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3.2.3 HANIENUVBINTT annealing ADFMIIUINGIVI 10Wt%TLCP/PP/1-

5wt%SEBS Composite Films
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31/#3.10 DSC Heating Curves of PP films annealing at 110 and 130 °C at various times.
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31/177 3.12 Heating DSC thermograms of TLCP/PP composite films annealing at 110 and

130°C at various times.
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m’li’mﬁ'3.3 Thermal Properties of TLCP/PP Films annealed at 110 and 130°C for various

times.

Samplos Heating scans Cooling scans AT/ G

% crystallinity Tm/°C % crystallinity Tc/°C

Un-annealed PP 37.40 160.92 43.58 115.26 45.66
Un-annealed TLCP/PP 37.80 161.61 45.70 116.97 44.64
TLCP/PP-110°C 5 min 43.88 161.07 48.13 117.44 43.63
TLCP/PP-110°C 15 min 44.64 161.43 47.87 116.90 44.53
TLCP/PP-110°C 30 min 42.90 160.86 4522 117.08 43.78
TLCP/PP-110°C 60 min 50.17 162.27 48.60 118.63 43.64
TLCP/PP-110°C 90 min 47.48 162.31 46.62 116.80 45.51
TLCP/PP-110°C 120 min 47.70 161.19 49.54 116.84 44.35
TLCP/PP-110°C 180 min 45.81 161.02 47.72 116.87 44.15
TLCP/PP-130°C 5 min 40.61 163.08 42.69 116.48 46.60
TLCP/PP-130°C 15 min 40.07 162.64 40.58 116.26 46.38
TLCP/PP-130°C 30 min 45.76 162.25 44.37 117.46 44.79
TLCP/PP-130°C 60 min 44.73 162.25 44.03 116.98 45.27
TLCP/PP-130°C 90 min 45.70 162.24 45.02 117.13 45.11
TLCP/PP-130°C 120 min 45.47 161.96 42.51 117.26 44.70
TLCP/PP-130°C 180 min 44.58 163.46 43.82 116.44 47.02
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31]1"7' 3.13 Heating DSC thermograms of TLCP/PP/1, 3 and 5wt% SEBS composite films annealing at 110

°C at various times.
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A1519% 3.4 Summary of % crystallization, melting Wae crystallization temperature

%Crystallization Temperature

sm

Samples Heating Cooling T Tm Tc

m

110°C | 130°C | 110°C | 130°C | 110°C 130°C | 110°C | 130°C | 110°C | 130°C

PP (UA) 37.4 43.6 0.00 160.9 115.3

PP/TLCP (UA) 38.5 46.8 64.4 161.0 116.0

PP/TLCP-10min 40.7 41.4 443 46.6 112.6 123.0 162.5 161.0 116.0 116.0

PP/TLCP-20min 37.5 41.0 42.8 40.6 115.4 135.4 161.0 162.5 116.0 116.0

PP/TLCP-30min 40.1 42.6 45.5 44.8 114.8 130.9 161.0 162.5 117.5 116.0

PP/TLCP-45min 39.0 447 43.7 40.1 115.8 1271 161.0 161.0 117.5 116.0

PP/TLCP-60min 40.5 43.8 441 44.6 118.4 136.7 161.0 161.0 117.5 117.5

1%SEBS-UA 411 46.5 65.8 161.0 116.0

1%SEBS-10min 42.4 38.2 46.0 41.0 114.8 127.8 161.0 161.0 116.0 117.5

1%SEBS-20min 41.7 41.6 43.4 45.1 127.8 124.6 162.5 161.0 116.0 114.5

1%SEBS-30min 41.3 42.7 46.1 47.6 112.8 124.9 161.0 162.5 116.0 114.5

1%SEBS-45min 42.6 40.4 46.1 43.9 117.6 1271 162.5 161.0 116.0 114.5

1%SEBS-60min 413 45.1 44.0 46.8 116.4 132.4 161.0 161.0 114.5 116.0

3%SEBS-UA 37.7 47.3 72.4 161.0 116.0

3%SEBS-10min 36.3 42.4 43.8 48.5 107.0 125.4 161.0 161.0 114.5 117.5

3%SEBS-20min 37.2 43.8 43.0 46.8 116.4 133.6 161.0 159.5 116.0 116.0

3%SEBS-30min 41.8 43.0 47.9 46.1 111.9 134.7 162.5 161.0 114.5 113.0

3%SEBS-45min 41.9 47.7 47.9 49.7 113.6 135.4 161.0 161.0 116.0 116.0

3%SEBS-60min 37.2 43.2 42.2 44.2 1131 136.4 161.0 161.0 116.0 114.5

5%SEBS-UA 37.0 445 66.4 161.0 117.5

5%SEBS-10min 40.8 46.4 46.7 49.5 107.8 133.9 161.0 161.0 116.0 113.0

5%SEBS-20min 41.7 44.9 46.2 48.9 115.8 132.2 161.0 161.0 116.0 116.0

5%SEBS-30min 37.2 44.2 411 47.6 111.6 133.4 161.0 162.5 116.0 114.5

5%SEBS-45min 39.4 43.4 441 44.0 114.8 136.8 161.0 162.5 116.0 117.0

5%SEBS-60min 41.6 441 45.9 47.7 114.1 131.8 161.0 162.5 116.0 116.0

3.4 Kinetics of Crystallization of Polypropylene and PP/TLCP Composite Films

3.4.1 Effect of Annealing on Kinetics of Crystallization of Polypropylene
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31/177 3.14 Relative crystallinity, %, obtained from cooling run, versus Time of PP films

annealing at (a) 110, and (b) 130°C at various times.
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3‘1/#3.15 Log(-In(1-Xt)) versus Log t of PP films annealing at (a) 110 and (b) 130 °C at

various times (cooling run).
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3.4.2 Effect of Annealing on Kinetics of Crystallization of 10wt%TLCP/PP

Composite Films
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3‘1/#3.16 Relative crystallinity, %, versus time of 10%TLCP/PP films annealing at (a) 110
and (b) 130°C at all times (cooling run).
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gilﬁ' 3.17 Log(-In(1-X;)) versus Log t of 10%TLCP/PP films annealing at (a) 110 and (b) 130

o . . .
C at various times (cooling run).
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NANT Lafuul lduLAsInt wazd1 n exponent WBdIRBNWBANWNANNEIUANT  annealing
goannil 110 uaz 130°C Hdlu129 0.64  -0.69 uaz 0.71-0.78 MudGy TlfiAuinIg
. ' ' a o { a & % a
annealing  JAKNAAENYANIINATANHANULALANBULHANALAADH INNNTINAMUTNNUT
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WANTMINTANWAN luEIUV9 primary  crystallization  9MnauTwludInnidudwassvas
Avrami plot LRZROANRDINUIIBIL VD Weibing Xu, Mingling Ge ua* Pingsheng He
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3.4.3 Crystallization Behavior of PP and TLCP/PP Films under Non-lsothermal
Crystallization

MIANWANTTUMIANKNANVRINaANasaaunadn eldan1Iz non - isothermal
crystalization VL@TV‘i’m'ﬁﬁﬂmI@Umﬁ'ﬂﬁugmmnann: isothermal crystallization lag'la¥i
maeTsiamsmaia DSC Muldsasnaiuea (cooling rate) fiwansnsri (5, 10, 15, 20
*C/min)

3.4.3.1 WANTENUVEY cooling rate WHANIINMIIANNANTEY PP usr TLCP/PP
composites Films

INNTINANMUFNNUTIZAING Heat flow Lfinuniy Temperature 7i cooling rate 619¢)
vLﬁ“ﬂ/aﬂaﬁEﬂ@”GLL&@]GI%@I’]‘E’N“?]I 35 LLa:ﬂﬁWﬁvl@Tmamﬂ@”'samaﬁﬁ'ﬂﬂm:ﬂﬁﬂﬂﬂﬁaﬁ'uﬁwa

W&AI DSC thermograms 2831198t LilugLN 3.18 muden

A157971 3.5 Crystallization temperature (Tc) 183 10wt%TLCP/PP composite films f

leann cooling thermograms (Rate = 5, 10, 15, 20 0C/min)

Sample Films Cooling rate Crystallization temperature (Tc)
("C/min) (C)
Pure PP 5 121.87
10 118.51
15 116.21
20 114.55
5% TLCP/PP composite 5 120.94
10 117.84
15 116.55
20 113.78
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;.71/171" 3.18 Cooling DSC thermograms 284 (a) PP film and (b) 5wt%TLCP/PP films ‘ﬁl
cooling rate 5, 10, 15, 20 °C/min.
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317 3.19 ATNWANMNRFNNUTIZHING Relative degree of crystallinity AU Temperature
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317 3.20 NMHANMURNWUTIZNINY  Relative degree of crystallinity fiU time 189

non-isothermal crystallization V84 (a) Pure PP films wa (b) 5wt%TLCP/PP composite films
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3.4.3.2 Avrami analysis in non-isothermal crystallization
Avrami  WRzAthe  eYNMTaBuNswgAnsIumsanndanvasnedineslauin  primary
stage U84 non-isothermal crystallization ITNANTHY Avrami amﬁlﬁqmﬂgﬁmadmmﬂwﬁﬂ
a A a o o g
Af Saznunsndaanldanannsasedalyil
n
1-X(t) = eXp(-K(t)t )
Log(-In(1-Xt)) = nlogK, + logt

1la X(t) = Relative crystallinity f crystallization time t

Ky = Crystallization rate constant
. & % ™ % a a a
n = Avrami exponent Faguwusnuna lnmsifiefafsauasianienis
wigLAulavandn

Warhnanmaaasn laaninaiia DSC AU ALAZLEAIANNFUNUSANNFUNNT
289 Avrami Equation 1@a¥inns log(-In(1-Xt)) Wiy plot log t 28IAaNNaRNNANAILERS
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JUA 3.21 aNUFWRUTIZAI log(-In(1-Xt)) AL log t 18I TLCP/PP composite films
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ﬁ'uLLa:agﬂu‘*ﬁ’mﬁmﬁ'uﬂszmm 1.03 Gsiindunsidulavesndnuun 1 dimension WAz
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131971 3.6 ¢ kinetic parameter N leaNENNNTVBI Avrami Equation

TLCP/PP films (wt %) Cooling rate (OC/min) n

Pure PP 5 1.0272

10 1.0274

15 1.0294

20 1.0322

5% TLCP/PP 5 1.0233

10 1.0274

15 1.0283

20 1.0305

3.4.3.3 mﬁ/ﬁ/ilgmwmmao Avrami Equation laz Ozawa and Mo&Coworker

Analysis in non-isothermal crystallization kinetic

Wflasanaunsuas Avrami Equation lisaninlgotunasnwaswndnssumsanaan
284 TLCP/PP composite leiatiaaaysal 1wz Avrami amﬁlﬁmwﬂwﬁmﬁﬂﬁu 100% 49
anwaseud il lilduazanaunnsuas Avrami Equation $is NONTINLAMIZNANTENLVD
NAATNANTENUAIWGANITINNIANNAN faa Ozawa Aldhmanamuazsudyaaunig
289 Avrami equation I@slQammausl,ﬁlvlﬂﬁﬂﬁmﬁwuﬂawaaaﬁmﬁgﬁﬁaawﬂﬁ@iﬂﬂﬁ
1-X(t) = exp(-Kgy /X) =wmememmmmnv (3)
Log(-In(1-Xt) = log K¢ + mlogX ----------- (4)
MNUWININEIANTINANUTURUETZRIN log(In(1-XD)) 71U log X &9 LLa@alugﬂﬁ'
322 aglsfionn  diwusnwasassnmwidosunldanduass waaaARIIM I
FUATANNLULVBY Ozawa NE WIRINNTDBTUIENYANTTUMITANKNANVRINGALNDSABNNEEAN
& 1f9991n Ozawa ﬁﬁﬁaﬁamww:qmwnﬂﬁﬁl,ﬂﬁmul,mmvl,ﬂ laslagulavianlunsanundn

Th4L8
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@ANWANLUL non-isothermal crystallization 1ag9inle@NunNTves Avrami WTENANIVEY Ozawa

UNTINNW AIRNAT6 b

Log X = log F(T) — x logt --------------- (5)
Wa x = aas§Invad n/m
F(T) = cooling rate w84szuulumaiaaianudundniuiuai s L3a1n15an

lagen x w1laan slope VBIFUMTLEUATI §AUA F(T) w1LAN intercept N3
WRANTINANMNFUNWDVEY log X LBUND log t %ﬂﬁwaﬁmamlugﬂﬁ 3.23 uazdaynad
waasluanefl 3.7

NNANTIN 3.7 Fudnen x uazen F(T) 289 TLCP/PP composite films dendnin
284 Pure PP films L&AIINNNIANNANYEY PP phase w@18:19 TLCP/PP composite films
Aaladuazi5anin Wosanuavas nucleating effect 184 TLCP fibers fduaslunadiuasds
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A15797 3.7 @1 kinetic parameter N leN&UNIVBI Mo and Cowokers Equation

fFnTuenat1INsUAANNAEN

TLCP/PP films Xt (%) X F(T)
(wt %)

0/100 20 1.1185 19.44

40 1.3111 24.54

60 1.3354 25.11

80 1.1069 24.61

5/95 20 1.0852 19.38

40 1.0948 20.99

60 1.1017 22.59

80 1.1066 23.98

10/90 20 1.1095 18.73

40 1.0978 19.86

60 1.0936 21.14

80 1.0899 22.84
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3.5 Structural Properties Studied by Wide Angle X-ray Diffraction
3.5.1 Effect of Annealing on Structural Properties of Polypropylene Film

inafia Wide angle X-ray diffraction (WAXD) aninanllunisdnsuaniznuaas
. \ A o = A A .\
annealing damsilasuulaimilassassviaanriomaiufoundadwg  (microstructural
change/phase transformation) MMIMIIZAUAMILTUNEN (X)) LAZUVWIAVEINAN (L) VaIWSWY
a . A [ ' { . {
WORLWTMNAY (iPP) ©9 WAXD patterns 189618819 NaNNH11NNT annealing f1 110 4az130
°C MIa§9 9 LLamlugﬂﬁ 3.24-3.25 ANEGU layaziAwin WAXD patterns Uad@28814
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WNINLFNEATOU F N
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& . @ a £ ' . . @ < a £
WG X, uae L iiadnagnaaunlugig 60 wsnuadin1s annealing wasannwidas guaudn
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31/171' 3.24 WAXD patterns of drawn iPP films annealed at 110°C at various times in (a)

equatorial (EQ) and (b) meridional (ME) scans.
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3‘1/ﬁ 3.25 WAXD patterns of drawn iPP films annealed at 130°C at various times in (a)

equatorial (EQ) and (b) meridional (ME) scans
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3‘1/171' 3.26. Plot of (a) true crystallinity in both EQ and ME sections and (b) the apparent

crystal size as a function of annealing times for the drawn iPP films annealed at 110 and

130 °C.

Annealing time / min

50



51

3.5.2 Effect of Annealing on Molecular Orientation of Polypropylene Film
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gilﬁ 3.27 WAXD patterns at ¢ = 0, 30, 60 and 90"; (a) unannealed PP and (b) annealed
PP films at 110 °C at 30 min.

JUN 327 usas WAXD patterns  2a4adadifdunaflny indunsfiiiuuaz ldniuns
annealing figaannd 110°C 1fuaan 30 wifl aziiwinlany ¢ lunsdafouluvildle
patterns 7119 liasuld uadinmadasnudadludrusasnnudung anmsilfsuwutasves

v A ai ni o v & 1 (o 1 = . . ¥
anuduianlfswldauyunainyia uaasliiiuindradinid preferred orientation landn
WINdANUUANANIVBIANNTUNATERIINY 0 uaz 90° 1N Adugasimsuulanuduse

m3ysaiieaaaluiananiad preferred orderforientation  §487n NMTIBuLiBuY 3.27a
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WAZ 3.27b WLRAWINABENARNNNIUAIT  annealing 3=TAINLANAIVDIANVLTUNA
1 a 6 A ' Y . dq/‘v 1 A .
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13 annealing Namn)ifn 130°C lidanuuanedsanninAunIdnns annealing 71 110°C

3.5.3 Effect of Annealing on Structural Properties of Composite Films with

and without Compatibilizers (SEBS)
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3‘1/#3.27 XRD patterns of 10wt%TLCP/PP composite films annealed at (a) 110 and (b) 130
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gilﬁ'3.28 XRD patterns of the 10wt%TLCP/PP/1wt%SEBS1652 films annealed at 130°C

for various times.

3.5.4 Effect of Annealing on Molecular Orientation of Composite Films with

and without Compatibilizers (SEBS)

FIMILNTRINANIZNLVBINTT annealing §@ molecular orientation 23N UADUNE
AnnvinlurinuadfeinuALUAIIWN relative molecular orientation VadNANWaRLNTIWEY Lo
AEFMIAANVUANAIVRIANUTUNA (110) 7 b = 0 uaz 90° S99INNIINARBS WU
relative molecular orientation wasAsuAaNWaENTITILANLA: IGNINTTIONEY 9xisze
relative molecular orientation go%mfiaﬁwmi annealing ﬁ'aqmﬁnuﬁga Lm:azﬁmgaﬂ’hms
annealing ﬁlqmﬁgﬁ@"imiw wonINHgINLINesBI3asaveIns annealing hifinanszny
¢ia relative molecucar orientation 1NN é’dLLa@ﬂugﬂﬁ 3.29 Gadunmninianszning
AMVUANAIVDIANNULTUNA (110) ﬁgw@iﬂdﬂﬁ'u %dﬂ’]i‘ﬁ relative molecular orientation
go%ulumi annealing ‘ﬁ'qmmﬁﬁgdi‘fuwmwaa@ﬂé:”aaﬁ'umnﬁufmaa@h Young'’s
modulus @1 tensile strength wazenanudundnfiiadn Wavinnns annealing ﬁqmﬁgﬁ

&
IV
U



55

count

0 30 ¢/ degree 60 90

0 30 ¢/degree 60 90 0 30 4/ degree % 90

gilﬁ 3.29 Plot of Alntensity of (110) peak at 20 = 14° and ¢ for composite films annealing
at 110, 120 and 130 °C for (a) 30, (b) 60, (c) 90, and (d) 120 min.
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31/171' 3.30 Plots of the increase in Modulus and Tensile strength of the annealed PP films

against the increase in true crystallinity obtain (a) Equatorial and (b) Meridional sections.
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gilﬁ 3.31 Plots of the increase in Modulus and Tensile strength of the annealed PP films

against the increase in apparent crystalline obtained from DSC in (a) MD and (b) TD.
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Abstract: The influence of annealing on the microstructure and molecular orientation,
thermal behaviour and mechanical properties of uniaxially drawn iPP thin film was studied by
wide-angle X-ray diffraction, differential scanning calorimetry and tensile testing, respectively.
The correlations of mechanical and microstructural properties of annealed films were also
examined. The transformation of smectic phase of iPP to the a-form was more pronounced
with increasing annealing time and temperature. The true and apparent crystallinities and
crystal thickness were strongly enhanced with annealing time and temperature. The relative
molecular orientation tended to increase with annealing time. These results caused the
significant improvement of modulus and tensile strength of the annealed films in both machine
(MD) and transverse (TD) directions. The increases in MD-Young’s modulus and MD-tensile
strength were well correlated with the increase in true crystallinity obtained in equatorial scans.
Some relationship between the increase in crystal thickness and the increase in Young’s
modulus in both MD and TD directions was also found.

Introduction

Polypropylene (PP) is one of the largest volume polyolefin in the industry of plastics
due to its wide range of physical properties, relative ease of processing and an
economical material, compared to other engineering thermoplastics. It is widely used
in many different applications such as for appliances, packaging, reinforcing fibers,
monofilaments, film, automotive. Moreover, the ranges of properties and applications
for PP may extend in various ways by physical treatments, for example, thermal
treatment [1-3] and plastic deformation [4,5], and can be modified by adding fillers
and/or blending with other polymers [6-7] and recently with nanoparticles [8,9], in
which the main field of attention is the enhancement of mechanical properties.

Initially, quenching the molten isotactic PP (iPP) to room temperature leads to an
intermediate crystalline order. This intermediate state is between ordered and
amorphous phase, and widely known by various names such as “quenched” [10],
“mesomorphic” [11,12], “paracrystalline” [13], nano-crystallites [14] and a well known
as “smectic” phase [15-17]. Natta and Coradini [16], who first observed this phase in
1960, pointed out that this phase is characterized by parallel helices having disorder
in the lateral packing, but maintaining some degree of positional correlation along the
chain axis between adjacent helices. After that, Miller [13] suggested that the
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structure of the quenched phase displayed two broad and diffuse X-ray diffraction
profiles which were amorphous and paracrystalline phases. McAllister et al. [18]
showed that 60% of the material in the smectic form of PP was amorphous,
remaining in microcrystalline arrays of cubic or tetragonal symmetry. Saraf and Porter
[19] also reported that the smectic phase is formed by 3/1 helices highly oriented, but
the lateral packing of such helices is highly disordered.

Although the smectic phase of iPP is relatively stable at room temperature for long
period of time, it can be transformed to the monoclinic iPP phase (a-PP), the most
stable phase, on heat treatment at temperature above 70 - 80 °C [11,20,21], or by
applying of plastic deformation to the materials [5]. Thus, the annealing on iPP
causes a decrease in the amount of both amorphous and smectic phases while the
amount of monoclinic phase, the crystal size, and the degree of perfection are
increased and leads to a significant improvement in the mechanical properties of the
samples [1-3,11,12,22-25]. The transformation of the smectic phase to the monoclinic
phase can be detected by different experimental techniques such as wide-angle X-
ray diffraction (WAXD), density and differential scanning calorimetry (DSC) [1-3,25]. It
is also well known that annealing of polymer materials after fabrication makes the
properties of sample to change at microscopic level in different phenomena, such as
reorganization of amorphous segment through chain mobility, rearrangement of
crystal segments and reduction/elimination of defects and residual stress and strain
[26]. Such annealing also changes the morphological modification of crystal regions
through lamellae thickening in semi-crystalline polymers. The effect of annealing at
macroscopic level is one of important factors to improve mechanical properties of the
materials such as Young’s modulus, impact strength, tensile strength, and toughness
[1-4,22-25]. From above reasons, the effects of annealing of PP on its mechanical,
impact and fracture properties, crystalline structure, phase transformation,
crystallization behavior, elastic response as well as morphology have been gained
much attention in the last decade [1-3,23,24,27-29].

Ferrer-Balas et al., 2001, [3] demonstrated that the tensile properties of annealed iPP
films were highly improved due to the microstructural changes. The improvement of
tensile properties was very well correlated to the crystallinity, crystal size and smectic
phase melting temperature. Drozdov et al., 2003, [28], however, concluded that
annealing in the low-temperature ranges (110-130°C) did not affect the material
constant that reflected the elastoplastic response of iPP but increased in brittleness
of secondary lamellae developed at higher temperature. Recently, Jia and coworker,
2006, [23] also presented that the heat treatment after rolling iPP sheets led to the
recrystallization of amorphous material and to a strong enhancement of the fiber
orientation component. Song and coworker, 2006, [29] concluded that the annealing
conditions had the important influence on the molecular orientation and deformation
behavior of annealed iPP thin films.

In the present work, the influence of annealing conditions, in the low-temperature
ranges (at 110 and 130 °C), on microstructural transformation, molecular orientation,
thermal behaviour and mechanical properties of the uniaxially drawn iPP thin films (~
20 um thick) is examined. It is also interesting to study the correlations of the true
crystallinity calculated from WAXD patterns in both equatorial and meridional
sections with their respective mechanical properties in machine (MD) and transverse
(TD) directions, respectively.



Results and discussion

Microstructural development

The Wide angle X-ray diffraction (WAXD) patterns of the uniaxially drawn iPP films
annealing at 110 and 130 °C at different times are presented in Figs. 1 and 2,
respectively. It can be seen that the WAXD patterns of unannealed drawn iPP film
(UA) in both equatorial (EQ) and meridional (ME) scans consist of two intense broad
peaks at 20 equal 15.4 and 21.4°, and a shoulder peak at 28.8°. This pattern has
been well known as the ‘smectic phase’ of iPP as first observed by Natta and
Coradini [16] and by the latter researchers [17-21]. In general, the smectic phase of
iPP can transform to the more stable crystalline phase (a-form) through annealing at
appropriate temperature, i.e. 70-150 °C or by applying plastic deformation [3,11,20-
25]. Such results have also confirmed in our previous work for iPP thin film annealed
at 110 °C for 2 h [30]. In this work, the WAXD patterns of iPP films annealed at 110
and 130 °C at different times have again confirmed the transformation of smectic

phase PP to the a-form as shown in Figs. 1 and 2, respectively.
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Fig. 1. WAXD patterns of the uniaxially drawn iPP thin films annealed at 110 °C at
various times in (a) equatorial (EQ) and (b) meridional (ME) scans.
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Fig. 2. WAXD patterns of the uniaxially drawn iPP thin films annealed at 130 °C at
various times (a) equatorial (EQ) and (b) meridional (ME) scans.

The WAXD patterns of annealed iPP films in both EQ and ME scans represent the
characteristic peaks of the well-known a-form (monoclinic phase) at 20 = 14.8 (110),
16.95 (040), 18.5 (130), 21.2 (111) and 21.85° (041) [3,5,16]. It is clearly seen that
the WAXD patterns obtained from the ME scans are not much as sharp and well-
defined as those measured in the EQ scans. As the annealing time and temperature
increase, the WAXD intensity profiles of the samples in both sections are sharper and
more intense. This suggests that the transformation of smectic phase to monoclinic
phase is more pronounced with increasing annealing time and temperature,
corresponding to the longer time for rearrangement and the higher thermodynamic
molecular motion ability of iPP molecular chain, respectively.

In addition, the true crystallinity (X;) and the apparent crystal thickness (L) of the
annealed samples evaluated from WAXD patterns are shown in Fig. 3a and 3b,
respectively. It is seen that the X; and L strongly increase in the first 60 min of
annealing at both annealing temperatures after that tend to be unchanged. It is also
found that X; of the films annealed at 130 °C is higher than that of films annealed at
110 °C at the same annealing time, which is similar to the results obtained from DSC.
Also, the calculated L of iPP films annealed at 130 °C is thicker than that of films
annealed at 110 °C at the same conditions. These results indicate that the crystalline
phase of a-form has higher degree of perfection and thicker crystal size with

4



70

60

50

40 - —&— 110-EQ

—O— 110-ME

—A— 130-EQ 1
—4— 130-ME

30 T T T T T T T

0 30 60 90 120 150 180
Annealing time / min

Integral calculated crystallinity / %

180 ©)

160

140

120 %
100 - § %

80 -

60

Calculated crystal size / Anstrom

40 - § ® 110°C
A 130°C
20 T T T T T T T
0 30 60 90 120 150 180

Annealing time / min

Fig. 3. Plot of (a) true crystallinity in both EQ and ME sections and (b) the apparent
crystal size as a function of annealing times for the uniaxially drawn iPP films
annealed at 110 and 130 °C.

increasing annealing time and temperature which agrees well with the increasing of
T and degree of crystallinity measured by DSC (see Fig. 5 and 6, respectively).

Furthermore, it should be noted that the rate of crystallization for the films annealed
at 130 °C is found to be higher than that of the films annealed at 110 °C, owning to
the higher thermodynamic mobility of molecular chain [3].

In order to roughly qualify the molecular orientation of annealed drawn iPP films, the
comparison between the maximum peak intensity of (110) peak of EQ and ME scans
is considered to estimate the relative level of preferred orientation. The previous
studies have also shown that the uniaxially drawn iPP thin film annealed at 110 °C for
2 h exhibited slightly anisotropic indicating that there was some small difference in
the peak intensity in azimuthal scans [30]. Therefore, by comparison of the difference
in the peak intensity of (110) in equatorial (azimuthal angle = 90°) and meridional
scans (azimuthal angle = 0°), the rough information of the relative molecular
orientation developed during annealing treatment could be obtained.

Fig. 4 presents the intensity difference between EQ and ME scans of (110) peak as a
function of annealing time. The difference of the peak intensity (Ieq) — Ivg)) in both
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annealing temperatures tends to strongly increase with increasing annealing time.
Thus, it could be implied that the relative level of molecular orientation of iPP
crystalline phase in the annealed iPP films is relatively increased with annealing time,
except at annealing time of 120 min. This result is in good agreement with the
previous works [29-32]. The increase in the relative level of molecular orientation of
crystalline phase could be mainly resulted in the significant improvement of
mechanical properties of the materials, corresponding to the strong enhancement in
Young’s modulus and tensile strength of the annealed iPP films as presented in Figs.
9a and 9b, respectively.
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Fig. 4. Plot the intensity difference (Ieq)-lve)) of (110) peak as a function of annealing
times for the uniaxially drawn iPP thin films annealed at 110 and 130 °C.

Thermal Properties

The DSC curves for the uniaxially drawn iPP thin films annealing at 110 and 130 °C
at different times are shown in Figs. 5a and 5b, respectively. All DSC curves clearly

exhibit three prominent transition peaks defined as 7", T, and T, on increasing
temperature, corresponding to a small endotherm, followed by a small exotherm and
a sharp endotherm at around 161 °C, respectively. For the unannealed iPP film (UA),
the first small endothermic peak (7" ) is quite broader and locates in the temperature
range of 45-85 °C with a maximum at about 70 °C. This peak reveals the presence of

the smectic metastable phase of iPP and has been attributed to the melting of small
monoclinic crystals developed on quenching process of the final product, reported by

other research groups [2,3,5,10]. In addition, the value of 7" can also be taken as a
simple indication of the order perfection of the material at different annealing
conditions [3]. It is also seen that 7 "of the annealed samples shifts toward and
increases with increasing annealing temperature and time, indicating that the order
perfection of crystallinity increases with annealing temperature and time. As a result,
the 7' of annealed samples depends not only on the annealing temperature, but
also on the annealing times. This result is strongly related to the increases in the X,

and L of the annealed iPP thin films revealed by WAXD as shown in Figs. 3a, 3b,
respectively [3,22,33,34].
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Fig. 5. DSC heating thermograms of the uniaxially drawn iPP thin films annealed at
(a) 110 and (b) 130 °C at various times, measured at a heating rate of 10 °C /min.

Following the first endotherm, an exothermic transition peak (T;) is presented that re-
ordering process has occurred involving the recrystallization of the crystals just
before melting in a more stable iPP form [3,22]. In other words, this exothermic
transition relates to the transformation of a paracrystalline/smectic phase to a
monoclinic phase. The T, of the UA iPP films is found in a broad range from 85-120
°C and centered at around 99 °C. While the T. of the annealed iPP thin films is in a
narrower range and increases with increasing annealing temperature and time (see
Fig. 5), corresponding to the sharper and more intense WAXD patterns as shown in
Figs. 1-2. Moreover, the apparent difference in the melting enthalpy area of the
recrystallization peak (T7;) compared to the sharp melting peak (T,) is obviously seen
in all DSC curves. This result is in good agreement with the works of Ferrer-Balas et
al. [3] and Alberola et al. [22], suggesting that the less stable microcrystallites
progressively melt as the annealing temperature increase, whereas almost
simultaneously, new crystallites which are increasingly thicker and more stable are
formed (see Fig. 3), so that compensating the endothermic melting process by a re-
ordering process involving energy dissipation. Nevertheless, the last main
endothermic peaks (T,) of the iPP films annealed at 110 and 130 °C at different
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times are found to be unchanged and locate at around 161 °C, indicating that it is
independent of thermal history of the sample. In addition, this result suggests that
thermal annealing does not significantly affect on the stable monoclinic phase.

Fig. 6 represents the plot of apparent crystallinity obtained from DSC as a function of
annealing times for the uniaxially drawn iPP thin films annealed at 110 and 130 °C. It
is seen that the crystallinity significantly increases with annealing time and
temperature. This is similar to the increase of true crystallinity (X;) calculated from
WAXD patterns (see Fig. 3). However, the values of crystallinity obtained by DSC
measurement are quite smaller than that calculated from WAXD patterns. This could
be due to the melting-recrystallization process of the sample until complete melting
during heating scan.
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Fig. 6. The relationship between the apparent crystallinity and annealing time for the
uniaxially drawn iPP thin film annealed at 110 and 130 °C.

Stress-strain behaviour

Figs. 7a and 7b present the example of the stress-strain curves of unannealed (UA)
and drawn iPP thin films annealing at 110 °C at different times in both machine (MD)
and transverse (TD) directions, respectively. It is seen that the profiles of stress-strain
behavior of all annealed films in both MD and TD directions are similar to that of the
UA iPP thin film. It exhibits the yield point followed with stress plateau and after that
the strain hardening occurs. Clearly, the stress of all annealed iPP thin films is
considerably higher than that of the UA film in each direction. Thus the yield stresses
of all annealed iPP thin films are much higher than that of the UA film. The significant
increase in yield stress of annealed films could be due to the higher degree of
perfection of crystalline phase and the thickening of the crystal size as well as the
reduction of both of the smectic and amorphous phases after isothermal annealing as
confirmed by WAXD and DSC results as shown in Figs. 1-6 [22,33,35]. In addition,
the presence of the stress plateau could be attributed to the deformation of the PP
smectic phase that still remained even the films were annealed for a long period of
time as supported by the WAXD and DSC results. The MD and TD stress-strain
curves of the uniaxially drawn iPP thin films annealing at 130 °C are found to be
similar behaviour to that of iPP films annealing at 110 °C (picture not shown here).
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Fig. 7. Stress-strain curves of the uniaxially drawn iPP thin films annealed at 110 °C
at various annealing times in (a) MD and (b) TD.

However, its MD stress plateaus are much shorter than those films annealing at 110
°C. This indicates that the portion of smectic phase in the films annealing at 130 °C is
less than that of the films annealing at 110 °C, corresponding to the increase in
degree of crystallinity obtained from the WAXD and DSC experiments (see Figs. 3
and 6). Also, the stress values in MD and TD directions of the film annealed at 130
°C are somewhat higher than those of the film annealing at 110 °C. As a result, the
higher mechanical properties of the film annealing at 130 °C than those of the film
annealing at 110 °C could be observed as shown in Fig. 8.

Mechanical properties

The Young’s modulus, tensile strength and elongation at break in both MD and TD
directions as a function of annealing times are displayed in Figs. 8a-c, respectively,
for the drawn iPP films annealing at both 110 and 130 °C. As shown in Fig. 8a, the
MD and TD Young’s moduli of both annealed iPP films strongly enhance with
increasing annealing times up to 60 min after that tend to level off, corresponding to
an increase in true crystallinity (X;), apparent crystal size (L) and the relative level of
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Fig. 8. Mechanical properties in MD and TD directions of the uniaxially drawn iPP
thin films annealed at 110 and 130 °C at different annealing times: (a) Young’s
modulus, (b) tensile strength and (c) elongation at break.

molecular orientation as presented in Figs. 3 and 4. The Young’'s moduli of iPP thin
films annealed at 130 °C are significantly higher than those of films annealing at 110
°C in both directions. This could be due to the higher crystallinity, more degree of
perfection of crystallites and more thickening crystal size obtained from the higher
thermodynamic mobility of the iPP chain segments as annealing at the higher
temperature (see Figs. 3 and 6) [1-3,22-25]. Interestingly, the values of Young’s
modulus of all annealed iPP films at 110 °C in both MD and TD directions are very
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slightly different, indicating that the sample exhibits almost isotropic property, though
the UA film was slightly higher anisotropy. The possible reasons could be due to; a.)
the highly improved crystalline portions in TD direction which close to the same level
in the MD direction after annealing (see Fig. 3a) because there is much more free
volume for easily molecular motion ability of amorphous phase to be packed and b.)
the more van der Waals inter-chain forces owning to the closed packed of crystal
regions developed highly in TD direction after annealing. Nevertheless, the variation
in modulus of all annealed films is seen. This could be mainly affected by the
variation of molecular orientation of the crystalline portion as shown in Fig. 4.

Comparison of the MD and TD moduli of the annealed films with that of the UA film
reveals that the MD and TD moduli of the films annealing at 110 °C for 60 min are
higher about 22 % and 34 %, respectively. While the MD and TD moduli of films
annealing at 130 °C for 60 min are higher about 42 % and 41 %, respectively. Thus,
the MD Young’s modulus of the films annealing at 130 °C is about two times higher
than that of the film annealing at 110 °C, corresponding to the higher improvement of
crystallinity and crystal thickness of film annealing at 130 °C (see Figs. 3 and 6).
These results match well with the fact that the crystallinity, crystal size, perfection of
crystal and molecular orientation of annealed iPP films are strongly higher than that
of the UA film, as reported in WAXD and DSC results [1-3,12,33,35,36].

From Fig. 8b, it is seen that the MD and TD tensile strengths of all annealed films
tend to drastically increase with increasing annealing times up to 60 min after that
tends to level off, especially in the films annealing at 130 °C. Comparison of the MD
tensile strength of annealed iPP thin films to that of UA film, the increases in MD
tensile strengths of films annealing at 110 and 130 °C at 60 min are about 25 % and
31 %, respectively. While TD tensile strength of the film annealed at 110 and 130 °C
at 30 min are about 5 % and 26 %, respectively. These results could be due to the
more perfection of crystalline phases, the thicker crystal size and the higher relative
level of molecular orientation as well as the stronger interactions of iPP inter-chain
segments after rearrangement their registrations which are developed in the films
annealed at 130 °C, as confirmed by the WAXD and DSC results (see Figs. 1-6) [1-
3,10-12,33,35]. However, for TD tensile strength is 5 times lower than MD tensile
strength for the film annealed at 110 °C, this could be attributed to the decrease in
the physical cross-linking degree of the amorphous phase even the size of the
crystalline entities is increased. Thus, it could be proposed that the tensile strength of
iPP film is governed not only the degree of crystallinity but also by the degree of
physical cross-linking degree of the amorphous phase induced by the crystalline
phase [33].

From Fig. 8c, it is seen that almost MD and TD elongation at breaks of both annealed
films are slightly decreased, indicating that the ductility of the annealed iPP films was
reduced. The drop in MD elongation at break of the films annealed at 130 °C
compared to that of the unannealed one is about 10 %, whereas the drop in TD
elongation at break of the both annealed films is in the same range of ~ 20%. The
reduction in elongation at break of the annealed iPP films could be viewed as a result
of the reduction of molecular mobility [10,37], the decrease in the portion of smectic
and amorphous phases (see Figs. 1-2) and the increase in the degree of perfection
of crystallites (see Figs. 3 and 6) and the increase in physical cross-link degree of
amorphous phase [33].

11



60

20

40 60 80

100

60
(a)
- 50 - A - 50
X X
= A A ~
40 - re - 40 @«
3 A ok Z
i ~ =)
; 30 - o - 4n - 30 =
£ gci £
@ 20 PEale) -2 32
] - *
g 8 =
= 5
2 10+ -~ ® MD-YM-110} 10 &
- - O MD-TS-110 -
- A MD-YM-130
01 & a wmp-rs-30 [ 0
T T T T T
0 20 40 60 80 100
Increase in calculated crystallinity in EQ /%
R 70
(b) A
60 - 60
X / NS
~ 50 1 X F 50 —
> s A 72
= 40 | 7Y P
L 40 v N 40 4
a /4
[ [ 28 =
& 307 o - 30 5
2 s a 8 2
g 201 Py 20 S
I
= < ® TD-YM-110 =
= 107 - Q/%’ o o 1810 | 07
ol &t A m™YMI30|
A TD-TS-130
T T T T T

Increase in calculated crystallinity in ME / %

Fig. 9. Correlation of increase in Young’s modulus (YM) and tensile strength (TS)
with increase in true crystallinity (X;) in both (a) MD and (b) TD directions for the
uniaxially drawn iPP thin films annealed at 110 and 130 °C.

Correlation between mechanical and microstructural properties

The correlation between mechanical properties and the true and apparent
crystallinities of the uniaxially drawn iPP thin films annealed at 110 and 130 °C at
different annealing times is now examined. In this section, the increase in modulus
and strength of annealed film is supposed to correlate with the increase in
crystallinity. Thus the plots of increase in Young’'s modulus (YM) and tensile strength
(TS) in both MD and TD directions against the increase in true crystallinity (calculated
from WAXD patterns) and apparent crystallinity (measured by DSC) for the annealed
drawn iPP films were established in order to observe their correlations and evaluate
the suitable parameters. The plots of increase in YM and TS in the both MD (MD-YM
and MD-TS) and TD directions (TD-YM and TD-TS) versus the increase in true
crystallinity in equatorial (EQ) and meridian (ME) sections are presented in Figs. 9a
and 9b, respectively, for the iPP films annealed at 110 and 130 °C. From Fig. 9a, the
increase in MD-YM and MD-TS shows a good trend of linear correlation with an
increase in true crystallinity in EQ in both annealing temperatures. Also, some linear
relationships are found between the increases in TD-YM and TD-TS with an increase
in true crystallinity in ME in both annealing temperatures (see Fig. 9b). This could be
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suggested that the true crystallinity well corresponds to the increase in both of YM
and TS in both MD and TD directions of the annealed iPP films which is similar to the
work of Ferrer-Balas [3]. Also, the correlations of increase in MD-YM, MD-TS and
TD-YM, TD-TS with increase in the apparent crystallinity are plotted and presented in
Figs. 10a and 10b for MD and TD directions, respectively. It can be observed from
Fig. 10a that the increase in MD-YM and MD-TS exhibits less linear relationship with
an increase in apparent crystallinity and the data points show highly fluctuation from
the linearity trend. Moreover, no linear correlation of increase in TD-YM and TD-TS
with increase in the apparent crystallinity could be found (see Fig. 10b). Therefore,
from the correlation plots shown in Figs. 9 and 10, the true crystallinity calculated
from X-ray patterns in each EQ and ME scans is found to be a more suitable
parameter to correlate with the increase in YM and TS in both MD and TD directions
than the apparent crystallinity obtained from DSC measurement.
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In addition, the relationship between the increase in YM and TS in both MD and TD
directions and the increase in apparent crystal size (L) is also studied as plotted in
Fig. 11. Some linear relationships of increase in YM in both MD and TD direction with
increase in crystal thickness for both annealing temperatures can be observed. The
slope of linearity of TD-YM and crystal thickness of samples annealed at 110 °C is
seen to be steeper than that of MD-YM. However, the slopes of linearity of YM with
crystal thickness in both MD and TD directions for the samples annealed at 130 °C
are appeared to be equal and steeper than those of sample annealed at 110 °C.
Thus from this result it could be suggested that the increase in crystal thickness
exhibits a stronger effect on increase in TD-YM rather than in MD-YM, in particular
for the film samples annealed at 110 °C. However, for the relationship between
increase in TS and increase in crystal thickness in both MD and TD directions, it can
not observe any relation as shown in Fig. 11b, suggesting that the crystal thickness is
not a suitable parameter to use to relate with the increase in TS of the annealed film.
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Conclusions

The effect of annealing on the microstructure, molecular orientation, thermal and
mechanical properties of uniaxially drawn iPP thin film was investigated using WAXD,
DSC and tensile testing, respectively. Under the studied annealing conditions (at 110
and 130 °C), the smectic phase was transformed gradually to the more stable phase
with increasing annealing temperature and time, as seen from WAXD and DSC
results. The estimated level of molecular orientation of annealed films was also
increased with annealing time and could be directly affected on the variation of
mechanical properties. The degree of true and apparent crystallinities was strongly
increased with increasing annealing temperature and time, especially at the higher

annealing temperature. The 7' of the annealed film is found to increase with

annealing time and temperature, indicating the higher degree of perfection of
material. It is also found that the true crystallinity is a more suitable parameter to
correlate with the increase in Young’s modulus (YM) and tensile strength (TS) in both
machine (MD) and transverse (TD) directions than the apparent crystallinity. In
addition, the crystal thickness of the annealed iPP films seems to well relate to only
Young’s modulus not to tensile strength and tends to exhibit a greater effect on the
increase in TD-YM rather than in MD-YM. Therefore, the transformation of smectic
phase to monoclinic phase, the more degree of perfection of crystallite, the more
lamellar thickening, the increase in crystallinity and the enhancement of molecular
orientation could be the important factors on the significant improvement of
mechanical properties of the uniaxially drawn iPP thin films treated under the
appropriate annealing conditions.

Experimental part

Materials and Thin Film Preparation

A commercial isotactic polypropylene (iPP), trade name PRO-FAX 6631, with melt
flow index of 2 g/10 min and a density of 0.903 g/cm® was kindly supplied by HMC
Co., Thailand. The iPP pellets were fabricated as an extruded film using a mini-
extruder (Randcastle RCP-0625) equipped with a cast film line. The screw speed
was 70 rpm and the temperature profile was 245/280/290/295°C, represented for the
hopper zone, two barrel zones and slit die zone, respectively. The gap at the die lip
and the width were fixed at 0.065 and 15.2 cm, respectively. The film exiting from the
die outlet was immediately cooled on the chilled roll and was rapidly continued
uniaxial drawn to obtain film draw ratio of about 30 (a die gap to film thickness ratio).
Thus, the film thickness about 20 um was obtained and used throughout this work.

Annealing Procedure

According to our previous work [30], smectic phase in the drawn iPP and
thermotropic liquid crystalline polymer/PP in-situ composite films was observed to
transform to a more stable phase (i.e. a-form) after the films were annealed at 110
°C for 2 h. Therefore, in order to investigate the effect of annealing temperature and
time on the properties of drawn iPP thin film in more details, the films were annealed
in an air oven at two fixed low-temperature ranges, i.e. 110 and 130 °C, at various
times from 30 to 180 minutes [28]. The accuracy of the oven temperature was + 2 °C.
When the required annealing time was reached, the samples were quickly removed
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from the oven and quenched in air at room temperature in order to freeze the
developed structural rearrangement. These specimens were then stored at ambient
temperature for at least 24 h before further analysis.

Wide angle X-ray diffraction (WAXD)

To determine the microstructural transformation, the true crystallinity, and apparent
crystal sizes of the samples, WAXD experiments were performed. In order to archive
the appropriate X-ray diffraction intensity, a thick film (~0.9 mm) was prepared by
folding several layers of the thin film, while maintaining its relative MD direction. The
WAXD measurement was performed at room temperature, using Ni-filtered Cu-K,
radiation of wavelength 0.154178 nm, on a Philips X-ray diffractometer (X’ Pert MPD)
operating at 40 kV and 35 mA. The scan range was varied from 5 to 50° in steps of
A26 = 0.2° with a count time of 5 s at each position. The WAXD intensity profiles
were measured in both equatorial (EQ) and meridional (ME) sections. The X-ray
intensity of each sample was normalized by the peak intensity at 43.0° which have
equal intensity in both sections. From the WAXD patterns the degree of crystallinity
(Xc), true crystallinity, of the annealing samples was calculated in both sections by
assuming the contribution of the crystalline and amorphous portions to the area of
diffraction patterns [38]. Also, the crystal thickness (L) was deduced using the
Scherrer equation [3]:

L=09A/ (%j cosd
180

where L is the apparent crystal size (A), A is the wavelength used (A), D is the half-
height angular width (degree), and 8 is the position of the maximum diffraction.

Differential scanning calorimetry (DSC)

To investigate the thermal behaviours and evaluate the apparent crystallinity of the
drawn iPP films influenced by heat treatments, the annealed samples were analysed
using DSC, METTLER TOLEDO 823°. Pure standard indium was used as a
reference material to calibrate the temperature and the heat flow. The drawn iPP film
sample cut into small pieces weighed about 5 mg was crimped in aluminium pans.
The scans were performed under nitrogen atmosphere from 30 to 200 °C at a
scanning rate of 10 °C/min. The melting temperatures of smectic and monoclinic
phases, 7" and T, respectively, were reported from the peak temperatures of the

endotherms. The recrystallization temperature (7;) was also presented. The
crystallinity was determined from the measured heat of fusion, assumed that an
average value for the heat of fusion of 100% crystalline PP equals to 207.1 J/g [39].

Mechanical properties

The unannealed (UA) and annealed iPP films were tested at room temperature using
a Lloyds tensile testing machine (LR series) with a gauge length of 2.50 cm, a
crosshead speed of 5.00 cm/min and a full-scale load cell of 0.5 kN. All films
prepared at the draw ratio ~30 were cut into a dumbbell-shape (size = 2.50 x 4.00
cm?) by using a punching machine. An average value of at least 10 measurements in

16



each sample was determined in both MD and TD. All data were collected and
analysed using a package program “LR series”.
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