รหัสโครงการ: MRG4780097

ชื่อโครงการ: การศึกษาเปรียบเทียบการอบแห้งโดยใช้ลมร้อนและอินฟราเรคไกล

ชื่อนักวิจัยและสถาบัน : นายอำไพศักดิ์ ทีบุญมา

ภาควิชาวิศวกรรมเครื่องกล คณะวิศวกรรมศาสตร์

มหาวิทยาลัยอุบลราชธานี

E-mail Address: enaumpte@ubu.ac.th

ระยะเวลาโครงการ: 2ปี

บทคัดย่อ

งานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาจลนพลศาสตร์การอบแห้งด้วยลมร้อน และลมร้อนร่วม รังสีอินฟราเรด โดยใช้เนื้อวัวและพริกเป็นตัวอย่างในการทดลอง สำหรับการอบแห้งด้วยลมร้อนมี เงื่อนไขการทดลอง คือ อุณหภูมิอบแห้งอยู่ในช่วง 50-60 องศาเซลเซียส ความเร็วลมอากาศเท่ากับ 0.5 1.0 และ 1.5 เมตรต่อวินาที และความหนาของเนื้อที่ทดลองเท่ากับ 0.5 1.0 และ 1.5 เซนติเมตร ในส่วนของการอบแห้งด้วยลมร้อนร่วมกับรังสีอินฟราเรดมีเงื่อนไขการศึกษา คือ อุณหภูมิทางเข้า ห้องอบแห้งเท่ากับ 40 องศาเซลเซียส ความเร็วลมอยู่ในช่วง 0-1.0 เมตรต่อวินาที พลังงานไฟฟ้าที่ ป้อนให้กับแท่งอินฟราเรดอยู่ในช่วง 260-640 วัตต์ ระยะห่างระหว่างแท่งอินฟราเรดกับผลิตภัณฑ์ เท่ากับ 10 15 และ 20 เซนติเมตร และความหนาของผลิตภัณฑ์เท่ากับ 0.5 1.0 และ 1.5 เซนติเมตร สำหรับพารามิเตอร์ที่เป็นเกณฑ์ในการศึกษา คือ อัตราการอบแห้ง ความสิ้นเปลืองพลังงานจำเพาะ และสมบัติทางกายภาพ

ผลการศึกษาพบว่า การอบแห้งด้วยลมร้อนร่วมกับรังสีอินฟราเรคสามารถลคระยะเวลา การอบแห้ง โดยความสิ้นเปลืองพลังงานจำเพาะลดลงประมาณ 25-30 เปอร์เซ็นต์เมื่อเทียบกับการ อบแห้งด้วยลมร้อนเพียงอย่างเดียว ในส่วนของสมบัติการหคตัว และการเปลี่ยนแปลงของสี พบว่า การอบแห้งทั้งสองวิธีการให้ผลไม่แตกต่างกันอย่างมีนัยสำคัญ ซึ่งสามารถสรุปผลของแนวโน้มได้ คือ การหคตัวและการเปลี่ยนแปลงของสีจะเพิ่มขึ้นเมื่อเพิ่มอุณหภูมิอบแห้ง พลังงานที่ป้อนให้กับ แท่งอินฟราเรค หรือลดความเร็วลม

สำหรับการหาสมการจลนพลศาสตร์ที่เหมาะสมในการทำนายความชื้น และเวลาการ อบแห้งของเนื้อ พบว่าสมการที่สามารถทำนายผลได้ดีที่สุด คือ สมการ Two-term exponential ซึ่งมีค่า รากที่สองของความคลาดเคลื่อนกำลังสองเฉลี่ย (RMSE) เท่ากับ 0.01 และค่าสัมประสิทธิ์การ ตัดสินใจ (R²) เท่ากับ 0.999 ในส่วนของสมการจลนพลศาสตร์ที่สามารถทำนายความชื้นและเวลาการ อบแห้งของพริกได้ดีที่สุด คือ สมการ Diffusion approach ซึ่งให้ค่ารากที่สองของความคลาดเคลื่อน กำลังสองเฉลี่ย (RMSE) เท่ากับ 0.02 และค่าสัมประสิทธิ์การตัดสินใจ (\mathbb{R}^2) เท่ากับ 0.995

คำหลัก: อบแห้ง อบแห้งด้วยลมร้อน อบแห้งด้วยรังสีอินฟราเรด

Project Code: MRG4780097

Project Title: Comparative study of drying using hot air and infrared radiation

Investigator: Mr.Umphisak Teeboonma

Mechanical Engineering, Faculty of Engineering

Ubonratchathani University

E-mail Address: enaumpte@ubu.ac.th

Project Duration 2 Years

Abstract

The objective of this research is to study the hot air drying and hot air-infrared drying. To achieve this purpose, beef and chilli were selected as testing materials. Hot air dying was conducted on the following conditions: drying air temperature of 50-60°C; air velocities of 0.5, 1.0 and 1.5 m/s as well as beef thickness of 0.5, 1.0 and 1.5 cm. In case of hot air-infrared drying, drying conditions were inlet air temperature entering drying chamber of 40°C, air velocities of 0-1.0 m/s, infrared power of 260-640 watts, distance between infrared heater to product of 10, 15 and 20 cm, and beef thickness of 0.5, 1.0 and 1.5 cm. The parameters used for evaluating were drying rate, specific energy consumption and physical properties.

The experimental results can be concluded that hot air-infrared drying technique provide shorter drying time, higher drying rate and low specific energy consumption when compare to only hot air drying. It was also found that the specific energy consumption of hot air-infrared drying technique was approximately 25-30% lower than that of hot air drying technique. Additionally, the difference of product qualities dried by hot air and hot air-infrared drying techniques were insignificant, in particular for shrinkage percentage and color change. It should be noted that shrinkage percentage and color change are increased with increasing drying air temperature and infrared power or deceasing air velocity. The fitting curves to find out the suitable empirical equation for predicting the moisture content and drying time of beef drying, it showed that the Two-term exponential was the best equation providing the lowest root mean square error (RMSE) of 0.01and the highest correlation coefficient (R²) of 0.999. In case of chilli drying, diffusion approach was the best equation providing the lowest RMSE of 0.02 and the highest R² of 0.995

Keywords: Drying, Hot air drying, Infrared drying