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The purpose of this project is to investigate certain p-local subgroups of the symmetric
group Sym(n). Our main focus is the subgroups In the set N, (G,B) consisting of all
maximal p-local subgroups of G = Sym(n) with respect to B, the normalizer of a Sylow p-

subgroup of G in G. The structure of the subgroups in N__ (G,B) is determined for soma

max

critical cases. The main results is the following:

Theorem 1 Let G=S8ym({2) with |QQJ=p, where p is a prime. Suppose that
T €8yl (G) and B=Ng(T). Then N, (G.B)={B}.

Theorem 2 Let G = Sym(2) with [CY = n. Suppose that T € Syl (G) and B8 =N(T),
where p is a prime. Then B is a maximal p-local subgroup with respect to B if one of the
following ocours: ) n=p

(i) n=kp with 1<k <p

(iy n=p+ k with 1< k < p.

-

The future work is to study the relationship between the maximal p-local subgroups and the

minimal parabolic subgroups of G with respect to B (for the prime p).
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Abstract

The purpose of this research is to investigate certain p-local subgroups of the sym-
metric group Sym{n). Our main focus is the subgroups in the set Np..(G, B)
consisting of all maximal p-local subgroups of G = Sym(n} with respect to B, the
normalizer of a Sylow p-subgroup of G in G. The structure of the subgroups in
Niez (G, B) is determined for some critical cases.
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Chapter 1
Introduction

Maximal 2-local geometries for certain sporadic simple groups were firstly intro-
duced by Ronan and Smith {20]. These geometries were inspired by the theory
of buildings for the groups of Lie type which was developed by Tits ([24], {25]) in
the fifties. For each finite simple group of Lie type, there is a natural geometry
associated with it called its building. For G a group of Lie type of characteristic
p, its building is a geometric structure whose vertex stabilizers are the maximal
parabolic subgroups which are also p-local subgroups of G containing a Sylow p-
subgroup. As is well-known, each building has a Coxeter diagram associated with
it. In [3], Buekenhout generalized these concepts to obtain diagrams for many ge-
ometries related to sporadic simple groups. Ronan and Smith [20] pursued these
ideas further and introduced the maximal 2-local geometries. Other in variants on
buildings for the sporadic simple groups have been defined, notably the minimal
parabolic geometries as described in [21] by Ronan and Stroth.

We now define what we mear, generally, by a minimal parabolic subgroup. Suppose
that H is a finite group and p is a prime dividing the order of H. Let 5 be a Sylow
p-subgroup of H and B the normalizer of S in H. A subgroup P of H properly
containing B is said to be a minimal parebolic subgroup of H with respect to B if
B lies in exactly one maximal subgroup of P.

The definition of minimal parabolic subgroups in terms of the normalizer of a Sylow
p-subgroup is given in the works of Ronan and Smith [20} and Ronan and Stroth
(21], in which they study minimal parabolic geometries for the 26 sporadic finite

simple groups. The connection between minimal parabolic subgroups and group

-
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geometries is the best illustrated in the case of groups of Lie type in their defin-
ing characteristic. For a group of Lie type, its minimal parabolic system is always
geometric. This is not always the case in general {see [21]). Many studies on the
minimal parabolic system of special subgroups have been done over the years. For
example, in [18], Lempken, Parker and Rowley determined all the minimal parabolic
subgroups and system for the symmetric and alternating groups, with respect to
the prime p = 2. Later, Covello [8] has studied minimal parabolic subgroups and
systems for the symmetric group with respect to an odd prime p dividing the or-
der of the group. The main results are about the symmetric groups of degree
p", she also establishes some more general results. More recently, in [22], Rowley
and Saninta investigated the maximal 2-local geometries for the symmetric groups.
Furthermore, Saninta [23] considered the relationship between the maximal 2-local
subgroups and the minimal parabolic subgroups for the symmetric groups. In this
paper we shall investigate maximal p-local geometries for the symmetric groups.

Let H, p, S and B be defined as above. Define
NH,B)={K |B< K< Hand O,(K) #1}

where Op{K) is a maximal normal p-subgroup of K. A subgroup in A (H,B) is
said to be a p-local subgroup of H with respect to B and a subgroup in N (H, B)
which is maximal under inclusion is said to be a maximal p-local subgroup of
H with resf;ect to B. We denoted the collection of maximal p-local subgroups of H
with respect to B by M. (H, B).

Qur aim is to extend the results obtained by Rowley and Saninta for the symmetric

groups to any prime p.

Bowever, the general case looks, already from the first approach, more complicated.
In fact, for p # 2, a Sylow p-subgroup of the symmetric group is not selfnormalized
and so much more work needs to be done in understanding the structure of the
normalizer. Moreover, sine p— 1 # 1, the prime divisors of p — 1 play a certain role
in the investigation of the overgroups of the normalizer. For instance, in the case
of Sym(p?), there is an isomorphism between the lattice of subgroups of a cyclic

group of order p — 1 and the lattice of certain overgroups of the normalizer,
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Throughout all groups considered, and in particular all our sets, will be finite. Let
2 be a set of cardinality n > 1. Set G = Sym{f?), the symmetric group on the finite
set 0. We also use Sym(m) to denote the symmetric group of degree m. Now let
T be a Sylow p-subgroup of G and B be the normalizer of T in G.

The work is organized as follows.

Chapter 2 contains basic definitions, notations, and results for the symmetric groups
and general group theory, which will be used later. Basic facts of a Sylow p-subgroup
of the symmetric group are proved and some fundamental results on the normalizer
of a Sylow p subgroup are presented.

Chapter 3 starts the investigation of maximal p-local subgroups and plays a fun-
damental role for a further study on the topic. Some specific cases are analyzed
(see Theorems 3.1.3, 3.2.1, 3.2.2, 3.3.2) and, in particular, the following Theorems,
which demonstrates a further difference from the untypical case p = 2, is proved
(see Theorems 3.1.1, 3.3.1).

Theorem A. Let G = Sym(§}) with |} = p, where p is a prime. Suppose that
T € Syl (G) and B = Ng(T). Then Nnmw(G, B) = {B}.

Theorem B. Let G = Sym(Q?) with || = p+ 1, where p is a prime. Suppose that
T € Syl,(G) and B = Ng(T). Then Nmw(G, B) = {B}.

The study undertaken also leads to the classification of all normalizer of a Sylow p-

subgroup of the symmetric group which are themselves maximal p-local subgroups
{see Theorem 3.3.3). .

Theorem C. Let G = Sym(Q), with | = n. Suppose that T € Syl (G) and
B = Ng(T), where p is a prime. Then B is ¢ mazimal p-local subgroup with respect
to B if one of the following occurs:

(i) n=p
(i) n=kpwithl<k<p

(iit) n=p+k withl <k <p.



CHAPTER 1. INTRODUCTION 4

Our next theorem concerns subgroups in A (G, B) which do not act transitively
on {1.

Theorem D. Let G = Sym(Q), with Q)] = n, T' € Syl,(G) end B = Ng(T).
Let n = kp' + k1" + - + kyp + ko, where p is a prime, with 0 < k; < 1,
for all § = 0,...,t, be the p-adic decomposition of n and Q@ = QU O U --- U £,
with Q| = k;p?, for all j = 0,...,¢, be the corresponding partition of Q into B-
orbits. Let J be a proper subset of {0,1,...,t}. Set A = |J;o, %, U = Sym(A)
and V = Sym(2\ A). Suppose that N € Npoe(G,B) and N € U x V. Then
either N = Ny x V, where Ny € Npoe(U, BN U) and Ny is transitive on A, or
N = U x Ny, where Ny € Ny (V, BNV) and Ny is transitive on 2\ A.

We conclude this introduction with an example related to the main result achieved.

Example: Sym(p+ 1)

Let G = Sym(Q), with |©}] = p+ 1 and p is a prime. Suppose that T is a Sylow
p-subgroup of G and B is the normalizer of 7 in G. Then T & Z, is also a Sylow
p-subgroup of Sym(p) and B is equal to the normalizer in Sym(p) of 7. Hence,
B = Hol(T), the holomorph of T, (see Proposition 2.5.1 of {8] and Theorem I2.7.14)
is a maximal subgroup of Sym(p). Therefore B is a maximal p-local subgroup of G
with respect to B.



Chapter 2
Preliminary Results

In this chapter, we give a brief description of some concepts and results of group
theory we shall use later. We start with Sylow’s Theorems ([1], [13]), which are the
premise for everything which follows. Recall that all groups considered are finite.

2.1 Sylow’s Theorems

Lemma 2.1.1 If a group H of order p™ (p prime) acts on a finite set F and if
Fo={z € F | hx =z for all h € H}, then |F| = |F|(mod p).

Proof. See Hungerford [14] {Lemma 5.1).

Theorem 2.1.2 (Cauchy) If H is a finite group whose order is divisible by a

prime p, then H contains an element of order p.

Proof. See Hungerford [14] {Theorem 5.2).

A group H is a p-group if every element in H has order a power of the prime p. A
subgroup of a group H is a p-subgroup of H if the subgroup is itself a p-group. In
particular (e} is a p-subgroup of H for every prime p since |{e}| = 1 = p°, where e
is the identity of H .

Corollary 2.1.3 A finite group H is a p-group if and only if |H| is a power of p.

Proof. See Hungerford {14] (Corollary 5.3).
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Corollary 2.1.4 The center Z(H) of a nontriviel finite p-group H contains more

than one element.

Proof. See Hungerford [14] (Corollary 5.4).

Lemma 2.1.5 If P is a p-subgroup of a finite group H, then |Ng(P): P|= |H : P|
(mod p).

Proof. See Hungerford [14] (Lemma 5.5).

Corollary 2.1.6 (Hungerford [1{]) If P is p-subgroup of a finite group H such that
p divides [H : P), then Ng(P) # P.

Proof. 0= |H : P| = |Ngx(P): P| (mod p). Since |[Ng(P): P| > 1 in any case, we
must have [Ny (P): P| > 1. Therefore Ng(P) # P.

Definition 2.1.7 Let p be a prime and H be a finite group. If |H| = p®*m, with
(p,m) =1, then a Sylow p-subgroup P of H is a subgroup of H of order p°.

The set of all Sylow p-subgroups of a group H will be denote by

Syl,(H)

Theorem 2.1.8 (First Sylow Theorem) Let H be e group of order p"m, with
n > 1, p prime, and (p,m) = 1. Then H contains a subgroup of order p* for each
1 <1< n and every subgroup of H of order p* (¢ < n) is normal in some subgroup
of order p**!. |

Proof. See Hungerford [14] (Theorem 5.7).

Corollary 2.1.9 Let H be ¢ group of order p"m with p prime, n > 1 and (p,m) =
1. Let P be a p-subgroup of H.

(i) P is a Sylow p-subgroup of H if and only if |P| = p.
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(i1) Every conjugate of o Sylow p-subgroup is e Sylow p-subgroup.

(i13) If there is only one Sylow p-subgroup S, then S is normal in H.

Proof. See Hungerford [14] (Corollary 5.8).

Theorem 2.1.10 (Second Sylow Theorem) If K is a p-subgroup of a finite
group H, and P is any Sylow p-subgroup of H, then there exists h € H such that
K € hPR™Y. In particular, any two Sylow p-subgroups of H are conjugate.

Proof. See Hungerford [14] (Theorem 5.9).

Theorem 2.1.11 (Third Sylow Theorem) If H is a finite group and p o prime,
then the number of Sylow p-subgroups of H divides |H| and is of the form kp + 1
for some k& > 0.

Proof. See Hungerford [14] (Theorem 5.10).

Proposition 2.1.12 (Humphreys [13], Proposition 11.14) Suppose that H is a fi-
nite group. Let S be a Sylow p-subgroup of H and let N be a normal subgroup of
H. Then SN N is o Sylow p-subgroup of N.

Proof. First notice that one way to show that a subgroup K of a group H is a
Sylow p-subgroup of H is to check that K is a p-subgroup and also that the index
of K in H is not divisible by p. Since N is a normal subgroup of H, so that
(S,N} = SN. Since § N N"is a subgroup of S, its order is a power of p. By the
opening remark, it only remains to show that |N : §1 N| is not divisible by p. We
see that [NV : SN N| = |SN : §|. However, :

|H:S|=|H:S8N||SN: 85|,

so that |[SN : S| divides {H : §|. It follow that SN : S| is not divisible by p, so
that SN N is a subgroup of N of index not divisible by p. Hence, SN N is a Sylow
p-subgroup of V.
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Lemma 2.1.13 (The Frattini argument) (Aschbacher [1]) Suppose N is a nor-
mal subgroup of a finite group H and p is ¢ prime. If S is a Sylow p-subgroup of
N, then H = Ng(S)N = NNyx(9).

Proof. Let h € H. Since S is a Sylow p-subgroup of N, $* = S for some n € N.
Now hn~! € Ny(S). Thus h € Ng(S)N = NNy(S).

Proposition 2.1.14 (Couvello [8], Proposition 1.1.6) Let S be o Sylow p-subgroup
of a group H. If Ng(5) £ K € H, then K = Nyg(K). In particular, if K < H,
then K = G.

Proof. Set N = Ny(K). Then, by the Frattini argument, we have that N =
KNy(S) € KNg(S) = K, since Ng(S) € K. Hence N = K, as K 9 Ny(K).

Proposition 2.1.15 (Covello [8], Proposition 1.1.7) Let H be a group and S €
Syl,(H). Let L and K be subgroups of H both containing Ng(S). If L* = K, for
someh € H, then L = K.

Proof. Since S € L, we have that §* € L" = K. Then S and S* are both
Sylow p-subgroups of K and so there exists & € K such that $" = §. Hence
hk € Ny(S) < K andso h € K. Thus L =L = K*' = K.

.

Proposition 2.1.16 (Covello [8], Proposition 1.1.10) Let H be a group and sup-
pose that H = A X B. Let S € Syl,(H). Then § = (SN A) x (§N B) and

-,

Ny(S) = (Ng(8) N A) x (Ng(S) N B),
with Ng(S)N A = Na(SN A) and Ng{S)N B = Ng(SN B).

Proof. Since A and B are normal subgroups of H, we have that SNA € Syl (A4) and
SNB € 8yl,(B) and, by considering the orders, it follow that § = (§NA4) x (SN B).
But the converse is also true, that is, if S4 € Syl,(A) and Sp € Syl,(B), then
SaxSge€ Sylp(H). Thus,

|H : Nu(S)| = |A: Na(SN A)[|B : Na(S N B)|

-
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and so |[Ng(S)| = IN4(S 1 A)||Ns(S N B)|.

Moreover, as [A, B] = 1, N4(SNA) centralizes SNB and so Na(SNA) € Ng{SIN
A. Similarly, Np(SNB) € Ng(S)NB. Therefore Ny(SNA)x Ng(SNB) < Ng(5)
and, by orders, it follows that Ng(S) = Na(SNA) x Ng{SNB). Finally, Ng(S)NnA4
centralizes S N B and normalizes S. Thus, since S = (SN A) x (SN B), we must
conclude that Ng(S)N A € Na(S5N A) and so Ng(S) N A = Ng(S N A). Similarly,
we have that Ng(S) N B = Ng(S N B}, which completes the proof.

Lemma 2.1.17 (Lempken, Parker and Rowley {18], Lemma 2.5) Suppose that H =
X xY is a direct product of groups X andY and suppose that S € Syl (H) where p
is o prime which divides the order of both X and Y. Assume that L is a subgroup of
H which contains B := Ng(S). Then L = (LNX)x (LNY), with LNX = (BNX)~
and LNY = (BNY)L,

Proof. Set By = BN X and By = BNY. By Proposition 2.1.16, B = Bx x By
and, since B < L, we have that B = N (S). Thus B% x B% is a normal subgroup
of L containing N (S) and from Proposition 2.1.14 it follows that L = B% x B,
Furthermore Bx = Nx (SN X) = Npnx (SN X) and so B is a normal subgroup
of LN X containing Npnx (SN X). Therefore, by Proposition 2.1.14, we have that
BY =LNnX. Similarly, BE=LNY andso L =(LNX)x {LNY).

Applying induction, Proposition 2.1.16 and Lemma 2.1.17, gives

Corollary 2.1.18 Suppose that H = [],c Xi where each Xy, k € K, has order
divisible by the prime p. If L is a subgroup of H which contains B := Ny (S), where
S € Syl,(H), then the folloufing hold:

() § = [Tkex(S N Xx);
(1) B = [1iex(B N Xy);
(323) L= nkelC(B i Xk)l' and L = ]._.[kGJC(L M Xk)

Proposition 2.1.19 (Covello [8], Proposition 1.1.18) Let H be a group, K < H
and § € Syl,(H). Then Ny(SK) = Ny(S)K.
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Proof. As K < H, Ng(S) normalizes both S and K and thus SK. So Ng(S)K <
Ny (SK). Conversely, let N = Ny(SK). Then, since SK 4 N and S € Syl (SK),
by the Frattini argument, we have that N = Ny(S)SK = Ny(9)K <€ Ny(SHK
and we get also the other inclusion.

2.2 The subgroup O,(H)

Definition 2.2.1 Let H be a group and p be ¢ prime. Define the subgroup O,(H)

to be the largest normal subgroup of H whose order is a power of p.

Notice that the subgroup O,(H) is well define. For, if H is a finite group and
A, B< H, with |A] and | B| powers of p, then (A, B) = AB<G and |AB]| is a power
of p, since |[AB| = |A||B|/|AN B|.

Clearly, O,(H) is a characteristic subgroup of H. Furthermore O,(H) can be char-
acterized in terms of the Sylow p-subgroups of H.

Proposition 2.2.2 (Covello [8], Proposition 1.2.2) Let H be a group and-p be a
prime. Then Op,(H) is equal to the intersection of all the Sylow p-subgroups of H.

Proof. Let X denote the intersection of all Sylow p-subgroups of H. Then X is a
p-group and X < H, since Sylow p-subgroup are all conjugate. Hence X < O,(H).

Conversely, by definition, Op(H) is a p-group and so there exists S € Syl,(H)
such that O,(H) £ S. But O,(H) is also normal in H. Therefore O,(H) < S*, for
all h € H. Since Sylow p-subgroups are all conjugate, so Op(H) < X.

2.3 Semidirect products

Definition 2.3.1 Suppose that H is a group and let K, L and N be subgroups of
H. Then the following is satisfied :

1. LAN.
2. L €N such thet N =LK.

3. LNK =1
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Then N is said to be the internal semidirect product of K by L and denoted by
either K xL or L x K.

Proposition 2.3.2 Let H be a group and let K, L and N be subgroups of H.
Suppose that K normalizes N and let U = Lx N and M = L x K. Then M
normalizes U. In particular, if N 9 K, then U 9 M.

Proof. By hypothesis, K € Ng(N) and K € Ny (L). Thus
K £ NH(N) N NH(L) = NH(LN) = NH(U)

Moreover L £ Ng(U}. So KL = M £ Nyg(U).

Lemma 2.3.3 Let K be a finite group and H be a finite group operating on K.
Suppose that M is a mazimal subgroup of H such that |H : M| > |K|. Then any
complement to K in KH which contains M 13 equal to H.

Proof. Let L be a complement to X in KH and assume that M < L. Firstly,
since any two complements are isomorphic, we have that L = H and so |L| = |H|.

Moreover
|LIH|/|ILn H| = |LH| < |KH| = |K||H]|.

Now M £ LN H € H. Then, by the maximality of M in H, either LN H = M or
LNH=H. If LN H = M, then from the above relation it follows that

|L:LnH|=|H: M| <|K]|,

which is a contradiction. Hence L N A = H, which gives the result.

2.4 Finite permutation groups

This section contains basic notation and results about the permutation group struc-
ture. We introduce finite permutation groups and their basic properties, for which
the main reference will be ({1], [4], [9], [13], [28]). Some related concepts are also
illustrated, like the wreath product, which will be used later to describe the struc-
ture of the Sylow p-subgroups of the symmetric group and of the stabilizer of a
block system.
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Let 2 be a finite set and suppose that |§}| = n. We shall denote by
Sym(Q?) or Sym(n)
the symmetric group on £ and by
Ale{2) or Alt(n)

the alternating group on Q. Recall that, for » > 5, every element of Alt(n) is a
commutator of elements in Sym(n) and so, in particular, Alt{n) is equal to the
commutator subgroup of Sym(n).

Theorem 2.4.1 Alt(n) is a normal subgroup of Sym(n) of indez 2, for alln > 2.

Proof. Consider the map ¢ : Sym(n) — Z, defined by

1 ifwiseven
Ty =
#() { —1 ifxisodd

Then ¢ is a surjective homomorphism of Sym{n) onto Z, and ker ¢ = Alt(n). So
Alt(n) 9 Sym(n) and Sym(n)/Alt(n) & Z,. '

Theorem 2.4.2 The group Alt(n) is simple for n > 5.

Proof. See Humphreys [13]) (Theorem 16.16).

Jordan [16] prove that Alt(n) is generates by 3-cycles and also that Alt{n) is the
only non-trivial normal subgroup of Sym(n) for n > 5.

Lemma 2.4.3 Suppose that n > 5. Then O,(Alt(n)) = 1.

Proof. Assume that O,(Alt{n})) # 1. This implies that O,(Alt(n)) is a proper non-
trivial normal subgroups of Alt(n), so Alt(n) is not simple, a contradiction. Hence,
Op(Alt(n)) = 1.

The subgroups of Sym(2) will be called permutation groups on 2. The degree of
a permutation group G # 1 is the number of points moved by G and is denoted
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by degG. The degree of a permutation ¢ # 1 is the degree of the cyclic group {g}
generated by g. Finally, for A C © and K C Sym($1), we denote by A% the set

{6*|deA, ke K}

Definition 2.4.4 Let H be a permutetion group on Q. A subset A C £ is ¢ fixed
block of H or is fixed by H if
AT = A,

If A is a fixed block of G, then the restriction A2 of an element h € H to A is a
permutation on A and the set

H% = {h® h e H}

is a permutation group on A, called the constituent of H on A. Clearly, the in-
tersection and the union of two fixed blocks of H are again fixed by H and, for
every set A C ), A¥ is the smallest fixed block of H containing A. Also every
permutation group H has the trivial fixed blocks @ and 2.

Definition, 2.4.5 A permutation group H on S is called transitive if its only fized
blocks are § and 2. Otherwise H is called intransitive.

Definition 2.4.6 Let H £ Sym(Q) and let 0 # A C Q. Then A is called an orbit
of H on Y if A 4s o minimal fized block of H. The order of A is colled the length
of the orbit.

The orbit of H containing the point o € §2 can be denote by either o or Orby()
and is equal to {a® | h € H}.

Proposition 2.4.7 If A is an orbit of H and k € Sym(Q), then A* is an orbit of
k~1Hk.

Proof. See Covello {8] (Proposition 2.1.4).
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Definition 2.4.8 Let H € Sym(§2) and A C Q. The set
Sa={he H|& =4 forall 6 € A}

of all permutations of H which fiz each point of A forms a subgroup of H, called
the pointwise stabilizer of A in H. If A = {a}, then Hp = H, is called the point
stabilizer of & in H and i3 denoted by Stabu(c).

Proposition 2.4.9 Let H be a permutation group on Q1. If K < H is transitive
on §2, then H = H K, for all a € Q).

Proof. Let « € 2 and h € H. Then, as K is transitive on §2, there is k € K such
that o = o*. Hence hk~! € H,, that is, h € H, K, which gives the result.

Theorem 2.4.10 {Orbit-Stabilizer Theorem) Let H be a permutation group
on  and o € Q. Then the following holds:

|H| = |Hqlle™}.
Proof. We determine the length of the orbit a. Consider a”, of € of. Then
o = o & hk7! € Hy & Huh = Hyk.

Hence the number of distinct points of o is equal to the number of distinct right
cosets of H, which is |H : H,|. So

|| = |H : Ho| = |H|/|Hol.
Definition 2.4.11 Let H and K be permutation groups on set A and B, respec-
tively. We define the wreath product of H by K, writien
H1K

in the following way:
H 1 K is the group of all permutations 8 on A x B of the following kind:

{a,b0)8 = (ay, bn), fora € A and b € B,

where for each b € B, 4, i8 a permutation of H on A, but for different b’s the chosces

of the permutations <y, are independent. The permutation n is o permutation of K
on B.
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Proposition 2.4.12 Let H, K and L be permutation groups on the sets I',Q and
A, respectively. Then, identifying the sets (I' X Q) x A and I’ x {Q2 x A) by the
mapping

((2,5), s) = (3, (5, 8)),

the permutation groups (HYK)L and H (K1 L) are isomorphic.

Proof. See Covello (8] (Theorem 2.6.7).

Theorem 2.4.13 (Humphreys [18], Proposition 9.20) Let o,0 € Sym{n). The
conjugate 8~ has the same cycle type as o and is obtained from « by applying 0
to each of the numbers appearing in each cycle of o.

Proof. Consider first the case where o = {a1a,...ax) is a cycle of length k. Let
by = 08(a1), b2 = B(az),..., b = 0{ax) and let 8 be the cycle (biby...by). We want
to show that #af~' = 5. To show that two permutations in Sym(n) are equal we
need to show that they have the same effect on each number z in {1,2,...,n}. If
z appears in S then we can rewrite the cycles, without changing their cyclic order,
so that £ = b;. Then

90!6‘1(51) = 90!((1.1) = 9(&2) = bg = ﬁ(bl)

Thus, fad~'(z) = B(z) for all x appearing in 8. On the other hand, if z does not
appear in § then 8(z) = z and, because §~1(z) does not appear in ¢, of{z) =
#-'(z). Hence

B~ (z) = 987 z) = z = B(z).

We have now shown that 8(z) = fab~'(z) for all z and so § = 8af~*. This
establishes the formula

B(aras ... ap)8" = (8(ay)8(az) . .. 0{ar))

Now consider the general case where o has cycle decomposition o ...y For
each i, let 3; be the cycle obtained by applying 8 to each number appearing in ;.
By the above formula, each €6~ = 5;. Hence

00! = 0(onay ... 05)07 = Bn6 20020720 .. .6 00,07 = B, ... By

has the same cycle type as a.
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Given any two permutations & and B in Sym(n) of the same cycle type, there is
a permutation # € Sym(n) such that § can be obtained from o by applying 8 to
each number appearing in ¢. By Theorem 2.4.13, 8 = 6af#~!. Thus, any two per-
mutations in Sym(n) of the same cycle type are conjugates in Sym{n). Combining
this with Theorem 2.4.13, we see that each conjugacy class in Sym(n) consists of
all permutations with a given cycle type.

Lemma 2.4.14 If H is transitive on X then X has cardinality |H : Hy| for each
z€X.

Proof. See Aschbacher [1] (Theorem 5.11).

Lemma 2.4.15 If H is a p-group then all orbits of H on X have order a power of
L.

Proof. This follows from Lemma 2.4.14 and the fact that the index of any subgroup
of G divides the order of H.

Proposition 2.4.16 (Wielandt [28]) Let H < Sym(Q), with |Q = n. If H is
transitive, then deg H = n = Q).

Proof. For all @ € 3, H, # G, that is, for all o € £, there exists A € H such that
o® # a.

Proposition 2.4.17 Let H < Sym(Q) and let A be the set of points fized by H.
Then the centralizer C of H in Sym{)) contains the symmetric group Sym(A) and
s0 18 transitive on A. In particular, this holds for the normalizer of H in Sym(£).

Proof. Let H £ Sym(§2) and let A be the set of all points fixed by H. Then every
permutation on the set A is disjoint with every element of H. But disjoint cycles
commute, so Sym(A) is contained in the centralizer of H in Sym(Q).
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Lemma 2.4.18 Suppose that R is a transitive permutation group of degree n. Let
H =L!R and P = K R, with L mazimal subgroup of K, and let p be a prime
dividing |K|. If L contains the normalizer of a Sylow p-subgroup of K, then H is a

mazimal subgroup of P.

Proof Let H = L} R and P = K R, with L maximal subgroup of X. Let
L=L%x - xLy with ; L, and K = K| x --- x K,, with K; 2 K, be the
base groups of H and P, respectively. Then H = L x R and P = K % R and, in
particular, H can be regarded as a subgroup of P. Also notice that, by Corollary
2.1.18, L contains the normalizer of a Sylow p-subgroup of K. Now let M be a
subgroup of P properly containing H. By Dedekind’s Modular Law, we have that

M=MNP=Mn(E xR =(MnEK)xR,

with L € M N K € K. Therefore M n K is a subgroup of K containing the
normalizer of a Sylow p-subgroup of K. Then, by Corollary 2.1.18,

MNE =M x X M,

with Mi=MnK;and L; < M; £ K;,foralli=1,...,n. Since M # H, from the
factorization of M it follows that M NK # L and so there exists j € {1,...,n} such
that M; # L;. As L; is a maximal subgroup of K, it follows that M; = K and, R
being transitive on {Mj, ..., M,}, this implies that M; = K, foralli = 1,...,n.
Hence MNK=Kand M=K xR=P.

2.5 Imprimitive and primitive groups

Definition 2.5.1 Let H bera permutation group on a set £ and I’ C 2. We say
that T is a block of H if for all h € H, T* either is equal to T or has no point in
common with T', that is

M"nre (o).

The length of the block T' is |T'|.

Obviousty, the whole set ), the empty set @ and the singletons {a}, for a € Q, are
blocks of H, for all H < Sym(2). We call these trivial block. Also every orbit of H
on § is a block of H. We plainly have that, if K < H < Sym(2), then every block
of H is a block of K.
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Proposition 2.5.2 The intersection of twe blocks of a permutation group H is also
a block of H.

Proof. See Covello [8] (Proposition 3.1.2).

Proposition 2.5.3 Let K be a subgroup of a permuitation group H and h € H. If
[ is a block of K, then T'* is a block of R 1 Kh.

Proof. Let k € K and suppose that (I)*'KF T £ & Applying h=1, it follows
that
NI # o,

which implies I'* = I" and, applying h, we get that

I‘\hh’lkh — I\kh — Ph.

Proposition 2.5.4 If ' is a block of a permutation group H, then, for all h €
H, T" is a block of H.

Proof. See Covello (8] (Proposition 3.1.3).

The block I' and I'® are called conjugate. By definition, conjugate block are either
equal or disjoint. Let I' be a block of H, where H is a permutation group on Q.
Then the set of all blocks conjugate to U is called a complete block system of H. All
blocks of a complete block system have the same length. Also, if H is transitive on
£, then £ is the union of all blocks of a complete block system of H.

”

Proposition 2.5.5 (Wielandt [28]) Let H be a permutation group on §t. The length
of a block of a transitive group H divides the degree of H.

Proof. Let T be a block of H, with H < Sym(2). Since H is transitive, £ is the
union of all blocks of the complete block system determined by I'. But conjugate
blocks have the same length and so |['| must divide |Q].

Proposition 2.5.6 (Wielandt [28]) A transitive permutation group H of prime

degree 1s primitive.
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Proof. Since the length of a block of a transitive permutation group divides its
degree, so that H has only trivial blocks.

Definition 2.5.7 A transitive permutation group H is imprimitive if H has at least
one nontrivial block T', such a block is called a set of imprimitive; otherwise it is

called primitive.
Corollary 2.5.8 Fvery nontrivial normal subgroup of a primitive group is transi-

tive.

Proof. See Covello [8] (Corollary 3.2.3).

Theorem 2.5.9 Let o € §} and H be a transitive group on . Then H is tmprim-
itive if and only if there is a group K which lies properly between H, and H.

Proof. See Covello [8] (Theorem 3.2.4).

From Theorem 2.5.9 we get the following result:

Theorem 2.5.10 Let o € Q, | > 1. A transitive group H on Q is primitive if

and only if H, ts a mazimal subgroup of H.

Proof. See Covello [8] (Theorem 3.2.6).

The last two theorems give a way of recognizing symmetric and alternating groups.

Theorem 2.5.11 A primitiwe group which contains a transposiiion i3 a symmetric

group.

Proof. See Covello (8] (Theorem 3.2.9).

Theorem 2.5.12 Let p be a prime and H a primitive group of degree n = p + k,
with k > 3. If H contains an element of degree and order p, then H is either Ali(n)
or Sym(n).

Proof. See Covello (8] (Theorem 3.2.10).

-
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Lemma 2.5.13 Let H be transitive on X andy € X.

(1) If @ is a system of imprimitivity for H on X andy € Y € Q, then H
is transitive on Q, the stabilizer K of Y in H is a proper subgroup of H
properly containing H,,Y is an orbits of K on X,|X| = |Y||Q|, Q] =
|H: K|, and |Y| = |K : Hy|.

(i) If Hy < K < H then Q = {Yg: g € H} is a system of imprimitivity for
H on X, where Y = yK and K 1s the stabilizer of Y in H.

Proof. See Aschbacher [1] (Theorem 5.18).

We recall that a primitive permutation group is a transitive permutation group
which only preserves trivial systems of blocks.

Lemma 2.5.14 {Jordan, Marggraf) Suppose that T is a finite set and L is a
primitive subgroup of Sym(Z).

(1) If L contains a transposition, then L = Sym(X).
(i1) Suppose L contains a fours group which is transitive on 4 points and fizes

all the other points of Z. If |Z]| > 9, then L 2 AIt(X).

Proof. See Wielandt [28] (Theorems 13.3 and 13.5).

Theorem 2.5.15 Let L = K H, with K < Sym(k),H £ Sym(m). If K is
transitive and H s primitive on the respective sets, then every nontrivial block of

L corresponds to a block of K. In particular, the length of every nontrivial block of
L divides k. .

Proof. By assumption, L is an imprimitive permutation group acting on a set §2 of
cardinality km and L has a complete block system B = {$4,...,Q»} of m block of
length k. Also, L can be written as

L=(Kix-xKg)xH,

with X & K; < Sym(§;), foralli=1,...,m,and H = H € Sym(B). Let T be a
nontrivial block of L and suppose that I N2, # @. For @ € I'N 8y, the stabilizer
L, of oin L is given by

Lq = Stabg, (@) x (K x - - X K) % Stabg(£21)).
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For | € Ly, o = o and so, since I is a block of L, we get that I'' = I" and I is
preserved by L,. Moreover, for i £ 1, L, is transitive on £2;, since K; € L, and, by
assumption, K; is transitive on £2;.

Suppose that ' ¢ Q;. Assume that TN Q, # 0 and let § € TN Q. Then, as
L4 is transitive on {2, and T is preserved by L,, it follows that I’ D ;. The same
argument applied with Lg in place of L, implies that T' 2 ©; U, and I' must be
the union of some §Y;’s. Therefore I is a block of A on B. But H is primitive on B
and so, since 2, C I', we must have that I’ = (2, which is a contradiction.

Hence we must have that [' C ;, which implies, as I is a block of Ky x-- - x K,
that I' is a block of K| and, in particular, because of the transitivity of X; on Q,
the length of I' divides k.

Proposition 2.5.16 Let Q be a set and H = Sym(Q). Let B = {Qy,...,n} bea
partition of Q0 into m subsets of the same coardinality. Then the stabilizer L of B in
H 13 isomorphic to

Sym(€) 1 Sym(B).

In particular, L is imprimitive and B i3 a complete block system of L.
Proof. Let L denote the stabilizer in H of B. Then, clearly, L contains the subgroup
(Sym(§1) x -+ - x Sym(Qr)) » Sym(B) = Sym(£,) 2 Sym(B)

of H. Moreover L acts on B and so there exists a homomorphism ¢ : L — Sym(B),
whose kernel is the set of all z € L such that OF =, for all< =1,...,m, that is,

ker¢ = Sym({) x -+ X Sym(£2,,).

Hence |Lj < |Sym(€2;) X - -» x Sym(£2,,)||Sym(B)|, which implies the result. In par-
ticular, since B is a partition of 2, the subsets ); are blocks of L and, since Sym(B) is
transitive on B, they are all conjugate in L. Thus B is a complete block system of L.

Corollary 2.5.17 Let ) be a set and H = Sym(f2). Let K < H be imprimitive
and I' be a block of K. Then the stabilizer in H of the complete block system
Br = {I'* | k € K} is isomorphic to Sym(T) ! Sym(Bp). In particular, K is
isomorphic to a subgroup of Sym(Il') 1 Sym(Br).

Proof. See Covello [8] {Corollary 3.5.2).
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2.6 Sylow p-subgroups of the symmetric group

This section are concerned with the structure of a Sylow p-subgroup of the sym-
metric group. The order and the structure of Sylow p-subgroup of the syrametric
group have been known for many years and many references can be found about
the topic. Among the others we recall Dixon (9] and Huppert [15}, who both refer
to the same paper by Kaloujnine [17] from 1948. Further references are a paper by
Findlay [11] from 1904 and a paper by Weir [26] from 1955. Particular emphasis is
given to the case when the degree of the symmetric group is a power of p.

Lemma 2.6.1 (Findlay [11]) Suppose that p is a prime and n is an integer. Then
the order of a Sylow p-subgroup of Sym(p™) is

R A pl’;ﬁ‘—.
Proof. Let § € Syl (Sym(p™)). We have to determine the weight of (p")! with
respect to p. We do this by determining the number of integers less or equal to p*
with given weight and then summing these numbers to obtain the weight of (p*)!.
As we have just seen, it is enough to consider p-multiples less or equal to p™. The
biggest p-multiple dividing (p®)! is p* = (p"~!)p. So there exists p"~! multiples of
p dividing (p™)!. Each of them has weight at least 1, since it is a p-multiple, so
they give p"! as total weight. Every p of them there exists one of weight at least
2, so there are p™2 multiples of p which have weight at least 2, which give p"~2 as

contribution. In general, for each p consecutive p-multiples of weight at least j

(hp+ )¢, (hp+2)p7, ..., (hp+p— 1)p/, (hp+ p)p! = [(h+ )plp’ = (R + 1P,

there is a multiple of weight at least 5+ 1. And so on until we reach (p™~')p, which
is the only one of weight n. Therefore, |S| = p, with

a=p P 4 k1= (0" - Do - 1),

Lemma 2.6.2 Suppose that p is a prime and k is an integer such that 1 < k < p.
Then the order of a Sylow p-subgroup S of Sym(kp™) is

pk(p"“+p“‘2+-~+p+1)

Proof. The result follows by using the same approach as in the proof of Lemma 2.6.1.
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Lemma 2.6.3 Suppose that p i3 a prime and k; is an integer and let
= ktpt -+ kt,_l'pt_l + -4 k]p + k(},

with 0 < k; < p, for all j = 0,...,1, be the p-adic decomposition of n. Then a
Sylow p-subgroup S of Sym(n) has order p*, with

a=k(p 4+ dp ) k(P4 p D)+ +he(p+ 1) + ke

Proof. See Covello {8] (Lemma 4.1.4).

Proposition 2.6.4 (Humphreys [13], Proposition 19.10) Let p be a prime integer,
and let k be any positive integer. The Sylow p-subgroup of the symmetric group
Sym(p*) is the iterated wreath product (with k copies of a cyclic group of order p
acting on p points Cp)

(.. ((Cy 1 C) X Cpen2 Gy,

Proof. The proof is by induction on &£. Note that when k& = 1, the highest power
of p dividing p! is p, so that the Sylow p-subgroup is indeed cyclic of order p. We
therefore suppose that the result holds for the symmetric group of degree p*. By
Lemma 2.6.1, the highest power of p dividing (p™)! is p"" where

rn)=p> ' +p" %+ +p+ 1.

The order of a regular wreath product of & copies of the cyclic group C, is equal to
p"®)_ Tt follows that the regular wreath product of k + 1 copies of C, has the same
order (namely (p"*)}? x p) as the order of the Sylow p-subgroup of Sym({p*+1), since

prik) +1=p* "' +p* 2+ - 4p+ 1)+ 1=r(k+1).

It only remains to show that this wreath product occurs as a subgroup of Sym(p*+1).
In Sym(p**1), let N denote the direct product of p copies of Sym(p*), where we
regard that first copy of Sym(p*) as the symmetric group on {1,...,p*}, the second
copy as the symmetric group on the numbers {1+ p*,...,2p*}, and so on. These
copies of Sym(p®) commute because they act on disjoint sets. Let & be the element
of Sym{p**!) consisting of p* cycles each of length p, these cycles all being of the
form
Gyi+p" i+ 205 i+ (p— 1)pY),
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for 1 < i < p*. By inductive hypothesis, the Sylow p-subgroup of Sym(p*) is an
iterated wreath product of k copies of Cp. It is clear that the semidirect product
of the Sylow p-subgroup of N by H = (h) {where A is the element of Sym(p*t!),
defined above), is isomorphic to the regular wreath product of & 4 1 copies of C),
thus completing the pfoof.

Proposition 2.6.5 (Findlay [11]) Let H = Sym(Q), with |} = kp', p prime and
1 <k <p. Then a Sylow p-subgroup of H is given by the direct product of k factors,
each isomorphic to ¢ Sylow p-subgroup of Sym(A), with |A] = pt.

Proof. Let €2,,...,§Y be a partition of £ into k subsets of order p*. Fori=1,...,k
let S; be a Sylow p-subgroup of Sym($;) and set § = 5y x --- x S;. Then, from
Lemma 2.6.1, it follows that

|1S] = |8 ¥ = pH T He T gD,

and so S € Syl {(H).

Proposition 2.6.6 (Humphreys [18], Corollary 19.11) Let p be a prime and n be

any positive integer. Let
=gy +ap+ap® + -+ appt (with0<a; <p-1) (%)

be the ezpansion of n to the base p. The each Sylow p-subgroup of the symmetric
group Sym(n) is a direct product

(5% % ($2)% x -+ x (S0)*,
where S; is a Sylow p-subgroup of the symmetric group Sym(p'), so that S; is the
reguler wreath product of i copies of the cyclic group C,.

Proof. We first calculate the power of p dividing n!. The number of integers between
1 and n divisible by p is [n/p], where [ ] denotes the integer part function. Of these
integers a further [n/p?| are divisible by p?, and so on. It follows that the power of
p dividing n! is p!, where

¢ = (n/p] + [n/p*] + [n/p%] + - -
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Using the expansion (x) of n to the base p, this power can also be written as

t = (m+ap+ - +ap )+ (et +ap"H)+
= a+a@+l)ta@+p+1)+---,

so that p' is the order of the group
(S1)™ X (52)% x -+ X (S )

by Proposition 2.6.4. It only remains to show that Sym(n) has a subgroup isomor-
phic to the given direct product. This is done by dividing the set with n elements
into disjoint subsets with g of those of size 1,a, of size p,...,ax of size p*, and
then applying Proposition 2.6.4 to each of those disjoint subsets.

Lemma 2.6.7 Supposep is a prime, n is o positive integer and Tp» € Syl (Sym(p™)).
Then | Z(T,n)| = p.

Proof. This time we start the induction with n = 1. We wish to show
P(n) : |Z(Ty)| =p.
We know that, by Proposition 2.6.4,

Tpn = (Tpn—-l = Tpn—-l Woea e Tpn—l) 2 Cp

-

P
where Tpner € Syl (Sym(p™™")). Let, i = 1,2,...,p, Ai = Tpo-1 and let 4 =
Ay X Ay % - X Ay, Cp = ().

Ifn=1, then T, = C,, r;amely |Z(Tp)] = 1Z{Cyp)| = |Cp] = p. Thus P(1) is true.
Suppose P{n — 1) is true, i.e. |Z(Tpn-1)| = p. Now let Z = Z(T,n). Since A; € Tpa
so that Z € Cy(Tyn) € Cu(A;) where H = Sym(p"), i.e. Z centralized all elements
of A;. Then (Z, A} =1 foralli=1,2,...,p, and we get that ({_, Nr,.(A;) > A
(since A4; 9 A € Tpn). But Z < Cr,.(A), so let g € Cr,.(A). Then g = az?,
for some @ € A and some j. Assume that (a),1,...,1) € A where ay € A;. So
(a1, 1,...,1)¢ = (a1,1,...,1)% = (a},1,...,1)% with a¢ € Ay. If z; # 1, then
(a,1,...,1)% = {(1,...,a},...,1) # (a},1,...,1). Therefore, z; = 1 implies that
g =a € A and hence Z £ A. It follows that Z € Z(A) = Z(A)) x Z(A;) x
- X Z(Ap), and then |Z(A)| = p?, as |Z(A;)] = p. By Proposition 5.19 of [13],
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Z(A) = Cp x Cp x -+ x Cp. Now let (a1, a2, .. ., 8p) € Z(A). We may assume that

p
(@1, 02,...,85)" = (0p,01,82,...,0,-1). Since (ar,az,...,6,)% = {(a1,02,...,8,) 80

wegeta, = az = -+ = @y = . Thus Cz0)(z) = {(a,0,...,a) € Z(A) | a € Cp},
we see that Cz(4)() has order p. But Cza)(z) = Z, hence |Z]| = p.

Proposition 2.6.8 Let H be any finite group and B is the normalizer of a Sylow
p-subgroup of H. Let H = (X | B € X,0,(X) # 1). Then H = (X | B €
X,0,(X) # 1 such that B lies in exactly one mazimal subgroup of X).

Proof. Suppose B € X < H, with O,(X) # 1. If M and N are distinct maximal
subgroups of X containing B, then clearly O,(M) # 1,0,(N) # 1 and (M, N) = X.
Thus if B lies in more than one maximal subgroup of X, then we replace {X} by
{M, N} and by continuing this procedure as necessary we obtain a set of subgroups
containing B and generating I such that B lies in exactly one maximal subgroup
of each.

Theorem 2.6.9 Let H = Sym(Q}), p be a prime and n € N.

(i) If |2 = p™, then a Sylow p-subgroup of H is transitive on §).

(i) If | = kp*, 1 < k < p, then a Sylow p-subgroup of H has k orbits on
2, each of length p™.

(iii) Let || = n, where
n o=k’ + ke1p" ™ o+ kap + Ko,

with 0 < k;j < p, for all j = 0,...,1, be the p-adic decomposition of n.
Then, for all § =0,...,1, a ISylow p-subgroup S of H has k; orbits on
Q, each of length p’.

Proof. (i) Let A be a set of cardinality p and let C, denote a cyclic group of order
p acting on A. By Proposition 2.6.4, a Sylow p-subgroup S of H is isomorphic
to the wreath product W of n copies of . But, since C), is transitive on A, W
is transitive on A", which is a set of cardinality p®. Hence, since transitivity is
preserved by similarity, we have that $ is transitive on €.

(ii) According to Proposition 2.6.5, § = ) x - -- X S, where, fori =1,..., %, S;
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is a Sylow p-subgroup of Sym(§%) and Qy, ... is a partition of £ into & subsets
of order p*. Then, by part (i), it follows that the orbits of S on 2 are precisely the
sets 0, ..., 8.

(ii) Let €20,%4,...,$2 be a partition of Q into ¢ + 1 subsets such that, for
i=0,...,t |9 = kp’. Then S =5 X - x S, where, for j = 1,...,¢, S; is
a Sylow p-subgroup of Sym(Q;) and, by part (ii), 5; has k; orbits on ;. Hence
S has k; orbits on §, each of length p?, for all j = 1,...,t. Furthermore, since
2 = Fixq(S), S has other ko orbits, each of length 1, namely the sets {w}, for
w € §2q.

Proposition 2.6.10 Let H = Sym(Q), p be a prime, n € N, and let § € Syl,(H).

(i) If || = p™, then every block of S has length a power of p. Moreover, S
has a block of length p™, forallr =1,...  n.

(1) If |1 = kp™, 1 < k < p, then S has blocks of length p”, for all r =

1,...,n.

(11i) Let |}] = n, where
no=kp' +ke1p"T - Rap + kg,

with 0 < k; < p, forall j =0,...,%, and k; # 0, be the p-adic decom-
position of n. Then, S has blocks of length p", for allr = 1,...,t, and
blocks of length k:p*, for all i € {j | k; # 0}.

Proof. (i) By Theorem 2.6.9 (i), S is transitive on  and so, by Proposition 2.5.5,
the length of every block of S is a power of p. Moreover, by Proposition 2.6.4
and by the associativity of the wreath product, we have that .S is isomorphic t0 a
subgroup of Sym(p") 1 Sym(p™ "), for all r = 1,...,n, where, by Proposition 2.5.18,
Sym(p™) !Sym({p™~") is the stabilizer of a block system whose blocks have length p.
Therefore S has blocks of length ™, forallr =1,...,n.

(ii) By Proposition 2.6.5, § = &5 x --- x Sy with §; € Syl (Sym(€)) and
|€2;] = p™, for alli = 1,..., k. Now by part (i), each S; has blocks of length p", for
all7=1,...,n, but a block of S; is also a block of § and so we get the result.

(iii) We know that § =8, x --- x Sy with S; € Syl,(Sym(Q2;)} and |Q; = k;27,
forall j =1,...,¢ Clearly, for each i € {j | k; # 0}, S; has the trivial block ; of
length k;p* and, by part (ii), S has blocks of length p7, for all » = 1,...,¢. But a
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block of S; is also a block of S and so we get the result.

In the investigation of the structure of the normalizer of a Sylow p-subgroup of
Sym(p") certain elementary abelian normal subgroups of S play a central role. Let
S € Syl,(Sym(p™)). Forallt =1,...,n, define

Kt=StX"'XS¢ESf_2T_h
A

pn—-t

with T,,_; trivial permutation group on p"* letters and

S, € Syl,(Sym(p")).

Ny Propositions 2.4.12 and 2.6.4, forallt = 1,... 7,8 = S;15,_;. Thus K, be
considered as a subgroup of S, in which case

K, 45
Moreover, forallt =1,...n— 1,
K, < Koyt
So we have the following normal series of S:
KidK,Q---2K, 19K, =26,

with K abelian of order "' and K, nonabelian, for all t = 2, ..., n.

Theorem 2.6.11 Let H = Sym(p"), where p is a prime and n € N, and § ¢
SylL,(H). Then every abelian normal subgroup A of S is in K.

Proof. See Covello [7] (Theorem 4.4.1}).

Theorem 2.6.12 Let H = Sym(p®), where p is ¢ prime with p > 2 and n € N,
and let S € Syl ,(H). Then every abelian normal subgroup A of S is in K;.

Proof. See Covello {7] (Theorem 4.4.2).
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Corollary 2.6.13 Let H = Sym(p™), where p is ¢ prime and n € N, and § €
Syl,(H). If p > 2, every abelian normal subgroup A of S is in K, for allt =
1,...,n; for p= 2 every abelian normal subgroup A of S is contained in K, for all
t=2,...,n.

Proof. See Covello [7] (Corollary 4.4.3).

Theorem 2.6.14 Let S be a Sylow p-subgroup of Sym(p"), where p is a prime and
n € N. If p > 2, S has a unique abelion normal subgroup of order pP"_l, which s
K= CplT,_1, and this is an elementary abelian p-group.

Progf. See Covello {7] (Theorem 4.4.6).

Theorem 2.6.15 Let S be a Sylow p-subgroup of H = Sym(p"), where p is a prime
and n € N. Then the normalizer in H of S is contained in the normalizer in H of

every abelian normal subgroup of S of order p*" .

Proof. See Covello {7] (Theorem 4.4.11).

2.7 The normalizer of a Sylow p-subgroup of the

symmetric group

This section is devoted to understanding and describing the structure of the nor-
malizer of a Sylow p-subgroup of the symmetric group.

Theorem 2.7.1 Let H = Sym(§2), with |Q| = n, and let S € Syl,(H). Let
n=kpt +k1p" -+ kp + ko,

with 0 < k; < p, for all j = 0,...,¢, be the p-adic decomposition of n. Then the

normalizer B of S in H is given by

B=B(]><"'XB;,
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where, for § = 0,...,%, B; is the normalizer of a Sylow p-subgroup of Sym(Q;), with
Q; C Q2 and || = k;p. In paerticular,

t
1B| = |S| | #s1(w — 1Y%
=0

and the sets Qg, Qy, ..., are the orbits of B on Q.

Proof. Let §2,€,...,8; be a partition of €1 into ¢ + 1 subsets such that, for
7=0,...,4|9%| = k;p’ and write § = S x --- X S, with S; Sylow p-subgroup of
Sym(Q;). Also let By = Sym(€2) and let B; denote the normalizer of S; in Sym($2;),
for all § > 0. Then the sets £2; are fixed blocks of S all of different length and so,
since S < B, they are also fixed blocks of B. Therefore B < Sym($2) x- - -xSym(£2;)
and B = (BN Sym(£2}) x -+ x (BN Sym({Y)) = By x - -+ x By. Furthermore, the
sets 2o, 21, ..., are the orbits of B on §2.

Notice that, by Theorem 2.7.1, Sym()y) is contained in B and, in particular, in the
centralizer of S in H, and so B is transitive on the set of points fixed by S.

Corollary 2.7.2 Let H = Sym(§2), with |Q} = p", and let S € Syl,(H). Then
|Ne(S)] = |S](p - 1)™.

Proof. This follows from Theorem 2.7.1.

Theorem 2.7.3 Let H = Sym(Q2), with |Q2] = p*. Let S € Syl,(H) and set B =
Ny(S). Then B is transitive on 2 and every block of B has length o power of p.
Furthermore, fori=1,...,n— 1, B has a unigue complete block system of blocks
of length p* and, in particular, B has blocks of length p™, for allr =1,...,n.

Proof. See Covello (8] (Theorem 5.2.9).

Theorem 2.7.4 Let H = Sym(Q), with |Q] = kp™ and 1 < k < p. Let S €
Syl,(H) and set B = Ny(S). Then B is isomorphic to the wreath product of B by
Sym(k), where B is the normalizer in Sym{(p®) of a Sylow p-subgroup of Sym(p™).
In particular, :
|B| = |T|kl(p ~ 1)™*

and B i3 transtive on 1.
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Proof. See Covello (8] (Theorem 5.3.1).

Proposition 2.7.5 Let H = Sym(Q), with | = kp® and 1 < k <p. Let S ¢
Syl,(H) and set B = Ng(S). Then B has blocks of length p", for allr = 1,...,n,
and every nontrivial block of B has length a power of p.

Proof. See Covello (8] (Proposition 5.3.2).

Theorem 2.7.6 Let H = Sym(Q), with [ = n, § € Syl (H) and B = Ny(S).
Let
n=kp' +kopT 4+ kip + ko,

with 0 < k; < p, forallj=0,...,¢, and k; # 0, be the p-adic decomposition of n.
Then, B has blocks of length v, for ell T =1,...,n, and blocks of length k;p°, for
GEISE{jlkJ%O}

Proof. According to Theorem 2.7.1, write B = By x B, x - -+ X B, with B; normal-
izer of a Sylow p-subgroup of Sym($2;) and Q9,$, ..., orbits of B on . Then,
for all s € {j | k; # 0}, §2; is also a block of B and has length k,p®. Moreover,B,

has blocks of length p™, for all ¥ = 1,...,t. But a block of B, is also a block of B
and so we get the result.

Theorem 2.7.7 Let H = Sym(f), with |Q] = n, S € Syl (H) and B = Ng(S).
Let
n=kp'+ k10" + -+ kip + K,

with 0 < k; < p, for all j =’0, ..., t, be the p-adic decomposition of n and
D=NuQ U U,
with |Q] = k;p’, for all j = 0,...,t, be the corresponding partition of Q into

B-orbits.

(i) If T is a nontrivial block of B, then either T C §;, for a unique i, or [
is the union of some §);’s. Therefore, either the length of T is a power

S ki,
jed
with J C0,...,t end |J| 2 1.

of p or 13 given by
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(1) If @ € Q,, then, in its action on Q, Stabp(c) has t orbits, each of length
k;p?, or j # i, namely the §;’s, and i + 2 orbits which have length
lsp - 11p2 -7 rpi ____p?:_—lj (kl - 1)p1

Proof. See Covello [8] (Theorems 5.4.3 and 5.4.4).

Lemma 2.7.8 Let H = Sym(Q) and let S € Syl ,(H). Then the normalizer of S

in H is never contained in Alt(52).

Proof. Let K = Alt(2) and set B = Ng(5). If p = 2, then § £ Alt(2) and the
result is trivial. So assume that p # 2. Then S € Syl (K) and, by the Frattini
argument, it follows that H = BK, which implies that B £ K.

Theorem 2.7.9 Let H = Sym(82), with || = n, and § € Syl (H). Suppose that
M is a primitive subgroup of G containing the normalizer in H of S. If n > p+ 2,
then M = G.

Proof. See Covello [8] {Theorem 5.5.2).

Lemma 2.7.10 Letn € N and p be a prime. Let n = kpt + - + kyp + ko be the
p-adic decomposition of n, that is, 0 < k; < p, for all = 0,...,t. If d divides n,
then eitherd = n or d < kipt.

Proof. Write n = kgt +m, with m = k_1p* 1 + - + k1p + k. Since, for j =
0,...,t—1,0 £ k; < p, wehave that

m<(p-)(1+p++p) =p" -1 <p' < k.

Hence n = kypt +m < 2k;p' and s0 a proper divisor of » must be smaller than &;pt.

We establishing some results on imprimitive subgroups of Sym(£) which contain
the normalizer of a Sylow p-subgroup.

Theorem 2.7.11 Let H = Sym(Q)) and S € Syl (H). Let M be a subgroup of
H containing the normalizer of S in H and suppose that M is imprimitive. Then
every block of M has length a power of p.
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Progf. Suppose that {2} = n and let n = kp' + -+ + kyp + ko be the p-adic
decomposition of n. Set B = Ng(S) and let g, 2y, ..., 8, with [Q;] = k;p?, for all
7 =0,...,%, be the orbits of B on . Also write B = By x By X --- X B;, where,
for each § = 0,...,t, B; is the normalizer of a Sylow p-subgroup of Sym(£};}.

Suppose that M is an imprimitive subgroup of H containing B. Let A be a
nontrivial block of M and set d = |A|, with 1 < d < n. Then, since M is transitive
on 2, we have that d is a proper divisor of n and so, by Lemma 2.7.10, d < kp'.
Also the complete block system determined by A forms a partition on 2. Thus, up
to taking the appropriate conjugate of A in M, we can assume that AN, # 0.

Suppose that A C ,. If A = Q,, then d = k,p*, which is a contradiction. Thus
we have that A C €, and so A is a nontrivial block of B,. Hence, d is a power of
p. Assume now that A € £,. Since the orbits £; form a partition of €,

t

A= Jangy,
§=0
where, for j = 0,...,t =1, AN{; is fixed point wise by B;. Therefore, since A isa
block of M, A must be fixed by B,. But {2, is an orbit of B; and so, as AN, # 8,
we have that 3, C A, which implies that d > k;p’, against the fact that d < k.p'.
Therefore we must conclude that A C €, and |A| is a power of p. '

Corollary.2.7.12 Let H = Sym(Q?), with |Q| = n, S € Syl,(H) and B = Ng(S).
Letn = kpt+k, 19"+ - -+ kip+ky be the p-adic decomposition of n. Suppose that
M s an imprimitive subgroup of H containing B. Then there exists 1 < r <t such
that p"in and M is isomorphic to a subgroup of Sym(p")1Sym(n/p™). In particular,
kh=ki=-=k_ =0 .

Proof. Let A be a nontrivial block of M. Then, by Theorem 2.7.11, A has length
p", for some 1 < r < ¢, with p” dividing n. Also, M embeds in the stabilizer in A
of the complete block system {A® | z € M} determined by A, which is isomorphic
to Sym(p"} 1 Sym(n/p").

Lemma 2.7.13 Let H = Sym(Q}), S € Syl,(H) and B = Ny(S). If M is an

intransitive subgroup of H containing B, then

M < Sym(A)) x Sym(A,),
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with 1 = Ay U Ay and the A;'s unions of orbits of M on Q. Moreover
M = (M N Sym(A;)) x (M N Sym(As)).

Proof. The first part of the statement is obvious. The second follows from Lemma
2.1.17.

Theorem 2.7.14 Let p be a prime, p # 2,3, and G = Sym{Q), with || = p.
Suppose that T € Syl,(G) and B = Ng(T). Then B is a mazimal subgroup of G.

Proof. See Covello (8] (Theorem 6.1.2).

Corollary 2.7.15 Let G = Sym(Q2), with |Q] = n, T € SyL(G) and B = Ng(T).
Suppose that n = kip™ + ko, with a > 1 and 1 < kg, ky < p, is the p-adic decompo-
sitton of n. Then every transitive subgroup of G containing B s 2-transitive on 2,

such subgroups are primitive on 1.

Proof. See Covello (8] (Lemma 6.5.1).

2.8 Maximal subgroups of the symmetric groups

According to the O’Nan-Scott theorem, stated as the second theorem in Appendix
|2], and the first theorem in [19] we get the following important results:

Theorem 2.8.1 Let H = Sym(Q), with || =n > 2. Then, for allr > 1 such that
n # 2r, the group

-

L =Sym(n — r) x Sym(r)

is a mezimal (intransitive) subgroup of H.

Proof. Let r > 1 be an integer such that 2r < n. Consider a partition of Q
into two subsets Q; and £, such that {)| = n — r and || = r and set L =
Sym(;} x Sym(€2;). Then L is not transitive on Q and 1, and {2, are the orbits
of L on §2.

Now let M be a subgroup of H properly containing L. Then M 1s transitive on
Q. Let a € §2. The orbits of M, on §2 are the union of the orbits of L, on §2. Also,
as M is transitive on £, all stabilizers in M are conjugate and so, for all o € §,
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the M,’s produce on  the same kind of decomposition into orbits. But, if & € ©Q;,
then the orbits of L, on & have length

1l,n—r—1andr,
whereas, if o € €17, then the orbits of L, on  have length
n—r1andr—~1.

The implies, as n # 2r, that M, cannot have three orbits on Q2. So M, has two
orbits on {2 which are {a} and 2\ {a}. Therefore M, is transitive on 2\ {a} and so
M is 2-transitive on {2. Hence M is primitive and, since M contains transpositions,
by Lemma 2.5.14, we get that M = H.

Theorem 2.8.2 Let H = Sym(Q), with |Q| =n > 1. Then, for all integers k and
m such that n = km, the group

L = Sym(k) : Sym{m)
is a mazimal (imprimitive)} subgroup of H.

Proof. First, by Proposition 2.5.16, I is the stabilizer in H of a block system of
m blocks of length k¥ and L is imprimitive. Now let M < H such that L < M. If
M is primitive, then, as M contains transpositions, by Lemma 2.5.14, M = H. So
assurme that M is imprimitive. Then, as M # L, M has a nontrivial block system of
blocks of length different from & and so L has a nontrivial block of length different
from k, since L € M, against Theorem 2.5.15. Thus L is a maximal subgroup of
H. -



Chapter 3

Maximal p-local subgroups of

symmetric groups

We maintain the notation introduced in Chapter 1. The aim of this chapter is to re-
duce the investigation of maximal p-local subgroups to some critical cases. We start
examining some specific cases. When we come to consider the symmetric groups
Sym(p) and Sym(p + 1) some fact about the normalizer of a Sylow p-subgroup, for
which the reader can refer to (8], are used.

3.1 Sym(p™)

Recall that the normalizer of a Sylow p-subgroup of Sym(p) is a maximal subgroup
of Sym(p).

Theorem 3.1.1 Let G = Sym(§2) with |Q} = p, where p is a prime. Suppose that
T € S5yl,(G) and B = Ng(T). Then Nng(G, B) = {B}.

Proof. f p = 2,3, then B = G, O,(G) # 1 and there is nothing fo prove. So assume
that p # 2,3. By Proposition 2.6.4, we know that T = C,, where C, is a cyclic
group of order p. Since T is a normal p-subgroup of B, we have that O,(B) # 1
and Theorem 2.7.14 implies that B is a maximal p-local subgroup of G. Let N
be a maximal p-local subgroup of G with respect to B such that N # B. Then
B < N € G and O,(N) # 1. Using Theorem 2.7.14, N = G, which contradicts
the fact that O,(G) = 1. Thus B is a unique maximal p-local subgroup of G with
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respect to B, which completes the proof.

We now look at those subgroups in Npmez (G, T) which act transitively on Q. Recall
that if G = Sym(2?), then N0 (G, B) = {Sym(4)} becanse Sym(4) = Ng(A) where
A = {{(1,2)(3,4),(1,3)(2,4)). Our next result concerns subgroup in Npm,.(G,B),
where G = Sym(p®) with p > 2.

Lemma 3.1.2 Let G = Sym(Q) with [Q] = p?, where p is a prime such that
p > 2. Suppose that T € Syl,(G) and B = Ng(T). If N € Nnas(G, B), then
N is isomorphic to Sym(p) 2 Sym(p).

Proof. Let L = Sym(p) ! Sym(p). By Theorem 2.7.3, using Corollary 2.5.17, we
know that B £ L. By Theorem 2.8.2, L is a maximal subgroup of G. Since N
is a subgroup of G containing B, by Theorem 2.7.9, we may assume that N is
imprimitive. By the transitivity of B, it follows that every subgroup containing B
can only have blocks of length 1, p and p?. So every nontrivial block of N must have
length p and , by Corollary 2.5.17, N is isomorphic to a subgroup of L. Since, by
Proposition 2.5.16, L is isomorphic to the stabilizer of Sym(p) acting on

{{1,2,..-,p},{p+1,p+2,.--,2;0},...,{1‘9(29—1)+1,;0(p—1)+2,---,p2}}

in G. Thexefore, Sym(p) ¢ Sym(p) = Ng(E), where

E=((1,2,...,p),(p+1,p+2,...,2p),...,(p(p—1)+1,p(p—1)+2,...,p2))-

Using Theorem 2.6.14, E is a unique elementary abelian normal p-subgroup of
order p of T. As E & Ng(E), we have that Op(Ng(E)) # 1. It follow that
Sym(p) 1 Sym(p) = Ng{E) € N(G,T) and hence N = Sym({p) ! Sym{p).

Theorem 3.1.3 Let G = Sym(Q2} with || = p™, where p s a prime such that
p>2and m € N such that m > 1. Suppose that T € Syl,(G) and B = Ng(T). If
N € Nuex(G, B), then N leaves invariant a block system with blocks of size p. In
porticular, N is isomorphic to Sym(p) 1 Sym(p™1).

Proof. Using Theorem 2.6.9, N is transitive on 2. We argue by induction on m
starting with the case m = 2. For m = 2, by Lemma 3.1.2, the lemma clearly holds.



