

## บทคัดย่อ

รหัสโครงการ : MRG4780102

ชื่อโครงการ : ผลของกรดอิวมิกต่อการคงตัวของโลหะหนักในดินที่ปรับเสถียรด้วยปูนซีเมนต์

ชื่อนักวิจัย : ผู้ช่วยศาสตราจารย์ ดร. อภิชาติ อิ่มยิ่ม  
ภาควิชาเคมี คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

E-mail Address: iapichat@chula.ac.th

ระยะเวลาโครงการ : 2 ปี

ในงานวิจัยนี้ได้ทำสกัด และศึกษาสมบัติทางเคมีของกรดอิวมิกจากดินปนเปื้อนโลหะหนัก ชนิดได้แก่ แคนเดเมียม ทองแಡง โครเมียม นิกเกิล ตะกั่วและสังกะสี และศึกษาการดูดซับของโลหะดังกล่าวบนดิน พบร่วมกับการดูดซับของโลหะทุกชนิดลดลงเมื่อมีกรดอิวมิก ศึกษาการคงตัวของโลหะหนักในดินที่มีกรดอิวมิกโดยผ่านการปรับเสถียรและทำให้เป็นก้อนแข็งด้วยปูนซีเมนต์ พอร์ตแลนด์ ปริมาณกรดอิวมิกและโลหะในดินมีผลทำให้ความทนต่อแรงอัดของก้อนก้อนของแข็งปรับเสถียรลดลง ทำการทดสอบก้อนของแข็งปรับเสถียรตามวิธีของ TCLP พบร่วมกับกรดอิวมิกสามารถลดการฉะละลายของแคนเดเมียมและนิกเกิลลงอย่างมีนัยสำคัญ ศึกษาพฤติกรรมของการฉะละลายของโลหะภายใต้ตัวแปรต่างๆ ได้แก่ พีเอช ชนิดของน้ำชาคือ น้ำประชาจากไออกอน สารละลายโพแทสเซียมในเกรต กรดอะซีติก และกรดอิวมิกที่ความเข้มข้นต่างๆ อัตราส่วนระหว่างน้ำชาต่อก้อนของแข็งปรับเสถียร ระยะเวลาสามผัสด พบร่วมพีเอชมีผลต่อการฉะละลายของโลหะคือในภาวะที่เป็นกรดและเบสสูง การฉะละลายจะสูงกว่าช่วงพีเอชที่เป็นกลาง ชนิดของน้ำชามีผลต่อการฉะละลายซึ่งจะแตกต่างกันสำหรับโลหะแต่ละชนิด โดยทั่วไปน้ำประชาจากไออกอนและสารละลายโพแทสเซียมในเกรตให้ผลการฉะที่ไม่แตกต่างกัน กรดอะซีติก ชาโลหะได้ดีที่ความเข้มข้นมากกว่ากรดอิวมิกที่ความเข้มข้นมากมีความสามารถฉะโลหะได้ลดลง โลหะละลายได้มากขึ้นเมื่ออัตราส่วนระหว่างน้ำชาต่อก้อนของแข็งปรับเสถียรเพิ่มขึ้น เมื่อเปรียบเทียบก้อนของแข็งปรับเสถียรที่เติมและไม่เติมกรดอิวมิกพบว่า การฉะละลายมีความแตกต่างอย่างชัดเจนในกรณีของนิกเกิลและตะกั่ว ผลการศึกษาการฉะละลายของก้อนก้อนของแข็งปรับเสถียรที่เวลาต่างๆ พบร่วมเมื่อเวลาเพิ่มขึ้นโลหะละลายได้มากขึ้น แต่ฟลักซ์การฉะละลายลดลง ผลการฉะละลายนำไปสู่การหาตัวแปรอินพุทสำหรับแบบจำลองการฉะละลายซึ่งผนวกการเคลื่อนที่กับปฏิกิริยาเคมีที่เกิดขึ้นในสารละลายในรูปแบบก้อนของแข็งและน้ำชาแบบจำลองสามารถคำนวณความเข้มข้นและปริมาณการฉะละลายของแต่ละสปีชีส์

คำหลัก : โลหะหนัก กรดอิวมิก การปรับเสถียร การฉะละลาย ดินปนเปื้อน

## Abstract

---

**Project Code:** MRG4780102

**Project Title:** Effects of humic acids on the retention of heavy metals in cement-based stabilised soil

**Investigator:** Assist. Prof. Apichat Imyim (Ph.D.), Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand

**E-mail Address:** iapichat@chula.ac.th

**Project Period:** 2 years

The properties of extracted humic acids from heavy metals (Cd, Cu, Cr, Pb, Ni, and Zn) contaminated soil had been studied to understand of their influence on metal sorption onto soil. The results demonstrated that humic acids decreased metal sorption onto soils. The retention of six metals in cement based -stabilized soil containing humic acids had been studied. The compressive strength of concrete mortar decreased when the amount of metals and humic acids in soil increased. The TCLP test was performed on the stabilized soils, the results elucidated that humic acids in soils decreased significantly the leached amounts of cadmium and nickel. The leaching behaviors under the factors affecting metal releasing were investigated. These factors were pH, type of leaching medium (deionized water, potassium nitrate, acetic and humic acid solutions), liquid to solid ratio and contact time of leaching. The metals could be highly released at low and high pH, while their releases were moderate at neutral pH. The amounts of released metal depend on the type of leaching media. The metal solubilizations from stabilized soil with and without humic acids were distinguished different especially in the case of nickel and lead species. The increase of contact time of leaching enhanced the cumulative amount of leached metals; however, the leaching flux reduced. The results of the tests lead to identify the necessary input parameters of a leaching model. The leaching model takes into account the transport phenomena coupled with main physico-chemical reactions in the saturated pore system of the material as well as in the eluate. The model provides the concentration and the cumulative quantities released for each species.

**Keywords:** Heavy metal, Humic acid, Stabilisation, Leaching, Contaminated soil