

บทคัดย่อ

รหัสโครงการ: **MRG4780057**

ชื่อโครงการ: ผลของความดันสูงต่อโปรตีนกล้ามเนื้อและการเกิดเจลของกุ้งกุลาดำ

ชื่อนักวิจัย: ดร.ก่องกาญจน์ กิจรุ่งโรจน์, มหาวิทยาลัยสงขลานครินทร์

E-mail Address : kongkarn.k@psu.ac.th

ระยะเวลาโครงการ : 18 เดือน

จากการศึกษาผลของความดันสูงที่ระดับ 200, 400, 600 และ 800 เมกะบาร์สตูดีนา 20 นาที ที่สภาวะอุณหภูมิห้อง และการให้ความร้อนที่อุณหภูมิ 100 องศาเซลเซียส นาน 2 นาที ต่อ คุณลักษณะของโปรตีนกล้ามเนื้อกุ้งกุลาดำพบว่าค่า L^* , a^* , b^* , ค่าแรงกดและแรงเสื่อมมีค่าเพิ่มขึ้น เมื่อเพิ่มระดับการให้ความดัน ส่วนตัวอย่างที่ผ่านการให้ความร้อนมีค่าแรงเสื่อมสูงกว่าตัวอย่างที่ให้ความดันและตัวอย่างชุดควบคุม (เนื้อกุ้งกุลาดำสด) อย่างมีนัยสำคัญ ($p<0.05$) การให้ความดันที่ระดับต่างๆ ไม่มีผลต่อค่าการสูญเสียน้ำหนัก ($p>0.05$) อย่างไรก็ตามมีค่าต่ำกว่าตัวอย่างที่ให้ความร้อน ($p<0.05$) กิจกรรมของเอนไซม์โปรตีอีสของตัวอย่างที่ให้ความดันที่ระดับ 200 - 600 เมกะบาร์สตูดีนา มีค่าไม่แตกต่างจากชุดควบคุม ส่วนกิจกรรมของเอนไซม์โปรตีอีสในตัวอย่างที่ให้ความร้อนมีกิจกรรมลดลงและไม่แตกต่างกับตัวอย่างที่ให้ความดันที่ระดับ 800 เมกะบาร์สตูดีนา จาก เทอร์โมแกรมของ Differential scanning calorimetry (DSC) แสดงให้เห็นว่าความดันดังแต่ 200 เมกะบาร์สตูดีนา 20 นาที ทำให้เกิดการเสียสภาพของโปรตีนไมอโซเซนและแอกติน และนำไปสู่ การสร้างโครงสร้างใหม่ที่มีความคงตัวด้วยพันธะไฮโดรเจน ค่าการละลายของโปรตีนแสดงให้เห็น ว่าตัวอย่างที่ผ่านการให้ความดันจะมีพันธะไฮโดรเจนและพันธะไดชัลไฟฟ์เป็นพันธะที่มีบทบาท สำคัญ แตกต่างกับตัวอย่างที่ผ่านการให้ความร้อนซึ่งมีอันตรกิริยาไฮโดรฟิบิกและพันธะไดชัลไฟฟ์เป็นพันธะที่สำคัญ จากการศึกษารูปแบบโปรตีนโดยใช้ SDS-PAGE พบว่าการให้ความดันที่ระดับ 800 เมกะบาร์สตูดีนา และการให้ความร้อนส่งผลให้ไมอโซเซนหนัก (MHC) เกิดการรวมตัวกันโดยพันธะไดชัลไฟฟ์

จากการศึกษาผลของความดัน (200 – 800 เมกะบาร์สตูดีนา 20 นาที) ต่อคุณภาพของ กุ้งกุลาดำในระหว่างการเก็บรักษาที่อุณหภูมิ 4 องศาเซลเซียส พบว่าภายในหลังการให้ความดัน ปริมาณของจุลินทรีย์ทั้งหมดลดลงเมื่อให้ความดันเพิ่มขึ้น โดยเฉพาะอย่างยิ่งที่ระดับ 800 เมกะบาร์สตูดีนา ทำให้ปริมาณของจุลินทรีย์ลดลง 1.5 log CFU/g ส่วนปริมาณจุลินทรีย์ชนิดไซโคฟิลิกสามารถตรวจพบภายในหลังการเก็บรักษา 3 วัน และมีปริมาณลดลงเมื่อให้ความดันสูงกว่า 600 เมกะบาร์สตูดีนา อย่างไรก็ตามไม่สามารถตรวจพบเชื้อ *Salmonella* ในทุกชุดการทดลองตลอดระยะเวลา การเก็บรักษา จากค่า TBARS แสดงให้เห็นว่าการให้ความดันดังแต่ 600 เมกะบาร์สตูดีนา ไป นาน

20 นาที มีผลต่อการเร่งปฏิกริยาออกซิเดชันของไขมันในกุ้งกุลาดำและทุกตัวอย่างมีค่า TBARS เพิ่มขึ้นอย่างรวดเร็วเมื่อเก็บรักษาเป็นระยะเวลา 9 วัน ค่าการสูญเสียน้ำหนักระหว่างการเก็บรักษาเพิ่มขึ้นเมื่อให้ความดันที่ระดับสูงขึ้นยกเว้นที่ระดับ 800 เมกะปานาสกาล นอกจากนี้กุ้งกุลาดำมีความแข็งลดลง ส่วนค่าการสูญเสียน้ำหนักและกลิ่นพิเศษเพิ่มสูงขึ้นตลอดระยะเวลาการเก็บรักษา โดยตัวอย่างชุดควบคุมมีกลิ่นพิเศษที่มากกว่าตัวอย่างที่ผ่านการให้ความดัน

จากการศึกษาผลของความดัน (400 600 และ 800 เมกะปานาสกาล ที่อุณหภูมิ 28 องศาเซลเซียส นาน 20 นาที) ความร้อน (ที่อุณหภูมิ 90 องศาเซลเซียส นาน 20 นาที) และความดันร่วมกับความร้อน (200 400 600 และ 800 เมกะปานาสกาล ที่อุณหภูมิ 28 องศาเซลเซียส นาน 20 นาที/90 องศาเซลเซียส นาน 20 นาที) ต่อการเกิดเจลเนื้อกุ้งกุลาดำดคที่เติมเกลือร้องยักษ์ 2.5 พนบัว ตัวอย่างเจลเนื้อกุ้งกุลาดำดคที่ผ่านการให้ความดันร่วมกับความร้อนมีค่าแรงก์ก่อนเจาะทะลุ ความแข็ง และการสูญเสียน้ำหนักสูงสุดเมื่อเปรียบเทียบกับตัวอย่างที่ผ่านการให้ความดันหรือความร้อนเพียงอย่างเดียว แต่ตัวอย่างที่ผ่านการให้ความดันเพียงอย่างเดียวมีค่าระยะทางก่อนเจาะทะลุสูงสุด และตัวอย่างเจลที่ผ่านการให้ความร้อนและความดันร่วมกับความร้อน มีลักษณะขุ่นทึบแสงและมีสีชมพูอมส้ม ส่วนตัวอย่างเจลที่ผ่านการให้ความดันมีลักษณะเรียบเนียน เป็นมันวาวและมีสีม่วงอมน้ำเงิน ค่าแสงสว่าง (L*) ค่าสีแดง-สีเขียว (a*) และค่าสีเหลือง-สีน้ำเงิน (b*) ของตัวอย่างที่ผ่านการให้ความดันร่วมกับความร้อนและความร้อนเพียงอย่างเดียว มีค่ามากกว่าตัวอย่างที่ผ่านการให้ความดันเพียงอย่างเดียว ($p < 0.05$)

จากการศึกษาผลของความดัน (200 400 600 และ 800 เมกะปานาสกาล ที่อุณหภูมิ 28 องศาเซลเซียส นาน 20 นาที) ความร้อน (ที่อุณหภูมิ 90 องศาเซลเซียส นาน 20 นาที) และความดันร่วมกับความร้อน (400 เมกะปานาสกาล ที่อุณหภูมิ 28 องศาเซลเซียส นาน 20 นาที/ 90 องศาเซลเซียส นาน 20 นาที) ต่อการเกิดเจลของสารละลายเอกโตไมโอซินธรรมชาติของกุ้งกุลาดำพบว่า ตัวอย่างสารละลายเอกโตไมโอซินธรรมชาติที่มีความเข้มข้น 4 มิลลิกรัมต่อมิลลิลิตรที่ผ่านการให้ความดัน ความร้อน และความดันร่วมกับความร้อนมีค่าความชุ่มชื้นและปริมาณไฮโดรฟอฟบิกบันพื้นผิวเพิ่มขึ้นจากตัวอย่างชุดควบคุม (ไม่ผ่านกระบวนการแปรรูป) ($p < 0.05$) ขณะที่ปริมาณชัลฟ์ไฮดริด และพันธะไดชัลไฟฟ์ของตัวอย่างที่ผ่านการให้ความดันมีค่าไม่แตกต่างจากตัวอย่างชุดควบคุม ($p \geq 0.05$) แต่มีค่าเพิ่มขึ้นเมื่อตัวอย่างผ่านการให้ความร้อนและความดันร่วมกับความร้อน เมื่อตัวอย่างสารละลายเอกโตไมโอซินธรรมชาติมีความเข้มข้น 50 มิลลิกรัมต่อกิโลกรัมสามารถเกิดเจลไดเมื่อให้ความดันตั้งแต่ 600 เมกะปานาสกาล โดยมีโครงสร้างทางจุลภาคของตัวอย่างที่ผ่านการให้ความดันมีลักษณะแบบโครงข่าย แต่ตัวอย่างที่ผ่านการให้ความร้อนและความดันร่วมกับความร้อน มีลักษณะแบบรวมกลุ่มกัน

จากการศึกษาผลการเติม โปรตีนพลาสมาเลือดวัวร้อยละ 0-3 หรือเอนไซม์ ทรานส์กูลูตามิเนสจากจุลินทรีร้อยละ 0-0.2 ต่อการเกิดเจลของเนื้อกุ้งกุลาคำนับที่ผ่านการให้ความดัน ความร้อน หรือความดันร่วมกับความร้อน พนว่า เมื่อเติม โปรตีนพลาสมาเลือดวัวในปริมาณเพิ่มขึ้นทำให้ค่าการสูญเสียน้ำหนักและแรงก่ออันเจาะทะลุเพิ่มขึ้น ($p<0.05$) แต่ไม่มีผลต่อค่าระยะทางก่อนเจาะทะลุและความสามารถในการขึ้นนำ ($p\geq0.05$) นอกจากนี้การเพิ่มปริมาณ โปรตีนพลาสมาเลือดวัวยังมีผลทำให้ปริมาณแปปไทด์ที่ละลายในสารละลายไตรคลอโรอะซิติกลดลง ($p<0.05$) และยังสอดคล้องกับความเพิ่มของแปบไนโตรซินเส็นหนักในรูปแบบ โปรตีนโดย SDS-PAGE ที่เพิ่มขึ้น ซึ่งชี้ให้เห็นว่า โปรตีนพลาสมาเลือดวัวสามารถยับยั้งกิจกรรมเอนไซม์ โปรตีอส อย่างไรก็ตาม ปริมาณ โปรตีนพลาสมาเลือดวัวที่เพิ่มขึ้นยังมีผลต่อการเพิ่มขึ้นของค่าสีน้ำเงิน-สีเหลือง (b^*) ($p<0.05$) ส่วนตัวอย่างที่เติมเอนไซม์ ทรานส์กูลูตามิเนสจากจุลินทรี สภาวะที่ผ่านการบ่มที่อุณหภูมิ 25 องศาเซลเซียส นาน 2 ชั่วโมงแล้วผ่านการให้ความดันที่ 600 เมกะปascal ที่อุณหภูมิ 28 องศาเซลเซียส นาน 20 นาที เป็นสภาวะที่เหมาะสมในการเติมเอนไซม์ ทรานส์กูลูตามิเนสจากจุลินทรี เจลที่เติมเอนไซม์ ทรานส์กูลูตามิเนสจากจุลินทรีร้อยละ 0.15 มีค่าแรงและระยะทางก่อนเจาะทะลุสูงสุด ($p<0.05$) และจากรูปแบบ โปรตีนโดย SDS-PAGE พนแปบ โปรตีนที่มีขนาดใหญ่กว่าแปบ โปรตีนไนโตรซินเส็นหนัก (205 กิโลดอลตัน) เมื่อเติมปริมาณเอนไซม์ ทรานส์กูลูตามิเนสจากจุลินทรีเพิ่มขึ้น

คำหลัก : ความดันสูง โปรตีนไนโตรซิน เกล กุ้งกุลาคำ การเกิดเจล สารเติมแต่ง

Abstract

Project Code : MRG4780057

Project Title : High pressure effects on black tiger shrimp (*Penaeus monodon*) muscle and gel forming property

Investigator : Kongkarn Kijroongrojana, PhD., Prince of Songkla University

E-mail Address : kongkarn.k@psu.ac.th

Project Period : 18 months

The effect of high pressure (at 200, 400, 600 and 800 for 20 min, at room temperature) or heat (at 100 °C for 2 min) treatments on black tiger shrimp muscle protein characteristics was studied. L*, a*, b* values, compression force and shear force increased with increasing pressure. The heat treated sample had higher shear force (toughening) than the pressurized and control samples (fresh shrimp) ($p < 0.05$). Pressure at different levels had no effect on weight loss ($p \square 0.05$). However, the values of heat treated sample was higher than those of pressurized sample ($p < 0.05$). Autolytic activities of pressurized sample at 200-600 MPa were not significantly different from that of control. The activity of heated sample was decreased and was not significantly different from sample treated at 800 MPa ($p \square 0.05$). Differential scanning calorimetry (DSC) thermogram indicated that high pressure up to 200 MPa, 20 min induced myosin and actin denaturation, leading to the formation of network stabilized by hydrogen bond. Protein solubility test indicated that hydrogen and disulfide bonds mainly involved in stabilizing the network of pressurized gels. On the other hand, hydrophobic interaction and disulfide bond were shown to stabilize the heat treated gels, SDS-PAGE revealed that pressure at 800 MPa and heat treatment induced the formation of disulfide bond.

The effect of pressure (200-800 MPa, 20 min) on the changes in qualities of black tiger shrimp during storage at 4 °C was investigated. The total viable count decreased with increasing pressure, especially at 800 MPa, where the microbial load was reduced by 1.5 log unit (CFU/g). Psychrophilic microorganism was found after 3 day and the count decreased with pressurization beyond 600 MPa. However, no *Salmonella* was detected in all treatments throughout storage. Lipid oxidation in black tiger shrimp was accelerated when pressurized at 600 MPa for 20 min and higher. During storage, the TBARS of all samples increased drastically until 9 days of storage. The drip loss increased with increasing pressure, except at 800 MPa. Increasing storage

time resulted in decrease in hardness, and increase in drip loss and off-odor. Generally, the control had the stronger off-odor than pressurized samples.

The effects of high pressure (400, 600 and 800 MPa, at 28 °C, for 20 min), heat (at 90 °C, for 20 min) as well as the combination of pressure (200, 400, 600 and 800 MPa, at 28 °C, for 20 min) and heat (at 90 °C, for 20 min) on gelation of minced black tiger shrimp containing 2.5% NaCl were studied. Breaking force, hardness and weight loss of pressure-heat induced minced shrimp gel were higher than those of pressure or heat induced gels. Nevertheless breaking deformation of pressure induced gel was higher than that of heat or pressure-heat induced gels. Pressure-heat and heat induced gel samples were opaque and orange-pink in color, while the gel sample prepared by pressure treatment was smooth, glossy and purple-blue in color. The L*, a* and b* values of pressure-heat and heat induced gel were higher than those of pressure induced gel ($p<0.05$).

The effects of high pressure (200, 400, 600 and 800 MPa, at 28 °C, for 20 min), heat (at 90 °C, for 20 min) and pressure-heat (pressure at 400 MPa, at 28 °C, for 20 min prior to heat at 90 °C, for 20 min) on gelation of black tiger shrimp natural actomyosin were carried out. Turbidity and surface hydrophobicity of natural actomyosin (protein concentration of 4 mg/ml) treated by high pressure, heat and combination treatment were higher than those of the control (untreated sample) ($p<0.05$). Total sulhydryl and disulfide bond contents of pressurized sample were not different from the control ($p\geq0.05$). However, both values increased when treated by heat or pressure-heat treatment. The gel of natural actomyosin (protein concentration of 50 mg/g) was formed at the pressure at 600 MPa or above. Natural actomyosin gel induced by pressure had matrix network, whereas gel induced by heat and combination treatment possessed the conglomeration structure.

The effect of bovine plasma protein (BPP, 0-3 % w/w) or microbial transglutaminase (MTGase, 0-0.2 % w/w) on minced black tiger shrimp gel induced by pressure, heat or combination treatment was investigated. Breaking force and weight loss increased when BPP concentration increased ($p<0.05$), whereas breaking deformation and water holding capacity of gel with and without BPP were not different ($p\geq0.05$). Moreover, the increase in BPP concentration resulted in decreased TCA-soluble peptides, indicating inhibitory activity of BPP toward protease. However, BPP affected the color of sample by increasing b*- value particularly

at higher BPP concentration ($p<0.05$). In the sample added with MTGase, the highest breaking force and breaking deformation were noticeable when the sample was incubated at 25 °C for 2 h prior to pressurization at 600 MPa, at 28 °C for 20 min. Addition of MTGase at the level up to 0.15% (w/w) resulted in the highest breaking force and breaking deformation ($p<0.05$). SDS-PAGE also indicated that myosin heavy chain band (205 KDa) underwent polymerization to a higher extent as MTGase concentration increased.

Keywords : high pressure, myofibrillar protein, black tiger shrimp, gelation, additives