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Since N is a subgroup of G containing B, by Theorem 2.7.9, we may assume that
N is imprimitive. Let B = {A;, Ay, ..., Ax} be a non-trivial block system invariant
under N. Since N is transitive on , it follows that V acts transitively on B. Set
t = |Q|/k. Then t = |A;| fori=1,...,k. By Theorem 2.7.11, ¢ is a power of p. Set
M = Stabg(B). Then

T < B<NM=Sym(t) 1 Sym(k).

Fori =1,...,k put K; = Sym(A;) and K = K| x K3 x -+ x K;. Then for
i=1,...,kasK; QK <IM,1# R =TNK; € SyL(K;), TNK = Ry X Ry x - - X
Ry € Syl (K) and B; = BN K; = Ng,(R;). Since ¢ is a power of p, R; is transitive
on A; for all . Suppose that O,(N)N K = 1. Since {O,(N), NN K] € O,(N)NK,
this gives [O,(N), NN K] = 1. As R; € NN K, for all 3, O,(N) centralizes R;
and, because of the structure of Sym(t) : Sym(k), this forces Ox(N)} £ K. But now
Op(N)YN K = O,(N) # 1, a contradiction. Therefore Op(N) N K # 1.

Let ; : K — K be the projection map of X onto K; and set L; = ;NN K).
We see that R; € B; € L; < K and that I; is transitive on A;. If O,(L;) = 1,
then Op(N N K) < [[; K- Foralln € N, as Op(NN K) < N, we then have
Op{NNK) = Op(NNK)" £ ([, K;)* Let i € {1,...,k}. We may choose
an n € N so as A; = A}, Therefore ([[,,; ;)" = [[;4 Kj, whence it follows
that O,(N N K} € ﬂ:‘zl(H#i K;) =1, a contradiction. Hence O,(L;) # 1. Seo
Lie N(K;,B;) foralli =1,...,k. Let H € Npes(K,, By) be such that H, > L;.
Since H, 18 transitive on Ay, by induction H, leaves invariant a block system with
blocks of size p. Then H, contains E;, a normal elementary abelian p-subgroup of
order pl&11/? = pt/P Hence E; < L; and it follows that B, < NNK. Put E = (EV).
By the Frattini argument, N = Ny(TNK)(NNK). So E = (EMTN <« N K.
Since N is transitive on B, f\}N(T M K) is transitive on B. Let g € Ny{(T N K) be
such that Rf = R; for some j. Since F; < R), EY is an elementary abelian normal
p-subgroup of R; of order p/?. Therefore, E is an elementary abelian normal p-
subgroup of 7' of order p*/? = p*™™*. Thus, using Theorem 2.6.14, up to conjugacy
we see that

E={(1,2,...,p),(p+1,p+2,...,20),..., @™ ' ~1)+1,pp™ = 1)+2,...,p™)).

By Theorem 2.6.15, we have that B € Ng(E). Thus, as Ng(E) > N and N €
Nmaz (G, T), Ng{E) = N. Therefore N leaves invariant a block system with blocks
of size p. This complete the proof of Lemma.
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3.2 Sym(kp™)

Theorem 3.2.1 Let G = Sym(§}) with | = kp, where p is a prime and k € N such
that 1 < k < p. Suppose that T € Syl (G) and B = Ng(T). If N € Npee(G, B),
then N is isomorphic to B = Neym(z(T) 1 Sym(k), where Te Syl,(Sym(p))-

Proof. Let P = Sym(p) 1 Sym(k). By Theorem 2.7.4, B € P and B is transitive on
2 and so, by Theorem 2.8.2, P is a maximal subgroup of G. Since N is a subgroup
of G containing B and O,(N) # 1, using Theorem 2.7.9, so we may assume that N
is imprimitive. By the transitivity of B, it follows that every subgroup containing
B can only have blocks of length 1, p and kp. So every nontrivial block of N must
have length p. By Corollary 2.5.17, N is isomorphic to a subgroup of P. Since
Op(B) # 1, so B is a p-local subgroup of G with respect to B. Using Theorem
2.7.4, B 2 Ngym@(T) 1 Sym(k), where T € Syl (Sym(p})." Moreover, by Lemma
2.4.18, B is a maximal subgroup of P. Thus N < B and hence N = B. Then
N = Ngym (T) 1 Sym(k) and this complete the proof.

Theorem 3.2.2 Let G = Sym(2) with || = kp™, where p is a prime such that
p>2andm,k € N such that k < p and m > 1. Suppose that T € SyL,(G) and B =
Ne(T). If N € Npaa (G, B), then N is isomorphic to (Sym(p)1Sym(p™1))1Sym(k).

Proof. Since N is a subgroup of G containing B and, by Theorem 2.7.4, B =
Nyme=)(T)18ym(k) where T' € Syl,(Sym(p™)), so we have, using Corollary 2.7.12,
N £ Sym(p™) 1 Sym(k). By Lemma 3.1.3 and Theorem 2.8.2, N = Sym(p)
Sym(p™ ') € Nonaz(Sym(p™), Nsymepmy(T)} and N is a maximal subgroup of Sym(p™).
Thus, by Lemma 2.4.18, N2 Sym(k) is a maximal subgroup of Sym(p™) | Sym(k).
It follows that N € N Sym(k). As Op(N) # 1, Op(N 1 Sym(k)} # 1 and hence
N 1Sym(k) € N(G, B). Therefore, N = N Sym(k).

3.3 Sym(kip™ + ko)

Lemma 3.3.1 Let G = Sym(Q) with |} = p™+ 1, where p is @ prime and m € N.
Suppose that T € Syl,(G) and B = Ng(T). Then every proper subgroup of G
containing B is contained in Stabg(w) 2 Sym(n — 1), fizes w € €.

-
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Proof. We know that T and B fix a unique point w € € and operates transitively
on 1\ {w}. Suppose that L £ Stabg(w) and G 2 L > B. Then L is 2-transitive on
(2, and, as B contains a transpositions, Lemma 2.5.14 (i) implies that L = G. Thus
all proper subgroups of G which contain B are contained in Stabg{w) = Sym(n—1).

Lemma 3.3.2 Let G = Sym{Q}) with | = p™ + 1, where p is ¢ prime and m € N,
Suppose that T € Syl (G), B = N¢(T) and put H = Stabg(w), fired w € Q. Then
Nmar(G: B) = Nmax(H; B)

Proof. Let N € Npnoo(G, B). Since B is transitive on 2\ {w}, Lemma 3.3.1 implies
that N is contained in A 2 Sym(n —1). It follows that Npez(G, B) C Nmas(H, B).
But H € G, s0 that Npez(H, B) € Npoo{G, B) and the lemma is complete.

Theorem 3.3.3 Let G = Sym(Q)) with | = p+ 1, where p is a prime. Suppose
that T € Syl,(G) and B = Ng(T). Then Npe(G, B) = {B}.

Proof. For p =2, T = B = Sym(2) and O,(B) # 1. Also, for p = 3, T = Alt(3),
B = Sym(3) and O,(B) # 1. So, in both cases, B is a maximal subgroup of G and,
thus, B is the unique maximal p-local subgroup of G with respect to B.

Suppose that p # 2,3 and let H = Sym(p) be the stabilizer in G of a point
in Q, say H = G,, for some o € 2. By order we may assume that T' € Syl (H).
Then, by Theorem 2.7.1, Nyg(T) = B and so, since Op,(Ng(T)) # 1, Ng(T) = B
is a p-local subgroup of G. It remains to prove that B is the only maximal p-iocal
subgroup of G with respect to B. So let L be a maximal p-local subgroup of G,
that is, B € L and O,(L) # 1. Using Lemma 3.3.1, we get that L < H and so, by
Theorem 2.7.14, B is a maximal subgroup of A implies that L = B.

Lemma 3.3.4 Let G = Sym(QY) with |} = kip™ + ko, where p is a prime and
m, ko, k1 € N such that k1 < p, is the p-adic decomposition of n. Suppose that
T € SyL,(G) and B = Ng(T). Ifn > p+2 and N € Npuo(G, B), then N <
Sym(k1p™) % Sym(ko).

Proof. Let U = Sym(k1p™} x Sym(ky). By Theorem 2.7.1, U contains B and from
Theorem 2.8.1 we know that U is a maximal subgroup Assume that N £ U. Then

-
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N fuses the two orbits of U on Q and so is transitive on Q. Thus, by Corollary
2.7.15, N is primitive on 2. Then Theorem 2.7.9 implies that N = (. Hence
NLU.

Theorem 3.3.5 Let G = Sym(Q) with |} = kp™ + ko, where p is ¢ prime and
m, kg, k1 € N such that ky < p and k1 < p, is the p-adic decomposition of n.
Suppose that T € Syl,(G) and B = Ng(T). Ifn 2 p+2 and N € Nua:(G, B),
then N = N x Sym(ko) where N is a mazimal p-local subgroup of Sym(kip™) with
respect to B N Sym(kp™).

Proof. By Lemma 3.3.4, N € U x V where U = Sym{k;p™) and V = Sym(kg). Us-
ing Proposition 2.1.16, T' = (T'NU) x (TNV) with TNU € SyL,(U), TNV € SyL (V)
and B = (BNU) x (BNV) with BAU = Ny(TNU), BAV = Ny(TNV). As
TNV =1and 1l # Op(N) <T,wehave 1 # O,(N)N(TNU) < O,(N)NU.
Since N U XV, O,(N)NU 4 N and so 1% O,(N)NU £ O,(NV). Therefore
NV € N(G, B) and hence, as N € Npou (G, B), N = NV. So V < N which implies,
using Dedekinds’ Modular Law, that N = (NNU)V. Now, as NNU € N (U, BnNU),
we may choose N € Ny (U, BNU) with NNU < N. Since 1 # O,(N) < O,(NY)
and BE NV, NV € N(G,B) and so,as N = (NNU)V ¢ NV, N=NV.

Lemma 3.3.6 Let G = Sym(§2) with {Q}| = p+k, wherep is a prime and k € N such
that 1 < k < p. Suppose that T € Syl,(G) and B = Ng(T'). Then Npea(G, B) =

{B = Nsym(p) (T} % Sym(k)}.

Proof. Let U = Sym(p) % Sym(k}. By Theorem 2.7.1, U contains B and from
Theorem 2.8.1 we know that U is a maximal subgroup of G. Assume that N €
Ninez(G, B) and N £ U. Then, since N is a subgroup of G containing B, N fuses
the two orbits of U on £ and so is transitive on §2. Thus, by Lemma 2.7.15, N
is primitive on §2. Therefore Theorem 2.7.9 implies that ¥V = G. Hence N € U.
Since O,(B} # 1, so B is a p-local subgroup of G with respect to B. But, as
k < p, T € SyL,(Sym(p)) and B = Ny (T) x Sym(k), where, by Theorem 2.7.14,
Nsymp)(T) is a maximal subgroup of Sym(p). Therefore B is a maximal subgroup
of U. It follows that, as B £ N, N = B and we have the result.
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We now want to show that those examined in the previous sections are the only
B, the normalizer of a Sylow p-subgroup of Sym(Q?), which are maximal p-local
subgroups with respect to B.

Theorem 3.3.7 Let G = Sym(§2), with || = n. Suppose that T € Syl,(G) end
B = Ng(T'), where p i3 a prime. Then B is a mazimal p-local subgroup with respect
to B if one of the following occurs:

(i) n=p
(i) n=kpwithl <k <p

(iti) n=p+k withl <k <p.

Proof. Follows from Theorems 3.1.1, 3.2.1, 3.3.3 and Lemma 3.3.6.

3.4 An overview of the problem

Qur next result concerns subgroups in Npn..(G, B) which do not act transitively
on Q. Recall that if n = k' + kyapt™ + -+ + kip + ko, with 0 < k; < p, for
all j =0,1,...,¢, is the p-adic decomposition of n, where p is a prime and &, is
an integer, then T has ¢ + 1 orbits on 2. Let Oy, ..., denote these orbits
where |Q].= k;p* for i € {0,1,...,t}. Note that T = Ty x T} x --- x T, where,
T; € Syl (Sym(f)), « € {0,1,...,t} and, moreover, each T; is the direct product
of k; factors, each isomorphic to a Sylow p-subgroup of Sym(A), with |A} = p* (see
Findlay [11]).

>

Theorem 3.4.1 Let G = Sym(S2), with |2} = n, T € SyL(G) and B = Ng(T).
Let n = kypt + kyeyp™™' + -+ + kup + ko, where p s a prime, with 0 < k; < p, for
all §=0,...,¢, be the p-adic decomposition of n and 2 = QU U - UQ,, with
1] = k;p?, for all § = 0,...,t, be the corresponding partition of { into B-orbits.
Let J be a proper subset of I = {0,1,...,t}. Set A = J;c; 8%, U = Sym(A) and
V =Sym(Q\ A). Suppose that N € Moo (G, B) and N < U x V.

(i) If Op(N)NU # 1, then N = Ny x V where Ny € Nope (U, BN U).
(i) If Op(N)NV # 1, then N = U x Ny where Ny € Npoo{V, BN V).
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Proof. First we examine the case when O, (N)NU # 1. Since N € U x V,
Op(N)NU 9 N and s0 1 # O,(N)NU £ Op{NV). Therefore NV € N(G, B) and
hence, as N € Npoo(G, B), N = NV. So V € N which implies, using Dedekinds’
Modular Law, that N = (NNU)V. Now, as NNU € N{U,BnNU), we may
choose Ny € Npoe (U, BNU) with N NU € Ny. Since 1 # Op(Ny) < Op(NyV)
and B € NyV, NyV € N(G,B) and s0, as N = (NNU)V € NyV, N = NyV.
If we have O,(N) NV # 1, the same argument yields N = U x Ny for some
Ny € Npoe(V, BOV).

Theorem 3.4.2 Let the hypothesis of Theorem 8.4.1 holds. Suppose that 0 < k; <
1, for all  =0,...,t. Then either N = Ny x V, where Ny € Npoo (U, BNU) and
Ny is transitive on A, or N = U x Ny, where Ny € Npar(V, BNV) and Ny is

transitive on Q\ A.

Proof. Thanks to the study carried out in Theorem 3.4.1, we only need to eliminate
the situation Op(N)NU =1 = O,(N)NV. From

[0p(N), Ty] € Op(N)NTy < O,(N)NU =1

and
[Co(N), TV] S O(N)NTy S Op(N)NV =1

where Ty € Syl (U), Ty € Syl,(V), we deduce that O,(N) € Z(T). Therefore,
Co(Z(T)) € Col(Op(N)) < No(Op(N}) = N.

Let 1 # 0 € Op(N), 50 0 € Z(T}). Forany g € N, 0% € O,(N) 9 N and
hence o8 € Z(T). Since T = [[;; Ti where, for i € I, T; € Syl (Sym(Qs)),
Z(T) = [Lie; Z(T;). By Lemma 2.6.7, Z(T;) = {0;) where ¢; has order p and cycle
type pP . Now let 15 p € Z(T) with 4 # 0. S0 0 = [[iex 0% and p = [{iep 0%,
where K, K’ C I with K # K' and consequently, as ¢t > ¢t —1> .- > 1, ¢
and u have different cycle types. Therefore ¢ = ¢ and then N € Cg(o). Since
(o) C Z(Ce(0)) € 0y(Cqlo)), Ce(o) € N{(G, B). This implies that N = Cg(o)
forall 1 # 0 € Oy(N), as N € Nppuz(G, B). We see that

Ce(0) = [ ] Csymiany(ox) x Sym( | ) )

keK i€\K

and so {0y | k € K) € Z(Cg(o)). In particular, {ox | £ € K) € O,(Cg(0)) =
Op(N). Now either (op | k € K)NTy # 1 or {ox | kK € K) NTy # 1 because
O,(N) 9T = Ty x Ty, a contradiction.
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Aiming for a contradiction we assume Ny is not transitive on A. Thus Ny <
X xY U where © = [ ;. 4, X = Sym(©) and ¥ = Sym(A \ ©) for some
K < J. Applying the previous part to Ny € Npa:(U, B NU) we deduce that
gither Ny = Nx x Y where Nx € Mpee (X, BN X) or Ny = X x Ny where
Ny € Nipez (Y, BNY). Without loss of generally we assume the former to hold.
Since O,(Nx) # 1 and T < Nx x Sym(2\ ©), clearly Ng{O,(Nx)) € N(G, B).
However we have that

N=NpxV = NxxYxV
< Ny xSym(Q2\ 0} < Ng(0,(Nx)),

a contradiction. Therefore we conclude that Ny is transitive on A and hence the
proof of the theorem is complete.

3.5 NG, T*) for G* = Alt(Q)

We now use G* to denote Alt(Q), the alternating group on £2, and also Alt(m) to
denote the alternating group of degree m. Put 7" = G* N T and B* = Ng. (T*).
Recall that T* € Syl (G*). Here we look at the relationship between Np..(G, B)
and Np,-{G*, B*). In order to do this we study some specific cases.

Lemma 3.5.1 Let G* = Al{QY) with |} = p, where p is ¢ prime and p # 2.
Suppose that T* € Syl {G*), and B* = Ng-(T*). Then B* € Np(G*, BY).

Proof. 1f p = 2, then, as B* = 1, Npnap(G*, B*) = 0. Now assume that p # 2.
Thus, 7" = {(1,2,3,...,p)) with |T| = p. Since 7" is a normal p-subgroup of B*,
50 Op(B*) # 1. Therefore, using Theorem 2.7.14, B* € Ny, (G*, B*).

Lemma 3.5.2 Let G* = Alt(Q2) with |Q| = p+ 1, where p is a prime and p # 2.
Suppose that T* € Syl,(G*), and B* = Ng-(T*). Then B* € N(G*, B*).

Proof. If p = 2, then T* = 1 and B* = G*. As Op(B*) = 1, Nunaz(G*, B*) = 8. Now
assume that p # 2 and let H = Sym(p). Thus, 7% = {(1,2,3,...,p)) € SyL(H)
with |T'| = p and Ny (T*) = B*. Since O,(B*) # 1, hence B* € N(G*, B*).

-
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Lemma 3.5.3 Let G = Sym(Q2) and G* = Alt(Q) with || = p™, where p is a
prime such thet p > 2 and m € N such that m > 1. Suppose that T € Syl (G),
T*=G*NT, B = Ng(T) and B* = Ng-(T*). If N € Nppoo(G, B), then NNG* €
N(G*, B*).

Proof. The assumption on N means that |O,(N}| > p%. Hence 1 # O,(N)NG* <
NNG*. Using Proposition 2.1.16, B* = BNG* £ NNG* and so NNG* € N (G*, B”).



Appendix A

Examples of the maximal p-local

subgroups of G

In Appendix we shows some examples related to the main results achieved. We
maintain the notation introduced in Chapter 1.

The definition of maximal p-local subgroup in terms of the normalizer of a Sylow
p-subgroup is given in the works of Rowley and Saninta [22], in which they study
all the maximal p-local subgroups for the symmetric groups, with respect to the
prime p = 2. This case is relatively easy to study and an example illustrating their
result is presented next.

Example 1: Sym(12)

Let G = Sym(2) with |©2] = n = 12. Suppose that p = 2 and let T be a Sylow
p-subgroup of G. Recall that Ng(T) = T. Consider the p-adic decomposition of n,
n=2%4+2% with @ = O, U, where || =8 and || =4 Also T =T, xTp &
(C21C21Ch) x (Cr1Cy), with T; Sylow 2-subgroup of Sym(§Y,), for i = 1,2, and C»
cyclic group of order 2. Also the £2;’s are the orbits of T on €. We begin by listing
the subgroups in Nye. (G, T), using Theorem 3.4 of [22].

N, = Sym(8) x Sym(4)
N, 2= Sym(4)Sym(3)
Sym(2) 2 Sym(6).

b=
°

Therefore,

Ny=NNNaNN; = ((Sym(2)2Sym(2)) 1 Sym(2)) x (Sym(2) 1 Sym(2))
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Niz =N NN, = Sym(4) x (Sym(4) 2 Sym(2))
Nis=NiAN; = (Sym(2)2Sym(4)) x (Sym(2) 1 Sym(2))
Npg = No M N3 2 (Sym(2)1Sym(2)) : Sym(3).

Furthermore, {Ny, N3) = (N1, N3) = (No, N3} = G

G

N1 N3

T=N['_|

Figure A.1: The lattice of the maximal 2-local subgroups of Sym(12).

Example 2: Sym(3)

Let G = Sym(Q2) with |©?] = n = 3. Suppose that T; € SyL,(G) and B; = Ng{(T;)
for i = 2,3. Then T» = By = Sym(2), Ta = ((1,2,3)) = Alt(3) and B; =
{(1,2,3),(2,3)) = Sym(3) Therefore, as T; < B;, 0;(B;) # 1 for ¢ = 2,3. Then for
i = 2,3, by Theorems 3.1.1 and 3.3.1, G has a unique maximal é-local subgroup
with respect to B;, which is B;.

Example 3: Sym(6)
Let G = Sym(Q2) with |©2| = n = 6. Suppose that T be a Sylow 2-subgroup of G.
Recall that B = Ng(T') = 7. Consider the 2-adic decomposition of n, n = 2° + 22,
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By Theorem 3.4 of [22], the subgroups in N (G, B) are

Ny = N({1}2) = Sym(4) x Sym(2)
Ny, = N(®;2) = Sym(2)Sym(3).

G = (Nl,N2>

B =T = (Sym(2) : Sym(2)) x Sym(2)

Figure A.2: The lattice of the maximal 2-local subgroups of Sym(6).

Suppose now that 7; be a Sylow 3-subgroup of G and B, = Ng(T1). Thus,
Ty = {(1,2;3), (4,5,6)) with [Ty = 9 and B; = {(4,5,6), (1,2,3), (4,5), (2,3)(4,6),
(1,4,3,6)(2,5)) with |B,| = 72. Consider the 3-adic decomposition of n, n = 2(3).
By Theorem 3.2.1, the subgroups in Ny (G, By) is B; = Sym(3) ! Sym(2).

We now consider the 5-adi¢ decomposition of n, n = 54 1. A Sylow 5-subgroup
Ty of G can be generated by the element (1,2,3,4,5). Then, by Theorem 3.3.1,
G has a unique maximal 5-local subgroup with respect to B = Ng(T%), which is
B =1{(1,2,3,4,5),(2,5)(3,4),(2,4,5,3)).

Example 4: Sym(9)

Let G = Sym(Q?) with |{2] = n = 9. Suppose that T be a Sylow 2-subgroup of G.
Recall that B = Ng(7T) = T. Consider the 2-adic decomposition of n, n = 2% + 1.
By Theorem 3.4 of [22], the subgroups in Ny (G, T) are

N = N({2};4) & Sym(4) 2 Sym(2)
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N, = N({{2}2) = Sym(2)1Sym(4).
Therefore, the simplicial set of Mz {G, T) is Mpnao (G, T).

G

(N1, No) & Sym(8)

B =T 2 (Sym(2) 1 Sym(2)) : Sym{(2)

Figure A.3: The lattice of the maximal 2-local subgroups of Sym(9).

Suppose now that T be a Sylow 3-subgroup of G and B = Ng(T). Consider the
3-adic decomposition of n, n = 3%, Then T = {(1,2,3), {4,5,6),(7,8,9),
(1,4,7)(2,5,8)(3,6,9)) with |T| = 81 and B = Ng(T) = {(1,5,9)(2,6,7)(3,4,8),
(7,8,9),(4,5,6), (1,2,3), (4,9)(5,7)(6,8), (2,3)(4,8,5,7,6,9)) with [B| = 324. Then,
by Theorem 3.1.3, G has a unique maxima)l 3-local subgroup with respect to B,
which is N = Sym(3) ¢ Sym(3) = Ng(E), where B = ((1,2,3),(4,5,6),(7,8,9)).
That is, N = {(1,2,3), (1,2), (4,5,6), (4,5), (7.8,9), (7,8), (1,4, 7)(2,5, 8)(3,6,8),
(1,4)(2,5)(3, 6)) with |N| = 1296.

Example 5: Sym(3°%)

Let G = Sym(Q) with {Q =n = 27, T € Syl,(G), and let

(1,2,3),

Zn (1,4,7)(2,5,8)(3,6,9),

z3 = (1,10,19)(2,11,20)(3,12,21)(4, 13, 22)(5, 14, 23)(6, 15, 24)(7, 16, 25)
(8,17,26}(9, 18, 27).

o=

I

o
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be its generators. The normalizer B of T in G can be described as B = T %
<h'1: h’?: h’3)> with

hy = (2,3)(5,6)(8,9)(11,12)(14,15)(17, 18)(20, 21)(23, 24) (26, 27),
he = (4,7)(5,8)(6,9)(13,16)(14,17) (15, 18)(22, 25)(23, 26)(24, 27),
hy = (10,19)(11,20)(12, 21)}(13,22)(14, 23)(15, 24) (16, 25)(17, 26) (18, 27).

By Theorem 3.1.3, the subgroups in N, (G, B) is N = Sym(3) 1 Sym(9)

# N = Sym(3) 1 Sym(9)

e

”

Figure A.4: The lattice of the maximal 3-local subgroups of Sym(27).
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Abstract: The subgroups in the set NMpm.-(G, B) consisting of all maximal p-local
subgroups of G = Sym(n) with respect to B, the normalizer of a Sylow p-subgroup

of G in G, is investigated for some critical cases.
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1 Introduction

Maximal 2—10;3,1 geometries for certain sporadic simple groups were firstly intro-
duced by Ronan and Smith (1980). These geometries were inspired by the theory
of buildings for the groups of Lie type which was developed by Tits (1956, 1974) in
the fifties. For each finite sir_np’le group of Lie type, there is a natural geometry as-
sociated with it called its building. For G a group of Lie type of characteristic p, its
building is a geometric structure whose vertex stabilizers are the maximal parabolic
subgroups which are also p-local subgroups of & containing a Sylow p-subgroup. As
is well-known, each building has a Coxeter diagram associated with it. Buekenhout
{1979) generalized these concepts to obtain diagrams for many geometries related
to sporadic simple groups. Ronan and Smith (1980)pursued these ideas further and
introduced the maximal 2-local geometries. Other in variants on buildings for the

*Correspondence: E-mail:  tipaval@mathstat.sci.tu.ac.th (T. Phatthanangkul) and som-
pongd@chiangmai.ac.th (8. Dhompongsa)
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sporadic simple groups have been defined, notably the minimal parabolic geome-
tries as described by Ronan and Stroth (1984).

We now define what we mean, generally, by a minimal parabolic subgroup. Suppose
that H is a finite group and p is a prime dividing the order of H. Let S be a Sylow
p-subgroup of H and B the normalizer of § in H. A subgroup P of H properly
containing B is said to be a minimal parabolic subgroup of H with respect to B if
B lies in exactly one maximal subgroup of P.

The definition of minimal parabolic subgroups in terms of the normalizer of a Sylow
p-subgroup is given in the works of Ronan and Smith (1980) and Ronan and Stroth
(1984}, in which they study minimal parabolic geometries for the 26 sporadic finite
simple groups. The connection between minimal parabolic subgroups and group
geometries is the best illustrated in the case of groups of Lie type in their defin-
ing characteristic. For a group of Lie type, its minimal parabolic system is always
geometric. This is not always the case in general (see Ronan and Stroth, 1984).
Many studies on the minimal parabolic system of special subgroups have been done
over the years. For example, Lempken, Parker and Rowley {1998) determined ail
the minimal parabolic subgroups and system for the symmetric and alternating
groups, with respect to the prime p = 2. Later, Covello (2000) has studied mini-
mal parabolic subgroups and systems for the symmetric group with respect to an
odd prime’p dividing the order of the group. The main results are about the sym-
metric groups of degree p”, she also establishes some more general results. More
recently, Rowley and Saninta (2004) investigated the maximal 2-local geometries
for the symmetric groups. Furthermore, Saninta (2004) considered the relationship
between the maximal 2-local subgroups and the minimal parabolic subgroups for
the symmetric groups. In this paper we shall investigate maximal p-local subgroups
for the symmetric groups.

Let H, p, S and B be defined as above. Define
N(H,B)={K|B< K< Hand O,(K) #1}

where O,{K) is a unique maximal normal p-subgroup of K. A subgroup in N (H, B)
is said to be a p-local subgroup of H with respect to B and a subgroup in A'(H, B)
which is maximal under inclusion is said to be a maximal p-local subgroup of



H with respect to B. We denoted the collection of maximal p-local subgroups of H
with respect to B by N (H, B).

Throughout all groups considered, and in particular all our sets, will be finite. Let 2
be a set of cardinality n > 1. Set G = Sym(§2), the symmetric group on the finite set
). We also use Sym({m} to denote the symmetric group of degree m. Now let T be a
fixed Sylow p-subgroup of GG, where p is a prime, and B be the normalizer of 7" in G.

The main purpose of this paper is to study the structure of subgroups in Nmez{G, B)

for some critical cases.

However, the general case looks, already from the first approach, more complicated.
In fact, for p # 2, a Sylow p-subgroup of the symmetric group is not selfnormalized
and so much more work needs to be done in understanding the structure of the
normalizer. Moreover, since p—1 # 1, the prime divisors of p—1 play a certain role
in the investigation of the overgroups of the normalizer. For instance, in the case
of Sym(p?), there is an isomorphism between the lattice of subgroups of a cyclic
group of order p — 1 and the lattice of certain overgroups of the normalizer and a

similar correspondence holds also for the case Sym(p™), with m > 2.

2 Préliminary Results

This section gathers together results that will be used. Now we let £ be a finite set
with || > 1 and let G, T, B and n be defined as in Section 1.

Proposition 2.1 Let H be a group and suppose that H = Ax B. Let § € SyL,(H).
Then S = (SN A) x (§N B) and

Ng(8) = (Ng(5) N 4) x (N (S)N B),
with NH(S) NA= NA(Sﬁ A) and NH(S) NnB= NB(SOB)

Proof. See Covello [6] (Proposition 1.1.10}.

Lemma 2.2 Suppose that H = X x Y is a direct product of groups X and Y and
suppose that S € Syl (H) .where p is a prime which divides the order of both X



and Y. Assume that L is o subgroup of H which contains B := Nyx(S5). Then
L=(LNX)x (LNY),withLNX =(BNX)* and LNY = (BNY)~.

Proof. See Lempken, Parker and Rowley [10] (Lemma 2.5).

Lemma 2.3 Suppose that R 13 a transitive permutation group of degree n. Let
H=L!R and P = K R, with L. magzimal subgroup of K, and let p be o prime
dividing |K|. If L contains the normalizer of a Sylow p-subgroup of K, then H is a

mazximal subgroup of P.

Proof. See Covello [6] (Lemma 2.6.8).

Lemma 2.4 (Jordan, Marggraf) Suppose that 2 is a finite set and L is a prim-
itive subgroup of Sym(Z).

(i) If L contains a transposition, then L = Sym(%).

(1) Suppose L contains a fours group which is transitive on 4 points and fizes
all the other points of ©. If |Z| > 9, then L 2 Alt(T).

Proof. See Wielandt [19] (Theorems 13.3 and 13.5).

Proposition 2.5 Let  be ¢ set and H = Sym(§). Let B = {,...,Qn} be a
partition of §} into m subsets of the same cardinality. Then the stabilizer L of B in
H is tsomorphic to

Sym(§2)) ! Sym(B).

In particular, L is imprimitive and B is a complete block system of L.

Proof. See Covello [6] (Theorem 3.5.1).

Corollary 2.6 Let  be a set and H = Sym(?). Let K < H be imprimitive
and " be a block of K. Then the stabilizer in H of the complete block system
Br = {T* | k € K} is isomorphic to Sym(T') ? Sym(Br). In particular, K is
isomorphic to a subgroup of Sym(I') 1 Sym(Br).



Proof. See Covello [6] (Corollary 3.5.2}.

Lemma 2.7 Suppose p is a prime, n is a positive integer and Tpa € Syl (Sym(p™)).
Then |Z(Tn)| = p.

Proof. See Saninta {15] (Lemma 2.3.5).

Theorem 2.8 Let S be a Sylow p-subgroup of Sym(p"™), where p is a prime and
neN Ifp>2 8 has a unique abelian normal subgroup of order p**~, which
is Cp 1 Ty, where T,y trivial permutation group on P~ letters, and this is an

elementary abelian p-group.

Proof. See Covello [6] (Theorem 4.4.6).

Theorem 2.9 Let S be a Sylow p-subgroup of H = Sym(p™), where p is a prime
and n € N. Then the normalizer in H of S is contained in the normalizer in H of

every abelian normal subgroup of S of order P

Proof. See Covello (5] (Theorem 4.4.11).

Theorem 2.10 Let H = Sym(Q?), with {Q| = n, and let S € Syl,(H). Let
n = k' + k1p ™ 4+ Ky + ko,

with 0 < k; < p, for all i’=0,...,t, be the p-adic decomposition of n. Then the
normalizer B of S in H is given by

B=Bo><"')<Bt,

where, for j = 0,...,t, B; is the normalizer of a Sylow p-subgroup of Sym(Q;), with
Q; CQ and ;] = k;p7. In particular,

¢
1Bl =181 [ &5!p ~ 1)
j=0

and the sets S, Y, ..., 8 are the orbits of B on §2.



Proof. See Covello [6) (Theorem 5.4.1).

Theorem 2.11 Let H = Sym(Q), with [ = p. Let S € Syl,(H) end set B =
Ny (S). Then B is transitive on S8 and every block of B has length ¢ power of p.
Furthermore, fori=1,...,n — 1, B has a unigue complete block system of blocks
of length p* and, in particular, B has blocks of length p", for allr =1,... ,n.

Proof. See Covello [6] (Theorem 5.2.9).

Theorem 2.12 Let H = Sym($2), with | = kp™® end 1 < k < p. Let § €
Syl,(H) and set B = Ny(S). Then B is isomorphic to the wreath product of B by
Sym(k), where B is the normalizer in Sym(p™) of a Sylow p-subgroup of Sym(p®).
In particular, |

\B} = [S]k!(p — )™

and B is transtive on (1.

Proof. See Covello [6] {Theorem 5.3.1).

Theorem 2.13 Let H = Sym(§2), with || = n, and S € Syl,(H). Suppose that
M is a primitive subgroup of G containing the normalizer in H of S. If n > p+ 2,
then M = G.

Proof. See Covello |6] (Theorem 5.5.2).

Corollary 2.14 Let H = Sym($2), with || = n, S € Syl (H) and B = Ny(S5).
Letn = kpt+ki_1pt 14 -+ kip+ ko be the p-adic decomposition of n. Suppose that
M 1is an imprimitive subgroup of H containing B. Then there exists 1 < r <t such
that p"|n and M is isomorphic to e subgroup of Sym(p™)Sym(n/p"). In particuler,
ko=hi=-=k._,=0.

Proof. See Covello [6] (Corollary 5.5.5).

Theorem 2.15 Letp be a prime, p# 2,3, and G = Sym(R2), with || = p. Suppose
that T € SyL,(G) end B = Ng(T). Then B is o mazimal subgroup of G.



Proof. See Covello {6] {Theorem 6.1.2).

Lemma 2.16 Let G = Sym(R2), with |Q] = n, T € Syl (G) and B = Ng(T). Sup-
pose that n = k1p™ + ky, witha > 1 and 1 < ko, k1 < p, is the p-adic decomposition
of n. Then every transitive subgroup of G containing B is 2-transitive on §, such

subgroups are primitive on §2.

Proof. See Covello [6] (Lemma 6.5.1).

3 Main Results

We maintain the notation introduced in Section 1. The aim of this section is to re-
duce the investigation of maximal p-local subgroups to some critical cases. We start
examining some specific cases. When we come to consider the symmetric groups
Sym(p) and Sym(p + 1) some fact about the normalizer of a Sylow p-subgroup, for
which the reader can refer to [6], are used.

3.1 Sym(p™)

Recall that the normalizer of a Sylow p-subgroup of Sym(p) is a maximal subgroup
of Sym(p).

Theorem 3.1.1 Let G =8ym(Q2) with || = p, where p is ¢ prime. Suppose that
T € SylL,(G) and B = Ng(T). Then Numee(G, B) = {B}.

Proof. If p= 2,3, then B = G, 0p(G) # 1 and there is nothing to prove. So assume
that p # 2,3. We know that T' = (), where C), is a cyclic group of order p. Since
T is a normal p-subgroup of B, we have that O,(B) # 1 and Theorem 2.15 implies
that B is a maximal p-local subgroup of G. Let N be a maximal p-local subgroup
of G with respect to B such that N # B. Then B < N £ G and O,(N) # 1. Using
Theorem 2.15, N = G, which contradicts the fact that O,{G) = 1. Thus B is a
unigue maximal p-local subgroup of G with respect to B, which completes the proof.

-



We now look at those subgroups in A.-{G,T) which act transitively on . Recall
that if G = Sym(2?), then Moy (G, B) = {Sym(4)} because Sym(4) = Ng(A) where
A = {(1,2)(3,4),(1,3)(2,4)). Our next result concerns subgroup in NMn..(G, B),
where G = Sym(p?) with p > 2.

Lemma 3.1.2 Let G = Sym(Q) with |{Q}] = p?, where p is a prime such that
p > 2. Suppose that T € Syl,(G) and B = Ne(T). If N € Nipae(G, B), then
N is isomorphic to Sym(p) 1 Sym(p).

Proof. Let L = Sym(p) ! Sym(p}. By Theorem 2.11, using Corollary 2.6, we know
that B € L and so L is a maximal subgroup of &G. Since N is a subgroup of G
containing B, by Theorem 2.13, we may assume that N is imprimitive. By the
transitivity of B, it follows that every subgroup containing B can only have blocks
of length 1,p and p®. So every nontrivial block of N must have length p and , by
Corollary 2.6, IV is isomorphic to a subgroup of L. Since, by Proposition 2.5, L is
isomorphic to the stabilizer of Sym{p) acting on

{{1,2,-.-,p},{P+1,p+2,...,2p},...,{p(p—1)+1,P('p—1)+2,...,P2}}

in G. Therefore, Sym(p) : Sym(p) = Ng(E), where

E:((1;2,...,p),(p+1,p+2,...,223),...,(}')(}?—1)+1,p(p—1)+2,-..,p2))-

Using Theorem 2.8, E is a unique elementary abelian normal p-subgroup of or-
der p* of T. As E 4 Ng(FE), we have that O,(Ng(E)) # 1. It follow that
Sym(p) 1 Sym(p) = Ng(E) € N{G,T) and hence N = Sym(p) 1 Sym(p).

Theorem 3.1.3 Let G = Sym(§2) with |Q] = p™, where p is a prime such that
p>2and m € N such that m > 1. Suppose that T € Syl,(G) and B = Ng(T). If
N € Ninax{G, B), then N leaves invariant a block system with blocks of size p. In
particular, N is isomorphic to Sym(p) 1 Sym(p™!).

« Proof. We have that N is transitive on §2. We argue by induction on m starting
with the case m = 2. For m = 2, the lemma clearly holds. Since N is a subgroup
of G containing B, by Theorem 2.13, we may assume that N is imprimitive. Let
B = {A, A, ...,A;} be a non-trivial block system invariant under N. Since N



is transitive on , it follows that N acts transitively on B. Set ¢ = |2|/k. Then
t=|A; fori=1,...,%k and so ¢ is a power of p. Set M = Stabg(B). Then

T < B<NKMZSym(t) ! Sym(k).

For i = 1,...,k, put K; = Sym{A;) and K = K; x K, x --- x K;. Then for
i=1,..,kas K, KJIM,1# R =TNK; € SyL,(K;), TNK = Ry xRy X--- X
Ry € Syl,(K) and B; = BN K; = Nk,(R;). Since ¢ is a power of p, R; is transitive
on A; for all i. Suppose that O,(N}N K = 1. Since [Op(N), NN K] € O,(N)N K,
this gives [Op(N),NN K] = 1. As R, £ NN K, for all i, Op(N) centralizes R;
and, because of the structure of Sym(¢) ? Sym(k}, this forces O,(N) £ K. But now
Op(NYN K = O,(N) # 1, a contradiction. Therefore O,(N}) N K # 1.

Let p; : K — K; be the projection map of K onto K; and set L; = p;{ NN K).
We see that R; < B; € L; € K; and that L; is transitive on 4. If Op(L;) = 1,
then Op(N N K) € JL; . K; Foralln € N, as Op(N N K) d N, we then have
Op(NNK) = Op(NNK)™ € ([[;: K;)™ Let ! € {1,...,k}. We may choose
ann € N so as A; = AP, Therefore ([[;; K;)® = [];4 Kj, whence it follows
that O,(N N K} € ﬂle(nj# K;) = 1, a contradiction. Hence O,(L;) # 1. So
Lie N(K;,B;) foralli = 1,...,k. Let Hy € Npoo (K1, B1) be such that H, > L,.
Since H is transitive on A,, by induction H, leaves invariant a block system with
blocks of size p. Then H, contains F, a normal elementary abelian p-subgroup of
order pl*1l/? = pt/2, Hence E) < L, and it follows that F, < NNK. Put E = (EF).
By the Frattini argument, N = Ny(TNK)NNK). So E = (EN*TEy « NN K.
Since N is transitive on B, Ny(T' N K) is transitive on B. Let ¢ € Ny(T' N K) be
such that R{ = R; for some j. Since By < R;, EY is an elementary abelian normal
p-subgroup of R; of order p/P. Therefore, F is an elementary abelian normal p-
subgroup of T' of order p*/# = pP™ ', Thus, using Theorem 2.8, up to conjugacy
we see that

E= ((112:' e :p): @+1:p+2:' . .,QP), e (p(pm_l_l)+1:p(pm_l_1)+2: s :pm)>-

By Theorem 2.9, we have that B &£ Ng(E). Thus, as Ng(E) 2 N and N €
Nimaz(G,T), Ng(E) = N. Therefore N leaves invariant a block system with blocks
of size p. This complete the proof of Lemma.



3.2 Sym(kp™)

Theorem 3.2.1 Let G = Sym(Q) with |Q| = kp, where p is a prime and k € N such
that 1 < k < p. Suppose that T € Syl,(G) and B = Ng{(T). If N € Nnpae(G, B),
then N is isomorphic to B = Ngym(p)(T) 1Sym(k), where T € SyL,(Sym(p)).

Proof. Let P = Sym(p}1Sym(k). By Theorem 2.12, B £ P and B is transitive on {}
and so P is a maximal subgroup of G. Since N is a subgroup of G containing B and
Op(N) # 1, using Theorem 2.13, s0 we may assume that N is imprimitive. By the
transitivity of B, it follows that every subgroup containing B can only have blocks
of length 1,p and kp. So every nontrivial block of VN must have length p. By Corol-
lary 2.6, N is isomorphic to a subgroup of P. Since O,(B) # 1, so B is a p-local
subgroup of G with respect to B. Using Theorem 2.12, B 2 Ngymq(T) 2 Sym(k),
where T' € Syl,(Sym({p}). Moreover, by Lemma 2.3, B is a maximal subgroup of P.
Thus N < B and hence N = B. Then N = Ny (T) 1 Sym(k) and this complete
the proof.

Theorem 3.2.2 Let G = Sym(Q) with |QY = kp™, where p is a prime such that
p>2andm,k € N such that k < p andm > 1. Suppose that T € Syl (G) and B =
Ng(T). If N € Npaz (G, B), then N is isomorphic to (Sym(p)1Sym(p™1))1Sym(k).

Proof. Sinee N is a subgroup of G containing B and, by Theorem 2.12, B =
Nsympmy (T} t Sym{k) where T € Syl (Sym{p™)), so we have that, using Corol-
lary 2.14, N <€ Sym(p™) ! Sym(k). Therefore, by Lemma 3.1.3, N = Sym(p) !
Sym(p™ 1) € Nomaz(Sym(p™), Neymmy(T)) and N is a maximal subgroup of Sym(p™).
Thus, by Lemma 2.3, Nt Sym(k) is a maximal subgroup of Sym(p™) 2 Sym(k). It
follows that N < N Sym(k). As O,(N) # 1, Op(N 1Sym(k)) # 1 and hence
N 18Sym(k) € N(G, B). Therefore, N = N { Sym(k).

3.3 Sym(kip™+ ko)

Lemma 3.3.1 Let G = Sym(Q) with |} = p™ + 1, where p is a prime and m € N.
Suppose that T € Syl,(G) and B = Ng(T). Then every proper subgroup of G
containing B is contained in Stabg{w) = Sym(n — 1), fires w € Q.



Proof. We know that T and B fix a unique point w € 2 and operates transitively
on 2\ {w}. Suppose that L &£ Stabg(w) and G 2 L 2 B. Then L is 2-transitive on
Q, and, as B contains a transpositions, Lemma 2.4 (i) implies that L = G. Thus
all proper subgroups of G which contain B are contained in Stabg(w) = Sym(n—1).

Lemma 3.3.2 Let G = Sym(Q) with | = p™+1, where p is a prime and m € N.
Suppose that T € Syl,(G), B = Ng(T) and put H = Stabg(w), fired w € 0. Then
Nae(G, B) = Moo (H, B).

Proof. Let N € Nyoo(G, B). Since B is transitive on Q\ {w}, Lemma 3.3.1 implies
that N is contained in H = Sym(n —1}. It follows that Npe, (G, B) C M. (H, B).
But H < G, 50 that N (H, B) C Npoo(G, B) and the lemma is complete.

Theorem 3.3.3 Let G = Sym(Q) with {Q| = p+ 1, where p is a prime. Suppose
that T € Sy1,(G) and B = Ng(T). Then Npus(G, B) = {B}.

Proof. For p = 2, T = B = Sym{2) and O,(B) # 1. Also, for p = 3, T = Alt(3),
B = Sym(3) and O,(B) # 1. So, in both cases, B is a maximal subgroup of G and,
thus, B is the unique maximal p-local subgroup of G with respect to B.

Suppose that p # 2,3 and let A = Sym(p) be the stabilizer in G of a point in £,
say H = Gy, for some o € 2. By order we may assume that T € Syl,(H). Then, by
Theorem 2.10, Nu{T) = B and so, since O,(Nx(T)) # 1, Nyg(T) = B is a p-local
subgroup of G. It remains to prove that B is the only maximal p-local subgroup of
(¢ with respect to B. So let L be a maximal p-local subgroup of G, that is, B < L
and Op(L) # 1. Using Lerrma 3.3.1, we get that L < H and so, by Theorem 2.15,
B is a maximal subgroup of H implies that L = B.

Lemma 3.3.4 Let G = Sym(Q) with || = kyp™ + ko, where p is a prime and
m, ko, k1 € N such that ki < p, is the p-adic decomposition of n. Suppose that
T € 8Syl,(G) and B = Ng(T). Ifn 2 p+2 and N € Npoo(G, B), then N <
Sym(kip™) x Sym(ko).

Proof. Let U = Sym(k1p™) x Sym(ky). By Theorem 2.10, U contains B and we
know that U is a maximal subgroup Assume that ¥ £ U. Then N fuses the two



orbits of U on §2 and so is transitive on 2. Thus, by Lemma 2.16, N is primitive
on §2. Then Theorem 2.13 implies that N = G. Hence N € U.

Theorem 3.3.5 Let G = Sym{QY) with || = kip™ + ko, where p is ¢ prime and
m, ko, ki € N such that kg < p and k; < p, is the p-adic decomposition of n.
Suppose that T € Syl ,(G) and B = Ng(T). Ifn > p+2 and N € Nipoo(G, B),
then N = N x Sym(ko) where N is a mazimal p-local subgroup of Sym(k,p™) with
respect to B N Sym(k;p™).

Proof. By Lemma 3.3.4, N € U x V where U = Sym(k,p™) and V' = Sym(k;). Us-
ing Proposition 2.1, T’ = (T'NU) x (TNV) with TNU € Syl (U), TNV € SyL,(V) and
B = (BNU) x (BNV) with BAU = Ny(T'NU), BAV = Ny(TNV). AsTnNV =1
and 1 # Op(N) € T, we have 1 # O,(N)N(TNU) € O,(N)NU. Since N < U xV,
O,(NYNU QN and so 1 # Op(N)NU € Op(NV). Therefore NV € N (G, B) and
hence, as N € Ny (G, B), N = NV. So V £ N which implies, using Dedekinds’
Modular Law, that N = (NNU)V. Now, as NNU € N (U, BNU), we may choose
N € Npoz (U, BNU) with NNnU < N. Since 1 # O,(V) € O,(NV) and B < NV,
NV e N(G,B) andso, as N = (NNU)V € NV, N =NV,

Lemma 3.3.6 Let G = Sym(Q2) with || = p+k, wherep is a prime and k € N such
that 1 < k < p. Suppose that T € Syl,(G) end B = Ng(T). Then Npao(G, B) =
{B = Nsym(p{T) x Sym(k}}.

Proof. Let U = Sym(p) x Sym(k). By Theorem 2.10, U contains B and we know
that U is a maximal subgroup of G. Assume that N € Ny (G, B) and N ;( U.
Then, since N is a subgreup of G containing B, N fuses the two orbits of U on
Q and so is transitive on 2. Thus, by Lemma 2.16, N is primitive on Q. There-
fore Theorem 2.13 implies that N = G. Hence N < U. Since O,(B) # 1, so B
is a p-local subgroup of G with respect to B. But, as k < p, T € Syl {Sym(p))
and B = Ngym(p)(T') % Sym(k), where, by Theorem 2.15, Ngym(» (7'} is a maximal
subgroup of Sym(p). Therefore B is a maximal subgroup of U. It follows that, as
B < N, N = B and we have the result.

We now want to show that those examined in the previous sections are the only
B, the normalizer of a Sylow p-subgroup of Sym(?), which are maximal p-local
subgroups with respect to-B.



Theorem 3.3.7 Let G = Sym{Q), with {Q| = n. Suppose that T € Syl (G) and
B = Ng(T), where p is a prime. Then B is a mazimal p-local subgroup with respect

to B if one of the following occurs:

(i) n=p
(i) n=kp withl <k <p

(iti) n=p+k withl < k< p.

Proof. Follows from Theorems 3.1.1, 3.2.1, 3.3.3 and Lemma 3.3.6.

4 Some Examples

This section contains some examples of the subgroups in Npar (G, B) which illus-
trate some of the results proved earlier. We maintain the notation introduced in

Section 1.

The definition of maximal p-local subgroup in terms of the normalizer of a Sylow
p-subgroup is given in the works of Rowley and Saninta {14], in which they study
all the maximal p-local subgroups for the symmetric groups, with respect to the
prime p = 2. This case is relatively easy to study and an example illustrating their

result is p:resented next.

Example 1: Sym(12)

Let G = Sym(f2) with |2l = n = 12. Suppose that p = 2 and let T be a Sylow
p-subgroup of G. Recall that Ng(T) =T. Consider the p-adic decomposition of n,
n =23 + 22 with = Q; U S, where || = 8 and || = 4. Also T =T) x T =
(C1C1C) x (C21 Cy), with T; Sylow 2-subgroup of Sym(Q;), for i = 1,2, and €
cyclic group of order 2. Also the £2;’s are the orbits of T on 2. We begin by listing
the subgroups in Mpnaz(G,T), using Theorem 3.4 of [14].

Ny = Sym(8) x Sym(4)
Ny = Sym(4)1Sym(3)
Ny Sym(2) Sym(6).
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Therefore,
No=NNNyNN; = ((Sym(2)1Sym(2))1Sym(2}) x (Sym(2) 1 Sym(2))
Niz =N NN, = Sym(4) x (Sym{4) : Sym(2))
Nia=N NNy = (Sym(2)?8ym(4)) x {Sym(2) 1 Sym(2})

4
Nyz = NoN N3 2 (Sym(2) : Sym(2)) : Sym(3).

S e

)
)
Furthermore, (N1, No) = (N1, N3) = {Ny, N3) = G.

G

T = Ny

Figure 1: The lattice of the maximal 2-local subgroups of Sym(12).

Example 2: Sym(6)

Let G = Sym(§2) with |} = n = 6. Suppose that T be a Sylow 2-subgroup of G.
Recall that B = Ng(T") = T. Consider the 2-adic decomposition of n, n = 2% + 22.
By Theorem 3.4 of [14], the subgroups in N, (G, B) are

Ny, = N({1};2) = Sym(4) x Sym(2)
N, = N(®;2) = Sym(2):Sym(3).

Suppose now that 77 be a Sylow 3-subgroup of G and By = Ng(7i). Thus,
7y ={(1,2,3),(4,5,6)) with |T3| =9 and B; = {{4,5,6),(1,2,3), (4,5),(2, 3}{4,6),



G = (N1, Ny)

N1 Ng

B =T = (Sym(2) ! Sym(2)) x Sym(2)

Figure 2: The lattice of the maximal 2-local subgroups of Sym(6).

(1,4,3,6)(2,5)) with |B,]| = 72. Consider the 3-adic decomposition of n, n = 2(3).
By Theorem 3.2.1, the subgroups in N (G, By) is By 2 Sym(3) 2 Sym(2).

We now consider the 5-adic decomposition of n, n = 5+ 1. A Sylow 5-subgroup
T, of G can be generated by the element (1,2,3,4,5). Then, by Theorem ?7?,
G has a unjque maximal 5-local subgroup with respect to B = Ng(T3), which is
B ={(1,2,3,4,5),(2,5)(3,4), (2,4,5,3)).

Example 3: Sym(9}

Let G = Sym(§2) with || = n = 9. Suppose that T be a Sylow 2-subgroup of G.
Recall that B = Ng(7T") = T. Consider the 2-adic decomposition of n, n = 23 4- 1.
By Theorem 3.4 of [14], the subgroups in M,,,.(G,T) are

Ni = N({2;4) % Sym(4)1Sym(2)
Ny = N({2};2) = Sym(2) ! Sym(4).

Therefore, the simplicial set of Npar (G, T) 18 Npae (G, T').

Suppose now that T be a Sylow 3-subgroup of G and B = Ng(T). Consider the
3-adic decomposition of n, n.= 32, Then T = {(1,2,3), (4, 5,6),(7,8,9),



B =T = (Sym(2) ! Sym(2)) 1 Sym(2)

Figure 3: The lattice of the maximal 2-local subgroups of Sym(9).

(1,4,7)(2,5,8)(3,6,9)) with |T| = 81 and B = Ng(T) = ({1,5,9)(2,6,7)(3,4,8),
(7,8,9), (4,5,6),(1,2,3), (4,9)(5,7)(6,8),(2,3)(4,8,5,7,6,9)) with | 5| = 324. Then,
by Theorem 3.1.3, G has a unique maximal 3-local subgroup with respect to B,
which is N = Sym(3) 2 Sym(3) & Ng(E), where E = {(1,2,3),(4,5,6), (7,8,9)).
That is, N = {(1,2,3),(1,2), (4,5,6), (4,5),(7,8,9),(7,8), (1,4, 7)(2,5, 8)(3,6,8),
(1,4)(2,5)(3,6)) with |N| = 1296.

Example 4: Sym(3%)
Let G = Sym({2) with || = n = 27, T € Syl;(G), and let

o~

(1,2,3), ”

(1,4,7)(2,5,8)(3,6,9),

73 & (1,10,19)(2,11,20)(3,12,21)(4, 13,22)(5, 14, 23)(6, 15, 24)(7, 16, 25)
(8,17, 26)(9, 18, 27).

Ty

o~

T2

be its generators. The normalizer B of T in G can be described as B = T
(h.l, h,g, h,3), with

h = (2,3)(5,6)(8,9)(11,12)(14,15)(17, 18)(20, 21)(23, 24}(26, 27),

he = (4,7)(5,8)(6,9)(13,16){14, 17)(15,18)(22, 25)(23, 26) (24, 27),

hs = (10,19)(11,20)(12, 21)(13,22)(14, 23){15, 24)(16, 25)(17, 26)(18, 27).



By Theorem 3.1.3, the subgroups in NMp,: (G, B) is N = Sym(3) 1 Sym(9).

4 N =Sym(3)1Sym(9)

Figure 4: The lattice of the maximal 3-local subgroups of Sym(27).
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Abstract: The subgroups which do not act transitively on € in the set Npe (G, B)
consisting of all maximal p-local subgroups of G = Sym(£2) with respect to B, the
normalizer of a Sylow p-subgroup of G in G, is investigated.
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1 Introduction

Maximal 2-local geometries for certain sporadic simple groups were firstly intro-
duced by Ronan and Smith (1980). These geometries were inspired by the theory
of buildings for the groups of Lie type which was developed by Tits {1956, 1974) in
the fifties. For each finite sin}ple group of Lie type, there is a natural geometry as-
sociated with it called its building. For G a group of Lie type of characteristic p, its
building is a geometric structure whose vertex stabilizers are the maximal parabolic
subgroups which are also p-local subgroups of G containing a Sylow p-subgroup. As
is well-known, each building has a Coxeter diagram associated with it. Buekenhout
(1979) generalized these concepts to obtain diagrams for many geometries related
to sporadic simple groups. Ronan and Smith (1980)pursued these ideas further and
introduced the maximal 2-local geometries. Other in variants on buildings for the

“Correspondence: E-mail: tipaval@®mathstat.sci.tu.ac.th (T. Phatthanangkul) and som-
pongd@chiangmai.ac.th (8, Dhompongsa)
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sporadic simple groups have been defined, notably the minimal parabolic geome-
tries as described by Ronan and Stroth (1984).

We now define what we mean, generally, by a minimal parabolic subgroup. Suppose
that H is a finite group and p is a prime dividing the order of H. Let 5 be a Sylow
p-subgroup of H and B the normalizer of S in #. A subgroup P of H properly
containing B is said to be a minimal parabolic subgroup of H with respect to B if

B lies in exactly one maximal subgroup of P.

The definition of minimal parabolic subgroups in terms of the normalizer of a Sylow
p-subgroup is given in the works of Ronan and Smith (1980) and Ronan and Stroth
(1984), in which they study minimal parabolic geometries for the 26 sporadic finite
simple groups. The connection between minimal parabolic subgroups and group
geometries is the best illustrated in the case of groups of Lie type in their defin-
ing characteristic. For a group of Lie type, its minimal parabolic system is always
geometric. This is not always the case in general (see Ronan and Stroth, 1984).
Many studies on the minimal parabolic system of special subgroups have been done
over the years. For example, Lempken, Parker and Rowley (1998) determined all
the minimal parabolic subgroups and system for the symmetric and alternating
groups, with respect to the prime p = 2. Later, Covello (2000) has studied mini-
mal parabolic subgroups and systems for the symmetric group with respect to an
odd prime p dividing the order of the group. The main results are about the sym-
metric groups of degree p", she also establishes some more general results. More
recently, Rowley and Saninta (2004) investigated the maximal 2-local geometries
for the symmetric groups. Furthermore, Saninta (2004) considered the relationship
between the maximal 2-local subgroups and the minimal parabolic subgroups for
the symmetric groups. In this paper we shall investigate intransitive maximal p-
local subgroups for the symmetric groups.

Let H, p, § and B be defined as above. Define
N{H,B)={K | B< K < Hand O,(K) # 1}

where O,(K) is a unique maximal normal p-subgroup of K. A subgroup in N'(H, B)
is said to be a p-local subgroup of H with respect to B and a subgroup in N'{H, B)
which is maximal under inclusion is said to be a maximal p-local subgroup of



H with respect to B. We denoted the collection of maximal p-local subgroups of H
with respect to B by Mpe(H, B).

Throughout all groups considered, and in particular all our sets, will be finite. Let {2
be a set of cardinality n > 1. Set G = Sym(Q2), the symmetric group on the finite set
§2. We also use Sym(m) to denote the symmetric group of degree m. Now let T be a
fixed Sylow p-subgroup of &G, where p is a prime, and B be the normalizer of T in G.

The main purpose of this paper is to study the subgroups in Nu.. (G, B) which do
not act transitively on (2.

2 Preliminary Results

This section gathers together results that will be used. Now we let 2 be a finite set
with |2| > 1 and let G, T, B and n be defined as in Section 1.

Proposition 2.1 Let H be a group and suppose that H = Ax B. Let S € Syl,(H).
Then S = (SN A) x (SN B) and '

Ny(8) = (Nu(S) N A) x (Ng(S)n B),
with Ng(S) N A = Na(SN A) and Ng(S) N B = Ng(Sn B).

Proof. See Covello [8] (Proposition 1.1.10).

y

Lemma 2.2 Suppose that H = X x Y 4s a direct product of groups X and Y and
suppose that S € Syl,(H) where p is a prime which divides the order of both X
and Y. Assume that L is a subgroup of H which contains B := Ng(S). Then
L=(LnX)x(LnY),withLnX=BNnX) and LNY = (BNOY)L

Proof. See Lempken, Parker and Rowley [10] (Lemma 2.5).

Lemma 2.3 Suppose p is a prime, n i3 a positive integer and Tpn € Syl (Sym(p™)).
Then |Z(Ty)| = p.



Proof. See Saninta [15] (Lemma 2.3.5).

Theorem 2.4 Let H = Sym(£)), with || = n, and let S € Syl,(H). Let
n=kgp' + k" + o+ Eip + ko,

with 0 < k; < p, for all § =0,...,t, be the p-adic decomposition of n. Then the
normalizer B of S in H 13 given by

B=Byx---x B,

where, forj =0,...,t, B; is the normalizer of a Sylow p-subgroup of Sym(S,), with
£ C Q and || = k;p?. In particular,

1Bl = IS ] ks!(p — D

and the sets o, 21, ..., are the orbits of B on Q.

Proof. See Covello [6] (Theorem 5.4.1).

Theorem 2.5 Let p be a prime, p # 2,3, and G = Sym(Q2), with | = p. Suppose
that T € Syl,(G) and B = Ng(T'). Then B 1s a mazimal subgroup of G.

Proof. See Covello [6] (Theorem 6.1.2).

Lemma 2.6 Let H = Sym(SY), S € Syl,(H) and B = Ng(S). If M is an intren-
sitive subgroup of H containipg B, then

M < Sym(A) x Sym(A,),
with @ = Ay U Ay and the A;’s unions of orbits of M on Q. Moreover
M = (M N Sym{A)) x (M N Sym(A,)).
Proof. The first part of the statement is obvious. The second follows from Lemma

2.2.

According to the O’Nan-Scott theorem and the first theorem in [11] we get the
following important results: .



Theorem 2.7 Let H = Sym(Q), with || = n > 2. Then, for all > 1 such that
n # 2r, the group
L = Sym(n — r) x Sym(r)

is a mazimal (intransitive) subgroup of H.

Proof. See Saninta [15] (Lemma 2.4.1).

3 Main Results

We maintain the notation introduced in Section 1. Qur next result concerns sub-
groups in N,z (G, B) which do not act transitively on 2. We now fix the following

notation for p-adic decomposition of n :
n = k' + ke1p' ™ 4o+ Rip + ko,

where p is a prime and k; is an integer with 0 < k; < p, for all j = 0,...,¢ Let
Q=QuU--- U, with || = k;p7, for all  =0,...,¢, be the corresponding
partition of  into B-orbits. Set J = {0,1,...,t}. Recall that T" has ¢ + 1 orbits on
Q. Note that T = Ty x Ty x - - - x T, where, T; € Syl,(Sym(£2)), ¢ € {0,1,...,%} and,
moreover, each T is the direct product of &; factors, each isomorphic to a Sylow
p-subgroup of Sym(A), with |A| = p* (see Findlay [8]).

Lemma 3.1 Suppose that G = Sym(Q2), with |Q} > 1, T € Syl,(G) and B =
Ng(T). Let N € Nz (G, B) and N is not transitive on 1. Then N £ Sym(A) x
Sym{S2\ A), where A = Uie_,’Q,- for some proper subset J of I.

Proof. 1t follows from Lemma 2.6.

Theorem 3.2 Let G = Sym(Q), with |Q| = n, T € SyL,(G) and B = Ng(T). Let
U = Sym(A} and V = Sym(Q\ A) where A = |J,.; 4 for some proper subset J of
I. Suppose that N € Nypoo(G,B) and N S U x V.

(i) IfO,(NYNU # 1, then N = Ny x V where Ny € Nonoo(U, BN U).

(i) If Op(N)NV #1, then N = U x Ny where Ny € Ny (V,BNV).



Proof. First we examine the case when O,(N)NU # 1. Since N € U x V,
Op,(NYNU I N and s0 1 # O,(N)NU € Op(NV). Therefore NV € N (G, B) and
hence, as N € Npao(G, B}, N = NV. So V € N which implies, using Dedekinds’
Modular Law, that N = (NN U)V. Now, as NNU € N({U,BnU), we may
choose Ny € Npex (U, BNU) with NNU € Ny. Since 1 # O,(Ny) € Op(NyV)
and B € NyV, NyV € N(G,B) and s0, as N = (NNnU)V € NyV, N = NyV.
If we have O,(N) NV # 1, the same argument yields N = U x Ny for some
Ny € N (V, BN V).

Theorem 3.3 Let the hypothesis of Theorem 8.2 holds. Suppose that 0 < k; < 1,
for all 5 =0,...,t. Then either N = Ny x V, where Ny € N (U, BN U} and
Ny 18 transitive on A, or N = U x Ny, where Ny € Npoo(V, BAV) and Ny is
transitive on S\ A. :

Proof. Thanks to the study carried out in Theorem 3.2, we only need to eliminate
the situation Op(N)NU =1 = O,(N) N V. From

[Op(NV), Tu] < Op(N) Ty S Op{N)NU =1

and
[Cp(N), Tv]| S Op(N)NTy € Op{N)NV =1

where Ty € Syl,(U), Ty € Syl,(V), we deduce that Ox(N) < Z(T). Therefore,
CalZ{(T)) € Ca(Op(N)) < No(Op(N)) = N.

Let 1 £ 0 € Op(N),s00 € Z(T). Forany g € N, 0% € O,(N) 9 N and
hence ¢ € Z(T). Since T = [lie; Tt where, for ¢ € I, T; € Syl (Sym()),
Z(T) = [liey Z(T3). By Lemma 2.3, Z(T;} = {(0;) where o; has order p and cycle
type p” . Now let 1 £ u € z:,’(T) with u # 0. So 0 = [[cxor and g = [1, 50 0%,
where K, K’ C I with K # K’ and consequently, as ¢t > ¢t —1 > --- > 1, ¢
and p have different cycle types. Therefore ¢ = ¢ and then N € Cg{o). Since
(o) € Z{Cs(0)) € Op(Cela)), Celo) € NG, B). This implies that N = Cg(a)
for all 1 5 0 € O,(N), as N € Nppoo (G, B). We see that

Cglo) = H Csym(ne}(Tx) *x Sym( U )

keK ieI\K
and so {ox | k € K) € Z(Cg(o)). In particular, {0y | & € K) € Op(Cgl0)) =
Op(N). Now either (ox | k € K)NTy # 1lor {ox | & € K)NTy # 1 because
Op(N) 4T = Ty x Ty, a contradiction.



Aiming for a contradiction we assume Ny is not transitive on A. Thus Ny €
X xY < U where © = | J;. 4, X = Sym(0) and ¥ = Sym(A \ ©) for some
K C J. Applying the previous part to Ny € Nnoo(U, B N U) we deduce that
either Ny = Nx x Y where Nx € Mupe(X, BN X) or Ny = X x Ny where
Ny € Npmez(Y,BNY). Without loss of generally we assume the former to hold.
Since Op(Nx) # 1 and T € Nx x Sym(Q2\ ©), clearly Ng(O,(Nx)) € N{G, B).
However we have that

N=NyxV = NxxY¥xV
< Nx xSym(Q\ ©) < Ng(O,(Nx)),

a contradiction. Therefore we conclude that Ny is transitive on A and hence the
proof of the theorem is complete.

4 Npoo(G*, T*) for G* = Alt(Q)

We now use G* to denote Alt(Q?), the alternating group on €, and also Alt(m) to
denote the alternating group of degree m. Put T = G* NT and B* = Ng ' (T*}).
Recall that T* € Syl,(G*). Here we look at the relationship between Mpq.,(G,B)
and Mo (G*, B*). In order to do this we study some specific cases.

Lemma 4.1 Let G* = Alt(Q) with |} = p, where p is a prime and p # 2. Suppose
that T* € Syl,(G*), and B* = Ng-(T*). Then B* € Npoo(G*, B*).

Proof. If p = 2, then, as Bl = 1, Npper(G*, B*) = . Now assume that p # 2.
Thus, T = {(1,2,3,...,p)} with |T| = p. Since T* is a normal p-subgroup of B*,
s0 Op(B*) # 1. Therefore, using Theorem. 2.5, B* € Npor(G*, B*).

Lemma 4.2 Let G* = Alt(Q) with Q| = p+ 1, where p is a prime and p # 2.
Suppose that T* € Syl (G*), and B* = N¢.(T™*). Then B* € N(G*, B*).

Proof. If p= 2, thenT* = 1 and B* = G*. As O,(B*) = 1, Nppo(G*, B*) = 0. Now
assume that p # 2 and let H = Sym(p). Thus, T* = {(1,2,3,...,p)) € Syl,(H)
with |T| = p and Ng(T*) = B*. Since O,(B*) # 1, hence B* € N{(G*, B*).



Lemma 4.3 Let G = Sym({}) and G* = Alt(Q?) with |Q} = p™, where p is a
prime such that p > 2 and m € N such that m > 1. Suppose thet T € Syl (G),
T*=G*NT, B= Ng(T) and B* = Ng-(T*). If N € Nypoz(G, B), then NNG* ¢
N(G*, B*).

Proof. The assumption on N means that |O,(N)| > p?. Hence 1 # O,{N)NG* <
NNG*. Using Proposition 2.1, B* = BNG* £ NNG* and so NNG* € N(G*, B*).
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