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Abstract

The Moser's worm problem asks for the smallest set on the plane that can cover every unit arc.
The smallest cover known is by Norwood and Poole of which the area is 0.260437. An
interesting variant of this problem is to find the smallest cover for every unit convex arc. Thirty
years ago, Wetzel proved that the isosceles right triangle with unit hypotenuse and area 0.25 is
such a cover. Recently, Johnson and Poole found a convex cover of area 0.2466. In this work, we
establish a smaller cover of area 0.2464 obtained from clipping the triangle at height .44.
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A SMALLER COVER FOR UNIT CONVEX ARCS

WACHARIN WICHIRAMALA*

ABSTRACT. The Moser’s worm problem asks for the smallest set on the plane that can cover every
unit arc. The smallest cover known is by Norwood and Poole of which the area is 0.260437. An
interesting variant of this problem is to find the smallest cover for every unit convex arc. Thirty
years ago, Wetzel proved that the isosceles right triangle with unit hypotenuse and area 0.25 is
such a cover. Recently, Johnson and Poole found a convex cover of area 0.2466. In this work, we
establish a smaller cover of area 0.2464 obtained from clipping the triangle at height .44.

*partially supported by Thai Research Fund Grand no. MRG4780036
MSC codes: 52C15, 52A10
key words: convex cover, convex unit arc, worm problem

1. INTRODUCTION

In 1966, Leo Moser set a well-recognized geometry problem on the plane called the Moser’s
worm problem [Moser]. The problem is to find the smallest set that can cover every unit arc.
Naturally we measure a set by its area. The disk of radius % is clearly capable of covering all unit
arcs. It has area 0.78540. In 1971, Wetzel published the proof by Meir that a semidisk of radius
%, whose area is 0.39270, is also such a cover and added a family of sectorial covers of which the
smallest one has area 0.34501 [Wetzel]. He also conjectured that the 30-degree sector of unit radius
(area 0.26180) is a cover. Many questions arised concerning necessary conditions of covers for unit
arcs. One is to find good lower bounds of the width of these covers. An answer came from the
discovery of the unit broadworm [Schaer]. It is the unique unit arc with the maximum width of
bp = 0.438925. This leads to a lower bound of the area of convex covers by/2 = 0.21946 [SW] [CK].
Later, Gerriets found a cover of area 0.3214 composing of a semiellipse and a triangle glued together
[G]. Later in 1972, Gerriets and Poole showed that a rhombus of unit major axis (area 0.2887) can
cover unit arcs [GP2]. The rhombus can be clipped to get a smaller cover of area 0.28610 [GP3].
In 1989, Norwood, Poole and Laidacker rounded up a corner of the rhombus to get a smaller cover
of area 0.27524 [NPL]. Recently, in 2002, Norwood and Poole established the current record with a
nonconvex cover of area 0.260437 and also provided a smaller convex cover of area 0.2738086 [NP].
One challenging problem is to prove that the sector conjectured by Wetzel can cover all unit arcs.
Currently, it is the smallest convex contender.

One interesting variant of the Moser’s worm problem is to find the smallest set that can cover all
unit convex arcs. In 1970’s, Wetzel noted that an isosceles right triangle 7" with unit hypotenuse
(area 0.25) can cover every unit convex arc [JPW]. He showed that a unit convex arc can be placed
inside the triangle T" in its “natural standing orientation” as shown in Figure 3.1. In addition, he
showed that a smaller cover can be obtained from clipping the right angle of T" to give a cover with
area approximately 0.2492. At the time he conjectured that the triangle T' clipped at the minimum
width of by is also a cover. In 2002, Johnson, Poole and Wetzel found a sophisticated way to prune

Date: November 30, 2004; revised January 6, 2006.
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FIGURE 2.1. A smaller cover for unit convex arcs of area 0.2464.

T near its right angle by 2 symmetric parabolas to form a cover with area about 0.2466 [JPW].
Wetzel proved that many other arcs can also be covered by these covers for convex arcs [MWW].

Our proof. Our proof is based on simple comparisons using translations and then numerical
minimizations by Mathematica (version 5 or later). The minimizations are called convex program-
ming as we minimize convex functions on convex domains of which the convergences are confirmed
theoretically.

Acknowledgements. The author would like to thank John E. Wetzel for his encouragement
and generous help. This material is based upon work supported by the National Science Foundation
under Grant No. 0200752.

2. THE COVER

Let T be the clipped triangle T in Figure 2.1 where its height is hg = 0.44. The top edge has
length 1 — 2hg and each side edge has length v/2hg. It has area 0.2464. We will show later that it
can cover every unit convex arc.

3. THE PROOF

In the proof of the main theorem, we will use the following 3 lemmas. We state the first lemma
without proof.

Lemma 3.1. On the plane, let I be a line and P and Q be 2 distinct points on the same side of [.
Then there is only one point R on | that minimizes the sum of the distances PR+ RQ. Furthermore,
R is the only point for which the segments PR and RQ make the same angle with [.

This lemma is also true when P and @ are not on the same side of [. When P and @ are on I,
the set of all minimum points are the segment PQ). When P and () are on opposite sides of [ or
when either P or () is on [, the minimum point is the intersection of [ and PQ.

At each point on a closed convex arc, there is a tangent line that the arc lies on only one of its
sides. In many cases, there are many choices of such lines. When a convex arc is not closed, it has
2 endpoints. Each convex arc is on one side of the line L through its endpoints. Consider the 2
lines through the 2 endpoints perpendicular to L. These 2 lines are parallel. A drape [JPW] is
a convex arc that stays in between the 2 perpendicular lines. The next lemma tells us that if a
convex set can cover every unit drape, then it can cover every unit convex arc.

Lemma 3.2. [JPW] A unit convex arc can be covered by the convex hull of a unit drape.
In 1970’s, Wetzel proved that

Lemma 3.3. [JPW] The triangle T' can cover every unit convex arc in its standing orientation as
shown in Figure 3.2.
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F1GURE 3.1. The height h of a standing convex arc.

FIGURE 3.2. The drape 7 can be covered by T but cannot be covered by T.

Now we are ready to prove the main theorem.
Theorem 3.4. The clipped triangle T is a cover for every unit convex arc.

Proof. By Lemma 3.2, it suffices to show that T can cover every unit drape. Suppose for a contra-
diction that + is a unit drape that cannot be covered by T. We will show that its length is greater
than one. Throughout the proof, we fix the orientation of v in its standing orientation as illustrated
by Figure 3.1. Let h be the height of . We will rotate T to cover 7. To describe the orientation
of T, we define Ty to be an isometric copy of T after being rotated by angle §. Furthermore, by
“Ty can cover v we mean that Ty contains a translated copy of .

Since T can cover v in its standing orientation but T’ cannot cover v, we must have h > hg (see
Figure 3.2). Now we name 5 key points of 7 as its head, shoulders and feet as follows. Consider
Figure 3.3. Put a support angle of 7 on «. Let L be a point where 7 touches the left support line
and define R, similarly. Note that in some case there are more than one choice of L. Let H, Ly and
Ry be the top, the left and the right ends of 7. Note that we may have H = Ly, H = R;,Ls = Ly
or Ry, = Ry, but it is clear that H # Ly and H # Ry. First we place 7 in T%W as illustrated

in Figure 3.4. Next we see that Ry ¢ Tu_. For if this is not the case, then Ly ¢ T 1, which
3 - S
implies that L is lower than Ry, a contradiction. It follows that Ly ¢ T's_. Let R be the rhombus
8

™

with side length v/2ho and angle 7 and place v in R as shown in Figure 3.5. Hence R has width
w = 2v/2hgsin 2 (from left to right.) We will divide into cases according to whether Ly, Ry € R.
We will show that the length of 7 is greater than 1 in every case.

CASE Lf,Rf ¢ R and LfRf > w.

According to a simple direct comparison using 2 translations as in Figure 3.6, we have 1 >
LyH + HRjy > 2\/h3 + (%)% = 2hgy/1 4 2sin® £ > 1.0006, a contradiction.

CASE Lf,Rf ¢ R and LfRf <w.

According to a simple direct comparison using 2 translations as in Figure 3.7, we have 1 >
min{d (1, yu1, T2, Yi2s TH 5 YH, Tr2, Yr2, Te1s Y1) | Yy = yizs (@0, yn) € by (@2, 42) € losyn = yn +
ho, (zr2, Yr2) € r2 and (zr1,y51) € r1} = min{2d(zi1, Y1, 12, Y12, 0, yin+ho) | (T, ynn) € b, (w2, yi2) €
l2} where d(-rla Yty -5 Tn, yn) = d('rla Y15+, Tn-1, ynfl) + d(xnfla Yn—15Tn, yn)v
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Ly Ry

FIGURE 3.3. After putting the drape 7 in a corner of angle 7, we name 5 key points.

FIGURE 3.4. The drape 7 is placed in TQW.
8

d(z1,y1,%2,y2) = \/(xl —29)%2 4 (y1 —y2)? and [y, 13,71, r2 are sides on R. The length of the last
4-segment arc is convex on free variables x;2 and y;; that form convex domain. Hence numerical min-
imization by Mathematica can get closely enough to the minimum. The length of the last 4-segment
arc is clearly smooth on y;; as illustrated in Figure 3.8, where the variable 3;; € [—v/2hg sin gw, 0],
and the minimum is 1.00004, a contradiction.

CASE RyeR (or Ly e R).

By the previous case, we have R; ¢ T L. According to a simple direct comparison as in Figure

3.9, we have 1 > min{y;p — y + d(xi2, yi2: T, Y, Tr2, yr2) + Yr2 — ¥ | (12, 912) € lo,yw > y + ho
and (xp2,yr2) € ro} = min{2(y;2 — v + d(zi2,v12,0,y + ho)) | (x12,y12) € lo}. The length of
the last 4-segment arc is convex on free variables x5 and y that form convex domain. Hence
numerical minimization by Mathematica can get closely enough to the minimum. The length of
the last 4-segment arc is clearly smooth on y as illustrated in Figure 3.10, where the variable
y € [—V/2hgsin %ﬂ, —(1 = 2hg) sin %ﬂ], and the minimum is 1.02396, a contradiction.

In any case, we found a contradiction. Therefore v can be covered by T. (I

We can see that hy can be lowered a little bit as long as the minimum length in the second case,
currently 1.00004, is still greater than 1.

We conjecture that the clipped triangle in Figure 3.11 can cover every unit convex arc. It has
no symmetry and has area 0.23982 which is close to the lower bound 0.21946. A similar cover was
conjectured earlier in [JPW]; see Figure 9(b).
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FIGURE 3.5. The rthombus R with side length v/2hy and angle T

4. MATHEMATICA CODE AND OUTPUT

In Figure 4.1, it shows the mathematica code for calculations of the 3 cases. It runs in Mathe-
matica version 5 or later as it heavily uses the command “Minimize”.
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FIGURE 3.7. Comparison of length of the arcs when Ly, Ry ¢ R and LyRy < w.
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FiGURE 3.11. A clipped triangle that might cover every unit convex arc.
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m
In[1]:== hid = .44; & = —

g =58in[2]; c =Cos[@]; tan=Tan[&]; cot =Cot[8];: wZ2=+ 2 his;
x11=-tanyll-w2; pll={x11, v11};

¥1l2 =cot {x12+w2); pl2={x12, y12};

a[pl , p2 ]:= + (p1[[11]1 -p2[[111} 2 + (p1[[2]] -p2[[211} "2:
d2[pl , p2 , p3 ]:=d[pl, p2] +d[p2, p3];

InFl:= {wxwnwwwwwwr caloculation 1 wwwwwwwwrwwwrwwnww)

24 h0"2 +w2"2

out[Fl= 1.00061

Inf@E]:= {wxwwwwwwwww CAloulation 2 wwwwwwwwwwwwwwnww)

Plot [Minimize[2d2[pll, pl2, {0, y11.ho}], x121[[111, {¥11, -+/2 hoc, 0}]:

[ R R R
= M G s tn T

-0.5 -0.4 -0.2 -0_2 -0.1

n@:= Plot[Minimize[2d2[pll, p12, {0, ¥y11+h0}], x1210[1]1], {¥11, -.03, 0}];

=0_02 -0_0&5 -D_a}H:Q;Eégrrﬁ{Dl -0_.005%
n[0):= Minimize[2 d2[pll, pl?, {0, ¥11+h0}], {¥l1, x12}]
outfioj= {1.00004, {x12- -0.211415, v11 - -0.01460731)

In[11]:= {xwwwnwrrwrr calculation 3 swwrrrrrrrwrrwnx)

—{1-2hd)c

owfi= -0. 110866

In[1z]:= Plot[Minimize[2 (Abs[¥12-¥] +d[pl2, {0, ¥ +h0}1), {312}1[[1]11. {¥, a2 noc, -(1-2h0) c}]:

1.05

-0.4 -0.% w.l

n[7:= Minimize[? (Abs[yl? - ¥] + d[pl?, {0, ¥ +h0}1}, ¥« —¢(1-2h0) c, {y, x12}]

out[3= {1.02396, {x12- -0.173774, v— -0.1108661)

FIGURE 4.1. Mathematica code for calculations of the 3 cases.
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