รายงานวิจัยฉบับสมบูรณ์

โครงการ การศึกษาการทำงานของรังไข่หลังคลอดในแม่โคนมพันธุ์ใทยโฮลสไตน์

โดย บรรถือ กรมาทิตย์สุข และคณะ

รายงานวิจัยฉบับสมบูรณ์

โครงการ การศึกษาการทำงานของรังไข่หลังคลอดในแม่โคนมพันธุ์ไทยโฮลสไตน์

คณะผู้วิจัย	สังกัด
1. คร.บรรลือ กรมาทิตย์สุข	คณะสัตวแพทยศาสตร์
	มหาวิทยาลัยมหิคล
2. ศาสตราจารย์กิตติกุณ พีระศักดิ์ จันทร์ประทีป	สภามหาวิทยาลัย
	จุฬาลงกรณ์มหาวิทยาลัย
3. Professor Hans Kindahl	Department of Clinical Sciences,
	Faculty of Veterinary Medicine
	and Animal Science,
	Swedish University of
	Agricultural Sciences (SLU)

สนับสนุนโดยสำนักงานคณะกรรมการการอุดมศึกษา และสำนักงานกองทุนสนับสนุนการวิจัย

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกอ. และ สกว. ไม่จำเป็นต้องเห็นค้วยเสมอไป)

ผลของภาวะเครียดจากความร้อนต่อการทำงานของรังไข่หลังคลอด และพารามิเตอร์ ที่เกี่ยวข้องกับประสิทธิภาพการสืบพันธุ์ ในแม่โครีคนมพันธุ์โฮลสไตน์

บรรลือ กรมาทิตย์สุข ¹, พีระสักดิ์ จันทร์ประทีป ², สุดสายใจ กรมาทิตย์สุข ¹, ฮันส์ คินดัลล์ ³

¹ คณะสัตวแพทยศาสตร์ มหาวิทยาลัยมหิดล 25/25 ถนนพุทธมณฑลสาย 4 ตำบลศาลายา อำเภอพุทธมณฑล จังหวัดนครปฐม 73170; ² สภามหาวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย เขตปทุมวัน กรุงเทพ 10330;

³ Department of Clinical Sciences, Swedish University of Agricultural Sciences (SLU), SE-750 07 Uppsala, Sweden

บทกัดย่อ—การวิจัยครั้งนี้มีวัตถุประสงค์ เพื่อศึกษาผลกระทบของความเครียคเนื่องจากความร้อน ต่อการ ทำงานของรังไข่หลังคลอด และพารามิเตอร์ที่เกี่ยวข้องกับประสิทธิภาพการสืบพันธ์ในแม่โครีคนม โดย ทำการศึกษาในแม่โคลูกผสม พันธุ์โฮลสไตน์ ฟรีเชี่ยน จำนวน 30 ตัว แบ่งออกเป็น 2 ช่วง 1) ช่วงฤคูร้อน จำนวน 15 ตัว และ 2) ช่วงฤคหนาว จำนวน 15 ตัว ทำการสึกษาเป็นระยะเวลา 60 วันหลังคลอค โดย ครวงวัคค่าความสมบูรณ์ของร่างกาย การกลับเข้าอู่ของมคลูก และลักษณะ โครงสร้างของรังไข่ สัปดาห์ละ 1 ครั้ง พร้อมทั้งเก็บตัวอย่างพลาสม่า สัปดาห์ละ 3 ครั้ง เพื่อตรวจวิเคราะห์ระคับฮอร์ โมนโปรเจสเตอโรน และฮอร์โมนพรอสต้าแกลนดิน เอฟทแอลฟ่า เมตาบอไลท์ ผลการวิจัยพบว่าแม่โคหลังคลอดช่วงฤคร้อนมี ค่าเฉลี่ยของค่าความสมบรณ์ของร่างกายลดลงอย่างมีนัยสำคัญ (P<0.01) เมื่อเปรียบเทียบกับแม่โคหลัง คลอดช่วงฤคหนาว และจำนวนแม่โคหลังคลอดที่มีมดลกกลับเข้าอ่ในฤคร้อนมีค่าต่ำกว่า เมื่อเปรียบเทียบ ในแต่ละช่วงระยะเวลากับแม่โคหลังคลอคช่วงฤดูหนาว ขณะเดียวกันจำนวนแม่โคหลังคลอคที่ตรวจพบ คอร์ปัสลูเทียมครั้งแรกที่ระยะ 6 สัปคาห์หลังคลอค ในช่วงฤคูร้อน มีค่าเท่ากับ 10/15 ตัว (66.7%) และ ช่วงฤดูหนาว มีค่าเท่ากับ 14/15 ตัว (93.3%) โดยจำนวนแม่โคหลังคลอดช่วงฤดูร้อนและช่วงฤดูหนาว บีการทำงานของรังไข่หลังคลอดเป็นปกติ เท่ากับ 4/15 ตัว (26.7%) และ 9/15 (60.0%) ตามลำคับ ส่วนความผิดปกติการทำงานของรังไข่ มีแนวโน้มเพิ่มสงขึ้นในกล่มแม่โคช่วงฤคร้อน (P=0.07) ขณะที่ ระคับฮอร์โมนพรอสต้าแกลนคิน เอฟทูแอลฟ่า เมตาบอไลท์ ของแม่โคหลังคลอคทั้งสองกลุ่มไม่มีความ แตกต่างกันอย่างมีนัยสำคัญ (P>0.05) ส่วนอัตราการผสมติดครั้งแรกหลังคลอด (P=0.06) มีแนวโน้ม เพิ่มสูงขึ้นในกลุ่มแม่โคหลังคลอคช่วงฤคูหนาว และอัตราการตั้งท้องที่ 150 วันหลังคลอดเพิ่มสูงขึ้น มากกว่าในกลุ่มแม่โคหลังคลอดช่วงฤดูหนาวอย่างมีนัยสำคัญ (P=0.03) จากการศึกษาวิจัยครั้งนี้ สรุปได้ ว่าความเครียดเนื่องจากความร้อน ก่อให้เกิดผลกระทบอย่างชัดเจน ต่อค่าความสมบรณ์ของร่างกาย การ กลับเข้าอู่ของมคลูก และการทำงานของรังไข่หลังคลอด ส่งผลให้ประสิทธิภาพการสืบพันธุ์ในแม่โครีค นมพันธุ์โฮลสไตน์ ฟรีเชี่ยน ลคต่ำลง

The effect of exposure to heat-stress on postpartum ovarian cyclicity and subsequent reproductive performance in Holstein lactating cows

Bunlue Kornmatitsuk ^a, *, Peerasak Chantaraprateep ^b, Sudsaijai Kornmatitsuk ^a,

Hans Kindahl ^c

^a Faculty of Veterinary Science, Mahidol University, Phutthamonthon, Nakhonpathom 73170 Thailand; ^b University Council, Chulalongkorn University, Patumwan, Bangkok 10330 Thailand; ^c Department of Clinical Sciences, Swedish University of Agricultural Sciences (SLU), SE-750 07 Uppsala, Sweden

Abstract—The present study was aimed to clarify the effect of heat-stress on postpartum (PP) ovarian cyclicity and subsequent reproductive performance in lactating cows. Thirty crossbred Holstein-Friesian cows (hot season; Mar-May, N=15 and cool season; Nov-Feb, N=15) were studied during 60 days PP. Body condition scores (BCS), uterine involution and the ovarian structures were monitored once weekly. Plasma samples were taken 3 times a week for progesterone (P4) and prostaglandin F2\alpha metabolite (PGFM) analyses. The mean BCS was significantly decreased in the cows during hot season (P<0.01), while it was not found in the cows during cool season (P>0.05). The delayed uterine involution was observed in the cows during hot season by 4 and 6 weeks PP, comparing to the cows during cool season. By 6 weeks PP, only 66.7% (10/15) of the cows during hot season showed the first detectable corpus luteum, whereas 93.3% (14/15) of the cows during cool season were noted. The numbers of normal PP ovarian cyclicity in the cows during hot and cool seasons were 4/15 (26.7%) and 9/15 (60.0%), respectively. Moreover, the percentage of abnormal luteal activity was higher towards the cows during hot season (P=0.07). However, the levels of PGFM release was not statistically different between groups (P>0.05). A tendency of the higher first AI conception rates (P=0.06) and the higher pregnancy rate within 150 days PP was recorded in the cows during cool season (P=0.03). In conclusion, the present study clearly illustrated the profound adverse effect of exposure to heat-stress on BCS, uterine involution and PP ovarian cyclicity, subsequently leading to decreased reproductive efficiency in Holstein lactating cows.

หน้าสรุปโครงการ

1. ความสำคัญและที่มาของปัญหา

อุตสาหกรรมการเลี้ยงโคนมในประเทศไทยได้เริ่มขึ้นกว่า 50 ปีแล้ว พร้อม ๆ กับมีการศึกษา ค้นคว้าวิจัย เพื่อเพิ่มประสิทธิภาพและพัฒนาการผลิตทั้งในเชิงคุณภาพและปริมาณ ซึ่งจากรายงานของสำนักงาน กองทุนสนับสนุนงานวิจัย ในปี พ.ศ. 2544 พบว่าความสามารถในการผลิตน้ำนมภายในประเทศยังไม่ เพียงพอที่จะตอบสนองความต้องการการบริโภคภายในประเทศได้ และประสิทธิภาพในการผลิตน้ำนม ของฝูงโคนมภายในประเทศไทยยังค้อยอยู่มาก เมื่อเปรียบเทียบกับที่มีรายงานในต่างประเทศ ทั้งนี้หนึ่งใน ปัจจัยที่สำคัญ คือ ปัญหาทางระบบสืบพันธ์ อาทิเช่น ช่วงห่างของการคลอคที่ยาวนาน และจำนวนครั้งของ การผสมต่อการตั้งท้องที่สูงกว่าที่ควรจะเป็นของแม่โครีคนม โดยในต่างประเทศมีผู้ทำการศึกษาวิจัยและ สรุปว่าหากสามารถจัดการระบบสืบพันธุ์ให้มีช่วงห่างของการคลอดอยู่ที่ 12-13 เดือน จะมีผลทำให้ ประสิทธิภาพในการผลิตน้ำนมดิบของฝูงมีค่าสูงสุด ทั้งนี้การจัดการให้ได้ค่าเฉลี่ยช่วงห่างของการคลอด อยู่ในระยะดังกล่าว โดยการเพิ่มค่าอัตราการตั้งท้องและอัตราการผสมติด แม่โครีคนมส่วนใหญ่ภายในฝูง จะต้องกลับสัดได้รับการผสมครั้งแรกภายใน 60 วันหลังคลอด ขณะที่ปัญหาจำนวนครั้งของการผสมต่อ การตั้งท้องที่สูงกว่าที่ควรจะเป็น และ/หรืออัตราการผสมติดต่ำในช่วงหลังคลอดดังที่ได้กล่าวมาข้างต้น เกี่ยวข้องกับความผิดปกติของการทำงานของรังไข่หลังคลอด อาทิเช่น การไม่กลับสัด (anestrus) วงจร การเป็นสัคไม่สม่ำเสมอ (irregular ovarian cyclicity) การไม่ตกไข่ (anovulation) การเกิดถุงน้ำ ภายในรังไข่ (ovarian cyst) และการค้างของคอร์ปัสลูเทียม (persistent corpus luteum) โดยสาเหตุ คังกล่าวเกิดขึ้นจากหลาย ๆ องค์ประกอบ ได้แก่ ความผิดปกติของสรีรวิทยาและ/หรือฮอร์โมนหลังคลอด การเกิดความไม่สมดุลของพลังงาน (negative energy balance) ความบกพร่องของการจัดการด้าน ระบบสืบพันธุ์ อิทธิพลทางค้านพันธุกรรม และความแตกต่างทางค้านฤคูกาล โดยเฉพาะอย่างยิ่งใน ประเทศแถบร้อน ซึ่งก่อให้เกิดปัญหาของการตายของตัวอ่อนระยะต้น (early embryonic death) ทั้งนี้ ได้มีความพยายามในการนำโปรแกรมการเหนี่ยวนำการเป็นสัดและตกไข่ในการแก้ไขปัญหาดังกล่าว โดย นีรายงานว่าสามารถเพิ่มอัตราการผสมเทียม เพิ่มอัตราการตั้งท้อง และลดระยะเวลาคลอดถึงผสมติด อย่างไรก็ตามการนำโปรแกรมการเหนี่ยวนำการเป็นสัดและตกไข่ดังกล่าว เพื่อแก้ไขปัญหาการผสมติด ยากคังกล่าว โดยมีจุดมุ่งหมายหลักในการเพิ่มอัตราการผสมติดและอัตราการตั้งท้องนั้นผลสัมฤทธิ์ที่ได้ยัง ไม่เป็นที่น่าพอใจ เนื่องจากการขาดข้อมูลพื้นฐานทางค้านสรีรวิทยาของระบบสืบพันธุ์ที่สำคัญ อาทิเช่น ลักษณะโครงสร้างและการเปลี่ยนแปลงภายในรังไข่หลังคลอด (postpartal ovarian morphology) การเจริญของฟอลลิเคิล (follicular wave pattern) ระยะเวลาตกไข่ (time of ovulation) และการ เปลี่ยนแปลงของระดับฮอร์โมน (hormonal profiles) ทั้งนี้ความรู้ความเข้าใจที่ถูกต้องในข้อมูล พื้นฐานเหล่านี้มีความสำคัญอย่างยิ่งต่อการวินิจฉัยปัญหาระบบสืบพันธ์ โคยเฉพาะอย่างยิ่งปัญหาการผสม พิดยาก (repeat breeding syndrome) ซึ่งถือว่าเป็นปัญหาที่สลับซับช้อน นอกจากนั้นยังช่วยในการ พัดสินใจ และกำหนดแนวทางเพื่อแก้ไขปัญหาดังกล่าวได้อย่างถูกต้องและมีประสิทธิภาพมากยิ่งขึ้น ใน ค่างประเทศได้มีผู้ทำการศึกษาวิจัยในเรื่องคังกล่าวมาพอสมควร อย่างไรก็ตามเนื่องจากความแตกต่างของ สายพันธุ์ การเลี้ยงดู และโดยเฉพาะอย่างยิ่งฤดูกาล ซึ่งมีผลทำให้ลักษณะทางสรีรวิทยาของระบบสืบพันธุ์ ของโกนมในประเทศไทยมีความแตกต่างกับประเทศในเขตหนาว หรือเขตอบอุ่น ด้วยเหตุนี้ข้อมูลการ ศึกษาวิจัยในต่างประเทศจึงไม่สามารถนำมาใช้อ้างอิงหรือเป็นตัวแทน (models) ของโคนมในประเทศ ไทยได้อย่างสมบูรณ์ และจากการทบทวนรายงานการศึกษาวิจัยที่เกี่ยวข้อง (literature review) อย่าง ละเอียด ยังไม่มีผู้ใครายงานหรือตีพิมพ์เกี่ยวกับเรื่องดังกล่าว ทั้งในแม่โคนมหลังคลอดปกติ และแม่โคนมหลังคลอดที่มีปัญหาการผสมติดยาก และ/หรือในเชิงเปรียบเทียบ

2. วัตถุประสงค์

- 2.1 เพื่อศึกษาเปรียบเทียบค่าความสมบูรณ์ของร่างกาย การกลับเข้าอู่ของมคลูก และการทำงานของรังไข่ หลังคลอด ระหว่างช่วงฤคูร้อนกับฤคูหนาว ในแม่โคลูกผสมพันธุ์โฮลสไตน์ ฟรีเชี่ยน
- 2.2 เพื่อศึกษาเปรียบเทียบค่าพารามิเตอร์ที่เกี่ยวข้องกับประสิทธิภาพการจัดการสืบพันธุ์ระดับฝูง ระหว่าง ช่วงฤดูร้อนกับฤดูหนาว
- 2.3 เพื่อนำข้อมูลจากการศึกษาที่ได้ไปใช้ในการกำหนดแนวทางการแก้ไขปัญหาการผสมไม่คิด ในแม่โด รีคนมภายในประเทศ

3. การดำเนินงาน

สัตว์และแผนการทดลอง

ทำการศึกษาวิจัยในแม่โคนมลูกผสมพันธุ์โฮลสไตน์ฟรีเชี่ยน จำนวน 30 ตัว เป็นระยะเวลา 60 วันหลัง กลอด จากฟาร์มที่มีการเลี้ยงดูแบบปล่อยอิสระ (free-stall system) แบ่งออกเป็น 2 ช่วง คังนี้ 1) ช่วง ฤดูหนาว ระหว่างเดือน พ.ย.-ก.พ. จำนวน 15 ตัว และ 2) ช่วงฤดูร้อน ระหว่างเดือน มี.ก.-พ.ก. จำนวน 15 ตัว ข้อมูลอุณหภูมิสูงสุด-ค่ำสุด (°ซ) และค่าความชื้นสัมพัทธ์ (%) ได้จากสถานีตรวจวัดอากาศ ของกรม อุตุนิยมวิทยาในพื้นที่ใกล้เกียงกับสถานที่ตั้งของฟาร์ม จำนวน 3 แห่ง โดยมีระยะทางห่างจากฟาร์ม ประมาณ 50-80 กม. การให้น้ำและอาหารของฟาร์ม ยึดตามมาตรฐานความต้องการในแม่โครีคนม (ตามที่กำหนดโดย National Research Council, USA) แม่โกทุกตัวได้รับการตรวจโดยการล้วง ตรวจผ่านทางทวารหนักแล้ว ไม่พบความผิดปกติใด ๆ ทางด้านระบบสืบพันธุ์ที่อาจส่งผลต่อการวิจัย และ การปฏิบัติงานวิจัยทุกขั้นตอนอยู่ภายใต้ข้อกำหนดว่าด้วยจรรยาบรรณการใช้สัตว์ โดยสภาวิจัยแห่งชาติ

การสังเกตและการจดบันทึกข้อมูลทางคลินิก

ทำการประเมินค่าความสมบูรณ์ของร่างกาย (body condition scores, BCS) 1 ครั้งต่อสัปคาห์ ใน ระบบ 5 เกรด เพิ่มขึ้นทุก ๆ 0.25 ตลอดการทดลอง การกลับเข้าอู่ของมดลูกหลังคลอด ประเมินโดยการ ล้วงตรวจผ่านทางทวารหนัก ภายหลังจากที่ทำการประเมินค่าความสมบูรณ์พันธุ์ การวินิจฉัยการกลับเข้าอู่ ของมดลูกสมบูรณ์ พิจารณาจากคำแหน่ง ขนาด และรูปร่างของมดลูกและปึกมดลูกที่ปกติ หรือการที่ปีก มดลูกทั้งสองข้างมีขนาดใกล้เกียงกัน และไม่มีความผิดปกติใด ๆ ที่สังเกตพบได้เมื่อทำการตรวจลักษณะ ของผนังมดลูกและภายในโพรงมดลูกด้วยเครื่องตรวจกลื่นเสียงความถี่สูง ส่วนการวินิจฉัยปัญหามดลูก

อักเสบ พิจารณาจากการตรวจพบลักษณะของเมือกปนหนองออกจาก หรืออยู่ภายในช่องคลอดหลังคลอด มากกว่า 3 สัปดาห์หลังคลอด ทั้งนี้แม่โคอาจแสดงอาการทางคลินิกหรือไม่ก็ได้

การตรวจโครงสร้างของรังไข่และมดลูกด้วยคลื่นเสียงความถี่สูง

ทำการตรวจดูการเปลี่ยนแปลงของโครงสร้างภายในรังไข่และมดลูกของแม่โด 1 ครั้งต่อสัปดาห์ ในช่วง 60 วัน หลังคลอด ด้วยเครื่องตรวจคลื่นเสียงความถี่สูงชนิด real time, B-mode ใช้หัวตรวจขนาด ความถี่ 5/7.5 เมกกะเฮิรตช์ ผ่านทางทวารหนัก บันทึกการเปลี่ยนแปลงของจำนวนและขนาดของฟอลลิ เคิลและการปรากฏของคอร์ปัสลูเทียม จดบันทึกการเปลี่ยนแปลงทันทีภายหลังการตรวจ รวมทั้งการ บันทึกการเปลี่ยนแปลงทั้งหมดในสื่อคอมพิวเตอร์ เพื่อนำมาใช้ในการวิเคราะห์ย้อนหลัง ทั้งนี้ภาวะการตก ใข่ครั้งแรกล่าช้าหลังคลอด (delayed first ovulation) หรือไม่ตกใช่ (anovulation) พิจารณาจากการ ตรวจด้วยคลื่นเสียงความถี่สูงแล้วพบว่ามีการพัฒนาของคอร์ปัสลูเทียม หรือไม่พบระดับฮอร์โมนโปรเจส เตอโรนมากกว่า 1 นาโนกรัมต่อมล. นานกว่า 45 วันหลังคลอด กรณีการไม่สลายของคอร์ปัสลูเทียม (prolonged luteal phase) พิจารณาจากระดับฮอร์โมนโปรเจสเตอโรนที่มากกว่า 1 นาโนกรัมต่อมล. นานกว่า 20 วัน ส่วนในกรณีที่มีระยะ luteal phase สั้น เมื่อระดับฮอร์โมนโปรเจสเตอโรนมากกว่า 1 นาโนกรัมต่อมล. เป็น เละถุงน้ำภายในรังไข่หยุดทำงาน หรือไม่ปรากฏวงจรการเป็นสัด (cessation of luteal phase) เมื่อระดับฮอร์โมนโปรเจสเตอโรนน้อยกว่า 1 นาโนกรัมต่อมล. เป็น ระยะเวลาต่อเนื่องมากกว่า 14 วัน และถุงน้ำภายในรังไข่ (ovarian cyst) พิจารณาจากถุงน้ำที่มีลักษณะ คล้ายฟอลลิเคิล มีความยาวเส้นผ่าสูนย์กลาง 2.0-2.5 ชม.และปรากฏอยู่เป็นระยะเวลานานกว่า 10 วัน

การเก็บตัวอย่างและการตรวจวิเคราะห์ฮอร์โมน

ทำการเก็บตัวอย่างเลือด 3 ครั้งต่อสัปคาห์ (จันทร์, พุธ และศุกร์) ในช่วงหลังคลอคจนสิ้นสุดการทดลอง โดยการเจาะเก็บจากเส้นเลือดดำที่หาง ใช้เข็มฉีดยาขนาด 20-gauge ยาว 1 นิ้วครึ่ง ร่วมกับหลอดแก้ว สุญญากาศที่มีสารป้องกันเลือดแข็งตัวชนิด heparin เคลือบอยู่ภายใน ปริมาตรตัวอย่างเลือดที่เก็บ 10 มล. นำไปปั่นด้วยความเร็ว 1000×g เป็นเวลา 10 นาที แล้วจึงทำการแยกเก็บตัวอย่างพลาสม่าที่ได้ใน หลอดพลาสติกทนกวามเย็น ก่อนนำไปเก็บไว้ที่อุณหภูมิ -20°ช เพื่อรอการตรวจวิเคราะห์ฮอร์โมนต่อไป ทำการตรวจวิเคราะห์ระดับฮอร์โมนโปรเจสเตอโรน ด้วยวิธีเอนไซม์อิมมูโนเอสเซ ตามที่มีรายงานโดย Munro และ Stabenfeldt (1984) และทำการตรวจวิเคราะห์ระดับฮอร์โมนพรอสด้าแกลนดิน เอฟทู แอลฟ่า เมตาบอไลท์ (prostaglandin F2alpha metabolites) ด้วยวิธีเรดิโออิมมูโนเอสเซ ตามที่มี รายงานโดย Granström และ Kindahl (1982)

การตรวจวิเคราะห์หาค่าพารามิเตอร์ประสิทธิภาพของระบบสืบพันธุ์

นำข้อมูลจากฐานข้อมูลคอมพิวเตอร์ภายในฟาร์ม มาทำการวิเคราะห์หาค่าความแตกต่างของพารามิเตอร์ที่ ใช้ในการประเมินประสิทธิภาพการจัดการระบบสืบพันธุ์ภายในฟาร์ม โดยทำการเปรียบเทียบระหว่างฤดู หนาวและฤดูร้อน โดยค่าพารามิเตอร์ที่ได้อยู่ในช่วง 150 วันหลังคลอด แม่โคหลังคลอดภายในฟาร์ม ถูก กำหนดให้มีระยะเวลาหลังคลอดก่อนการผสมเทียม 50 วัน และในกรณีที่แม่โคหลังคลอด ยังไม่ได้รับการ ผสมเทียม นานกว่า 60 วัน ได้รับการเหนี่ยวนำการเป็นสัดและตกไข่ด้วยแท่งฮอร์โมนโปรเจสเตอโรน ชนิดสอดเข้าช่องคลอด (Eazi Breed® CIDR, InterAgri, Hamilton, New Zealand) ร่วมกับ ฮอร์โมนฮอร์โมนพรอสด้าแกลนดิน เอฟทูแอลฟ่า และฮอร์โมนเอสตร้าไดออล เบนโซเอท

การวิเคราะห์ข้อมูลทางสถิติ

ข้อมูลตัวแปรชนิคต่อเนื่องแสดงเป็นค่าเฉลี่ยและค่าเบี่ยงเบนมาตรฐานของค่าเฉลี่ย (mean ± SEM) การ วิเคราะห์ความแตกต่างของค่าตัวแปรชนิคต่อเนื่อง ทำการทดสอบด้วยการวิเคราะห์ค่าความแปรปรวน (Analysis of Variance, ANOVA) และเปรียบเทียบความแตกต่างของค่าเฉลี่ยระหว่างสองกลุ่มใด ๆ โดย t-Test ส่วนการคำนวณค่าการเพิ่มขึ้นของฮอร์โมนฮอร์โมนซอส์ที่แกลนดิน เอฟทูแอลฟ่า เมตา บอไลท์ ใช้วิธี skewness method (Zarco และคณะ 1984) ในการหาค่าพื้นฐาน (basal levels) ก่อนกำหนดให้ค่าพื้นฐาน บวกค่าสองเท่าของค่าเบี่ยงเบนมาตรฐาน (standard deviation, SD) เป็นค่า cut-off level ในกรณีตัวแปรที่มีการแจกแจงความถี่ ทำการวิเคราะห์ค้วยการทคสอบ Chi-square และ การวิเคราะห์หาความสัมพันธ์ระหว่างตัวแปรต่อเนื่อง 2 ตัวแปรใด ๆ ด้วยการวิเคราะห์หาความสัมพันธ์ แบบ Pearson's correlation analyses ทั้งนี้ค่า P values ที่น้อยกว่า 0.05 ถือว่ามีความแตกต่าง ระหว่างปัจจัยที่เปรียบเทียบอย่างมีนัยสำคัญ

เอกสารอ้างอิง

- Granström E, Kindahl H, 1982: Radioimmunoassay of the major plasma metabolite of $PGF_{2\alpha}$, 15-keto-13,14-dihydro- $PGF_{2\alpha}$. Methods Enzymol. 86, 320-339.
- Munro C, Stabenfeldt G, 1984: Development of a microtitre plate enzyme immunoassay for the determination of progesterone. J Endocrinol 101, 41-49.
- Zarco L, Stabenfeldt GH, Kindahl H, Quirke JF, Granström E, 1984: Persistence of luteal activity in the non-pregnant ewe. Anim. Reprod. Sci. 7, 245-267.

เนื้อหาโครงการวิจัย

4. ผลการวิจัย

พารามิเตอร์ทางคลินิก

คำความสมบูรณ์ของร่างกายของแม่โคหลังคลอดช่วงฤดูร้อน มีการเปลี่ยนแปลงในช่วงระยะเวลาที่ศึกษา อย่างมีนัยสำคัญ (P=0.04) ขณะที่ค่าความสมบูรณ์ของร่างกายของแม่โคหลังคลอดช่วงฤดูหนาว ไม่มี การเปลี่ยนแปลงอย่างมีนัยสำคัญ โดยพบว่าค่าความสมบูรณ์ของร่างกายแม่โคหลังคลอดช่วงฤดูร้อนลดลง อย่างมากในระยะ 4-5 สัปดาห์หลังคลอด (P<0.01) ขณะที่แม่โคหลังคลอดที่มคลูกเข้าอู่สมบูรณ์ช่วงฤดู ร้อนและฤดูหนาว มีจำนวนสะสมในสัปดาห์ที่ 4 หลังคลอด เท่ากับ 2/15 ตัว (13.3%) และ 4/15 ตัว (26.7%) และในสัปดาห์ที่ 6 หลังคลอด เท่ากับ 7/15 ตัว (46.7%) และ 10/15 ตัว (66.7%) ตามลำคับ ทั้งนี้แม่โคหลังคลอดทั้งหมดในช่วงฤดูร้อนและฤดูหนาว พบว่ามคลูกกลับเข้าอู่สมบูรณ์ภายใน 8 สัปดาห์หลังคลอด โดยปัญหามคลูกอักเสบในแม่โคหลังคลอดช่วงฤดูร้อนและฤดูหนาว มีจำนวน 4/15 ตัว (26.7%) และ 1/15 ตัว (6.7%) ตามลำคับ

การเปลี่ยนแปลงของโครงสร้างภายในรังไข่

แม่โคหลังคลอดช่วงฤดูร้อนและฤดูหนาวที่ตรวจพบคอร์ปัสลูเทียมครั้งแรก ภายใน 3 สัปดาห์หลังคลอด มีจำนวนสะสมเท่ากับ 1/15 ตัว (6.7%) และ 3/15 ตัว (20%) และที่ 6 สัปดาห์หลังคลอด มีค่าเท่ากับ 10/15 ตัว (66.7%) และ 14/15 ตัว (93.3%) ตามลำดับ โดยแม่โคหลังคลอด 1 ตัวในช่วงฤดูร้อน ตรวจไม่พบคอร์ปัสลูเทียมตลอดช่วงระยะเวลา 60 วันหลังคลอด ขณะที่การเปรียบเทียบจำนวนครั้งของ การตกไข่ของแม่โคหลังคลอดช่วงฤดูร้อนและฤดูหนาว แสดงในตารางที่ 1

ตารางที่ 1. จำนวนครั้งของการตกไข่ ในช่วง 60 วันหลังคลอด ในแม่โคช่วงฤดร้อนและฤดหนาว

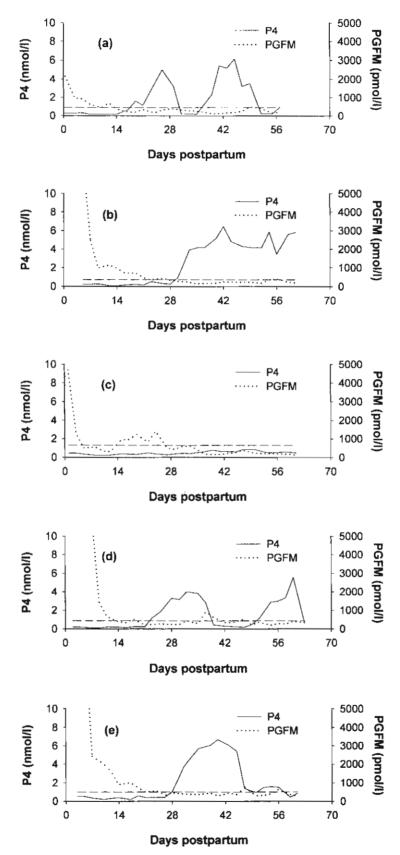
	จำนวนครั้งของการตกไข่			
	0	_ 1	2	_ 3
แม่โคช่วงฤคูร้อน (n=15)	2 (13.3%)	7 (46.7%)	4 (26.7%)	2 (13.3%)
แม่โคช่วงฤคูหนาว (n=15)	0 (0%)	3 (20%)	10 (66.7%)	2 (13.3%)
รวม (n=30)	2 (6.7%)	10 (33.3%)	14 (46.7%)	4 (13.3%)

เมื่อทำการวิเคราะห์ค่าทางสถิติ พบว่าจำนวนครั้งของการตกใช่มีแนวโน้มสูงกว่าในแม่โคหลังคลอดช่วง ฤคูหนาว เมื่อเปรียบเทียบกับในแม่โคหลังคลอดช่วงฤคูร้อน (P=0.1) และจำนวนแม่โคหลังคลอดที่มีการ ตกใช่ 2 ใบ (double ovulations) มีจำนวนเท่ากับ 7/15 ตัว (46.7%) และ 3/15 ตัว (20%) ในช่วง ฤคูร้อนและฤคูหนาวตามลำคับ ส่วนการเกิดถุงน้ำในรังใช่ (cystic ovary) พบในแม่โคหลังคลอด ฤคูกาลละ 1 ตัว

ลักษณะของการทำงานของกอร์ปัสลูเทียมหลังกลอด

รูปแบบการเปลี่ยนแปลงของฮอร์โมนโปรเจสเตอโรนหลังคลอดแต่ละชนิด แสดงในรูปที่ 1. โดยแม่โก หลังคลอดช่วงฤดูร้อน 4/15 ตัว (26.7%) มีลักษณะการทำงานของคอร์ปัสลูเทียมหลังคลอดปกติ ขณะที่ 11/15 ตัว (73.3%) แสดงความผิดปกติของลักษณะของการทำงานของคอร์ปัสลูเทียมหลังคลอด ส่วน ในแม่โคหลังคลอดช่วงฤดูหนาว 9/15 ตัว (60.0%) มีลักษณะของการทำงานของคอร์ปัสลูเทียมหลัง คลอดปกติ และ 6/15 ตัว (40.0%) แสดงความผิดปกติของลักษณะของการทำงานของคอร์ปัสลูเทียมหลัง หลังคลอด โดยลักษณะผิดปกติของการทำงานของคอร์ปัสลูเทียม หลังคลอด โดยลักษณะผิดปกติของการทำงานของคอร์ปัสลูเทียมหลังคลอด มีแนวโน้มตรวจพบได้สูงขึ้น ในแม่โคหลังคลอดช่วงฤดูร้อน (P=0.07) ทั้งนี้ลักษณะความผิดปกติของการทำงานของคอร์ปัสลูเทียม หลังคลอด แต่ละชนิด ในแม่โคหลังคลอดช่วงฤดูร้อนและถุดูหนาว แสดงรายละเอียดในตารางที่ 2.

ศารางที่ 2. ลักษณะการทำงานของคอร์ปัสลูเทียม แค่ละชนิด ในแม่โคหลังคลอดในฤคูร้อนและฤคูหนาว


ลักษณะการทำงานของคอร์ปัสลูเทียม	ฤคูร้อน	ฤคูหนาว
ลักษณะปกติ ¹	4 (26.7%)	9 (60%)
ลักษณะผิคปกติ	11 (73.3%)	6 (40%)
ระยะการทำงานของคอร์ปัสลูเทียมยาวกว่าปกติ ²	3 (20%)	2 (13.3%)
การตกไข่ครั้งแรกล่าช้า หรือไม่ตกไข่ ³	6 (40%)	1 (6.7%)
ระยะการทำงานของคอร์ปัสลูเทียมสั้นกว่าปกติ ⁴	2 (13.3%)	2 (13.3%)
การไม่ปรากฏวงจรการเป็นสัคต่อหลังเคยตกไข่ ⁵	0 (0%)	1 (6.7%)
รวม	15 (100%)	15 (100%)

มีการตกไข่ครั้งแรกหลังคลอด ไม่นานกว่า 45 วันหลังคลอด แล้วตามด้วยการทำงานของคอร์ปัสลู เทียมปกติ, ² = การตกไข่ครั้งแรกยาวนานกว่า 45 วันหลังคลอด หรือไม่เกิดการตกไข่, ³ = ระยะเวลาการ ทำงานของคอร์ปัสลูเทียมนานกว่า 20 วัน, ⁴ = มีอย่างน้อย 1 วงจรการเป็นสัด ที่มีระยะเวลาการทำงาน ของคอร์ปัสลูเทียมสั้นกว่า 10 วัน ยกเว้นในวงจรการเป็นสัดครั้งแรกหลังคลอด, ⁵ = การไม่ปรากฏของ การทำงานของคอร์ปัสลูเทียม นานกว่า 14 วัน หลังจากการตกไข่ครั้งแรกหลังคลอด

การเปลี่ยนแปลงของฮอร์โมนพรอสต้าแกลนดิน เอฟทูแอลฟ้า เมตาบอไลท์

ในช่วงระยะเวลาต้น ๆ ภายหลังการคลอด ฮอร์โมนพรอสต้าแกลนดิน เอฟทูแอลฟ่า เมตาบอไลท์ มีอยู่ใน ระคับที่สูง หลังจากนั้นจึงก่อย ๆ ลคลง โดยช่วงแรกมีการลดลงอย่างรวดเร็ว ก่อนก่อย ๆ ลคลง จนกระทั่ง ตรวจไม่พบการเพิ่มสูงขึ้นของระคับฮอร์โมนพรอสต้าแกลนดิน เอฟทูแอลฟ่า เมตาบอไลท์ ในระยะที่ 4 สัปดาห์หลังคลอด ดังแสดงในรูปที่ 1.

ทั้งนี้แม่โคหลังคลอด 3/15 ตัว (20%) ในช่วงฤดูร้อน มีระดับฮอร์โมนพรอสด้าแกลนดิน เอฟทูแอลฟ่า เมตาบอไลท์ เพิ่มสูงขึ้นในสัปดาห์ที่ 6-7 หลังคลอด อย่างไรก็ตามเมื่อเปรียบเทียบระดับของฮอร์โมน พรอสด้าแกลนดิน เอฟทูแอลฟ่า เมตาบอไลท์ ของแม่โคหลังคลอดทั้ง 2 ฤดูกาล พบว่าไม่มีความแตกต่าง กันอย่างมีนัยสำคัญ (P>0.05)

รูปที่ 1. รูปแบบฮอร์โมนโปรเจสเตอโรนของแม่โคหลังคลอค; (a) ปกติ, (b) มีคอร์ปัสลูเทียมยาวกว่าปกติ, (c) การตกไข่ล่าช้า หรือไม่ตกไข่, (d) มีคอร์ปัสลูเทียมสั้นกว่าปกติ (e) ไม่มีวงจรการเป็นสัคต่อ

ส่วนแม่โคหลังคลอดที่มีการทำงานของคอร์ปัสลูเทียมยาวนาน พบว่าไม่มีการหลั่งของฮอร์โมนพรอสต้า แกลนคิน เอฟทูแอลฟ่า เมตาบอไลท์ ตามปกติ ในทางตรงกันข้ามแม่โคหลังคลอดที่มีการทำงานของคอร์ ปัสลูเทียมสั้นกว่าปกติ พบว่ามีการหลั่งของฮอร์โมนพรอสต้าแกลนคิน เอฟทูแอลฟ่า เมตาบอไลท์ ก่อน กำหนด หรือในช่วงก่อนที่ระดับฮอร์โมนโปรเจสเตอโรนลดต่ำลง ขณะที่ระยะเวลาการหลั่งของฮอร์โมน พรอสต้าแกลนคิน เอฟทูแอลฟ่า เมตาบอไลท์ ในช่วงหลังคลอด กับระยะเวลาที่ใช้ในการกลับเข้าอู่ของ มคลูก ไม่พบว่ามีความสัมพันธ์กันเมื่อทดสอบทางสถิติ (P>0.05)

พารามิเตอร์ที่เกี่ยวข้องกับประสิทธิภาพการสืบพันธุ์

เปอร์เซ็นต์การตรวจพบการเป็นสัดมีค่าแตกต่างกันระหว่างฤดูกาล (P<0.01) โดยพบว่ามีค่าสูงในแม่โด หลังคลอดช่วงฤดูหนาว ขณะที่อัตราการผสมติดครั้งแรกหลังคลอดมีแนวโน้มที่เพิ่มสูงขึ้นในแม่โดหลัง คลอดช่วงฤดูหนาวเช่นเดียวกัน (P=0.06) สำหรับค่าเฉลี่ยระยะห่างระหว่างการคลอดถึงผสมติดนั้นไม่ พบว่ามีความแตกต่างกันระหว่างกลุ่ม (P>0.05) ส่วนค่าเฉลี่ยจำนวนครั้งของการผสมเทียมต่อการตั้งท้อง ในแม่โดหลังคลอดช่วงฤดูหนาวมีแนวโน้มต่ำกว่า หรือมีค่าเฉลี่ยเท่ากับ 3.2 ± 0.4 ครั้ง เมื่อเปรียบเทียบ กับในแม่โดหลังคลอดช่วงฤดูร้อนที่มีค่าเฉลี่ยเท่ากับ 2.0 ± 0.2 ครั้ง (P=0.07) ขณะที่อัตราการตั้งท้อง ในระยะเวลา 150 วันหลังคลอด พบว่ามีความแตกต่างอย่างมีนัยสำคัญระหว่างกลุ่ม (P=0.03) โดยแม่โด หลังคลอดช่วงฤดูหนาวมีค่าสูงกว่า หรือเท่ากับ 61.5% (40/65) เมื่อเปรียบเทียบกับ 37.9% (11/29) ในแม่โดหลังคลอดช่วงฤดูร้อน (ตารางที่ 3)

ตารางที่ 3. พารามิเตอร์ที่เกี่ยวข้องกับประสิทธิภาพการสืบพันธุ์ ในแม่โคหลังคลอดช่วงฤดูร้อนและฤดู หนาว

พารามิเคอร์	ฤคูร้อน	ฤคูหนาว
จำนวนแม่โกหลังกลอด	29	65
เปอร์เซ็นต์การตรวจพบการเป็นสัด ก่อน 60 วันหลัง	20.7%(6/29)	53.8% (35/65) ⁿ
คล ยค (%)		
อัตราการผสมติคครั้งแรกหลังคลอค (%)	6.9% (2/29)	23.1% (15/65)*
ระยะเวลาหลังคลอดถึงผสมติด (วัน)	117.4 ± 11.7	97.4 ± 5.8
จำนวนครั้งของการผสมเทียมต่อการตั้งท้อง	3.2 ± 0.4	2.0 ± 0.2 ⁿ
อัตราการตั้งท้องที่ 150 วันหลังคลอค (%)	37.9% (11/29)	61.5% (40/65) 1

ⁿ, P<0.01; ^v, P=0.06; ⁿ, P=0.07; ¹, P=0.03

5. สรุปผล

จากการศึกษาวิจัยครั้งนี้ พบว่าแม่โกหลังกลอดช่วงฤดูร้อนมีค่าเฉลี่ยของค่าความสมบูรณ์ของร่างกายลดลง อย่างมีนัยสำคัญ (P<0.01) เมื่อเปรียบเทียบกับแม่โกหลังกลอดช่วงฤดูหนาว และจำนวนสะสมของแม่โก ที่มีการกลับเข้าอู่ของมดลูกด่ำกว่าในช่วง 4-6 สัปดาห์หลังคลอด ขณะที่การตรวจพบคอร์ปัสลูเทียมครั้ง แรกสำหรับแม่โคหลังคลอดช่วงฤดูหนาวมีเปอร์เซ็นต์สูงกว่าอย่างเห็นได้ชัด โดยแม่โคหลังคลอดช่วงฤดู ร้อน มีการทำงานของรังไข่หลังคลอดผิดปกติสูงกว่าแม่โคหลังคลอดช่วงฤดูหนาว (P=0.07) หรือเท่ากับ 73.3% (11/15) และ 40% (6/15) ตามลำดับ ส่วนการเพิ่มขึ้นของฮอร์โมนพรอสต้า แกลนดิน เมตา บอไลท์ ของแม่โคหลังคลอดทั้งสองกลุ่มไม่มีความแตกต่างกันอย่างมีนัยสำคัญ (P>0.05) อัตราการผสม ติดครั้งแรกหลังคลอด (P=0.06) มีแนวโน้มเพิ่มสูงขึ้นในแม่โคหลังคลอดช่วงฤดูหนาว รวมทั้งอัตราการ ตั้งท้องที่ 150 วันหลังคลอดในแม่โคหลังคลอดช่วงฤดูหนาวเพิ่มสูงขึ้นอย่างมีนัยสำคัญ เมื่อเปรียบเทียบ กับแม่โคหลังคลอดช่วงฤดูร้อน (P=0.03) จากการศึกษาวิจัยครั้งนี้ สรุปได้ว่าความเครียดเนื่องจากความ ร้อน ก่อให้เกิดผลกระทบอย่างชัดเจนต่อค่าความสมบูรณ์ของร่างกาย การกลับเข้าอู่ของมดลูก และการ ทำงานของรังไข่หลังคลอด ส่งผลให้ประสิทธิภาพการสืบพันธุ์ในแม่โครีคนมลดต่ำลง

ผลลัพธ์ (Output) ที่ได้จากโครงการ

ผลงาน/หัวข้อเรื่องที่คาดว่าจะตีพิมพ์ในวารสารวิชาการระดับนานาชาติ ชื่อเรื่องที่คาดว่าจะตีพิมพ์:

The effect of exposure to heat-stress on postpartum ovarian cyclicity in Holstein lactating cows

ชื่อวารสารที่กาดว่าจะตีพิมพ์:

Reproduction in Domestic Animals, International Journal of Animal Reproduction Science, Journal of Veterinary Medicine, Series A

ภาคผนวก

11

The effect of exposure to heat-stress on postpartum ovarian cyclicity and subsequent reproductive performance in Holstein lactating cows

B Kornmatitsuk¹, P Chantaraprateep², S Kornmatitsuk¹ and H Kindahl³

Contents

The present study was aimed to clarify the effect of heat-stress on postpartum (PP) ovarian cyclicity and subsequent reproductive performance in lactating cows. Thirty crossbred Holstein-Friesian cows (hot season; Mar-May, N=15 and cool season; Nov-Feb. N=15) were studied during 60 days PP. Body condition scores (BCS), uterine involution and the ovarian structures were monitored once weekly. Plasma samples were taken 3 times a week for progesterone (P4) and prostaglandin F2α metabolite (PGFM) analyses. The mean BCS was significantly decreased in the cows during hot season (P<0.01), while it was not found in the cows during cool season (P>0.05). The delayed uterine involution was observed in the cows during hot season by 4 and 6 weeks PP, comparing to the cows during cool season. By 6 weeks PP, 66.7% (10/15) of the cows during hot season showed the first detectable corpus luteum, whereas 93.3% (14/15) of the cows during cool season were noted. The percentages of normal PP ovarian cyclicity in the cows during hot and cool seasons were 26.7% (4/15) and 60.0% (9/15), respectively. Moreover, the percentage of abnormal luteal activity was higher towards the cows during hot season (P=0.07). However, the levels of PGFM release was not statistically different between groups (P>0.05). A tendency of the higher first AI conception rates (P=0.06) and the higher pregnancy rate within 150 days PP was recorded in the cows during cool season (P=0.03). In conclusion, the present study clearly illustrated the profound adverse effect of exposure to heat-stress on BCS, uterine involution and PP ovarian cyclicity, subsequently leading to decreased reproductive efficiency in Holstein lactating cows.

¹ Faculty of Veterinary Science, Mahidol University, Nakhonpathom, Thailand;

² University Council, Chulalongkorn University, Patumwan, Bangkok 10330, Thailand:

³ Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences (SLU), SE-750 07 Uppsala, Sweden

Introduction

The reproductive efficiency of lactating cows in the tropical countries was remarkably affected by the heat-stress conditions. Decreased reproductive performance was well-recognized by a lower percentage of the first artificial insemination (AI) conception rates and an increase of the calving to conception interval. The cows with exposure to heat-stress had a reduction of the degree of dominance of the selected follicle (reviewed by De Rensis and Scaramuzzi 2003) and subsequent to a lower production of oestradiol. These were reported to be associated with a higher incidence of poor expression of oestrus, anoestrus and silent ovulation in lactating cows (Badinga et al. 1993; Wolfenson et al. 1997; Bridges et al. 2005).

During the early postpartum (PP) period, the energy need of the cows for milk production was greater than the energy consumed, resulting in a period of negative energy balance. Opsomer et al. (2000) reported that the appearance of a severe negative energy balance significantly increased the risk for delayed ovarian cyclicity before service. Evaluation of body condition scores (BCS) was proposed as a useful tool in nutritional management. Cows loosing body condition score ≥ 1 unit (scales 1-5) after calving showed a prolonged interval to commencement of luteal activity and the cows were at a greater risk of having delayed first ovulation (Shrestha et al. 2005). Monitoring of PP progesterone (P4) profiles offers an objective method for the characterization of different ovarian disorders in lactating cows (Lamming and Darwash 1998; Petersson et al. 2006). Several atypical P4 profiles were found and the major categories consisted of delayed first ovulation or anovulation and prolonged luteal phase (Opsomer et al. 2000; Shrestha et al. 2005). The cows with abnormal ovarian cycles during early PP period had reduced subsequent fertility, as shown by longer interval to first service, lower first AI conception rate, reduced pregnancy rate and longer calving to conception interval (Shrestha et al. 2004; Hommeida et al. 2005). Moreover, lower plasma P4 levels during early luteal phase and delayed luteolysis were associated with abnormal oocyte development and synchronous development of the embryo during early pre-implantation period in dairy cows (Wilson et al. 1998).

Thus, the objective of the present study was to clarify the effect of exposure to heatstress on BCS, time of uterine involution, PP ovarian cyclicity, principally based on plasma P4 profiles and subsequent fertility in Holstein lactating cows.

Materials and Methods

Animals and experimental designs

The present study was carried out at a commercial farm in a central region of Thailand. Thirty crossbred Holstein-Friesian (HF, \geq 75%) lactating cows, parity 1-5 were studied. The cows were characterized into 2 groups; 1) hot season; Mar-May, N=15 and 2) cool season; Nov-Feb, N=15. They were kept in a free-stall system and fed 4 times a day with total mixed ration. The daily maximum and minimum values of temperature (°C) and relative humidity (%) during the studying period were collected from 3 official meteorological stations (50-80 km apart) near the place, where the farm was located. The temperature-humidity index (THI), recognized as a warmweather discomfort index, was calculated by combining the maximum temperature (t) and the minimum relative humidity (h) with the following formula; THI = 9/5t + 32 – 11/2(1-h)(9/5t-26) (NOAA, 1976). The calculated mean variations of THI for hot and cool seasons were 78-83 and 84-87, respectively.

Clinical observations

Body condition scores (BCS), using a five-point scale with 0.25 increments, were taken once weekly during 60 days PP. By the same frequency, the cows were examined by rectal palpation for uterine involution. The uterine involution was considered as complete, if the uterus returned to its normal size and location in the pelvic cavity and no pathological changes of the uterus were observed by ultrasound scanning. The cows were closely observed for vaginal discharge at the vulva and perineal area. Endometritis was diagnosed by an experience veterinarian based on the presence of mucopurulent vaginal discharge in the vagina more than 3 weeks after calving with or without systemic symptoms.

Examination of the ovarian structures

The cows were examined once weekly, using the transrectal ultrasound technique. A real time B-mode ultrasound scanner (Tringa Linear, Pie Medical Equipment B.V., Maastricht, The Netherlands) with 5/7.5-MHz rectal linear array transducer was used. The presence and location of the corpus luteum (CL) and follicle were mapped for retrospective study. Diameter of each ovarian structure was measured by use of an image freezer facility and electronic callipers, equipped with the ultrasound machine.

Ovarian cyst was diagnosed as a follicle-like structure of 20-25 mm diameter, presented at least 2 consecutive ultrasound scanning sessions.

Blood collection and hormonal analyses

Blood samples were taken 3 times a week from the coccygeal vein into heparinized vacuumed glass tubes (Becton Dickinson, Bangkok, Thailand). After centrifugation at 1000×g for 15 min, plasma was harvested and stored at -20°C until hormone analyses were performed. The P4 levels were determined by enzyme immunoassay technique according to Munro and Stabenfeldt (1984). The intra- and inter-assay coefficients of variation (based on 2 control sample values) were 8.0 and 14.0%, respectively. The levels of the 15-ketodihydro-PGF2α (PGFM) were quantified by radioimmunoassay (RIA) technique according to Granström and Kindahl (1982). The lower detection limit of the assay was 30 pmol/l for 0.5 ml plasma. The inter-assay coefficients of variation was 14.0% (at 114 pmol/l), and the intra-assay coefficient of variation varied between 6.6% and 11.7% at different ranges of the standard curve.

Subsequent reproductive performance

The subsequent reproductive performance were calculated based on the records of AI during the studying period, which were noted regularly on paper and the input to the computer was done once every second week, using Dairy Herd Improvement software (Department of Livestock Development, Ministry of Agriculture and Cooperatives, Thailand). A voluntary waiting period of 50 days was generally targeted, and the cows detected in oestrus after this period were assigned to AI. The protocol for synchronization of oestrus, using an intravaginal progesterone release device (Eazi Breed® CIDR, InterAgri, Hamilton, New Zealand) was applied to the cows, which were not observed in heat at about 60-70 days PP.

Statistical analysis

Descriptive data was presented as the mean and the standard errors of the mean (mean \pm SEM). The statistical analyses were performed by using a commercial statistical analysis software (Minitab version 13.2 for windows, Minitab Inc., USA). Continuous variables were analysed by the analysis of variance (ANOVA). Differences of the means were obtained by t-test. Categorical variables were analysed by Chi-square test. For the PP duration of PGFM release, the mean basal value was calculated using

a skewness method (Zarco et al. 1984). The mean basal value plus 2 standard deviations (SD) was used as a cut-off level of significantly elevated PGFM release. The correlation between 2 continuous variables was carried out using the Pearson's correlation analyses. Probability values of less than 0.05 were considered to be significant.

Results

Clinical data

The mean BCS of the cows during hot season was changed over time (P=0.04), whereas the changes of the mean BCS was not observed during cool season (P>0.05). A greater decline of the mean BCS was recorded between 4-5 weeks PP in the cows during hot season (P<0.01). The cumulative numbers of completion uterine involution were 2/15 (13.3%) and 4/15 (26.7%) by 4 weeks PP and 7/15 (46.7%) and 10/15 (66.7%) by 6 weeks PP during hot and cool seasons, respectively. By 8 weeks PP, all cows in both seasonal groups had complete uterine involution. The numbers of endometritis were 4/15 (26.7%) and 1/15 (6.7%) by 4 weeks PP during hot and cool seasons, respectively.

Examination of ovarian structures

Based on once weekly ultrasound scanning, the cumulative numbers of the cows with the first detectable CL within 3 weeks PP were 1/15 (6.7%) and 3/15 (20%) during hot and cool seasons, respectively. Ten out of 15 cows (66.7%) during hot season and 14/15 cows (93.3%) during cool season were recorded for the first detectable CL by 6 weeks PP. The first detectable CL was not observed in one cow during hot season until 9 weeks PP. The distribution of the cows according to the number of ovulation between 2 seasonal groups is shown in Table 1.

Table 1. Distribution of the cows with different number of ovulations within 60 days PP during hot and cool seasons

	Number of ovulations			
	0	1	2	3
Cows in hot season (n=15)	2 (13.3%)	7 (46.7%)	4 (26.7%)	2 (13.3%)
Cows in cool season (n=15)	0 (0%)	3 (20%)	10 (66.7%)	2 (13.3%)
Total	2 (6.7%)	10 (33.3%)	14 (46.7%)	4 (13.3%)

A tendency of the larger number of ovulations was observed in the cows during cool season (P=0.1). The numbers of the cows with double ovulations were 7/15 (46.7%) and 3/15 (20%) during hot and cool seasons, respectively. Cystic ovary was found in one cow from each seasonal group.

Postpartum luteal activity

Different types of ovarian cycles based on plasma P4 profiles are depicted with representative profiles in Fig 1. Out of 15 cows during hot season, only 4 cows (26.7%) had normal resumption of PP ovarian cyclicity, whereas the remaining 11 cows (73.3%) had an abnormal ovarian cyclicity. During cool season, 9/15 cows (60%) had normal resumption of PP ovarian cyclicity and 6/15 cows (40%) had an abnormal ovarian cyclicity. A tendency of the higher incidence of abnormal luteal activity was recorded in the cows during hot season (P=0.07). Different types of PP luteal activity in the cows during hot and cool seasons are shown in Table 2.

Table 2. Different types of PP luteal activity in lactating cows during hot and cool seasons

Category	Hot season	Cool season
Normal ^a	4 (26.7%)	9 (60%)
Abnormal	11 (73.3%)	6 (40%)
Prolonged luteal phase b	3 (20%)	2 (13.3%)
Delayed ovulation/Anovulation c	6 (40%)	1 (6.7%)
Short luteal phase d	2 (13.3%)	2 (13.3%)
Cessation of the luteal activity e	0 (0%)	1 (6.7%)
Total	15 (100%)	15 (100%)

 $^{^{}a}$ = first ovulation occurred ≤45 days PP, followed by regular ovarian cycle, b = first ovulation did not occur ≤45 days PP and anovulation ≤60 days PP, c = one or more ovarian cycles had luteal activity ≥20 days, d = one or more ovarian cycles had luteal activity ≤10 days (except for the 1st cycle), e = an absence of luteal activity for ≥14 days after the first ovulation

Plasma PGFM levels

High significant levels of PGFM were found immediately during early PP period (P<0.001) and sharply declined to the basal levels within the first 4 weeks PP. The

representative PGFM profiles are shown in Fig. 1. During cool season, all cows showed an elevated PGFM release between 2-4 weeks PP, whereas 3 out of 15 cows (20%) during hot season showed an elevated level of PGFM until 6-7 weeks PP. However, the total duration of PGFM release was not different between the seasonal groups (P>0.05). The cows with prolonged luteal phase showed apparently none or small releases of PGFM, while the cows with short luteal phase was associated with the premature releases of PGFM. The relationship between the duration of PGFM releases and the time of uterine involution was not recorded (P>0.05).

Subsequent reproductive performance

The percentages of heat detection rates were significantly different between the cows during hot and cool seasons (P<0.01). A tendency of higher first AI conception rates was recorded in the cows during cool season (P=0.06). The mean calving to conception interval was not found significantly between the seasonal groups (P>0.05). The mean numbers of AI per conception (3.2 ± 0.4) was lower in the cows during cool season, comparing to the mean number of AI preconception (2.0 ± 0.2) in the cows during hot season (P=0.07). A higher pregnancy rates within 150 days PP (61.5%, 40/65) was reported in the cows during cool season, while it was 37.9% (11/29) in the cows during hot season (P=0.03).

Details of reproductive performance in the cows during hot and cool seasons are presented in Table 3.

Table 3. Reproductive performance in lactating cows during hot and cool seasons

Reproductive performance	Hot season	Cool season
Number of cows	29	65
Heat detection rates ≤ 50 days PP (%)	20.7%(6/29)	53.8% (35/65) ^a
First AI conception rates (%)	6.9% (2/29)	23.1% (15/65) ^b
Calving to conception interval (days), for	117.4 ± 11.7	97.4 ± 5.8
pregnant cows (mean \pm SEM)		
No. of AI per conception, for pregnant cows	3.2 ± 0.4	$2.0\pm0.2^{\rm c}$
$(mean \pm SEM)$		
Pregnancy rates ≤ 150 days PP (%)	37.9% (11/29)	61.5% (40/65) ^d

^a, P<0.01; ^b, P=0.06; ^c, P=0.07; ^d, P=0.03

Discussion

In the present study, the temperature-humidity index (THI) was rather high (varied between 84-87 during hot season and 78-83 during cool season), comparing to the observations reported by the previous studies (Igono et al. 1992; Ravagnolo and Misztal 2002). They found that the critical values for minimum, mean and maximum THI were 64, 72 and 76, respectively. This indicates that the cows, rearing under the tropical conditions most likely confront with heat-stress in most time of the year.

A study by Holter et al. (1997) established a significant negative correlation between THI and dry matter intake (DMI) for the cows. Lower DMI was also reported to be associated with a state of negative energy balance, which is normally seen in the cows after calving. In the present results, a reduction of the mean BCS in the cows during hot season was correspondingly well with the previous reports. The cows with negative energy balance had decreased plasma concentrations of insulin, glucose and IGF-I, which required for the development of follicles and the modulating LH secretion during PP period (Lucy et al. 1992; Bucholtz et al. 1996).

Similarly, a higher percentage of delayed uterine involution was recorded for the cows in hot season. This evidence was supported by the higher cumulative number of an elevated PGFM release, observed in the cows during hot season. However, the relationship between the total duration of PGFM release and time of complete uterine involution could not be established and an elevated PGFM level was suggested to be significantly involved to the increased frequency of uterine infections (Bekana et al. 1996; Mateus et al. 2003).

In hot season, the first detectable CL of the cows was delayed, reflecting a higher incidence of delayed resumption of ovarian cyclicity. The retardation of follicular growth and the degree of dominance of selected follicle under heat-stress were reported to be related with prolonged first ovulation PP in dairy cows. When individual degree of dominant follicle reduced, more than one dominant follicle can develop (Ryan and Boland 1991). This incidence was confirmed by a greater number of double ovulations, recorded in the cows during hot season. Likewise, higher percentages of unobserved oestrus were observed in the cows during hot season. Badinga et al. (1993) reported that a higher incidence of poor expression of oestrus, anoestrus and silent ovulation could be due to the lower oestradiol production of dominant follicle (Wolfenson et al. 1997; Bridges et al. 2005).

A higher percentage of abnormal P4 profile was seen in the cows during hot season, leading to lower subsequent fertility. This might be also true for the cows in cool season, in which the abnormal luteal activity was recorded. Delayed luteal cyclicity and prolonged luteal phase were the most found abnormal P4 patterns. A reduction of the endogenous LH surge by heat-stress might be responsible for a higher incidence of delayed resumption of ovarian cyclicity. In addition, it has been suggested that the amplitude and pulse frequency are related to preovulatory oestradiol concentrations of the dominant follicle (Gilad et al. 1993). Cows with prolonged luteal phase were previously shown to be related to clinical and subclinical uterine infection or other uterine pathological problems (Mateus et al. 2002), which an absence of PGFM release was observed. These 2 atypical P4 profiles were also reported to be the main reasons for reduced subsequent reproductive performance in lactating cows (Opsomer et al. 2000). The first AI conception rates were previously reported to be 40-60% in several studies (Lamming and Darwash 1998; Hommeida et al. 2005; Petersson et al. 2006), while it was far lower in the present study. The lower conception rate during hot season was reported to be associated with the temperature-sensitive formation of gametes and early embryonic development (reviewed by De Rensis and Scaramuzzi 2003). In conclusion, the present study clearly demonstrated the profound adverse effect of exposure to heat-stress on BCS, uterine involution and PP ovarian cyclicity, subsequently leading to decreased reproductive efficiency in Holstein lactating cows.

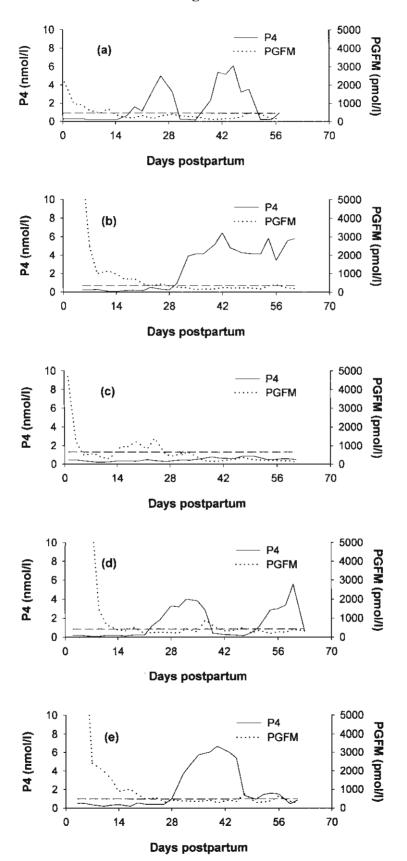
Acknowledgement

The authors were very grateful to M.L. Prakrit Suksawat for generous support of the study; Somsak Srisongchate, Supanya Butrporm and their staffs for practical help on blood collection and data record. The financial support of the study was granted by The Thailand Research Fund (TRF), Bangkok, Thailand.

References

Badinga L, Thatcher WW, Diaz T, Drost M, Wolfenson D, 1993: Effect of environmental heat stress on follicular development and steroidogenesis in lactating dairy cows. Theriogenology 39, 797-810.

Bekana M, Jonsson P, Kindahl H, 1996: Intrauterine bacterial findings and hormone profiles in post-partum cows with normal puerperium. Acta vet. scand. 37, 251-263.


- Bridges PJ, Brusie MA, Fortune JE, 2005: Elevated temperature (heat stress) in vitro reduces androstenedione and estradiol and increases progesterone secretion by follicular cells from bovine dominant follicles. Domest. Anim. Endocrinol. 29, 508-522.
- Bucholtz DC, Vidwans NM, Herbosa CG, Schillo KK, Foster DL, 1996: Metabolic interfaces between growth and reproduction: pulsatile luteinizing hormone secretion is dependent on glucose availability. Endocrinology **137**, 601-607.
- De Rensis F, Scaramuzzi, RJ, 2003: Heat stress and seasonal effects on reproduction in the dairy cow-a review. Theriogenology **60**, 1139-1151.
- Gilad E, Meidan R, Berman A, Graber Y, Wolfenson D, 1993: Effect of heat stress on tonic and GnRH-induced gonadotropin secretion in relation to concentration of oestradiol in plasma of cyclic cows. J. Reprod. Fertil. 99, 315-321.
- Granström E, Kindahl H, 1982: Radioimmunoassay of the major plasma metabolite of $PGF_{2\alpha}$, 15-keto-13,14-dihydro- $PGF_{2\alpha}$. Methods Enzymol. **86**, 320-339.
- Holter JB, West JW, McGilliard ML, 1997: Predicting ad libitum dry matter intake and yield of Holstein cows. J. Dairy Sci. **80**, 2188-2199.
- Hommeida A, Nakao T, Kubota H, 2005: Onset and duration of luteal activity postpartum and their effect on first insemination conception rate in lactating dairy cows. J. Vet. Med. Sci. 67, 1031-1035.
- Igono MO, Bjotvedt G, Sanford-Crane HT, 1992: Environment profiles and critical temperature effects on milk production of Holstein cows in desert climate. Int. J. Biometeorol. **36**, 77-87.
- Lamming GE, Darwash AO, 1998: The use of milk progesterone profiles to characterize components of subfertility in milked dairy cows. Anim. Reprod. Sci. 52, 175-190.
- Lucy MC, Savio JD, Badinga L, de la Sota RL, Thatcher WW, 1992: Factors that affect ovarian follicular dynamics in cattle. J. Anim. Sci. 70, 3615-3626.
- Mateus L, Lopes da Costa L, Bernardo F, Silva JR, 2002: Influence of puerperal uterine infection on uterine involution and postpartum ovarian activity in dairy cows. Reprod. Dom. Anim. 37, 31-35.
- Mateus L, Lopes da Costa L, Diniz P, Ziecik AJ, 2003: Relationship between endotoxin and prostaglandin (PGE2 and PGFM) concentrations and ovarian function in dairy cows with puerperal endometritis. Anim. Reprod. Sci. 76, 143-154.

- Munro C, Stabenfeldt G, 1984: Development of a microtitre plate enzyme immunoassay for the determination of progesterone. J Endocrinol 101, 41-49.
- NOAA, 1976: Livestock hot weather stress. United States Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service Central Region, Regional Operations Manual Letter C-31-76.
- Opsomer G, Gröhn YT, Hertl J, Coryn M, Deluyker H, de Kruif A, 2000: Risk factors for post partum ovarian dysfunction in high producing dairy cows in Belgium: a field study. Theriogenology **53**, 841-857.
- Petersson KJ, Gustafsson H, Strandberg E, Berglund B, 2006: Atypical progesterone profiles and fertility in Swedish dairy cows. J. Dairy Sci. 89, 2529-2538.
- Ravagnolo O, Misztal I, 2002: Effect of heat stress on nonreturn rate in Holstein cows: genetic analyses. J. Dairy Sci. 85, 3092-3100.
- Ryan DP, Boland MP, 1991: Frequency of twin births among Holstein × Friesian cows in a warm dry climate. Theriogenology **36**, 1-10.
- Shrestha HK, Nakao T, Suzuki T, Higaki T, Akita M, 2004: Effects of abnormal ovarian cycles during pre-service period postpartum on subsequent reproductive performance of high-producing Holstein cows. Theriogenology **61**, 1559-1571.
- Shrestha HK, Nakao T, Suzuki T, Akita M, Higaki T, 2005: Relationship between body condition score, body weight, and some nutritional parameters in plasma and resumption of ovarian cyclicity postpartum during pre-service period in high-producing dairy cows in a subtropical region in Japan. Theriogenology **64**, 855-866.
- Wilson SJ, Marion RS, Spain JN, Spiers DE, Keisler DH, Lucy MC, 1998: Effect of controlled heat stress on ovarian function in dairy cattle: I. Lactating cows. J. Dairy Sci. 81, 2124-2131.
- Wolfenson D, Lew BJ, Thatcher WW, Graber Y, Meidan R, 1997: Seasonal and acute heat stress effects on steroid production by dominant follicles in cows. Anim. Reprod. Sci. 47, 9-19.
- Zarco L, Stabenfeldt GH, Kindahl H, Quirke JF, Granström E, 1984: Persistence of luteal activity in the non-pregnant ewe. Anim. Reprod. Sci. 7, 245-267.
- Author's address: Dr. Bunlue Kornmatitsuk, Faculty of Veterinary Science, Mahidol University, 25/25 Phuthamonthon 4 Rd., Salaya, Phuthamonthon, Nakhonpathom, Thailand 73170 Email: vsbkm@mahidol.ac.th

Legend of figures

Fig. 1. Different types of PP luteal activity and PGFM releases in lactating cows; (a) = normal cycling, (b) = prolonged luteal phase/anovulation, (c) = delayed first ovulation, (d) = short luteal phase, (e) = cessation of cyclicity. The horizontal dash line in the graph denotes the line of significance (mean \pm 2SD) for the PGFM levels.

กิจกรรมที่เกี่ยวข้องกับการนำผลจากโครงการไปใช้ประโยชน์

โครงการอบรมเชิงปฏิบัติการ เทคโนโฉยีชีวภาพทางวิทยาการสืบพันธุ์โคนม ครั้งที่ 1 เรื่อง

การใช้เครื่องตรวจคลื่นเสียงความถี่สูงช่วยในการตรวจระบบสืบพันธุ์ และการตรวจการตั้งท้องระยะต้น
(The Use of Ultrasonography in an Examination of Reproductive Tracts
and Early Pregnancy Diagnosis)

1. หลักการและเหตุผล

การใช้เครื่องตรวจกลื่นเสียงความถี่สุง (Ultrasonography) ในการตรวจระบบสืบพันธุ์โคนม เพิ่มเติมจากการล้วงตรวจผ่านทางทวารหนัก โดยเฉพาะในด้านการศึกษาวิจัย ทำให้นายสัตวแพทย์ และผู้ปฏิบัติงานค้านระบบสืบพันธุ์โคนม ได้มีความรู้ ความเข้าใจที่ถูกต้องและชัดเจนมากยิ่งขึ้น เกี่ยวกับสรีรวิทยาของระบบสืบพันธ์ในโคนม ในทศวรรษที่ผ่านมาได้เริ่มมีการนำเครื่องตรวจคลื่น เสียงความถี่สูงมาใช้อย่างกว้างขวางในอุตสาหกรรมการเลี้ยงโคนม โคยเฉพาะอย่างยิ่งในประเทศที่มี ความก้าวหน้าด้านเทคโนโลยีชีวภาพทางวิทยาการสืบพันธุ์ ด้วยเหตุผลหลายประการ อาทิเช่น การ ประเมินสถานะการตั้งท้องและการมีชีวิตรอคของตัวลูกอ่อนได้ตั้งแต่ระยะต้น สามารถบ่งชี้และช่วย ในจัดการแก้ไขปัญหาในโคที่ล้มเหลวในการตั้งท้องได้รวดเร็วขึ้น เป็นการลดระยะห่างระหว่างการ ให้บริการผสมเทียม และเพิ่มอัตราการผสมเทียม การตรวจพบที่รวคเร็ว ในกรณีโคตั้งท้องลูกแฝด และ/หรือการตรวจแยกเพศของลูก มีประโยชน์ต่อการวางแผนที่เหมาะสมในการดูแลโคทั้งในระยะ ์ ตั้งท้องและการคลอด เป็นการลดการสูญเสียที่จะตามมา การใช้เครื่องตรวจกลื่นเสียงความถี่สูงช่วย ให้การวินิจฉัยโรค และ/หรือพยาชิสภาพของรังไข่และมคลก และการตัดสินใจในการรักษาที่ถูกต้อง แม่นยำกว่า เมื่อเปรียบเทียบกับการล้วงตรวจผ่านทางทวารหนักเพียงอย่างเคียว นอกเหนือไปกว่านั้น การใช้เครื่องตรวจคลื่นเสียงความถี่สูง ร่วมกับเทคโนโลยีชีวภาพทางวิทยาการสืบพันธุ์อื่น ๆ เอื้อให้ เกิดการพัฒนาของการจัดการระบบสืบพันธุ์โดนมแบบบูรณาการ และมีประสิทธิภาพมากขึ้น ใน ประเทศที่กล่าวมาแล้ว การอบรม/ เพิ่มพูนทักษะ และความชำนาญ ของนายสัตวแพทย์ปฏิบัติงาน ค้านระบบสืบพันธุ์โคนม ในการใช้เครื่องตรวจคลื่นเสียงความถี่สูงช่วยในการตรวจระบบสืบพันธุ์ นับเป็นจุดเปลี่ยนแปลงสำคัญ ต่ออุตสาหกรรมการเลี้ยงโคนม โดยเฉพาะในด้านการจัดการระบบ สืบพันธ์

2. วัตถุประสงค์

2.1 เพื่อสร้างความคุ้นเคย และความรู้ ความเข้าใจที่ถูกต้อง ในการใช้เครื่องตรวจคลื่นเสียงความถี่สูง ช่วยในการตรวจระบบสืบพันธุ์ และการตรวจการตั้งท้องระยะต้นในโคนม

- 2.2 เพื่อส่งเสริมให้มีการนำเทคโนโลยีชีวภาพทางวิทยาการสืบพันธุ์มาใช้ เพื่อประโยชน์สูงสุดใน การจัดการด้านระบบสืบพันธุ์โคนมของประเทศไทย
- 2.3 เพื่อแลกเปลี่ยนประสบการณ์ และความร่วมมือระหว่าง คณะสัตวแพทยศาสตร์
 มหาวิทยาลัยมหิคล และสถาบันอื่น กับ Department of Dairy Science, University of
 Wisconsin-Madison ในการใช้เครื่องตรวจคลื่นเสียงความถี่สูง และเทคโนโลยีชีวภาพทาง
 วิทยาการสืบพันธุ์โคนม
- 2.4 เพื่อเป็นโครงการนำร่องในโครงการอบรมเชิงปฏิบัติการ เกี่ยวกับเทคโนโลยีชีวภาพทาง วิทยาการสืบพันธุ์โคนมด้านอื่น ๆ ที่จะจัดให้มีขึ้นต่อไปในอนาคต

3. วิธีการดำเนินงาน

- 3.1 การบรรยาย 1 วัน ในหัวข้อ
 - 3.1.1 Scanning the future –Ultrasonography as a reproductive management tool for dairy cattle (½ ชั่วโมง)
 - 3.1.2 ความรู้เบื้องต้นเกี่ยวกับเครื่องตรวจคลื่นเสียงความถี่สูง (1 ชั่วโมง)
 - 3.1.3 การใช้เครื่องตรวจคลื่นเสียงความถี่สูงช่วยในการตรวจระบบสืบพันธุ์ (1 ชั่วโมง)
 - 3.1.4 การใช้เครื่องตรวจคลื่นเสียงความถี่สูงตรวจการตั้งท้องระยะค้น ($1\frac{1}{2}$ ชั่วโมง)
 - 3.1.5 การตรวจแยกเพศลูกด้วยเครื่องตรวจคลื่นเสียงความถี่สูง (1½ ชั่วโมง)
- 3.2 การปฏิบัติการ 2 วัน หัวข้อ
 - 3.2.1 การใช้เครื่องตรวจคลื่นเสียงความถี่สูงช่วยในการตรวจระบบสืบพันธุ์ (3½ ชั่วโมง)
 - 3.2.2 การใช้เครื่องตรวจคลื่นเสียงความถี่สูงในการตรวจการตั้งท้องระยะต้นและแยกเพศลูก $(6\frac{1}{2}$ ชั่วโมง)

4. ผู้เข้าร่วมโครงการ

- 4.1 อาจารย์ และ/หรือนักศึกษาระคับปริญญาโท-เอก และ/หรือนายสัตวแพทย์ ปฏิบัติงานค้าน วิทยาการสืบพันธุ์โคนม คณะสัตวแพทยศาสตร์ 6 สถาบัน และสถาบันการศึกษาที่เกี่ยวข้อง จำนวน 15 คน
- 4.2 นายสัตวแพทย์ปฏิบัติงานค้านวิทยาการสืบพันธุ์โคนม กรมปศุสัตว์ จำนวน 5 คน
- 4.3 นายสัตวแพทย์ปฏิบัติงานด้านวิทยาการสืบพันธุ์โคนม หน่วยงานอื่น ๆ จำนวน 5 คน

5. ผู้เชี่ยวชาญต่างประเทศ

Associate Professor Paul M. Fricke, PhD

Department of Dairy Science, University of Wisconsin-Madison, Madison, WI ประเทศสหรัฐอเมริกา

6. กำหนดเวลา และสถานที่

ระยะเวลา 3 วัน วันที่ 18-20 พฤษภาคม 2548

สถานที่ คณะสัตวแพทยศาสตร์ มหาวิทยาลัยมหิคล วิทยาเขตศาลายา จังหวัดนครปฐม และ โรงพยาบาลปศุสัตว์และสัตว์ป่า วิทยาเขตไทร โยค จังหวัดกาญจนบุรี

7. ผลที่กาดว่าจะได้รับ

- 7.1 ผู้เข้าร่วมการอบรมฯ มีความคุ้นเคยและความรู้ ความเข้าใจที่ถูกต้อง ในการใช้เครื่องตรวจคลื่น เสียงความถี่สูงช่วยในการตรวจระบบสืบพันธุ์ และการตรวจการตั้งท้องระยะต้นในโคนม และ สามารถนำไปใช้เพื่อเพิ่มประสิทธิภาพในการจัดการด้านระบบสืบพันธุ์โคนม
- 7.2 ผู้เข้าร่วมการอบรมฯ คณาจารย์ของคณะสัตวแพทยศาสตร์ มหาวิทยาลัยมหิคล และสถาบันอื่น ๆ และผู้เชี่ยวชาญต่างประเทศของ Department of Dairy Science, University of Wisconsin-Madison ได้มีโอกาสแลกเปลี่ยนประสบการณ์เกี่ยวกับการใช้เครื่องตรวจคลื่น เสียงความถี่สูง และเทคโนโลยีชีวภาพทางวิทยาการสืบพันธุ์โคนมที่เกี่ยวข้อง
- 7.3 แนวทางในการจัดโครงการอบรมเชิงปฏิบัติการ เทคโนโลยีชีวภาพทางวิทยาการสืบพันธุ์โคนม ในครั้งต่อไป

8. ผู้รับผิดชอบโครงการ

8.1 คณบดี

8.2 ผู้ช่วยคณบดีฝ่ายวิจัยและวิเทศสัมพันธ์

8.3 ผู้อำนวยการโรงพยาบาลปศูสัตว์และสัตว์ป่า

8.4 อาจารย์ คร. นายสัตวแพทย์ บรรลือ กรมาทิตย์สุข

8.5 อาจารย์ คร. สัตวแพทย์หญิง สุคสายใจ กรมาทิตย์สุข

8.6 อาจารย์ คร. นายสัตวแพทย์ จิตรกมล ธนศักดิ์

8.7 อาจารย์ นายสัตวแพทย์ สมเกียรติ ห้วยจันทึก

9. ผู้สนับสนุนโครงการ

- 9.1 คณะสัตวแพทยศาสตร์ มหาวิทยาลัยมหิคล
- 9.2 Department of Dairy Science, University of Wisconsin-Madison
- 9.3 บริษัท สุพริมโพรคักส์ จำกัด
- 9.4 ฟาร์มโคนมในเขตพื้นที่การให้บริการของโรงพยาบาลปศุสัตว์และสัตว์ป่า คณะสัตว แพทยศาสตร์ บหาวิทยาลัย มหิดล

ที่ปรึกษา

ที่ปรึกษา

ที่ปรึกษา