t | n[m]

t , s
′[m]
t , s

[m]
0:t−1, n

[m]
0:t−1, z1:t, u1:t)×

p(n[m]
t | s′[m]

t s
[m]
0:t−1, n

[m]
1:t−1, z1:t−1, u1:t)×

p(s′[m]
t | s[m]

0:t−1, n
[m]
1:t−1, z1:t−1, u1:t)×

p(s[m]
0:t−1, n

[m]
0:t−1 | u1:t−1, z1:t), (6)

where s′t represents the intermediate sample drawn from the
motion model. For the mth particle, the importance weight is
the ratio of the expressions in (5) and (6), which, with several
applications of Bayes’ rule and the Markov assumption, can
be closely approximated as (details ommitted):

w
[m]
t =

p(s[m]
t | s[m]

t−1, ut)p(zt | s[m]
0:t , n

[m]
1:t , z1:t−1)

p(s[m]
t | zt, s

′[m]
t , n

[m]
1:t , s

[m]
0:t−1, z1:t−1, u1:t)p(s

′[m]
t | s[m]

t−1, ut)
(7)

Following [20], we linearize the sensor model and motion
model, which leads to straightforward Gaussian approxima-
tions for each of the terms in (7).

Except for the sensor model and proposal distribution just
described, VL-SLAM is similar to FastSLAM (see [20] for
details). Once correspondences and the sampled pose are
determined for an individual particle, each observed landmark
is combined with its corresponding map landmark using an
extended Kalman filter, or initialized as a new landmark in the
map. To achieve fast search for landmarks corresponding to a
given observation, each particle’s map is stored in a binary k-
D tree whose leaves are the 3D line segments with associated
Gaussian uncertainties. However, to minimize total memory
requirements and to enable constant-time copying of maps



during the resampling stage, the particles are allowed to share
subtrees.

As we shall see in the next section, the diversity of possible
correspondences introduced by the first sampling step (as
in FastSLAM 1.0), combined with the use of the current
observation zt in the proposal distribution (as in FastSLAM
2.0), allows VL-SLAM to outperform both FastSLAM 1.0 and
FastSLAM 2.0 on a challenging synthetic testbed.

III. EXPERIMENTAL RESULTS

To enable rigorous testing of VL-SLAM in an environment
with a precisely known ground truth, we implemented a virtual
reality simulation allowing a virtual robot to move through a
virtual world rendered with OpenGL from a VRML model.
We chose as an environment a publically-available 3D model
of Housestead’s fort, a Roman garrison from the 3rd century
A.D. on Hadrian’s Wall in Britain [3]. A sample view from
our virtual trinocular stereo rig is shown in Figure 1.

We teleoperated our virtual robot through this virtual world
in a long loop of about 300m. At approximately 1m intervals,
the virtual camera rig was instructed to capture a set of stills
from its three cameras. The virtual camera models a real 10cm
baseline, 70◦ field of view trinocular rig we recently built in
our lab. To make the dataset somewhat challenging, we simu-
lated the effects of a traveling on an imperfect outdoor surface,
so that the robot’s vertical (Z) position varied approximately
±0.04m from 0, its pitch and roll varied ±2.5 degrees from
0, and its yaw varied ±3 degrees from its expected course.

This environment is an interesting testbed for VL-SLAM
because, on the one hand, it generates many long, strong,
straight edges that should be useful for localization. On the
other hand, it is highly textured, creating a large number of
edges, and the textures are highly repetitive in many places,
leading to many ambiguities for correspondence algorithms.
It is also large enough to preclude fine-grained grid-based
techniques and noisy enough to preclude the use of flat-earth
or three-degree-of-freedom assumptions.

We compared VL-SLAM with our own implementations of
FastSLAM 1.0 and 2.0. As previously discussed, FastSLAM
2.0 was not designed to handle large observations with highly
uncertain correspondences. In our implementation, we simply
obtain the maximum likelihood correspondence assuming the
robot is at the position obtained by propagating s[m]

t−1 forward
in time according to odometry to obtain ŝ

[m]
t . With this

caveat about the FastSLAM 2.0 results, Figure 2 shows one
measure of each algorithm’s performance: the log-likelihood
of the observation data given the best particle’s robot trajectory
sample and map; Figure 3 shows the final map according to the
best VL-SLAM particle. All of the localization algorithms do
much better than the baseline (odometry-only) algorithm. Due
to its commitment to robot position ŝ

[m]
t when determining

correspondences in our implementation, FastSLAM 2.0 fares
rather poorly. Since FastSLAM 1.0 samples from the motion
model before obtaining a correspondence, it performs much
better, but VL-SLAM, which combines the best features of
both algorithms, outperforms them both.

IV. CONCLUSION

In this paper, we have demonstrated the feasibility of VL-
SLAM on a challenging synthetic data set. The VL-SLAM
proposal distribution improves on FastSLAM in environments
with large numbers of ambiguous observations. However,
Figure 2 shows that there is still improvement to be made: the
log-likelihood of the observations given perfect localization
is still much better than the log-likelihood of the observations
under VL-SLAM’s model. This means there is still information
about the robot’s position to be exploited in the observed data.
This is also evidenced in Figure 3, which compares the VL-
SLAM map to the map constructed with perfect knowledge
of the robot’s location. Although the map is locally fairly
accurate, global drift occurs throughout the run, preventing the
algorithm from closing the loop when the robot returns to its
starting position. This is most likely due to an impoverished
set of particles.

In future work, we plan to improve VL-SLAM’s loop
closing behavior and evaluate the algorithm on a variety of
indoor and outdoor real-world data sets.
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ABSTRACT

In the simultaneous localization and mapping (SLAM) prob-
lem, a mobile robot must localize itself in an unknown en-
vironment using its sensors and at the same time construct
a map of that environment. While SLAM utilizing costly
(expensive, heavy and slow) laser range finders as a sen-
sor has been very successful in both indoor and outdoor
environments, large-scale SLAM with cost-effective vision-
based sensors has yet to be realized. In this paper, we eval-
uate the effectiveness of one possible low-cost vision-based
approach to SLAM. We take 3D points constructed from
Kanade-Lucas-Tomasi (KLT) image feature points in trinoc-
ular camera images as the basic landmarks for SLAM. We
demonstrate the feasibility of KLT-based SLAM by con-
ducting an experiment in a real indoor environment.

1. INTRODUCTION

Simultaneous localization and mapping (SLAM) is one of
the fundamental problems in robotics. The problem is for
a mobile robot, while moving around in some unknown en-
vironment, to use its sensors to construct a map of that un-
known environment. SLAM is difficult mainly because the
robot cannot determine its position precisely. It might have
access to some positioning sensors such as wheel encoders,
GPS, or a compass, but still, some kind of environmental
feedback will always be necessary to help correct the error
that inevitably exists in these sensor readings. The main
sensors used in SLAM for this kind of feedback are laser
range finders and video cameras.

We are interested in SLAM for constructing metric maps
of large scale environments such as office buildings and
mine fields. Laser range finders have been particularly suc-
cessful sensors for these kinds of environments — see, for
example, [14] — because lasers are extremely accurate. On
the other hand, they are also heavy, expensive, and slow. In
our work, we focus on the use of cameras as sensors due to
their high speed, small size, and low cost.

Vision-based SLAM is an actively developing research
area, but thus far most of the existing systems construct ei-
ther occupancy grids or topological maps (see [5] for a sur-

vey), and these approaches are inappropriate for large scale
metric mapping. For large scale metric maps, the simplest
approach is to represent the world with a sparse collection of
landmarks. These landmarks could be distinctive-looking
3D points or more complex objects such as lines, curves,
corners, and so on. There have been several SLAM sys-
tems based on visual landmarks that work in small envi-
ronments [1, 3, 4, 8, 15, 16], but thus far, there has been no
successful robust, large-scale demonstration of vision-based
SLAM.

Towards the goal of achieving large-scale metric vision-
based SLAM, there has been some recent work on applying
the efficient Rao-Blackwellised particle filter (RBPF) [9] as
the underlying estimation algorithm and a stereo vision head
as the sensor [2,12]. Both of these systems use Thrun et al.’s
FastSLAM algorithm [14] for the RBPF to create sparse
landmark maps organized by k-D trees for efficient search
and modification.

We are particularly interested in combining multiple in-
formation sources, for example, line segments and distinc-
tive points, to achieve robust large-scale vision-based SLAM
at minimal cost. For point features, however, SIFT is com-
putationally expensive; it requires construction of a scale
space representation of each image, multiple convolutions,
and extraction of a rich descriptor of the local image statis-
tics around each point of interest. Combined with the com-
putational complexity of maintaining many robot path esti-
mates in the RBPF, systems based on SIFT and FastSLAM
are going to be expensive or slow for several years to come.

In this paper, we explore the use of the KLT interest
point detector [11] with trinocular stereo vision and the Fast-
SLAM algorithm. On the one hand, KLT feature locations
can be sensitive to noise, but on the other hand, they are
quite lightweight in comparison with SIFT. We find that
with the help of rather strict epipolar line constraints on the
images obtained by a trinocular camera system, it is possi-
ble to choose only reliable points from a set of KLT points in
an image set and use them to reconstruct 3D geometric point
landmarks in an environment. We ran the FastSLAM algo-
rithm with the 3D landmark point observations and verified
the consistency of the result by comparing the performances
with different number of particles used in the particle filter.



2. KLT-BASED FASTSLAM

Here we describe the application of FastSLAM [14] to the
problem of vision-based SLAM with KLT point features as
observations.

2.1. The FastSLAM algorithm

FastSLAM [14] is an elegant solution to the SLAM prob-
lem that maintains a full posterior over possible robot paths
(as opposed to a maximum a posteriori estimate) using the
RBPF [9]. The posterior distribution over possible robot
paths is represented by a set of samples or particles, where
each particle at time t represents one possible robot path
up to time t, one possible series of data association assump-
tions for the sensor measurements up to time t, and a stochas-
tic landmark map [13] based on those assumptions. Since
each particle represents a particular robot path and a par-
ticular series of data association decisions up to time t, the
observed landmarks are conditionally independent, so the
posterior over landmark positions can be represented simply
as a list of landmark estimates with associated uncertain-
ties. The assumption of a particular robot path and particu-
lar series of data associations allows a representation of the
map that is linear in the number of landmarks (the classical
stochastic map is quadratic in the number of landmarks due
to the correlations introduced by uncertain robot positions).

In this paper we adapt Thrun et al.’s “FastSLAM 1.0”
[14] algorithm to the vision-based SLAM problem. At each
time t, we seek a recursive estimate of

p(s0:t,Θt | u1:t, z1:t) (1)

where s0:t is the robot’s path from time 0 to time t, Θt is a
map containing a set of landmarks, u1:t is a set of robot ac-
tions, and z1:t is a set of sensor observations. Each element
si of s0:t is a vector describing the robot’s pose at time i;
we use a six degree of freedom representation for si.

The idea of the RBPF is to represent the posterior (Eq.
1) with a discrete set of Mt samples or particles{〈

s
[m]
0:t ,Θ

[m]
t

〉
,where each index m ∈ 1, . . . ,Mt

}
. (2)

s
[m]
0:t is a specific robot path associated with particle m, and

Θ[m]
t is the stochastic landmark map associated with par-

ticle m, derived from s
[m]
0:t , the robot actions u1:t, and the

observations z1:t.
FastSLAM 1.0 uses sequential importance resampling,

also known in the computer vision literature as the “conden-
sation” algorithm [7]. At each time t, for each particle m,
we sample from the proposal distribution

p(st | s[m]
t−1, ut)

to obtain a temporary set of particles for time t. Then,
for each temporary particle m, we compute the importance
weight

w[m] ∝ p(zt | s[m]
t ,Θ[m]

t−1)

and update the particle’s map with zt assuming s[m]
t to get

Θ[m]
t . The importance weights are normalized to sum to 1,

then we sample Mt particles, with replacement, from the
temporary particle set according to the normalized weights.
The result is a new set of particles (Eq. 2) that represents the
posterior (Eq. 1) at time t.

Our approach is identical to planar FastSLAM 1.0 [14]
except that we use a six degree of freedom motion model
p(st | st−1, ut) and a 3D point sensor model p(zt | st,Θt−1)
using landmarks derived from KLT features on a trinocular
stereo vision rig. We now describe the trinocular stereo sen-
sor in detail.

2.2. Trinocular KLT as a sensor model for FastSLAM

In FastSLAM, the sensor model is fully described by the
conditional probability p(zt | st,Θt−1, nt), explicitly con-
ditioning on nt, the set of correspondences between ob-
servations zt and landmarks stored in Θt−1. The distribu-
tion is assumed to be a deterministic measurement function
f(Θt−1, st, nt) corrupted by Gaussian noise.

In our case, the observations are sets of 3D points in
robot-relative coordinates, estimated by triangulation with a
trinocular stereo vision rig. Our 3D point extraction proce-
dure begins by obtaining 2D KLT (Kanade-Lucas-Tomasi)
corner features [11] from each of three calibrated images
simultaneously captured by the trinocular camera rig. We
then find sets of corresponding features across the three im-
ages and triangulate to obtain an estimate of the putative
feature’s 3D position relative to the robot.

The basic idea of using KLT as a 2D feature detector is
to find points with a complex local gradient field. Complex-
ity of the gradient field is measured by the smaller eigen-
value of the matrix

Z =
(

g2
x gxy

gxy g2
y

)

in which the quantities are integrals of the squared gradient
(in the case of g2

x and g2
y) or the integral of the product of x

and y gradients (gxy) in a neighborhood around the point of
interest. A point is selected as a KLT feature if the smaller
eigenvalue λ2 of Z is a local maximum and above some
threshold λ. The motivation is that image points meeting
the criterion have a local gradient structure that cannot be
described by a single eigenvector (as would be the case for a
simple edge), but have a more complex corner-like structure
that should be easy to detect under various imaging condi-
tions.

After extracting a set of KLT feature points from each
of the three images acquired at time t, we attempt to find
triples of corresponding points as a necessary step prior to
triangulation. For each KLT point p1,i detected in image 1,
we search image 2 for potentially corresponding points. For
each point p2,j in image 2 close enough to the epipolar line
corresponding to p1,i, we triangulate using the calibrated in-
trinsic and extrinsic parameters of the camera rig to predict
the putative object feature’s appearance in image 3. If a suit-
able KLT point p3,k exists in image 3, we consider the triple



(p1,i, p2,j , p3,k) a candidate match and continue searching
for other possible matches for p1,i. If no consistent triples
or more than one consistent triple is found for p1,i, we throw
it out. On the completion of this simple correspondence al-
gorithm, we have a set of corresponding triples of 2D points
that can then used for 3D estimation. Typically we begin
with about 200 KLT points in each image and end up with
about 20 corresponding triples.

The last step of obtaining a sensor measurement is to
estimate a 3D landmark in robot-relative coordinates given
each triple of corresponding 2D KLT points. For each cor-
respondence (p1, p2, p3), we obtain an initial estimate of the
3D position P by triangulating from p1 and p2, then we use
the Levenburg-Marquardt nonlinear least squares optimiza-
tion algorithm [10] to find the 3D position P maximizing
the likelihood of the 2D observations (p1, p2, p3) assuming
spherical Gaussian error in the measured image coordinates.
We also obtain an estimate of confidence in the 3D point
landmark position P by propagating the assumed measure-
ment error through the maximum likelihood estimation pro-
cedure using the standard first-order approximation [6].

After 2D feature detection, correspondence estimation,
and triangulation, we obtain a set of 3D point landmark ob-
servations with associated error covariance matrices. The
set of landmarks with covariances makes up zt, the robot’s
observation at time t, which is input to FastSLAM. From
this point on, our system is identical to Thrun et al.’s Fast-
SLAM 1.0 algorithm [14].

3. EXPERIMENTAL METHODS

To test KLT-based FastSLAM, we performed an experiment
in the Image and Vision Computing Laboratory at SIIT. The
room is a typical laboratory with desks, bookshelves and
computers. Figure 1 shows an image set captured in the lab
with the 10cm-baseline trinocular camera rig that was used
in the experiment.

In this experiment, rather than mounting the rig on a
robot, we simulated robot motions by manually moving a
camera tripod. The simulated robot’s position st in world
coordinates at time t is defined as a vector with six degrees
of freedom st = (x, y, z, φ, θ, ψ)T . Here the x and y axes
span a plane parallel to the floor of the lab, and z is the
vertical distance of the reference camera’s origin from the
ground plane. The remaining three variables represent the
robot’s orientation. φ, θ and ψ stand for pitch, roll and yaw
of the camera rig, respectively. During the experiment, due
to the flat floor, z, pitch, and roll was always equal to zero
throughout the experiment.

The camera rig cannot move itself, so in the experiment
we roughly pushed or rotated the rig by hand from its orig-
inal position to the next destination position in order to em-
ulate a real robot move. Since each move of the rig is not
perfect, the rig normally reaches a position slightly away
(in terms of x, y and yaw, we do not measure z, pitch and
roll since they are assumed to be zero in the experiment)
from its destination position. So we treated the difference of
the original position and the desired destination position as
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Fig. 2. Log likelihood of observation sequence given the
model.

robot odometry, and the difference of the original position
and the actually reached position as a true move. To make
the experiment simpler, we composed camera rig odome-
try so that each odometric move involves only translation
or only rotation. More specifically, odometry is of the form
(x, y, 0, 0, 0, 0)T for translation, and (0, 0, 0, 0, 0, ψ)T for
rotation.

The actual path of the camera rig consisted of 29 posi-
tions D0, D1, . . . , D28 marked on the floor of the lab. At
first the rig was positioned at D0, which we defined to be
the origin of the world coordinate system. The rig was
then moved to each destination. Along the way, at each
position, we measured the true position T1, T2, . . . , T28 of
the rig and captured a trinocular image set. The simulated
odometry measurements O1, O2, . . . , O28 were computed
as Oi = Di − Ti−1.

In this indoor experiment the robot’s path was approxi-
mately composed of a 4 meter forward translation from O1

to O10 (roughly 0.4 meters per move), a 180 degree ro-
tation from O11 to O18 (roughly 22.5 degrees per move),
and finally a 4 meter forward translation from O19 to O28

(roughly 0.4 meters per move).
Image sets (29 frames including the initial state) and

odometry (28 six dimensional vectors) were collected in the
lab. They were used as the input for KLT-Based FastSLAM
to estimate the path of the camera rig and generate a 3D
metric map of the lab. We ran the algorithm with 100, 1000
and 10000 particles. In order to compare the algorithm’s
performance against a baseline, we also ran the same map-
ping algorithm purely using odometry as the estimate of the
camera position.

4. RESULTS

Log likelihood is a measure of accuracy of the current land-
mark observation given the previous observation. It is given



(a) (b) (c)

Fig. 1. Trinocular image set captured in the lab. (a) Reference image. (b) Horizontally aligned image. (c) Vertically aligned
image.

by

ln
(
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t ,Θ[m]
t−1)

)
∼ −1

2
ln
∣∣∣2πQ[m]

t

∣∣∣− 1
2
(zt − ẑ[m]
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with the covariance
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[m]T
t Σ[m]

t−1G
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, where ẑt is an estimation of the new observation zt, Σt−1

is the covariance of the landmark before the new observa-
tion is made, Gt is the Jacobian of the sensor model with
respect to the landmark, and Rt is the covariance of the
Gaussian noise of the new observation [14].

For each particle of each sequence of observation, we
calculated the accumulated log likelihood, which is an ad-
dition of log likelihood over all the past sequences. It tells
the degree of consistency of the map recorded in a parti-
cle. For each sequence of observation, we chose the particle
that has the best (largest) value of accumulated log likeli-
hood. The result is shown in Figure 2. As the number of
the particle used in the FastSLAM algorithm increases, the
accumulated log likelihood becomes better. The result tells
that the particle filter is working properly in the experiment,
i.e. with more particles, the better localization of the camera
rig and estimate of landmark positions for each observation
sequence is achieved.

Figure 3 is 2D projections of the generated 3D map of
the lab using 1000 particles. Only KLT point landmarks
that were observed more than twice over all the observation
sequences are plotted since landmarks observed only once
tend to be noisy observations. Point landmarks in the map
captured the actual distribution of edges and corners of ob-
jects seen in the lab.

In Figure 4, estimated path of the camera rig is shown.
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plane. Each move is represented as a vector. The rig was put
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camera rig. (b) Estimated path of the camera rig using 1000
particles.
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Fig. 3. Projection of the 3D metric map into 2D planes. The boundary of the lab is shown as a rectangle in the figures. (a)
KLT point landmarks projected into x − y plane, the top view of landmarks. (b) KLT point landmarks projected into y − z
plane, the side view of landmarks.

5. CONCLUSION

In this paper, we have demonstrated the feasibility of KLT-
based FastSLAM on a data set collected in a real indoor
environment. We confirmed the positive effect of increas-
ing the number of particles by looking at the accumulated
log likelihood of particles per each sequence of observa-
tion. The distribution of 3D KLT point landmarks in the
generated map globally represented the real distribution of
edge and corner points of objects seen the lab.

However, there are noticeably many noisy cluttering land-
mark points in the 3D map which will hamper the naviga-
tion task based on the map. This happened mainly due to
the fact that the calibration of the cameras on the rig was
not ideally done in the time of the experiment. Poorly cal-
ibrated camera parameters give noisy estimation of the 3D
landmark position derived from the 2D pixel coordinates of
the landmark in each image of an image set.

The estimated path did not show any significant improve-
ment against the path based on odometry nor on true mea-
surement. One possible reason is that the odometry used in
the experiment was so close to the truth that it was beyond
the capability of the estimation algorithm to get the better
estimate of the path. To verify it, we need more experi-
ments with varying degrees of odometry error against the
true measurement.

In the future work, we plan to analyze to what extent the
calibration of the camera rig is affecting the resultant accu-
racy of estimation of landmark positions. We also seek to
see the better estimation of camera rig positions over odom-
etry by testing with various degrees of erroneous odometry.
Finally, we plan a direct comparison of KLT and SIFT fea-
tures as landmarks in SLAM.
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Abstract—Being able to detect and track human hands is
one of the keys to understanding human goals, intentions, and
actions. In this paper, we take the first steps towards real-time
detection and tracking of human hands in dynamic crowded or
cluttered scenes. We have built a prototype hand detection sys-
tem based on Viola, Jones, and Snow’s dynamic detector, which
was originally constructed to detect and track pedestrians in
outdoor surveillance imagery. The detector combines motion and
appearance information to rapidly classify image sub-windows
as either containing or not containing a hand. A preliminary
evaluation of the system indicates that it has promise.

I. INTRODUCTION
If we are ever to realize the goal of autonomous mobile

robots able to interact with us in everyday life, we will have
to overcome many obstacles. One of the most significant is
the current lack of technology for perceiving and interpreting
the structure of the world and the agents acting in it.
In this paper, we focus on a particular problem relevant

to mobile robot applications in personal services, health care,
and security: detecting and tracking human hands. A robot
able to find and track human hands in real time would
be able to accomplish many tasks. It could accept gesture-
based commands from humans [?], [?], interact socially with
humans, help patients in and out of bed, and so on. It could
also detect and/or respond to security incidents, such as
shoplifting, pick-pocketing, and assault.
Over the last 15 years or so, a great deal of research

has focused on the problem of hand tracking. To date, the
vast majority of systems have been aimed at empowering
human computer interaction or sign language recognition. The
early hand tracking systems relied on uncluttered static back-
grounds, high resolution imagery, and manual initialization.
These systems could track hands reliably and accurately, so
long as the constraining assumptions held.
One of the first such systems was DigitEyes [?], which

is able to track a human hand with 27 degrees of freedom
at 10 frames per second (fps), given an already-initialized
model. DigitEyes predicts the appearance of the hand in two
stereo images given a previous state estimate then searches
for the nearest matching features in the actual input. The
actual measured feature positions are then used to obtain a
maximum likelihood estimate of the hidden kinematic state
by linearizing the transform from state to image appearance
around the state estimate from the previous time. As long as
there is no occlusion and the image features do not move
too much between frames, the system can track a single hand
with amazing accuracy.

Ahmad’s tracker [?] was perhaps the first system to per-
form 3D hand tracking in real time with arbitrary background
clutter. The tracker first performs color segmentation then
applies a variety of classical computer vision techniques to
identify the palm of the hand, its planar orientation, and the
orientation of the fingers. It estimates depth changes using
changes in the size of the palm. The system only works
robustly when the hand is approximately parallel to the image
plane.
Segen and Kumar built a more robust system [?] that

is capable of tracking a hand in good imaging conditions
through four different gestures. It provides a 10 degree of
freedom estimate of hand’s position: five for the 3D position
and orientation of the thumb, and five for the 3D position and
orientation of the index finger.
Many more hand tracking systems have appeared in recent

years, but nearly all of them rely on fairly detailed models
of the hand. Some, such as Triesch and von der Malsburg’s
[?], take a pattern recognition approach and are quite robust to
clutter, but the systems still all assume a fairly high resolution
view of the hand. This assumption is fine for “virtual mouse”
and sign language applications, but it is unrealistic in the
applications we have in mind. When our fictitious security
robot spots the “slipping the gold watch into the pocket”
gesture, for instance, the hand being observed might only be,
say, five pixels wide in the camera image.
Systems like Pfinder [?] are probably more applicable

to our task. Pfinder finds and tracks entire human bodies
first, then finds the body parts. The body is assumed to be
made up of a collection of colored blobs. A human’s hands
are normally easy to segment from the rest of the body
using color, under favorable imaging conditions. We could
in principle use a similar approach to first find the humans in
the scene then find the hands of those humans.
But the task of finding humans in video streams is itself an

extremely difficult problem, and the technique would preclude
finding the hands of people that are mostly occluded by
objects or other people. Also, reliable color information may
not always be available, especially in low-light or surveillance
camera applications. We take an entirely different approach in
this paper. The goal is to detect multiple hands in a cluttered,
crowded scene, without first detecting the human bodies.
Classifying, say, a 5×5 blob in a gray scale image as a

hand and not a face or a piece of paper taped to the wall might
at first seem to be impossible. Indeed, we do not know of
any existing system capable of performing the task. However,



there is some hope: motion is an extremely salient source
of contextual information that can help us distinguish “hand
blobs” from other blobs. The power of motion as a cue to
the identity of a moving object is well known, especially for
human and animal motion. For instance, Polana and Nelson
[?] find that the spatio-temporal profiles of low-level features
can be used to automatically classify a scene as a human
walking, running, jumping, and so on. Perhaps hands in
typical crowded scenes have similarly characteristic motion
profiles and can be detected according to their motion.
In this paper, we report on preliminary experiments ap-

plying Viola, Jones, and Snow’s dynamic object detector [?]
to the task of hand tracking in crowded scenes potentially
containing many humans. The results thus far are promising,
but there is much left to be done. First we describe the
system, then we present preliminary results on a single video
sequence, then we conclude with future directions for the
research.

II. THE DYNAMIC OBJECT DETECTOR

Viola and Jones created a great deal of excitement in the
computer vision and machine learning communities when
they first demonstrated the fastest-ever human face detection
system [?]. The idea of the V&J detector, as in many other
object detection systems, is to sweep a search window over
the input image at multiple scales, and classify each window
as either a member of the class or not a member of the class.
The difficulty is twofold: the classifier must be extremely
robust, to handle noise, partial occlusion, and background
clutter, and it must be extremely fast, in order to allow
classification of each possible window at frame rate. As an
indication of the scale of the problem, for a 640×480 image
with a 20×20 window moved two pixels on each test, at
25 different scales increasing by 10% at each step, a system
must calculate a function h : �400 �→ {0, 1} 349,740 times
on every camera frame.
To solve the speed problem, the V&J detector is restricted

to a class of filters that can be computed in constant time, re-
gardless of the spatial extent of the filter, and is also arranged
in a cascade that rapidly rejects most negative windows
without much computation. The filters involve comparing
sums of pixel intensities in rectangle-shaped regions of the
image (see Figure 1(a) for example filters). To evaluate this
filter, the sum of the image pixels falling within the black
box is subtracted from the sum of the image pixels falling in
the white box. Sums of image pixels within rectangles can
be computed in constant time, regardless of the size of the
rectangle, if an “integral image” [?] is precomputed, requiring
just a few operations per pixel.
Filters like those in Figure 1 can be turned into classifiers

if we apply a threshold and parity, for example, “if the
difference in the sum of the pixels in the black box and
white box is more (alternatively, less, according to the parity)
than 20, then the image contains an example of our object.”
No single such classifier is good enough for any interesting
object, but it is possible for multiple such “weak” classifiers to

(a)

(b)
Fig. 1. (a) Example V&J static filters. (b) Example VJ&S dynamic filters.

“vote” for whether the window contains an object. If enough
of the weak classifiers vote for presence of the object, the
classifier returns the value 1; otherwise it returns 0.
In the Viola and Jones scheme, many classifiers based

on rectangle-feature filters are learned from a large set of
examples using the AdaBoost algorithm [?]. AdaBoost is
a greedy method for finding a good combination of weak
classifiers. First one applies the weak learning algorithm to
find the optimal filter for the set of training examples, using
brute-force search over all possible filters if necessary. Then
the training set is reweighted such that misclassified examples
get bigger weights. Then a new classifier is trained on the
reweighted examples. The final classifier is a weighted com-
bination of the votes of the weak classifiers. Viola and Jones
found that with a large training set (thousands of face and
non-face images), AdaBoost could learn a very good detector
containing 200 filters similar to those shown in Figure 1(a).
But to speed up the amortized time to classify each image sub-
window, they instead split the ensemble into several stages,
rejecting windows early if they are extremely unlikely to
contain the object of interest. This system has generated
enormous interest in the the computer vision community. In
fact, it has already been applied to hand gesture detection in
high-resolution imagery [?].
Unfortunately, the V&J detector alone is not good enough

for our particular application of detecting and tracking multi-
ple hands in crowded scenes. Within the range of resolutions
we are interested in, a hand could be simply a blob, five
pixels or so wide. A local, static detector would produce far
too many false positives to be of direct use. To find and track
hands reliably with a low false positive rate, we need more
context, either spatial or temporal. Viola, Jones, and Snow
[?] have recently extended the V&J detector into the time
domain, and we thought the new algorithm was a promising
candidate for our hand detector.
The VJ&S dynamic detector uses the same techniques as

the V&J detector, but in addition to static “appearance” filters
applied directly to an image, a few difference images are also
considered as candidates for filtering. The AdaBoost-based
training procedure is now allowed to choose not only filters
applied directly to It (the original image at time t) but also
to five difference images (as listed in [?]):

Δt = abs(It − It+1)
Ut = abs(It − It+1 ↑)



Lt = abs(It − It+1 ←)
Rt = abs(It − It+1 →)
Dt = abs(It − It+1 ↓)

where the arrows indicate a shift of one pixel up, down, left,
or right. This means a classifier could be built with, say,
a rectangle feature in the difference image Δ to indicate a
region of motion, or a rectangle feature with a low threshold
specifying a lack of a response in the U image to specify
an object apparently moving upwards. To further improve the
ability of the weak learners to utilize these difference images,
Viola, Jones, and Snow add filters like the ones shown in
Figure 1(b) to the set of candidates for the weak learning
algorithm. The additional motion information is sufficient to
learn an extremely high-accuracy detector for pedestrians in
video sequences [?].
Now that we have described the VJ&S dynamic detector,

in the next section we describe its application to human hand
detection.

III. HAND DETECTION WITH VJ&S
We have built a prototype hand detection system based

on the VJ&S dynamic detector and performed a preliminary
study of its efficacy on a real-world data set. The system
is comprised of two main software modules: the training
system, which does its work off-line, and the run-time system,
which attempts to detect hands in a live video stream using
a classifier produced by the training system.

A. Training
The first step in training is to collect a large set of example

image pairs containing hands in natural poses. We take a
straightforward approach: simply capture video of everyday
human activity with a digital camera, ideally in several
locations under various lighting conditions. Once the video
data is collected, a human operator must manually select
regions containing human hands from the image sequence.
As this is a labor-intensive process, and a large number of
examples are needed for training, we have created a simple
graphical tool to automate as much of the process as possible.
The main criterion is that the exact same window in both
images of the pair must contain the hand. Subject to this
constraint, we then try to ensure that the hands are roughly
centered in the selection window, and that the hand should
take up around 60% of the pixel area within the selection
window. Sometimes these constraints conflict, as when there
is a large amount of motion between two successive frames;
then the selection window tends to contain the hand at one
extreme end in the first image, and the other extreme end in
the second image.1 We repeat this process for every visible
hand approximately 5 or more pixels in width, for every image
pair in the sequence. We do not allow image pairs to overlap.
The learning algorithm also requires a set of negative

examples, i.e., windows in image pairs that do not contain
hands. We create an initial set of negative examples by

1We plan to correct this problem with a faster frame rate in the future.

Algorithm TRAIN-CASCADE
Given: P , a set of positive examples

N0, an initial set of negative examples
Returns: C, a cascade of ensemble classifiers
C ← H0 ← ADABOOST(P,N0)
i ← 0
Repeat:

Test C on new, known-to-be-negative examples
Ni ← The top k false positives from test
Hi ← ADABOOST(P,Ni)
C ← C with Hi appended to the cascade
i ← i + 1

Until performance is “good enough”
Return C

Fig. 2. Cascade training algorithm.

Algorithm ADABOOST
Given: P , a set of positive examples

N , a set of negative examples
WEAKLEARN, a weak learning algorithm

Returns: H , an ensemble of weak classifiers
Initialize weights wi for each example i uniformly
For t ← 1 to T :

Normalize weights to sum to 0.5 for P and N
ht ← WEAKLEARN(P,N ,w)
εt ← the weighted error for ht given w
βt ← εt/(1 − εt)
For correctly classified examples i,

wi ← βtwi

Return H :

H(x) =

{
1 if

∑T

t=1

(
log 1

βt

)
ht(x) ≥ 1

2

∑T

t=1 log 1
βt

0 otherwise

Fig. 3. AdaBoost learning algorithm [?].

simply choosing random window locations and sizes from
the training video sequence then manually verifying that
randomly-chosen windows do not happen to contain hands.
Towards constructing an extremely efficient classifier that

can be quickly evaluated on a given window in an image
pair, following Viola, Jones, and Snow [?], we cascade several
ensembles as described in Figure 2.
The result is a cascade C of ensemble classifiers Hi,

each consisting of several weak classifiers based on rectangle
filters. The training method means that we train a classifier
on the initial training set, get a set of false positives from
the trained classifier, then use those false positives to train
the next stage of the cascade. Given a set of positive and
negative examples, we train hi using the AdaBoost algorithm,
described in Figure 3.
The weights w indicate the importance of each training

example. Early on in training (small t), simple individual
weak classifiers will have fairly low error, making βt small,



so that examples correctly classified early on will have less
weight later, and therefore have less influence on subsequent
calls to the weak learner. This means the later weak learners
focus on the “hard” examples that are not correctly classified
early on. The final result, H , is simply a weighted majority
vote by each of the weak classifiers.
The weak learning algorithm, as mentioned before, is

simply to try all possible rectangle filters and thresholds,
and determine which combination of filter and threshold
minimizes the weighted error.

B. Run-time
The run-time system is responsible for evaluating a classi-

fier cascade on every possible window in a given image pair.
We begin with the image pair at its original resolution, cal-
culate the needed difference images and integral images, then
slide the search window over the image. We first classify a
given window according to the first ensemble in the classifier
cascade, H0. This entails calculating the prediction of each
of the weak classifiers hi in H0 and weighting their votes.
Rather than use the vote threshold recommended by Ad-

aBoost directly, however, following [?], we adjust the thresh-
old to meet a specific target true positive rate at each stage,
thus ensuring that very few windows containing hands will be
rejected prematurely, at the cost of potentially accepting more
false positives. If the candidate window location passes stage
0 of the cascade, we then evaluate ensemble H1,H2, . . . on
the window until it is either rejected by one stage or accepted
by every stage of the cascade. The run-time system records
each location in the image predicted to be positive by the
classifier cascade, eliminating any weak positives that are
overlapped by stronger positives. Finally, when every possible
window location at the current scale has been tested, we
down-scale the entire image and sweep the window over the
image again. Though the window is still the same size, this
corresponds to a larger window in the original image pair.
Once every possible window location in the input image

pair has been classified, the run-time system returns the list
of potential hand locations to the running application.

IV. EXPERIMENTAL RESULTS

We have implemented the system described in the previous
section and performed a preliminary evaluation using a single
training video sequence captured in a cafeteria at SIIT. Using
an inexpensive IEEE 1394 digital camera, we captured 8-
bit 640×480 grayscale video at 4 fps for 10 minutes. We
paired consecutive frames of the sequence (1198 pairs of
images) and manually selected the image regions containing
suitable human hands as described in the previous section. We
cropped the hand regions from each image pair and scaled
the resulting small pairs to a size of 20×20 pixels. After
exhaustively scanning the data set, we had 1060 pairs of
20×20 images containing human hands (many pairs contained
several suitable locations, but many others contained no
suitable locations). For the initial set of negative examplesN0,
we selected 1060 random patches random from the original

I

Δ

U

D

L

R

Fig. 4. Filters in the first-stage hand classifier.

TABLE I
CASCADE TRAINING AND VALIDATION RESULTS.

Cascade # of Weak Training Set Validation Validation
Stage Classifiers Accuracy TP rate FP rate
1 12 0.916 0.953 0.094
2 91 0.882 0.953 0.229
3 193 0.963 0.953 0.297
4 171 0.537 0.953 0.294

video sequence, with width varying uniformly between 20
and 80 pixels.
From the 1060 negative and 1060 positive training ex-

amples, we reserved 10% (212 image pairs) for testing and
an additional 10% (212 image pairs) as a validation set to
deterimine score thresholds. The remaining 80% of the data
was fed to the cascade learning algorithm (Figure 2). Our
current cascade has depth four; for each stage, we trained an
ensemble consisting of 200 weak classifiers using AdaBoost
(Figure 3, T = 200), but then used the number of classifiers
that produced the lowest ensemble false positive rate for a
true positive rate of 0.95. Figure 4 shows the filters selected
by AdaBoost for the first-stage of the cascade, and Table ??
shows the ensemble size and false positive rates for each stage
of our cascade.
After each stage was trained and appropriate score cutoffs

were determined, we extracted new negative examples for
the training and validation sets using false positives from the
current classifier. Specifically, using the first stage ensemble
containing 12 weak classifiers and the score cutoff determined
from the first stage validation set, we ran the resulting
classifier on selected training images until the number of
positively classified windows predicted by the classifier was
at least 350. We then manually classified those positives into
true positives and false positives, and used the false positives
to construct the training and validation sets for the next stage
of the classifier. So each stage of the classifier has the same
positive examples in its training set and validation set as the
previous stage; however, each stage has a new (more difficult)
set of negative examples in its training and validation sets.
The final classifier cascade achieves an accuracy of 0.882 on
the final test set (which was never seen at any point during
training); it properly classified 86/106 (81%) of the positive



TABLE II
TEST SET PERFORMANCE AT EACH STAGE OF THE CASCADE.

Cascade Size False Positives False Negatives
1 10/106 13/106
2 8/106 15/106
3 8/106 15/106
4 5/106 20/106

test items as positives, but improperly classified 5/106 (5%)
of the negative test items as positives. Table ?? shows the test
set performance and how it changes with each layer of the
cascade. We find that the overall accuracy on the test set does
not change much with each additional level of the cascade;
the levels seem mostly to be trading off false positives for
false negatives.
After training the four-stage cascade, we evaluated it

more thoroughly on ten full image pairs from the test set.
Again, these image pairs had never been seen during training
(though of course the background was the same). The current
implementation of the run-time system evaluates the classifier
cascade C on 349,740 windows, from a size of 20×20 to
(nearly) the entire image. Unfortunately, since our current
classifier is only approximately 90% accurate on its test set,
we can guess that it will have a high false positive rate
(indeed we can guess that if the test set is representative of all
windows in the image, we should get on the order of 35,000
false positives). The situation is not that severe, however,
because, as described earlier, when two overlapping regions
at the same scale are positive according to the classifier, we
only retain the window with the highest confidence. Figure
5 shows our preliminary results from the run-time system on
two image pairs in the test sequence. Only the top 10 positives
are shown for each pair (the system actually identified 88
positives for the first pair and 131 positives for the second
pair). Clearly, the system’s false positive rate is too high for
direct use, but even so, it does detect most of the hands in the
scene, and it is readily apparent why it makes the mistakes it
does. In the next section, we detail how we plan to improve
the system in future research.

V. CONCLUSION
We have only begun to tackle a very difficult computer

vision problem. Though these preliminary results are encour-
aging, currently, the hand detection system makes far too
many mistakes to be of practical use. There are four main
factors contributing to the mistakes:
1) At four fps, we observe too much movement of the
hands in consecutive frames. Selecting a large enough
region to encompass both appearances of the hand,
followed by down-scaling to 20×20, often shrinks the
hands to unnecessarily small sizes and introduces too
much variability, since the hands end up at opposite
extremes of the crop window.

2) A first-rate detector will require a much larger train-
ing set. Face detectors like the V&J detector require
thousands of examples to robustly detect human faces,

which have a much more regular structured than human
hands in arbitrary poses. Compared to the standards of
face detection research, then, our training set is rather
small.

3) The lack of dramatic improvements on the test set
with each additional stage of the classifier indicates
overtraining. That is, each additional stage seems to
improve performance on its validation set, but the newly
learned features do not apparently generalize very well
to the test set.

4) In many cases, it might be practically impossible to
distinguish a 20×20 grayscale image containing a hu-
man hand from other similarly blob-shaped, moving
objects. Particularly in light of factor 2 above, we
believe a human observer would also have a great deal
of difficulty with the classification task.

The first problem is simple to solve with a faster frame rate.
We need not run the full detection algorithm at high frame
rates (4–10 Hz should be sufficient for most applications), but
a 30 fps capture rate would mean less hand travel between
frames and make the training system’s job easier.
The second and third problems can be solved with some

effort. We plan to acquire several video sequences under
a variety of conditions in order to improve the classifier’s
robustness to noise. It may also be possible to generate
new synthetic training data from the existing data by adding
small random rotation, translation, and scale transforms to the
data and including the transformed items in the training set.
With enough high-quality training data, we should be able to
prevent the overtraining problem.
The only potentially serious problem is the last problem.

To overcome any inherent ambiguity in the stimulus, we may
have to add additional information, such as color, or make
the set of possible filters richer, or use higher resolution
imagery, or even try to find the humans before finding their
hands. These solutions, however, will all increase the system’s
training time, run time, and/or complexity.
Our ultimate long-term goal is to deploy the system as

part of a mobile robotics application. Once we have the
system performing robustly with a fixed camera, we plan
to explore ways to achieve similar results with a moving
platform. The current approach obviously will not work, since
the difference images rely on a non-moving background.
It might be possible to correct for camera motion prior to
detection, but a more practical approach would be to have
the robot stay still long enough for an initial detection of the
hands in the scene, then use more dynamic techniques like
tracking and active vision while moving.
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Fig. 5. Preliminary results on test data from the hand detector. Each row shows a consecutive pair of test images, with the top 10 most likely hands
highlighted with boxes.
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ABSTRACT

Automatic detection and tracking of human hands in video
imagery has many applications. While some success has
been achieved in human-computer interaction applications,
hand tracking would also be extremely useful in security
systems, where it could help the system to understand and
predict human actions, intentions, and goals. We have de-
signed and implemented a prototype hand tracking system,
which is able to track the hands of moving humans in low
resolution video sequences. Our system uses grayscale ap-
pearance and skin color information to classify image sub-
windows as either containing or not containing a human
hand. The prototype’s performance is quite promising, de-
tecting nearly all visible hands in a test sequence with a
relatively low error rate. In future work we plan to improve
the prototype and explore methods for interpreting human
gestures in surveillance video.

KEY WORDS

Computational Intelligence, Hand Tracking, Computer Vi-
sion, Image Processing.

1 Introduction

Just as monitoring a person’s face is key to effective com-
munication with that person, monitoring a person’s hands
is key to understanding what that person is doing. Towards
endowing intelligent systems with the ability to monitor
and understand human behavior, in this paper, we propose
and evaluate an object detection system capable of find-
ing hands in video imagery without requiring any close-up,
high-resolution analysis.

Human hand detection in video sequences would en-
able several useful applications. We are primarily inter-
ested in security applications, where human figures in the
scene could be at a fairly large distance distance from the
camera and therefore would appear at a fairly low resolu-
tion. In security applications, it would be useful to track
people in the scene and perform automated analysis of their
actions, e.g., by detemining if they are walking, running,
punching someone, and so on. The key to many of these
behaviors is the ability to track the hand.

Over the last 15 years, the problem of hand tracking

has become an attractive area for research [1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12]. Many early hand tracking systems relied
on uncluttered static backgrounds, high resolution images
and manual initialization. Though state of the art systems
are becoming more robust, most have been targeted to-
wards sign language and gesture recognition, where the as-
sumption of high-resolution imagery holds. In these cases,
motion information between two consecutive frames makes
hand tracking easier since most of the body parts will be
stationary except the hands. In the general case, motion in-
formation is less useful for tracking hands, since all of the
body parts may be moving from frame to frame.

Some systems like Pfinder [5] imitate the way humans
look for hand in images — instead of directly detecting
hands in the image, Pfinder tries to find human bodies first
and then finds body parts such as hands. However, finding
the human in an image is itself a difficult problem, so in our
work we attempt to bypass this problem entirely by finding
hands without any attempt to model the human context.

Some hand tracking systems use skin color informa-
tion to segment hands from the background and then track
segmented hands over a frame sequence. The face and hand
tracking system for sign language recognition by Soontra-
non and Chalidabhongse [7] first segments the image into
skin and non-skin regions using a Gaussian model for skin
pixels in CbCr space. Then they obtain the connected
components of the skin pixel image and track the con-
nected components from frame to frame assuming trans-
lation only. They use face detection to prevent false posi-
tives due to skin pixels on the face. A similar approach is
used by [10, 12] to detect and track hands for human-robot
interaction and human-computer interaction.

In recent years, face detection has been one of the
great success stories in computer vision; new techniques
are achieving excellent performance in real time [13, 14,
15, 16, 17]. Hand tracking is more difficult, however,
since the face contains structural information such as eyes,
mouth and so on, even in low resolution images. Much less
structural information, except the gaps between fingers, is
present in hand image, however, so hands look more or less
like elliptical blobs of skin in low resoultion images.

Barreto and colleagues [9] applied the Viola and
Jones face detector [15] (later improved by Lienhart and
Maydt [18]) to upright hand detection. Ong and colleagues



Figure 1. Hand detection system architecture.

(a)

(b)

Figure 2. Haar-like features used to construct weak classi-
fiers in the boosted classifier cascade. (a) Viola and Jones
features. (b) Lienhart and Maydt features.

[8] use a similar approach, but instead of a linear cas-
cade to detect a single hand posture, they construct a tree-
structured classifier to not only detect hands but also to
classify hand posture.

Thus far, hand detection systems using general object
recognition techniques like those from the face detection
literature are tailored to detecting distinct sets of specific
gestures. Our goal, however, is to detect and track multi-
ple hands in arbitrary postures in relatively low-resolution
video sequences. Our approach uses grayscale appearance
information to reject most non-hand image regions very
quickly, then uses skin color information to reject the re-
maining non-hand image patches. We have conducted pre-
liminary experiments with the proposed system, and the re-
sults are encouraging. In the rest of the paper, we describe
the system and its evaluation in detail.

2 Hand Detection

Figure 1 depicts our hand detection system’s architecture
schematically. A scan window sweeps over the input image
at multiple scales. Each resulting image patch is classified
as either hand or non-hand by a boosted classifier cascade

Algorithm TRAIN-CASCADE
Given: P0, a set of k positive examples

N0, an initial set of k negative examples
αp, the desired true positive rate per stage
αf , the desired false positive rate per stage

Returns: C, a cascade of ensemble classifiers
C ← H0 ← ADABOOST(P0,N0, αp, αf )
i← 0
Repeat:

Test C on new, known-to-be-negative examples
Ni ← The top k false positives from test
Pi ← (Pi−1 − positives dropped by Hi−1)
Hi ← ADABOOST(Pi,Ni, αp, αf )
C ← C with Hi appended to the cascade
i← i+ 1

Until performance is “good enough”
Return C

Figure 3. Cascade training algorithm. The algorithm uti-
lizes the ADABOOST routine, which, given a training set
〈P,N〉, finds a combination of weak threshold classifiers
obtaining a true positive rate of at least αp and a false pos-
itive rate at most αf on that training set.

[15, 18]. To further reduce false positive detections using a
priori knowledge of hand color and geometry, each positive
detection from the classifier cascade is further processed by
a skin detection module, a feature extractor, and a simple
classifier based on Mahalanobis distance to the “average”
hand. We describe each of the modules in turn.

2.1 Boosted classifier cascade

The core of our object detection system is the cascade of
boosted classifiers originally proposed by Viola and Jones
[19, 15] and later modified by Lienhart and Maydt [18, 20].
The cascade reduces processing time while preserving clas-
sifier accuracy through the use of a sequence of classifiers
tuned for reasonably low false positive rates but extremely
high detection rates. The cascade quickly rejects most de-



tection windows unlikely to contain the object of interest
and spends more compute time on the detection windows
most likely to contain the object of interest.

Each stage in the cascade uses the “boosting” ensem-
ble learning method [21] to induce a strong nonlinear clas-
sification rule that is a linear combination of the “votes”
of multiple weak threshold classifiers, each considering the
output of a single Haar wavelet-like filter at a fixed location
in the detection window. Viola and Jones’ original method
[19] uses Freund and Shapire’s “discrete” Adaboost algo-
rithm [21] with a set of five types of Haar-like features for
the weak threshold classifiers (Figure 2(a)). Lienhart and
colleagues’ method [18, 20] uses the “gentle” Adaboost
algorithm and additional Haar-like features (Figure 2(b)).
Here we refer to both types of classifier as a V&J cascade.

The first step in constructing a V&J cascade for object
detection is to obtain a large training set of images contain-
ing or not containing the object of interest. We then extract
an initial set P0 of positive detection windows and an ini-
tial set N0 of negative detection windows and execute the
procedure TRAIN-CASCADE, detailed in Figure 3.

2.2 Bayesian skin detector

Our skin detector is a Bayesian maximum likelihood clas-
sifier based on color histograms [22, 23]. The classifier
estimates the class S ∈ {skin, nonskin} of a single pixel
based only on its observed color x measured in some color
space. This simple method is extremely efficient and sur-
prisingly effective. We let

ŝ = arg max
s

P (X = x | S = s),

where the likelihood P (X | S) is modeled by a color his-
togram estimated from training data we obtained in a pilot
study. Our color histograms have two dimensions, namely
the hue and saturation axes of the HSV color space, which
we quantize into 162 = 256 bins.

2.3 Feature extraction

The output of the Bayesian skin detector is a binary im-
age in which one value represents skin pixels and the other
value represents non-skin pixels. We have found that a few
simple features extracted from this binary image allow sur-
prisingly accurate classification. The particular features we
extract are:

1. The area (in pixels) of the largest connected compo-
nent of skin pixels.

2. The length of the perimeter of the largest connected
component of skin pixels.

3. The eccentricity of the largest connected component
of skin pixels.

4. The number of pixels in the largest skin component
intersecting the detection window boundary.

Clearly, when the area feature is especially large or
especially small, the given image patch is unlikely to con-
tain a hand. The perimeter length and eccentricity features
provide additional information about the shape of the de-
tected skin “blob.” Finally, since a properly detected hand
will only intersect the boundary of the detection window at
the wrist, the boundary feature provides information about
how wrist-like the boundary is.

When combined with a reasonable classifier, these
four features are sufficient to correct most of the V&J cas-
cade’s mistakes. We next describe our classifier.

2.4 Mahalanobis classifier

Given a feature vector x consisting of the area, perime-
ter, eccentricity, and boundary features, we must determine
whether x represents a true hand or a false positive. We
tackle this problem by applying a threshold θ to the dissim-
ilarity of the given feature vector x from the mean feature
vector μ. Our dissimilarity measure is the Mahalanobis
distance

d(x) = (x− μ)T Σ−1(x− μ).

Here the mean hand feature vector μ, covariance matrix Σ,
and distance threshold θ are estimated from a training set.

Once we obtain a final classification for each possible
detection window, the positively detected hands could then
be forwarded to another component in an integrated appli-
cation, for example a gesture recognition module. In the
current paper we simply evaluate the efficacy of the pro-
posed algorithm on a series of video segments.

3 Experimental Methods

Here we describe an experiment in which we captured
video sequences of humans walking in an indoor environ-
ment then evaluated the hand detection system on those
video sequences.

3.1 Data acquisition

For purposes of training and testing the hand detection sys-
tem, we captured four video sequences of four different
people walking in and out of a moderately cluttered lab-
oratory environment. The video sequences were captured
at 15 frames per second with an IEEE 1394 Web camera,
and each sequence lasted approximately three minutes.

After video acquisition, we manually located all vis-
ible hands in every image of all four sequences, for a total
of 2246 hands. We designated the first 2000 as training
examples and reserved the remaining 246 for testing.

Our criteria for positioning the detection window on
the hand was that that the hand should be roughly at the
center of the window while taking up about 50% of the
pixel area of selection window (see Figure 4 for examples).

As already described, the cascade learning algorithm,
at step i, requires a set Ni of negative examples that do



Figure 4. Example training images scaled to 24×24.

not contain hands for training. For this purpose, we ran-
domly selected eight frames from the training data that did
not contain and hands. The OpenCV implementation of
the V&J cascade (see below) scans these eight images to
produce new negative examples for training at each stage.

3.2 Boosted classifier training

To train the classifier cascade, we used Linehart and
Maydt’s approach [18] as implemented in OpenCV [24].
With 2000 positive hand examples and 8 background im-
ages for negative examples, we trained 30 stages using
GentleBoost, αp = 0.995, and αf = 0.5. This took two
weeks on a 3 GHz Pentium 4 PC with 1 GB of RAM.

We found that the classifier’s training set performance
peaked at 26 stages, so we used only the first 26 stages,
comprising 763 weak classifiers, in subsequent analysis.

3.3 Skin detector training

To train the skin detector, we selected 10 images containing
one or more humans from a set of independent video se-
quences captured under various lighting conditions at sev-
eral different locations. We manually marked the skin pix-
els in each image, extracted the hue (H) and saturation (S)
of the resulting 70,475 skin and 1,203,094 non-skin pixels,
quantized the H-S values into 16 bins, and constructed two
2D histograms: one for skin pixels, and one for non-skin
pixels.

Figure 5. ROC curve between true positive rate and false
positive rate

3.4 Gathering data to train the post-processor

We ran OpenCV’s performance testing utility, which had
been modified to produce true positive and false positive
image patches, on all labeled images from the training set
with a detection window scale factor of 1.1. The resulting
image patches were scaled to the standard size of 24×24.
Then, we randomly selected 1000 true positive and 1000
false positive image patches for the training process of
post-processor system.

3.5 Parameter estimation for the post-processor

To estimate the parameters of the Mahalanobis distance-
based post processor, we applied skin detection to the 2000
training patches, eliminated all connected skin components
smaller than 36 pixels, and filled in holes with a morpho-
logical opening operator. We then extracted features (area,
eccentricity, perimeter, and boundary pixel count) for the
largest connected skin blob in each of the 2000 patches. We
randomly split the true positives into two groups, using the
first 500 for mean and covariance calculation and using the
remaining 500 to determine the best Mahalanobis distance
threshold. Using the ROC curve in Figure 5 to explore the
tradeoff between true positives and false positives, we se-
lected the point where the false positive rate was as low
as possible (18%) while maintaining a 100% true positive
rate.

4 Results

To analyse the performance of our system, we selected 4
frames from a video sequence which had never been used
in the training process, and fed it to our system. We manu-
ally classified the detections at each stage of the system as
a false positive or true positive. We found that the classifier
cascade, by itself, performed relatively poorly, but that the
post processing system was extremely effective in eliminat-
ing false positives produced by the classifier cascade.



Number of Number of
Image True Positives False Positives

1 1 22
2 2 35
3 1 19
4 1 18

Table 1. Test results without post-processing

Number of Number of
Image True Positives False Positives

1 1 2
2 2 5
3 1 6
4 1 2

Table 2. Test results with post-processing

Table 1 shows that without the post-processing sys-
tem, the false positive rate is too high for practical appli-
cation. Table 2, on the other hand, shows that when we
add post processing to our system, the false positive rate
decreases rapidly.

Image 1 and 2 in Figure 6 illustrate example detec-
tion results from our complete system. In both images,
we observe that regions on the person’s head, especially
in the chin and neck areas, are detected as hands by the
system. The most probable reason for this kind of false
positive is that we did not include such image patches as
negative examples during training of the boosted classi-
fier cascade. We only used background images to gener-
ate negative examples. Unfortunately, not even the post-
processing system can reject this kind of false positive be-
cause the shape of the skin blobs in those regions are very
similar to the shape of skin blobs in patches actually con-
taining hands. We believe that including human body parts
other than hands as negative training examples will elimi-
nate these types of false positives.

5 Conclusion

From the literature, we know that hand trackers incorpo-
rating Adaboost and Haar-like features perform quite well
in applications like sign language recogntion, in which the
video is relatively high resolution and the hand gestures are
rather constrained. We have found, on the other hand, that
the approach suffers from high false positive rates when
applied to less constrained scenes. However, as we have
shown in this paper, these limitations can be reduced by
incorporating domain-specific knowledge in the form of a
post processing system.

One important limitation of the work described here is
that both the training and testing data were captured in the
same simple lab environment. The reported performance is
therefore optimistic. In future experiments, we plan to test

the approach more rigorously by training on a wider variety
of scenes and testing on a completely novel scene.

In any case, the system is a good starting point
for a practically applicable low resolution, real-time hand
tracker. The current results are encouraging, and with some
improvement we will be able to integrate it with a complete
gesture recognition or activity recognition system.
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Abstract 

 Robust real-time hand detection and tracking in video sequences would enable 

many applications in areas as diverse as human-computer interaction, robotics, security 

and surveillance, and sign language-based systems.  In this paper, we introduce a new 

approach for detecting human hands that works on single, cluttered, low-resolution 

images. Our prototype system, which is primarily intended for security applications in 

which the images are noisy and low-resolution, is able to detect hands as small as 

2424 ×  pixels in cluttered scenes. The system uses grayscale appearance information to 

classify image sub-windows as either containing or not containing a human hand very 

rapidly at the cost of a high false positive rate. To improve on the false positive rate of 

the main classifier without affecting its detection rate, we introduce a post-processor 

system that utilizes the geometric properties of skin color blobs. When we test our 

detector on a test image set containing 106 hands, 92 of those hands are detected (86.8% 

detection rate), with an average false positive rate of 1.19 false positive detections per 

image. The rapid detection speed, the high detection rate of 86.8%, and the low false 

positive rate together ensure that our system is useable as the main detector in a diverse 

variety of applications requiring robust hand detection and tracking in low-resolution, 

cluttered scenes. 

 

Introduction 

If it were possible to detect and track human hands in video sequences, a variety 

of useful applications would be possible. These applications include human-computer 

interaction, human-robot interaction, gesture and sign-language recognition, intelligent 

security systems and more. Over the last 15 years, the problem of hand tracking has 
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become an attractive area for research in the field of computer vision. Many early hand 

tracking systems relied on uncluttered static backgrounds, high resolution imagery, and 

manual initialization. Most of the modern hand tracking systems are oriented towards 

sign language recognition, human-computer interaction, and human-robot interaction.  

In these applications, it is possible to make the very useful assumption that only hands 

are moving while the rest of the scene is stationary. The problem can be further 

simplified by assuming that there will be only two hands, since there should be only one 

person performing sign language or gestures in the scene. Nowadays, the systems are 

becoming more robust, but they generally still require high resolution imagery. 

We are primarily interested in hand detection because monitoring person’s hand 

is a key to predict what that person is doing. In security applications, it would be very 

useful to detect and track hands of people in the scene and perform automated analysis 

of their actions, e.g., by determining if they are walking, running, punching someone, or 

even identifying any object they are holding. Detecting and tracking hands in security 

applications is more challenging than in human-computer interaction because most 

surveillance cameras provide noisy images, with human figures quite far away and 

therefore appearing at a fairly low resolution. The resolution of hands in those images 

may be as small as 2424 ×  pixels; detecting such small hands in static images is a very 

challenging task. Another difficulty is that motion information is less useful since there 

may be many people in the scene, and their entire bodies may be moving from frame to 

frame as they move in front of the security camera.  

Some early hand tracking systems like Pfinder proposed by Wren et al. (1997) 

attempt to follow the way humans look for the hand in images. Instead of directly 

detecting hands in an image, Pfinder looks for human bodies first and then easily 
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segments out hands from the rest of the body by using skin color. However, since 

detecting humans in a cluttered video sequence is itself a very difficult problem, and the 

human body could easily be partially occluded in the scene, we try to bypass the human 

detection problem in our work by finding hands directly, without any attempt to find the 

entire human body first. 

Most of the modern hand tracking systems fall into one of two main categories. 

The first approach uses skin color information to segment hands from the background 

and then tracks segmented hands between frames using a tracking algorithm. The face 

and hand tracking system for sign language recognition proposed by Soontranon et al. 

(2004) first segments the image into skin and non-skin regions using an elliptical model 

for skin pixels in CbCr space. Then face detection is used to locate the face skin blob 

ideally leaving only the skin blobs of hands. The system constructs a template for each 

hand then in subsequent frames, finds the region best matching that template using a 

minimum mean-squared error cost function. A similar approach is used by Wachs et al. 

(2005) to detect and track hands for human-robot interaction. The system proposed by 

Varona et al. (2004) also takes this approach but their system is extended to track hands 

and faces in 3D for a virtual reality application. The hand tracker of Shamaie and 

Sutherland (2005) does not use skin color information so it works on monochrome 

video sequences. Hands are extracted from the background using a blob analysis 

algorithm then tracked using a dynamic model from control theory. Unfortunately, these 

approaches relying on tracking are not suitable when the goal is to extract hands from 

single images. 

However, in a second approach, a detection window is scanned over the image 

and each of the scanned image patches are classified as hand or non-hand. In contrast to 
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the first approach, this approach can be used to detect hands in static images. Barreto et 

al. (2004) applied improved version of Viola and Jones (2001) face detector by Lienhart 

and Maydt (2002), to detect hands for a human-robot interaction application. Their hand 

detection system works quite well at various scales and with different backgrounds 

under various illumination conditions. The hand tracking system proposed by Ong and 

Bowden (2004) uses a similar approach, but they construct a tree-structured classifier, 

instead of a linear cascade, not only to detect hands but also to classify hand posture. 

Both of these systems require high-resolution imagery. The hand detector by Caglar and 

Lobo (2006) also detects hands in high resolution static images, in this case making use 

of the geometric properties of the hand without the use of skin color or motion 

information. Their proposed system is robust to the size and the orientation of hands 

with the limitation that one or more fingers must be visible.  

The goal of our proposed system is to detect and track multiple hands in 

arbitrary postures in relatively low-resolution video sequences. Our approach uses 

grayscale appearance information to reject most of the non-hand image regions very 

rapidly and then uses the shape of skin color regions to reject most of the remaining 

non-hand image patches. We conducted a thorough evaluation on our proposed system 

and found that its detection rate was 86.8% and that its false positive rate was 1.19 false 

detections per image on average.  The system’s speed and accuracy will enable many 

useful applications that are based on hand detection and tracking.  
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Materials and Methods 

Hand Detector 

 A block diagram of our hand detection system is shown in Figure 1. A scan 

window is scanned over the input image at different scales and each of the resulting 

image patches is fed into a classifier cascade which rapidly determines whether the 

image patch is a hand. Our classifier cascade eliminates more than 95% of the non-hand 

regions in a given image.  However, due to the large number of candidate regions in one 

image, to be practical, the false positive rate must be further reduced.  To serve this 

need, we add a postprocessor to the system in order to further reduce false positive 

detections.  The postprocessor takes advantage of a priori knowledge of hand’s color 

and geometry. Skin detection, feature extraction, and Mahalanobis classification are the 

essential building blocks of our postprocessor. 

 

Scanning Window 

 When an image is presented to our hand detection system (Figure 1), a detection 

window is scanned over the image at multiple scales, and each resulting image patch is 

passed to the boosted classifier cascade.  The scanning process is to begin with a 

2424 ×  detection at the image’s original scale.  After every possible image patch at that 

scale has run through the classifier cascade, the image is scaled down by 90% and the 

process is repeated until a minimum image size (maximum detection window size) is 

reached. 
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Boosted Classifier Cascade 

 Viola and Jones (2001, 2004) originally proposed the cascade of boosted 

classifiers as a real-time general object detector and applied it to face detection.  They 

showed that the system could robustly detect faces in static images independent of the 

background. The system runs in real-time since the feature detector is limited to a class 

of Haar-like filters that can be computed in constant time with the help of integral 

images, regardless of the spatial extent of the filters. The speed of the system is 

increased even further by arranging the classifiers in a cascaded fashion, so that the 

early stages reject most of the image patches unlikely to contain the object of interest. 

The cascade therefore only spends significant compute time on the image patches most 

likely to contain the object of interest. 

 Each stage in the cascade is constructed from a set of simple Haar-like filters 

using Freund and Shapire’s (1997) AdaBoost algorithm. AdaBoost builds a strong 

nonlinear classifier from multiple weak threshold classifiers, in this case each using a 

Haar-like filter, a threshold, and a weight, all of which are selected by AdaBoost to 

minimize the weighted error for the whole stage over the training set, while maintaining 

the desired detection rate. Viola and Jones (2001, 2004) used the four types of Haar-like 

filters shown in Figure 2 (a). The filters can take on arbitrary positions and sizes within 

an 2424 ×  image patch. The output of each filter is simply the difference between the 

average pixel value within the clear rectangular regions and the shaded rectangular 

regions. 

 Recently, Lienhart and Maydt (2002) modified Viola and Jones (2001, 2004) 

detector.  Their system adds additional rotated Haar-like filter types, as shown in Figure 

2 (b). On a particular test set, they found that their modified system gave 10% fewer 
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false positives than the original system for certain detection rates. The empirical 

analysis of detection cascade of boosted classifier by Lienhart et al. (2002) compared 

Discrete AdaBoost (the algorithm used by Viola and Jones [2001]), Real AdaBoost, and 

Gentle AdaBoost and found that classifiers trained with Gentle AdaBoost performed the 

best. 

We apply Lienhart and colleagues’ methods, as implemented in the OpenCV, 

Open Computer Vision Library (2006), to the hand detection problem, using all the 

filter types in Figure 2 (b), 2424 ×  image patches, and the Gentle AdaBoost learning 

algorithm. 

 Since boosting algorithms are supervised learning algorithms, a large number of 

labeled positive and negative examples must be input to the training process. Besides 

the examples, some learning parameters must be specified. The most important 

parameter is the desired true positive and false positive rate for each stage of the 

cascade. We train one stage at a time until that stage achieves the specified true positive 

and false positive rates.  Then a new stage is begun, and the process continues until 

some stopping criterion is reached. Only the positive examples that are correctly 

classified by the previous stages and the negative examples that are incorrectly 

classified by the previous stages are used to train each new stage. 

 

Skin Detector 

 There are many approaches to segmenting regions with similar color and texture 

from other regions. To extract skin color blobs from images, color information is the 

obvious choice. The skin detector for our system need not be extremely robust but it 

should be fast.  
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The Bayesian maximum likelihood classifier based on color histograms, as 

presented by Zarit et al. (1999), meets all of these needs. Based on their results and our 

own follow-up study, we selected the HS (hue and saturation) color model. Histograms 

used in the skin detector have two dimensions, namely hue and saturation.  Each axis of 

the plane is quantized into 16 bins, so that each histogram will have 256162 =  bins. We 

selected 16-bin quantization based on comparison experiments with different bins 

counts of 8, 16, 32, and 64.  We found that 16 bins along each axis gave the best 

performance. The reasons for excluding the intensity component from the histogram are 

to eliminate the effect of non-uniform illumination and to save computational cost. We 

construct histograms for skin and non-skin pixels from a large training set. The 

histogram counts are used to construct a discrete class-conditional likelihood for a 

Bayesian maximum likelihood classifier which we then use to determine whether a 

given pixel is most likely skin or not skin. 

Each image patch which is classified as a hand by the cascade is scaled to a 

standard size 2424 ×  pixels and then fed to the skin detector, which produces a binary 

image, in which the value 1 represents a putative skin pixel and the value 0 represents a 

non-skin pixel. 

 

Features Extractor and Mahalanobis Classifier 

 The shape and relative size of the skin blob within the detection window give 

useful information for discriminating image patches containing hand from those not 

containing hand. We extract four simple features from the binary skin image that are 

surprisingly useful for accurate classification: 

1. The area of the largest connected component of skin pixels. 
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2. The length of the perimeter of the largest connected component of skin pixels. 

3. The eccentricity of the largest connected component of skin pixels. 

4. The number of pixels on the boundary of the largest connected component of 

skin pixels that intersect the detection window boundary. 

The area feature is simply the number of pixels in the largest connected skin 

component; it is normalized by the total number of skin pixels ( 5762424 =× ) in the 

image patch. It is very obvious that the given image patch is unlikely to contain a hand 

if the area feature is very large or very small. The perimeter feature is the total number 

of pixels on the perimeter of the largest connected skin component; it is normalized in 

the same way as the area feature. The eccentricity feature is the eccentricity of the 

ellipse having the same second moments as the largest connected skin component, i.e., 

the ratio of the distance between the foci of the ellipse and its major axis length. The 

eccentricity is between 0 and 1, with 0 indicating a circle and 1 indicating a line 

segment. This feature helps to discriminate face skin regions, which tend to be quite 

round, from true hand skin regions, which tend to be more eccentric. Finally, the 

boundary feature helps to discriminate between arm skin regions, which tend to 

intersect the boundary of the detection window in two places, from true hand skin 

regions, which only intersect the detection window at the wrist. The boundary feature 

provides information about how wrist-like the boundary is. 

No matter how good those four features are, they will not be efficiently utilized for 

classification without a suitable classifier. We prefer classifiers that are simple with few 

parameters to tune. We find that a simple classifier based on Mahalanobis distance is a 

reasonable choice. Each image patch can be represented by a feature vector consisting 
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of the area, perimeter, eccentricity, and boundary features. To classify a given feature 

vector x  as a true hand or not a hand, we calculate the Mahalanobis distance 

)()()( 1 μμ −Σ−= − xxxd T  

between the feature vector x  and the mean feature vector �, then we classify x  as a 

hand if ( )xd  is less than some threshold θ . Here the mean hand feature vector μ , the 

covariance matrix Σ , and the distance threshold θ  are estimated from the training set.  

 Once classification for each possible detection windows is done, the positively 

detected hands are fed to the final module, the grouping, filtering, and averaging 

module. Further reduction of false positives is done there. 

 

 

Grouping, Filtering, and Averaging Module 

 Our Mahalanobis classifier produces a few very sparsely distributed false 

positives and densely distributed true detections around the actual targets. Since it 

produces several true detections around each of the actual detections, grouping and 

averaging is necessary to ensure only one detection for each target. A group which 

contains less than some number of detections can be disposed of on the assumption it is 

a false positive. We use the existing implementation of this technique in the OpenCV. 

The positively detected hands output from this module could then be forwarded to 

another component in an integrated application, for example a gesture recognition 

module. But, in this article we simply evaluate the performance and efficiency of the 

proposed algorithm on a series of video sequences. We now describe our experiments in 

detail. 
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Data Acquisition 

 For the purpose of training, testing and evaluation of the proposed hand 

detection system, we captured 12 video sequences in a moderately cluttered laboratory 

environment. Four people volunteered to be models, and we captured three video 

sequences for each person. In the first sequence, each model walked away from the 

camera then came back to the starting position, in a direction parallel to the camera 

angle.  In the second sequence, each model walked back and forth across the field of 

view in a direction perpendicular to the camera angle, at three different distances from 

the camera.  In the last sequence, each model walked diagonally across the field of 

view, starting from a position to the right or left of the camera then returned to the start 

position, and repeated the procedure beginning from the other side of the camera. 

 We captured the video sequences at 15 frames per second with an inexpensive 

IEEE1394 Web camera at a resolution of 480640×  pixels. Each sequence lasted 

approximately 30 seconds. After video capture, all visible hands not smaller than the 

standard size of 2424 ×  pixels in every image of all 12 sequences were manually 

located. A total of 2246 hand locations were obtained. Our criteria for locating the 

selection window on the hand was that the hand should be roughly at the center of the 

window while taking up about 50% of the pixel area of the selection window. Some 

examples are shown in Figure 3.  

Of the 12 video sequences, 11 were used to train the system and the remaining 

sequence was reserved for testing and evaluating the complete hand detection system. 

To train the boosted classifier cascade, we used 2000 hands as positive examples, and 

negative examples were automatically extracted from a set of background images. As 

background images, we used four randomly selected images from the video sequences 
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that did not contain any human. We created an additional set of background images 

using six randomly selected images containing humans.  From each image, we cut out 

two large regions that did not containing hands but did contain other body parts such as 

faces and arms. From the test image sequence, we selected 99 images, each of 

containing at least one hand not smaller than 2424 ×  pixels. These 99 images contained 

a total of 106 proper hands. All of our test evaluation calculations are based on those 

106 proper hands. 

We also prepared a holdout set by randomly selecting 100 images from the 11 

training video sequences. This holdout set was used to monitor system performance as 

well as to tune system parameters. 

 

Boosted Classifier Training 

 To train the classifier cascade, we used Lienhart and colleagues’ approach, 

implemented in OpenCV. We used the previously-described 2000 manually located 

hands from the eleven training video sequences as positive examples and the 16 

previously-described background images.  

The important parameters of the training process are the minimum hit rate (true 

positive rate) and maximum false alarm rate (false positive rate).  Every stage in the 

cascade must satisfy these criteria on the training set.  We used 100% for the hit rate and 

60% for the false alarm rate. This means when adding a new stage to the classifier, the 

training system keeps adding additional weak classifiers to that stage until it correctly 

classifies all of the positive training examples with at most a 60% false alarm rate. 

Lienhart and colleagues’ training system extracts the desired number of negative 

examples, 4000 for our experiment, by scanning a window with different scales over the 
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background images. After training one stage of the classifier, the negative examples 

which are correctly classified are disposed of and the system extracts a sufficient 

number of new negative examples. We use the Gentle AdaBoost variant of AdaBoost 

and the full Haar-like feature set of Lienhart and Maydt (2002). 

The performance of the cascade is tested on the holdout set every time a new 

stage is constructed and added to the cascade. The results of the training process will be 

discussed in more detail in the Results and Discussion section. 

 

Skin Detector Training 

 To train our skin detector, we selected 10 images containing one or more 

humans from a set of independent video sequences captured under various lighting 

conditions at several different locations. Skin pixels on those images were manually 

marked and the resulting 70,475 skin and 1,203,094 non-skin pixels were fed to the skin 

detector training process. The training process computes the hue (H) and saturation (S) 

for each pixel and quantizes each value into one of 16 bins. From the quantized values 

of skin pixels, one 2D histogram is constructed, and another is constructed from the 

quantized values of the non-skin pixels. Both histograms are constructed by simply 

counting the number of pixels which belong to same bin, and they are normalized by the 

total number of pixels used to construct the histogram.  

 

Mahalanobis Classifier Training 

 The purpose of the Mahalanobis classifier is to eliminate the false detections 

made by the boosted classifier cascade while still maintaining a high detection rate. As 

the detection window is scanned over every image in the training set, the boosted 
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classifier outputs both true positive and false positive image patches. We found 78,658 

true positives on our training set then randomly selected 6,000 true positives for 

computing the mean feature vector μ  and covariance matrix Σ  for the Mahalanobis 

classifier. 

After we obtain μ  and Σ  for the Mahalanobis classifier, we need to find the 

optimum threshold. To do so, we scanned a detection window over every image in the 

holdout set and separated the detected image patches into false positives and true 

positives using the known hand locations for the holdout set. We extracted the 

Mahalanobis classifier’s four features from each detected image patches and calculated 

the Mahalanobis distance between the feature vector of each image patch and the mean 

feature vector �. As the class for each image patch is known, we plotted the ROC curve 

as shown in Figure 4.  At this point, a detection rate of less than 100% is acceptable 

because the classifier cascade typically produces multiple true detections around each 

hand. Examining the ROC curve, we found that a Mahalanobis distance of 2.9 is a 

reasonable threshold since this threshold gives a very low false positive rate (6%) while 

giving an acceptable true positive rate (60%) on the image patches output by the 

classifier cascade.  

  

Parameter Tuning for the System 

 Once all the required building blocks for hand detection are in place, we need to 

specify one last parameter, i.e., the minimum number of nearby positive image patches 

required for the Group, Filter, and Average block.  In practice, this parameter must be 

tuned to achieve a good detection rate. To tune this parameter, we assembled all of the 

building blocks into a complete system then tested it on the holdout set with various 
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values for neither parameter. We found that a minimum of 4 neighboring patches 

produced the optimal result: 81.8% of the hands in the holdout set were detected and the 

false positive rate was also relatively low, an average of 1.55 false positives per image. 

 

Testing the Complete System 

 We tested the complete hand detection system on the test set that was never used 

in any part of the training process. As previously described we used 99 images 

containing 106 hands in known locations. The detailed results of the test are discussed 

in the next section. 

 

Results and Discussion 

 During the training process, we monitored the performance of the cascade and 

found that 12 stages of strong classifiers gave the optimum performance.  The 12-stage 

classifier had a 97.5% detection rate on the holdout set, while having a reasonably low 

false positive rate of about 0.3% on the holdout set. A false positive rate of 0.3% may 

seem quite low but in fact this means we had an average of 1,000 false positive 

detections per image because one image contains more than 300,000 possible image 

patches. Clearly, these results indicate that a post processor is necessary to further 

eliminate false positives if the system is to be useable in practical applications.  

When we tested our system on the test set, we found that the boosted classifier 

cascade frequently detected incorrect body parts such as arms, as shown in the left half 

of Figure 5 (b). However, the skin detection images shown in the right halves of Figures 

5 (a) and 5 (b) show that the Mahalanobis classifier’s boundary feature can distinguish 

between these cases. We found that most of the remaining false positives contained 
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either too few skin pixels or sparsely distributed skin pixels.  These cases are easily 

eliminated by the Mahalanobis classifier’s area feature since it operates on the largest 

connected skin component. 

 Our final hand detector detects 92 hands (86.8%) of the 106 hands in the test set, 

with an acceptable false positive rate of 1.19 false detections per image on average. A 

detection rate of 86.8% will enable many applications based on hand detection, such as 

human action recognition systems for security. Images (a) and (b) in Figure 6 illustrate 

example detections by our complete system, and all detected hands in the test set are 

shown in Figure 7. In the example, all hands were detected in both images, and only one 

false detection occurred in each image. The false detection of the desktop computer in 

the middle of the image is present in almost every image because the computer’s color 

and texture are in fact similar to that of a hand. This kind of false positive detection on a 

stationary object will be eliminated if we add motion information between two 

consecutive frames in the video sequence.  

 

Conclusion 

From the literature, we know that hand detectors incorporating AdaBoost and 

Haar-like features perform quite well in applications like sign-language recognition, in 

which images are relatively high resolution with less cluttered background and 

constrained hand gesture. These approaches suffer from high false positive rates and 

low detection rates when applied to detect less constrained hands in low resolution and 

cluttered images. However we find that these limitations can be overcome with the help 

of a simple but efficient post processing system – in our experiments, the prototype 

hand detection system achieved excellent performance on its test set. One important 
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limitation of this work is that both the training and testing image sequences were 

captured in the same environment. This means that the performance of our current 

system is likely background dependent; if so, the reported performance is optimistic. 

However, the current results are encouraging, and in future work we plan to explore 

integrating our system with gesture recognition and human action recognition systems. 

 

Acknowledgement 

 We thank the member of the Image and Vision Computing Laboratory at the 

Sirindhorn International Institute of Technology for the participation in our data 

collection efforts. This research was partially supported by Thailand Research Fund 

grant MRG4780209 to Matthew N. Dailey. 

 

References 

Barreto, J., Menezes, P. and Dias, J. 2004. Human-robot interaction based on haar-like 

features and eigenfaces. Proceedings of the 2004 IEEE Conference on Robotics and 

Automation, 2004,1888-1893. 

 

Caglar, M.B. and Lobo, N. 2006. Open hand detection in a cluttered single image using 

finger primitives. Proceeding of the 2006 Computer Vision and Pattern Recognition 

Workshop, June 17-22, 2006. 

 

Freund Y. and Shapire, R.E. 1997. A decision-theoretic generalization of online 

learning and an application to boosting. Journal of Computer and System Sciences 

5(1):119-139. 



 18 

 

Intel Corporation. Open Computer Vision Library (software). 2006. Open source 

software available at http://sourceforge.net/projects/opencv/. 

 

Lienhart, R. and Maydt, J. 2002. An extended set of Haarlike features for rapid object 

detection. Proceedings of the IEEE International Conference on Image Processing, 

2002, 900-903. 

 

Lienhart, R., Kuranov, A. and Pisarevsky, V. 2002. Empirical analysis of detection 

cascades of boosted classifiers for rapid object detection. Technical report, 

Microprocessor Research Lab, Intel Labs. 

 

Ong, E. and Bowden, R. 2004. A boosted classifier tree for hand shape detection. 

Proceedings of the Sixth IEEE International Conference on Automatic Face and Gesture 

Recognition, 2004, 889-894. 

 

Shamaie, A. and Sutherland, A. 2005. Hand tracking in bimanual movements. Image 

and Vision Computing 23(13):1131-1149. 

 

Soontranon, N., Aramvith, S. and Chalidabhongse, T.H. 2004. Face and hands 

localization and tracking for sign language recognition. International Symposium on 

Communications and Information Technologies, 2004, 1246-1251.  

 



 19 

Varona, J., Buades, J.M. and Perales, F.J. 2005. Hands and face tracking for VR 

applications, Computers & Graphics 29(2):179-187. 

 

Viola P.A. and Jones, M.J. 2004. Robust real-time face detection. International Journal 

of Computer Vision 57(2):137-154. 

 

Viola P.A. and Jones, M.J. 2001. Rapid object detection using a boosted cascade of 

simple features. IEEE Conference on Computer Vision and Pattern Recognition, 2001, 

511-518. 

 

Wachs, J., Stern, H., Edan, Y., et al. 2005. A real-time hand gesture system based on 

evolutionary search. Genetic and Evolutionary Computation Conference, 2005. 

 

Wren, C.R., Azarbayejani, A., Darrell, T. and Pentland, A. 1997. Pfinder: Real-time 

tracking of the human body. IEEE Transactions on Pattern Analysis and Machine 

Intelligence 19(7): 780-785.  

 

Zarit, B.D., Super, B.J. and Quek, F.K.H. 1999. Comparison of five color models in 

skin pixel classification. International Workshop on Recognition, Analysis and Tracking 

of Faces and Gestures in Real-Time Systems, 1999, 58–63. 

 

   



 

Figure 1, Hand detection system architecture. 

 

 

 

(a) 

 

(b) 

Figure 2, Haar-like features used to construct weak classifies in the boosted classifier 

cascade. (a) Features used by Viola and Jones. (b) Features used by Lienhart and 

colleagues. 

 



 

Figure 3, Example training images Scaled to 24x24. 

 

 

Figure 4, ROC cure between true positive and false positive for different threshold on 

Mahalanobis distance. True positive and false positive rate are calculated based on 

number of true detection and false detection input to the Mahalanobis Classifier. 

 



 

(a) Properly detected hand. 

 

(b) Non-hand body part detected as hand. 

Figure 5, Original (left) image patches detected as hand by boosted hand classifier and 

binary images patches (right) after skin detection. 

 

 

(a) 



 

(b) 

Figure 6, Example detection results of our proposed hand detection system. 

 

 

Figure 7, Hands detected by our complete hand detector system. All detections are 

scaled down to standard size 24x24 pixels for easy visualization. 
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Abstract. The geographic information system industry would benefit
from flexible automated systems capable of extracting linear structures
from satellite imagery. Quadratic snakes allow global interactions be-
tween points along a contour, and are well suited to segmentation of lin-
ear structures such as roads. However, a single quadratic snake is unable
to extract disconnected road networks and enclosed regions. We propose
to use a family of cooperating snakes, which are able to split, merge, and
disappear as necessary. We also propose a preprocessing method based
on oriented filtering, thresholding, Canny edge detection, and Gradient
Vector Flow (GVF) energy. We evaluate the performance of the method
in terms of precision and recall in comparison to ground truth data. The
family of cooperating snakes consistently outperforms a single snake in a
variety of road extraction tasks, and our method for obtaining the GVF
is more suitable for road extraction tasks than standard methods.

1 Introduction

The geographic information system industry would benefit from flexible auto-
mated systems capable of extracting linear structures and regions of interest
from satellite imagery. In particular, automated road extraction would boost the
productivity of technicians enormously. This is because road networks are among
the most important landmarks for mapping, and manual marking and extraction
of road networks is an extremely slow and laborious process. Despite years of
research and significant progress in the computer vision and image processing
communities (see, for example, [1, 2] and Fortier et al.’s survey [3]), the methods
available thus far have still not attained the speed and accuracy necessary for
practical application in GIS tools.

Among the most promising techniques for extraction of complex objects like
roads are active contours or snakes, originally introduced by Kass et al. [4]. Since
the seminal work of Kass and colleagues, techniques based on active contours
have been applied to many object extraction tasks [5] including road extraction
[6].

Rochery et al. have recently proposed higher-order active contours, in partic-
ular quadratic snakes, which hold a great deal of promise for extraction of linear



structures like roads [7]. The idea is to use a quadratic formulation of the con-
tour’s geometric energy to encourage anti-parallel tangents on opposite sides of
a road and parallel tangents along the same side of a road. These priors increase
the final contour’s robustness to partial occlusions and decrease the likelihood
of false detections in regions not shaped like roads.

In this paper, we propose two heuristic modifications to Rochery et al.’s
quadratic snakes, to address limitations of a single quadratic snake and to
accelerate convergence to a solution. First, we introduce the use of a family
of quadratic snakes that are able to split, merge, and disappear as necessary.
Second, we introduce an improved formulation of the image energy combining
Rochery et al.’s oriented filtering technique [7] with thresholding, Canny edge
detection, and Xu and Prince’s Gradient Vector Flow (GVF) [8]. The modified
GVF field created using the proposed method is very effective at encouraging the
quadratic snake to snap to the boundaries of linear structures. We demonstrate
the effectiveness of the family of snakes and the modified GVF field in a series
of experiments with real satellite images, and we provide precision and recall
measurements in comparison with ground truth data. The results are an encour-
aging step towards the ultimate goal of robust, fully automated road extraction
from satellite imagery.

As a last contribution, we have developed a complete GUI environment for
satellite image manipulation and quadratic snake evolution, based on the Matlab
platform. The system is freely available as open source software [9].

2 Experimental Methods

2.1 Quadratic snake model

Here we provide a brief overview of the quadratic snake proposed by Rochery et
al. [7]. An active contour or snake is parametrically defined as

γ(p) =
[
x(p) y(p)

]T
, (1)

where p is the curvilinear abscissa of the contour and the vector
[
x(p) y(p)

]T
defines the Cartesian coordinates of the point γ(p). We assume the image domain
Ω to be a bounded subset of R

2.
The energy functional for Rochery et al.’s quadratic snake is given by

Es(γ) = Eg(γ) + λEi(γ), (2)

where Eg(γ) is the geometric energy and Ei(γ) is the image energy of the contour
γ. λ is a free parameter determining the relative importance of the two terms.

The geometric energy functional is defined as

Eg(γ) = L(γ) + αA(γ)− β

2

∫∫
tγ(p) · tγ(p′) Ψ (‖γ(p)− γ(p′)‖) dp dp′, (3)

where L(γ) is the length of γ in the Euclidean metric over Ω, A(γ) is the area
enclosed by γ, tγ(p) is the unit-length tangent to γ at point p, and Ψ(z), given the



distance z between two points on the contour, is used to weight the interaction
between those two points (see below). α and β are constants weighting the
relative importance of each term. Clearly, for positive β, Eg(γ) is minimized by
contours with short length and parallel tangents. If α is positive, contours with
small enclosed area are favored; if it is negative, contours with large enclosed
area are favored.

The interation function Ψ(z) is a smooth function expressing the radius of
the region in which parallel tangents should be encouraged and anti-parallel tan-
gents should be discouraged. Ψ(z) incorporates two constants: d, the expected
road width, and ε, the expected variability in road width. During snake evolu-
tion, weighting by Ψ(z) in Equation 3 discourages two points with anti-parallel
tangents (the opposite sides of a putative road) from coming closer than distance
d from each other.

The image energy functional Ei(γ) is defined as

Ei(γ) =
∫

nγ(p) · ∇I(γ(p)) dp

−
∫∫

tγ(p) · tγ(p′) ∇I(γ(p)) · ∇I(γ(p′)) Ψ(‖γ(p)− γ(p′)‖) dp dp′,
(4)

where I : Ω → [0, 255] is the image and ∇I(γ(p)) denotes the 2D gradient of
I evaluated at γ(p). The first linear term favors anti-parallel normal and gra-
dient vectors, encouraging counterclockwise snakes to shrink around or clock-
wise snakes to expand to enclose dark regions surrounded by light roads.5 The
quadratic term favors nearby point pairs with two different configurations, one
with parallel tangents and parallel gradients and the other with anti-parallel
tangents and anti-parallel gradients.

After solving the Euler-Lagrange equations for minimizing the energy func-
tional Es(γ) (Equation 2), Rochery et al. obtain the update equation

nγ(p) · ∂Es

∂γ
(p) = −κγ(p)− α− λ‖∇I(γ(p))‖2 +G(γ(p))

+ β

∫
r (γ(p),γ(p′)) · nγ(p′) Ψ ′ (‖γ(p)− γ(p′)‖) dp′

+ 2λ
∫

r (γ(p),γ(p′)) · nγ(p′) (∇I(γ(p)) · ∇I(γ(p′))) Ψ ′ (‖γ(p)− γ(p′)‖) dp′

+ 2λ
∫
∇I(γ(p′)) · (∇∇I(γ(p))× nγ(p′)) Ψ(‖γ(p)− γ(p′)‖) dp′, (5)

where κγ(p) is the curvature of γ at γ(p) and G(γ(p)) is the “specific energy,”
evaluated at point γ(p) (Section 2.2). r (γ(p), γ(p′)) = γ(p)−γ(p′)

‖γ(p)−γ(p′)‖ is the unit

5 For dark roads in light background, we negate all the terms involving image, includ-
ing G(γ(p)) in Equation 5. In the rest of the paper, we assume light roads on a dark
background.



vector pointing from γ(p) towards γ(p′). ∇∇I(γ(p)) is the Hessian of I evaluated
at γ(p).

α, β, and λ are free parameters that need to be determined experimentally.
d and ε are specified a priori according to the desired road width. Following
Rochery et al., we normally initialize our quadratic snakes with a rounded rect-
angle covering the entire image.

2.2 Oriented filtering

We use Rochery’s oriented filtering method [10] to enhance linear edges in our
satellite imagery. The input image is first convolved with oriented derivative-
of-Gaussian filters at various orientations. Then the minimum (most negative)
filter response over the orientations is run through a ramp function equal to 1 for
low filter values and -1 for high filter values. The thresholds are user-specified.
An example is shown in Fig. 1(b).

2.3 GVF energy

Rather than using the oriented filtering specific image energy G(x) from Section
2.2 for snake evolution directly, we propose to combine the oriented filtering
approach with Xu and Prince’s Gradient Vector Flow (GVF) method [8]. The
GVF is a vector field V GVF(x) =

[
u(x) v(x)

]T minimizing the energy functional

E(V GVF) =
∫

Ω

μ(u2
x(x) + u2

y(x) + v2
x(x) + v2

y(x))

+ ‖∇Ĩ(x)‖2 ‖V (x)−∇Ĩ(x)‖2 dx,
(6)

where ux = ∂u
∂x , uy = ∂u

∂y , vx = ∂v
∂x , vy = ∂v

∂y , and Ĩ is a preprocessed version of
image I, typically an edge image of some kind. The first term inside the integral
encourages a smooth vector field whereas the second term encourages fidelity to
∇Ĩ. μ is a free parameter controlling the relative importance of the two terms.

Xu and Prince [8] experimented with several different methods for obtaining
∇Ĩ. We propose to perform Canny edge detection on G (the result of oriented
filtering and thresholding, introduced in Section 2.2) to obtain a binary image
Ĩ for GVF, then to use the resulting GVF V GVF as an additional image energy
for quadratic snake evolution. The binary Canny image is ideal because it only
includes information about road-like edges that have survived sharpening by
oriented filters. The GVF field is ideal because during quadratic snake evolution,
it points toward road-like edges, pushing the snake in the right direction from
a long distance away. This speeds evolution and makes it easier to find suitable
parameters to obtain fast convergence. Fig. 1 compares our method to alternative
GVF formulations based on oriented filtering or Canny edge detection alone.



Fig. 1. Comparison of GVF methods. (a) Input image. (b) G(x) obtained from oriented
filtering on I(x). (c) Image obtained from G(x) using threshold 0. (d) Canny edge
detection on (c), used as Ĩ for GVF. (e-f) Zoomed views of GVFs in region delineated
in (d). (e) Result of using the magnitude of the gradient ∇(Gσ ∗ I) to obtain Ĩ. (f)
Result of using Canny edge detection alone to obtain Ĩ. (g) GVF energy obtained
using our proposed edge image. This field pushes most consistently toward the true
road boundaries.

2.4 Family of quadratic snakes

A single quadratic snake is unable to extract enclosed regions and multiple dis-
connected networks in an image. We address this limitation by introducing a
family of cooperating snakes that are able to split, merge, and disappear as
necessary.

In our formulation, due to the curvature term κγ(p) and the area constant α
in Equation 5, specifying the points on γ in a counterclockwise direction creates
a shrinking snake and specifying the points on γ in a clockwise direction creates
a growing snake.

An enclosed region (loop or a grid cell) can be extracted effectively by ini-
tializing two snakes, one shrinking snake covering the whole road network and
another growing snake inside the enclosed region.

On the one hand, our method is heuristic and dependent on somewhat in-
telligent user initialization, but it is much simpler than level set methods for
the same problem [7], and, assuming a constant number of splits and merges
per iteration, it does not increase the asymptotic complexity of the quadradic
snake’s evolution.

Splitting a snake We split a snake into two snakes whenever two of its arms
are squeezed too close together, i.e. when the distance between two snake points
is less than dsplit and those two points are at least k snake points from each other



in both directions of traversal around the contour. dsplit should be less than 2η,
where η is the maximum step size.

Merging two snakes Two snakes are merged when they have high curvature
points within a distance dmerge of each other, the two snakes’ order of traversal
(clockwise or counterclockwise) is the same, and the tangents at the two high
curvature points are nearly antiparallel. High curvature points are those with
κγ(p) > 0.6κmax

γ where κmax
γ is the maximum curvature for any point on γ. High

curvature points are taken to ensure merging only occurs if two snakes have the
semi-circular tip of their arms facing each other. Filtering out the low curvature
points necessitates computing angle between the tangents at two points only for
the high curvature points.

When these conditions are fulfilled, the two snakes are merged by deleting the
high curvature points and joining the snakes into a single snake while preserving
the direction of traversal for the combined snake.

Deleting a snake A snake γ is deleted if it has low compactness ( 4πA(γ)
L(γ)2 ) and

a perimeter less than Ldelete.

2.5 Experimental design

We analyze extraction results on different types of road networks using the single
quadratic snake proposed by Rochery et al. [7] and the proposed family of coop-
erating snakes. The default convergence criterion is when the minimum Es(γ)
has not improved for some number of iterations.

Experiments have been performed to analyze the extraction of tree-structured
road networks and those with loops, grids and disconnected networks.

We then analyze the effectiveness of GVF energy obtained from the proposed
edge image in Experiment 4. For all the experiments, we digitize the images
manually to obtain the ground truth data necessary to compute precision and
recall.

3 Results

We have obtained several parameters emperically. For splitting a snake, dsplit

should be less than d. k to be chosen depending on how far the two splitting
points should be to ensure that the snakes formed after splitting have at least k
points.

In order to ensure that merging of snakes takes place only among the arms
with the semi-circular tips facing each other, the tangents at the high curvature
points are checked for antiparallel threshold of 130π/180..

The compactness should be greater than 0.2 to ensure that linear structured
contours are not deleted.



Fig. 2. Evolution of quadratic snake on roads with tree structure.Each column displays
an image with initial contour in red and the extracted road network below it.

3.1 Experiment 1: Simple (tree-structured) road networks

A single quadratic snake is well suited for tree-structured road networks as the
snake will not need to change its topology during evolution (Figure 2). A fam-
ily of snakes enable faster and better road extraction as non-road regions are
eliminated using splitting and deletion of snakes.

3.2 Experiment 2: Road networks with single loop and multiple
disconnected networks

The family of quadratic snakes are able to extract disconnected networks with
high accuracy (Figure 3) but are not able to extract enclosed regions automati-
cally as the snakes are not able to develop holes inside it in the form of growing
snakes.

3.3 Experiment 3: Complex road networks

A road network is considered complex if it has multiple disconnected networks
and enclosed regions and large number of branches. With the appropriate user
initialization (Figure 4), the snakes are able to extract the road networks with
high accuracy and in less time.



Fig. 3. Evolution of quadratic snake on roads with loops and disconnected networks.
Each column displays an image with initial contour in red and the extracted road
network below it.

3.4 Experiment 4: GVF energy to enable faster evolution

The Gradient Vector Flow Field [8] boosts the evolution process as we can see
from the number of iterations required for each evolution in Experiment 4 with
and without the use of GVF energy. From the evolution in the fifth column, we
see that the snake was able to extract the network with greater detail. Also, from
the evolution in the last column, we see that it is necessary for the quadratic
image energy to enable robust extraction and thus the GVF weight and λ need
to be balanced appropriately.

4 Discussion and Conclusion

In Experiment 1, we found that the our modified quadratic snake is able to move
into concavities to extract entire tree-structured road networks with very high
accuracy. Experiment 2 showed that the family of quadratic snakes is effective
at handling changes in topology during evolution, enabling better extraction of
road networks. Currently, loops cannot be extracted automatically.

We demonstrated the difficulty in extracting complex road networks with
multiple loops and grids in Experiment 3. However, user initialization of a family
of contours enable extraction of multiple closed regions and help the snake to
avoid road-like regions. The level set framework could be used to handle change
in topology enabling effective extraction of enclosed regions. Rochery et al. [10]
evolved the contour using the level set methods introduced by Osher and Sethian.



Fig. 4. Evolution of quadratic snake on roads with enclosed regions. Each column
displays an image with initial contour in green and the extracted road network below
it.

However, our method is faster, conceptually simpler, and a direct extension of
Kass et al.’s computational approach.

In Experiment 4, we found that faster and robust extraction is achieved using
oriented filtering and GVF energy along with image energy of the quadratic
snakes. Our proposed edge image obtained from oriented filtering is effective for
computing GVF energy to enhance the process of extraction. We also found that
our method for obtaining the GVF outperforms standard methods.

Finally, we have developed a complete GUI environment for satellite image
manipulation and quadratic snake evolution, based on the Matlab platform. The
system is freely available as open source software [9].

Future work will focus on possibilities to automate the extraction of enclosed
regions. Digital elevation models could be integrated with image energy for in-
creased accuracy.
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Abstract

We propose a family of quadratic cooperating snakes, which are able to split,

merge, and disappear as necessary, for segmentation of roads in satellite imagery.

We combine the multiple snake framework with a preprocessing method based on

oriented filtering, Canny edge detection, and Gradient Vector Flow (GVF). We eval-

uate the performance of the method in terms of precision and recall in comparison

to ground truth data. The family of cooperating snakes consistently outperforms a

single snake in a variety of road extraction tasks.
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1 Introduction

The geographic information system industry would benefit from flexible auto-

mated systems capable of extracting linear structures and regions of interest

from remote sensing imagery. In particular, automated road extraction would

boost the productivity of technicians enormously. This is because road net-

works are among the most important landmarks for mapping, and manual

marking and extraction of road networks is an extremely slow and laborious

process.

1.1 Related work

Towards the ultimate goal of fully automated road extraction, there has been

a great deal of progress in the computer vision and image processing commu-

nities on partially automating the process. For example, Geman and Jedynak

[1] proposed statistical modeling of the responses of simple nonlinear oriented

ridge filters to track a given road from a seed point and direction. The method

is extremely accurate, even on extremely difficult imagery.

In fully automatic road extraction, we are required to detect all of the roads of

a particular range of widths in a given region of an input image. The typical

approach to solving this problem combines a local neighborhood analysis step

that generates feature points or calculates local likelihoods, followed by im-
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position of global constraints to link possible road points and eliminate false

positives by minimizing a global cost function. Typical global cost minimiza-

tion techniques include dynamic programming [2,3], active contours or snakes

[4], and Markov random fields [5,6].

After 30 years of research on road extraction in the computer vision and

image processing communities (see [7] for a review), there is still no system

attaining the speed, robustness, and level of automation necessary for practical

application on arbitrary imagery. There are very good methods for tracking

single roads (e.g. [1]), but it is very difficult to reliably extract complete road

networks in the presence of variability in shape, radiometry, connectivity, and

geometry.

Among the most promising techniques for extraction of complex objects like

roads are active contours or snakes, originally introduced by Kass et al. [8].

Since the seminal work of Kass and colleagues, techniques based on active

contours have been applied to many object extraction tasks [9].

Despite their popularity, the classical parametric snake model and its varia-

tions have several major drawbacks. Chief among them is the lack of topo-

logical flexibility. When there are several objects in the image to capture, the

model requires multiple snakes which have to be manually initialized to be

close to the contour of each object. The initialization can be done, at best,

semi-automatically, which is often time-consuming and prone to misplacement.

The number of snakes is usually fixed; they cannot merge, split, or disappear.

Besides this topological inflexibility, individual snakes can intersect themselves

and separate snakes can collide with each other. This is due to the inability of

traditional snakes to repel parts of other snakes and repair self intersections
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and loops. Remedying these problems requires geometric constraints to ensure

that multiple snakes do not intersect, and these geometric constraints are dif-

ficult to implement. The problem is further exacerbated when nested snakes

are initialized inside one another.

To deal with these topological issues, Wong et al. [10] introduced an adjustable

“blow force” to detect convex and concave shapes and to avoid self intersec-

tions. Ivins and Porrill [11] introduced a “repulsion force” discouraging con-

tours from intersecting themselves. However, neither of these techniques deal

with multiple snakes or topology changes. Samadani [12] was perhaps the first

to break an active contour into several pieces, using heuristic techniques based

on “energy of deformation.” Durkovich et al. [13] presented a heuristic rule

to split a snake into several contours whenever two parts of a snake approach

each other.

Ngoi and Jia [14] applied a positive/negative contour scheme to prevent self

looping and to allow a splitting into multiple contours. A “positive” active con-

tour is initialized as a point inside the object then expelled towards the object’s

boundary by negative charges enclosed by the contour. This outward defor-

mation is constrained by positive charges outside the boundary. After each

iteration, the contour points are subjected to a check for self-intersections. A

self-intersection is detected if the minimum distance between two non-adjacent

control points is less than three pixels. When a self-intersection is detected,

a positive contour can either split into two positive contours (in the case of

detection of another adjacent object) or a positive and a negative contour (in

the case of detection of an internal region of the object).

In order to determine which part of a contour should be split to form two
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contours, Choi et al. [15] classify the segments of a snake into “contour” and

“non-contour” segments, calculating the surrounding image forces along a seg-

ment. If the surrounding image forces of a point are smaller than a threshold,

it is deemed a non-contour point; otherwise, it is deemed a contour point.

A sequence of contour points or non-contour points forms a contour or non-

contour segment. Critical points are defined as the end points of a contour

segment adjacent to non-contour segments. The method decides when to split

or merge contours by evaluating the distance between the critical points.

Delingnette and Montagnat [16] proposed a new topology operator for auto-

matically creating or merging active contours.

Evaluating these existing approaches for merging and splitting snakes, Ji and

Yan [17] write that

these approaches are high in computational cost since they require checking

the potential self looping/connectivity change at every iteration . . . Also,

these approaches suggest that the moving speed of all snake points should

be equivalent, therefore being unable to deal with more complex objects

(e.g. long tube-like shapes) due to the nature of their test criteria (e.g. one

based on the minimum distance between two non adjacent control points

(p. 149)).

The authors overcome these limitations with a very complicated but appar-

ently robust merging algorithm which employs polygon analysis as well as

geometrical analysis of intersection points of colliding snakes. The algorithm

involves analysis of many cases and requires verification of many geometric

conditions associated with relative positions of points.
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It should be noted that the heuristic techniques previously described attempt

to prevent self-looping. However, it is possible to make use of self-loops by

splitting useful loops into separate contours and eliminating useless loops. The

“T-snakes” technique proposed by McInerney and Terzopoulos [18] and later

improvements like the “dual T-snakes” technique [19] are based on iterative

re-parameterization of the original contour. They are able to make the use

of self loops, but the approach allows only “rigid” deformations limited by a

superimposed “simplicial grid.”

Rochery et al. have recently proposed a parametric model for higher-order ac-

tive contours, in particular quadratic snakes, for extraction of linear structures

like roads [20]. The idea is to use a quadratic formulation of the contour’s ge-

ometric energy to encourage anti-parallel tangents on opposite sides of a road

and parallel tangents along the same side of a road. These priors increase the

final contour’s robustness to partial occlusions, decrease the likelihood of false

detections in regions not shaped like roads, and help to prevent self-looping,

since different segments of a contour with anti-parallel tangents repel each

other in the absence of image forces.

Finally, to address the topological flexibility problem with traditional active

contours, Caselles et al. [21] and Malladi et al. [22] independently introduced

“geometric active contour models.” These models are based on curve evolution

theory and level set methods [23]. Rochery et al. [20] have also proposed a level

set method for their quadratic snakes. Level set methods for snakes introduce

a higher dimensional hypersurface in which the snake is embedded as the zero

level set of the hyper surface. The geometric approach has two advantages

over traditional parametric representations. First, the curve can automatically

break or merge as the hypersurface evolves. Second, since the hypersurface is
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represented as a mathematical function, it admits straightforward and efficient

numerical adaptation schemes.

However, geometric snake models have several inherent drawbacks compared

to parametric models. First, the level set representation makes it difficult, if

not impossible, to impose arbitrary geometric or topological constraints on the

evolving contour via the higher dimensional hypersurface [18]. Second, they

do not readily admit specification of a user-defined external force. Finally,

the geometric active contour models may generate shapes having inconsistent

topology with respect to the actual object, when applied to noisy images

characterized by large boundary gaps [24]. Rochery et al.’s system [20] requires

extensive optimization to achieve reasonable run times.

Li et al. [25], in reference to the problem of topological adaptation, write “in

light of the . . . inherent weaknesses of geometric active contour models, it is

worthwhile to seek solutions within the parametric model realm.”

1.2 Our approach

The quadratic multiple snake model developed in this paper presents a compro-

mise between geometric snakes’ ability to split and merge easily and paramet-

ric snakes’ flexibility to incorporate arbitrary constraints. We use quadratic

constraints [20] both to avoid self-intersections and loops and as a means to en-

courage capture of thin elongated objects such as roads, rivers, canal systems,

pipes, and vascular systems. We develop efficient split and merge algorithms

employing straightforward conditions on the closeness of non-adjacent contour

points. In the model, separate snakes can repel each other but are still capable
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of approaching an object from opposite sides. The split and merge algorithms

make it possible to extract highly complex networks of roads and other linear

structures. The model thus provides the topological adaptability of geometric

models without sacrificing the simplicity, efficiency, or flexibility of traditional

parametric models.

The ability of our cooperating snakes to split, merge and disappear combined

with their self-repelling feature makes it possible to easily segment several

objects without knowing the number of objects in advance and without ini-

tializing the snake close to the desired contour. As an introductory example,

Figure 1 shows how our snakes can segment a “broken bar” consisting of

two pieces. Figure 1(a) shows an initial configuration in which the snake is

relatively far from the object of interest and defined by only a few points. Fig-

ure 1(b–c) shows two successful iterations of the snake evolution algorithm.

Note that the “peninsula” (highlighted by the window in Figure 1(b)) splits

from the snake then disappears in the next iteration. In fact, the snakes’ ability

to split and disappear also accelerates convergence to a minimum. Figure 1(d)

shows a split at a point with high curvature, and Figure 1(e) shows the final

configuration at convergence.

In addition to the multiple snake model, to accelerate convergence to a so-

lution, we introduce an improved external force combining oriented filtering

with Canny edge detection and Xu and Prince’s Gradient Vector Flow (GVF)

[26]. The modified GVF field created using the proposed method is very ef-

fective at encouraging the quadratic snake to snap to the boundaries of linear

structures.

A second introductory example, illustrated in Figure 2, shows a horseshoe
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(a) (b)

(c) (d)

(e)

Fig. 1. A quadratic snake splitting and converging around two island-like objects.

(a) Initial configuration. (b–c) An arm (highlighted by the square) develops, splits

off, and is deleted. (d) Configuration just before a split. (e) Final configuration.

shape used to verify the ability of the snake to converge into to deep concavities

and to ignore noise. The image is distorted by a grid of curves that would

distract the snake from the object were it not for the GVF force encouraging

the snake to snap to the boundaries of road-like objects. The combination of

oriented filtering, Canny edge detection, and the GVF external force makes

it possible for the snake to ignore the obstructing grid entirely and attach

itself to the object of interest despite the large gradients located far from the

desired boundary.

These simple examples demonstrate that the variational formulation governed

by the quadratic energy functional not only allows the snake to split and merge

without creating loops within one snake or intersections between different
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Fig. 2. A quadratic snake converging into a deep concavity despite the presence of

noise.

snakes, but also makes it simple to incorporate the GVF, allowing the snake

to capture the shape of complex objects with deep, narrow concavities.

In this paper, we demonstrate the effectiveness of the family of snakes and

the modified GVF field in a series of experiments with real satellite images,

and we provide precision and recall measurements in comparison with ground

truth data. The results are an encouraging step towards the ultimate goal of

fully automated road extraction from satellite imagery.

As a last contribution, we have developed a complete GUI environment for

satellite image manipulation and quadratic snake evolution, based on the Mat-
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lab platform. The system is freely available as open source software from

http://www.cs.ait.ac.th/~mdailey/snakes.

2 Method

2.1 Quadratic snake model

This section provides a brief overview of the quadratic snake proposed by

Rochery et al. [20]. An active contour or snake is parametrically defined as

γ(p) =

⎡
⎣
x(p) y(p)

⎤
⎦

T

, (1)

where p is the curvilinear abscissa of the contour and the vector

⎡
⎣
x(p) y(p)

⎤
⎦

T

defines the Cartesian coordinates of the point γ(p).

The energy functional is given by

Es(γ) = Eg(γ) + λEi(γ), (2)

where Eg(γ) is the geometric energy and Ei(γ) is the image energy of the

contour γ. λ is a free parameter determining the relative importance of the

two terms.

To apply the method to road extraction, we define the geometric energy func-

tional to be

Eg(γ) = L(γ) + αA(γ)− β

2

∫∫
t(p) · t(p′) Ψ (‖γ(p)− γ(p′)‖) dp dp′, (3)

where L(γ) is the Euclidean length of γ, A(γ) is the area enclosed by γ, t(p) is

the unit-length tangent to γ at point p, and Ψ(z), given the distance z between
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two points on the contour, is used to weight the interaction between those two

points (see below). α and β are constants weighting the relative importance of

the terms. Clearly, for positive β, Eg(γ) is minimized by contours with short

length and parallel tangents. If α is positive, contours with small enclosed area

are favored; if it is negative, contours with large enclosed area are favored.

The interaction function Ψ(·) is a smooth function expressing the radius of

the region in which parallel tangents should be encouraged and anti-parallel

tangents should be discouraged:

Ψ(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if z < d− ε,

0 if z > d + ε,

1
2

(
1− z−d

ε
− 1

π
sin π z−d

ε

)
otherwise.

(4)

In application to road extraction, d is the expected road width and ε expresses

the expected variability in road width. During snake evolution, weighting by

Ψ(z) in Equation 3 discourages two points with anti-parallel tangents (the

opposite sides of a putative road) from coming closer than distance d from

each other.

The image energy functional Ei(γ) is defined as

Ei(γ) =
∫

n(p) · ∇I(γ(p)) dp

−
∫∫

t(p) · t(p′) ∇I(γ(p)) · ∇I(γ(p′)) Ψ(‖γ(p)− γ(p′)‖) dp dp′,
(5)

where I : Ω → [0, 255] is an image and ∇I(γ(p)) is the gradient of I evaluated

at γ(p).

The first (linear) term favors anti-parallel normal and gradient vectors, encour-

aging counterclockwise snakes to shrink around or clockwise snakes to expand
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to enclose dark regions surrounded by light roads. 1 The second (quadratic)

term favors nearby point pairs with two different configurations, one with par-

allel tangents and parallel gradients and the other with anti-parallel tangents

and anti-parallel gradients.

After solving the Euler equations for minimizing the energy functional Es(γ)

(Equation 2), ignoring flow in the direction tangent to γ, we can obtain the

update equation

n(p) · δEs

δγ
(p) = −κ(p)− α− λ‖∇I(γ(p))‖2

+ β
∫

r (γ(p), γ(p′)) · n(p′) Ψ′ (‖γ(p)− γ(p′)‖) dp′

+ 2λ
∫

r (γ(p), γ(p′)) · n(p′) (∇I(γ(p)) · ∇I(γ(p′))) Ψ′ (‖γ(p)− γ(p′)‖) dp′

+ 2λ
∫
∇I(γ(p′)) · (∇∇I(γ(p))n(p′)) Ψ(‖γ(p)− γ(p′)‖) dp′. (6)

In the equation, κ(p) is the curvature of γ at γ(p).

r (γ(p), γ(p′)) =
γ(p)− γ(p′)
‖γ(p)− γ(p′)‖

is the unit vector pointing from point γ(p) towards γ(p′). ∇∇I(γ(p)) is the

2×2 Hessian of I evaluated at γ(p). α, β, and λ are free parameters that need

to be determined experimentally. d and ε are specified a priori according to

the desired road width.

2.2 GVF external force

The term αA(γ) in Equation 3 leads to the constant term −α in Equation

6. This “balloon force” [9] increases the capture region around objects, but

1 For dark roads on a light background, we simply negate the terms involving the

image. In the rest of the paper, we assume light roads on dark background.
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its effect is uniform throughout the image. This makes it difficult to specify a

value for α that is appropriate in all regions of the image.

Xu and Prince [26,27] have proposed to use, rather than a global balloon force,

a smooth, diffuse gradient field as a local external force with the traditional

linear snake. They find that this technique, Gradient Vector Flow (GVF), im-

proves the traditional snake’s convergence to a minimum energy configuration.

We propose the use of GVF with quadratic road extraction snakes.

2.2.1 GVF

The GVF is a vector field

V GVF(x) =

⎡
⎣
u(x) v(x)

⎤
⎦

T

minimizing the energy functional

E(V GVF) =
∫
Ω
μ(u2

x(x) + u2
y(x) + v2

x(x) + v2
y(x))

+ ‖∇Ĩ(x)‖2 ‖V (x)−∇Ĩ(x)‖2 dx,

(7)

where

ux =
∂u

∂x
, uy =

∂u

∂y
, vx =

∂v

∂x
, vy =

∂v

∂y
,

and Ĩ is a preprocessed version of image I, typically an edge image of some

kind. The first term inside the integral encourages a smooth vector field

whereas the second term encourages fidelity to ∇Ĩ. μ is a free parameter

controlling the relative importance of the two terms.

We obtain Ĩ using oriented filtering and Canny edge detection (see Figure

3). We use elongated Laplacian of Gaussian filters that emphasize road-like

structures, deemphasize non-road-like structures, and, to a certain extent, fill
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Fig. 3. Schematic of procedure to obtain the GVF external force.

in short gaps where a road has low contrast with the background. The resulting

binary Canny image is ideal because it only includes information about road-

like edges that have survived sharpening by the oriented filters. The GVF

field on top of the sharpened edge image is ideal because it points toward the

road-like edges from a long distance, and, during snake evolution, it pushes the

snake in an appropriate direction. This speeds evolution and makes it easier

to find suitable parameters to obtain fast convergence.

2.2.2 Oriented filtering

Using oriented filters for contour detection, contour completion, and restora-

tion of edges corrupted by noise is a recurring idea in image processing and

computer vision (see, e.g., [28–32]). The oriented filters most frequently used

are 2D Gabor filters [33] and directional 2nd-derivative-of-Gaussian filters.

Gabor filters are thought to be good models of the response of simple cells in

primary visual cortex [34]. When paired symmetric (even) and antisymmetric

(odd) oriented filter responses are combined by summing their squares, they

are thought to be good models of the response of complex cells in primary vi-

sual cortex [35]. Perona and Malik [29] advocate these paired “energy filters”

for their ability to detect not only step edges but also ridge edges at specific

scales.

The ability of Gabor filters and 2nd-derivative-of-Gaussian filters to detect

ridge edges makes them ideal for identifying roads in satellite imagery. Our

oriented filtering method is the same as that of Rochery et al. [20]. We use
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the linear response of even 2nd-derivative-of-Gaussian filters tuned to detect

roads at particular scales. We obtain a sharpened image Q defined by

Q(x) = min
θ∈Θ

{(Fθ ∗ I)(x)} , (8)

where ∗ denotes convolution and the kernel Fθ is given by

Fθ = Rθ∇2Nσx,σy . (9)

Nσx,σy is a 2D Gaussian with variance σ2
x in the x direction and σ2

y in the

y direction, Rθ is a matrix rotating Nσx,σy by angle θ, and ∇2 is the 2D

Laplacian. σx is chosen according to the desired length of the filter along the

road contour whereas σy is chosen according to the desired width of the road

to detect. We use angles

Θ = {0, π

8
, ...,

7π

8
}.

If the roads in I are darker than their surroundings, the maximum rather than

the minimum convolution result is used to compute Q(x).

An example of the convolution and minimum response selection procedure is

shown in Figure 4(a–j). The filters respond well to long straight edges in the

image. This has the effect of emphasizing road-like gradients, deemphasizing

non-road-like gradients, and, to a certain extent, filling in short gaps where a

road has low contrast with the background.

2.2.3 Obtaining the GVF field

After oriented filtering, we obtain the Canny edge image Ĩ from the sharpened

image Q. An example is shown in Figure 4(k). This is the input to the GVF re-

laxation procedure [26]. An example of the resulting GVF field V GVF is shown

in Figure 4(l). We precalculate V GVF before snake evolution begins, then dur-
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(a)

(b) (c) (d) (e) (f) (g) (h) (i)

(j) (k)

(l)

Fig. 4. Image processing for obtaining the GVF. (a) Original image. (b–i) Convo-

lution results. (j) Sharpened image Q. (k) Canny edge image Ĩ derived from Q.

(l) GVF V GVF based on Ĩ.
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ing evolution, for each point γ(p) in Equation 6, we project V GVF(γ(p)) onto

n(γ(p)) and add the resulting force directly to the update equation. Clearly,

this encourages the snake to snap to the road edge contours, where ideally

‖V GVF(γ(p))‖ = 0.

2.3 Family of quadratic snakes

A single quadratic snake is unable to extract enclosed regions and multiple

disconnected networks in an image. We address this limitation by introducing

a family of cooperating snakes that are able to split, merge, and disappear as

necessary.

In our formulation, due to the curvature term κ(p) and the area constant α in

Equation 6, specifying the points on γ in a counterclockwise direction creates a

shrinking snake and specifying the points on γ in a clockwise direction creates

a growing snake.

An enclosed region (loop or a grid cell) can be extracted effectively by initial-

izing two snakes, one shrinking snake covering the whole road network and

another growing snake inside the enclosed region.

2.3.1 Splitting a snake

We split a snake into two snakes whenever two of its arms are squeezed too

close together, i.e. when the distance between two snake points is less than

dsplit and those two points are at least k snake points from each other in both

directions of traversal around the contour. dsplit should be less than 2η, where

η is the maximum step size.
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2.3.2 Merging two snakes

The merging algorithm selects points having high curvature and merges two

snakes when 1) two selected points are closer than a prescribed minimal merg-

ing distance dmerge, 2) the traversal direction (clockwise or counterclockwise) of

the two snakes is the same, and 3) the tangents at the two high curvature points

are nearly antiparallel. High curvature points are those with κγ(p) > 0.6κmax
γ ,

where κmax
γ is the maximum curvature for any point on γ. When these condi-

tions are satisfied, the two snakes are combined into a single snake by deleting

the high curvature points and merging at the holes.

Limiting the merge decision to high curvature points ensures that merging

only occurs if two snakes have semi-circular tips of their arms facing each

other. It might seem that merging at low curvature points should also be per-

mitted. However, as already explained, snakes normally repel each other due

to the quadratic term in the internal energy (Equation 3). Consequently, low

curvature segments can approach each other when high-gradient features allow

the external energy to overcome the geometric energy. When this occurs for

low curvature segments, the two snakes are most likely positioned on different

sides of a road and merging should not be allowed. There are several other

(rare) cases when snakes face each other at low curvature parts. However they

should not be merged in those cases either.

Considering only the high curvature points also saves computational costs. In

particular, the merging procedure requires computation of the angle between

tangents only for the selected points. The number of those points usually does

not exceed 10% of the total number of points.

The conditions that the traversal direction of two snakes should be the same
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and that the tangents at the two high curvature points should be antiparallel

reflect the fact that in our system, nested snakes form a tree structure. We ini-

tialize all the snakes at the first level with the same direction of traversal. The

second level has the opposite direction of traversal and so on. When two snakes

from the same level merge, we assign the resulting snake the same direction.

Snakes from two consecutive levels do not merge. Growing and shrinking be-

havior is controlled by the area constant (α) and the weight on the geometric

energy (β).

2.3.3 Deleting a snake

A snake γ is deleted if it has perimeter less than Ldelete.

2.4 Experimental design

We present four experiments aimed at evaluating the effectiveness of the pro-

posed cooperating snake model for road extraction. In Experiment 1, we ex-

plore the ability of the model to extract simple tree-structured road networks

that do not require multiple snakes. Experiment 2 moves to more complex

tree-structured networks with distracting structures. These networks require

contours able to split, merge, and disappear in order to ignore noise. Exper-

iment 3 tests the model’s ability to capture disconnected networks. In Ex-

periment 4, we evaluate the model’s ability to extract networks with cycles

with the help of user initialization. Finally, in Experiment 5, we determine the

effect of the GVF external force on the model’s evolution.

In each experimental condition, we hand-tune the free parameters to achieve
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good results. We terminate contour evolution whenever the energy Es(γ) fails

to decrease for some number of iterations.

As a baseline for comparison, we use the parametric representation of the

single quadratic snake model proposed by Rochery et al. [20]. To evaluate the

results, we hand-digitized ground truth images and used them to calculate

precision (the proportion of detected pixels that are road pixels according to

the ground truth), recall (the proportion of road pixels that are detected), and

F1 (the harmonic mean of precision and recall) for each solution.

3 Results

3.1 Experiment 1: Simple tree-structured networks

We ran a single quadratic snake on the synthetic image shown in Figure 5(a)

and the real image shown in Figure 5(b). Our best extraction results are shown

in Figure 5(c) and Figure 5(d). The precision and recall results are shown in

Table 1. Experiment 1 demonstrates that a single quadratic snake is well suited

to simple tree-structured road networks, when the contour does not need to

change topology during evolution.
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(a) (b)

(c) (d)

Fig. 5. Experiment 1 extraction results. (a) Original synthetic image. (b) Original

real image. (c) Road network extracted from the image of (a). (d) Road network

extracted from the image of (b).

Table 1

Experiment 1 extraction performance.

Condition
Figure

no.

No. of

iterations
Precision Recall F1

Synthetic simple tree 5(c) 480 0.937 0.860 0.897

Real simple tree 5(d) 308 0.948 0.850 0.896
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3.2 Experiment 2: Complex tree-structured networks

Beginning with the image shown in Figure 6(a) containing a relatively com-

plex tree-structured road network with distracting road-like structures, we

ran a single quadratic snake and the cooperating multiple snake model. The

best extraction results for the two models are shown in Figure 6(b) and Fig-

ure 6(c), respectively. Table 2 shows the detailed precision and recall results.

The cooperating multiple snake model is better able to handle the distracting

structures mainly because the evolving snake splits to enclose each road-like

structure then the small isolated contours are deleted.
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(a)

(b) (c)

Fig. 6. Experiment 2 extraction results. (a) Original image. (b) Road network ex-

tracted from the image of (a) with a single snake. (c) Road network extracted from

the image of (a) with cooperating snakes that can split, merge, and disappear.

Table 2

Experiment 2 extraction performance.

Condition
Figure

no.

No. of

iterations
Precision Recall F1

Complex tree, single snake 6(b) 473 0.709 0.907 0.796

Complex tree,

cooperating snakes
6(c) 450 0.801 0.912 0.853
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3.3 Experiment 3: Disconnected networks

Beginning with the image shown in Figure 7(a) containing multiple discon-

nected road networks, we ran a single quadratic snake and the cooperating

multiple snake model. The best extraction results for the two models are

shown in Figure 7(b) and Figure 7(c), respectively. Table 3 shows the ex-

traction performance details. The cooperating multiple snake model is able to

extract the multiple separate road networks, whereas the single snake does its

best to model the network with a single contour.

25



(a)

(b) (c)

Fig. 7. Experiment 3 extraction results. (a) Original image. (b) Road network ex-

tracted from the image of (a) with a single snake. (c) Road network extracted from

the image of (a) with cooperating snakes that can split, merge, and disappear.

Table 3

Experiment 3 extraction performance.

Condition
Figure

no.

No. of

iterations
Precision Recall F1

Disconnected network,

single snake
7(b) 219 0.682 0.867 0.764

Disconnected network,

cooperating snakes
7(c) 163 0.858 0.873 0.865
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3.4 Experiment 4: Networks with cycles

The multiple cooperating snake model cannot extract road networks with

loops in a fully automatic fashion, but in our implementation it is simple for

the user to manually initialize a separate contour inside each loop. We com-

pared the ability of the single snake, the multiple cooperating snake model

with a single initial contour, and the multiple cooperating snake model with

user-defined initialization to extract road networks from the images contain-

ing loops in Figure 8(a–b). Our best results are shown in Figure 8(c–f). The

multiple cooperating snake model obtains excellent results with user-specified

initial conditions.
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(a) (b)

(c) (d)

(e) (f)

Fig. 8. Experiment 4 extraction results. (a–b) Original images. (c–d) Road networks

extracted from images (a–b) with a single snake. (e) Road network extracted from

image (a) with cooperating multiple snakes. (f) Road networks extracted from image

(b) with cooperating multiple user-defined snakes.
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Table 4

Experiment 4 extraction performance.

Condition
Figure

no.

No. of

iterations
Precision Recall F1

Simple loop, single snake 8(c) 182 0.547 0.911 0.684

Complex loop, single

snake
8(d) 519 0.530 0.907 0.669

Simple loop, cooperating

snakes
8(e) 182 0.6344 0.9833 0.771

Complex loop,

user-initialized snakes
8(f) 166 0.768 0.912 0.834
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3.5 Experiment 5: GVF external force

Our GVF external force is based on an edge map acquired through oriented fil-

tering, and Canny edge detection. We precomputed the GVF vector field then

ran the multiple quadratic snake model on the image shown in Figure 9(a),

with and without the GVF force. Our best results for the two experimental

conditions are shown in Figure 9(b) and Figure 9(c). The precision and recall

results are shown in Table 5. The snakes converge faster in the GVF condi-

tion with a slight decrease in precision and recall, although visually the two

extracted road networks are of comparable quality.
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(a)

(b) (c)

Fig. 9. Experiment 5 extraction results. (a) Original image. (b) Road network ex-

tracted from the image of (a) with the multiple snake model and no GVF external

force. (c) Road network extracted from the image of (a) with the multiple snake

model and the GVF external force.

Table 5

Experiment 5 extraction performance.

Condition
Figure

no.

No. of

iterations
Precision Recall F1

Cooperating snakes

without GVF
9(b) 650 0.828 0.938 0.880

Cooperating snakes with

GVF
9(c) 430 0.802 0.909 0.852
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4 Discussion

Experiments 1–5 demonstrate the effectiveness of the proposed multiple coop-

erating snake model on a variety of road networks. In Experiment 1, we found

that a single quadratic snake was sufficient to extract simple tree-structured

road networks in synthetic and real imagery. Experiment 2 demonstrated that

cooperating snakes converge faster and more accurately than a single snake

when the image contains a more complex tree-structured road network with

distracting noise. In Experiment 3, we found that the cooperating snake model

is effective for extracting disconnected road networks, and in Experiment 4, we

found that it is also appropriate for complex networks with cycles, if user-aided

initialization is used. Finally, Experiment 5 demonstrated that incorporating

an external image force derived from oriented filtering, Canny edge detection,

and the GVF provides faster convergence to a minimum-energy configuration.

Our empirical study shows that quadratic snakes avoid self-intersections by

incorporating into the energy functional the constraint that contour segments

with anti-parallel tangents should repel each other. They are nevertheless still

able to enter long and narrow concavities and to approach each other close

enough to extract road networks in satellite images.

Our parametric specification of the family of cooperating snakes is simple and

efficient compared to level set methods. If a family of snakes is represented

by N discrete points, a naive implementation of the evolution requires O(N2)

time per iteration, since Equation 6 must be applied to each of the N points

and it involves an integral over all N points. Likewise, naive implementation of

the split and merge algorithms developed in Section 2.3 consider at most each
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pair of points, so assuming at most a constant number of splits and merges

per iteration, the complexity remains O(N2). However, it is possible to reduce

the runtime to O(N). The contour update and split/merge algorithms only

perform comparisons with other contour points within a fixed local region, so

it is possible to preindex the contour points in the image domain such that at

most a constant number of other points are considered for each point on the

contour.

One limitation of our approach is that we require manual initialization of the

contours to obtain good results when the road network contains loops. The

level set method’s main strength is its ability to handle such loops without

any special treatment. However, our method could be extended to handle this

case, if we added autodetection of “holes” in a converged family of contours

or if we initialized with many small growing snakes inside a shrinking outer

snake, either randomly or in a grid pattern.

A more serious limitation of our approach is the need to determine free param-

eters such as α, β, and λ empirically. In constrained applications such as road

extraction, it should be possible to develop a database of useful parameter

settings for particular image resolutions and road network types. But sensi-

tivity to parameter settings is the Achilles’ heel of all active contour models;

unless this problem is solved, the technique’s applicability to real-world GIS

problems will be limited.
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5 Conclusion

The proposed method is an implementation of multiple active contours in a

variational framework based on a quadratic energy functional. Our model per-

forms better than conventional snakes and single parametric quadratic snakes

on road extraction tasks. The combination of oriented LoG filters, Canny

edge detection, and the GVF provides effective preprocessing of noisy and

distorted images and an appropriate external force for the quadratic snake’s

energy functional. The multiple snake configuration that minimizes the total

energy functional accurately snaps to the boundaries of objects. The energy

functional’s quadratic terms, which encourage parallel tangents and discour-

age anti-parallel tangents, and its sigmoid interaction function, are designed to

extract curvilinear ribbon-like structures such as roads, canals, and pipelines

from digital images. We have shown that the scheme is effective at extracting

road networks from a series of satellite images, but some calibration of the

free parameters is required to achieve good results.

In future research we plan to focus on automatic initialization of contours

to handle networks with cycles and reducing the method’s run time to the

point that it is practical for application in GIS applications. It may also be

possible to develop higher order active contour models for other important

segmentation problems involving extraction of other shapes such as ellipses

and polygons.
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