Assume that we are given a set of hypotheses hy; for ¢,j € [k], with gen-
eralization errors ¢;. In the following sections, we analyze the generalization
error of the constructions which use pair-wise binary classifiers. To help under-
standing the bounds, we also consider the uniform error case where every binary
hypothesis has generalization error of 2.

In what follows, for each algorithm, we mainly analyze the error §; when the
query point is from class 7; the generalization error is thus the error of the worst
t. Frequently, we consider the other classes in order of their generalization errors.
We shall use the following notation. For each i € ¥ and 1 < j < k, let ri(j)
denote the class having the j-th largest generalization error when compared with
class 1, i.e., €; r,01) 2 €i,ri(2) 2 ***€i,ri(k—1)- ¥e break ties arbitary.

3.1 Max-Win

Using the black-box approach, the worst-case bound on the generalization error
of Max-Win can be proved using union bound.

Theorem 1. If the query point is from class i, Maz-Win gives wrong prediction
with probability at most 3_; . €i ;. Thus, the generalization error of Maz-Win is
al most MaxXe(x] D ;4 €i - In uniform case, this is (k — 1)e.

Proof. Suppose that the input z is from class i. If all classifiers h;;(z), for all
possible §, answer 1, Max-Win would definitely return i as a prediction, because
i would get & — 1 votes while all other classes would get at most & — 2 votes.
The probability that h;;(z) for a fixed j returns a wrong prediction is at most
€i;. Therefore, using union bound, the probability that some h;; makes a wrong
prediction is at most 3. ., €;. The theorem follows because we consider the
worst case 1.

We note that this bound is very locse. However, we believe that given only
black-box information of the generalization error of the base classifiers, this
bound is best possible. In practice, Max-Win performs very well. The reason
might be from the gap between the score of the winning class and the second
runner up. We note that if one looks into each binary classifier, thus ignoring the
black-box approach, the margin analysis of the voting method in Schapire, Fre-
und, Barlett, and Lee [15] directly applies to Max-Win. Also, following the same
research direction, the result of Paugam-Moisy, Elisseeff, and Guermeur {16] uses
the margin analysis to show the generalization error of the One-vs-All approach.

3.2 DDAG

For DDAG, we have (;) binary classifiers. If they all give correct predictions,
the final prediction must be correct. This gives a bound of 3., € ; for the
generalization error. However, we can do a lot better by noting that if the query
is of class %, relevant classifiers are those concerning class <. Furthermore, these
classifiers will not be called unless ¢ is the candidate with minimum class id or



the maximum id, i.e., when all the smaller-id classes or the larger-id classes get
eliminated. In the worst case, this happens when either only larger-id classes are
eliminated, or only smaller ones. Therefore, we get the following theorem.

Theorem 2. If the query point is from class i, DDAG gives wrong prediction

with probability at most &% max{}_; ; €i,j) 2 ;i €i,j)- Therefore, the general-

ization error of DDAG is at most maxie(x) &;- In uniform case, this is (k — 1)€.

Comparison to previous bounds. Platt, Cristianini, and Shawe-Taylor [6]
consider the Proceptron DDAG, ie., DDAG with a perceptron at each node.
Let +; denote the margin observed at node i. Using the technique of Bennett,
Cristianini, Shawe-Taylor, and Wu {17], which is also based on that of [18], they
show that with probability at least 1 - § the generalization error of DDAG is at

most,
130R?

(D’ log(dem)log(4m) + log 2(2?)K) ,

where K is the number of nodes in DDAG, D' = Efil ;l;, m is the number of
samples used for training, and R is radius of the ball containing the distribution’s
support, for DDAG that correctly classifies m examples. They also consider the

generalization error for class 7. Let j-nodes denote the set of perceptron nodes
involving class j. They get the bound of

2
13:31}{ (D' log(4em) log(4m) + log

2(21:;)“"1 ) 1

where D' =37, . 1odes ;1?

With previous analysis, we also get the same bound. For a perceptron which
correctly classifies m examples with margin - on the distribution whose support
contains in a ball in R™ centered at the origin of radius R, Shawe-Taylor, Barlett,
Williamson, and Anthony [18] gives a bound of

2 8em 8m
- (l log (T) log{32m) + log T) ,

where I = |577R?/~?]|. We plug this into Theorem 2. Recall that the bound in
Theorem 2 uses only subsets of j-nodes; thus, it is at most

2, 5 (57 v (i ) rsom +1s )

icj—nodes

< (115:1122) ( Z (%)) log(Sem)log(32m)+% ( Z log BTm) ;

iej—nodes - icj—nodes

) (D' log(8em) log(32m)] + (%) (k- 1)log -8-;2,

2
< (115412
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_ (”‘Z’sz) (D' log(8em) log(32m)) + (m) log

if 1154R* > 2, and R > y; for all i. This bound is similar to the bound in [6] up
to a small constant factor.

Our analysis can also be extended to include the case where there are training
errors for perceptrons as well.

3.3 Improvements to DDAG: ADAG, Randomized-DDAG

ADAG. The solution of ADAG depends crucially on the order of elimination.
However, since the path is short, we need only { = [logk] applications of the
binary classfiers. For query point in class 7, we can assume that these I classifi-
cations are done with the worst ! classes.

Theorem 3. If the query point is from cless i, ADAG gives wrong prediction

with probability et most &; def Ej‘:l €, ri(j)- Therefore, the generalization error
of ADAG is at most max; 8;. In uniform case, this is O(log k)é.

We note that the generalization error of ADAG seems to depend on the
order of elimination. However, we are not sure if the worst-case behavior can be
improved with randomization.

Randomized-DDAG. For DDAG, the following theorem shows that random-
ization does help.

Theorem 4. If the correct class is class i, Randomized-DDAG gives wrong pre-
diction with probability at most

5.2 2€; r,(k—1)
> (G

Thus, the generalization error of Randomized-DDAG is at most max; §;. In uni-
form case, this is O(log k)e.

Proof. We consider the process of the randomized DDAG in rounds; there are
n — 1 rounds. In each round, two candidate classes are chosen and a binary
classifier that distinguishes between such classes is called. The winner stays on to
the next round; the loser are eliminated. The first round is round 1. We analyze
the probability that the correct class, say class i, gets eliminated during the
process. Suppose that i survives after { rounds. On the one hand, if 7 is not chosen
it remains to round [+ 1 antomatically; this happens with probability 1 — On
the other hand, if it is chosen, it remains in the next round only if the clasmﬁer
predicts correctly. Let D; denote the event that class 7 gets eliminated in round [,
given that it survives up to round {—1. Randomized-DDAG predicts incorrectly if

one of these events occurs; thus, the probability that it gives incorrect prediction
is PrlUr=] Di).



For the analysis, we consider a different procedure. Suppose that 1 is known.
In round {, we describe an equlivalent procedure for choosing a pair of classes. If ¢
has been eliminated in previous rounds, we pick a pair of classes randomly. Now
if ¢ remains one of the candidates, we decide whether class i will be evaluated
by fliping a coin with 2/{k — I + 1) head probability. If the coin comes up tail,
we pick a pair of classes beside 4, and in this case ¢ remains to the next round
with probability 1, and some class j get eliminated. If the coin comes up head,
we choose another class randomly. Suppose that j is picked, the probability that
the classifier gives wrong answer is thus ¢;;. For both cases, we call class j the
pairing class. The notion of pairing class is important to our analysis, and note
that, by definition, ¢ cannot be a pairing class.

To finish the analysis, we consider the choices for the pairing class to be the
worst case. Suppose that the sequence § of pairing classes over the execution of
the algorithm is ¢), ¢a,...,¢g—1. Thus, the probability that ¢ gets eliminated in

round { is Pr[I}|S] = :ET'PF‘I— Using the union bound, we have that the probability

that randomized DDAG fails, given 8, is at most

k—1

e, _ {200 26, 265 cn_y 260 cn,
‘Ek—“—l_ K Tro1 Tt v

This value is maximum when classes j in & are in increasing order of ¢;;. Thus,
the randomized DDAG gives wrong prediction with probability at most

k—1
5 = S 2Cirue)
& k-l

The theorem follows.

4 Generalization errors for the output coding approaches

We use the black-box approach to analyze the generalization error of the output
coding method. The proof is very similar to that of [10], but instead of training
error, we use generalization of the base classifier. In Subsection 4.1, we consider
the simpler case where the coding matrix M contains only +1 and —1. In the
next subsection, we prove the theorem for the general matrix as in Allwein et al.

4.1 Coding matrix without don’t care bits

We note that the argument of Guruswami and Sahai [10], that bounds the train-
ing error, applies to the generalization error as well if we replace the averaging
argument with Markov’s inequality. We state and reprove their result here for
completeness.

Theorem 5 {[10]). Suppose that the coding matriz M € {+1,~1}*! with I
columns has minimum Homming distance A. Also, let €5 be the generalization
error of the binary classifier for column s. Then, the generalization ervor of the
multiclass classifier is at most %(Eizl €s)-



Proof. For each column s, let a random variable S; be 1 if the hypothesis for
that column makes a wrong prediction, and 0 otherwise. Clearly E[S,] = ¢,.
Let random variable .S be the number of columns ha.vmg wrong predlctlons By
linearity of expectation, E{$] = E[3\_, 8] = s _LE[S] = Zs_l . Since

the coding matrix with Hamming distance A can correct up to 4 [(A - 1}/2]
errors, if § < d, the algorithm would return the correct clags. The case where the
algorlthm makes a wrong mistake is when & > d, which occurs with probability
Pr{S > d| < Pr[S > Af2) <E[S]/(4/2) = % Zs_ €5, by Markov’s Inequality,
as claimed.

4.2 GGeneral matrix

We now consider the general matrix. As in Allwein et al., we assign each classr €
Y arow in the coding matrix M € {~1,0,+1}¥*!. However, the proof from the
previous section does not follow unless we change the distance function A(u,v)
between two rows 1, v of M. Previously, the distance between any bit with “don’t
care” bit is 1/2, This is too optimistic, when dealing with generalization error.
Therefore, we ignore that “distance,” i.e., we define A{u,v) to be

!
_ 1if ug # vg,us #0,and vy # 0.
Alu,v) = 2:1 { 0 otherwise
=
We let AdéfA(M ) be miny year A, v), the minimum distance between any
pair of rows in M. Also, let I; denote the set of indices s such that M (i, s) # 0.
The following theorem states the generalization error bound for the combined
classifier.

Theorem 6. Given the coding matriz M, if the generclization error of the clas-
sifier for the s-th column is ¢,, the probability that given an instance x of class
t, the multiclass classifier using Hemming decoding predicts x’s class incor-
rectly is at most 2(3_ ;. €}/ A. Thercfore, the generalization error is at most

(%) max; ZSEI" €s-

Proof. For each s € I, let an indicator random variable £, be one if Cy(z) #
M{i, 3), and zero otherwise. Therefore, Pr(E; = 1] = ¢,, by the definition of ¢,.
Let E be the number of error bits, i.e., E = 3 F,. By linearity of expectation,
we have E[E] = 3 ¢, Since the minimum hamming distance between any
two rows is A, if E < Af2, the classifier would always predict class i, ie., it
makes no mistake. Using Markov's Inequality, we have

Pr[predict incorrectly] < Pr[E > A/2} < E[E]/{A/2) = A 253‘
sel

thus, the theorem is proved.

We note that the generalization error of Max-Win {Section 3.1} also follows
from this theorem, since in that case A = 1.



5 Learnability

In this section, we discuss the equivalence of the learnability, and efficient learn-
ability of the muliclass concepts and the induced all-pair concepts. One direction
of the equivalence, from multiclass to pair-wise, is simple. We focus on the other
direction.

The equivalence of the learnability is implicit in the work of Ben-David,
Cesa-Bianchi, Haussler, and Long [19], which proves various relation between
many notions of dimensions, including the Natarajan dimension [20]. Consider a
particular pairwise concept C;; induced by any classes 7 and j. If this concept is
learnable, the VC-dimension [21] of C;; is finite [22]. Since this is true for any 7
and j, this means that the uniform Natarajan dimension of the concept class is
finite; hence the Natarajan dimension is also finite, by Theorem 5 in [19]. This
shows that the multiclass concept is learnable.

For efficient learnability, we note that if an all-pair concept is efficiently learn-
able, one can use Max-Win (or any other constructions discussed in this paper)
to construct a polynomial-time learner for the multiclass concept. Specifically,
if one needs a multiclass classifier with error probability . We first find a bi-
nary classifier for each pair of classes with generalization error ¢/k*. Theorem 1
ensures that the combined classifier has the generalization within the required
bound. The running time for constructing hypothesis only increases by a poly-
nomial factor of k. Thus, we get the desired reduction.

6 Discussions and open problems

By considering the base binary classifiers as black-boxes, we are able to ana-
lyze various algorithms for the multiclass classification problem. The analysis
focuses mainly on the combinatonal structures of the constructions. The result
in this paper contradicts previous beliefs that the order of the class evaluation
in DDAG has no significant effect, and also it gives supportive argument for a
new algorithm such as ADAG.

We list a few interesting open problems here.

1. Our analysis of the generalization error of Max-Win is very loose. We believe
that the observed gap between the winning class and the second runner-up
{as in [15]} can be used to give better bounds. However, the margin seems
to be a property of the construction; therefore, we do not know how to put
it into our framework. This might give an evidence of the limitation of the
black-box analysis.

2. There are a few other algorithms which perform well in practice, but have no
proof of the generalization performance, notably, an improvement to ADAG,
called Reordering-ADAG by Phetkaew, Kijsirikul, and Rivepiboon {23], that
uses the error information to minimize the overall prediction error.

3. For the coding approach, we consider only Hamming decoding. it might be
possible to extend our approach for the loss-based decoding.



4. It is interesting to see if one can combine an improvement to the proof of
Allwein et al. by Klautau, Jevti¢, and Orlitsky [24] with our technique.

5. One of the biggest open problems in multiclass learning is the question that
asks if these new techniques devised to improve the simplest One-vs-All do
really help [25]. The technique in this paper, however, offers no imsight into
this problem.
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Abstract

In this paper, we study algorithms for reducing multiclass categorization problems to multiple
binary problems which then are solved by base binary classifiers. Recently there are techniques that
use the error information of the base classifiers to improve the performance of the reduction. The
question regarding the value of this information, i.e., how much it helps improving the generalization
performance of the resulting multiclass classifier, arises naturally. Using a game-theoretic framework,
we give a lowerbound on the worst-case generalization error for any reductions. We also present a
natural randomized multiclass-binary reduction algorithm that uses no error information and analyze
its generalization error bound. The gap between the lowerbound and the error bound of this algorithm
is a room for possible improvements. We describe examples of the error distributions among the base
classifiers where the gap is small and large.

1 Introduction

Multiclass categorization problems are usually solved by a reduction to multiple binary problems. For
problems with n classes, one class of algorithms trains (’2‘) binary classifiers, each distingushing between
a pair of classes. Then given a query point z, an algorithm in this class chooses a pair of classes, say
1 and j, then uses a trained binary classifier to determine which of the classes are more probable, and
eliminates the losing class. There are, however, many ways of choosing a pair of classes, resulting in many
proposed algorithms, e.g., DDAG [10], Randomized-DDAG [3], ADAG [7], and Reordering-ADAG [9]. In
recent results of Phetkaew, Kijsirikul, and Rivepiboon [9], algorithms that explicitly use generalization
error bounds for binary classifiers to pair up classes are presented. The question regarding how much
this information helps arises.

In this paper, we introduce a game-theoretic framework for analyzing this class of algorithms that
try to minimize the generalization errors using information on generalization error bounds of the binary
classifiers. In particular, we give a lowerbound on the worst-case generalization error for any algorithms,
and also present a randomized algorithm based on ADAG with a generalization error bound close to the
lowerbound.

Section 2 introduces the class-pairing game and give the connection to the multiclass learning problem.
We prove the lowerbound in Section 3, and present a randomized algorithm with its performance analysis
in Section 4. Finally, in Section 5, we give families of examples where the gaps are small and large.

1.1 Related work

Analysis of algorithms under game-theoretic settings, especially for on-line algorithms, is well-known,
e.g., see the book by Borodin and El-Yaniv [1]. In the area of learning theory, see results by Freund and
Schapire [5), Breiman [2], and Grove and Schuurmans [6] on Boosting.

Generalization performance of multiclass classifiers that uses binary classifiers as subroutines has
been analyzed in various settings, see, e.g., [4, 8, 10, 11].

*Kasetsart University, Bangkok, Thailand.
1Chulalongkorn University, Bangkok, Thailand.



2 Class-pairing game

We first define a more general two-player zero-sum game called class-elimination game. In this game,
two players, Alice and Baob, are given a complete weighted graph G = (V, E) with weight w on each edge
is given. Let n denote |V'|. For simplicity, we assume V = {1,...,n}. The game proceeds in steps, in
which one node is removed. from the graph. Let G, for £ = 0,...,7n — 1, be the graph after step k.
Initially, Go = G. In step k, Alice picks an edge (4,7) in Gg_;. Then Bob chooses which of the two
nodes, i or j, to be removed, ie., Gy is G¢_; with one node, depending on Bob’s choice, removed. The
weight w(i, j) is added to the score of the remaining node, which is zero initially. After step n — 1, there
are only one node left; it’s score is the value of the game, which is also Bob’s payoff. Since this is a
zero-sum game, Alice’s payoff is the negative of that value, i.e., Alice wants to minimize the score of the
last node.

We illustrate the connections to the multiclass learning problem. In the multiclass learning problem,
we want to classify data from set X" into n classes. The learning algorithm for this problem outputs
a hypothesis h : X — [n], or usually classed a classifier, where [n] denote {1,2,...,n}. We want h to
predicts the correct label for a given data point. Formally, suppose that the data points and labels are
sampled from distribution D over X x [n], we call

(z,f)ip[h(z) k)

the generalization error of h. A given multiclass learning problem induces ('2‘) binary problems, i.e., for
each pair of classes 7 and j, a binary classification problem wants to distinguished data points from class
i from data points from class j. A learning algorithm for a pair of classes {4, j) outputs a hypothesis
A;; X = {i,7}. The (binary) generalization error of A; ; is

Pr[A;;(x) # yly € {é, 7))
{(z.4)~D

This learning environment can be modeled in the class elimination game as follows. We associate
node ¢ in G with class ¢ € [n]. The weight w(i, ) in the graph represents the generalization error of
A;j. Consider a classification algerithm A that uses classifiers A; ;’s as subroutines. A would proceed
in steps like this: given a data point z, A picks a pair of candidate classes ¢ and j, and invokes 4; ;; A
then eliminates either ¢ or j from the candidate classes of z, depending on the output of A, ;.

We first explain the idea on how one can analyze the generalization error using a restricted form of
the class elimination game. We later prove the equivalence formally in Lemma 1.

We are given a data point £ € X, assume that the correct class is n. Note that for any classifier A; ;
such that n # {i, 7}, any result of A; ;(x) will not contradict its known generalization performance, since
z is in one of its “don’t care” classes. This gives Bob full power of choosing its result. On the other
hand, for any classfiers A, », we only allows Bob to return n, ensuring that the final class in the game is
n; this reason for this will be clear shortly. In the analysis, we assume that all results of A, ;(z) for all
i,j # n are known, but have not revealed to Alice.

Consider playing the game along with the execution of the classification algorithm 4. At step k,
assume that n has not been eliminated. Alice start by choosing an edge e. If n is not one of e’s end
nodes, we reveal Bob’s choice for it and continue on the next step. However, if n is adjacent to e, i.e.,
e = {n, p;) for some p, there is a chance that n gets eliminated. Let F; be the event that n remains in the
k-th round and gets eliminated in this round, and let E, be the event that A, , gives wrong prediction.
We note that event Fy implies E,,, i.e., F; C IE,,. Note that class p, can be determined by assuming
that in previous rounds all classifiers A, , invoked make correct predictions. This is the reason why we
assume that Ay o(x) =n. Let K be the set of steps k such that classifiers Ap, . is invoked.

To make a wrong prediction, event F}, for some k € K, must occur. Thus,

PrlAG) #n) = Pr{|J A

kEK
< Prf U E)
keK
< S PiE,] =Y wipk,n),
kEK keK



which is exactly Bob’s payoff in the game. This implies that the generalization error is at most Bob’s
payoff, proving the first part of the following lemma.

Lemma 1 For any probability space P consistent with the information on the generalization error of the
binary classifiers, i.e.,
Pr [A;;(x) # yly € {i, 7}] = w(i, ),
(z.y)~P

if there is a strategy for Alice that guerantees e payoff al least —e when Bob’s strategy is non-adaptive,
there is an olgorithm A with generalization error at most €. On the other hand, for any instance of
the game, there is a probability space P and o set of binary classifiers satisfying the above performance
constraint, such that the generalization error of A is at exactly Bob’s payoff.

The proof of the first part is in the previous discussion. The proof for the second part will be provided
in the final version.

Therefore, to analyze the generalization error of a multiclass-binary construction, we need only to
analyze the game where the algorithm plays as Alice.

To analyze ADAG-like algorithm, we introduce another game, the class-pairing game. As in the
class-elimination game, Alice and Bob are given a weighted complete graph with n nodes. With out
loss of generality, we assume that n is a power of two, i.e., there is some integer £ such that n = 2¢. If
n is not a power of two, we add dummy classes with zero adjacent edge weights. The game proceeds
in £ rounds. For each round, Alice picks a perfect matching, and for each edge (7,7) in the matching,
Bob removes one of the node. Therefore, for each round, half of the nodes are removed. This game is
a class-elimination game where Alice picks many edges (to form a perfect matching) before Bob reveals
his choices.

3 The lowerbound

In this section we prove the lowerbound for Bob's payoff. We give the strategy for Bob that would leave
one node s in the graph. We first sort the nodes according the weights of the adjacent edges with s, i.e.,
we reindex the nodes so that s = n and w(n, ) < win,i+1) for 1 <1 < n — 1. For brevity, we write w(i)
for w(n,i). We call this sequence of non-decreasing weights w(1),w(2),...,w{n — 1) a weight sequence
of node n of length n - 1. A weight sequence of round i is a weight sequence of length 2¢-i+1,

We consider the greedy strategy for Bob: when Bob has to choose between class ¢ and 7, Bob always
chooses the class with higher weight, i.e., Bob chooses max{z, j}.

To give some intuition, we do a thought experiment with Alice strategy. Suppose that Alice knows
the final node n. What can Alice do to minimize her loss? Clearly, Alice wants to pair up nodes with
small weights with n. For other nodes, if she matches ¢ with j, for ¢ > #, she can be sure that 7 would be
eliminated, removing weight w(j) from the game. One strategy for her is to pair up 1 with n, and 2 with
3, 4 with 5, and so on. Finally, n — 2 is paired up with n —~ 2. Therefore, in this round, her loss is w(1).
If she continues with this, her total loss will be w(1) +w(3)+ w(?) + - -+ w{n — 1) = Zle w{2t = 1).

The following lemma shows that this is the best Alice can do.

Theorem 1 If Bob follows the greedy strategy, Bob can always get at least Ele w(2t - 1).

Proof: We prove by induction on £. The base case where £ = 1 is clear. We shall prove the inductive
step.

Letn = 2¢ for £ > 1. Let C' = {1,2,...,n}. Consider any perfect matching M that Alice choose.
Given this choice of Alice, the set of classes (' after this round is {max{a,b} : (a,b) € M}. Note that
the goal class n isin C' since it has the highest index. We treat C' as an increasing sequence. Therefore,
the weight sequence u of the next round is u(i) = u(C'(i)) fori=1,...,n/2 - 1.

Let p denote the class matched with n in M. Consider another weight sequence @ of length n/2 —1,
obtained from another matching M’ defined as (i) = w(2) for 1 < ¢ < p/2 and &(i) = w(2i + 1)
for p/2 < i < nf2. We claim that v dominates @, i.e., u(i) > 4(i) for all 1 < i < n/2 — 1. To see
this, consider any index i. Note that C'(3) is larger than i — 1 larger indices in the set of disjoint pairs
from C — {p}. Therefore, ({f € C—{p}:j < C'@O} > 2(i - 1)+ 1, i.e., C'(3) > 2{if C'(z) < p, and
C'(i) > 2i + Lif C'(%) > p. The claim follows from the definition of &. Figure 1 illustrates this clairs.
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Figure 1: Matchings M (top) and M’ (bottom). Note that the weight sequence u of M dominates .

We now prove the theorem for the case that the weight sequence of the next round is #. The theorem
follows from the fact that © dominates 4.
Since i is a weight sequence of length 2°~! — 1, by the induction hypothesis, Bob can get the payoff

at least 3 J"i (27 — 1). Together with the payoff Bob receives in this round, Bob gets

-1
wip) + »_ (27 - 1).
J=1

Let ¢ = |log(p + 1}]. We show that this is at least 21 L w(2* — 1) by breaking the sum into three cases
around ¢ as follows.

4 g—1 £
Sw@-1) = Y w@-D+w@ -1+ Y w@-1)
i=1 i=1 i=g+1

g—1 [
< Sa@ - 4w+ Y, w@-1)
i=1 i=g+1
g—1 -1
= (2" - 1) + w(p) + ZW(Z"“ -1)
i=1 i=q
—1 —1
= Z @ - 1) +wp)+ Y @2 - 1)
i=1 i=q
21
= wp)+ ) @2 -1).
j=t
The theorem follows. ]

4 The upperbound

In this section, we introduced a randomized strategy for Alice for the class-atching game: for each round
Alice picks a random perfect matching. A simple exchange argument shows that for this randomized
strategy, the greedy strategy is the best non-adaptive one Bob can play. More precisely, suppose that
finally, Bob chooses class ¢ as the last remaining class. The best way he should have chosen is to play
greedy with i as the solution class from the beginning.

Without loss of generality, suppose that Bob choose n as the solution class. We first analyze the
probability that class § is not eliminated after k rounds. We can view the game as a component merging
process. Initially, each node is a singleton component. For each round, components are paired up,
and they are merged. The classes left in each round are ones which have the highest indices in their
components. After round k, n/2* components are left, each of size 2F. Therefore, class i is not eliminated
if 7 is the node with the highest index in the component contamlng i. Since the merging is random, any
components containing ¢ is equally likely. There are (2,, 1) possible components containing i, while



there are, however, (;,f_ll) components where i is the highest index. Let 4; ; be the event that { is not
eliminated after round k. Hence,
i—1 , . ,
Pr[A-k]—' 2’:’:_1)_(2—1).(2—2)“-(1—2’:‘]‘1)
k] =

() =1 (n=2) (n-2%+1)

Note that if i < 2’“, Gix = 0.
Let even B, ; denote the probability that class i contribute to Bob’s payoff in round %, i.e., in round
k, edge (¢,n) is chosen. We have that

Pr[B,-,k] = Pr[Bi,kIAi,k—ll‘Pr[Ai,k—l]

i
= oy Pl

i—1
_ 1 ) 2k-1 _ 1
T p-2k-1 n—1
Tok-1 9k-1 _ 1
i—1
26-1 _ 1
- n—1
2k—l

Events B; ;. for 1 < k < £ are disjoint. Dencte by p; the probability that class ¢ contributes to Bob’s
pavoff in any round. We have

M o= PI[B,‘J U Bi’g u---u B{ye]

£
= Z PI‘{Bi‘k]
ey
S L

k=1 \2+-1

Hence, the expected payoff for Bob is Z:’z_ll p;w(i). The following thorem summarizes the above discus-
sion.

Theorem 2 [f Alice uses the random matching strategy, the ezpected payoff for Bob is

i=1 k=1 2k-1

5 The gaps

In the later discussion, we let LB denote the lowerbound for Bob’s payoff from Section 3, and UB denote
the upperbound on the expected payoff for Bob when Alice plays randomized strategy from Section 4.

In this section, we first prove a few useful properties of LB and UB. Then, we analyze the gaps
when the weights are independently sampled from uniform distributions and normal distributions. We
consider both the additive gap (U B —~ LB), and the multiplicative ratio (/B/LB).

5.1 Basic properties

Fact 1 The following are true.

UB 1 - -1 -1
L 3g = w(n—;))gfilzug(:-‘l))-w{l) < wwni y -




b
s

—B<E=10gn.

3. For any k, BE[UB] > == k Llog n(Ew(k)]), where expectation is taken over the weights.

4 TL, Pr(Bii] =YL, 2(":5__11:)1 —(Jk_;l

2k—1

5. Let gy be the probability that some node i, fori < j, is paired up with n in the randomized strategy
for Alice. If j < nf2V/% g, < 1/2.

We omit the proof in this extended abstract.

5.2 Uniform distribution

Suppose that the weights are independently sampled uniformly from (0,1). It is known that for the
expectation of the k-smallest of » — 1 such random variables is k/n, i.e., Ew(k)] = k/n.
Applying Theorem 1, we have

4
ED) w2 - 1))

E[LB] =

i=1
l N

= ZE[w(Z’—l)]
[

= ) (2-n/2
i=]1

= (2-28-2-¢)/2

< 2

From Fact 1 (3), we know that E[UB] > (logn)/2, since E{w(n/2)] = 1/2. Hence, E[UB - LB] >
(logn)/2 — 2 = Qlogn).

5.3 Normal distri_bution

We consider the case that weights are sampled uniformly from A{u,0?), the normal distribution with
mean g and varience o2, and bound the expected gap between w({n ~ 1) and w(1). It is not difficult to
show that for a normally distributed random variable X ~ A/(, ¢?), there is a constant ¢ such that the
probability that X > u + cov/Inn is 1/n2. By union bound,

Priw(n —1) > p+covinn] < 1/n.

Similarly,

Pr{w(l) < p—covinn] < 1/n,

since the distribution is symmetric. Thus with probability at least 1 — 2/n, “’S‘(”I‘U < ptcoylnn

= p—covinn’

Otherwise, with probability at most 2/n, iB B < logn, from the worst case bound, contributing at most
%F’ﬂ =o(1) to the expectation. Therefore,

URB pteovinn covinn
E 1)
[LB] p—covVinn +o(l)
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