บทคัดย่อ

งานวิจัยนี้ส่วนแรกจะเป็นการวิเคราะห์สมบัติเชิงความร้อนของพอลิเมอร์ผลึกเหลว Rodrun LC3000 ด้วยวิธี thermogravimetry แบบอุณหภูมิคงที่ (isothermal) และแบบอุณหภูมิไม่คงที่ (nonisothermal) ในบรรยากาศของในโตรเจนและอากาศ พารามิเตอร์ทางด้านจลน์ศาสตร์ของการ วิเคราะห์บแบบอุณหภูมิไม่คงที่คำนวณจากวิธีของ Friedman ในขณะที่พารามิเตอร์ทางจลน์ศาสตร์ของการวิเคราะห์แบบอุณหภูมิคงที่หาได้จากวิธีของ Flynn พบว่า LC 3000 มีการเสื่อมสภาพด้วย ความร้อนในในโตรเจนและอากาศสองขั้น กากเถ้าที่เหลืออยู่จากการวิเคราะห์ในบรรยากาศ ในโตรเจนจะมีปริมาณมากกว่าในอากาศ ซึ่งปริมาณกากเถ้าที่เหลืออยู่จะแปรตามอัตราการให้ความ ร้อน ค่าพลังงานกระตุ้น อันดับของปฏิกิริยา และค่า lnA สำหรับการเสื่อมภาพแบบอุณหภูมิคงที่ของ LC3000 ในในโตรเจนมีค่าเท่ากับ 159 กิโลจูล/โมล 2.2 และ 28 ต่อนาที ตามลำดับ และในอากาศมี ค่า 121 กิโลจูล/โมล 2.4 และ 20 ต่อนาที ตามลำดับ สำหรับการวิเคราะห์แบบอุณหภูมิคงที่ใน ในโตรเจนพบว่ามีค่าเท่ากับ 110 กิโลจูล/โมล 2.2 และ 17.1 ต่อนาที ตามลำดับ และในอากาศมีค่า 103 กิโลจูล/โมล 2.3 และ 15.9 ต่อนาที ตามลำดับ จากพารามิเตอร์ที่ได้ ชี้ให้เห็นว่า LC3000 มีความ เสถียรต่อความร้อนในบรรยากาศของในโตรเจนได้ดีกว่าในอากาศ และจากข้อมูลที่ได้จากการทำนาย เวลาชีวิตแสดงให้เห็นว่า LC3000 มีความเสถียรต่อความร้อนสูง

การวิจัยนี้ยังได้เตรียมพอลิเมอร์ผสมระหว่าง LC3000 กับยางเทอร์ โมพลาสติก G1652 โดยใช้ เครื่องผสมแบบเกลียวคู่เพื่อศึกษาความเสถียรต่อความร้อนของระบบพอลิเมอร์ผสม ได้ศึกษาความเสถียรต่อความร้อนของระบบพอลิเมอร์ผสม ได้ศึกษาจลน์ ศาสตร์การเสื่อมสภาพของพอลิเมอร์โดยใช้วิธีไฮโซคอนเวอร์ชัน พบว่า ในบรรยากาศในโตรเจน ทั้ง G1652 และพอลิเมอร์ผสมที่มีปริมาณ LC3000 30 เปอร์เซ็นต์โดยน้ำหนัก (G1652-30) มีการเสื่อม สภาพขั้นเดียว ในขณะที่ในอากาศมีการเสื่อมสภาพเป็นสองขั้น เมื่อให้ความร้อนแบบอุณหภูมิไม่คงที่ ในอากาศ พบว่า มีกากเถ้าเหลืออยู่เล็กน้อยในขณะที่ในบรรยากาศในโตรเจนมีกากเถ้าเหลืออยู่ ประมาณ 10 เปอร์เซ็นต์โดยน้ำหนัก จากการวิเคราะห์แบบอุณหภูมิคงที่ พบว่า พอลิเมอร์มีการเสื่อม สภาพเร็วขึ้นเมื่อเพิ่มอุณหภูมิ และอัตราการหายไปของน้ำหนักในบรรยากาศในโตรเจนมีค่าสูงเมื่อให้ ความร้อนที่มีอุณหภูมิสูงกว่า 350 องศาเซลเซียส เมื่อให้ความร้อนแบบอุณหภูมิคงที่ในอากาศ การ เสื่อมสภาพของ G1652 มีขั้นเดียวและมีอัตราการเสื่อมสภาพลูง ในขณะที่ G1652-30 มีการเสื่อม สภาพเล็กน้อยในขั้นแรก และมีการเสื่อมสภาพอย่างรวดเร็วในขั้นที่สอง ค่าพลังงานกระคุ้น ค่า lnA และอันดับของปฏิกิริยาของ G1652-30 จะมีค่ามากกว่า G1652 และพารามิเตอร์ทางจลน์ศาสตร์ที่ได้ ชี้ให้เห็นว่า พอลิเมอร์มีความเสถียรต่อความร้อนได้ดีในบรรยากาศในโตรเจนมากกว่าในอากาศ จาก

ผลการทำนายเวลาชีวิต พบว่า สามารถเพิ่มความต้านทานต่อความร้อนของ G1652 ได้เมื่อผสมกับ LC3000

นอกจากนี้ งานวิจัยนี้ได้เตรียมพอดิเมอร์ผสมระหว่าง LC3000 กับยางเทอร์โมพลาสติก 2 ชนิดที่มีความหนืดแตกต่างกัน คือ SEBS-G1650 (G1650) และ SEP-G1701 (G1701) เพื่อศึกษาพฤติ กรรมกระแส สัณฐานวิทยา สมบัติเชิงกลและเชิงความร้อน ซึ่งพบว่า G1650 มีความหนืดเฉือนสูงกว่า G1701 ทั้งพอดิเมอร์บริสุทธิ์ และพอดิเมอร์ผสมมีพฤติกรรมแบบ shear thinning และความหนืดของ พอดิเมอร์ผสมจะลดลงตามลำดับ เมื่อเพิ่มปริมาณ LC3000 แม้พอดิเมอร์แมทริกซ์ที่เลือกใช้ทั้งสอง ชนิดจะมีความหนืดแตกต่างกันมาก แต่กี่ยังพบเส้นใยในพอดิเมอร์ผสมทั้งสองชนิดเมื่อมีปริมาณ LC3000 อยู่ไม่เกิน 30 เปอร์เซ็นต์โดยน้ำหนัก เมื่อมีปริมาณ LC3000 ในพอดิเมอร์ผสมตั้งแต่ 40 เปอร์เซ็นต์โดยน้ำหนักเป็นต้นไป พบว่า เกิดโครงสร้างลาเมลลา (lamellar) ขึ้น การเติม LC3000 ลง ในแมทริกซ์ทั้งสองทำให้โมดูลัสมีค่าสูงขึ้นในขณะที่ความสามารถในการยึดลดลง จากการวิเคราะห์ สมบัติเชิงความร้อน พบว่า การเติม LC3000 ลงในยางเทอร์โมพลาสติกทั้งสองทำให้ความเสถียรต่อ ความร้อนมีค่าเพิ่มขึ้นในสิ่งแวดล้อมที่เป็นอากาส แต่ไม่ได้เพิ่มความเสถียรต่อความร้อนในบรรยากาส ในโตรเจน

Abstract

The nonisothermal and isothermal thermogravimetries (TG) in nitrogen and in air of thermotropic liquid crystalline poly(oxybenzoate-co-ethylene terephthalate), a copolyester consisting of 60 mol% of p-hydroxy benzoic acid (HBA) and 40 mol% of poly(ethylene terephthalate) (PET), known as Rodrun LC3000, were investigated. The Friedman technique based on a single heating rate method was employed to calculate the kinetic parameters of the nonisothermal degradation and the Flynn technique was employed to calculate the kinetic parameters of isothermal degradation. The nonisothermal degradation of Rodrun LC3000 in nitrogen and in air occurred in two steps. In air, Rodrun LC3000 became degraded leaving very small residues within the range of experimental temperature whereas, in nitrogen, it revealed to leave some residues which found to increase in amount with raising level of heating rate. The respective activation energy, order and Ln(frequency factor) for nonisothermal decomposition of Rodrun LC3000 are 159 kJ/mol, 2.2 and 28 min⁻¹ in nitrogen and 121 kJ/mol, 2.4 and 20 min⁻¹ in air. The respective activation energy, order and Ln (frequency factor) for isothermal degradation are found to be 110 kJ/mol, 2.2 and 17.1 min⁻¹ in nitrogen and 103 kJ/mol, 2.3 and 15.9 min⁻¹ in air. The kinetic parameters obtained from the two modes of decomposition indicate that the thermostability of Rodrun LC3000 is substantially better in nitrogen than in air. The estimated lifetimes at various temperatures suggest a good thermal stability of Rodrun LC3000.

ABSTRACT

A thermotropic liquid crystalline polymer (TLCP), a copolyester with a 60/40 molar ratio of *p*-hydroxy benzoic acid (HBA) and poly(ethylene terephthalate)(PET), known as Rodrun LC3000, was melt blended with styrene-(ethylene-butylene)-styrene (SEBS) thermoplastic elastomer using a twin-screw extruder. The

nonisothermal and isothermal thermogravimetry (TG) in nitrogen and in air of the neat SEBS and a blend containing 30 wt% Rodrun LC3000 (SEBS-30) were performed. The isoconversional method was employed to study the kinetics of thermal and thermo-oxidative degradation of the neat polymers and its blend. The nonisothermal TG profiles of SEBS and SEBS-30 revealed a single weight-loss step in nitrogen and two stages of weight-loss in air. For nonisothermal heating, very small amount of char residues of SEBS were left, whereas SEBS-30 left the residues as high as 10 wt% after degradation in nitrogen. The isothermal degradation of SEBS and SEBS-30 in nitrogen became relatively more rapid with increasing temperature. A remarkable increase in weight-loss rate was observed under isothermal heating in nitrogen above 350°C. By heating isothermally in air, SEBS showed a single weightloss stage and rapid decomposition whereas SEBS-30 exhibited minor and major weight-losses in the first step and the second step, respectively. The apparent activation energy (E), $\ln(\text{frequency factor})$ $(\ln A)$ and decomposition order (n) from nonisothermal and isothermal degradation of SEBS-30 were mostly higher than those of SEBS. The obtained kinetic parameters indicated that the thermal stability in nitrogen is higher than in air. The estimated lifetimes at different temperatures suggested an enhancement of thermal resistance of SEBS with in situ-reinforcing by Rodrun LC3000.

ABSTRACT

In-situ reinforcing composites based on two elastomer matrices of very different in melt viscosity, styrene-(ethylene butylene)-styrene triblock copolymer (SEBS, Kraton G1650) and styrene-(ethylene propylene) diblock copolymer (SEP, Kraton G1701), and a thermotropic liquid crystalline polymer (TLCP), Rodrun LC3000, were prepared using a twin-screw extruder. The rheological behavior,

LC3000 contents were investigated. G1650 was found to have much higher shear viscosity than G1701. All neat components and their blends exhibited shear thinning behavior. Melt viscosity of the blends gradually decreased with increasing LC3000 contents. Despite a large difference in melt viscosity of the two matrices, the results showed that the fibrillar morphology was obtained for both as-extruded strands of LC3000/G1650 and LC3000/G1701 with up to 30 wt% LC3000. At 40 wt% LC3000 or more, the lamellar structure was observed for both types of blends due to the coalescence of liquid TLCP threads that occurred during extrusion. The addition of LC3000 into both elastomer matrices enhanced the tensile modulus considerably whereas the extensibility remarkably decreased. The results obtained from thermogravimetric analysis (TGA) suggested that an addition of LC3000 into both elastomer matrices improved the thermal resistance significantly in air, but not in nitrogen.