ตารางที่ 4.8 อุณหภูมิการสลายตัวของ PVC ในพอลิเมอร์คอมโพสิต

รายการ	อุณหภูมิการสลายตัว (°C)
PVC100 : LDPE10	291.3
PVC100 : LDPE10 : PA 20 15 %	289.9
PVC100 : LDPE10 : SD10	243.7
PVC100 : LDPE10 : SD 50	234.9
PVC100 : LDPE10 : SD10 : PA 20 15	254.0
%	
PVC100 : LDPE10 : SD50 : PA 20 15	238.3
%	

จากตารางที่ 4.8 พบว่าอุณหภูมิในการสลายตัว (Decomposition temperature, T_d) ของ PVC ลดลงเนื่องจากความไม่เข้ากันของไม้ซึ่งมีสมบัติชอบน้ำ (Hydrophilic) ส่วน PVC และ LDPE มีสมบัติ ไม่ชอบน้ำ (Hydrophobic) นอกจากนี้ในงานวิจัยที่ผ่านมา [51-52] พบว่าปริมาณไม้ที่เพิ่มขึ้นมีผลต่อการ ลดลงของอุณหภูมิการสลายตัวของ PVC คือ พันธะไฮโดรเจนที่มีอยู่ในเนื้อไม้มีความสามารถทำให้ อะตอมของ CI หลุดออกจาก PVC เนื่องจากอะตอมของไฮโดรเจนซึ่งมีความเป็นบวกมากและสามารถ ดึงดูดคู่อิเล็กตรอนโดดเดี่ยวจากอะตอมของโมเลกุลอื่นที่อยู่ข้างเคียงซึ่งในกรณีนี้ คือ CI แรงที่เกิดขึ้นใน ลักษณะเช่นนี้ เรียกว่า พันธะไฮโดรเจน ดังนั้นเมื่อในระบบมีความร้อน PVC เกิดการเสียสภาพจึงทำให้ CI หลุดไปสร้างพันธะกับไฮโดรเจนอะตอมได้ แต่เมื่อใช้สารช่วยผสม พบว่าอุณหภูมิการสลายตัวของ PVC สูงขึ้นเล็กน้อย เนื่องจากลักษณะการทำงานของสารช่วยผสม คือ ส่วนที่มีขั้วใน PA 20 จะยึด เหนี่ยวกับส่วนที่มีขั้วใน PVC คือ C-CI ดังนั้น CI จึงมีโอกาสเกิดพันธะกับไฮโดรเจนได้น้อยลงเป็นผลให้ T_d มีค่าสูงขึ้น

4.2.5 การศึกษาอุณหภูมิการหลอมเหลวและอุณหภูมิการตกผลึกของ LDPE ในคอมโพ สิตระหว่างพอลิเมอร์ผสมและขี้เลื่อยจากไม้ยางพารา

การศึกษาใช้อัตราส่วนของ PVC100 : LDPE10 โดยใช้และไม่ใช้สารช่วยผสมชนิด PA 20 ปริมาณ 15 เปอร์เซ็นต์โดยน้ำหนักของ LDPE และปริมาณขี้เลื่อยที่ศึกษา คือ 10 และ 50 เปอร์เซ็นต์ โดยน้ำหนักของพอลิเมอร์ผสม ทำได้โดยการใช้เครื่อง Differential scanning calorimeter (DSC) ในการทดสอบจะศึกษาช่วงอุณหภูมิตั้งแต่ 25-150 องศาเซลเซียส อัตราการให้ความร้อน 10 องศาเซลเซียสต่อนาที

4.2.5.1 อุณหภูมิการหลอมเหลวของ LDPE

การศึกษาอุณหภูมิการหลอมเหลวผลึกของ LDPE ในคอมโพสิตได้ผลการทดลองดังนี้

ตารางที่ 4.9 อุณหภูมิการหลอมเหลว (T_m) ของ LDPE

ตัวอย่าง	อุณหภูมิการหลอมเหลว (°C)
PVC100 : LDPE10	111.1
PVC100 : LDPE10 : SD10	110.4
PVC 100 : LDPE10 : PA 20 15 : SD10	110.7
PVC 100 : LDPE10 : SD50	110.4
PVC 100 : LDPE10 : PA 20 15 : SD50	109.7

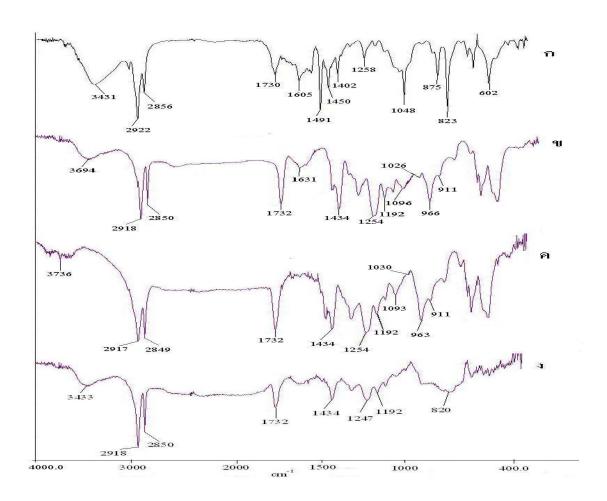
จากตารางที่ 4.9 พบว่าเมื่อผสมขี้เลื่อยปริมาณ 10 และ 50 เปอร์เซ็นต์โดยน้ำหนักของพอลิ เมอร์ผสมลงในพอลิเมอร์ผสมระหว่าง PVC และ LDPE ที่ใช้และไม่ใช้สารช่วยผสมไม่ทำให้อุณหภูมิการ หลอมเหลวผลึกของ LDPE ในคอมโพสิตเปลี่ยนแปลงมากนัก

4.2.5.2 อุณหภูมิการตกผลึกของ LDPE

การศึกษาอุณหภูมิการตกผลึก เอนทัลปีและองศาความเป็นผลึกใช้เทคนิคเดียวกับการศึกษา อุณหภูมิการหลอมเหลวผลึกซึ่งได้ผลการทดลองดังนี้

ตารางที่ 4.10 อุณหภูมิการเกิดผลึก เอนทัลปีและองศาความเป็นผลึกของ LDPE

ตัวอย่าง	T _c (°C)	ΔH_f	ΔH_n	%
		(J/g)	(J/g)	Crystallinity
PVC100 : LDPE10	98.1	3.22	35.42	12.06
PVC100 : LDPE10 : SD10	97.1	4.12	50.37	17.15
PVC100 : LDPE10 : PA 20 15 : SD10	96.3	3.93	48.64	15.57
PVC100 : LDPE10 : SD50	95.4	2.42	53.19	18.12
PVC100 : LDPE10 : PA 20 15 : SD50	95.3	2.28	50.55	17.22

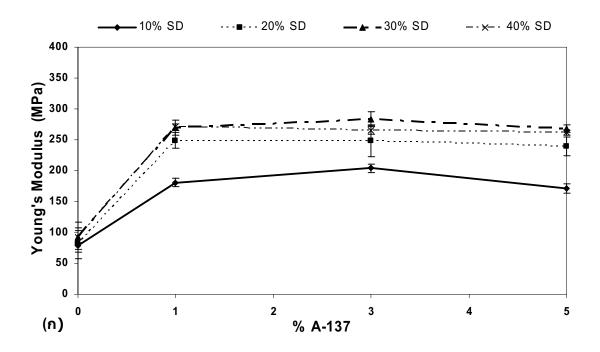

อุณหภูมิการเกิดผลึกเป็นอุณหภูมิการเกิดผลึกใหม่ของพอลิเมอร์ โดยจากผลการศึกษาดังแสดง ในตารางที่ 4.10 พบว่า การเติมขึ้เลื่อยลงไปในพอลิเมอร์ผสมในแต่ละอัตราส่วนที่นำมาศึกษาไม่ทำให้ อุณหภูมิการเกิดผลึกเปลี่ยนแปลงมากนัก แต่เอนทัลปีและองศาความเป็นผลึกมีค่าเพิ่มขึ้นเมื่อมีขึ้เลื่อย อยู่ในระบบ ทั้งนี้เนื่องจากผลึกที่เกิดขึ้นสามารถเกิดผลึกเล็ก ๆ ขึ้นแบบตั้งฉาก (Transcrystallization) [49] ที่บริเวณพื้นผิวของขี้เลื่อยได้ คือ ขี้เลื่อยทำหน้าที่เป็นสารก่อผลึกโดยเมื่อปริมาณขี้เลื่อยมากขึ้นทำ ให้องศาความเป็นผลึกมีค่าเพิ่มขึ้น ส่วนการใช้สารช่วยผสมมีผลทำให้เอนทัลปีและองศาความเป็นผลึกมีค่าลดลงเล็กน้อย ซึ่งเป็นไปได้ว่าสารช่วยผสมอาจเกิดการยึดเหนี่ยวกับขี้เลื่อยโดยใช้สมบัติความมีขั้วทำ ให้ขี้เลื่อยทำหน้าที่เป็นสารก่อผลึกได้ลดลงหรืออาจเกิดจากสารช่วยผสมทำให้เกิดการยึดเหนี่ยวระหว่าง

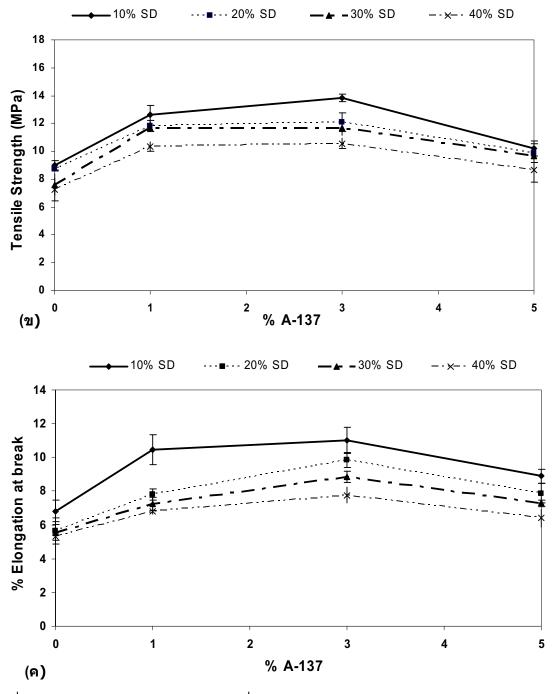
PVC และ LDPE ส่งผลให้การจัดเรียงตัวของ LDPE เป็นไปได้ยากขึ้น ความสามารถในการเกิดผลึกจึง ลดลง

4.3 การศึกษาผลของสารคู่ควบ Silane และ/หรือ MAPE ที่มีผลต่อสมบัติ ต่าง ๆ ของคอมโพสิต

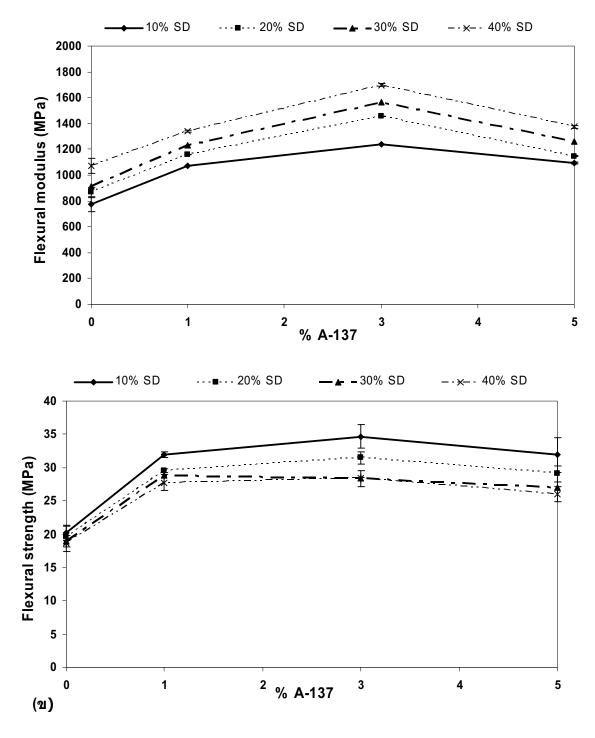
ในขั้นตอนนี้เป็นการนำคอมโพสิตจากพอลิเมอร์ผสม PVC:LDPE 100:40 ที่มี PA-20 เป็นสาร ช่วยผสมมาเตรียมเป็นคอมโพสิตโดยใช้สารคู่ควบ Silane A-137 และ Silane A-1100 และสารช่วยผสม MAPE ในปริมาณแตกต่างกัน ได้แก่ 0 1 3 และ 5% โดยน้ำหนักของขี้เลื่อย รวมถึงศึกษาเกี่ยวกับการ ใช้ Silane A-137 หรือ Silane A-1100 และสารช่วยผสม MAPE ในอัตราส่วนต่าง ๆ ได้แก่ 1:1 1:2 และ 2:1ที่มีผลต่อสมบัติเชิงกล สัณฐานวิทยาและสมบัติทางความร้อนของคอมโพสิต

4.3.1 การศึกษาหมู่ฟังก์ชันของคอมโพสิตที่ใช้ Silane หรือ MAPE

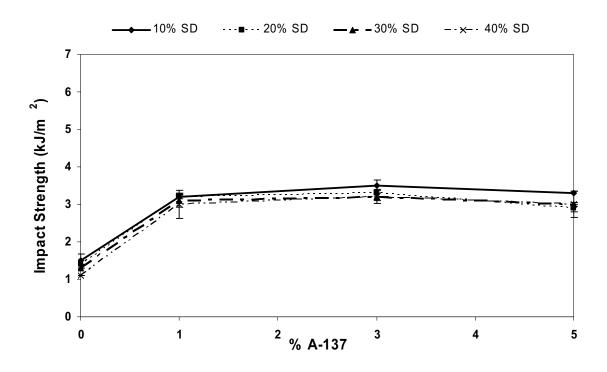



รูปที่ 4.23 อินฟราเรดสเปกทราของพอลิเมอร์ผสม PVC/LDPE/PA20 (ก) ไม่มี Silane หรือ MAPE (ข) ผสม Silane A-137 (ค) ผสม Silane A-1100 และ (ง) ผสม MAPE

จากอินฟราเรดสเปกทราในรูปที่ 4.23 พบว่า ตัวอย่างคอมโพสิต PVC/LDPE เสริมแรงโดย ขี้เลื่อยให้พีกหลักคล้ายกับอินฟราเรมสเปกทราที่แสดงในรูปที่ 4.17 โดยตำแหน่งพีกช่วง 3400-3500 cm⁻¹ เกิดจากการสั่นแบบ O-H stretching ของหมู่ไฮดรอกซิลในขี้เลื่อย ที่ตำแหน่ง 1650-1720 cm⁻¹ เป็นการสั่นของหมู่คาร์บอนิล (C=O stretching) ที่พบในองค์ประกอบขี้เลื่อย 1430-1470 cm⁻¹ เกิดจาก C-H bending ของ CH₂ ที่เป็นสายโซ่หลักของพอลิเมอร์ผสมระหว่าง PVC และ LDPE สำหรับการใช้ Silane A-137 ให้พีกสำคัญเพิ่มขึ้นมาที่ตำแหน่ง 1095-1190 cm⁻¹ ซึ่งเกิดจากการสั่นแบบ Si-O-C stretching [46-47] และพีกที่ตำแหน่ง 1020-1030 cm⁻¹ แสดงถึงการสั่นของ Si-OH stretching [46-47] เช่นเดียวกับการใช้ Silane A-1100 ที่ให้พีกสำคัญที่ตำแหน่งเดียวกัน ส่วนการใช้ MAPE แสดงพีกที่ตำแหน่ง 1732 cm⁻¹ ซึ่งเกิดจากการสั่นแบบ C=O stretching [46-47] ที่ซ้อนทับกันระหว่างหมู่ คาร์บอนิลที่พบในขี้เลื่อยและหมู่คาร์บอนิลที่อยู่ในโครงสร้างของมาลิอิกแอนไฮดรายด์


4.3.2 ผลของสารคู่ควบ Silane ที่มีผลต่อสมบัติเชิงกลของคอมโพสิต 4.3.2.1 Silane A-137

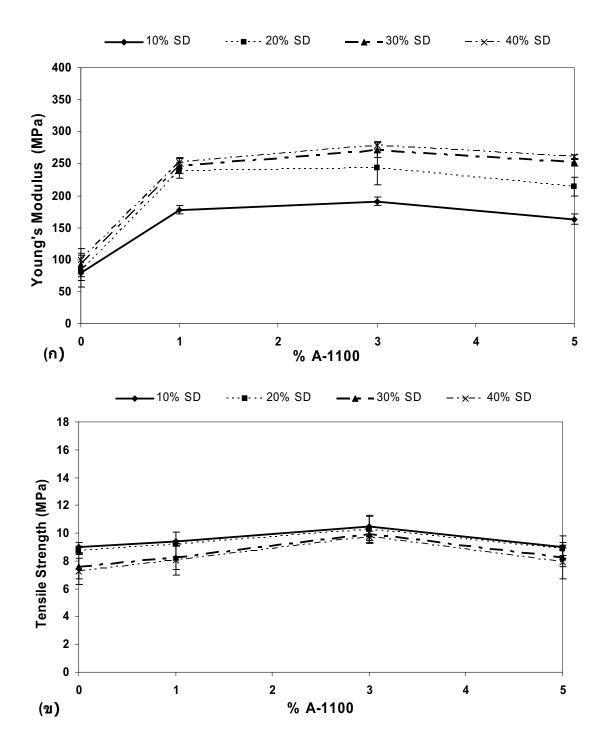
จากรูปที่ 4.24 (ก)-(ค) พบว่าสมบัติด้านแรงดึงของพอลิเมอร์คอมโพสิตมีแนวโน้มที่ดีขึ้นเมื่อมี การใช้สารคู่ควบ Silane A-137 ทั้งนี้เนื่องจากการที่สารคู่ควบ Silane A-137 ประกอบด้วยส่วนที่ไม่มีขั้ว (หมู่ออกทิล) และส่วนมีขั้ว (หมู่เอทอกซี) สามารถเชื่อมโยงให้โมเลกุลของพอลิเมอร์ผสมเกิดการยึด เหนี่ยวกับโมเลกุลของเซลลูโลสที่เป็นองค์ประกอบหลักของขี้เลื่อยได้ผ่านทางการเกี่ยวพันเชิงกลและ การเชื่อมโยงแบบไดโพลตามลำดับ และปริมาณ Silane A-137 ที่ให้สมบัติด้านแรงดึงดีที่สุดอยู่ที่ ปริมาณ 3% นอกจากนี้ยังพบว่าปริมาณขี้เลื่อยที่แตกต่างกัน ทำให้สมบัติด้านแรงดึงของคอมโพสิตที่มี การใช้ Silane A-137 เป็นไปในทำนองเดียวกัน



รูปที่ 4.24 สมบัติด้านแรงดึงของคอมโพสิตที่ใช้ Silane A-137 เป็นสารคู่ควบ (ก) มอดุลัส (ข) ความ แข็งแรงดึง และ (ค) ร้อยละการดึงยืด ณ จุดขาด

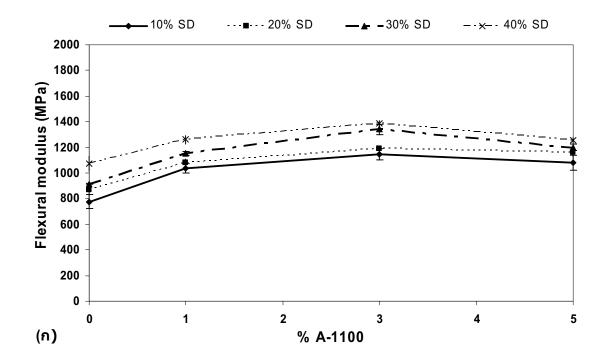
รูปที่ 4.25 สมบัติด้านการโค้งงอของคอมโพสิตที่ใช้ Silane A-137 เป็นสารคู่ควบ (ก) มอดุลัสโค้งงอ และ (ข) ความแข็งแรงโค้งงอ

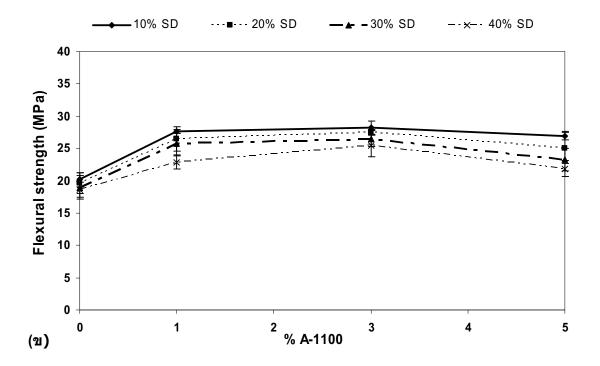
สมบัติด้านการโค้งงอของคอมโพสิตที่มีการใช้สารคู่ควบ Silane A-137 แสดงได้ดังรูปที่ 4.25 จากผลการทดลองพบว่า สารคู่ควบ Silane A-137 ทำให้สมบัติด้านการโค้งงอของคอมโพสิตเพิ่มขึ้นเมื่อ เปรียบเทียบกับคอมโพสิตที่ไม่มีการใช้ Silane A-137 สำหรับปริมาณที่ให้สมบัติด้านการโค้งงอดีที่สุด คือ 3% เช่นเดียวกับสมบัติด้านแรงดึง นอกจากนี้ยังพบว่าปริมาณขี้เลื่อยที่เพิ่มขึ้น ทำให้มอดุลัสโค้งงอ เพิ่มขึ้นแต่ทำให้ความแข็งแรงโค้งงอลดลง



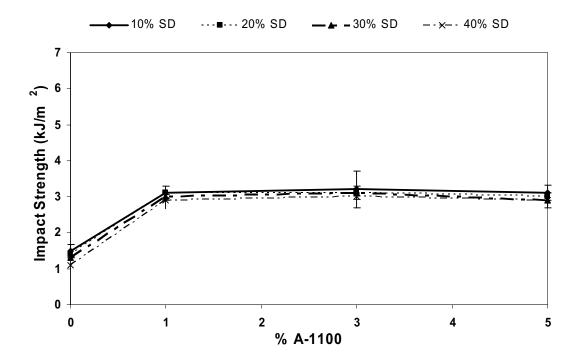

รูปที่ 4.26 ความแข็งแรงกระแทกของคอมโพสิตที่ใช้ Silane A-137 เป็นสารคู่ควบ

จากรูปที่ 4.26 พบว่า ความแข็งแรงกระแทกของคอมโพสิตที่ใช้ Silane A-137 เป็นสารคู่ควบให้ แนวโน้มที่เพิ่มขึ้นตั้งแต่การใช้ Silane A-137 ที่ 1% และปริมาณขึ้เลื่อยที่เพิ่มขึ้น ทำให้ความแข็งแรง กระแทกมีแนวโน้มไม่เปลี่ยนแปลง

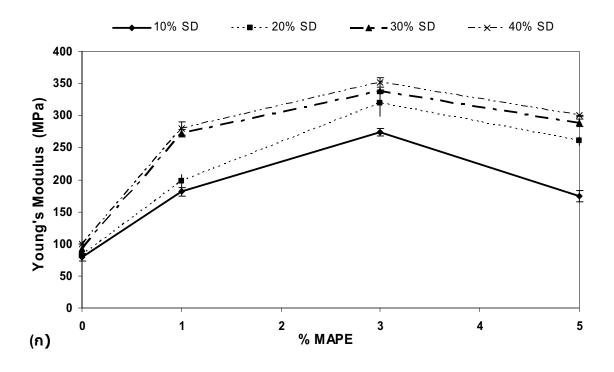

4.3.2.2 Silane A-1100

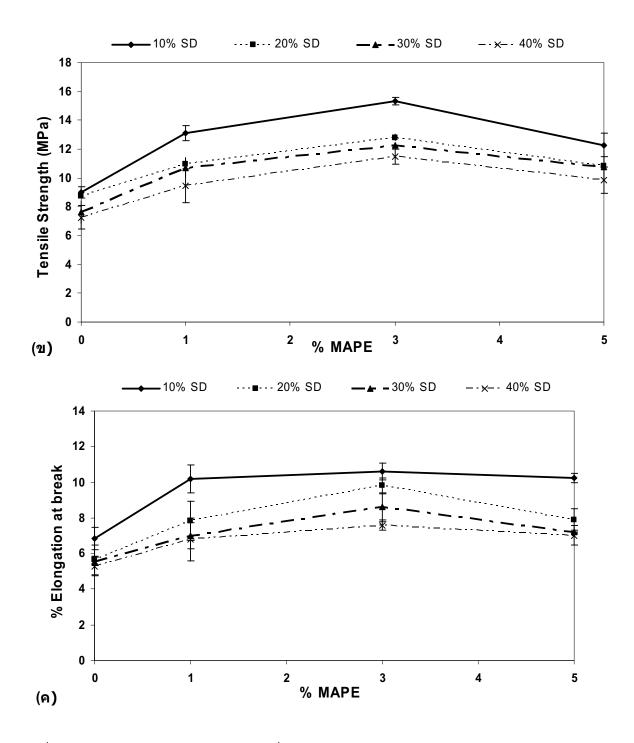

มอดุลัส ความแข็งแรงดึงและร้อยละการดึงยืด ณ จุดขาดของคอมโพสิตที่ใช้สารคูควบ Silane A-1100 แสดงได้ดังรูปที่ 4.27 (ก)-(ค) ตามลำดับ จากผลการทดลองพบว่า สารคู่ควบ Silane A-1100 ทำให้สมบัติด้านแรงดึงของคอมโพสิตเพิ่มขึ้นอย่างชัดเจน โดยปริมาณของ Silane A-1100 ที่ดีที่สุดอยู่ที่ 3% เช่นเดียวกับการใช้ Silane A-137 เนื่องจากโครงสร้างของ Silane A-1100 ที่ประกอบด้วยส่วนมีขั้ว ที่ทั้ง 2 ปลาย ได้แก่ หมู่อะมิโนและเอทอกซี สามารถเกิดการยึดเหนี่ยวระหว่างพอลิเมอร์ผสมและขี้เลื่อย ได้โดยการยึดเหนี่ยวแบบไดโพล นอกจากนี้ปริมาณขี้เลื่อยที่เพิ่มขึ้นทำให้มอดุลัสเพิ่มขึ้น แต่ทำให้ความ แข็งแรงดึงและร้อยละการดึงยืด ณ จุดขาดลดลง

รูปที่ 4.27 สมบัติด้านแรงดึงของคอมโพสิตที่ใช้ Silane A-1100 เป็นสารคู่ควบ (ก) มอดุลัส (ข) ความ แข็งแรงดึง และ (ค) ร้อยละการดึงยืด ณ จุดขาด

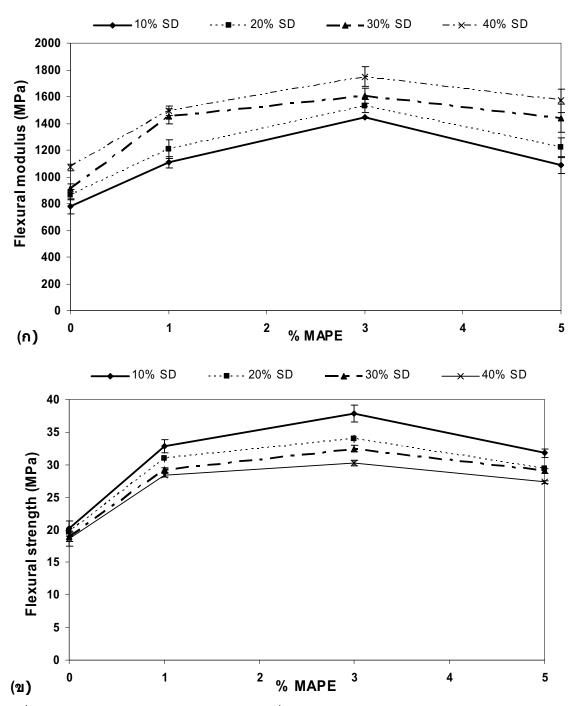


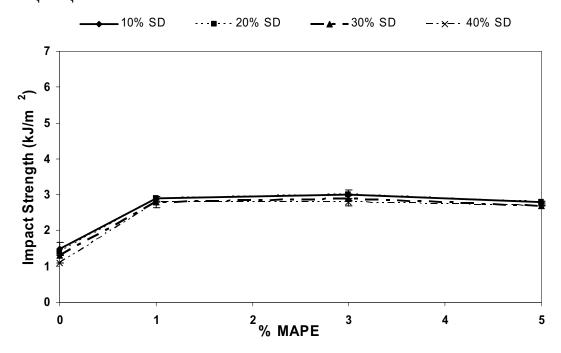
รูปที่ 4.28 สมบัติด้านการโค้งงอของคอมโพสิตที่ใช้ Silane A-1100 เป็นสารคู่ควบ (ก) มอดุลัสโค้งงอ และ (ข) ความแข็งแรงโค้งงอ


จากรูปที่ 4.28 พบว่าสมบัติด้านการโค้งงอของคอมโพสิตที่มีการใช้ Silane A-1100 ให้แนวโน้ม ที่คล้ายกับการใช้ Silane A-1100 ในรูปที่ 4.24 กล่าวคือ ทำให้มอดุลัสโค้งงอและความแข็งแรงโค้งงอมี ค่าเพิ่มขึ้นโดยให้ค่าที่มากที่สุดเมื่อใช้ Silane A-1100 ในปริมาณ 3%


ความแข็งแรงกระแทกของคอมโพสิตที่ใช้ Silane A-1100 เป็นสารคู่ควบมีค่ามากกว่าความ แข็งแรงกระแทกของคอมโพสิตที่ไม่มีการใช้ Silane A-1100 เป็นสารคู่ควบ ดังแสดงในรูปที่ 4.29 และ ปริมาณขี้เลื่อย 10% ให้ค่าความแข็งแรงกระแทกมากที่สุด

รูปที่ 4.29 ความแข็งแรงกระแทกของคอมโพสิตที่ใช้ Silane A-1100 เป็นสารคู่ควบ


4.3.3 ผลของสารช่วยผสม MAPE ที่มีผลต่อสมบัติต่าง ๆ ของคอมโพสิต

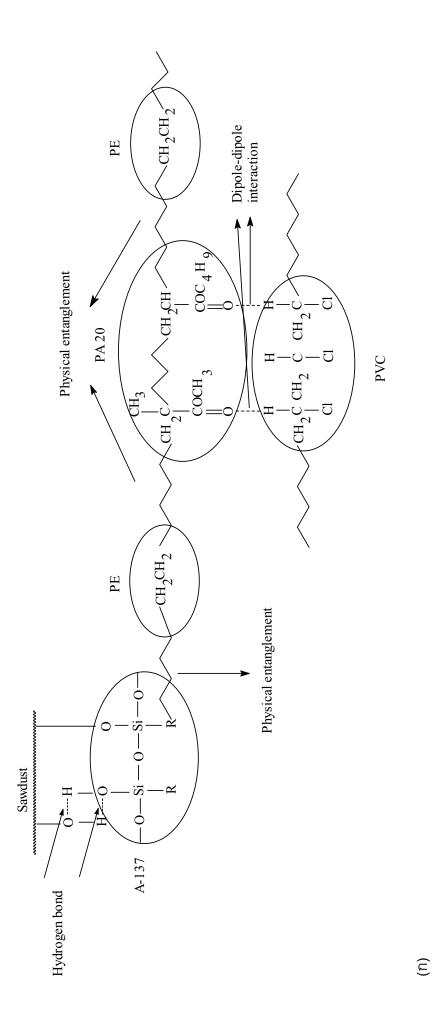

รูปที่ 4.30 สมบัติด้านแรงดึงของคอมโพสิตที่ใช้ MAPE เป็นสารช่วยผสม (ก) มอดุลัส (ข) ความแข็งแรง ดึง และ (ค) ร้อยละการดึงยืด ณ จุดขาด

สมบัติด้านความแข็งแรงดึงของคอมโพสิตที่มีการใช้ MAPE เป็นสารช่วยผสมสามารถแสดงได้ ดังรูปที่ 4.30 จากผลการทดลองพบว่าการใช้ MAPE ทำให้มอดุลัส ความแข็งแรงดึงและร้อยละการดึง ยืด ณ จุดขาดเพิ่มขึ้น โดยปริมาณ MAPE ที่ให้ค่าสมบัติเชิงกลดีที่สุด คือ ปริมาณ 3% โดยน้ำหนักของ ขึ้เลื่อย การเพิ่มขึ้นของสมบัติด้านแรงดึงเกิดขึ้นเนื่องจากการที่โมเลกุลของ MAPE ที่ปลายด้านหนึ่งเป็น ส่วนที่ไม่มีขั้ว (ส่วนของ MAPE) และปลายอีกด้านหนึ่งเป็นส่วนมีขั้ว (ส่วนของมาลิอิก แอนไฮไดรด์) ซึ่ง สามารถเกิดการเกี่ยวพันกับพอลิเมอร์ผสมและเกิดการเชื่อมโยงแบบไดโพลกับส่วนของขี้เลื่อย ตามลำดับ

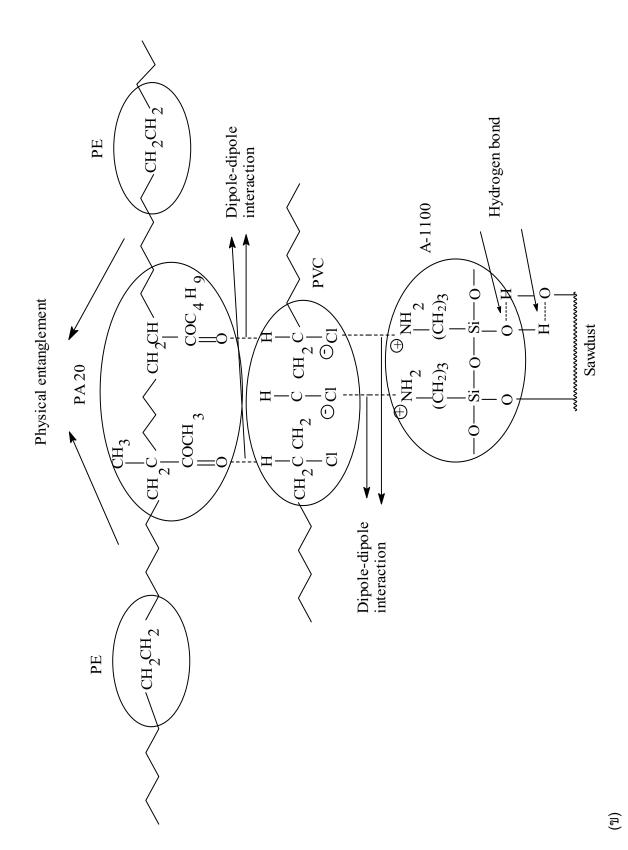
รูปที่ 4.31 สมบัติด้านการโค้งงอของคอมโพสิตที่ใช้ MAPE เป็นสารช่วยผสม (ก) มอดุลัสโค้งงอ และ (ข) ความแข็งแรงโค้งงอ

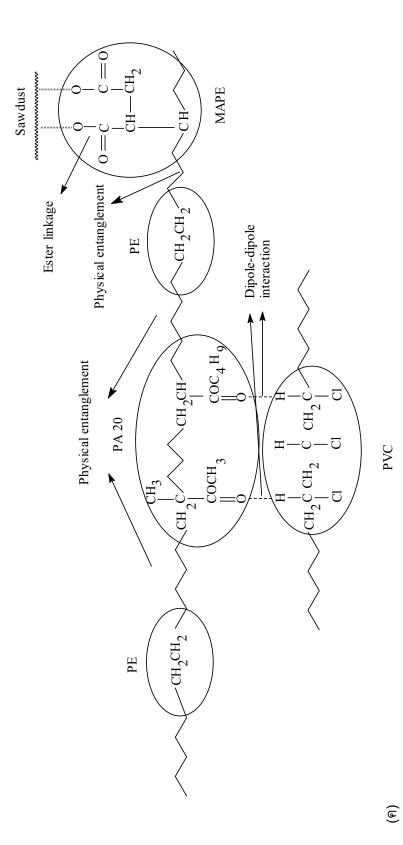
สมบัติด้านการโค้งงอของคอมโพสิตที่ใช้ MAPE เป็นสารคู่ควบสามารถแสดงได้ดังรูปที่ 4.31 พบว่า การใช้ MAPE ทำให้มอดุลัสโค้งงอและความแข็งแรงโค้งงอเพิ่มขึ้น โดยปริมาณ MAPE 3% ให้ค่า มากที่สุดในทุก ๆ ปริมาณขึ้เลื่อยที่ทำการศึกษา

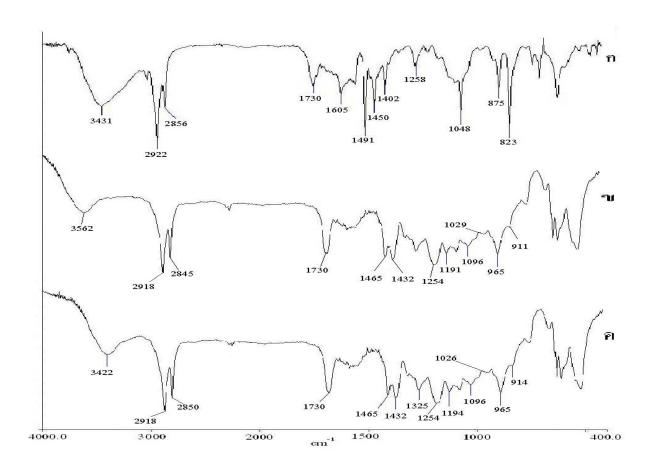
รูปที่ 4.32 ความแข็งแรงกระแทกของคอมโพสิตที่ใช้ MAPE เป็นสารช่วยผสม


ความแข็งแรงกระแทกของคอมโพสิตสามารถปรับปรุงได้โดยการใช้ MAPE โดยปริมาณ MAPE ที่ 3% ให้ค่าความแข็งแรงกระแทกสูงที่สุดโดยเฉพาะเมื่อใช้ปริมาณขี้เลื่อย 10% ให้ค่าความแข็งแรงกระแทกมากกว่าเมื่อใช้ขี้เลื่อยในปริมาณที่เพิ่มขึ้น

อันตรกิริยาที่เกิดขึ้นในระบบคอมโพสิตที่ประกอบด้วยพอลิเมอร์ผสมระหว่าง PVC และ LDPE ที่มี PA20 เป็นสารช่วยผสม ขี้เลื่อยและสารคู่ควบและ/หรือสารช่วยผสมสามารถแสดงได้ดังรูปที่ 4.33 สำหรับ Silane A-137 นั้นอันตรกิริยาที่เกิดขึ้นในส่วนที่ไม่มีขั้ว คือ การพันเกี่ยวเชิงกล (Physical entanglement) เกิดการเกี่ยวพันกับพอลิเมอร์ผสม ส่วนปลายที่มีขั้วของหมู่ไซลานอลสามารถสร้าง พันธะไฮโดรเจนหรือแรงยึดเหนี่ยวแบบไดโพลกับหมู่ไฮดรอกซิลของขี้เลื่อย ในทำนองเดียวกันการใช้ Silane A-1100 ส่วนที่มีขั้วของโมเลกุล Silane หรือหมู่ไซลานอลสามารถเกิดการสร้างพันธะกับขี้เลื่อย ได้เช่นเดียวกับกรณีของ Silane A-137 แต่ปลายอีกด้านที่มีขั้วสามารถเกิดแรงยึดเหนี่ยวแบบไดโพลกับ องค์ประกอบของ PVC ในพอลิเมอร์ผสมได้ เมื่อพิจารณา MAPE พบว่าหมู่แอนไฮดรายด์ของ MAPE สามารถเกิดปฏิกิริยาเคมีกับขี้เลื่อย และส่วนที่เป็นพอลิเอทิลีนของ MAPE สามารถเกิดการเกี่ยวพัน เชิงกลได้กับโมเลกุลของพอลิเมอร์ผสมที่แสดงถึงความไม่มีขั้ว


เมื่อเปรียบเทียบผลของสารคู่ควบ Silane A-137 Silane A-1100 และ MAPE พบว่าการใช้ สารคู่ควบ MAPE ให้การเพิ่มขึ้นของสมบัติเชิงกลโดยรวมมากกว่าการใช้สารคู่ควบ Silane A-137 และ Silane A-1100 เมื่อเปรียบเทียบในปริมาณการใช้ที่เท่ากัน เนื่องจาก MAPE สามารถสร้างพันธะ โควาเลนท์กับขี้เลื่อยได้ จากปฏิกิริยาระหว่าง MA และ OH group นอกจากนี้ยังเกิดขึ้นเนื่องจากความ ยาวของสายโซ่ของ PE ใน MAPE มีมากกว่าความยาวสายโซ่ของหมู่ไฮโดรคาร์บอนในโครงสร้างของ Silane A-137 ทำให้เกิดการพันเกี่ยวเชิงกลได้มากกว่า

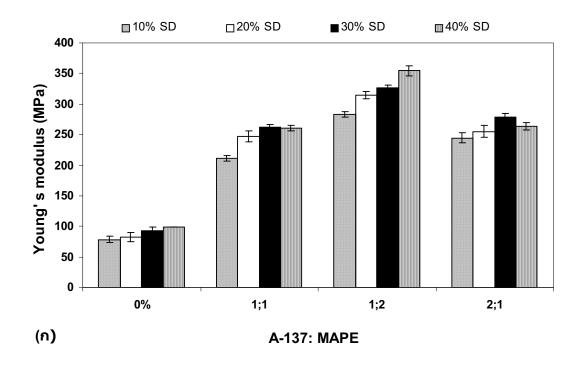

เมื่อเปรียบเทียบระหว่างสารคู่ควบ Silane ด้วยกันเองพบว่า Silane A-137 ซึ่งมีหมู่ปลายข้าง หนึ่งเป็นส่วนไม่มีขั้ว ให้สมบัติเชิงกลโดยรวมดีกว่าการใช้ Silane A-1100 ซึ่งหมู่ปลายข้างหนึ่งเป็นส่วน ที่มีขั้ว (หมู่อะมิโน) ทั้งนี้เนื่องจากพอลิเมอร์ผสมระหว่าง PVC และ LDPE นั้นส่วนของ LDPE สามารถ เกิดแรงยึดเหนี่ยวกับส่วนที่ไม่มีขั้วใน Silane A-137 ได้แต่ในกรณีของ Silane A-1100 ส่วนของPE ไม่ สามารถเข้ากันได้กับ Silane A-1100 ดังนั้นเมื่อใช้ MAPE หรือ Silane A-137 ที่มีปลายข้างหนึ่งเป็น ส่วนที่ไม่มีขั้ว จึงให้สมบัติเชิงกลโดยรวมที่ดีกว่าการใช้ Silane A-1100 ที่ปลายทั้งสองข้างเป็นส่วนที่มี ขั้ว นอกจากนี้ปริมาณของ Silane A-137 A-1100 และ MAPE ที่ให้สมบัติเชิงกลที่ดีที่สุด คือ 3% โดย น้ำหนักของขี้เลื่อย

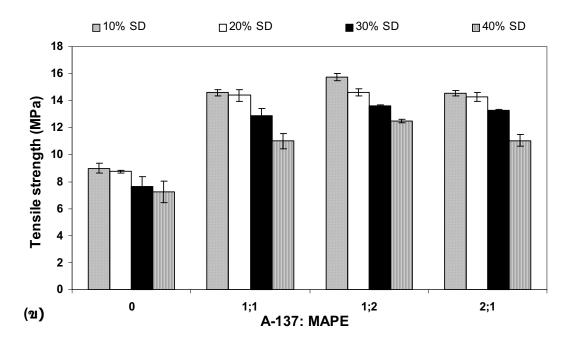


รูปที่ 4.33 อันตรกิริยาที่คาดว่าจะเกิดขึ้นในคอมโพสิตจากการใช้ (ก) Silane A-137 (ข) Silane A-1100 และ (ค) MAPE

4.3.4 การศึกษาหมู่ฟังก์ชันของคอมโพสิตที่ใช้ Silane และ MAPE

ในหัวข้อนี้เป็นการศึกษาถึงผลของสมบัติเชิงกลของคอมโพสิตที่ใช้สารคู่ควบและสารช่วยผสม ในปริมาณคงที่ที่ 3% ในอัตราส่วนต่าง ๆ ได้แก่ Silane A-137: MAPE Silane A-1100:MAPE 1:1 1:2 และ 2:1 โดยใช้ปริมาณขี้เลื่อยร้อยละ 10 20 30 และ 40

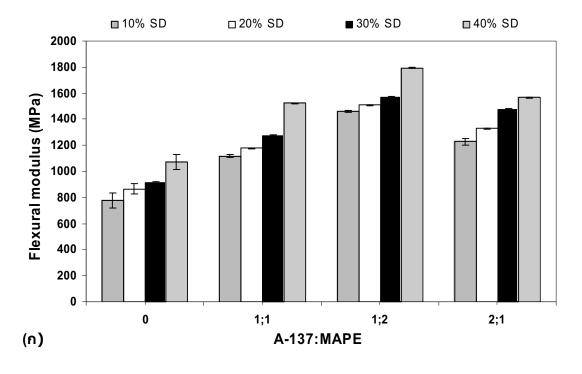


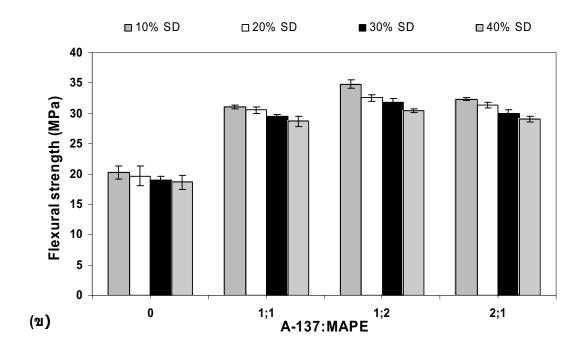

รูปที่ 4.34 อินฟราเรดสเปกทราของพอลิเมอร์ผสม PVC/LDPE/PA20 (ก) ไม่มี Silane หรือ MAPE (ข) ผสม Silane A-137 และ MAPE (1:1) และ (ค) Silane A-1100 และ MAPE (1:1)

จากรูปที่ 4.34 พบว่าการใช้สารคู่ควบ Silane A-137 และสารช่วยผสม MAPE ให้พีกที่ เหมือนกับการใช้สารคู่ควบ Silane A-137 หรือสารช่วยผสม MAPE เพียงสารเดียว กล่าวคือ ให้พีกที่ ตำแหน่ง 1020-1030 cm⁻¹, 1095-1190 cm⁻¹ และ 1734 cm⁻¹ ซึ่งเกิดจากการสั่นของ Si-O-C stretching, Si-OH stretching และ C=O stretching ตามลำดับ สำหรับการใช้สารคู่ควบ Silane A-1100 และสารช่วยผสม MAPE แสดงพีกที่ตำแหน่งใกล้เคียงกับการใช้ Silane A137 และ MAPE

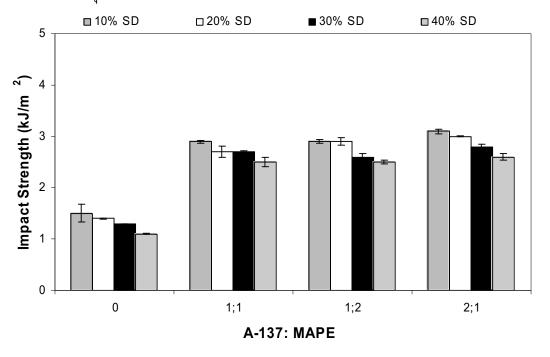
4.3.5 ผลของ Silane:MAPE ที่มีผลต่อสมบัติเชิงกลของคอมโพสิต

(ก) Silane A-137:MAPE

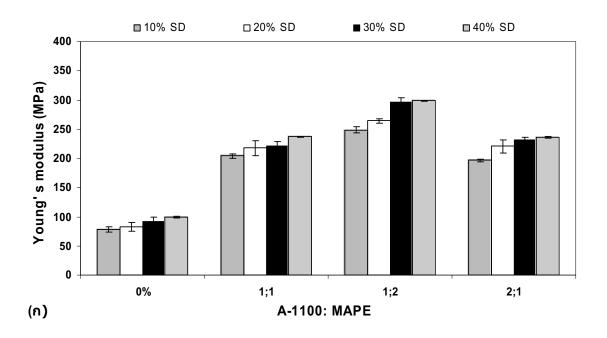


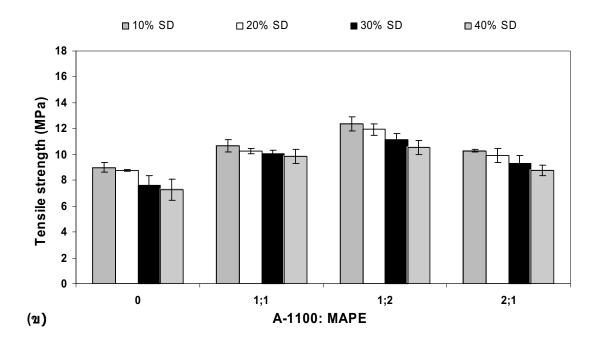


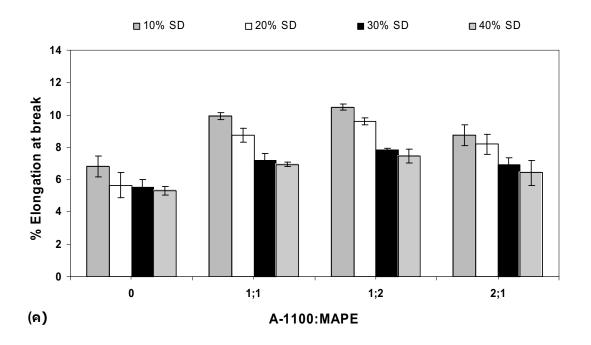
รูปที่ 4.35 สมบัติด้านแรงดึงของคอมโพสิตที่ใช้ Silane A-137:MAPE (ก) มอดุลัส (ข) ความแข็งแรงดึง และ (ค) ร้อยละการดึงยืด ณ จุดขาด


รูปที่ 4.35 แสดงสมบัติด้านแรงดึง ได้แก่ มอดุลัส ความแข็งแรงดึงและร้อยละการดึงยืด ณ จุดขาดของคอมโพสิตที่ใช้ Silane A-137:MAPE ในอัตราส่วนต่าง ๆ พบว่า อัตราส่วนของ Silane A-137:MAPE ต่าง ๆ ทำให้สมบัติด้านแรงดึงของคอมโพสิตมีแนวโน้มเพิ่มขึ้น สำหรับปริมาณขึ้เลื่อยที่ แตกต่างกันให้ผลการทดลองในทำนองเดียวกัน

รูปที่ 4.36 สมบัติด้านการโค้งงอของคอมโพสิตที่ใช้ Silane A-137:MAPE (ก) มอดุลัสโค้งงอ และ (ข) ความแข็งแรงโค้งงอ

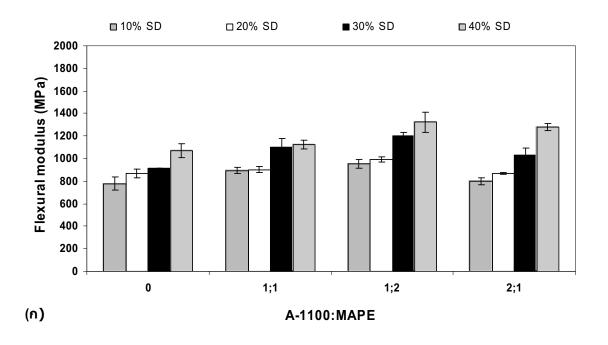

สมบัติด้านการโค้งงอของคอมโพสิตสามารถปรับปรุงได้โดยการใช้ Silane A-137:MAPE ใน อัตราส่วนต่าง ๆ ในทุก ๆ ปริมาณขี้เลื่อย (รูปที่ 4.36) โดยการเพิ่มขึ้นของค่าความแข็งแรงโค้งงอให้ผล ที่เด่นชัดกว่าค่ามอดุลัสโค้งงอ

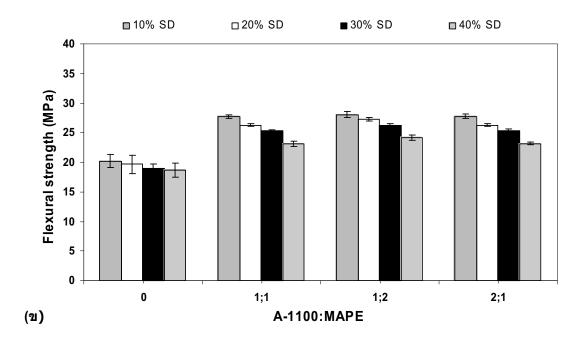



รูปที่ 4.37 ความแข็งแรงกระแทกของคอมโพสิตที่ใช้ Silane A-137:MAPE

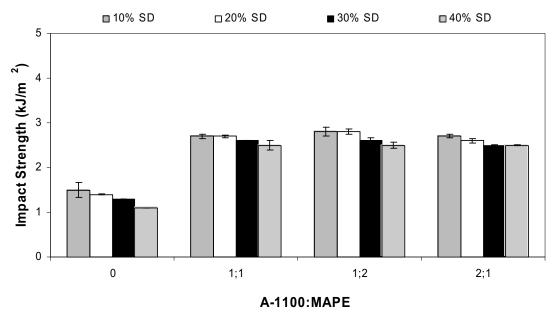
ความแข็งแรงกระแทกของคอมโพสิตมีค่าเพิ่มขึ้นจากการใช้สารคู่ควบและสารช่วยผสมใน อัตราส่วนต่าง ๆ ดังแสดงในรูปที่ 4.37 โดยที่ปริมาณขึ้เลื่อย 10% ให้ค่าความแข็งแรงกระแทกที่สูงที่สุด จากการปรับปรุงด้วยสารคู่ควบและสารช่วยผสม Silane A-137:MAPE ในอัตราส่วนต่าง ๆ

(ข) Silane A-1100:MAPE





รูปที่ 4.38 สมบัติด้านแรงดึงของคอมโพสิตที่ใช้ Silane A-1100:MAPE (ก) มอดุลัส (ข) ความแข็งแรง ดึง และ (ค) ร้อยละการดึงยืด ณ จุดขาด


รูปที่ 4.38 แสดงค่ามอดุลัส ความแข็งแรงดึงและร้อยละการดึงยืด ณ จุดขาดของคอมโพสิตที่ใช้ Silane A-1100:MAPE ในอัตราส่วน 1:1 1:2 และ 2:1 พบว่าที่อัตราส่วนต่าง ๆ ให้ค่าสมบัติด้านแรงดึงที่ เพิ่มขึ้นในทุก ๆ ปริมาณขี้เลื่อยเมื่อเปรียบเทียบกับคอมโพสิตที่ไม่มีการใช้สารคู่ควบและ/หรือสารช่วย ผสม

รูปที่ 4.39 สมบัติด้านการโค้งงอของคอมโพสิตที่ใช้ Silane A-1100:MAPE (ก) มอดุลัสโค้งงอ และ (ข) ความแข็งแรงโค้งงอ

สมบัติด้านการโค้งงอมีแนวโน้มเพิ่มขึ้นเล็กน้อยจากการใช้สารคู่ควบและสารช่วยผสม Silane A-1100:MAPE ในอัตราส่วนต่าง ๆ ดังแสดงในรูปที่ 4.39

รูปที่ 4.40 ความแข็งแรงกระแทกของคอมโพสิตที่ใช้ Silane A-1100:MAPE

ความแข็งแรงกระแทกของคอมโพสิตมีค่าเพิ่มขึ้นจากการใช้ Silane A-1100:MAPE ใน อัตราส่วนต่าง ๆ (รูปที่ 4.40) เช่นเดียวกับสมบัติด้านแรงดึงและสมบัติด้านการโค้งงอ

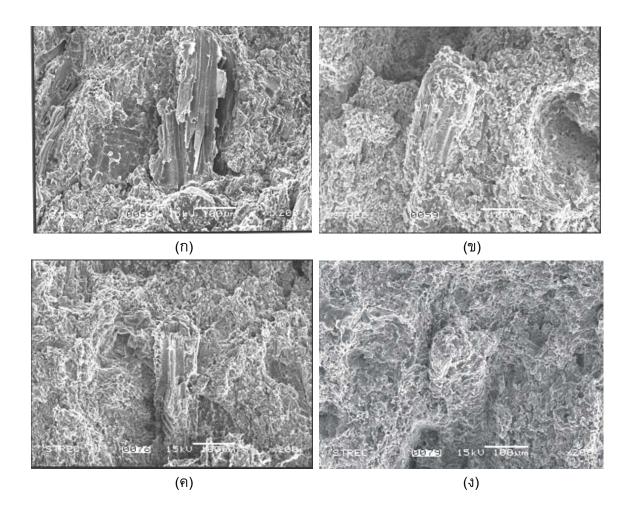
จากการใช้สารคู่ควบต่อสารช่วยผสม Silane A-137:MAPE และ Silane A-1100:MAPE ใน อัตราส่วน 1:1 1:2 และ 2:1 พบว่าแนวโน้มสมบัติเชิงกลโดยรวมของคอมโพสิตมีค่าเพิ่มขึ้นในทุก ๆ อัตราส่วน โดยการใช้ Silane A-137:MAPE ในทุก ๆ อัตราส่วนให้สมบัติเชิงกลโดยรวมที่ดีกว่าการใช้ Silane A-1100:MAPE ดังแสดงในตารางที่ 4.11-4.14 ทั้งนี้เนื่องจากความไม่มีขั้วของ Silane A-137 ที่ เข้ากันได้กับพอลิเมอร์ผสมระหว่าง PVC และ LDPE ที่ใช้เป็นเมทริกซ์ ซึ่งสัมพันธ์กับการใช้ Silane A-137 เพียงอย่างเดียวในหัวข้อที่ 4.3.2.1 ที่ให้สมบัติเชิงกลโดยรวมที่ดีกว่าการใช้ Silane A-1100 ใน หัวข้อที่ 4.3.2.2 นอกจากนี้ยังพบว่าอัตราส่วนของ Silane A-137:MAPE หรือ Silane A-1100:MAPE ที่ 1:2 ให้แนวโน้มที่ดีกว่าการใช้ที่อัตราส่วน 1:1 หรือ 2:1 ซึ่งคาดว่าเกิดจากปริมาณ MAPE ที่มากกว่า ส่งผลให้ความไม่มีขั้วของสารช่วยผสมมากกว่าจึงเข้ากันกับพอลิเมอร์ผสมได้มากกว่า สมบัติเชิงกล โดยรวมจึงดีกว่าการใช้ในอัตราส่วนอื่น ๆ

ตารางที่ 4.11 สมบัติเชิงกลของคอมโพสิตจาก PVC/LDPE ที่ใช้ขึ้เลื่อยปริมาณ 10% และมีการใช้สาร คู่ควบ Silane A-137 และ/หรือสารช่วยผสม MAPE ในปริมาณต่าง ๆ

Mechanical	A-137:MAPE					
properties	0:0	1:0	0:1	1:1	1:2	2:1
Young's modulus	78.4	204.0	273.9	211.3	283.7	244.8
(MPa)						
Tensile strength	8.9	13.8	15.3	14.6	15.7	14.5
(MPa)						
%Elongation	6.8	10.9	10.6	11.1	13.2	11.7
at break						
Flexural strength	20.2	34.7	37.9	31.0	34.8	32.3
(MPa)						
Flexural modulus	777.1	1239.3	1442.4	1118.4	1457.5	1227.6
(MPa)						
Impact strength	1.5	3.5	3.0	2.9	2.9	3.1
(kJ/m ²)						

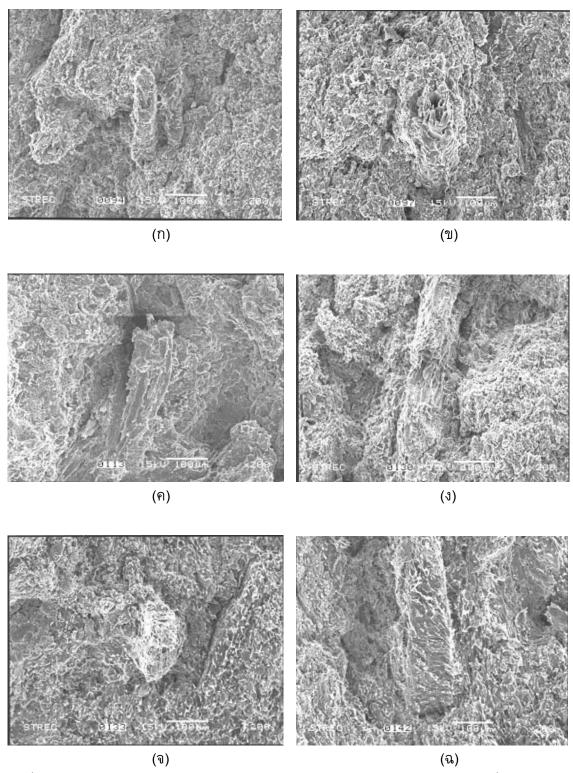
ตารางที่ 4.12 สมบัติเชิงกลของคอมโพสิตจาก PVC/LDPE ที่ใช้ขึ้เลื่อยปริมาณ 30% และมีการใช้สาร คู่ควบ Silane A-137 และ/หรือสารช่วยผสม MAPE ในปริมาณต่าง ๆ

Mechanical	A-137:MAPE					
properties	0:0	1:0	0:1	1:1	1:2	2:1
Young's modulus	92.3	283.5	337.9	261.6	326.7	278.9
(MPa)						
Tensile strength	7.6	11.7	12.3	12.9	13.6	13.3
(MPa)						
%Elongation	5.6	8.8	8.6	7.4	10.2	8.8
at break						
Flexural strength	19.0	28.5	32.4	29.6	31.8	30.0
(MPa)						
Flexural modulus	913.7	1567.8	1607.1	1276.6	1566.9	1475.6
(MPa)						
Impact strength	1.3	3.2	2.9	2.7	2.6	2.8
(kJ/m ²)						


ตารางที่ 4.13 สมบัติเชิงกลของคอมโพสิตจาก PVC/LDPE ที่ใช้ขี้เลื่อยปริมาณ 10% และมีการใช้สาร คู่ควบ Silane A-1100 และ/หรือสารช่วยผสม MAPE ในปริมาณต่าง ๆ

Mechanical		,	\-1100:M A	\PE		
properties	0:0	1:0	0:1	1:1	1:2	2:1
Young's modulus	78.4	190.9	273.9	204.19	248.7	196.3
(MPa)						
Tensile strength	8.9	10.5	15.3	10.6	12.4	10.3
(MPa)						
%Elongation	6.8	10.3	10.4	9.9	10.5	8.8
at break						
Flexural strength	20.2	28.3	37.9	27.7	28.1	27.8
(MPa)						
Flexural modulus	777.1	1145.4	1442.4	897.4	952.5	797.3
(MPa)						
Impact strength	1.5	3.2	3.0	2.7	2.8	2.7
(kJ/m ²)						

ตารางที่ 4.14 สมบัติเชิงกลของคอมโพสิตจาก PVC/LDPE ที่ใช้ขึ้เลื่อยปริมาณ 30% และมีการใช้สาร คู่ควบ Silane A-1100 และ/หรือสารช่วยผสม MAPE ในปริมาณต่าง ๆ


Mechanical	A-1100:MAPE					
properties	0:0	1:0	0:1	1:1	1:2	2:1
Young's modulus	92.3	270.7	337.9	220.8	297.0	231.1
(MPa)						
Tensile strength	7.6	10.0	12.3	10.1	11.2	9.3
(MPa)						
%Elongation	5.6	7.9	8.6	7.2	7.8	6.9
at break						
Flexural strength	19.0	26.5	32.4	25.3	26.2	25.3
(MPa)						
Flexural modulus	913.7	1350.6	1607.1	1102.8	1204.8	1028.3
(MPa)						
Impact strength	1.3	3.1	2.9	2.6	2.6	2.5
(kJ/m ²)	_					

4.3.6 ผลของ Silane และ/หรือ MAPEที่มีผลต่อสัณฐานวิทยาของคอมโพสิต

รูปที่ 4.41 สัณฐานวิทยาของคอมโพสิตระหว่าง PVC/LDPE ที่ใช้ PA20 (ก) ไม่มีการใช้สารคู่ควบ และสารช่วยผสม (ข) ใช้สารคู่ควบ Silane A-137 (3%) (ค) ใช้สารคู่ควบ Silane A-1100 (3%) และ (ง) ใช้สารช่วยผสม MAPE (3%)

จากสัณฐานวิทยาของคอมโพสิตในรูปที่ 4.41 พบว่าคอมโพสิตที่ไม่มีการใช้สารคู่ควบ Silane และสารช่วยผสม MAPE (รูปที่ 4.42 (ก)) แสดงถึงวัฏภาคของพอลิเมอร์ผสมที่เป็นเมทริกซ์ที่ค่อนข้าง หยาบเมื่อเปรียบเทียบกับการใช้สารคู่ควบ Silane และ/หรือสารช่วยผสม MAPE (รูปที่ 4.42 (ข)-(ง)) ที่ แสดงถึงวัฏภาคของเมทริกซ์ที่ละเอียดกว่า นอกจากนี้ยังพบว่าการใช้สารคู่ควบ Silane และ/หรือสาร ช่วยผสม MAPE ทำให้มีพอลิเมอร์มาปกคุลมพื้นผิวของขี้เลื่อยซึ่งไม่พบในตัวอย่างที่ไม่มีการใช้และไม่ พบความแตกต่างทางสัณฐานวิทยาของคอมโพสิตจากการใช้สารคู่ควบ Silane และ/หรือสารช่วยผสม MAPE

รูปที่ 4.42 สัณฐานวิทยาของคอมโพสิตระหว่าง PVC/LDPE (100/40) ที่ใช้ PA20 โดยใช้ สารคู่ควบ Silane และสารช่วยผสม MAPE ในอัตราส่วนต่าง ๆ (ก) Silane A-137:MAPE 1:1 (ข) Silane A-137:MAPE 1:2 (ค) Silane A-137:MAPE 2:1 (ง) Silane A-1100:MAPE 1:1 (จ) Silane A-1100:MAPE 1:2 และ (ฉ) Silane A-1100:MAPE 2:1

จากการใช้สารคู่ควบ Silane และ/หรือสารช่วยผสม MAPE ในรูปสารผสมพบว่า สัณฐานวิทยา ของตัวอย่างคอมโพสิตมีลักษณะคล้ายกับตัวอย่างคอมโพสิตที่มีการใช้สารคู่ควบหรือสารช่วยผสมเพียง ชนิดเดียว กล่าวคือ มีการปกคลุมพื้นผิวของขี้เลื่อยด้วยพอลิเมอร์ นอกจากนี้ยังไม่พบความแตกต่างจาก การใช้อัตราส่วนของสารผสมที่อัตราส่วนแตกต่างกัน (1:1, 1:2 หรือ 2:1) ดังแสดงในรูปที่ 4.42

4.3.7 ผลของ Silane และ/หรือ MAPEที่มีผลต่อสมบัติทางความร้อนของ คอมโพสิต

ตารางที่ 4.15 อุณหภูมิการสลายตัวของ PVC ในคอมโพสิตที่ปริมาณขี้เลื่อย 10% และ 30%ที่มีการใช้ สารคู่ควบและ/หรือสารช่วยผสมที่ปริมาณ 3%

ตัวอย่าง	อุณหภูมิการสลายตัว (°C)			
	10% SD		30%	% SD
	Onset	peak	Onset	peak
PVC 100 %	272.6	283.2	272.6	283.2
Sawdust	251.9	271.3	251.9	271.3
PVC : LDPE : PA 20	240.3	261.5	230.5	250.3
PVC : LDPE : PA 20 : 3% A-137	245.9	268.5	237.4	258.9
PVC : LDPE : PA 20 : 3% A-	250.4	269.3	240.2	262.9
1100				
PVC : LDPE : PA 20 : 3% MAPE	251.3	274.4	250.8	274.2

ตารางที่ 4.16 อุณหภูมิการสลายตัวของ PVC ในคอมโพสิตที่ปริมาณขึ้เลื่อย 10% และ 30%ที่มีการใช้ สารคู่ควบและ/หรือสารช่วยผสมที่ปริมาณ 5%

ตัวอย่าง	อุณหภูมิการสลายตัว (°C)			
	10% SD		30%	% SD
	Onset	peak	Onset	peak
PVC 100 %	272.6	283.2	272.6	283.2
Sawdust	251.9	271.3	251.9	271.3
PVC : LDPE : PA 20	240.3	261.5	230.5	250.3
PVC : LDPE : PA 20 : 5% A-137	241.0	262.7	237.7	256.9
PVC : LDPE : PA 20 : 5% A-	243.5	268.5	252.8	265.8
1100				
PVC : LDPE : PA 20 : 5% MAPE	252.9	271.7	248.0	267.5

จากตารางที่ 4.15 และ 4.16 พบว่าอุณหภูมิการสลายตัวของ PVC ในคอมโพสิตมีแนวโน้ม เพิ่มขึ้นเล็กน้อยเมื่อมีการใช้สารคู่ควบ Silane A-137 Silane A-1100 และสารช่วยผสม MAPE ทั้งการ ใช้ในปริมาณ 3% และ 5% โดยคาดว่าเกิดขึ้นเนื่องจากการเกิดอัตรกิริยาระหว่างพอลิเมอร์ผสม สารคู่ ควบและ/หรือสารช่วยผสม และขึ้เลื่อย เมื่อเปรียบเทียบอุณหภูมิการสลายตัวของ Silane A-137 Silane A-1100 และ MAPE พบว่าการใช้สารคู่ควบหรือสารช่วยผสมให้อุณหภูมิการสลายตัวของ PVC ใกล้เคียงกัน

ตารางที่ 4.17 อุณหภูมิการเปลี่ยนสถานะคล้ายแก้วของ PVC ในคอมโพสิตจากพอลิเมอร์ผสมที่ปริมาณ ขี้เลื่อย 30%ที่มีการใช้สารคู่ควบและ/หรือสารช่วยผสมที่ปริมาณ 3%

ตัวอย่าง	T _g (°C)
PVC/LDPE/PA20/SD	88.2
PVC/LDPE/PA20/SD + Silane A-137	86.5
PVC/LDPE/PA20/SD + Silane A-1100	87.4
PVC/LDPE/PA20/SD + MAPE	86.0
PVC/LDPE/PA20/SD + (1:1) Silane A-137:MAPE	86.5
PVC/LDPE/PA20/SD + (1:2) Silane A-137:MAPE	86.4
PVC/LDPE/PA20/SD + (2:1) Silane A-137:MAPE	86.3
PVC/LDPE/PA20/SD + (1:1) Silane A-1100:MAPE	85.8
PVC/LDPE/PA20/SD + (1:2) Silane A-1100:MAPE	85.3
PVC/LDPE/PA20/SD + (2:1) Silane A-1100:MAPE	85.8

จากการทดสอบหาอุณหภูมิการเปลี่ยนสถานะคล้ายแก้วของตัวอย่างคอมโพสิตจากเทคนิค DMA ในตารางที่ 4.17 พบว่า อุณหภูมิการเปลี่ยนสถานะคล้ายแก้วของคอมโพสิตที่มีการใช้สารคู่ควบ Silane A-137 Silane A-1100 หรือสารช่วยผสม MAPE มีค่าต่ำกว่าคอมโพสิตที่ไม่มีการใช้สารคู่ควบ Silane A-137 Silane A-1100 หรือสารช่วยผสม MAPE นอกจากนี้การใช้สารผสมทำให้อุณหภูมิการ เปลี่ยนสถานะคล้ายแก้วมีแนวโน้มไม่เปลี่ยนแปลงทั้งในกรณีของการใช้ Silane A-137 และ MAPE รวมถึง Silane A-1100 และ MAPE ส่วนอัตราส่วนและชนิดของสารคู่ควบส่งผลให้อุณหภูมิการเปลี่ยน สถานะคล้ายแก้วมีแนวโน้มไม่เปลี่ยนแปลงเช่นเดียวกันทั้งในอัตราส่วน 1:1, 1:2 และ 2:1 เนื่องจาก อุณหภูมิการเปลี่ยนสถานะคล้ายแก้วของ PVC เกิดขึ้นจากแรงยึดเหนี่ยวแบบไดโพลภายในโมเลกุล ดังนั้นการลดลงของอุณหภูมิการเปลี่ยนสถานะคล้ายแก้วอาจเกิดขึ้นเนื่องจากการลดลงของแรงยึด เหนี่ยวแบบไดโพลซึ่งเกิดจากการเกิดการเชื่อมโยงระหว่างพอลิเมอร์เมทริกซ์และส่วนเสริมแรงในคอม โพสิต

บทที่ 5

สรุปผลการวิจัยและข้อเสนอแนะ

5.1 สรุปผลการวิจัย

งานวิจัยนี้เป็นการศึกษาสมบัติต่างๆ ของพอลิเมอร์ผสมระหว่าง PVC และ LDPE โดยใช้ ขี้เลื่อยไม้ยางพาราเป็นสารเสริมแรง ศึกษาวิธีการผสมระหว่างการใช้เครื่องอัดรีดชนิดเกลียวหนอนเดี่ยว เพียงขั้นตอนเดียวและการเพิ่มขั้นตอนการผสมโดยใช้เครื่องผสมชนิด 2 ลูกกลิ้ง การใช้สารช่วยผสม ได้แก่ คลอริเนเตดพอลิเอทิลีน (CPE) พอลิเมอร์ร่วมระหว่างเมทิลเมทาไครเลต และ บิวทิลอะไครเลต (PA 20) และพอลิเมอร์ร่วมระหว่างเอทิลีนและเมทิลอะไครเลต (Elvaloy) ในการปรับปรุงการยึดเกาะ ระหว่างวัฏภาคของพอลิเมอร์ผสมเพื่อให้สมบัติโดยรวมดีขึ้น นอกจากนี้ได้ศึกษาสมบัติต่างๆ ของคอม โพสิตระหว่างพอลิเมอร์ผสมที่ปรับปรุงและไม่ได้ปรับปรุงด้วยสารช่วยผสมและขี้เลื่อยจากไม้ยางพารา และศึกษาผลของสารคู่ควบ Silane และ/หรือสารช่วยผสม MAPE ที่มีผลต่อสมบัติต่าง ๆ ของคอมโพสิต ซึ่งสรุปผลงานวิจัยได้ดังนี้

- 1. การศึกษาวิธีการผสมพอลิเมอร์ผสมระหว่าง PVC 100 phr และ LDPE 10 20 30 40 และ 50 phr พบว่าการผสม 2 ขั้นตอน คือ ผสมด้วยเครื่องอัดรีดชนิดเกลียวหนอนเดี่ยวและเครื่องผสมชนิด 2 ลูกกลิ้งให้สมบัติเชิงกลที่สูงกว่าการผสมด้วยเครื่องอัดรีดชนิดเกลียวหนอนเดี่ยวเพียงขั้นตอนเดียว และ จากการตรวจสอบโครงสร้างของพอลิเมอร์ผสมโดยใช้อัตราส่วน PVC100 : LDPE10 ด้วยเทคนิค ¹³C-NMR พบว่า PVC ไม่เกิดการต่อกิ่งกับ LDPE ภายใต้สภาวะที่ใช้ในการผสมสำหรับในงานวิจัยนี้
- 2. การศึกษาผลของการปรับปรุงสมบัติต่างๆ ของพอลิเมอร์ผสมโดยใช้สารช่วยผสม 3 ชนิด คือ CPE PA 20 และ Elvaloy ปริมาณที่ศึกษา 5 10 และ 15 เปอร์เซ็นต์โดยน้ำหนักของ LDPE ซึ่ง พบว่าสารช่วยผสมทั้ง 3 ชนิดทำให้สมบัติโดยรวมของพอลิเมอร์ผสมสูงขึ้น ซึ่งสอดคล้องกับสัณฐาน วิทยาของพอลิเมอร์ผสม คือ เมื่อใช้สารช่วยผสมทำให้ขนาดของ LDPE เล็กลงและสามารถกระจายตัว ใน PVC ซึ่งเป็นเมทริกซ์ได้ดีขึ้นโดยชนิดและปริมาณของสารช่วยผสมที่เหมาะสมในการนำพอลิเมอร์ ผสมไปทำวัสดุคอมโพสิต คือ PA 20 ปริมาณ 15 เปอร์เซ็นต์โดยน้ำหนัก LDPE เนื่องจากให้สมบัติโดยรวมสูงกว่า โดยเฉพาะความแข็งแรงกระแทกสูงซึ่งเป็นสมบัติที่จำเป็นในการนำไปทำเป็นวัสดุคอมโพสิตต่อไป
- 3. การศึกษาอุณหภูมิการสลายตัวของ PVC ในพอลิเมอร์ผสมและคอมโพสิตโดยเทคนิค เทอร์มัลกราวิเมทริกพบว่าที่อัตราส่วนของ PVC100 : LDPE10 อุณหภูมิการสลายตัวของ PVC มีค่า สูงขึ้นเนื่องจากการเกิดปฏิกิริยาถ่ายโอนอนุมูลอิสระของพอลิเมอร์ผสมซึ่งเกิดขึ้นระหว่างกระบวนการผสม แต่เมื่อมีสารช่วยผสมหรือขึ้เลื่อยทำให้อุณหภูมิในการสลายตัวมีค่าต่ำลง
- 4. การศึกษาอุณหภูมิการหลอมเหลว อุณหภูมิการตกผลึกและองศาความเป็นผลึกของ LDPE ในพอลิเมอร์ผสมที่อัตราส่วน PVC100 : LDPE10 ระหว่างการผสมโดยใช้เครื่องอัดรีดชนิดเกลี่ยวหนอน เดี่ยวเพียงอย่างเดียวและเพิ่มขั้นตอนการผสมโดยใช้เครื่องผสมชนิด 2 ลูกกลิ้ง พบว่าสมบัติดังกล่าวมี

แนวโน้มใกล้เคียงกันและเมื่อใช้สารช่วยผสมในพอลิเมอร์ผสมสมบัติที่ได้มีผลใกล้เคียงกับเมื่อยังไม่ ปรับปรุงด้วยสารช่วยผสม

- 5. การศึกษาสมบัติต่างๆ ของคอมโพสิตระหว่างพอลิเมอร์ผสมที่ปรับปรุงและไม่ได้ปรับปรุงด้วย สารช่วยผสมและขี้เลื่อยจากไม้ยางพารา โดยใช้อัตราส่วน PVC100: LDPE 10 และ 40 phr สารช่วย ผสมชนิด PA 20 15 เปอร์เซ็นต์โดยน้ำหนักของ LDPE และปริมาณขึ้เลื่อยที่ศึกษา คือ 10 20 30 40 และ 50 เปอร์เซ็นต์โดยน้ำหนักของพอลิเมอร์ผสม ซึ่งพบว่าเมื่อปริมาณไม้มากขึ้นมอดุลัสสูงขึ้น แต่ ความแข็งแรงดึงร้อยละการดึงยืด ณ จุดขาด ความแข็งแรงโค้งงอ ความแข็งแรงกระแทกมีค่าลดลง โดย พบว่าคอมโพสิตของพอลิเมอร์ผสมอัตราส่วน PVC100: LDPE10 ให้สมบัติที่ดีกว่าคอมโพสิตที่มี อัตราส่วนของพอลิเมอร์ผสม PVC100: LDPE40 และคอมโพสิตที่มีสารช่วยผสมให้สมบัติโดยรวมสูง กว่าคอมโพสิตที่ไม่มีสารช่วยผสมให้สมบัติโดยรวมสูง
- 6. จากการปรับปรุงสมบัติของคอมโพสิต PVC100 : LDPE40 (PA20) เสริมแรงด้วยขึ้เลื่อยใน ปริมาณต่าง ๆ พบว่าการใช้ Silane A-137, Silane A-1100 หรือ MAPE ทำให้สมบัติเชิงกลโดยรวม ขอมคอมโพสิตมีแนวโน้มเพิ่มขึ้นอย่างเด่นชัด นอกจากนี้การใช้ Silane A-137 หรือ MAPE ทำให้ คอมโพสิตมีสมบัติเชิงกลโดยรวมที่ดีกว่าการใช้ Silane A-1100 สำหรับการใช้ Silane และ MAPE ร่วมกันทำให้แนวโน้มสมบัติเชิงกลโดยรวมของคอมโพสิตมีค่าเพิ่มขึ้นในทุก ๆ อัตราส่วน โดยการใช้ Silane A-137:MAPE ในทุก ๆ อัตราส่วน (1:1, 1:2 และ 2:1) ให้สมบัติเชิงกลโดยรวมที่ดีกว่าการใช้ Silane A-1100:MAPE และอัตราส่วนของ Silane A-137:MAPE หรือ Silane A-1100:MAPE ที่ 1:2 ให้ แนวโน้มที่ดีกว่าการใช้ที่อัตราส่วน 1:1 หรือ 2:1
- 7. สัณฐานวิทยาของคอมโพสิตที่มีการเติม Silane A-137, Silane A-1100 หรือ MAPE แสดง ถึงการมีพอลิเมอร์มาปกคลุมพื้นผิวของขี้เลื่อย และมีลักษณะเช่นเดียวกันกับการเติม Silane และ MAPE ร่วมกัน ในอัตราส่วนต่าง ๆ
- 8. จากสมบัติทางความร้อนของคอมโพสิตพบว่า อุณหภูมิการสลายตัวของ PVC ในคอมโพสิตมี แนวโน้มเพิ่มขึ้นเล็กน้อยเมื่อมีการใช้สารคู่ควบ Silane A-137 Silane A-1100 และสารช่วยผสม MAPE สำหรับอุณหภูมิการเปลี่ยนสถานะคล้ายแก้วของ PVC ในคอมโพสิตมีแนวโน้มลดลงจากการใช้ Silane A-137, Silane A-1100 หรือ MAPE ทั้งในกรณีของการใช้เพียงชนิดเดียวและ 2 ชนิดร่วมกันใน อัตราส่วนต่าง ๆ

5.2 ข้อเสนอแนะ

ศึกษาเพิ่มเติมในด้านการทดสอบคุณภาพของชิ้นงานคอมโพสิตในด้านการใช้งานจริง เช่น ทดสอบการทนต่อแสง UV การเปลี่ยนสีของชิ้นงานและการทนต่อสภาพดินฟ้าอากาศ เป็นต้น

เอกสารอ้างอิง

- [1] Fang Z., Ma G., Shentu B., Ca B. and Xu C. "Influence of Viscosity Ratio on Morphology of PVC/PE Blend" **Journal of European Polymer**, 36, 2000. 2309-2311.
- [2] Sombatsompop N., Sungsanit K. and Thongpin C. "Analysis of Low-Density Polyethylene-g-Poly(vinyl chloride) Copolymers Formed in Poly(vinyl chloride)/Low-Density Polyethylene Melt Blends with Gel Permeation Chromatography and Solid-State 13 C-NMR" Journal of Applied Polymer Science, 92, 2004. 3167-3172.
- [3] Fang Z., Ma G., Liu C. and Xu C. "Morphology Evolution of Immiscible LDPE/PVC Blends in the Presence of Compatibilizer and Phase Dispersant" Journal of Applied Polymer Science, 91, 2004. 763-772.
- [4] Xu C., Fang Z. and Zhong J. "Study on phase dispersion-crosslinking synergism in binary blends of poly(vinyl chloride) with low density polyethylene" Journal of Polymer, 38, 1997. 155-158.
- [5] Sombatsompop N., Sungsanit K. and Thongpin C. "Structural Changes of PVC in PVC/LDPE Melt-Blends: Effects of LDPE Content and Number of Extrusion" Polymer Engineering and Science, 44, 2004. 487-495.
- [6] สำนักงานเศรษฐกิจการเกษตร. 2549. **ไม้ยางพารา.** [Online]. Available : www.oae.go.th/statistic/export/1301PR.xls
- [7] สมศักดิ์ วรมงคลชัย. **เอกสารประกอบการสอน วิชา สารปรับแต่งพอลิเมอร์.** กรุงเทพมหานคร: ภาควิชาเคมี คณะวิทยาศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง. 2544.
- [8] Paul D.R. and Bucknall C.B. Polymer Blends Vol 1. New York: John Wiley & Son. 2000.
- [9] Work W.J. "Defination of Terms Related to Polymer Blends, Composites, and Multiphase Polymeric Materials" **Pure Applied Chemical**, 76, 2004. 1985-2007.
- [10] Jacqueline I. and Kroschwitz. High performance Polymers and Composite. New York.
 1995.
- [11] Paul D.R. and Bucknall C.B. Polymer Blends Vol 2. New York: John Wiley & Son. 2000.
- [12] Dupont company. "DuPont Polymer Modifiers." [Online]. Available :
 http://www.DuPont Polymer Modifiers Compatibilizing polymer blends.htm.1995
- [13] อิทธิพล แจ้งชัด. **เอกสารประกอบการสอนวิชาพอลิเมอร์คอมโพสิต**. กรุงเทพมหานคร: ภาควิชาเคมี คณะวิทยาศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง. 2544.
- [14] M. M. Schwartz . Composite Materials. Vol 1. New Jersey : Prentice Hall PTR. 1996.

- [15] กรมป่าไม้. **"หลักเกณฑ์การแบ่งไม้เนื้ออ่อนไม้เนื้อแข็งตามมาตรฐานของกรมป่าไม้."**[Online]. Available : http://www. หลักเกณฑ์การแบ่งไม้เนื้ออ่อนไม้เนื้อแข็งตาม
 <u>มาตรฐานของกรมป่าไม้.htm.</u> 2004.
- [16] Fung J., Li B., Sun S. and Zeng C. "Hardwood vs Softwood Chemistry Aspect." [Online]. Available: http://www.alumni.ca/~libe4b0/chemistry.html. 2004.
- [17] ESB, Porto, Portugal. "Hemicellulose." [Online]. Available: www. Hemicellulose.htm. 1996.
- [18] Lignin Chemistry. "The structure of softwood lignin." [Online]. Available: http://www. The structure of softwood lignin.htm. 2005.
- [19] สุรชัย มัจฉาชีพ. **พืชเศรษฐกิจ ในประเทศไทย.** กรุงเทพมหานคร : แพร่พิทยา. 2535.
- [20] วิชิต สุวรรณปรีชา. **ยางพารา**. กรุงเทพมหานคร: สำนักงานกองทุนสงเคราะห์การทำสวนยาง กระทรวงเกษตรและสหกรณ์. 2541.
- [21] บัณฑิต ปิยะศิลป์. **ไม้ยางพารา.** [Online]. Available : http://www.ThaiNGO.org. 2549.
- [22] Jones F.R.. **Handbook of polymer-Composites**. Longman Scientifi &Technical. London. 1994.
- [23] TechDirect. **Silane Coupling Agents.** [Online]. Available: http://www.specialchem4polymers.com/tc/Adhesion-Promoters/index. 2006.
- [25] Pothan L.A., Thomas S. and Groeninckx. G. "The role of fibre/matrix interactions on the dynamic mechanical properties of chemically modified banana fibre/polyester composites". Composites: Part A; 37(9): 2006. 1260-1269.
- [25] P.K. Mallich. **Fiber-reinforced Composites : Material, Manufacturing and Desing**. 2nd ed. Marcel Dekker. New York. 1993.
- [26] Antonucci J.M., Dickens S.H., Fowler B.O., Xu H.H.K. and. McDon W.G. "Chemistry of Silanes: Interfaces in Dental Polymers and Composites". Journal of Research of the National Institute of Standards and Technology; 110: 2005. 541-558.
- [27] DuPont Polymer Modifiers. Compatibilizers improve the value of blended or recycled polymers. [Online]. Available:

 www.dupont.com/industrial-polymer/plastic/polymers/fusabond.html 2006.
- [28] Ma G., Fang Z. and Xu C. "Phase Dispersion-Crosslinking Synergism in Binary Blend of Poly(vinyl chloride) with Low-Density Polyethylene: Entrapping Phenomenon in PVC/LDPE/DCP Blend" **Journal of Applied Polymer Science,** 88, 2003.

1296-1303.

- [29] Norma E. M. and Marcelo A. V. "Thermal and Mechanical Characterization of Linear LowDensity Polyethylene/Wood Flour Composites" Journal of Applied Polymer Science, 90, 2003. 2775-2784.
- [30] Rozman H.D., Kon B. K., Abusamah A., Kumar R. N. and Mohd. Ishak Z. A. "Rubberwood— High-Density Polyethylene Composite: Effect of Filler Size and Coupling Agents on Mechanical Properties" Journal of Applied Polymer Science, 69, 1998. 1993-2004.
- [31] Liao B., Huang Y. and Cong G. "Influence of Modified Wood Fibers on the Mechanical Properties of Wood Fiber-Reinforced Polyethylene" **Journal of Applied Polymer Science,** 66, 1997. 1561-1568.
- [32] Zhang F., Qiu W., Yang L., Endo T. and Hirotsu T. "Crystallization and Melting Behaviors of Maleated Polyethylene and Its Composite with Fibrous Cellulose"

 Journal of Applied Polymer Science, 89, 2003. 3292-3300.
- [33] Canche'-Escamilla G., Cauich-Cupul J.I., Mendiza'bal E., Puig J.E., Va'zquez-Torres H. and Herrera-Franco P.J. "Mechanical properties of acrylate-grafted henequen cellulose fiber and their application in composites" Composite Part A, 30, 1999. 349-359.
- [34] Sombatsompop N. and Chaochanchaikul K. "Average Mixing Torque, Tensile and Impact Properties and Thermal Stability of Poly(vinyl chloride)/Sawdust Composites with Different Silane Coupling Agents" **Journal of Applied Polymer Science**, 96, 2005. 213-221.
- [35] กนิษฐา อังกุรรัชต์. "การศึกษาสมบัติของพอลิพรอพิลีนโดยใช้ขี้เลื่อยจากไม้เต็งนอกเป็นเป็นสาร เสริมแรง." วิทยานิพนธ์วิทยาศาสตรมหาบัณฑิต ภาควิชาเคมี คณะวิทยาศาสตร์ สถาบัน เทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง. 2546.
- [36] Fernanda M.B., Costa T.H.S. and Carvalho D.L. "Polypropylene-Wood Fiber Composites: Effect of Treatment and Mixing Conditions on Mechanical Properties". Journal of Applied Polymer Science; 65: 1997.1227-1235.
- [37] Rajeev K., Mohan K. and Ramani N. "Biofiber Reinforced Polypropylene Composites".

 Journal of Polymer Engineering and Science; 37(2): 1997.476-483.
- [38] Balasuriya P.W., Ye L., Mai Y.W and Wu J. "Mechanical Properties of Wood Flake-Polyethylene Composites. II. Interface Modification". Journal of Applied Polymer Science; 83: 2002.2505-2521.

- [39] Miller A.C. and Berg J.C. "Effect of silane coupling agent adsorbate structure on adhesion performance with a polymeric matrix". **Composites: Part A; 34(4)**: 2003. 327-332.
- [40] Pickering K.L., Abdalla A., Mcdonald A.G. and Franich R.A. "The effect of silane coupling agents on radiata pine fibre for use in thermoplastic matrix composites".
 Composites: Part A; 34(10): 2003. 915-926.
- [41] Abu-Sharkh B.F. and Hamid H. "Degradaion study of date palm fibre/polypropylene composites in natural and artificial weathering: mechanical and thermal analysis".
 Polymer Degradation and Stability; 85(3): 2004. 967-975.
- [42] ASTM D 638, "Standard Test Methods for Tensile Properties of Plastic (Metric)"

 American Society for Testing and Materials. Philadephia. 1993.
- [43] ASTM D 790, "Standard Test Methods for Flexural Properties of Unreinfored and Reinforced Plastic and Electrical Insulating Materials" American Society for Testing and Materials. Philadephia. 1993.
- [44] ASTM D 256, "Standard Test Methods for Impact Resistance of Plastic and Electrical Insulating Materials" American Society for Testing and Materials. Philadephia 1993.
- [45] Specialchem S.A."Tin Stabilizers Center-Thermal oxidative degradation of PVC."

 [Online]. Available: http://www.specialchem4polymers.com/home/forgot/index.aspx.
 2505.
- [46] Galen W.E. **Instrumental Methods of Chemical Analysis.** United States of America 1985. 95-98.
- [47] Skoog D.A., Holler F.J. and Nieman T.A. **Principles of Instrumental Analysis**. United States of America 1998. 410-411.
- [48] Mengeloglu F., Matuana L.M. and King J.A. Journal of Vinyl Additive Technology, 6, 2000. pp. 153.
- [49] Sombatsompop N. and Phromchirasuk C. "Effects of Acrylic Based Processing Aids on Processability, Rheology, Thermal and Structural Stability, and Mechanical Properties of PVC/Wood Sawdust Composites" Journal of Applied Polymer Science, 92, 2004, 782-790.
- [50] Thongpin C., Santavitee O. and Sombatsompop N. Journal of Vinyl and Additive Technology, (submitted).
- [51] Sombatsompop N. and Chaochanchaikul K. "Effect of Moisture Content on Mechanical Properties, Thermal and Structural Stability, and Extrudate Texture of PVC/Wood

- Sawdust Composites" Polymer International, 53, 2004. 1210-1218.
- [52] Sombatsompop N. and Chaochanchaikul K., Phromchirasuk C. and Thongsang S. "Effect of Wood Sawdust Content on Rheological and Structural Changes, and Thermo-Mechanical Properties of PVC/Sawdust Composites" Polymer International, 52, 2003. 1847-1855.
- [53] Schultz J.M. "Polymer Crystallization: The Development of Crystalline Order in Thermoplastic Polymers" Ammerican Chemistry Society. Washington D.C. 2001. 57-92.

Output จากโครงการวิจัย

ผลงานตีพิมพ์ในวารสารวิชาการนานาชาติ

- J. Prachayawarakorn, J. Khamsri, K. Chaochanchaikul and N. Sombatsompop. "Effects of Compatibilizer Type and Rubber-Wood Sawdust Content on the Mechanical, Morphological and Thermal Properties of PVC/LDPE Blend". Journal of Applied Polymer Science. (2006) 102 (1) 598-606.
- J. Prachayawarakorn, S. Khunsumled, C. Thongpin, A. Kositchaiyong and N. Sombatsompop
 "Effects of silane and MAPE coupling agents on the properties and interfacial adhesion of
 wood-filled PVC/LDPE blend", Journal of Applied Polymer Science, Submitted for
 publication.
- 3. <u>J. Prachayawarakorn</u> and K. Boonsawat "Physical, Chemical and Dyeing Properties of Bombyx mori Silks grafted by 2-Hydroxy ethylmethacrylate (HEMA) and Methyl methacrylate (MMA)". Journal of Applied Polymer Science, Submitted for publication.

การนำผลงานวิจัยไปใช้ประโยชน์

- เชิงวิชาการ คือ การสร้างนักวิจัยใหม่ในระดับปริญญาโทจำนวน 2 คน คือ
 - 1. นางสาวจีราภรณ์ คำศรี
 - 2. นางสาวศิริกาญจน์ ขันสัมฤทธิ์

ภาคผนวก

Effects of Compatibilizer Type and Rubber-Wood Sawdust Content on the Mechanical, Morphological, and Thermal Properties of PVC/LDPE Blend

J. Prachayawarakorn, J. Khamsri, K. Chaochanchaikul, N. Sombatsompop²

¹Department of Chemistry, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang (KMITL), Ladkrabang, Bangkok 10520, Thailand ²Polymer Processing and Flow (P-PROF) Group, School of Energy and Materials, King Mongkut's University of Technology Thouburi (KMITT) Processed Process 10140, Theiland

Technology Thonburi (KMUTT), Bangmod, Bangkok 10140, Thailand

Received 27 September 2005; accepted 2 December 2005 DOI 10.1002/app.24324

Published online in Wiley InterScience (www.interscience.wiley.com).

ABSTRACT: This article aimed to investigate the mechanical, morphological and thermal properties of PVC/LDPE blend with and without the addition of compatibilizers. The effects of LDPE content, compatibilizer type and rubberwood sawdust loading on the properties of the blend were evaluated. The experimental results suggested that as the LDPE content was increased the mechanical properties of PVC-LDPE blend progressively decreased due to poor interfacial adhesion. The continuity and compatibility between PVC and LDPE phases could be improved through three different types of compatibilizers which included chlorinated polyethylene (CPE) poly(methyl-methacrylate-cobutyl acrylate) (PA20) and poly(ethylene-co-methacrylate) (Elvaloy). The PA20 was found to be the most suitable

compatibilizer for the blend. A radical transfer reaction was proposed in this work to explain the structure and thermal changes of the PVC in PVC-LDPE blend. The decomposition temperature of PVC in the blend decreased with the loading of the PA20 and the wood sawdust. As the sawdust content was increased the tensile and flexural moduli increased with considerable decreased in the tensile, flexural and impact strength, a slight improvement being achieved if the PA20 was incorporated in the composite. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 598-606, 2006

Key words: polymer blend; poly(vinyl chloride); composite; wood sawdust; mechanical properties

INTRODUCTION

Wood has been used as a building and engineering material and offers several advantages of not just being esthetically pleasing but also renewable and recyclable. Wood and natural fibers have a number of benefits as reinforcements for synthetic polymers because of their high specific strength and stiffness, relatively low density, biodegradability, and low cost. In addition, wood fibers contribute to the solution of environmental problems caused by the disposing of large volumes of nonbiodegradable materials. Woodbased composites with a continuous polymer phase are now gaining interest, giving the opportunity to process the composite by using conventional thermoplastic processing equipment. The processing of wood composites also minimizes abrasion of the equipment

due to the low hardness of wood compared to inorganic fillers used in a great number before. Many researchers have studied on composites of homo-polymer and wood or cellulose fibers, the homo-polymers including poly(vinyl chloride),^{2–7} polyethylene,^{8–11} and polypropylene.^{12–15} The main drawback of natural fiber-reinforced polymers is the lack of good interfacial adhesion between fiber and matrix, which results in poor properties of the final products. Therefore, to develop such composites with good mechanical properties, it is necessary to use coupling agents or compatibilizers in the composite systems, the widely used coupling agents including silane coupling agents,^{5,9,16–18} maleic-anhydride-grafted-polymers.^{8,11,13–15}

It is well known that the binary blend of PVC and LDPE is typically immiscible at molecular level and causes a poor interphase structure and mechanical properties. In this respect, enhancing the compatibility of PVC and LDPE is one of the key technologies to obtain polymer blends with desirable properties. The ideal compatibilizer should contain two domains: one domain being able to form entanglements or segmental crystallization within the polymer matrices and the other being able to form a strong adhesive bond with

Journal of Applied Polymer Science, Vol. 102, 598-606 (2006) © 2006 Wiley Periodicals, Inc.

Correspondence to: J. Prachayawarakorn kmitl.ac.th) or N. Sombatsompop (narongrit.som@kmutt.

Contract grant sponsors: Thailand Research Fund (TRF) and the Commission on Higher Education, Ministry of Education; contract grant number: MRG4780091.

other type of materials. Two possible ways to improve the mechanical properties of PVC/LDPE blend are to add a compatibilizer 19-21 and/or to cocrosslink these two components.^{22–24} Ghaffar et al. and Hajian et al. 19,20 suggested that the use of solid phase dispersants such as chlorinated polyethylene (CPE), ethylene-propylene-diene rubber (EPDM), acrylonitrilebutadiene-styrene copolymer (ABS), and polyurethane (PU) could improve the tensile properties of PVC/LDPE and PVC/PS blends. Sombatsompop et al. reported that loading LDPE into PVC led to the formation short-chain LDPE-grafted PVC copolymers through a macroradical cross-recombination reaction.²³ Besides, phase dispersion-crosslinking synergism in the binary blend of PVC/LDPE coexisted with the presence of both dicumyl peroxide (DCP) initiator and solid phase dispersant. 22 The cocrosslinking products and the entrapping phenomenon were also proposed for PVC/LDPE/DCP system.²⁴ The grafting, cocrosslinking, and entrapping phenomena brought about the improvement of the mechanical and thermal properties in the PVC/LDPE blend. 19-24

In literatures, either PVC or LDPE has been used separately as a continuous phase and is reinforced by wood and cellulose fibers, 19-23 but the properties of PVC and PE blend incorporating with wood fibers have never been reported. This is very important since PVC is often used as a blend with other types of plastics such as polyethylene in packaging applications. Thus, it is of great interest to examine the properties of PVC/LDPE blend incorporated with natural fibers. This article focused on PVC/LDPE blend and their composite with rubber-wood sawdust. To improve compatibility between PVC and LDPE binary polymer blend, three different types of compatibilizers were used. Mechanical, morphological, and thermal properties of PVC/LDPE blend with and without compatibilizers were then determined. The effects of LDPE and wood sawdust contents on such properties were also studied.

EXPERIMENTAL

Raw materials

Poly(vinyl chloride) (PVC, B0504BLA suspension grade, *K* value = 66) was supplied by Thai Plastics and Chemicals (Bangkok, Thailand). The compound composed of 1.2 phr calcium stearate, 1.2 phr tetrabasic lead sulfate, 0.1 phr polyethylene wax, and 4 phr calcium carbonate. Low-density polyethylene (LDPE, LD1905F) with MFI of 5 (tested at 21.6 N and 190°C) was obtained from Thai Polyethylene (Bangkok, Thailand). Three compatibilizers were chlorinated polyethylene (CPE-135A with Cl content of 35%), poly(methyl methacrylate-*co*-butyl acrylate) (Acrylic-PA20), and poly(ethylene-*co*-methacrylate) (Elvaloy-1125AC with

25% methacrylate), which were supplied from Serichemical (Bangkok, Thailand), Srithepthai (Bangkok, Thailand), and Chemical Innovation (Bangkok, Thailand), respectively. Rubber-wood sawdust (*Hervea Brasiliensis*), collected from local furniture factory, was sieved through standard sieve of 50-80 mesh, corresponding to the particle length of 180-300 μ m. The sieved sawdust was dried in an oven at 105° C for 2 h before use.

Blend preparation and experimental design

Melt-blending of PVC with LDPE was performed using a single-screw extruder (Thermo Haake Poly Drive) using a screw speed of 60 rpm and a temperature range from 170 to 190°C, starting from feed zone to die zone. The obtained extrudates were further compounded in a two-roll mill (LabTech Engineering, LRM 110) for 10 min using the temperature of 165°C before transferring into a compression molding machine (LabTech Engineering, LP 20). The compressing temperature and time were set at 200°C and 8 min, respectively.

Since this work aimed to study the effects of compatibilizer type and rubber-wood sawdust contents on the properties of the PVC-LDPE blends, the following subworks are noted. Firstly, the amount of the LDPE was varied at 0, 10, 20, 30, 40, and 50 phr to study the effect of LDPE content on the properties of the PVC/LDPE blends. Secondly, three different compatibilizers, including CPE, PA20, and Elvaloy-1125AC, were used and added at a fixed amount of 15% by weight into the PVC-LDPE blend having a constant LDPE amount of 10 phr. Finally, the wood sawdust content was varied from 0 to 50%.

Mechanical properties

All mechanical tests were carried out at the temperature of $(23 \pm 1)^{\circ}$ C and relative humidity of $(50 \pm 5)\%$. Tensile test was conducted according to ASTM D-638. The tensile measurements from dumbell specimens were carried out using Universal Testing Machine (LLOYD Instrument, LR 5k) using WINDAP software with 5 kN load cell and a crosshead speed of 5 mm/ min. For flexural property, ASTM D-790 was used as a reference. Three-point bending test was set up in the Universal Testing Machine to examine the flexural modulus and strength of the PVC-LDPE blends and sawdust-PVC-LDPE composites using a rectangular specimen. Span length used was 40 mm and the compression speed was 5 mm/min using 5 kN load cell. Izod impact tester (Yasuda Seiki Seisakusho, 258-PC) was used to evaluate the impact strength of the blends and the composites. The notched testing specimens were used following the ASTM D-256. The impact property results were reported in terms of impact

		1	,			
PVC/LDPE ratio	Young's modulus (MPa)	Tensile strength (MPa)	Elongation-at-break (%)	Flexural modulus (MPa)	Flexural strength (MPa)	Impact strength (kJ/m²)
100/0 100/10 100/20 100/30 100/40	72 ± 18 45 ± 15 41 ± 14 34 ± 12 33 ± 11	38.6 ± 1.6 31.5 ± 1.5 21.5 ± 2.7 16.1 ± 1.6 12.6 ± 1.5	178.2 ± 38.7 57.7 ± 21.8 29.8 ± 11.8 28.3 ± 4.5 18.9 ± 3.0	2763 ± 386 2599 ± 216 1010 ± 133 653 ± 28 645 ± 70	67.1 ± 6.6 47.3 ± 3.3 40.4 ± 3.1 25.3 ± 1.7 23.4 ± 1.2	78.5 ± 6.1 58.9 ± 5.8 4.6 ± 1.4 2.7 ± 0.6 2.0 ± 0.5
100/50	31 ± 10	8.0 ± 1.3	17.1 ± 3.3	585 ± 69	15.9 ± 1.4	1.9 ± 0.4

TABLE I
Mechanical Properties of PVC/LDPE Binary Blend with Different Contents of LDPE

energy divided by the area of the specimen (kJ/m²). It should be noted that the mechanical property results of the composites reported in this work were obtained by averaging from ten independent tested specimens.

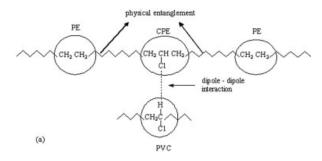
Thermal properties

Glass transition temperatures of the samples were evaluated using a shear-bending mode dynamic mechanical analyzer (DMA, Merrier Teledo DMA/SDTA 861) at a temperature range from 20 to 130°C with a heating rate of 4°C/min and a fixed frequency of 1 Hz. In addition, thermal decomposition temperatures of the blends and the composites were carried out using thermal gravimetry TGA (Perkin–Elmer, Pyris 1). The specimen was tested under nitrogen atmosphere using a temperature range of 35–700°C and a heating rate of 10°C/min. The thermal degradation temperatures were reported by the onset temperature where the weight loss started to occur.

Scanning electron microscopy

A LEO 1455 VP scanning electron microscopy was employed to study the interfacial morphology and phase dispersion of the PVC/LDPE blends and their composites. The samples were immersed in a nitrogen liquid before fractured. After that the samples were sputter-coated with a thin layer of gold to prevent electrical charging during the observation. The surface characteristics were examined and operated at 6 kV accelerating voltage.

RESULTS AND DISCUSSION


Effect of compatibilizer type in PVC-LDPE blend

It is reasonable to assume that no chemical adhesion exists between PVC and LDPE in the blend. 19-24 As can be seen in Table I, incorporation of LDPE into PVC resulted in significant changes in tensile, flexural, and impact properties. The Young's modulus of the blend decreased with increasing LDPE content. This was expected due to the fact that the LDPE is softer phase in nature as compared to PVC rigid phase. It was observed that the tensile strength and elongation at break of the blend progressively decreased with LDPE content due to poor interfacial adhesion, the LDPE phase acting as defects and disturbing the continuity of the PVC matrix phase. Similar to tensile properties, the flexural and impact properties of the blend significantly dropped as a result of increasing LDPE content in the PVC matrix. The reductions in the mechanical properties suggested poor interfacial adhesion between the PVC and LDPE phases. Considering the impact strength, which reflected an ability of the blend to receive and transfer a sudden shock load or mechanical energy across a given cross section to failure, it was observed that by adding LDPE content of greater than 10 phr, the reduction in the impact strength became more apparent. This was probably associated with phase compatibility or continuity level in the PVC-LDPE blend.

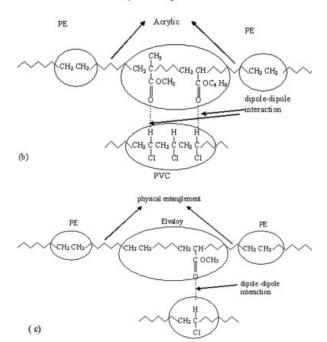

To overcome the poor interfacial bonding of the incompatible PVC and LDPE blend, three different compatibilizers were introduced; these being CPE,

TABLE II
Mechanical Properties of PVC/LDPE Binary Blend for Different Types of Compatibilizers

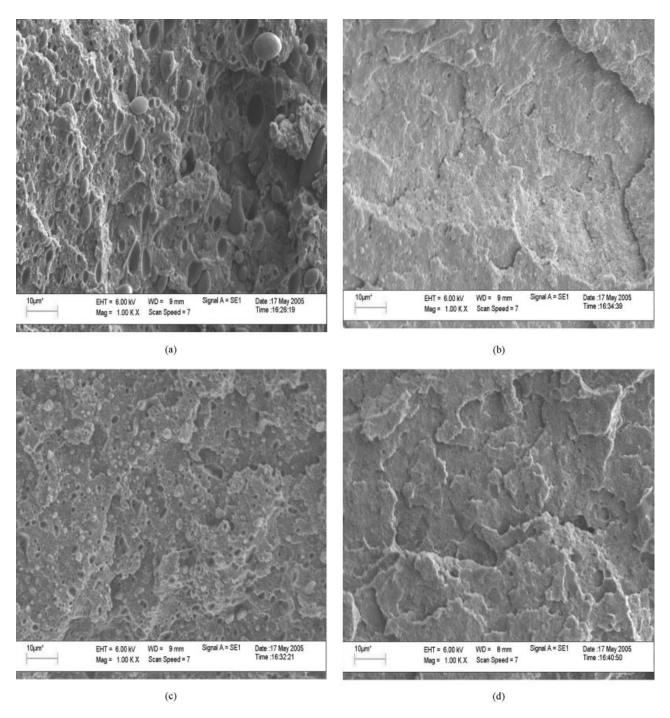
	Compatibilizer in PVC/LDPE blend			
Mechanical properties	No compatibilizer	15% CPE	15% PA20	15% Elvaloy
Young's modulus (MPa)	43.7 ± 8.3	124.9 ± 24.6	138.9 ± 46.9	121.1 ± 35.4
Tensile strength (MPa)	31.5 ± 1.5	33.4 ± 1.8	33.8 ± 1.4	32.0 ± 0.3
Elongation-at-break (%)	57.7 ± 21.8	133.3 ± 37.7	104.4 ± 38.3	138.7 ± 20.8
Flexural modulus (MPa)	1598 ± 315	1982 ± 137	1993 ± 169	1523 ± 400
Flexural strength (MPa)	47.3 ± 3.3	50.8 ± 1.5	48.6 ± 1.9	52.6 ± 3.4
Impact strength (kJ/m ²)	58.9 ± 5.8	64.6 ± 4.2	78.7 ± 6.9	70.1 ± 6.1

Physical entanglement

Figure 1 Proposed compatibilizing mechanism in PVC-LDPE blend system with various compatibilizers: (a) CPE, (b) PA20, and (c) Elvaloy.

PA20, and Elvaloy. The blend ratio of the PVC/LDPE was fixed at 100/10 and 15 wt % of the compatibilizers was used for each compatibilizer. Table II shows the effect of compatibilizer type on the mechanical prop-

TABLE IV Effect of Compatibilizer Type on Glass-Transition Temperature of PVC in PVC/LDPE Blend


	Glass-transition temperature of PVC in PVC/LDPE blend
Blend system	(°C)
PVC	91.4
PVC/LDPE (100/10)	88.5
PVC/LDPE (100/10) + 15% CPE	87.7
PVC/LDPE (100/10) + 15% PA20	90.3
PVC/LDPE (100/10) + 15% Elvaloy	88.8

erties of the PVC-LDPE blend and suggested that all the compatibilizers improved the mechanical properties of the blend. This could be explained on the basis of the improved compatibility between PVC and LDPE phases. In this work, the compatibilizing mechanism of each compatibilier in the PVC-LDPE blend was proposed as shown in Figure 1. The purpose of this was to explain the property differences of the blend caused by introducing different compatibilizers into the blend. It can be seen that the CPE has a similar chemical structure to both PVC and LDPE and it can form a dipole-dipole interaction with PVC and a physical chain entanglement with LDPE [Fig. 1(a)]. The PA20 in Figure 1(b) is composed of poly(methyl methacrylate) and poly(butyl acrylate) and the long vinyl chains in the molecule can be compatible with LDPE phase, while the polarity of the PMMA and PBA molecules form a dipole-dipole interaction with PVC phase. The Elvaloy is a copolymer between ethvlene and methacrylate monomers, which can be compatible with LDPE and PVC as shown in Figure 1(c), respectively. Table III illustrates percentage differences in the mechanical properties of PVC/LDPE blend containing the three compatibilizers at 10 phr LDPE. In general, it was observed that the PA20 had more effect on the mechanical property improvement of the blend as compared with the other two compatibilizers. The compatibilizing effect of PA20 over that of CPE and Elvaloy can be supported by glass-transition temperature (T_g) results shown in Table IV. It can

TABLE III
Percentage Differences in Mechanical Properties of PVC/LDPE Binary Blend using Different Compatibilizers

	Compatibilizer in PVC/LDPE blend ^a			
Properties	15% CPE	15% PA20	15% Elvaloy	7.5% CPE and 7.5% PA20
Young's modulus	176	207	204	168
Tensile strength	5.90	7.30	1.40	1.80
Elongation at break	131	81	140	150
Flexural modulus	24	25	1.20	19.40
Flexural strength	7.50	2.70	11.10	7.30
Impact strength	9.70	34	17.10	19.10

^a Values given are percentage values.

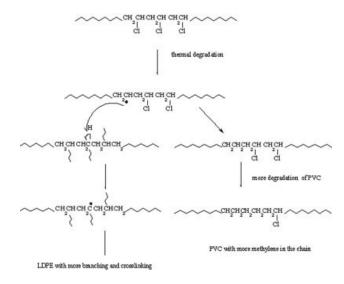
Figure 2 SEM micrographs of PVC/LDPE blend with different compatibilizers: (a) no compatibilizer, (b) CPE, (c) PA20, and (d) Elvaloy.

be seen that the addition of PA20 into the PVC/LDPE blend shifted the T_g to higher temperature about 2°C as compared to the blend without compatibilizers. This was not the case for the blends with CPE and Elvaloy compatibilizers. This suggested that PA20 could act as a better compatibilizer for the PVC/LDPE blend. It was also interesting to note that the T_g of the blend with PA20 was very close to that for neat PVC.

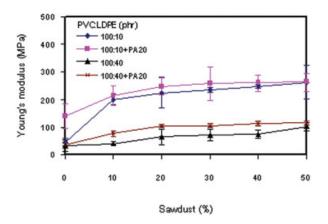
The effect of PA20 as a compatibilizer in PVC composites could further be substantiated by Mengeloglu et al.,²⁵ who observed that the impact strength of PVC/wood-fiber composites could be improved through an addition of acrylic-based modifier, and by Sombatsompop and Phromchirasuk,⁷ who found that incorporation of PA20 in PVC-wood composites enhanced the tensile and ultimate elongation of the com-

TABLE V Effect of Compatibilizer Type on Decomposition Temperature of PVC in PVC/LDPE Blend

	Decomposition temperature of PVC in PVC/LDPE
Blend system	blend (°C)
PVC	287.6
PVC/LDPE (100/10)	291.3
PVC/LDPE (100/10) + 15% CPE	284.0
PVC/LDPE (100/10) + 15% PA20	289.9
PVC/LDPE (100/10) + 15% Elvaloy	281.1

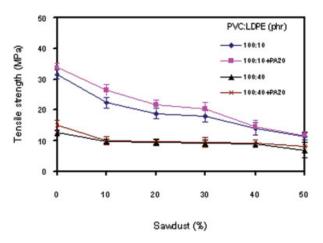

posites. Thus, it could be said that the PA20 was suitable and could be used as both compatibilizing and impact-modifying agents. When using a combination of the CPE and PA20 compatibilizers, the overall mechanical properties tended to follow those in the blend with CPE. As expected, the overall mechanical properties of the binary blend with Elvaloy compatibilizer fell in between those with CPE and PA20 compatibilizer, since Elvaloy structure is composed of ethylene and methacrylate monomers, roughly resembling the molecular structures of the CPE and PA20 compatiblizers. It was very important to highlight, since this article aimed to improve the compatibility of the PVC and LDPE phases incorporated with rubberwood sawdust particles, the relevant mechanical properties probably involve elastic (tensile and flexural modulus) and impact strength. Taking the properties in Tables II and III into account, it can be preliminarily concluded that the compatibilizers could be used to improve the continuity and compatibility between PVC and LDPE phases and thus enhance mechanical properties, and the PA20 appeared to be the most suitable compatibilizer for these specific applications.

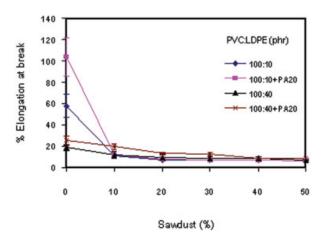
The improved continuity and compatibility between PVC and LDPE phases could be substantiated by considering the SEM micrographs of PVC-LDPE blends with and without the compatibilizers, whose results are shown in Figures 2(a)-2(d). Figure 2(a) represents the fracture surface of PVC-LDPE blend sample without the compatibilizers. It was observed that the LDPE as a disperse phase was located inside the empty voids of the PVC continuous phase, suggesting a poor compatibility between PVC and LDPE phases. When the three compatibilizers [CPE, PA20, and Elvaloy in Figs. 2(b)–2(d)] were used, the phase compatibility appeared to improve, which can be evidenced by smaller interphase boundary between PVC and LDPE components. It was also observed that the particle size of LDPE disperse phase in the PVC continuous phase was smaller than that presented in Figure 2(a). In addition, the fractured surface of the blend with the compatibilizers was smoother than that of the blend with no compatibilizers. This was why the overall mechanical properties of the PVC-LDPE blends were improved by the addition of the compatibilizers.


Table V shows the changes in decomposition temperature (T_d) of the PVC in PVC/LDPE blend with and without the compatibilizers. It can be seen that the decomposition temperature of the PVC increased when incorporating LDPE into the blend. In this present study, we proposed a unique explanation for the increase in T_d of the PVC to be associated with a radical transfer reaction between PVC to LDPE molecules during processing. The proposed radical transfer reaction is shown in Figure 3. It can be explained that the PVC macroradicals produced from a dehydrochlorination reaction during melt blending process has promoted degradation of long-chained PE and probably led to a hydrogen abstraction from the PE molecules. The PE macroradicals subsequently underwent a branching, which produced short-side chain formation in LDPE molecule of the blend. If this was the case, the dehydrochlorination of the PVC had less chance to occur and thus more stabilized PVC molecules in the blend.²⁶ It was interesting to note that the T_d of the PVC decreased when incorporating the three compatibilizers. This may be expected, since the PVC and LDPE phases became more attached to each other via the compatibilizers. If this was the case, the productions of LDPE and PVC radicals for the radical transfer reaction during processing became minimized, and thus the degradation of the PVC in the blend could take place more easily.

Effect of rubber-wood sawdust in PVC/LDPE blend

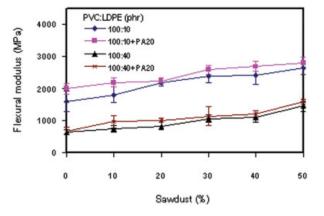
Two selected PVC/LDPE blend ratios (100/10 and 100/40) with PA20 compatibilizer were used to study

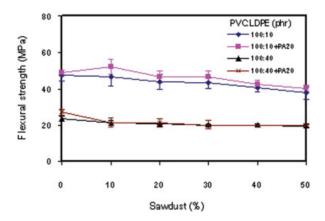

Figure 3 The proposed radical transfer reaction in PVC/LDPE blend.


Figure 4 Young's modulus of PVC/LDPE blend with and without PA20 for different wood sawdust contents. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

the effect of rubber-wood sawdust content on the mechanical properties of the binary blends, the results being shown in Figures 4–9. The overall observations and explanations to the results are listed in fragmenting points as follows:

• The tensile and flexural moduli (Figs. 4 and 7, respectively) of the blends increased with increasing sawdust content. Tensile strength (Fig. 5) and elongation at break (Fig. 6), flexural strength (Fig. 8) and impact strength (Fig. 9) of the blends dramatically decreased with 10 phr rubber-wood sawdust content, the properties leveling-off at higher sawdust loadings. The increase in the moduli of the blend with increasing sawdust content was caused by the fact that the sawdust is more rigid phase as compared to the binary


Figure 5 Tensile strength of PVC/LDPE blend with and without PA20 for different wood sawdust contents. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]


Figure 6 Elongation at break of PVC/LDPE blend with and without PA20 for different wood sawdust contents. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

blend. The sharp drops in tensile, flexural, and impact strengths were associated with poor dispersion of the sawdust particles in the blend matrix. It is widely known that the sawdust particles (fibers) tended to cling together due to strong interfiber hydrogen bonding, and resisted dispersion of the individual fiber in the polymer phase, and thus reduced mechanical strength of the blends.²⁷ It was worth taking note that the mechanical properties of the PVC-LDPE blend stabilized with sawdust loadings of greater than 10 phr. This could be of economical benefit to industries as one could add greater amounts of wood sawdust particles to replace the polymer phase without significant changes in mechanical properties, therefore leading to cost savings.

• The blends with PA20 compatibilizer appeared to have greater mechanical strength than those with-

Figure 7 Flexural modulus of PVC/LDPE blend with and without PA20 for different wood sawdust contents. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

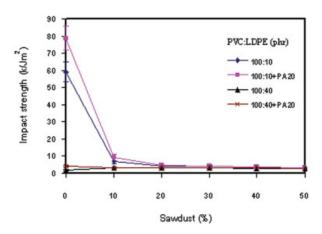


Figure 8 Flexural strength of PVC/LDPE blend with and without PA20 for different wood sawdust contents. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

out PA20. The compatibilizing mechanism has already been discussed earlier. It was also found that the PA20 could perform more effectively in improving the phase compatibility between PVC and LDPE in the absence of wood sawdust particles.

 The magnitude of the mechanical property reduction as a function of rubber-wood sawdust content of the blend with 10 phr LDPE were greater than those with 40 phr LDPE.

Table VI shows the changes in decomposition temperature (T_d) of the PVC in PVC/LDPE (100/10) blend affected by acrylic compatibilizer and wood sawdust. It can be seen that the addition of wood sawdust particles caused an enormous reduction in the T_d of the PVC to about 40°C. However, the decomposition temperature of the PVC in the composites was im-

Figure 9 Impact strength of PVC/LDPE blend with and without PA20 for different wood sawdust contents. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

TABLE VI
Effect of PA20 and Rubber-Wood Sawdust on
Decomposition Temperature of PVC in PVC/LDPE
Blend

Blend system	Decomposition temperature of PVC in PVC/LDPE blend (°C)
PVC	287.6
PVC/LDPE (100/10)	291.3
PVC/LDPE (100/10) + 15% PA20	289.9
PVC/LDPE (100/10) + 10% sawdust PVC/LDPE (100/10) + 15% PA20 +	243.7
10% sawdust	254.0

proved by the addition of PA20. It was also noticeable that adding PA20 slightly increased the T_d of PVC in the PVC-LDPE blend, the T_d reduction being very remarkable in the wood-sawdust/PVC-LDPE composites. The sharp reduction in the T_d value by addition of wood sawdust was probably related to incompatibility between the hydrophilic wood sawdust and the hydrophobic PVC and LDPE molecules. Besides, previous work^{6,27} has suggested that increasing the sawdust content could result in a reduction of the decomposition temperature of the PVC, the reasons being associated with the hydrogen bonding in the hydrophilic sawdust, which could cleave Cl atom from the PVC and thus reduce thermal stability of the PVC in the blend.²⁷

CONCLUSIONS

The mechanical and thermal properties PVC/LDPE blends affected by additions of three different compatibilizers and rubber-wood sawdust were studied. It was found that the mechanical properties of PVC-LDPE blend decreased with increasing LDPE loadings due to phase incompatibility. All the compatibilizers (CPE, PA20, and Elvaloy) used in this work improved the continuity and compatibility between PVC and LDPE phases and thus enhanced the mechanical properties of the blend. The PA20 was found to be the most suitable compatibilizer for the blend. The structural and thermal changes of the PVC in the blend were explained via a radical transfer reaction. The decomposition temperature of the PVC in the blend decreased with the additions of the compatibilizer and the wood sawdust particles. As the sawdust content was increased, the tensile and flexural moduli increased with considerable decreases in the tensile, flexural, and impact strength, a marginal improvement being observed if the PA20 was incorporated. Adding PA20 into the blend decreased the T_d of PVC slightly in the PVC-LDPE blend, but remarkably in the wood-sawdust/PVC-LDPE composite. It was observed that the PA20 could perform more effectively in improving the phase compatibility between PVC and LDPE in the absence of wood sawdust particles.

The authors would also like to thank Dr. Chanchai Thongpin for her valuable advice and comments during the preparation of the article.

References

- 1. Bledzki, A. K.; Gassan, J. Prog Polym Sci 1999, 24, 221.
- Djidjelli, H. Kaci, M.; Vega, J. J.; Benachour, D. Polym Int 2004, 53, 1760.
- 3. Djidjelli, H.; Vega, J.-J; Farence, J.; Benachour, D. Macromol Mater Eng 2002, 287, 611.
- Matuana, L. M.; Kamdem, D. P.; Zhang, J. J Appl Polym Sci 2001, 80, 1943.
- Sombatsompop, N.; Chaochanchaikul, K. J Appl Polym Sci 2005, 96, 213.
- Sombatsompop, N.; Chaochanchaikul, K. Polym Int 2004, 53, 1210.
- 7. Sombatsompop, N.; Phromchirasuk, C. J Appl Polym Sci 2004,
- 8. Lai, S.-M.; Yeh, F.-C.; Wang, Y.; Chan, H. C.; Shen, H.-F. J Appl Polym Sci 2003, 87, 487.
- 9. Colom, X.; Carrasco, F.; Pages, P.; Canavate, J. Compos Sci Technol 2003, 63, 161.
- 10. Stark, N. M.; Matuana, L. M. J Appl Polym Sci 2003, 90, 2609.
- 11. Zhang, F.; Qui, W.; Yang, L.; Endo, T.; Hirotsu, T. J Appl Polym Sci 2003, 89, 3292.

- 12. Fung, K. L.; Xing, X. S.; Li, R. K. Y.; Tjong, S. C.; Mai, Y.-W. Compos Sci Technol 2003, 63, 1255.
- 13. Nunez, A. J.; Strum, P. C.; Keny, J. M.; Aranguren, M. I.; Marcovich, N. E.; Reboredo, M. M. J Appl Polym Sci 2003, 88, 1420.
- Espert, A.; Camacho, W.; Karlson, S. J Appl Polym Sci 2003, 89, 2353.
- Sombatsompop, N.; Yotinwattanakumtorn, C.; Thongpin, C. J Appl Polym Sci 2005, 97, 475.
- Castellano, M.; Gandini, A.; Fabbri, P.; Belgaxem, M. N. J Colloid Interface Sci 2004, 273, 505.
- 17. Abdelmouleh, M.; Boufi, S.; Belgacem, M. N.; Duarte, A. P.; Salah, A. B.; Gandini, A. Int J Adhes Adhes 2004, 24, 43.
- Pickering, K. L.; Abdalla, A.; Ji, C.; McDonald, A. G.; Franich, R. A. Compos A 2003, 34, 915.
- 19. Ghaffar, A.; Sadrmohaghegh, C.; Scott, G. Eur Polym J 1981, 17, 941.
- 20. Hajian, M.; Sadrmohaghegh, C.; Scott, G. Eur Polym J 1984, 20, 135.
- 21. Francis, J.; George, K. E.; Joseph, R. Eur Polym J 1992, 28, 1289.
- 22. Xu, C.; Fang, Z.; Zhong, J. Polymer 1997, 38, 155.
- Sombatsompop, N.; Sungsanit, K.; Thongpin, C. Polym Eng Sci 2004, 44, 487.
- 24. Ma, G.; Fang, Z.; Xu, C. J Appl Polym Sci 2003, 88, 1296.
- 25. Mengeloglu, F.; Matuana, L. M.; King, J. A. J Vinyl Addit Technol 2000, 6, 153.
- 26. Thongpin, C.; Santavitee, O.; Sombatsompop, N. J Vinyl Addit Technol, accepted for publication.
- 27. Sombatsompop, N.; Chaochanchaikul, K.; Phromchirasuk, C.; Thongsang, S. Polym Int 2003, 52, 1847.

Effects of silane and MAPE coupling agents on the properties and interfacial adhesion of wood-filled PVC/LDPE blend

J. Prachayawarakorn* and S. Khunsumled

Department of Chemistry, Faculty of Science,
King Mongkut's Institute of Technology Ladkrabang (KMITL),
Ladkrabang, Bangkok 10520, THAILAND

Email: ksjutara@kmitl.ac.th

C. Thongpin

Faculty of Engineering and Industrial Technology,
Silpakorn University, Sanamchandra Palace Campus,
Nakorn Pathom, 73000, THAILAND

Email: chanchai@su.ac.th

A. Kositchaiyong and N. Sombatsompop*

Polymer Processing and Flow (P-PROF) Group,
School of Energy, Environment and Materials,
King Mongkut's University of Technology Thonburi (KMUTT),
Bangmod, Bangkok 10140, THAILAND

Email: narongrit.som@kmutt.ac.th

^{*}corresponding authors: ksjutara@kmitl.ac.th and narongrit.som@kmutt.ac.th

Abstract

Composite samples were prepared from PVC/LDPE blend, compatibilized by PA20 (methyl methacrylate-co-butyl acrylate copolymer), and reinforced by different levels of rubber-wood sawdust. In order to improve the mechanical properties of the composites, Silane A-137 (Octyltriethoxy silane), Silane A-1100 aminopropyltriethoxy silane) or MAPE (maleic anhydride-grafted-polyethylene) were introduced. It was found that the addition of Silane A-137, Silane A-1100 and MAPE could improve tensile, flexural and impact properties of the composites, regardless of the sawdust contents. Physical or chemical interactions for all coupling agents with the composites used were proposed in this work. Silane A-137 or MAPE tended to give better improvement in the mechanical properties of the composites than Silane A-1100, due to the presence of the non-polar chain ends of Silane A-137 or MAPE molecules. In addition, the addition of either Silane A-137 and MAPE or Silane A-1100 and MAPE at different ratios into the wood-PVC/LDPE composites was also studied. The experimental results suggested that the optimum mechanical properties could be obtained using MAPE at 3%wt sawdust for single coupling system, and Silane A-137:MAPE of 1%:2%wt sawdust for mixed coupling system. Moreover, morphological and thermal properties of the composites were examined using SEM, DMA and TGA techniques.

Key words:

polymer blend, poly(vinyl chloride), composite, wood sawdust, mechanical properties

Introduction

Polymer blend and composites have been studied extensively and the properties of polymer blends and composites can be determined by miscibility and structure of all components [1]. Three or more phases in polymer blend and composite systems have increasingly attracted the interests of researchers and industry, especially, in terms of efforts to improve and modify the composite properties.

Among polymer matrices used for wood-filled composites, poly(vinyl chloride) (PVC) is one of the most widely used thermoplastics in packaging and construction applications. PVC products are likely to be contaminated by olefin polymers such as polyethylene (PE) and polypropylene (PP) [2]. PVC/PE blend has been utilized in several applications such as, blister packing, electric cable sheathing, but its mechanical properties and service performance are much inferior because of their phase incompatibility. One of the most common method to improve the mechanical properties of the incompatible blend is to add a suitable compatibilizer. Previous work [2] has shown that mechanical, morphological and thermal properties of the PVC/LDPE blend were significantly improved by addition of poly(methyl methacrylate-co-butyl acrylate) (PA20).

In general, fiber reinforced polymer composites yield a unique combination of high performance, great versatility and processing advantages at favorable cost. Among other fillers used for such polymeric products, wood fibers become an important class of the reinforcing materials. They show many advantages, including low density, little demand during processing, little requirement on processing equipment, biodegradability, high stiffness and relatively low price [3]. However, the wood fibers

are incompatible with the polymer due to their hydrophilic character which results in uneven dispersion in the composites, thus a poor stress transfer between the matrix and the filler and unsatisfactory properties of the final produced [3]. As a consequence, research efforts have been focused on improving interfacial adhesion of the fiber and polymer phases, usually through use of coupling agents, such as silane coupling agents [4-10] and maleic anhydride-grafted-polymer [5-8,10-17]. The interfacial adhesion can be both chemical and physical, which are referred to covalent and hydrogen bonds, and molecular entanglements, respectively.

Our previous work [2] has shown that the compatibility between PVC and LDPE could be improved by incorporating poly(methyl-methacrylate-co-butyl acrylate) (PA20) which acted as phase compatibilizer, but the mechanical strength of PVC/LDPE blends decreased by addition of wood fibres. The work was now extended to improve the interfacial adhesion between the wood fiber and PVC/LDPE blend by introducing different chemical coupling agents at various dosages, PA20 being used as the compatibilizer for PVC and LDPE phases. The level of interfacial adhesion was evaluated through mechanical, morphological and thermal properties of the wood filled PVC/LDPE composites. Possible molecular interactions among materials phases (PVC, LDPE, wood, PA20) in the composites were also proposed.

Experimental

Raw materials

- Poly(vinyl chloride) (PVC, B0504BLA suspension grade, K value = 66) was supplied by Thai Plastics and Chemicals, Co. Ltd (Bangkok, Thailand). The compound composed of 1.2 phr calcium stearate, 1.2 phr tetrabasic lead sulfate, 0.1 phr polyethylene wax and 4 phr calcium carbonate.
- 2. Low-density polyethylene (LDPE, LD1905F) with MFI of 5 (tested at 21.6 N and 190°C) was obtained from Thai Polyethylene, Co. Ltd (Bangkok, Thailand).
- The compatibilizer used was poly(methyl methacrylate-co-butyl acrylate) (PA20), supplied from Srithepthai Co. Ltd (Thailand). In this work, PA20 was used as the compatibilizer for PVC and LDPE phases.
- 4. Rubber-wood sawdust (*Hervea Brasiliensis*), collecting from local furniture factory, was sieved through standard sieve of 50-80 mesh, corresponding to the particle length of 180-300 μm. The sieved sawdust was dried in an oven at 105°C for 2 h before use.
- 5. Octyltriethoxy (A-137) and γ-aminopropyltriethoxy (A-1100) silane coupling agents were supplied by Sigma-Aldrich, Co. Ltd. (Bangkok, Thailand) and Optimal Tech, Co. Ltd. (Bangkok, Thailand), respectively. The chemical structures of both silane coupling agents are given in **Table 1**. Maleic anhydridegrafted-polyethylene (MAPE Fusabond MB100D) with MFI of 2g/10 min (tested at 21.6 N and 190°C) was supplied by Chemical Innovation, Co. Ltd. (Bangkok, Thailand).

Blend preparation and experimental design

Melt-blending of PVC with LDPE was performed using a single-screw extruder (Thermo Haake Poly Drive) using a screw speed of 60 rpm and a temperature range from 170 to 190°C, starting from feed zone to die zone. The obtained extrudates were further compounded in a two-roll mill (LabTech Engineering, LRM 110) for 10 min using the temperature of 165°C before transferring into a compression molding machine (LabTech Engineering, LP 20). The compressing temperature and time were set at 200°C and 8 min, respectively. Since this work aimed to study the effect of coupling agent type and content on the mechanical properties of the PVC/LDPE blend filled with various contents of wood sawdust, the three steps of experimental procedures are noted.

- Firstly, the amount of the sawdust was varied at 10, 20, 30, 40 and 50% in order to study the effect of sawdust content on the properties of the PVC/LDPE (100/40) blends using PA20 for 15%wt of LDPE.
- Secondly, Silane A-137, Silane A-1100 and MAPE at 1.0, 3.0 and 5.0%wt of wood sawdust were used in order to improve properties of the composites.
- Finally, the influence of using mixed coupling agents(silane:MAPE) on interfacial strength was studied, the percentage ratios of Silane:MAPE used being 2:1, 1:1 and 1:2.

Mechanical properties

All mechanical tests was carried out at the temperature of 23±1°C and relative humidity of 50±5%. It should be noted that the mechanical property results of the composites reported in this work were obtained by averaging from ten independent tested specimens. Tensile test was conducted according to ASTM D-638. The tensile

measurements from dumbell specimens were carried out using Universal Testing Machine (LLOYD Instrument, LR 5k) using WINDAP software with 5 kN load cell and a crosshead speed of 5 mm/min. For flexural property, ASTM D-790 was used as a reference. Three-point bending test was set up in the Universal Testing Machine in order to examine the flexural modulus and strength of the PVC/LDPE blends and Sawdust/PVC/LDPEcomposites using a rectangular specimen. A span length used was 40 mm and a compression speed was 5 mm/min using 5 kN load cell. Izod impact tester (Yasuda Seiki Seisakusho, 258-PC) was used to evaluate the impact strength of the blends and the composites. The notched testing specimens were used, this following the ASTM D-256. The impact property results were reported in terms of impact energy divided by the area of the specimen (kJ/m²).

SEM investigations

A LEO 1455 VP scanning electron microscopy was employed to study the interfacial morphology of the PVC/LDPE blends reinforced by wood fibers. The samples were immersed in a nitrogen liquid before fractured. After that the samples were sputtercoated with a thin layer of gold to prevent electrical charging during the observation. The surface characteristics were examined and operated at 6kV accelerating voltage.

Thermal properties

Glass transition temperatures of the samples were evaluated using a shear-bending mode Dynamic Mechanical Analyzer (DMA, Merrier Teledo DMA/SDTA 861) at a temperature range from 20 to 130°C with a heating rate of 4°C /min and a fixed frequency of 1 Hz. In addition, thermal decomposition temperatures of the blends and the composites were carried out using thermal gravimetry TGA (Perkin Elmer, Pyris

1). The specimen was tested under nitrogen atmosphere using a temperature range of 35-700°C and a heating rate of 10°C/min. The thermal degradation temperatures were reported by the onset temperature where the weight loss started to occur.

Results and Discussion

Effect of Coupling Agents on Mechanical Properties

Mechanical properties of the wood-PVC/LDPE composites for different wood and coupling agent contents are shown in **Figures 1-6**. It can be seen that the moduli (both tensile and flexural in **Figures 1 and 4**) increased with increasing wood contents while the opposite effect was observed for the ultimate properties (**Figures 2, 3 and 5**). These two effects were related to an increased stiffness of the composites, and the discontinuity of the polymer phases in the composite samples, respectively. It was interesting to mention the change of impact strength of the composites by varying wood contents as shown **Figure 6**. It can be seen that the impact strength did not change with increasing wood contents. This may be because the addition of PA20 which acted as a phase compatibilizer in PVC and LDPE matrices overruled the effect of wood sawdust. The obtained results were in good agreement with other reports [9-17] showing that coupling agents such as Silane or MAPE caused the improvement in mechanical properties of cellulose fiber-homopolymer composites.

Considering the effect of type and content of coupling agents, it was observed that all mechanical properties of the composites (**Figures 1-6**) tended to increase with increasing the coupling agents, and then decrease at higher loading of the coupling agents. The results showed that the addition of low loading of Silane or MAPE caused an improvement of the mechanical properties. This was due to chemical interactions between each coupling agent and PVC/LDPE blend as shown and will be detailed later in **Figure 7**. On the contrary, higher loadings of Silane and MAPE brought about an obvious reduction in the mechanical properties. This was because of a self-condensation reaction of the Silane coupling agent [4]. The results were found to be in

line with those reported by Sombatsompop *et al* [5] who used MAPP coupling agent in PP/wood sawdust composites.

When different coupling agent types were compared it was found that MAPE and Silane A-137 gave better improvement than Silane A-1100. The dosages for optimum mechanical properties for these three coupling agents were different, 3.0% for MAPE and 1.0% for Silane A-137 and Silane A-1100. The differences in required dosages may be related to levels of modifications and interactions of the coupling agents in the composites. The schematic diagrams of chemical and physical interactions between the PVC/LDPE matrix and the wood fiber reinforcement through the use of Silane coupling agents or MAPE are proposed in Figure 7. In the case of Silane A-137 (hydrocarbon silane) shown in Figure 7(a), dipole-dipole interaction and hydrogen bonds can be formed between the coupling agent and the wood surfaces. Besides, the physical entanglement can be found between the hydrocarbon chain-ends of Silane A-137 and the PVC/LDPE blend. Similar schematic reactions for kenaf fiber reinforced polypropylene composites modified by silane coupling agent were reported by Karnani et al. [10]. For Silane A-1100 (amino silane) as shown in Figure 7(b), the silanol groups in the Silane coupling agent and hydroxyl groups can be formed. However, neither the amino groups nor the hydroxyl groups at the both ends of the Silane A-1100 molecules can interact with PVC/LDPE phases. Similarly, MAPE coupling agent contains anhydride polar groups and PE non-polar part (Figure 7(c)) and the polar anhydride groups can form ester linkages with wood surfaces via strong covalent bonds while non-polar long-chain PE can perform physical entanglement with LDPE in PVC/LDPE matrix. This may be the reason why the mechanical property improvement using MAPE was more significant than that using Silane A-

137 or A-1100. Ester and physical linkages were also purposed for the cellulose fibers reinforced polypropylene composites modified by maleic anhydride copolymer [17].

Effect of Silane: MAPE ratio on Mechanical Properties

The effect of the use of mixed Silane and MAPE was examined by varying different ratios of Silane:MAPE, i.e. 2%:1%, 1%:1% and 1%:2%, the total content of Silane and MAPE being maintained at 3.0%wt sawdust. It can be seen in Figures 8-13 that using both Silane and MAPE caused a significant enhancement in mechanical properties of the wood-PVC/LDPE composites. According to the results and explanations given when using single coupling agent in Figure 7, the use of mixed Silane A-137:MAPE or mixed Silane A-1100:MAPE still caused the physical and chemical linkages in different active sites. For mixed Silane A-137:MAPE, the dipoledipole interaction and hydrogen bonds were probably formed on the polar ends of Silane A-137 with the sawdust surfaces, and the covalent bonds by ester linkages were given via anhydride part in MAPE and hydroxyl groups in the sawdust. At the same time, the physical entanglement was obtained on the non-polar ends of mixed Silane A-137 and MAPE with the PVC/LDPE matrix. For mixed Silane A-1100:MAPE, the sawdust reinforcement interacted with the PVC/LDPE matrix by dipole-dipole interaction from Silane A-1100, and the physical entanglement and covalent bonds were caused by presence of MAPE. It should be noted that the physical entanglement could not be obtained between the Silane A-1100 and the PVC/LDPE matrix since the chain ends of the Silane A-1100 molecules are polar, leading to less physical interaction between the matrix and the reinforcement, compared with that of using both Silane A-137 and MAPE. This explanation suggested that the mixed Silane A-137:MAPE resulted in better improvement in the

mechanical properties of the composites than the mixed Silane A-1100:MAPE. This was consistent with the mechanical properties of the composite using only Silane A-137, Silane A-1100 or MAPE (**Figures 1-6**).

When different ratio of mixed Silane A-137:MAPE and mixed Silane-A-1100:MAPE were taken into account, it was found that using the highest amount of MAPE (at the ratio of 1%:2% Silane:MAPE) led to the optimum mechanical properties of the composites. It was postulated that by the presence of MAPE the possibility of the self-condensation reaction in Silane A-137 became minimized, this leading to higher active sites of the Silane to interact with the PVC/LDPE matrix and the sawdust reinforcement.

Effect of Silane or MAPE on Morphological Properties

Morphological properties of the Sawdust/PVC/LDPEcomposites are shown in **Figure 14**. It can be seen in **Figure 14(a)** that the matrix of PVC and LDPE blend compatibilized by PA20 was rather rough because high amount of LDPE (40 phr) was added into the PVC phase. Besides, the sawdust dispersed in the matrix phase of PVC/LDPE blend shows poor interfacial adhesion. When using Silane A-137, Silane A-1100 or MAPE, the SEM micrographs in **Figures 14(b)-(d)** suggested that wetting phenomena was obtained, i.e. the wood particles were covered by the PVC/LDPE polymer matrix phase, indicating an improvement of the interfacial adhesion between the PVC/LDPE matrix and the wood reinforcement. The morphological results were in line with the improvement of mechanical properties of the composites by the presence of the three coupling agents.

Effect of Silane and/or MAPE on DMA and Thermal Properties

Thermal properties of the Sawdust/PVC/LDPEcomposites were examined using DMA and TGA techniques. The relationships between storage modulus and loss modulus with temperature of the composites using Silane and/or MAPE are shown in **Figure 15**. It can be seen that storage modulus or elastic energy of the composites with modifications by Silane A-137 and MAPE shifted upwards to higher values while that with Silane A-1100 remained the same as that without addition of coupling agents. The composites with different ratios of Silane A-137:MAPE or Silane A-1100:MAPE also showed an increase in storage modulus. The DMA results confirmed the property enhancement of the composites through the use of chemical coupling agents. Similar behavior was found for changes in loss modulus of the composites.

In general, the loss tangent or tan δ is the ratio of the loss modulus to the storage modulus and the tan δ_{max} value could be used to give glass transition temperatures (T_g) of polymers. It was found that the tan δ_{max} decreased with addition of the three coupling agents although both storage and loss moduli increased accordingly. The values of T_g of the different composite samples obtained from DMA technique are shown in **Table 2.** The results suggested that the composites treated with Silane A-137, Silane A-1100 or MAPE had slightly lower T_g than the untreated composites, but the T_g values did not change with varying types and contents of the coupling agents. The evidence of the increase in storage modulus and the decrease in tan δ indicates the reinforcement occurring in the composites. Thermal decomposition temperatures (T_d) of the wood-PVC/LDPE composites obtained from the onset temperature that the composites started to decompose, were tabulated in **Table 2.** A slight increase in the

 T_{d} was observed for all treated composite, indicating the reinforcement of the composites by the use of the three coupling agents.

Conclusion

Composites from PVC/LDPE blend reinforced by rubber-wood sawdust were prepared and modified using three different coupling agents (Silane A-137, Silane A-1100 or MAPE). The effect of sawdust content, Silane or MAPE content and the ratio of Silane:MAPE were examined. It was found that mechanical properties i.e. tensile, flexural and impact properties of the composites were improved with addition of Silane or MAPE into the composites. Moreover, Silane A-137 and MAPE showed greater effect on mechanical property enhancement than Silane A-1100. Physical or chemical interactions in the composite systems were different for each coupling agent. Wetting phenomena was also observed in the composite samples, regardless of the types of the coupling agents. The experimental results suggested that the optimum mechanical properties could be obtained using MAPE at 3.0%wt sawdust for single coupling system, and Silane A-137:MAPE of 1%:2%wt sawdust for mixed coupling system. In addition, the slight increase of T_d and the slight decrease of T_g of the composites incorporated with Silane A-137, Silane A-1100 or MAPE were obtained.

Acknowledgements

This work was financially supported by Thailand Research Fund (TRF) and the Commission on Higher Education, Ministry of Education (Project code: MRG4780091). Special thanks to Department of Chemistry, Faculty of Science, KMITL for the processing and testing machines.

References

- [1] Miles, I.S.; Rostami, S. in "Multicomponent Polymer Systems", Longman Scientific&Technical, 1992.
- [2] Prachayawarakorn, J.; Khamsri, J.; Chaochanchaikul, K; Sombatsompop, N. J Appl Polym Sci, 2006, 102, 598.
- [3] Bledzki, A.K.; Gassan, J. Prog Polym Sci, 1999, 24, 221.
- [4] Sombatsompop, N.; Chaochanchaikul, K. J Appl Polym Sci, 2005, 96, 213.
- [5] Sombatsompop, N.; Yotinwattanakumtorn, C.; Thongpin, C. J Appl Polym Sci, 2005, 97, 475.
- [6] Bikiaris, D.; Matzinos, P.; Larena, A.; Flaris, V.; Panayiotou, C. J Appl Polym Sci, 2001, 81, 701.
- [7] Matias, M.C.; Orden, M.U.; Sanchez, C.G.; Urreaga, J.M. J Appl Polym Sci, 2000, 75, 256.
- [8] Coutinho, F.M.B.; Costa T.H.S.; Carvalho, D.L. J Appl Polym Sci, 1997, 65, 1227.
- [9] Rozman, H.D.; Kon B.K.; Abusamah, A.; Kumar, R.N. J Appl Polym Sci, 1998, 69, 1993.
- [10] Karnani, R.; Krishnan, M.; Narayan R. Polym Eng Sci, 1997, 37, 476.
- [11] Keener, T.J.; Stuart, R.K.; Brown, T.K. Composites: Part A, 2004, 35, 357.
- [12] Harper, D.; Wolcott, M. Composites: Part A, 2004, 35, 385.
- [13] Marcovich, N.E.; Villar, M.A. J Appl Polym Sci, 2003, 90, 2775.
- [14] Zhang, F.; Endo, T.; Qiu, W.; Yang, L.; Hirotsu, T. J Appl Polym Sci, 2002, 84, 1971.
- [15] Colom, X.; Carrasco, F.; Pages, P.; Canavate, J. Comp Sci Tech, 2003, 63, 161.
- [16] Balasuriya, P.W.; Ye, L.; Mai, Y.-W.; Wu, J. J Appl Polym Sci, 2002, 83, 2505.

[17] Felix, J.M.; Gatenholm, P. JAppl Polym Sci, 1991, 42, 609.

List of Tables

Table No.	Captions
Table 1	Chemical structures and descriptions of Silane coupling agents
Table 2	Glass transition (T _g) and thermal decomposition (T _d) temperatures of the
	sawdust/PVC/LDPE composites using different types and ratio of Silane
	coupling agents or MAPE

List of Figures

Figure No.	Captions
Figure 1	Young's modulus of the sawdust/PVC/LDPE composites using different
	contents of Silane A-137, Silane A-1100 and MAPE
Figure 2	Tensile strength of the sawdust/PVC/LDPE composites using different
	contents of Silane A-137, Silane A-1100 and MAPE
Figure 3	Elongation at break of the sawdust/PVC/LDPE composites using different
	contents of Silane A-137, Silane A-1100 and MAPE
Figure 4	Flexural modulus of the sawdust/PVC/LDPE composites using different
	contents of Silane A-137, Silane A-1100 and MAPE
Figure 5	Flexural strength of the sawdust/PVC/LDPE composites using different
	contents of Silane A-137, Silane A-1100 and MAPE
Figure 6	Impact strength of the sawdust/PVC/LDPE composites using different
	contents of Silane A-137, Silane A-1100 and MAPE
Figure 7	Schematic diagram of the proposed interactions of the sawdust/PVC/LDPE
	composites using (a) Silane A-137 (b) Silane A-1100 and (c) MAPE
Figure 8	Young's modulus of the sawdust/PVC/LDPE composites using different
	ratios of Silane A-137:MAPE and Silane A-1100:MAPE
Figure 9	Tensile strength of the sawdust/PVC/LDPE composites using different
	ratios of Silane A-137:MAPE and Silane A-1100:MAPE
Figure 10	Elongation at break of the sawdust/PVC/LDPE composites using different
	ratios of Silane A-137:MAPE and Silane A-1100:MAPE
Figure 11	Flexural modulus of the sawdust/PVC/LDPE composites using different
	ratios of Silane A-137:MAPE and Silane A-1100:MAPE
Figure 12	Flexural strength of the sawdust/PVC/LDPE composites using different
	ratios of Silane A-137:MAPE and Silane A-1100:MAPE
Figure 13	Impact strength of the sawdust/PVC/LDPE composites using different
	ratios of Silane A-137:MAPE and Silane A-1100:MAPE
Figure 14	SEM micrographs of the sawdust/PVC/LDPE composites using (a) no
	Silane or MAPE (b) Silane A-137 (c) Silane A-1100 and (d) MAPE
Figure 15	(a) Storage modulus and (b) loss modulus of the sawdust/PVC/LDPE
	composites using different types and ratios of Silane or MAPE
Figure 16	Tan δ of the sawdust/PVC/LDPE composites using different types and

ratios of Silane or MAPE

 Table 1
 Chemical structures and descriptions of Silane coupling agents

Silane types	Chemical description	Chemical structure
Silane A-137	Octyltriethoxy silane	CH ₃ (CH ₂) ₇ Si(OCH ₂ CH ₃) ₃
Silane A-1100	γ-aminopropyltriethoxy silane	H ₂ NCH ₂ CH ₂ CH ₂ Si(OCH ₂ CH ₃) ₃

 $\begin{table 2.5cm} \textbf{Table 2} & Glass transition (T_g) and thermal decomposition (T_d) temperatures of the Sawdust/PVC/LDPE composites using different types and ratios of Silane or MAPE (T_g) and thermal decomposition (T_d) temperatures of the Sawdust/PVC/LDPE composites using different types and ratios of Silane or MAPE (T_g) and thermal decomposition (T_g) temperatures of the Sawdust/PVC/LDPE composites using different types and ratios of Silane (T_g) and thermal decomposition (T_g) temperatures of the Sawdust/PVC/LDPE composites using different types and ratios of Silane (T_g) and thermal decomposition (T_g) temperatures of the Sawdust/PVC/LDPE composites using different types and ratios of Silane (T_g) temperatures of the Sawdust/PVC/LDPE composites using the Sawdust/PVC/LDPE composites usi$

Samples	T _g (°C)	T _d (°C)
PVC/LDPE/PA20/SD	88.2	230
PVC/LDPE/PA20/SD + Silane A-137	86.5	237
PVC/LDPE/PA20/SD + Silane A-1100	87.4	231
PVC/LDPE/PA20/SD + MAPE	86.0	235
PVC/LDPE/PA20/SD + (2%:1%) Silane A-137:MAPE	86.3	239
PVC/LDPE/PA20/SD + (1%:1%) Silane A-137:MAPE	86.5	232
PVC/LDPE/PA20/SD + (1%:2%) Silane A-137:MAPE	86.4	236
PVC/LDPE/PA20/SD + (2%:1%) Silane A-1100:MAPE	85.8	233
PVC/LDPE/PA20/SD + (1%:1%) Silane A-1100:MAPE	85.8	239
PVC/LDPE/PA20/SD + (1%:2%) Silane A-1100:MAPE	85.3	237

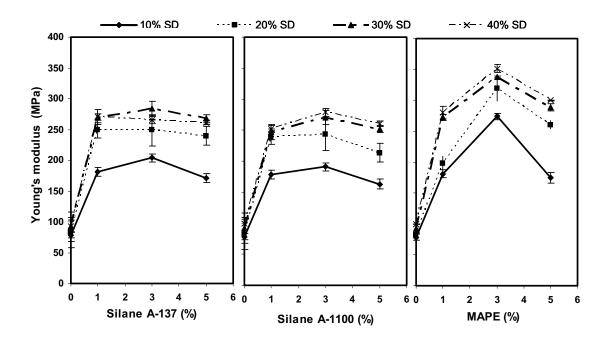


Figure 1 Young's modulus of the sawdust/PVC/LDPE composites using different contents of Silane A-137, Silane A-1100 and MAPE

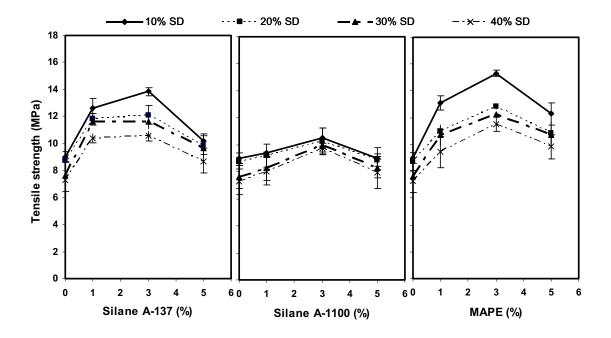


Figure 2 Tensile strength of the sawdust/PVC/LDPE composites using different contents of Silane A-137, Silane A-1100 and MAPE

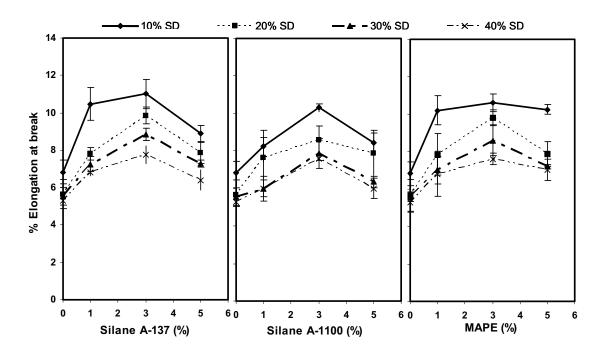


Figure 3 Elongation at break of the sawdust/PVC/LDPE composites using different contents of Silane A-137, Silane A-1100 and MAPE

Figure 4 Flexural modulus of the sawdust/PVC/LDPE composites using different contents of Silane A-137, Silane A-1100 and MAPE

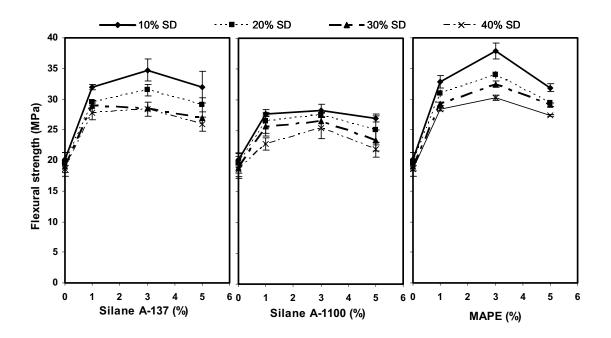


Figure 5 Flexural strength of the sawdust/PVC/LDPE composites using different contents of Silane A-137, Silane A-1100 and MAPE

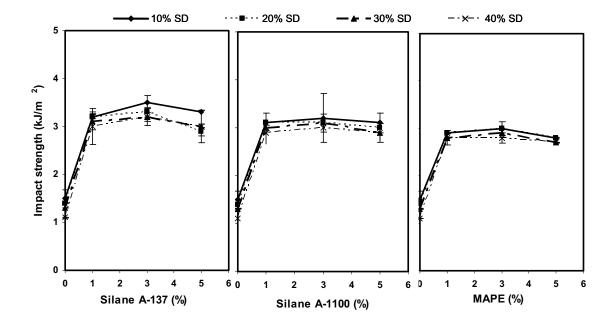
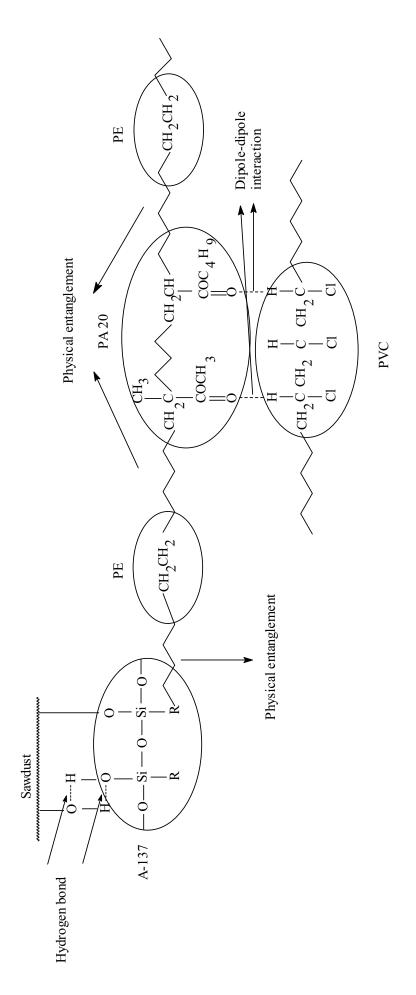
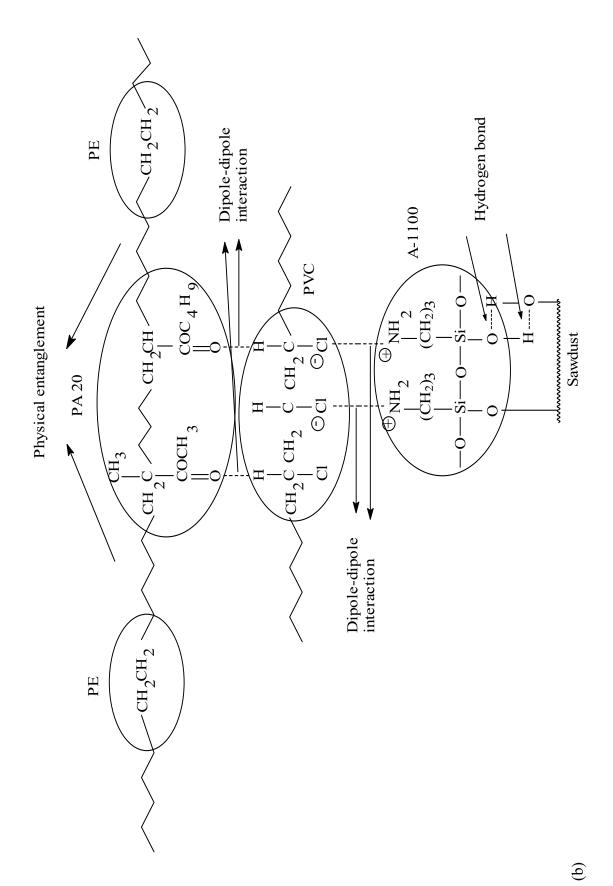
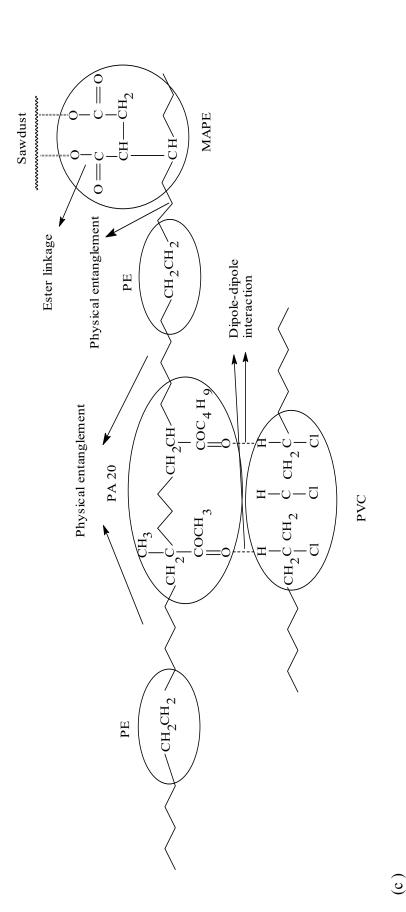





Figure 6 Impact strength of the sawdust/PVC/LDPE composites using different contents of Silane A-137, Silane A-1100 and MAPE

(a)

Schematic diagram of the proposed interactions of the sawdust/PVC/LDPE composites using (a) Silane A-137 (b) Silane A-1100 and (c) MAPE. Figure 7

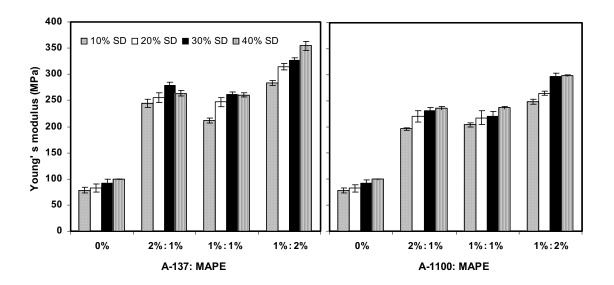


Figure 8 Young's modulus of the sawdust/PVC/LDPE composites using different ratios of Silane A-137:MAPE and Silane A-1100:MAPE

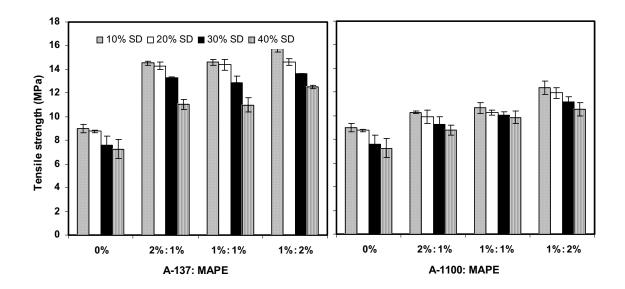


Figure 9 Tensile strength of the sawdust/PVC/LDPE composites using different ratios of Silane A-137:MAPE and Silane A-1100:MAPE

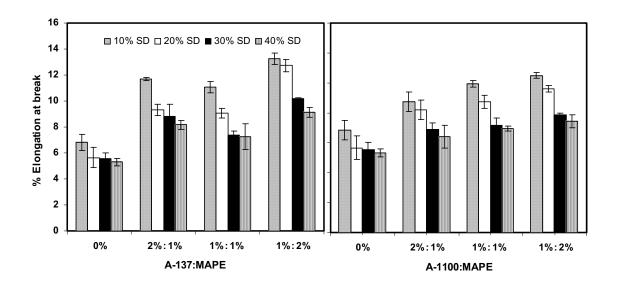


Figure 10 Elongation at break of the sawdust/PVC/LDPE composites using different ratios of Silane A-137:MAPE and Silane A-1100:MAPE

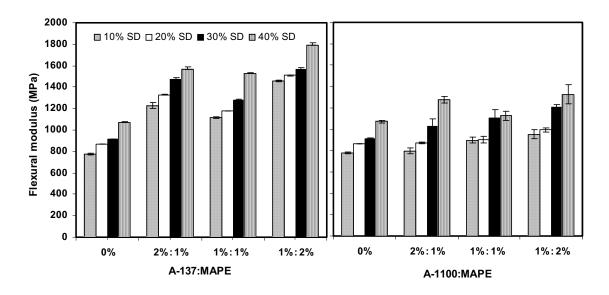


Figure 11 Flexural modulus of the sawdust/PVC/LDPE composites using different ratios of Silane A-137:MAPE and Silane A-1100:MAPE

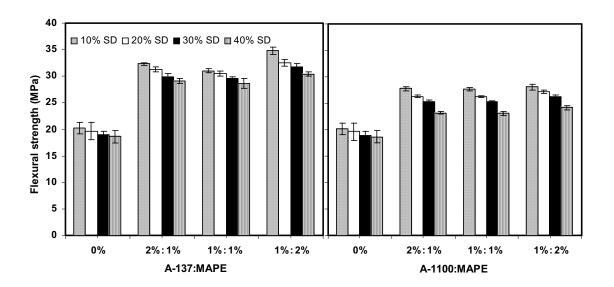


Figure 12 Flexural strength of the sawdust/PVC/LDPE composites using different ratios of Silane A-137:MAPE and Silane A-1100:MAPE

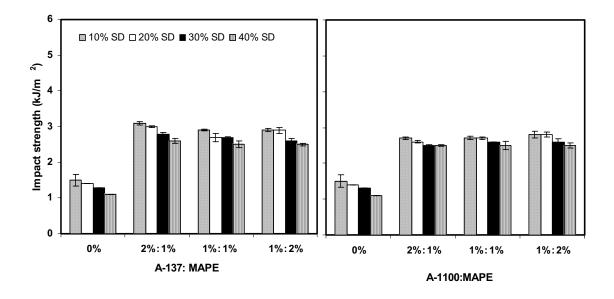


Figure 13 Impact strength of the sawdust/PVC/LDPE composites using different ratios of Silane A-137:MAPE and Silane A-1100:MAPE

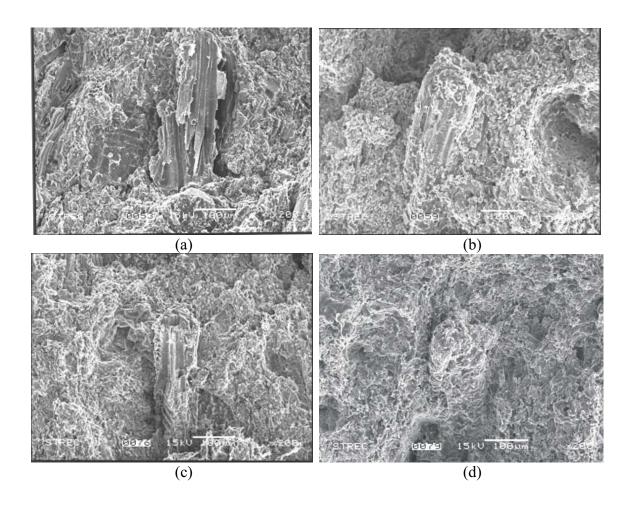
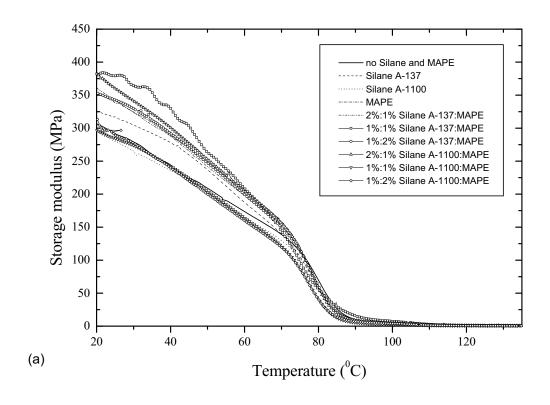



Figure 14 SEM micrographs of the sawdust/PVC/LDPE composites using (a) no Silane or MAPE (b) Silane A-137 (c) Silane A-1100 and (d) MAPE.

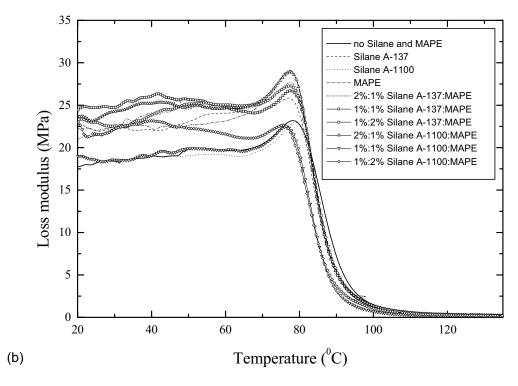


Figure 15 (a) Storage modulus and (b) loss modulus of the sawdust/PVC/LDPE composites using different types and ratio of Silane or MAPE

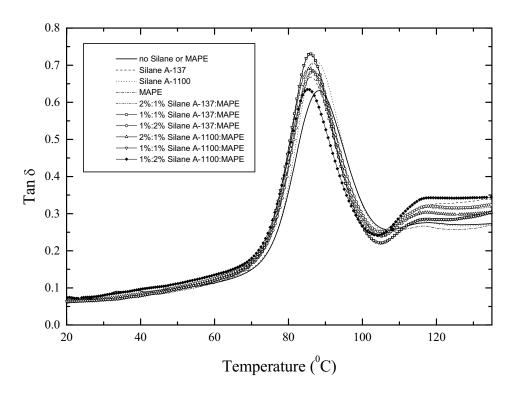


Figure 16 Tan δ of the sawdust/PVC/LDPE composites using different types and ratios of Silane or MAPE

Physical, Chemical and Dyeing Properties of *Bombyx mori* Silks grafted by

2-Hydroxy ethylmethacrylate (HEMA) and Methyl methacrylate (MMA)

J. Prachayawarakorn* and K. Boonsawat

Department of Chemistry, Faculty of Science,

King Mongkut's Institute of Technology Ladkrabang (KMITL),

Bangkok 10520, Thailand. *e-mail: ksjutara@kmitl.ac.th

Abstract

To obtain silk weight gain and improve silk properties, Bombyx mori silks were

grafted by either 2-hydroxy ethylmethacrylate (HEMA) or methyl methacrylate (MMA). It

was found that moisture regain of the HEMA- and MMA-grafted silks depended on the

hydrophilicity of the used monomers. Acid and alkaline resistances of the HEMA- and MMA-

grafted silks were clearly improved. Both commercial synthetic dyes, i.e. acid and reactive

dyes as well as natural dye extracted from turmeric, with potassium aluminum sulphate

mordant, were used in this present study. The results suggested that % dye uptake was

increased with the presence of PHEMA or PMMA in the silk fibroin structure, regardless of

the types of the dyestuffs. Compared to the degummed silk, washfastness level of the HEMA-

grafted silk dyed by acid and reactive dyes was similar to that of the degummed silk.

However, colorfastness to washing of the MMA-grafted silk dyed by acid dyed was improved

when % polymer add-on was 65%. In addition, washfastness for both of the grafted silks was

improved when they were dyed with curcumin natural dyestuff. Acid and alkaline

perspiration fastness properties were found to remain unchanged for the HEMA- and MMA-

grafted silks when acid, reactive and curcumin dyes were applied.

Key words: Silks, Graft copolymers, Dyes, Colorfastness

1

INTRODUCTION

Bombyx mori silks are excellent fibers conventionally used for making yarns, cloths or decorative articles since silks present many outstanding attractions including strength, dyeability, luster, moisture absorption, etc. that distinguish them from other natural and synthetic fibers. However, silks still lack some important performances such as colorfastness properties, abrasion resistance, dimensional stability etc. and these properties are needed to improve. In recent years, graft copolymerization is a well-known technique to impart new property or heighten the existing properties in the parent polymer with minimum degradation of the original properties [1]. The nature of grafted copolymer is dependent on types of grafting monomer and degree of grafting [2].

There has been many researches focused on grafting technique onto silk fibroin using different types of vinyl monomers, i.e. methyl methacrylate (MMA) [3-6], methacrylamide (MAA) [5, 7], 2-hydroxy ethylmethacrylate (HEMA) [5, 7-8] and ethoxy ethylmethacrylate (ETMA) [9]. It was found [3-9] that silks grafted by vinyl monomers showed the improvement of thermal stability and wrinkle recovery; whereas % crystallinity of silk fibroin remained unchanged. Nevertheless, mechanical properties of grafted silks slightly dropped with the increase of % polymer add-on. T.K. Maji *et al.* [3] reported that moisture regain of MMA-grafted silk decreased because of the hydrophobicity of the MMA monomer. When potassium sulfate and tri-n-butylborane were used as the initiators for grafting silks with MMA monomer, it was found that [6] greater % polymer add-on caused greater weight-averaged molecular weight of the PMMA. M. Tsukada *et al.* [7] studied the structures and properties of tussah silks grafted by HEMA and MAA and the results suggested that very high weight gain of 175% could be obtained but high weight gain caused noticable granules on the surface of the grafted silks. In addition, moisture regain of not only HEMA- but also MAA-grafted silks was higher than that of the degummed silk [5]. The effect of 3 different types of

the initiators, i.e. ammonium persulfate (APS), (2, 2'-azobis(2-amidinopropane) dihydrochloride (ADC) and 2,2'-azobisisobutyronitrile (AIBN) on properties of MMA-, MAA- and HEMA-grafted silks was also examined [5]. Furthermore, ETMA-grafted silks also showed the appearance of ETMA oligomers on the surface of the ETMA-grafted silk, especially when the % polymer add-on was more than 40% [9].

In general, silks used for textile application are necessary to be dyed for customer attraction. Textile fibers are expected to present good fastness properties to ensure that they remain in their natural state after dyeing process and normal daily life usage. Dye uptake is, therefore, the important parameter for dyeing procedure; whereas, colorfastness properties are the most essential aspects for fabric exploitations.

In the view of dyestuffs, synthetic dyes are commercially available due to various choices of color shades and ease of use but the major concern is the environmental problem. Natural dyes, as a result, become other options since they present environmental compatibility, low toxicity and low allergic reaction to fabric wearers. One of the popular natural bright yellow dyes is curcumin (1, 7-bis(4-hydroxy-3-methoxyphenyl)-1, 6-heptadiene-3, 5-dione)) extracted from the root of turmeric, a perennial herb *Zingiber officinale*. The yellow colorant has been used as the natural dyestuff and also as the food colorant [11-12]. Nevertheless, the main problem with natural dyes is the poor fastness properties [13-14].

There are only a few researchers reported on dyeing properties of the grafted silks [9-10]. M. Tsukada *et al.* stated on the improvement of % dye uptake when the ETMA-grafted silk was dyed with acid dye [9]. Furthermore, fastness to washing and perspiration of the degummed silk dyed with acid, basic and curcumin dyes could be improved by grafting with MMA and MAA monomers with % grafting of approximately 45% [10]. Nevertheless, no research investigated on dyeing properties of the cultivated silk (*Bombyx mori*) grafted by

HEMA. In general, HEMA is one of the important vinyl monomers since it is usually used as daily wear contact lens due to its biocompatibility and hydrophilic property. Because of the hydrophilic property of HEMA, it can be used as the grafting monomer for silk fibroin that will lead to comfort during wearing silk fabric. Therefore, this paper was focused on dyeing properties, i.e. dye uptake, colour measurement and color fastness properties of the HEMA-grafted silk, compared with the MMA-grafted silk. Besides, physical and morphological properties of the HEMA- and MMA-grafted silks were also investigated.

EXPERIMENTAL

Materials

Raw silks (*Bombyx mori*) were supported by Jim Thompton, Thailand. Reagent grades of 2-hydroxy ethylmethacrylate (HEMA) and methyl methacrylate (MMA) monomers including formic acid were obtained from Merck, Co. Ltd. Ammonium persulfate (APS) was used as the initiator. Alkali solutions of both sodium carbonate and sodium bicarbonate as well as Sandopan 60 soap solution were used for degumming. Acid dye (Erionyl Yellow A-R, C.I. Acid Orange 67) and reactive dye (Cibacron Yellow W-R, C.I. Reactive Yellow 205) belonged to Ciba Specialty Chemicals, Thailand. Curcumin (*Curcuma longa*, C.I. Natural Yellow 3) was obtained locally and the mordant used for natural colorant dyeing was potassium aluminium sulphate from Fluka, Co. Ltd.

Degumming and Grafting

Raw silks were firstly degummed in an aqueous solution, containing 0.05 mol/l sodium carbonate, 0.05 mol/l sodium bicarbonate and soap, at 80°C for 30 min. Grafting was performed by immersing silks in the reaction system at pH 3 (adjusting with formic acid), containing 0.05 mol/l APS initiator as well as 0.8 mol/l of HEMA or MMA monomer. The material-to-liquor ratio during the treatment was maintained at 1:20. The temperature was gradually raised from room temperature to 80°C within 30 min and then maintained at this level for different periods of time. The grafted silks were thoroughly rinsed with acetone, followed by water and then vacuum dried. % weight gain was calculated from the weight difference of the dried silks before and after the graft treatment.

Dyeing

The degummed, HEMA- and MMA-grafted silks were dyed using exhaustion method with commercial acid and reactive dyestuffs in order to observe the dyeing characteristics of the silks. The concentration of the dyeing solution was kept at 3% o.w.f. and the ratio of dye solution to silk weight was maintained at 30:1. For acid dyeing, an initial temperature was 30°C and the dyeing temperature was then raised to 90°C within 30 min and the silks were further dyed at this temperature for 45 min. Reactive dyeing process started from dyeing at the tempearture of 60°C for 45 min, followed by washing with cold and warm water until no change in color was obtained. Finally, the dyed silks for both acid and reactive dyes were dried at room temperature. It should be noted that dyeing condition and recipe conformed the manufacturer suggestions. Furthermore, natural colorant extracted from turmeric was prepared [10] by immersing turmeric in 75% ethanol solution, the suitable solvent for curcumin extraction, using the 1:20 material to liquid ratio for 1 h. The resulting filtrate was then used for further dyeing. The curcumin dyeing process was carried out using the dyeing temperature of 60°C for 10 min and the material to liquid ratio was maintained at 1:30. Potassium aluminium sulphate mordant (8% o.w.f.) was used during the dyeing procedure (metamordant) for curcumin dyeing. In addition, % dye uptake was examined from the increase in the weight gain before and after dyeing processes and 3 measurements were carried out for calculating and averaging % dye uptake values.

Morphology

A LEO 1455 VP scanning electron microscopy was employed to study surface morphology of the degummed and grafted silks. The samples were sputter-coated with a thin layer of gold to prevent electrical charging during the observation. The surface characteristics were examined and operated at 6kV accelerating voltage.

IR Spectroscopic Study

FTIR spectra of silk samples were recorded on a Spectrum 2000 GX spectrometer (Perkin-Elmer) using KBr disk technique with a resolution of 4 cm⁻¹ in a spectral range of 4000-650 cm⁻¹ using 16 scans per sample.

Moisture regain

The degummed and grafted silks were placed in a controlled room with the temperature of 21°C and 65% RH until the constant weight of the samples were obtained. The weight difference with the samples after drying in an oven at the temperature of 105°C for 2h was then calculated [15].

Chemical resistance

The silks were immersed in 3 M HCl and 0.1 M NaOH solutions at 65°C for 1 h, followed by washing in distilled water. The dried samples were then weighted and the weight loss was calculated in terms of percentage [15].

Color measurement

Color parameters i.e. L*, a*, b*, C* and H° were measured with the Miniscan XE plus Spectrophotometer using D65/10° illuminant evaluated by CIE L* a* b* system. In this system, L* represents lightness, a* redness if positive and greenness if negative and b* yellowness if positive and blueness if negative. In addition, C* and H° showed chroma and color angle in color space of the samples, respectively. 5 measurements were carried out for each sample to obtain averaged color parameters.

Colorfastness

Colorfastness of the silk samples was performed for washing, acid and alkaline artificial perspiration solutions according to ISO 105 C01-C03 and ISO 105 E04, respectively. Colorfastness for washing and perspiration tests was carried out using both sample and standard (silk and cotton) fabrics that were sewn together and tested under the same conditions. For washing colorfastness, the sewn fabric was washed at 42° C for 30 min in a standard soap solution. Both fabrics were then separated and dried. For perspiration colorfastness testing, the sewn fabric were immersed in either acid (pH = 5.5) or alkaline (pH = 8.0) artificial perspiration solutions at room temperature for 30 min. Then, they were transferred into a perspirometer for pressing and the perspirometer was kept in an oven at the temperature of 37° C for 4 h and then the fabric was dried by air. It should be noted that washing and perspiration fastness levels, observed against greyscale, were classified as numbers ranging from 1 and 5, referring to poor to excellent fastness, respectively. In contrast, staining level on standard silk and cotton fabrics was labelled from 1 (the maximum stain) to 5 (the minimum stain).

RESULTS AND DISCUSSION

Grafted silks by HEMA and MMA vinyl monomers can be obtained via free radical polymerization using APS initiator. Two chemical reactions can take place i.e. grafting of monomers and macromonomers onto silk fibroin molecules and polymerization of individual monomers leading to homopolymers. For grafting technique, high polymer add-on as well as low level of homopolymerization is essential for industrial application.

Morphology

Surface morphology of the silks can be examined using SEM technique. **Figure 1** shows SEM micrographs of the degummed, HEMA- and MMA-grafted silks. The surface morphology revealed that the surface of the degummed silk was rather smooth as shown in **Figure 1(a)** but the rough surface of the HEMA- and MMA-grafted silks were obtained. The surface of the HEMA-grafted silks appeared to compose of polymer film coated on the silk (**Figure 1(b)**); however the surface of the MMA-grafted silks presented the granules of oligomer particles (**Figure 1(c)**). The observed surface morphology was due to the grafting process that caused bonding between the silk and the vinyl monomers.

IR Spectroscopic Study

The modifying agent used for chemical modification of silk fibroin can be examined using IR technique. IR spectra of the degummed and grafted silks are represented in **Figure 2**. IR spectrum of the degummed silk in **Figure 2(a)** showed the significant wavenumbers at 3411, 2921, 1646 and 1517 cm⁻¹, due to NH stretching, CH stretching, C=O stretching and NH bending in amides (amide I and amide II), respectively [4, 8]. The HEMA-grafted silks presented similar IR spectra to the degummed silk, except for the peak position of 3411 cm⁻¹, attributed to NH stretching, that shifted to higher wavenumber. The IR spectrum in **Figure**

2(b) of the HEMA-grafted silks presented the other absorption bands at the wavenumbers of 1728 and 1262 cm⁻¹, referred to C=O stretching of the ester groups in PHEMA. Moreover, additional absorption bands at 1738 and 1252 cm⁻¹, assigned for C=O stretching and C-O stretching of ester groups of PMMA, respectively; could be observed for the MMA-grafted silk (**Figure 2(C)**).

Moisture regain

Comfort during wearing silk fabrics is very important in views of textile application. Comfort can be indirectly determined via the ability of the textile to absorb moisture. Moisture regain of the degummed, HEMA- and MMA-grafted silks is represented in **Table 1**. Due to the hydrophilic characteristic of PHEMA, the moisture regain of the HEMA-grafted silk was dominantly higher than that of the degummed silk. As expected, greater content of PHEMA in the HEMA-grafted silk resulted in slightly higher % moisture regain. However, the MMA-grafted silk represented lower moisture regain than the degummed silk because of the hydrophobic nature of the PMMA, adhering on the surface of the MMA-grafted silk.

Chemical resistance

Acid and alkaline resistances can be expressed in terms of percentage of weight loss of the silks after the immersion of the samples in the specific solutions for a specific time. It can be seen in **Table 1** that % weight loss of the HEMA-grafted silk after acid and alkaline immersion were clearly decreased, probably due to the steric hindrance from the bulky group of the HEMA molecules, causing the difficulty for the proton from the acid to react with the fiber; and also, the hydrolysis by the alkaline became lower. Similar results (**Table 1**) could be obtained for the MMA-grafted silk showing that the weight loss decreased significantly,

indicating of the improvement of acid and alkaline resistances. This could be due to the hydrophobic property of the MMA monomer used for the grafting.

Dyeing Properties

In general, dyeing properties are unavoidably significant for textile utilization both for manufacturers and customers. The degummed silk was dyed with yellow commercial dyes of acid and reactive dyes including natural dye extracted from turmeric with the mordant.

Dye uptake

Both of the grafted silks showed greater % dye uptake than that of the degummed silk as shown in **Table 2** when acid, reactive and curcumin dyes were used. This could be because there is greater possibility of the dye molecule to penetrate into the silk amorphous area in the grafted silks, and therefore, the grafted chain can interact with the dye molecules in the opened amorphous area, leading to the enhancement of the amounts of the dyes in the opened boundary [10]. Besides, the increase of the % weight gain resulted in the increase of % dye uptake for the HEMA- and MMA-grafted silks.

For acid dyeing, cation of silk can attract to anion of acid dye; therefore, ionic bonding can mainly be formed. In contrast, chemical reaction is expected for the use of reactive dye. When curcumin dyestuff, the natural yellow colorant in flavonoid group, is applied, dipole-dipole interaction can be mainly formed between HEMA and MMA side group and the curcumin dyestuff, containing carbonyl, hydroxyl and methoxy groups [14].

Normally, salts of inorganic elements such as aluminium, iron, copper, etc., called mordant, are used with dyeing natural dyestuffs for improving not only interaction between dye and silk molecules but also color fastness properties of the resulted dyed material. In

addition, the formation of complex molecule could occur among the dyestuff, grafted silk fibroin and mordant molecules, brought about greater dyeing ability of the grafted silks.

Color parameters

Color difference in textile samples can be classified using spectrophotometer. **Table 3** presents color parameters obtained after color measurement, i.e. L*, a*, b*, C* and H° for the degummed and grafted silks, dyed with acid, reactive and curcumin dyes. It can be seen that for all of the grafted silks dyed with acid dye showed similar a* and b* values but L* and C* values for the HEMA- and MMA-grafted silk were higher than those of the degummed silk, showing greater brightness and chroma in the grafted silks. For the reactive dye, L* and a* values were approximately equal for all samples, b* for both of the grafted silk was higher than that of the degummed silk and the HEMA-grafted silk with 75% polymer add-on presented the greatest b* value, indicating of the most yellowness in the sample. In addition, C* or chroma could be ranged in the following order: HEMA>MMA>degummed silks. Furthermore, L*, b* and C* values for both of the grafted silks dyed by curcumin dyestuff were higher than the degummed silk.

Colorfastness properties

The ability of the dye molecules to retend within the fiber structure is an important aspect when dyed textile fabric is used. Better fastness properties results in the same color shade as the original state after the fabrics are used for a period of time. The important colorfastness properties are colorfastness to washing and perspiration. Colorfastness level and staining level on standard silk and cotton fabrics of the degummed, HEMA- and MMA-grafted silks were represented in **Tables 4 and 5**, respectively.

Colorfastness to Washing

Colorfastness to washing is very important for both dyeing and finishing processes. Washfastness test was performed by washing the standard and sample fabrics in the standard solution at the controlled temperature and time; after that, the color change was observed against grey scale and the washfastness level was reported from 1 to 5 as shown in **Table 4**. Washfastness property of the HEMA-grafted silk with % grafting of 28% and 75% dyed with acid dye was found to be in the same level as that of the degummed silks. Since the washing fastness level of the degummed silk was already in excellent level; therefore, the fastness to washing could be maintained by the grafting process using HEMA monomers. In addition, the staining level on silk and cotton standard fabrics was indicated as the fair level as presented in **Table 5**.

On the contrary, the MMA-grafted silk with % grafting of 65% dyed with acid dye showed better washfastness level than the degummed silk (**Table 4**) due to the ionic interaction between the carbonyl group of the MMA monomer and the anion of the dye molecule; therefore, the movement of the dye molecules was inhibited. In addition, stain on the standard silk and cotton fabrics was minimized with the 65% weight gain of the MMA-grafted silk (**Table 5**). However, low grafting level of approximately 12% of MMA does not result in the improvement of fastness to washing of the MMA-grafted silk (**Table 4**).

Because reactive dye can form covalent bond with silk fibroin, the degummed, HEMA- and MMA-grafted silks presented the excellent levels of fastness to washing as shown in **Table 4**. Besides, all the silk samples showed the least staining ability on the standard silk and cotton fabrics when reactive dye was used as indicated in **Table 5**.

When the curcumin was used, the colorfastness to washing (Table 4) of both of the grafted silks could be improved, because the HEMA- and MMA-grafted silks can interact with the curcumin dyestuff and form complex compounds between the dye, monomer and

mordant. Moreover, the improvement of colorfastness level to washing for both of the grafted silks, implied that, during the washing action, color maintenance capability was improved with the presence of PHEMA and PMMA molecules within the amorphous region of the grafted silk fibroin. On the contrary, great stain on the standard fabrics for all silks dyed with curcumin was obtained, as indicated by staining levels of 1 or 1-2 as shown in **Table 5**, eventhough colorfastness level for washing was increased by grafting with HEMA and MMA monomers.

Colorfastness to Perspiration

Each person excludes different chemical compositions of perspiration depending on body metabolism. In general, human perspiration can be divided into 2 different groups; i.e. acid and alkaline types, so 2 dissimilar tests were performed for the dyed silks, obtained from the degummed and grafted silks. **Table 4** present numerical levels of colorfastness for acid and alkaline artificial perspiration solutions, containing histidine monohydrochloride monohydrate, sodium chloride and sodium orthophosphate.

When acid dye was applied, it was found that colorfastness levels to both acid and alkaline perspiration solutions of HEMA-grafted silk were in the same level as that of the degummed silk and the staining levels were moderate (**Table 5**). Colorfastness properties to acid and alkaline perspiration as shown in **Table 4** for the MMA-grafted silk dyed with acid dye with % grafting of 65% showed better result, compared to the degummed silk, probably due to the formation of ionic bond between the MMA-grafted silk and the acid dye. On the other hand, the improvement of acid perspiration fastness for the MMA-grafted silk with 65% weight gain gave the same staining level on the standard fabrics as the MMA-grafted silk with 12% weight gain as represented in **Table 5**. Nevertheless, the fastness to acid and alkaline perspiration for the MMA-grafted silk with 12% grafting was similar to that of the degummed

silk. It was also shown in **Table 4** that all silks dyed by acid dye presented lower fastness to acid and alkaline perspiration solutions than the silks dyed by reactive dye, due to the covalent bond formation when reactive dye was used.

In the case of reactive and curcumin dyestuffs, colorfastness to acid as well as alkaline perspiration for the degummed, HEMA- and MMA-grafted silks was found to be in the same excellent level (**Table 4**), regardless of the % grafting, indicating that dye retention manners due to acid and alkaline perspiration solutions were maintained.

When staining level after acid and alkaline perspiration fastness tests was concerned, it was found in **Table 5** that all the samples dyed with reactive dye showed the highest staining level (the least stain) but the opposite results (the highest stain) was obtained when curcumin dye was used. The staining levels for all the samples tested for acid and alkaline perspiration could be ranged in the following order: reactive dye>acid dye>curcumin dye.

CONCLUSION

The HEMA-grafted silk showed higher moisture regain, acid and alkaline resistances than those of the degummed silk, regardless of % weight gain. Dye uptake of both of the HEMA- and MMA-grafted silks was increased when acid, reactive and curcumin dyes were applied. For colorfastness properties, the HEMA-grafted silk dyed with acid and reactive dyes presented the same fastness level to washing, acid and alkaline perspiration as the degummed silk. In contrast, colorfastness to washing of the MMA-grafted silk with 65% weight gain was better than that of the degummed silk when acid dye was applied. Nevertheless, washfastness of the degummed silks dyed with curcumin could be improved by grafting with HEMA and MMA monomers.

ACKNOWLEDGEMENT

This research work was financially supported by Thailand Research Fund (TRF) and the Commission on Higher Education, Ministry of Education (Project code: MRG4780091). The authors would also like to thank Jim Thompson and Ciba Specialty Chemicals, Thailand for kindly providing for the raw silks as well as acid and basic dyes, respectively.

REFERENCES

- [1] Khan, F., Chem Rev, 1993, 93, 267.
- [2] Ahmad, S.R.; Khan, F.; Kronfli, E., Adv Polym Tech, 2002, 21, 132.
- [3] Maji, T.K.; Basu, D.; Datta, C.; Banerjee, A., J Appl Polym Sci, 2002, 84, 969.
- [4] Tsukada, M.; Yamamoto, T; Nakabayashi, N., Ishikawa, H.; Freddi, G., J Appl Polym Sci, 1991, 43, 2115.
- [5] Tsukada, M.; Arai, T.; Freddi, G.; Imai, T.; Kasai, N., J Appl Polym Sci, 2001, 81, 1401.
- [6] Tsukada, M.; Goto, Y.; Freddi, G., J Appl Polym Sci, 1992, 44, 2197.
- [7] Tsukada, M.; Freddi, G.; Massafra, M. R.; Beretta, S., J Appl Polym Sci, 1998, 67, 1393.
- [8] Tsukada, M.; Freddi, G.; Monti, P.; Bertoluzza, A.; Shiozaki, H., J Appl Polym Sci, 1993, 49, 1835.
- [9] Tsukada, M.; Freddi, G.; Matsumura, M.; Shiozaki, H.; Kasai, N., J Appl Polym Sci, 1992, 44, 799.
- [10] Prachayawarakorn, J.; Kryratsamee, W., J Appl Polym Sci, 2006, 100, 1169.
- [11] Tsatsaroni, E.; Kyriakides, M.-L.; Eleftheriadis, I., Dyes and Pigments, 1998, 37, 307.
- [12] Popoola, A. J Appl Polym Sci, 2000, 77, 752.
- [13] Tsatsaroni, E.; Kyriakides, M.-L., Dyes and Pigments, 1995, 29, 203.
- [14] Lee, J. J.; Lee, H. H.; Eom, S. I.; Kim, J. P., Color Tech, 2001, 117, 134.

[15] Arai, T.; Ishikawa, H.; Freddi, G.; Winkler, S.; Tsukada, M., J Appl Polym Sci, 2001, 79, 1756.

Figure captions

- Figure 1 SEM micrographs of (a) degummed silk (b) HEMA-grafted silk (75% grafting) and (c) MMA-grafted silk (65% grafting).
- Figure 2 IR spectra of (a) degummed silk (b) HEMA-grafted silk (75% grafting) and (c) MMA-grafted silk (65% grafting).

Table captions

- Table 1 Moisture regain of the degummed, HEMA- and MMA-grafted silks.
- Table 2 % Dye uptake of the degummed, HEMA- and MMA-grafted silks using acid, reactive and curcumin dyestuffs.
- Table 3 Color parameters of the degummed, HEMA- and MMA-grafted silks using acid, reactive and curcumin dyestuffs.
- Table 4 Color fastness properties of the degummed, HEMA- and MMA-grafted silks using acid, reactive and curcumin dyestuffs.
- Table 5 Staining level on white standard fabrics of the degummed, HEMA- and MMA-grafted silks using acid, reactive and curcumin dyestuffs.

Table 1 Moisture regain, acid and alkaline resistances of the degummed, HEMA- and MMA-grafted silks

Samples	Weight gain (%)	Moisture	Weight loss (%)	
		regain (%)	Acid	Alkaline
Degummed silk	-	4.7 ± 0.1	4.9 ± 0.1	3.6 ± 0.6
HEMA-grafted silk	27.6 ± 4.7	6.6 ± 0.1	4.2 ± 0.5	3.4 ± 0.2
	74.8 ± 4.4	7.0 ± 0.1	4.1 ± 0.4	3.2 ± 0.6
MMA-grafted silk	11.5 ± 1.0	4.3 ± 0.2	3.1 ± 0.3	1.5 ± 0.3
	65.3 ± 1.9	4.1 ± 0.1	2.0 ± 0.2	1.1 ± 0.5

Table 2 Percentage of dye uptake of the degummed, HEMA- and MMA-grafted silks using acid, reactive and curcumin dyestuffs

Samples	Weight gain	Dye uptake (%)				
	(%)	Acid dye	Reactive dye	Curcumin dye		
Degummed silk	-	37.5 ± 3.5	39.6 ± 3.9	14.6 ± 2.2		
HEMA-grafted silk	27.6 ± 4.7	45.5 ± 3.8	5.0 ± 0.5	17.3 ± 2.8		
	74.8 ± 4.4	50.3 ± 4.1	10.8 ± 0.3	29.8 ± 2.9		
MMA-grafted silk	11.5 ± 1.0	45.8 ± 4.2	17.9 ± 0.5	27.5 ± 3.1		
	65.3 ± 1.9	49.9 ± 5.3	N/A*	32.6 ± 2.5		

Table 3 Color parameters of the degummed, HEMA- and MMA-grafted silks using acid, reactive and curcumin dyestuffs

Dyestuffs	Samples	Weight gain	Color parameters				
		(%)	L*	a*	b*	C*	Н°
Acid dye	Degummed silk	-	44.0	36.1	79.3	83.5	68.9
	HEMA-grafted silk	27.6 ± 4.7	47.3	36.8	80.8	88.8	70.6
		74.8 ± 4.4	48.2	38.3	82.4	91.3	64.5
	MMA-grafted silk	11.5 ± 1.0	46.3	35.9	79.0	85.8	69.9
		65.3 ± 1.9	46.4	35.3	79.1	86.6	67.5
Reactive dye	Degummed silk	-	53.9	31.9	77.6	83.9	62.9
	HEMA-grafted silk	27.6 ± 4.7	54.9	29.5	86.7	91.6	62.9
		74.8 ± 4.4	55.5	31.6	91.5	96.7	63.9
	MMA-grafted silk	11.5 ± 1.0	55.7	29.2	83.4	87.7	64.1
		65.3 ± 1.9	N/A*	N/A*	N/A*	N/A*	N/A*
Curcumin	Degummed silk	-	51.3	14.3	78.5	80.8	79.8
	HEMA-grafted silk	27.6 ± 4.7	54.6	15.6	81.9	83.4	79.3
		74.8 ± 4.4	56.5	17.5	82.1	84.3	76.6
	MMA-grafted silk	11.5 ± 1.0	56.4	16.7	81.1	83.8	77.7
		65.3 ± 1.9	57.2	17.2	85.3	87.7	78.4

Table 4 Colorfastness properties of the degummed, HEMA- and MMA-grafted silks using acid, reactive and curcumin dyestuffs

Fastness	Samples	Weight gain	Color fastness level				
properties		(%)	Acid dye Reactive Cur		Curcumin		
				dye			
Washing	Degummed silk	-	4	4-5	3		
	HEMA-grafted silk	27.6 ± 4.7	4	4-5	3-4		
		74.8 ± 4.4	4	4-5	3-4		
	MMA-grafted silk	11.5 ± 1.0	4	4-5	3-4		
		65.3 ± 1.9	4-5	N/A	3-4		
Acid	Degummed silk	-	4	4-5	4-5		
perspiration	HEMA-grafted silk	27.6 ± 4.7	4	4-5	4-5		
		74.8 ± 4.4	4	4-5	4-5		
	MMA-grafted silk	11.5 ± 1.0	4	4-5	4-5		
		65.3 ± 1.9	4-5	N/A	4-5		
Alkaline	Degummed silk	-	4	4-5	4-5		
perspiration	HEMA-grafted silk	27.6 ± 4.7	4	4-5	4-5		
		74.8 ± 4.4	4	4-5	4-5		
	MMA-grafted silk	11.5 ± 1.0	4	4-5	4-5		
		65.3 ± 1.9	4-5	N/A	4-5		

Table 5 Staining level on white standard fabrics of the degummed, HEMA- and MMA-grafted silks using acid, reactive and curcumin dyestuffs

Fastness	Samples	Weight	Staining level					
properties		gain (%)	Acid dye		Reactive dye		Curcumin	
			Silk	Cotton	Silk	Cotton	Silk	Cotton
Washing	Degummed silk	-	3	3-4	4-5	4-5	1	1-2
	HEMA-grafted silk	27.6 ± 4.7	3	3-4	4-5	4-5	1	1-2
		74.8 ± 4.4	3	3-4	4-5	4-5	1	1-2
	MMA-grafted silk	11.5 ± 1.0	3-4	3-4	4-5	4-5	1	1-2
		65.3 ± 1.9	4	4	N/A	N/A	1	1-2
Acid	Degummed silk	-	3-4	4	4-5	4-5	1	1-2
perspiration	HEMA-grafted silk	27.6 ± 4.7	3-4	4	4-5	4-5	1	1-2
		74.8 ± 4.4	3-4	4	4-5	4-5	1	1-2
	MMA-grafted silk	11.5 ± 1.0	3-4	4	4-5	4-5	1	1-2
		65.3 ± 1.9	3-4	4	N/A	N/A	1	1-2
Alkaline	Degummed silk	-	3	4	4	4	1	1-2
perspiration	HEMA-grafted silk	27.6 ± 4.7	3	3-4	4-5	4-5	1	1-2
		74.8 ± 4.4	3	3-4	4-5	4-5	1	1-2
	MMA-grafted silk	11.5 ± 1.0	3-4	3-4	4-5	4-5	1	1-2
		65.3 ± 1.9	3-4	3-4	N/A	N/A	1	1-2

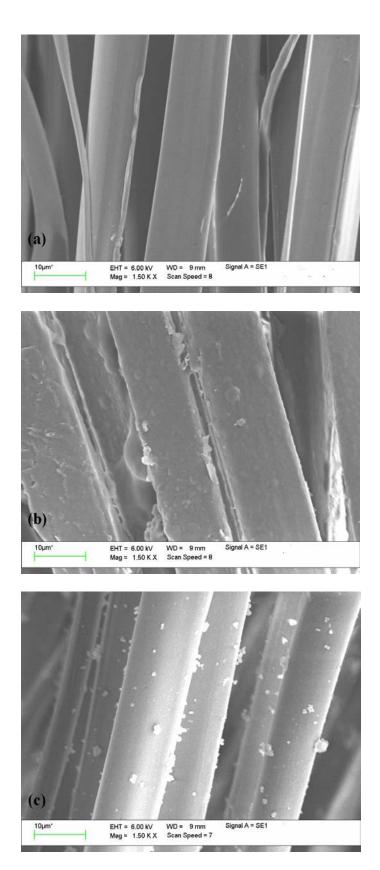


Figure 1 SEM micrographs of (a) degummed silk (b) HEMA-grafted silk (75% polymer add-on) and (c) MMA-grafted silk (65% polymer add-on)

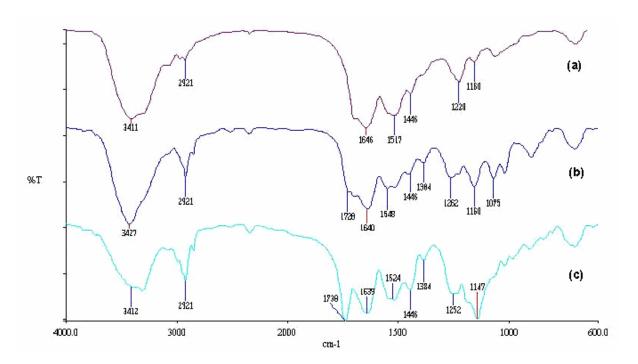


Figure 2 IR spectra of (a) degummed silk (b) HEMA-grafted silk (75% polymer addon) and (c) MMA-grafted silk (65% polymer add-on)