

รายงานวิจัยฉบับสมบูรณ์

โครงการ การศึกษาแนวทางการสังเคราะห์กรดโปรโตคอนสติพาติก กรดอัลโร-เพอร์ทูซาริก กรดอัลโร-ไดไฮโดรเพอร์ทูซาริก และอนุพันธ์

โดย ผู้ช่วยศาสตราจารย์ ดร. พุฒินันท์ มีเผ่าพันธ์

รายงานวิจัยฉบับสมบูรณ์

โครงการ การศึกษาแนวทางการสังเคราะห์กรดโปรโตคอนสติพาติก กรดอัลโร-เพอร์ทูซาริก กรดอัลโร-ไดไฮโดรเพอร์ทูซาริก และอนุพันธ์

> โดย ผู้ช่วยศาสตราจารย์ ดร. พุฒินันท์ มีเผ่าพันธ์ ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่

สนับสนุนโดยสำนักงานคณะกรรมการการอุดมศึกษา และสำนักงานกองทุนสนุบสนุนการวิจัย

ACKNOWLEDGEMENTS

I would like to express my respect and deepest appreciation to my mentor, Prof. Dr. Yodhathai Thebtaranonth, for his invaluable guidance, supervision and his encouragement throughout. He has been very nice and friendly.

I would like to thank my colleagues, Mr. Anuruk Chailungka for their assistance, joyful discussions, good suggestions and especially their wonderful friendship.

I would like to thank Dr. Bongkoch Tarnchompoo for their helpful comments, guidance and discussions. I would like to thank Dr. Winita Punyodom for her kindness and friendly individual.

I would like to thank The Thailand Research Fund (TRF) to P.M. (grant no. MRG4780117). I am also thanks the National Science and Technology Development Agency (NSTDA) for NMR analysis.

I wish to thanks the Department of Chemistry, Faculty of Science, Chiang Mai University for supporting and providing the laboratory and library facilities which made this research possible.

Finally, I would like to express my deepest gratitude to my parents for their love, warmth, kindest support and guidance. Finally thank my brothers and sister for their love and kindness.

Puttinan Meepowpan

บทคัดย่อ

รหัสโครงการ : MRG4780117

ชื่อโครงการ: การศึกษาแนวทางการสังเคราะห์กรดโปรโตคอนสติพาติก,

กรดอัลโร-เพอร์ทูซาริก, กรดอัลโร-ไดไฮโดรเพอร์ทูซาริก และอนุพันธ์

ชื่อนักวิจัย: ผู้ช่วยศาสตราจารย์ ดร. พุฒินันท์ มีเผ่าพันธ์

ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่ 50200

E-mail Address: puttinan@chiangmai.ac.th และ pmeepowpan@hotmail.com

ระยะเวลาโครงการ : 2 ปี (1 กรกฎาคม 2547 ถึง 30 มิถุนายน 2549)

กรดโปรโตคอนสติพาติกเมทิลเอสเทอร์ (53) และเอพิเมอร์ สามารถสังเคราะห์ได้จากได เมทิลอิทาโคเนต-แอนทราซีนแอดดัค ในรูปของอิแนนทิโอเมอร์ [(+)-(11S)-44] เป็นโครงสร้าง หลัก ทำปฏิกิริยากับไครัลอีเทอร์อัลดีไฮด์ (±)-56 ผ่านปฏิกิริยาแทนเดมอัลดอล-แลคโทไนเซชัน ไอโซเมอไรเซชัน และไพโรไลซีส ตามลำดับ ในเปอร์เซ็นต์ผลผลิตรวม 29%

ารเริ่มต้นอีกตัวที่สำคัญ ใครัลอีเทอร์อัลดีไฮด์ (±)-56 เตรียมสำเร็จได้โดยใช้วิธีการ สังเคราะห์ที่เหมาะสม ประกอบด้วยเมทิเลชันของไซโคลเพนตะเดคะโนน (57) ปฏิกิริยาเบเยอร์-วิลิเกอร์ออกซิเดชัน ทรานสเมทิเลชัน การป้องกันของแอลกอฮอล์ รีดักชัน และสเวิร์น ออกซิเดชัน ตามลำดับ ในเปอร์เซ็นต์ผลผลิตรวม 16%

คำหลัก: ไซโคลเพนตะเดคะโนน, ไดเมทิลอิทาโคเนต-แอนทราซีนแอดดัค, อัลดอล-แลค โทในเซชัน, กรดโปรโตคอนสติพาติก

ABSTRACT

Project Code: MRG4780117

Project Title: Towards to the synthesis of protoconstipatic acid, allo-pertusaric acid,

allo-dihydropertusaric acid and their derivatives

Investigator: Asst. Prof. Dr. Puttinan Meepowpan

Department of Chemistry, Faculty of Science, Chiang Mai University

50200

E-mail Address : puttinan@chiangmai.ac.th และ pmeepowpan@hotmail.com

Project Period: 2 Years (1 July 2004 to 30 June 2006)

The protoconstipatic acid methyl ester (53) and its epimer can be synthesized from the readily available dimethyl itaconate-anthracene adduct in enantiomerically pure forms, [(+)-(11S)-44], as building blocks, reacted with the chiral ether aldehyde (\pm)-56 via tandem aldol-lactonization, isomerization and pyrolysis respectively in 29% overall yield. The other important starting material, the chiral ether aldehyde (\pm)-56 was achieved using the practically synthetic methodology including methylation of cyclopentadecanone (57), Baeyer-Villiger oxidation, transmethylation, protection of alcohol, reduction and Swern oxidation respectively in 16% overall yield.

Dimethyl itaconate-anthracene adduct

Keywords: cyclopentadecanone, dimethyl itaconate-anthracene adduct, aldollactonization, protoconstipatic acid

CONTENTS

	Page
ACKNOWLEDGEMENTS	ii
ABSTRACT (in Thai)	iii
ABSTRACT (in English)	iv
CONTENTS	v
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF SCHEMES	ix
ABBREVIATIONS AND SYMBOLS	xi
CHAPTER 1 INTRODUCTION	1
1.1 The α -methylene- and α -methyl- γ -butyrolactones	1
1.2 Literature reviews	3
1.3 Principle and research objectives	10
CHAPTER 2 EXPERIMENTAL	12
2.1 Chemicals, apparatus and instruments	12
2.1.1 Chemicals	12
2.1.2 Apparatus and instruments	14
2.2 Synthesis of 15-(tetrahydro-2 H -pyran-2-yloxy)hexadecanal [(\pm)-56]	15
2.2.1 2-Methylcyclopentadecanone [(\pm)-58]	15
2.2.2 15-Methylhexadecalactone [(±)-13]	16
2.2.3 Methyl 15-hydroxyhexadecanoate [(±)-59]	18
2.2.4 Methyl 15-(tetrahydro-2H-pyran-2-yloxy)hexadecanoate	
[(±)- 60]	19
2.2.5 15-(Tetrahydro-2 H -pyran-2-yloxy)hexadecane-1-ol [(\pm)-61]	21
2.2.6 15-(Tetrahydro-2 <i>H</i> -pyran-2-yloxy)hexadecanal [(\pm)- 56]	23
2.3 Synthesis of (11S)-11-carbomethoxy-11-methoxyacetyl-9,10	
-dihydro-9,10-ethanoanthracenes [(+)-(11S)-44 and (-)-(11R)-44]	25
2.3.1 11-Carbomethoxy-11-methoxyacetyl-9,10-dihydro-9,10-ethano	
anthracene [(±)- 44]	25

		Page
	2.3.2 (±)-11-Carbomethoxy-11-carboxylmethyl-9,10-dihydro-9,10-	
	ethanoanthracene [(±)- 63]	27
	2.3.3 (-)-11-Carbomethoxy-11-[(-)-menthoxyacetyl]-9,10-dihydro-	
	9,10-ethanoanthracenes [(-)-(11 <i>S</i>)- 51 and (-)-(11 <i>R</i>)- 52]	29
	2.3.4 (11S)-11-Carbomethoxy-11-methoxyacetyl-9,10-dihydro-9,10-	
	ethanoanthracene [(+)-(11 <i>S</i>)- 44]	33
	2.3.5 (11R)-11-Carbomethoxy-11-methoxyacetyl-9,10-dihydro-9,10-	
	ethanoanthracene [(–)-(11 <i>R</i>)- 44]	33
2.4	Synthesis of methyl tetrahydro-4-methylene-5-oxo-2-(14-hydroxy	
	pentadecanyl)-3-furancarboxylates [(14"R)-53-i and (14"S)-53-ii]	34
	2.4.1 Tetrahydro-4'-carbomethoxy-5'-(14"-hydroxypentadecanyl)-2'-	
	furanone-3'-spiro-11-9,10-ethanthracenes [(11 <i>S</i>)-(14" <i>R</i>)- 65 - <i>i</i> ,	
	(11 <i>S</i>)-(14" <i>S</i>)- 65 - <i>ii</i> , (11 <i>S</i>)-(14" <i>R</i>)- 66 - <i>i</i> and (11 <i>S</i>)-(14" <i>S</i>)- 66 - <i>ii</i>]	34
	2.4.2 Tetrahydro-4'-carbomethoxy-5'-(14"-hydroxypentadecanyl)-2'-	
	furanone-3'-spiro-11-9,10-dihydro-9,10-ethanoanthracenes	
	[(11 <i>S</i>)-(14" <i>R</i>)- 67 - <i>i</i> and (11 <i>S</i>)-(14" <i>S</i>)- 67 - <i>ii</i>]	38
	2.4.3 Methyl tetrahydro-4-methylene-5-oxo-2-(14-hydroxypenta	
	decanyl)-3-furancarboxylates [(14"R)-53-i and (14"S)-53-ii]	41
CHAPTE	R 3 RESULTS AND DISCUSSION	44
3.1	Retrosynthetic analysis in total synthesis of $lpha$ -methylene-	
	<i>y</i> -butyrolactone	44
3.2	Synthesis of 15-(tetrahydro-2 <i>H</i> -pyran-2-yloxy)hexadecanal	
	[(±)- 56]	44
3.3	Synthesis of methyl tetrahydro-4-methylene-5-oxo-2-(14-hydroxy-	
	pentadecanyl)-3-furancarboxylates [(14"R)-53-i and (14"S)-53-ii]	53
CHAPTE	R 4 CONCLUSION	64
REFFERI	ENCES	66
OUTPUT		69
APPEND	IX I	72
APPEND	IX II	81

LIST OF TABLES

Sch	neme	Page
1	Occurrence of acids and their derivatives from lichens of	
	Tian Shan mountains	4
2	Chemical yields and enantiomeric excess of compound 15	5
3	Chemicals used in this research	12
4	Apparatus and instruments	14
5	Data of compound (±)-58	15
6	Data of compound (±)-13	17
7	Data of compound (±)-59	18
8	Data of compound (±)-60	20
9	Data of compound (±)- 61	22
10	Data of compound (±)-56	24
11	Data of compound (±)-44	25
12	Data of compound (±)-63	27
13	Data of compound (-)-(11S)- 51	30
14	Data of compound (-)-(11 <i>R</i>)- 52	31
15	Data of compounds (11 <i>S</i>)-(14" <i>R</i>)- 65 - <i>i</i> and (11 <i>S</i>)-(14" <i>S</i>)- 65 - <i>ii</i>	35
16	Data of compounds (11 <i>S</i>)-(14" <i>R</i>)- 66 - <i>i</i> and (11 <i>S</i>)-(14" <i>S</i>)- 66 - <i>ii</i>	37
17	Data of compounds (11 <i>S</i>)-(14" <i>R</i>)- 67 - <i>i</i> and (11 <i>S</i>)-(14" <i>S</i>)- 67 - <i>ii</i>	39
18	Data of compounds (14"R)-53-i and (14"S)-53-ii	41
19	Conditions for reaction of compound (±)-13 and (-)-10,2-camphorsultam	47
20	Conditions for reaction of compound (±)-59 with (+)-camphor-10-sulfonyl	
	chloride	48
21	Conditions for protection of methyl 15-hydroxyhexdecanoate [(±)-59]	49

LIST OF FIGURES

Sch	eme	Page
1	$lpha$ -Methylene- and $lpha$ -methyl- γ -butyrolactones	1
2	<i>trans-</i> $lpha$ -Methylene- γ -butyrolactones	1
3	cis - $lpha$ -Methylene- γ -butyrolactones	2
4	$lpha$ -Methyl- γ -butyrolactones	2
5	Murolic acid, protoconstipatic acid and allo-murolic acid	3
6	New glycoside compounds	3
7	¹ H NMR spectral data of compound (±)- 60	51
8	¹ H NMR spectral data of <i>cis</i> -isomer (11 <i>S</i>)- 65	58
9	¹ H NMR spectral data of <i>cis</i> -isomer (11 <i>S</i>)- 66	58
10	¹ H NMR spectral data of the mixture of compounds (11 <i>S</i>)-(14" <i>R</i>)- 92 - <i>i</i>	
	and (11 <i>S</i>)-(14" <i>S</i>)- 92 -ii	59
11	¹ H NMR spectral data of <i>cis</i> -isomer (11S)- 67	61
12	Intermediate of isomerization process of compound (11S)-65	61
13	Modified flash vacuum pyrolysis apparatus	62
14	¹ H NMR spectral data of <i>trans</i> -isomer 53	63

LIST OF SCHEMES

Sch	neme	Page
1	Synthesis of 15-hexadecanolide (13) from 4-(1-nitro-2-oxocyclododecyl)	
	butan-2-one [(±)- 12]	5
2	Syntheses of (R)- and (S)-15-hexadecanolides (13)	6
3	Syntheses of 11-, 12-, and 13-hydroxy C ₁₄ fatty acids ester	7
4	Syntheses of 11- to 15-hydroxy C ₁₆ fatty acids ester	8
5	Syntheses of methylenolactocin (6a), nephrosterinic acid (6b) and	
	protolichesterinic acid (6c)	9
6	Separation of optically active dimethyl itaconate-anthracene adducts	9
7	Synthesis of protoconstipatic acid methyl ester and its epimer (53)	10
8	Retrosynthesis of $lpha$ -methylene- γ -butyrolactones 1	10
9	Protecting hydroxy group with 3,4-dihydro-2 <i>H</i> -pyran	11
10	Synthesis of the chiral ether aldehyde 56 from cyclopentadecanone (57)	11
11	Synthesis of protoconstipatic acid methyl ester (53) and its epimer	11
12	Retrosynthesis of protoconstipatic acid methyl ester (53) and its epimer	44
13	The synthetic plane of the chiral ether aldehyde (\pm)-56 from	
	cyclopentadecanone (57)	44
14	Methylation reaction of cyclopentadecanone (57)	45
15	Regioselective oxidation by Baeyer-Villiger reaction	46
16	Reaction of (±)-13 with (-)-10,2-camphorsultam as a chiral auxiliary	46
17	Transmethylation of 15-hexadecanolide [(±)-13] with MeOH	47
18	Reaction of (±)-59 with (+)-camphor-10-sulfonyl chloride as	
	a chiral auxiliary	48
19	Another synthetic route for protection of active alcohol (\pm)-59	49
20	Protection of alcohol group by DHP and M-K10	49
21	Mechanism of 3,4-dihydro-2 <i>H</i> -pyran with montmorillonite K10	50
22	Possible pathway of nucleophile attack towards oxoniun ion 74a and 74b	50
23	Conformers of compound (±)-60	51
24	Reduction of compound (\pm)-60 with lithium aluminium hydride	52
25	Swern oxidation of compound (±)-61	52

Sch	eme	Page
26	Mechanism of Swern oxidation	52
27	Separation of optically active dimethyl itaconate-anthracene adducts	54
28	Transmethylation of compounds (-)-51 and (-)-52	54
29	Retrosynthesis of compound 53	55
30	Tandem aldol-lactonization reactions and deprotection	56
31	Influence of chair form in transition state and size of substituent	57
32	Separation of diastereoisomer of cis-isomer (11S)-(14"R)-65-i and	
	(11S)-(14"S)-65-ii by (+)-camphor-10-sulfonyl chloride in THF	59
33	cis- → trans-Isomerization of (11S)-65	60
34	Retro Diels-Alder reaction of trans-isomer (11S)-67	62
35	Synthetic of protoconstipatic acid methyl ester (53) and its epimer	64
36	The reaction and yields for synthesis to chiral ether aldehyde (\pm)-56	64
37	The reaction and yields for synthesis to protoconstipatic acid	
	methyl ester (53) and its epimer	65

ABBREVIATIONS AND SYMBOLS

AIBN 2,2'-azobisisobutyronitrile

Api apiose

Ara arabinose

BnBr benzyl bromide

n-BuLi *n*-butyllithium

calc. calculated

cat. catalyst

m-CPBA m-chloroperbenzoic acid

conc. concentration

DABCO 1,4-diazabicyclo[2.2.2]octane

DHP 3,4-dihydro-2*H*-pyran

DMAP 4-(N,N-dimethyl)pyridine

DMF N,N-dimethylformamide

DMS dimethylsulfide

DMSO dimethylsulphoxide

d doublet (spectral)

ddd double of double doublets (spectral)

ESI-MS electrospray ionization mass spectrometry

Et ethyl

Et₃N triethylamine
EtOAc ethyl acetate
equiv equivalent

FVP flash vacuum pyrolysis

FT-IR fourier-transform infrared

Glu glucose

g gram

HMPA hexamethyphosphoric triamide

HRMS high resolution mass spectrometer

Hz hertz

h hour (s)

IR infrared radiation

LAH lithium aluminium hydride
LDA lithium diisopropylamide

lit. literature

Me methyl

MHz megahertz

M-K10 montmorillonite K10

m multiplet (spectral)

min minute (s)
ml millilitre
mmol millimole
mol mole

m.p. melting point

m/z mass to charge ratio

NMR nuclear magnetic resonance

PCC pyridinium chlorochromte

PLC preparative layer chromatography

ppm parts per million (in NMR)

Rha rhamnose

rt room temperature (°C)

s singlet (spectral)

TBAF tetrabutylammonium fluoride

TBDSCI *t*-butyldiphenylsilyl chloride

TBS t-butyldimethylsilyl
THF tetrahydrofuran
THP tetrahydropyran
TMS tetramethylsilane

TsCl tosyl chloride

t triplet (spectral)

Xyl xylose

 δ chemical shift (ppm)

°C degrees celcius

% percent

 $[\alpha]$ specific optically rotation

 ν wave number (cm⁻¹)

CHAPTER 1

INTRODUCTION

1.1 The α -methylene- and α -methyl- γ -butyrolactones

Paraconic acids, a class of trisubstituted γ -butyrolactones, are most widely present as the basic skeletal unit of biologically active natural products. A characteristic feature of this class is functionalised at the γ -carbon atom (C₄) with carboxylic group, which is accompanied by an alkyl chain at C₅ that ranges in length from five to fifteen carbons, in some cases the C₅-alkyl chain is oxidized at one or more positions. Importantly, the α -carbon atom (C₃) is invariably substituted with either a methylene (1) or methyl (2) group, which plays a significant role in determining the physiological properties (Figure 1).

R = alkyl chain that ranges in length from 5-15 carbon atoms

Figure 1 α -Methylene- and α -methyl- γ -butyrolactones

a: $R = n - C_5 H_{11}$; Methylenolactocin⁸

(isolated from the culture filtrate of *Penicillium sp.*)

b: R = n-C₁₁H₂₃; Nephosterinic acid¹
(isolated from *Centraria endocrocea*)

c: R = n-C₁₃H₂₇; Protolichesterinic acid^{8,9,10}
(isolated from several species of moss *Cetraria islandica* Laurr. and *Parmelia nepalensis* Tayl.)
(S)

d: R = CH₃CH(OH)(CH₂)₁₃; Protoconstipatic acid^{11,12,13}
(isolated from *Acarospora gobiensis, Cladonia furcata, Lecanora frucata, P. tinctina, Peltigera canina, Xanthopamelia camtschadalis* and X. tinctina)

a: R = n-C₈H₁₇; C75¹⁴
(R)

b: R = CH₃CH(OH)(CH₂)₁₃; Murolic acid^{11,12}
(isolated from *Acarospora gobiensis, Rhizoplaca peltata* and *Xanthoria elegans*)

Figure 2 *trans-\alpha*-Methylene- γ -butyrolactones

Chiral hydroxy esters are important versatile building blocks in asymmetric synthesis. For instance, γ and δ -hydroxy acid derivatives can be easily transformed

into the corresponding lactones which are present in variety of natural products. In addition, lactones are important building blocks for the synthesis of natural products such as alkaloids and terpenoids and continue to attract considerable attention due to their interesting pharmacological activities. Disubstituted α -methylene- γ -butyrolactones are noted for their biological activities, e.g. antibacterial, antifungal, antitumor, and in certain cases, growth regulating agents. The example of γ -butyrolactones 3–9 are depicted in Figures 2-4. $^{1,5,6,8-15}$

Figure 3 *cis-\alpha*-Methylene- γ -butyrolactones

 $a : R = n - C_5 H_{11}$; Phaseolinic acid⁸ (metabolite of a fungus, Macrophomina phaseolina) $\mathbf{b} : \mathbf{R} = n - \mathbf{C}_{13} \mathbf{H}_{27}$; Nephromopsinic acid¹ (isolated from Nephromopsis stracheyi, Cetraria strocheyi, ecocarpisma Hue and lichen) c: R = CH₃CO(CH₂)₁₃; Pertusarinic acid¹⁵ (isolated from Punctelia microsticta) $R = n-C_{13}H_{27}$; Dihydroprotolichesterinic acid¹⁵ (isolated from Pertusaria albescens) $\mathbf{a} : \mathbf{R} = n - \mathbf{C}_{11} \mathbf{H}_{23}$; Nephrosteranic acid¹ (isolated from Nephromopsis endocrocea and lichen) **b**: $R = n-C_{27}H_{55}$; Roccellaric acid¹ (isolated by Hesse from the chilenic lichen species Roccellaria mollis (HAMPE)ZAHLBR) 9 c: R = CH₃CH(OH)(CH₂)₁₃; Neodihydromurolic acid¹ (isolated from L. muralis, L. melanopthalma and L. rubina)

Figure 4 α -Methyl- γ -butyrolactones

1.2 Literature reviews

Rezanka and Guschina 11,12,16 succeeded to isolate glycoside compounds from an extract of Central Asian lichens as shown in Table 1. New glycosides bearing murolic acid (4b), protoconstipatic acid (3d) and *allo*-murolic acid (5c) (Figure 5), as the aglycones and the oligosaccharide moiety lingked at C-18 made up of five sugars (xylose, rhamnose, glucose, arabinose and apiose) 10a-q and 11a-j, are as shown in Figure 6.

Figure 5 Murolic acid, protoconstipatic acid and allo-murolic acid

Figure 6 New glycoside compounds

Table 1 Occurrence of acids and their derivatives from lichens of Tian Shan mountains

													ž	ıme	of c	Name of compounds	our	spı											
Name of lichen	4	3	w									10													11				
	q	P	ပ	a	q	ပ	ರ	ə	-	ಶಾ	Ч	• parel	·n	*	_	ш	n	0	d	ь	æ	q	၁	p	- e	<u></u>	5.0	i.	
Acarospora gobiensis		_	1	_	'		ı	ı	1	١	ı	/	ı	1	ı	1	ı	1	1				······			<u> </u>	 I	'	1
Cladonia furcata		`	ı	<u> </u>			1	_	_	1	_	1	_	,	ı	_	_	,	_	,	ı			,			-	_	'
Lecanora fructulosa	ı	`	ı	,	_	<u> ' </u>	1	_	_	,	_		_	ı	1	_				,	-		,						•
Leptogium saturnium	ı	,	`		<u> </u>		_	,		_	,	ı	,	_	_	,	ı	_	,	,	,		_	-	,			•	_
Parmelia camtschadalis	ı		`	1	1	<u>'</u>	1	,	,				,	_	_	ı		_	,			,	ı	,	ı		1	'	'
P. tinctina	1		1	<u></u>	1	ı	1	ı				,	_			_	_	,	_		,	1	1	1	,	,	'		'
Peltigera canina	1	1	`	<u>'</u>	<u> </u>	_	_	,	1	1	1	ı			,	_	_	,	_	,	<u> </u>		_					'	
Rhizoplaca peltata	_	. 1	1	'		١.				_		ı	ı	1		ı	,		,	_	,	_	ļ ,				-		,
Xanthoparmelia camtschadalis	1	_	ı	,	_	,		_	_		_		,		1	1	,	,			,	_		,		,	_		1
X. tinctina	ı		ı	'	_	,		_	_	,	_	ı	,			ı	1			,		1	1		,	,	1	1	
Xanthoria elegans	`	,	'		,	,	ı	ı	•	,	'	_	١.	_	_	,	1	_	,	1	_	1	,	/	,	1	1		

Note -; Not found, /; Found

In 1989, Stanchev and Hesse¹⁷ reported the reduction of the carbonyl group in the side chain of 4-(1-nitro-2-oxocyclododecyl)butan-2-one [(\pm) -12] with organoboron complexs to give 15-hexadecanolide (13). The synthetic routes and conditions were as detailed in Scheme 1 and Table 2 respectively.

$$(\pm)-12 \qquad (+)-14 \qquad (+)-15 \qquad NO_2$$

$$(B)-Alpine-Hydride \qquad (+)-13 \qquad (+)-16 \qquad$$

Scheme 1 Synthesis of 15-hexadecanolide (13) from 4-(1-nitro-2-oxocyclododecyl) butan-2-one [(±)-12]

Table 2 Chemical yields and enantiomeric excess of compound 15

Entry	Reducing agents	Product	Yields	ee form	ee from	Configuration
			(%) ^b	$[\alpha]_D^c$	¹ H NMR ^d	At C(15)
1	NaBH₄	(±)-15	88	-	•	-
2	(S)-Alpine-Hydride	(+)-15	82	15	15.5	(S)
3	(R)-Alpine-Hydride	(-)-15	72	24	18.8	(<i>R</i>)

a) 1 : (i) NaBH4, MeOH, 4 h, 0 °C, 91%; (ii) Bu4NF, THF, 15 min, 20 °C, 97%.

- 2: (i) and (ii) (S)-Alpine-Hydride, THF, 2 h, -78 °C, HOCH2CH2NH2, 1 h, 20 °C, 82%
 - (iii) NaOMe, MeOH, 15 min, 20 °C, NaOAc, TiCl₃, 1.5 h, 20 °C, 85%;
 - (iv) NH₂NHTs, MeOH, 1 h, reflux, (Ph₃P)₂CuBH₄, CHCl₃, 4 h, reflux, 78%.
- 3 : (i) and (ii) (*R*)-Alpine-Hydride, THF, 2 h, -78 °C, HOCH₂CH₂NH₂, 1 h, 20 °C, 72 %
 - (v) Bu₃SnH, AIBN, toluene, 40 min, reflux, 47%.

- Because of its diastereomeric nature, (+)-15 was converted to (+)-13; thus, the ee values refer to (+)-13. The %-ee values were determined by comparison of the $[\alpha]_D$ values of the product and those of (-)-13.
- ^d) The enantiomeric purities of **13** were determined by ¹H NMR measurements (400 MHz, CDCl₃) of the CH₃-C(15) signal, using [Eu(hfc)₃] as chiral shift reagent.

⁾ In some experiments, the reaction product 14 was accompanied by the rearrangement product 15. To compare chemical yields, all pure products and product mixtures were rearranged to 15.

In 1998, Kuwahara *et al.*¹⁸ synthesized 15-methylcyclopentadecalactone or 15-hexadecanolide (13), a sex pheromone component of the stink bug, *Piezodorus hybneri* by using the Yamaguchi or Mitsunobu macrolactonization reaction (Scheme 2).

Reagents and conditions: (i) Ph₃PCH(CH₂)₁₀CO₂K, THF-HMPA; (ii) HF, CH₃CN, 46%; (iii) H₂, Pd-C, EtOH; (iv) 2,4,6-trichlorobenzoyl chloride, DMAP, toluene; (v) Ph₃P, diethyl azodicarboxylate, ether.

Scheme 2 Syntheses of (R)- and (S)-15-hexadecanolides (13)

Cryle, Matovic and Voss $(2003)^{19}$ reported the synthesis of 11-, 12-, and 13-hydroxy C_{14} fatty acids ester from epoxide **20** and 11- to 15-hydroxy C_{16} fatty acids ester from terminally difunctionalized compounds, undec-10-en-1-ol (**30a**) and 1,12-dodecandiol (**30b**) (Schemes 3 and 4).

Reagents and conditions: (i) LAH, THF, 0 °C, 90%, or RMgX, THF, -10 °C, 79%; (ii) (a) TBD(P/M)SCI, imidazole, MeCN, (b) H₂, Pd-C, hexane, 80%; (iii) (COCI)₂, DMSO, CH₂CI₂, TEA, -78 °C, 75%; (iv) Ph₃PCHCO₂Me, CH₂CI₂, Δ , 94%; (v) TsCl, DABCO, CH₂CI₂, 92%; (vi) NaCN, DMF, Δ , 80%; (vii) (a) HCI-MeOH, 59%; (viii) Propiolic acid, n-BuLi, HMPA, THF, 0 °C, 71%; (ix) (a) H₂, Pd-C, hexane, (b) TBAF, THF, 0 °C, 74%.

Scheme 3 Syntheses of 11-, 12-, and 13-hydroxy C₁₄ fatty acids ester

Reagents and conditions: (i) dihydropyran, H^{+} , $CH_{2}CI_{2}$, 68%; (ii) (a) BH_{3} .DMS, $CH_{2}CI_{2}$, $H_{2}O_{2}$, Δ , (b) PCC, NaOAc, $CH_{2}CI_{2}$, 67%; (iii) PCC, $CH_{2}CI_{2}$, 90%; (iv) RMgBr, $Et_{2}O$, -40 °C, 70%; (v) (a) $CrO_{3}-H_{2}SO_{4}$, acetone, (b) $CH_{2}N_{2}$, $Et_{2}O$, (c) NaBH₄, MeOH, 0 °C, 45%; (vi) NaH, BnBr, n-Bu₄N⁺I⁻, THF, 94%; (vii) (a) $Ph_{3}PCHCO_{2}Me$, $CH_{2}CI_{2}$, Δ , (b) LAH, THF, 0 °C, 63%; (viii) O_{3} , $CH_{2}CI_{2}$, -78 °C, DMSO, 100%; (ix) (a) $Ph_{3}PCHCO_{2}Me$, $CH_{2}CI_{2}$, Δ , (b) H₂, Pd-C, hexane, 64%; (x) H⁺, MeOH, 94%; (xi) TsCl, pyridine, 0 °C, 67%; (xii) (a) NaCN, DMF, Δ , (b) HCl-MeOH, 57%.

Scheme 4 Syntheses of 11- to 15-hydroxy C₁₆ fatty acids ester

Kongsaeree *et al.* (2001)²⁰ reported that both enantiomers of methylenolactocin (**6a**), nephrosterinic acid (**6b**) and protolichesterinic acid (**6c**) were synthesized *via* tandem aldol-lactonization reactions of aldehydes and the optically active dimethyl itaconate-anthracene adduct (**44**) (Scheme 5).

R = a: $n-C_5H_{11}$; **b**: $n-C_{11}H_{23}$ and **c**: $n-C_{13}H_{27}$

Reagents and conditions: (i) (a) 1.2 equiv LDA, THF, -78 to 0 °C 2 h; (ii) (a) 1.2 equiv RCHO, 0 °C to rt 3 h, (b) aq. NH₄Cl, 30% HCl; (iii) 0.5 equiv NaOMe, THF:MeOH (2:1), rt 6 days; (iv) FVP; (v) 2-butanone, 6 N HCl, reflux 2 h.

Scheme 5 Syntheses of methylenolactocin (6a), nephrosterinic acid (6b) and protolichesterinic acid (6c)

Scheme 6 presented synthetic route for separation of optically active dimethyl itaconate-anthracene adducts (44) employing (-)-menthol as a chiral auxillary agent.

Reagents and conditions: (i) 1.3 equiv. KOH, MeOH: H_2O (2:1), reflux 2 h, 97%; (ii) (a) 5.0 equiv. SOCl₂, DMF (cat.), N_2 , reflux 2 h, (b) 1.3 equiv. (-)-(1R,2S,5R)-menthol, 1.3 equiv. NEt₃, benzene, reflux 2 h [(-)-51, 34%; (-)-52, 34%]; (iii) excess anhydrous MeOH, H_2SO_4 (cat.), reflux 6 days [(+)-44, 95%; (-)-44, 89%].

Scheme 6 Separation of optically active dimethyl itaconate-anthracene adducts

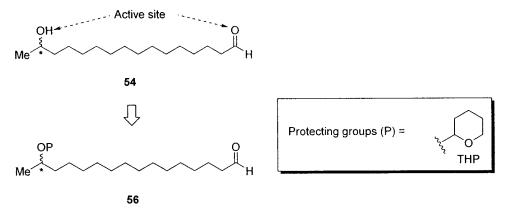
1.3 Principle and research objectives

The synthesis of γ -butyrolactones derivatives has attached considerable attention over the years because of their wide occurrence in bioactive natural product.²¹ In this thesis, we are interested in synthetic methodology of protoconstipatic acid methyl ester and its epimer employing the readily available dimethyl itaconate-anthracene adduct in enantiomerically pure forms, [(+)-(11S)-44], as building blocks (Scheme 7).

MeOOC COOMe

$$H_3C(HO)HC(H_2C)_{13}$$
 $H_3C(HO)HC(H_2C)_{13}$
 $H_3C(HO)HC(H_2C)_{13}$
 $H_3C(HO)HC(H_2C)_{13}$
 $H_3C(HO)HC(H_2C)_{13}$
 $H_3C(HO)HC(H_2C)_{13}$
 $H_3C(HO)HC(H_2C)_{13}$
 $H_3C(HO)HC(H_2C)_{13}$

Scheme 7 Synthesis of protoconstipatic acid methyl ester and its epimer (53)


From considerably method for retrosynthesis of α -methylene- γ -butyrolactones 1, it was found that compound 1 can be disconnected to synthon A: dimethyl itaconate (55) and synthon B: aldehyde 54 (Scheme 8). It is well-known that dimethyl itaconate anion was quickly polymerized and therefore, it is necessary to protect the reactive double bond of dimethyl itaconate (55) in the form of anthracene adduct 44 which could be obtained by the Diels-Alder reaction.

$$R$$
 $+O_B$
 R
 $+O_B$
 $+$

R = -(CH₂)₁₃CH(OH)CH₃

Scheme 8 Retrosynthesis of α -methylene- γ -butyrolactones 1

The hydroxyl group in 15-Hydroxypentanaldehyde (**54**) bearing two active difunctional groupswas converted to the corresponding chiral ether group **56** for the next reaction as shown in Scheme 9.

Scheme 9 Protecting of hydroxy group with 3,4-dihydro-2*H*-pyran

In this thesis, we have focused on

- 1) synthesis of the chiral ether aldehyde **56** from cyclopentadecanone (**57**) as shown in Scheme 10
- 2) synthesis of dimethyl itaconate-anthracene adduct in optically active form [(+)-44]
- 3) synthesis of protoconstipatic acid methyl ester (53) employing the reaction of pure dimethyl itaconate-anthracene adduct [(+)-44] with the chiral ether aldehyde 56 as shown in Scheme 11.

Scheme 10 Synthesis of the chiral ether aldehyde 56 from cyclopentadecanone (57)

Scheme 11 Synthesis of protoconstipatic acid methyl ester (53) and its epimer

CHAPTER 2 EXPERIMENTAL

2.1 Chemicals, apparatus and instruments

2.1.1 Chemicals

The chemicals used in this research project were as listed in Table 3.

 Table 3
 Chemicals used in this research

Chemical	Molecular	Molecular weight	Grade	Supplier
Acetone*	C ₃ H ₆ O	58.08	commercial	<u> </u>
Ammonium chloride	NH₄CI	53.49	≥ 99.0%	Scharlau
Anthracene	C ₁₄ H ₁₀	178.24	≥ 95%	Fluka
Benzophenone	C ₁₃ H ₁₀ O	182.22	≥ 99.0%	Fluka
<i>n</i> -Butyllithium**	C₄H ₉ Li	64.06	-	Acros
Calcium hydride	CaH ₂	42.10	≥ 97.0%	Fluka
Celite 545	-	-	-	Fluka
Chloroform***	CHCl ₃	119.38	99.8%	Ajex
Chloroform-d ₁	CDCI ₃	120.38	≥ 99.8%	Wilmad
3-Chloroperbenzoic acid	C ₇ H ₅ ClO ₃	172.57	-	Fluka
Cyclopentadecanone	C ₁₅ H ₂₈ O	224.39	≥ 97.0%	Fluka
Dichloromethane*	CH ₂ Cl ₂	84.93	commercial	-
3,4-Dihydro-2 <i>H</i> -pyran	C ₅ H ₈ O	84.12	97%	Fluka
N,N-dimethyl formamide***	C ₃ H ₇ NO	73.09	99.8%	CarloErb
Dimethyl itaconate	$C_7H_{10}O_4$	158.16	≥ 97.0%	Fluka
Dimethyl sulphoxide****	C ₂ H ₆ OS	78.13	99.5%	Lab-Sca
Ethyl acetate*	C ₄ H ₈ O ₂	88.11	commercial	-
Hexane*	C ₆ H ₁₄	86.18	commercial	-
lodine	l_2	126.90	≥ 99.8%	AJAX
lodomethane	CH ₃ I	141.94	≥ 99.5%	Fluka
Lithium aluminium hydride	LiAIH ₄	37.95	≥ 95%	Acros

Table 3 Chemicals used in this research (continued)

Chemical	Molecular	Molecular weight	Grade	Supplier
Magnesium sulphate	MgSO ₄	120.37	≥ 98.0%	Fluka
an hydro us				
(-)-Menthol	C ₁₀ H ₂₀ O	156.27	≥ 99%	Fluka
Methanol*	CH₄O	32.04	commercial	~
Montmorillonite K10	-	-	-	Fluka
Oxalyl chloride*	C ₂ O ₂ Cl ₂	126.93	96%	Fluka
Silica gel 60, GE0030	-	~	-	Scharlau
Silica gel 60 PF ₂₅₄	-	-	-	Merck
Sodium bicarbonate	NaHCO ₃	84.01	99 - 101%	BDH
Sodium hydride	NaH	24.00	Moistened	Fluka
			with oil,	
			55 - 60%	
Sodium metal	Na	22.99	-	May &
				Baker Ltd
Sulfuric acid	H ₂ SO ₄	98.08	96%	CarloErba
Thionyl chloride	SOCI ₂	117.90		BDH
Tetrahydrofuran*****	C ₄ H ₈ O	72.11	≥ 99.5 %	Merck
Triethylamine***	$C_6H_{15}N$	101.19	≥ 99%	BDH
Xylene*	C ₈ H ₁₀	C ₈ H ₁₀	-	Fluka

Note * Simple distillation

^{**} Molarity of *n*-butyllithium was determined by titration according to the 2,5-dimethoxybenzyl alcohol method

^{***} Refluxed over CaH₂ for 1 h followed by simple distillation

^{****} Distilled under reduce pressure

^{*****} Distilled from sodium / benzophenone under nitrogen atmosphere

2.1.2 Apparatus and instruments

The apparatus and instruments used were as listed in Table 4.

 Table 4
 Apparatus and instruments used in this research

Apparatus and instruments	Company	Model
High vacuum pump	Edwards	Edwards 18
Infrared spectrometer (FT-IR)	Bruker	Tensor 27
Mass spectrometer (HRMS)	Waters	Micromass-Q-Tof-2 Tm
Melting point apparatus	SANYO	Gallenkamp
Nuclear magnetic resonance spectrometer	Bruker	-
Rotary evaporator	Büchi	R-200
UV-lamp 254	-	-
Weighing balance (2 and 4 positions)	Mettler Toledo	PG802-S and
		AB204-S

2.2 Synthesis of 15-(tetrahydro-2*H*-pyran-2-yloxy)hexadecanal [(\pm) -56]

2.2.1 2-Methylcyclopentadecanone [(±)-58]

To a 250 ml round-bottomed flask equipped with a magnetic stirrer was fitted with a three-way stopcock with a septum cap and nitrogen inlet was added THF (40 ml) and dry diisopropylamine (9.1 ml, 64.33 mmol) *via* syringes. The mixture was cooled down to -78 °C followed by addition of *n*-butyllithium (38.3 ml, 1.4 N in hexane, 53.61 mmol). The resulting solution was left stirring at 0 °C for 1 h. Then, a solution of cyclopentadecanone (57) (10.0246 g, 44.68 mmol) in THF (40 ml) was introduced to the LDA solution at -78 °C. After stirring at 0 °C for 2 h, the reaction mixture was cooled to -78 °C and iodomethane (27.87 ml, 446.76 mmol) was added. The reaction mixture was left stirring at room temperature overnight. The reaction mixture was quenched with saturated aqueous ammonium chloride solution at 0 °C followed by extraction several times with CH₂Cl₂. The combined organic extracts were washed with H₂O, dried over MgSO₄, filtered, and evaporated to dryness.

The crude product was purified by flash column chromatography on silica gel with elution of EtOAc: hexane = 0.3: 9.7 to give α -methyl ketone (\pm)-58, 2-methylcyclopentadecanone in 91% yield (9.6922 g) and 100% conversion from the starting material.

Table 5 Data of compound (±)-58

Physical property : Colorless oil	
IR spectroscopy (evaporated thin film)	
Frequency (ν , cm ⁻¹)	Type of vibration
2855, 2926	-CH ₂ -, -CH ₃ stretching
1698	C=O stretching of ketone
1450	-CH ₂ -, -CH ₃ bending
1368	-CH ₃ bending

Table 5 Data of compound (±)-58 (continued)

¹ H NMR spectroscopy (400 MHz) in CDCl ₃	
Chemical shift (δ , ppm)	Type of proton
1.04	3H, d (J = 6.9 Hz), CH ₃ -16
1.17-1.78	24H, m, CH ₂ -3, 4, 5, 6, 7, 8, 9, 10, 11,
	12, 13, 14
2.43	2H, m, CH ₂ -15
2.60	1H, m, CH-2
¹³ C NMR spectroscopy (100 MHz) in CDCl ₃	
Chemical shift (δ , ppm)	Type of carbon
16.72	CH ₃ -16
22.74, 26.12, 26.27, 26.29, 26.34, 26.46,	CH ₂ -3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
26.63, 26.91, 27.29, 27.47, 33.04	
40.50	CH ₂ -15
45.98	CH-2
215.20	C=O-1
Mass spectrometry (ESI-MS)	
Molecular weight	m/z
Calc. for C ₁₆ H ₃₀ O	238.2297 (M ⁺)
Lock mass of C ₁₂ H ₁₄ N ₄ O ₄ SNa	333.0633 (M+Na) [†]
Calc. for C ₁₆ H ₃₀ ONa	261.2194 (M+Na) [†]
Found for C ₁₆ H ₃₀ ONa	261.2192 (M+Na) ⁺

2.2.2 15-Methylhexadecalactone [(±)-13]

A mixture of compound (\pm)-58 (3.3410 g, 14.01 mmol) and *m*-chloroperbenzoic acid (4.4906 g, 18.22 mol) in anhydrous chloroform (40 ml) was heated to reflux overnight. The reaction mixture was quenched with saturated aqueous sodium hydrogen carbonate solution at 0 °C and the crude mixture was extracted several times with CH₂Cl₂. The combined organic extracts were washed with H₂O, dried over MgSO₄, filtered, and evaporated to dryness.

The crude product was purified by flash column chromatography on silica gel using EtOAc: hexane = 0.5: 9.5 as eluent to give the lactone (\pm)-13, 15-methylhexadecalactone in 88% yield (2.3811 g) and 76% conversion from the starting material.

Table 6 Data of compound (±)-13

Physical property : Colorless oil	
IR spectroscopy (evaporated thin film)	
Frequency (ν , cm ⁻¹)	Type of vibration
2849, 2932	-CH ₂ -, -CH ₃ stretching
1737	C=O stretching of lactone
1462	-CH ₂ -, -CH ₃ bending
1242	C-O stretching of lactone
¹ H NMR spectroscopy (400 MHz) in CDCl ₃	
Chemical shift (δ , ppm)	Type of proton
1.21	3H, d (J = 6.3 Hz), CH ₃ -16
1.23-1.77	24H, m, CH ₂ -3, 4, 5, 6, 7, 8, 9, 10, 11,
	12, 13, 14
2.29	2H, m, CH ₂ -2
4.95	1H, <i>m</i> , CH-15
20.36	CH ₃ -16
24.28, 25.01, 25.62, 25.66, 25.98, 26.20,	CH ₂ -3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
26.60, 27.22, 27.46, 27.75, 34.83	
35.86	CH ₂ -2
70.65	CH-15
173.76	C=O-1

Table 6 Data of compound (±)-13 (continued)

Mass spectrometry (ESI-MS)	
Molecular weight	m/z
Calc. for C ₁₆ H ₃₀ O ₂	254.2246 (M ⁺)
Lock mass of C ₁₂ H ₁₄ N ₄ O ₄ SNa	333.0633 (M+Na) [†]
Calc. for C ₁₆ H ₃₁ O ₂	255.2324 (M + H) ⁺
Found for C ₁₆ H ₃₁ O ₂	255.2325 (M + H) [†]

2.2.3 Methyl 15-hydroxyhexadecanoate [(±)-59]

A mixture of compound (\pm)-13 (0.5100 g, 2.00 mmol) and conc. sulfuric acid (2 ml) in anhydrous methanol (40 ml) was heated to reflux overnight. The reaction mixture was quenched with saturated aqueous sodium hydrogen carbonate solution at 0°C and the crude mixture was extracted several times with CH₂Cl₂. The combined organic extracts were washed with H₂O, dried over MgSO₄, filtered, and evaporated to dryness.

The crude product was purified by flash column chromatography on silica gel using EtOAc: hexane = 0.5:9.5 as eluent to give hydroxyl ester (\pm)-**59**, *methyl 15-hydroxyhexadecanoate* in 90% yield (0.4102 g) and 79% conversion from the starting material.

Table 7 Data of compound (±)-59

Physical properties: White crystals, m.p. 57.9-58.3 °C (EtoAc/Hexane)	
IR spectroscopy (KBr-pellet)	
Frequency (ν , cm ⁻¹)	Type of vibration
3154-3676	O-H stretching of hydroxyl
2851, 2917	-CH ₂ -, -CH ₃ stretching
1740	C=O stretching of ester
1462	-CH ₂ -, -CH ₃ bending

Table 7 Data of compound (±)-59 (continued)

IR spectroscopy (KBr-pellet)	
Frequency (<i>v</i> , cm ⁻¹)	Type of vibration
1390	-CH₃ bending
1203	C-O stretching of ester
1110	C-O stretching of 2 °alcohol
¹ H NMR spectroscopy (400 MHz) in CDCl ₃	
Chemical shift (δ , ppm)	Type of proton
1.18	3H, d (J = 6.2 Hz), CH ₃ -16
1.21-1.66	24H, m, CH ₂ -3, 4, 5, 6, 7, 8, 9, 10, 11,
	12, 13, 14
2.29	2H, t ($J = 7.6$ Hz), CH ₂ -2
3.66	3H, s, COOCH ₃ -17
3.78	1H, m, CH-15
23.47	CH ₃ -16
24.97, 25.75, 29.13, 29.23, 29.41, 29.56,	CH ₂ -3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
29.59, 29.62, 34.10	
39.36	CH ₂ -2
51.42	CH ₃ -17
68.18	CH-15
174.35	C=O-1
Mass spectrometry (ESI-MS)	
Molecular weight	m/z
Calc. for C ₁₇ H ₃₄ O ₃	286.2508 (M ⁺)
Lock mass of C ₁₂ H ₁₄ N ₄ O ₄ SNa	333.0633 (M+Na) ⁺
Calc. for C ₁₇ H ₃₄ O ₃ Na	309.2406 (M+Na) ⁺
Found for C ₁₇ H ₃₄ O ₃ Na	309.2408 (M+Na) ⁺

2.2.4 Methyl 15-(tetrahydro-2H-pyran-2-yloxy)hexadecanoate [(\pm)-60]

Montmorillonite K10 was added into a solution of (\pm) -**59** (4.5536 g, 15.90 mmol), in anhydrous chloroform (200 ml) followed by 3,4-dihydro-2*H*-pyran (DHP) (7.0378 g, 79.48 mmol) at 0 °C over 15 min. The reaction mixture was stirred at room temperature for 1 day and then passed through Celite 545, washed with CH₂Cl₂. The organic phase was evaporated to dryness.

The crude product was purified by flash column chromatography on silica gel using EtOAc: hexane = 0.3: 9.7 as eluent to give protected hydroxyl ester (\pm)-60, methyl 15-(tetrahydro-2H-pyran-2-yloxy)hexadecanoate in 87% yield (5.1072 g) and 100% conversion from the starting material.

Table 8 Data of compound (±)-60

Physical property : Colorless oil		
IR spectroscopy (evaporated thin film)		
Frequency (ν , cm ⁻¹)	Type of vibration	
2855, 2932	-CH ₂ -, -CH ₃ stretching	
1748	C=O stretching of ester	
1462	-CH ₂ -, -CH ₃ bending	
1368	-CH ₃ bending	
1077, 1203	C-O stretching of ether	
1170	C-O stretching of ester	
¹ H NMR spectroscopy (400 MHz) in CDCl ₃	¹ H NMR spectroscopy (400 MHz) in CDCl ₃	
Chemical shift (δ , ppm)	Type of proton	
1.09, 1.18 (strong peak), 1.21	3H, d (J = 6.2, 6.2, 6.1 Hz), CH ₃ -16	
1.22-1.92	30H, m, CH ₂ -3, 4, 5, 6, 7, 8, 9, 10, 11,	
	12, 13, 14, 3', 4', 5'	
2.30	2H, t (J = 7.6 Hz), CH ₂ -2	
3.44-3.59, 3.68-4.47	3H, <i>m</i> , CH-15, CH ₂ -6'	
3.66	3H, s, COOCH ₃ -17	
4.54-4.98	1H, <i>m</i> , CH-2'	

Table 8 Data of compound (±)-60 (continued)

¹³ C NMR spectroscopy (100 MHz) in CDCl ₃	
Chemical shift (δ , ppm)	Type of carbon
23.60	CH ₃ -16
25.09, 25.72, 25.90, 26.02, 29.30, 29.41,	CH ₂ -3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
29.59, 29.77, 29.90, 29.92, 30.36, 31.41,	3', 4', 5'
34.31, 36.72, 37.77	
39.59	CH ₂ -2
51.73	CH ₃ -17
62.79	CH ₂ -6'
68.59	CH-15
98.58	CH-2'
174.30	C=O-1
Mass spectrometry (ESI-MS)	
Molecular weight	m/z
Calc. for C ₂₂ H ₄₂ O ₄	370.3083 (M ⁺)
Lock mass of C ₁₂ H ₁₄ N ₄ O ₄ SNa	333.0633 (M+Na) ⁺
Calc. for C ₂₂ H ₄₂ O ₄ Na	393.2981 (M+Na) ⁺
Found for C ₂₂ H ₄₂ O ₄ Na	393.2980 (M+Na) ⁺

2.2.5 15-(Tetrahydro-2*H*-pyran-2-yloxy)hexadecan-1-ol [(\pm)-61]

Lithium aluminium hydride (0.4307g, 10.78 mmol) in a 250 ml round-bottomed flask equipped with a magnetic stirrer and fitted with a three-way stopcock with a septum cap and nitrogen inlet was added THF (120 ml). To a stirred -42 °C solution, a solution of (\pm)-60 (2.9989 g, 8.09 mmol) in THF (120 ml) was added and left stirring at -42 °C for an additional 5 h. The reaction mixture was quenched with aqueous acetone (200 ml) at -78 °C followed by water and then the reaction was neutralized with dilute HCl and then passed through Celite 545, washed with CH₂Cl₂. The crude mixture was extracted several times with CH₂Cl₂. The combined organic extracts were washed with H₂O, dried over MgSO₄, filtered, and evaporated to dryness.

The crude product was purified by flash column chromatography on silica gel using EtOAc: hexane = 0.5:9.5 as eluent to give protected hydroxyl alcohol (\pm)-61, 15-(tetrahydro-2H-pyran-2-yloxy)hexadecan-1-ol in 79% yield (1.4495 g), and 69% conversion from the starting material.

Table 9 Data of compound (±)-61

Table 9 Data of compound (±)-61	
Physical property : Colorless oil	
IR spectroscopy (evaporated thin film)	
Frequency (ν , cm ⁻¹)	Type of vibration
3069-3686	O-H stretching of hydroxyl
2849, 2921	-CH ₂ -, -CH ₃ stretching
1462	-CH ₂ -, -CH ₃ bending
1368	-CH ₃ bending
1198	C-O stretching of ester
1082, 1132	C-O stretching of ether
1022	C-O stretching of 1°alcohol
¹ H NMR spectroscopy (400 MHz) in CDCI	3
Chemical shift (δ , ppm)	Type of proton
1.09, 1.18 (strong peak), 1.21	3H, d (J = 6.1, 6.2, 6.3 Hz), CH ₃ -16
1.23-1.90	32H, m, CH ₂ -2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
	12, 13, 14, 3', 4', 5'
3.33-3.60, 3.67-3.95	3H, <i>m</i> , CH-15, CH ₂ -6'
3.63	2H, t (J = 6.6 Hz), CH ₂ -1
4.54-4.73	1H, m, CH-2'
¹³ C NMR spectroscopy (100 MHz) in CDCl ₃	
Chemical shift (δ , ppm)	Type of carbon
23.47	CH ₃ -16
25.49, 25.57, 25.72, 25.76, 26.22, 29.40,	CH ₂ -2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
29.47, 29.60, 29.62, 29.74, 30.77, 32.79,	14, 3', 4', 5'
39.36, 67.70	
62.33	CH ₂ -6'
63.08	CH ₂ -1

Table 9 Data of compound (±)-61 (continued)

¹³ C NMR spectroscopy (100 MHz) in CDCl ₃	
Chemical shift (δ , ppm)	Type of carbon
68.19	CH-15
98.83	CH-2'
Mass spectrometry (ESI-MS)	
Molecular weight	m/z
Calc. for C ₂₁ H ₄₂ O ₃	342.3134 (M ⁺)
Lock mass of C ₁₂ H ₁₄ N ₄ O ₄ SNa	333.0633 (M+Na) ⁺
Calc. for C ₂₁ H ₄₂ O ₃ Na	365.3032 (M+Na) ⁺
Found for C ₂₁ H ₄₂ O ₃ Na	365.3032 (M+Na) [†]

2.2.6 15-(Tetrahydro-2*H*-pyran-2-yloxy)hexadecanal [(\pm)-56]

To a 250 ml, three necks, round-bottomed flask equipped with a magnetic stirrer and a dropping funnel was charged with dry CH_2CI_2 (50 ml) under nitrogen atmosphere. To a stirred -78 °C solution, a solution of oxalyl chloride (2.3292 g, 17.62 mmol) in dry CH_2CI_2 (50 ml) was added followed by a solution of dimethyl sulfoxide (2.7676 g, 35.24 mmol) in dry CH_2CI_2 (20 ml) over 30 min. A solution of (\pm)-**61** (4.0243 g, 11.75 mmol) in dry CH_2CI_2 (30 ml) was added dropwise. After stirring at -78 °C for an additional 30 min, triethylamine (9.9 ml, 70.49 mmol) was added and the reaction mixture was left stirring at 0 °C for 1 h. The reaction mixture was quenched with 1 M HCI (100 ml) at 5-10 °C, passed through Celite 545, washed with CH_2CI_2 and then extracted several times with CH_2CI_2 . The combined organic extracts were washed with H_2O , dried over MgSO₄, filtered, and evaporated to dryness.

The crude product was purified by flash column chromatography on silica gel using EtOAc: hexane = 0.5:9.5 as eluent to give the mixture of chiral ether aldehyde (\pm)-56, 15-(tetrahydro-2H-pyran-2-yloxy)hexadecanal in 90% yield (3.1511 g), and 88% conversion from the starting material.

Table 10 Data of compound (±)-56

Table 10 Data of Compound (±)-30		
Physical property : Colorless oil		
IR spectroscopy (evaporated thin film)		
Frequency (ν , cm ⁻¹)	Type of vibration	
2855, 2932	-CH ₂ -, -CH ₃ stretching	
2723	C-H stretching of aldehyde	
1731	C=O stretching of aldehyde	
1461	-CH ₂ -, -CH ₃ bending	
1379	-CH ₃ bending	
1081, 1125	C-O stretching of ether	
¹ H NMR spectroscopy (400 MHz) in CDCl ₃		
Chemical shift (δ , ppm)	Type of proton	
1.10 (strong peak), 1.21	3H, d (J = 6.1, 6.3 Hz), CH ₃ -16	
1.23-1.90	30H, m, CH ₂ -3, 4, 5, 6, 7, 8, 9, 10, 11,	
	12, 13, 14, 3', 4', 5'	
2.42	2H, t (J = 7.4 Hz), CH ₂ -2	
3.42-3.98	3H, m, CH-15, CH ₂ -6'	
4.60-4.74	1H, m, CH-2'	
9.76	1H, t (J = 1.9 Hz), CHO-1	
¹³ C NMR spectroscopy (100 MHz) in CDCl	3	
Chemical shift (δ , ppm)	Type of carbon	
21.56	CH ₃ -16	
22.06, 25.46, 25.51, 25.57, 25.75, 25.86,	CH ₂ -3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,	
26.22, 29.14, 29.33, 29.40, 29.60, 29.74,	3', 4',5'	
31.21, 36.50, 37.55		
39.35	CH₂-2	
62.82	CH ₂ -6'	
71.14	CH-15	
98.57	CH-2'	
202.93	C=O-1	

Table 10 Data of compound (±)-56 (continued)

Mass spectrometry (ESI-MS)	
Molecular weight	m/z
Calc. for C ₂₁ H ₄₀ O ₃	340.2977 (M ⁺)
Lock mass of C ₁₂ H ₁₄ N ₄ O ₄ SNa	333.0633 (M+Na) ⁺
Calc. for C ₂₁ H ₄₀ O ₃ Na	363.2875 (M+Na) ⁺
Found for C ₂₁ H ₄₀ O ₃ Na	363.2875 (M+Na) ⁺

2.3 Synthesis of (11S)-11-Carbomethoxy-11-methoxyacetyl-9,10-dihydro-9,10 ethanoanthracenes [(+)-(11S)-44 and (-)-(11R)-44]

2.3.1 11-Carbomethoxy-11-methoxyacetyl-9,10-dihydro-9,10-ethano anthracene [(±)-44]

A mixture of anthracene (62) (1.0193 g, 5.43 mmol) and dimethyl itaconate (55) (0.5905 g, 3.62 mmol) in dry xylene (80 ml) was heated under reflux for 2 days. The crude reaction mixture was evaporated to reduced pressure to dryness and chromatographed by silica gel column. The column was eluted with hexane until no an anthracene (62) was detected, and then stripped with 30% dichloromethane in hexane. Solvent was removed under reduced pressure and the almost pure product was crystallized from a dichloromethane/hexane mixture to give the adduct (±)-44, 11-carbomethoxy-11-methoxyacetyl-9,10-dihydro-9,10-ethanoanthracene in 98% yield (1.1939 g) and 100% conversion from the starting material.

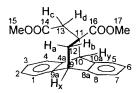
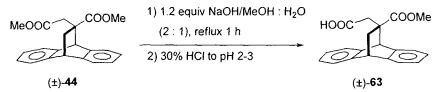


Table 11 Data of compound (±)-44

Physical properties: White crystals, m.p. 154.6-155.3 °C (CH₂Cl₂/Hexane) [lit. 1 m.p. 154-155 °C (CH₂Cl₂/Hexane)]


Table 11 Data of compound (±)-44 (continued)

IR spectroscopy (evaporated thin film)	
Frequency (<i>v</i> , cm ⁻¹)	Type of vibration
3031	C-H stretching
2949, 2981	-CH ₂ -, -CH ₃ stretching
1741	C=O stretching of ester
1466	C=C stretching of aromatic
1427	-CH ₂ -, -CH ₃ bending
1345	-CH ₃ bending
1163	C-O stretching of ester
¹ H NMR spectroscopy (400 MHz) in CDCl ₃	
Chemical shift (δ , ppm)	Type of proton
1.45, 2.81, 4.32	3H, <i>ABX</i> system (<i>J</i> = 13.0, 3.0, 2.4 Hz),
	H _a , H _b , H _x
1.96	1H, d (J = 16.1 Hz), H _c
2.92	1H, d (J = 16.1 Hz), H _d
3.47	3H, s, COOCH ₃ -17
3.67	3H, s, COOCH ₃ -15
4.36	1H, s, H _y
7.03-7.32	8H, <i>m</i> , Ar-H
¹³ C NMR spectroscopy (100 MHz) in CDCI	3
Chemical shift (δ , ppm)	Type of carbon
36.66	CH ₂ -12
44.02	CH-9
44.29	CH ₂ -13
50.25	C _q -11
51.57	CH ₃ -17
52.13	CH ₃ -15
52.74	CH-10
123.25, 123.51, 124.19, 125.69, 126.43,	C aromatic-1, 2, 3, 4, 5, 6, 7, 8, 4a, 8a,
126.59, 139.57, 140.05, 142.79, 143.60	9a, 10a
171.44	C=O-14
174.80	C=O-16

Table 11 Data of compound (±)-44 (continued)

Mass spectrometry (ESI-MS)	
Molecular weight	m/z
Calc. for C ₂₁ H ₂₀ O ₄	336.1362 (M ⁺)
Lock mass of C ₁₂ H ₁₄ N ₄ O ₄ SNa	333.0633 (M+Na) ⁺
Calc. for C ₂₁ H ₂₀ O ₄ Na	359.1259 (M+Na) [⁺]
Found for C ₂₁ H ₂₀ O₄Na	359.1259 (M+Na) ⁺

2.3.2 (\pm)-11-Carbomethoxy-11-carboxylmethyl-9,10-dihydro-9,10-ethanoanthracene [(\pm)-63]

A solution of NaOH (0.1459 g, 3.61 mmol) in H_2O (20 ml) was added to a solution of adduct ((\pm)-44) (1.0121 g, 3.01 mmol) in MeOH (40 ml) and heated to reflux for 1 h. The mixture was acidified with 30% HCl (pH 2-3) followed by extraction several times with CH_2CI_2 . The organic phase was dried over $MgSO_4$, filtered and evaporated to dryness. Crystallization from the mixture of CH_2CI_2 and hexane afforded the monoacid (\pm)-63, (\pm)-11-carbomethoxy-11-carboxylmethyl-9,10-dihydro-9,10-ethanoanthracene in 97% yield (0.9408 g) and 100% conversion from the starting material.

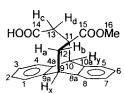
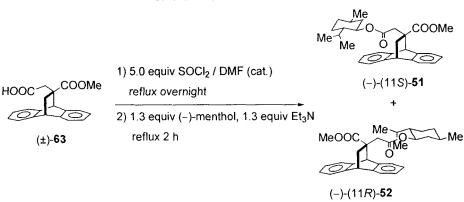


Table 12 Data of compound (\pm) -63

Physical properties : White crystals, m.p. 202.7-204.2 °C (CH ₂ Cl ₂ /Hexane)		
[lit. m.p. 207-208 °C (CH ₂ Cl ₂ /Hexane)]		
IR spectroscopy (evaporated thin film)		
Frequency (ν , cm ⁻¹)	Type of vibration	
3130-3380	O-H stretching of acid	
3026	C-H stretching	
2850, 2949	-CH ₂ -, -CH ₃ stretching	
1743	C=O stretching of acid	


Table 12 Data of compound (±)-63 (continued)

IR spectroscopy (evaporated thin film)	
Frequency (<i>v</i> , cm ⁻¹)	Type of vibration
1710	C=O stretching of ester
1451	C=C stretching of aromatic
1434	-CH ₂ -, -CH ₃ bending
1308	-CH ₃ bending
1193	C-O stretching of ester
¹ H NMR spectroscopy (400 MHz) in CDCl ₃	!
Chemical shift (δ , ppm)	Type of proton
1.48, 2.78, 4.30	3H, ABX system ($J = 13.1, 3.0, 2.4 Hz$),
	H _a , H _b , H _x
1.97	1H, d (J = 16.6 Hz), H _c
2.96	1H, d (J = 16.6 Hz), H _d
3.45	3H, s, COOCH ₃ -16
4.34	1H, s, H _y
7.03-7.30	8H, m, ArH-1, 2, 3, 4, 5, 6, 7, 8
¹³ C NMR spectroscopy (100 MHz) in CDCI	3
Chemical shift (δ , ppm)	Type of carbon
36.74	CH ₂ -12
44.02	CH-9
44.14	CH₂-13
50.01	C _q -11
52.23	CH₃-16
52.81	CH-10
123.33, 123.56, 124.20, 124.98, 125.72,	C aromatic-1, 2, 3, 4, 5, 6, 7, 8, 4a, 8a,
125.75, 125.78, 126.52, 126.72, 139.45,	9a, 10a
139.93, 142.76, 143.56	
174.68	C=O-15
176.62	C=O-14

Table 12 Data of Compound (±)-03 (C	le 12 Data of compound (±)-63 (continued)
-------------------------------------	---

Mass spectrometry (ESI-MS)	
Molecular weight	m/z
Calc. for C ₂₀ H ₁₈ O ₄	322.1205 (M ⁺)
Lock mass of C ₁₂ H ₁₄ N ₄ O ₄ SNa	333.0633 (M+Na) ⁺
Calc. for C ₂₀ H ₁₈ O ₄ Na	345.1103 (M+Na) [⁺]
Found for C ₂₀ H ₁₈ O ₄ Na	345.1103 (M+Na) ⁺

2.3.3 (--)-11-Carbomethoxy-11-[(--)-menthoxyacetyl]-9,10-dihydro-9,10-ethanoanthracenes [(--)-(11S)-51 and (--)-(11R)-52]

A mixture of the monoacid (\pm)-63 (42.27 g, 0.13 mol), thionyl chloride (47.81 ml, 0.66 mol) and dimethyl formamide (as catalyst) was heated to reflux overnight. The solvent was removed under reduced pressure to dryness. A mixture of the crude acid chloride, triethylamine (21.93 ml, 0.16 mol), and (-)-menthol (40.98 g, 0.26 mol) in THF (150 ml) was heated to reflux for 2 h.

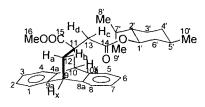

The reaction mixture was passed through Celite 545, diluted with H_2O and extracted with CH_2CI_2 . The combined extracts were washed with H_2O , saturated NaCl solution, dried over MgSO₄, filtered, and evaporated to dryness. The crude product was purified by flash column chromatography on silica gel using EtOAc: hexane = 1.0:9.0 as eluent to give two diastereoisomers, (-)-(11S)-51 in 34% yield (41.09 g) and (-)-(11R)-52 in 34% yield (41.05 g) and 100% conversion from the starting material.

Table 13 Data of compound (-)-(11S)-51

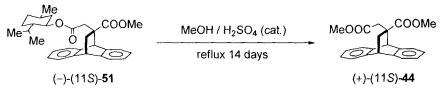
Physical properties: White powder, m.p. 185.1-186.9 °C (CH ₂ Cl ₂ /Hexane)		
[lit. m.p. 185-187 °C (CH ₂ Cl ₂ /Hexane)] α = -108.95°		
(c = 1.285, CHCl ₃)		
IR spectroscopy (evaporated thin film)		
Frequency (ν , cm ⁻¹)	Type of vibration	
3001	C-H stretching	
2863, 2951	-CH ₂ -, -CH ₃ stretching	
1727	C=O stretching of ester	
1462	C=C stretching of aromatic	
1362	-CH ₃ bending	
1175	C-O stretching of ester	
¹ H NMR spectroscopy (400 MHz) in CDCl ₃		
Chemical shift (δ , ppm)	Type of proton	
0.69	3H, d (J = 7.0 Hz), CH ₃ -10'	
0.85	3H, d (J = 3.6 Hz), CH ₃ -8'	
0.86	3H, d ($J = 4.1$ Hz), CH ₃ -9'	
0.73-1.89	9H, m, H menthyl-2', 3', 4', 5', 6', 7'	
1.47, 2.81, 4.31	3H, <i>ABX</i> system (<i>J</i> = 13.0, 3.0, 2.4 Hz),	
	H _a , H _b , H _x	
1.93	1H, d (J = 16.2 Hz), H _c	
2.91	1H, d (J = 16.2 Hz), H _d	
4.34	1H, s, H _y	
4.59	1H, ddd (J = 10.9, 10.9, 4.4 Hz), H-1'	
7.02-7.32	8H, m, ArH-1, 2, 3, 4, 5, 6, 7, 8	
¹³ C NMR spectroscopy (100 MHz) in CDCl ₃		
Chemical shift (δ , ppm)	Type of carbon	
16.05, 20.76, 21.94, 25.97, 31.32, 46.81	CH ₃ menthyl-8', 9', 10', CH menthyl-2',	
	5', 7'	
23.16, 34.12, 44.98	CH ₂ menthyl-3', 4', 6'	
37.00	CH ₂ -12	
40.82	CH ₂ -13	
44.15	СН-9	
50.23	C _q -11	

Table 13 Data of compound (-)-(11S)-51 (continued)

¹³ C NMR spectroscopy (100 MHz) in CDCl ₃	
Chemical shift (δ , ppm)	Type of carbon
52.05	CH ₃ -16
52.97	CH-10
74.60	CH-1'
118.58, 120.37, 123.32, 123.54, 124.21,	C aromatic-1, 2, 3, 4, 5, 6, 7, 8, 4a, 8a,
125.71, 126.45, 126.58, 139.75, 140.17,	9a, 10a
142.82, 143.69	
170.64	C=O-14
174.74	C=O-15
Mass spectrometry (ESI-MS)	
Molecular weight	m/z
Calc. for C ₃₀ H ₃₆ O ₄	460.2614 (M ⁺)
Lock mass of C ₃₂ H ₄₁ NO ₂	472.3215 (M ⁺)
Calc. for C ₃₀ H ₃₆ O₄Na	483.2511 (M+Na) ⁺
Found for C ₃₀ H ₃₆ O ₄ Na	483.2511 (M+Na) ⁺

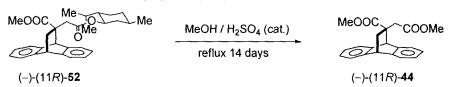
Table 14 Data of compound (-)-(11R)-52

Physical properties: White crystals, m.p. 101.3-102.8 °C (CH ₂ Cl ₂ /Hexane)		
[lit. m.p. 101-103 °C (methanol)], $[\alpha]_D^{30} = -51.38^\circ$		
$(c = 1.195, CHCl_3)$		
IR spectroscopy (evaporated thin film)		
Frequency (ν , cm ⁻¹)	Type of vibration	
3073	C-H stretching	
2858, 2957	-CH ₂ -, -CH ₃ stretching	
1716	C=O stretching of ester	
1451	C=C stretching of aromatic	
1363	-CH ₃ bending	


Table 14 Data of compound (-)-(11R)-52 (continued)

IR spectroscopy (evaporated thin film)	
Frequency (<i>v</i> , cm ⁻¹)	Type of vibration
1181	C-O stretching of ester
¹ H NMR spectroscopy (400 MHz) in CDCl ₃	
Chemical shift (δ , ppm)	Type of proton
0.66	3H, d (J = 7.0 Hz), CH ₃ -10'
0.82	3H, d (J = 7.0 Hz), CH ₃ -8'
0.86	3H, d ($J = 6.5 \text{ Hz}$), CH_3 -9'
0.74-1.90	9H, m, H menthyl-2', 3', 4', 5', 6', 7'
1.44, 2.80, 4.31	3H, ABX system ($J \approx 13.0, 3.0, 2.4 \text{ Hz}$),
	H _a , H _b , H _x
1.93	1H, d (J = 15.8 Hz), H _c
2.95	1H, d (J = 15.8 Hz), H _d
4.34	1H, s, H _y
4.58	1H, ddd (J = 10.9, 10.9, 4.4 Hz), H-1'
7.02-7.32	8H, m, ArH-1, 2, 3, 4, 5, 6, 7, 8
¹³ C NMR spectroscopy (100 MHz) in CDCI	3
Chemical shift (δ , ppm)	Type of carbon
15.93, 20.77, 21.94, 25.83, 31.29, 46.75	CH ₃ menthyl-8', 9', 10', CH menthyl-2', 5',
	7'
23.05, 34.09, 44.87	CH ₂ menthyl-3', 4', 6'
36.60	CH ₂ -12
40.62	CH ₂ -13
44.08	CH-9
50.39	C _q -11
52.01	CH ₃ -16
52.97	CH-10
74.62	CH-1'
123.27, 123.57, 124.15, 124.98, 125.71,	C aromatic-1, 2, 3, 4, 5, 6, 7, 8, 4a, 8a,
125.75, 126.45, 126.61, 139.58, 140.19,	9a, 10a
142.76, 143.73	
170.43	C=O-14
174.71	C=O-15

Mass spectrometry (ESI-MS)	
Calc. for C ₃₀ H ₃₆ O ₄	460.2614 (M ⁺)
Lock mass of C ₃₂ H ₄₁ NO ₂	472.3215 (M ⁺)
Calc. for C ₃₀ H ₃₆ O ₄ Na	483.2511 (M+Na) ⁺
Found for C ₃₀ H ₃₆ O₄Na	483.2511 (M+Na) ⁺


Table 14 Data of compound (-)-(11R)-52 (continued)

2.3.4 (11S)-11-Carbomethoxy-11-methoxyacetyl-9,10-dihydro-9,10-ethanoanthracene [(+)-(11S)-44]

To a solution of (–)-(11S)-**51** (21.67g, 47.05 mmol) in anhydrous MeOH (1500 ml) was added conc. H₂SO₄ (35 ml, catalyst) and the reaction mixture was heated to reflux for 14 days. The reaction mixture was evaporated to remove MeOH. The residue was diluted with H₂O, neutralized with aqueous NaHCO₃ solution, and extracted with CH₂Cl₂. The combined organic extracts were washed with H₂O, dried over MgSO₄, filtered and evaporated to dryness. The crude product was crystallized from EtOAc/hexane to give optically active adduct (+)-(11S)-43 in 95% yield (>99% e.e., 15.03 g), and 100% conversion from the starting material, as white crystals ; m.p. 154.6-155.3 °C (EtOAc/hexane), [lit. m.p. 154-155 °C (EtOAc/hexane)]; [α]_D = +38.67° (c = 1.055, CHCl₃). IR, d H, d C NMR and mass are identical to previously reported data (Table 11).

2.3.5 (11*R*)-11-Carbomethoxy-11-methoxyacetyl-9,10-dihydro-9,10-ethanoanthracene [(-)-(11*R*)-44]

The procedure was carried out as described previously, using adduct (–)-(11*R*)-**52** (1.0542 g, 2.28 mmol) as the starting material. The adduct (–)-(11*R*)-**44** was obtained in 89% yield (0.6624 g), >99% e.e., and 96% conversion from the starting material, as white crystals; m.p. 154.6-155.3 °C (EtOAc/Hexane), [lit. 1 m.p. 154-155 °C

(EtOAc/hexane)]; $[\alpha]_D^{29} = -38.98^\circ$ (c = 1.175, CHCl₃). IR, ¹H, ¹³C NMR and mass are identical to previously reported data (shown in Table 11).

- 2.4 Synthesis of methyl tetrahydro-4-methylene-5-oxo-2-(14-hydroxypentadecan yl)-3-furancarboxylates [(14"R)-53-i and (14"S)-53-ii]
 - 2.4.1 Tetrahydro-4'-carbomethoxy-5'-(14"-hydroxypentadecanyl)-2'furanone-3'-spiro-11-9,10-ethanthracenes [(11*S*)-(14"*R*)-65-*i*,
 (11*S*)-(14"*S*)-65-*ii*, (11*S*)-(14"*R*)-66-*i* and (11*S*)-(14"*S*)-66-*ii*]

To a 250 ml round-bottomed flask equipped with a magnetic stirrer was fitted with a three-way stopcock with a septum cap and nitrogen inlet was added THF (70 ml) and dry diisopropylamine (1.3 ml, 9.11 mmol) *via* syringes. The mixture was cooled down to -78 °C, *n*-butyllithium (5.4 ml, 1.4 N in hexane, 7.59 mmol) was added and the mixture left stirring at 0 °C for 1 h. A solution of adduct [(+)-(11S)-44] (2.1284 g, 6.33 mmol) in THF (20 ml) was introduced to the LDA solution at -78 °C, then stirred at 0°C for 2 h. To a stirred -78 °C solution, a solution of (±)-56 (2.8012 g, 8.22 mmol) was added and the reaction mixture was left stirring at room temperature overnight. The reaction mixture was quenched with saturated aqueous ammonium chloride solution at 0°C followed by extraction with CH₂Cl₂. The dichloromethane solution was washed with H₂O, dried over MgSO₄, filtered, and evaporated to dryness.

The crude product (64) and montmorillonite K10 (as a catalyst) in MeOH (50 ml) was stirred at room temperature for 2 h, then passed through Celite 545 and evaporated to dryness. The crude product was purified by preparative thin layer

chromatography (PLC) using EtOAc: hexane = 2.0: 8.0 as developing solvent to give a mixture of tetrahydro-4'-carbomethoxy-5'-(14"-hydroxypentadecanyl)-2'-furanone-3'-spiro-11-9,10-ethan-thracenes [(11S)-(14"R)-65-i, (11S)-(14"S)-65-ii] and [(11S)-(14"R)-66-i, (11S)-(14"S)-66-ii)] in 64% (2.2708 g) and 15% (0.5322 g) yield respectively, and 100% conversion from the starting material.

Table 15 Data of compounds (11S)-(14"R)-65-i and (11S)-(14"S)-65-ii

	, , , , , , , , , , , , , , , , , , , ,	
Physical properties: White crystals, m.p. 125.1-126.9 °C (EtOAc/Hexane)		
IR spectroscopy (evaporated thin film)	IR spectroscopy (evaporated thin film)	
Frequency (<i>v</i> , cm ⁻¹)	Type of vibration	
3094-3732	O-H stretching	
3028	C-H stretching	
2852, 2929	-CH ₂ -, -CH ₃ stretching	
1780	C=O stretching of ester	
1468	C=C stretching of aromatic	
1429	-CH ₂ -, -CH ₃ bending	
1204	-CH ₃ bending	
1165	C-O stretching of ester	
1104	O-H stretching of 2° alcohol	
¹ H NMR spectroscopy (400 MHz) in CDCl ₃		
Chemical shift (δ , ppm)	Type of proton	
1.17	3H, d (J = 6.2 Hz), CH ₃ -15"	
1.20-1.71	26H, m, CH ₂ -1", 2", 3", 4", 5", 6", 7", 8",	
	9", 10", 11", 12", 13"	
1.99, 2.09, 4.39	3H, ABX system (J = 12.4, 3.2, 2.2 Hz),	
	H _a , H _b , H _x	
2.24	1H, d ($J = 5.1$ Hz), H _c	
3.37	1H, <i>m</i> , CH-14"	
3.82	3H, s, COOCH ₃ -7'	
4.30	1H, <i>m</i> , H _d	
4.64	1H, s, H _v	

Table 15 Data of compounds (11*S*)-(14"*R*)-**65**-*i* and (11*S*)-(14"*S*)-**65**-*ii* (continued)

¹ H NMR spectroscopy (400 MHz) in CDCl ₃	
Chemical shift (δ , ppm)	Type of proton
7.00-7.52	8H, m, ArH-1, 2, 3, 4, 5, 6, 7, 8, 4a, 8a,
	9a, 10a
¹³ C NMR spectroscopy (100 MHz) in CDCl	3
Chemical shift (v, ppm)	Type of carbon
23.43	CH ₃ -15"
25.68, 25.72, 29.21, 29.26, 29.38, 29.50,	CH ₂ -1", 2", 3", 4", 5", 6", 7", 8", 9", 10",
29.55, 29.59, 30.95, 39.30	11", 12", 13"
40.66	CH ₂ -12
43.70	CH-9
46.80	CH-10
50.64	Cq-3'
51.65	CH ₃ -7'
58.19	CH-4'
68.15	CH-14"
76.41	CH-5'
122.32, 123.91, 124.28, 125.89, 126.13,	C aromatic-1, 2, 3, 4, 5, 6, 7, 8, 4a, 8a,
126.68, 127.36, 139.46, 140.77, 142.09,	9a, 10a
143.29	
170.34	C=O-6'
176.95	C=O-2'
Mass spectrometry (ESI-MS)	
Molecular weight	m/z
Calc. for C ₃₆ H ₄₈ O ₅	560.3502 (M ⁺)
Lock mass of C ₂₈ H ₃₇ N ₅ O ₇	556.2771 (M ⁺)
Calc. for C ₃₆ H ₄₈ O ₅ Na	583.3399 (M+Na) ⁺
Found for C ₃₆ H ₄₈ O ₅ Na	583.3414 (M+Na) [†]

Table 16 Data of compounds (11S)-(14"R)-66-i and (11S)-(14"S)-66-ii

Frequency $(\nu, \text{ cm}^{-1})$ 3113-3730 O-H stretching 3025 C-H stretching -CH ₂ -, -CH ₃ stretching 1780 C=O stretching of ester 1466 C=C stretching of aromatic -CH ₂ -, -CH ₃ bending 1209 -CH ₃ bending 1179 C-O stretching of ester O-H stretching of 2° alcohol	Physical properties : White crystals, m.p. 5	57.8-59.2 °C (EtOAc/Hexane)
3113-3730 3025 C-H stretching C-H stretching C-H stretching 2849, 2932 1780 C=C stretching of ester C=C stretching of aromatic 1429 -CH ₂ -, -CH ₃ bending 1209 -CH ₃ bending C-O stretching of ester C-O stretching of ester C-O stretching of ester O-H stretching of 2° alcohol H NMR spectroscopy (400 MHz) in CDCl ₃ Chemical shift (δ, ppm) Type of proton 1.19 3H, d (J = 6.2 Hz), CH ₃ -15° 26H, m, CH ₂ -1°, 2°, 3°, 4°, 5°, 6°, 7°, 8°, 8°, 10°, 11°, 12°, 13° 1.44, 2.41, 4.35 3H, ABX system (J = 13.1, 2.7, 2.6 Hz), H _a , H _b , H _x 1H, σ (J = 5.5 Hz), H _c 3.59 3H, s, COOCH ₃ -7' 3.79 1H, m, CH-14" 4.33 1H, s, H _y 4.86 1H, m, H _d 7.05-7.35 8H, m, ArH-1, 2, 3, 4, 5, 6, 7, 8, 4a, 8a, 9a, 10a BC NMR spectroscopy (100 MHz) in CDCl ₃ Chemical shift (δ, ppm) Type of carbon CH ₃ -15" CH ₂ -1°, 2°, 3°, 4°, 5°, 6°, 7°, 8°, 9°, 10°, 11°, 12°, 13° CH ₂ -1°, 2°, 3°, 4°, 5°, 6°, 7°, 8°, 9°, 10°, 11°, 12°, 13° CH-9	IR spectroscopy (evaporated thin film)	
2849, 2932 1780 1780 C=O stretching 1466 C=C stretching of ester CH ₂ -, -CH ₃ shending 1209 -CH ₃ bending 1179 C-O stretching of ester O-H stretching of 2° alcohol H NMR spectroscopy (400 MHz) in CDCl ₃ Chemical shift (δ, ppm) Type of proton 1.19 3H, d (J = 6.2 Hz), CH ₃ -15" 26H, m, CH ₂ -1", 2", 3", 4", 5", 6", 7", 8", 9", 10", 11", 12", 13" 1.44, 2.41, 4.35 3H, ABX system (J = 13.1, 2.7, 2.6 Hz), H _a , H _b , H _x 1H, d (J = 5.5 Hz), H _c 3.59 3H, s, COOCH ₃ -7' 3.79 1H, m, CH-14" 4.33 1H, s, H _y 4.86 1H, m, H _d 7.05-7.35 8H, m, ArH-1, 2, 3, 4, 5, 6, 7, 8, 4a, 8a, 9a, 10a B*C NMR spectroscopy (100 MHz) in CDCl ₃ Chemical shift (δ, ppm) Type of carbon 23.43 25.68, 25.72, 29.21, 29.26, 29.38, 29.50, 29.55, 29.59, 30.95, 39.30 CH ₂ -1", 2", 3", 4", 5", 6", 7", 8", 9", 10", 11", 12", 13" CH-9	Frequency (ν , cm ⁻¹)	Type of vibration
2849, 2932 1780 1780 C=O stretching of ester C=C stretching of aromatic -CH ₂ -, -CH ₃ bending 1209 -CH ₃ bending 1179 C-O stretching of ester O-H stretching of ester O-H stretching of ester O-H stretching of 2° alcohol H NMR spectroscopy (400 MHz) in CDCl ₃ Chemical shift (δ, ppm) Type of proton 1.19 3H, d (J = 6.2 Hz), CH ₃ -15" 26H, m, CH ₂ -1", 2", 3", 4", 5", 6", 7", 8", 9", 10", 11", 12", 13" 3H, ABX system (J = 13.1, 2.7, 2.6 Hz), H _a , H _b , H _x 1H, d (J = 5.5 Hz), H _c 3.59 3H, s, COOCH ₃ -7' 3.79 1H, m, CH-14" 4.33 1H, s, H _y 4.86 1H, m, H _d 7.05-7.35 8H, m, ArH-1, 2, 3, 4, 5, 6, 7, 8, 4a, 8a, 9a, 10a B*C NMR spectroscopy (100 MHz) in CDCl ₃ Chemical shift (δ, ppm) Type of carbon 23.43 25.68, 25.72, 29.21, 29.26, 29.38, 29.50, 29.55, 29.59, 30.95, 39.30 CH-2-1", 2", 3", 4", 5", 6", 7", 8", 9", 10", 11", 12", 13" CH-9	3113-3730	O-H stretching
C=O stretching of ester C=C stretching of aromatic 1429 -CH ₂ -, -CH ₃ bending 1209 -CH ₃ bending C=O stretching of ester C=C stretching of ester Type of carbon Type of carbon CH ₂ -1", 2", 3", 4", 5", 6", 7", 8", 9", 10", 11", 12", 13" CH ₂ -1", 2", 3", 4", 5", 6", 7", 8", 9", 10", 11", 12", 13" CH=9	3025	C-H stretching
C=C stretching of aromatic 1429 1209 179 1100 C-O stretching of ester O-H stretching of 2° alcohol H NMR spectroscopy (400 MHz) in CDCl ₃ Chemical shift (δ, ppm) 1.19 1.21-1.70 26H, m, CH ₂ -1", 2", 3", 4", 5", 6", 7", 8", 9", 10", 11", 12", 13" 1.44, 2.41, 4.35 3H, ABX system (J = 13.1, 2.7, 2.6 Hz), H _a , H _b , H _x 2.85 1H, d (J = 5.5 Hz), H _c 3.59 3H, s, COOCH ₃ -7' 3.79 1H, m, CH-14" 4.33 1H, s, H _y 4.86 1H, m, H _d 7.05-7.35 8H, m, ArH-1, 2, 3, 4, 5, 6, 7, 8, 4a, 8a, 9a, 10a BC NMR spectroscopy (100 MHz) in CDCl ₃ Chemical shift (δ, ppm) Type of carbon CH ₂ -1", 2", 3", 4", 5", 6", 7", 8", 9", 10", 11", 12", 13" 25.68, 25.72, 29.21, 29.26, 29.38, 29.50, 29.55, 29.59, 30.95, 39.30 11", 12", 13" CH-9	2849, 2932	-CH ₂ -, -CH ₃ stretching
1429 -CH ₂ -, -CH ₃ bending 1209 -CH ₃ bending 1179 C-O stretching of ester 1110 O-H stretching of 2° alcohol H NMR spectroscopy (400 MHz) in CDCl ₃ Chemical shift (δ, ppm) Type of proton 1.19 3H, d (J = 6.2 Hz), CH ₃ -15" 1.21-1.70 26H, m , CH ₂ -1", 2", 3", 4", 5", 6", 7", 8", 9", 10", 11", 12", 13" 1.44, 2.41, 4.35 3H, ABX system (J = 13.1, 2.7, 2.6 Hz), Ha, Hb, Hx 2.85 1H, d (J = 5.5 Hz), Hc 3.59 3H, s, COOCH ₃ -7' 3.79 1H, m , CH-14" 4.33 1H, s, Hy 4.86 1H, m , Hd 7.05-7.35 8H, m , ArH-1, 2, 3, 4, 5, 6, 7, 8, 4a, 8a, 9a, 10a BC NMR spectroscopy (100 MHz) in CDCl ₃ Chemical shift (δ, ppm) Type of carbon 23.43 CH ₃ -15" Chemical shift (δ, ppm) Type of carbon 23.43 CH ₃ -15" Chemical shift (δ, ppm) Type of carbon 23.43 CH ₃ -15" CH ₂ -1", 2", 3", 4", 5", 6", 7", 8", 9", 10", 11", 12", 13" 43.70 CH-9	1780	C=O stretching of ester
1209 -CH ₃ bending 1179 C-O stretching of ester 1110 O-H stretching of 2° alcohol H NMR spectroscopy (400 MHz) in CDCl ₃ Chemical shift (δ , ppm) Type of proton 1.19 3H, d (J = 6.2 Hz), CH ₃ -15" 1.21-1.70 26H, m , CH ₂ -1", 2", 3", 4", 5", 6", 7", 8", 9", 10", 11", 12", 13" 1.44, 2.41, 4.35 3H, ABX system (J = 13.1, 2.7, 2.6 Hz), H _a , H _b , H _x 2.85 1H, d (J = 5.5 Hz), H _c 3.59 3H, s, COOCH ₃ -7' 3.79 1H, m , CH-14" 4.33 1H, s, H _y 4.86 1H, m , H _d 7.05-7.35 8H, m , ArH-1, 2, 3, 4, 5, 6, 7, 8, 4a, 8a, 9a, 10a B*C NMR spectroscopy (100 MHz) in CDCl ₃ Chemical shift (δ , ppm) Type of carbon 23.43 CH ₃ -15" Ch ₂ -1", 2", 3", 4", 5", 6", 7", 8", 9", 10", 29.55, 29.59, 30.95, 39.30 43.70 CH-9	1466	C=C stretching of aromatic
1179	1429	-CH ₂ -, -CH ₃ bending
Th NMR spectroscopy (400 MHz) in CDCl ₃ Chemical shift (δ, ppm) 1.19 1.21-1.70 26H, m, CH ₂ -1", 2", 3", 4", 5", 6", 7", 8", 9", 10", 11", 12", 13" 1.44, 2.41, 4.35 3H, ABX system (J = 13.1, 2.7, 2.6 Hz), H _a , H _b , H _x 2.85 1H, d (J = 5.5 Hz), H _c 3.59 3H, s, COOCH ₃ -7' 1H, m, CH-14" 4.33 1H, m, H _d 7.05-7.35 3H, m, ArH-1, 2, 3, 4, 5, 6, 7, 8, 4a, 8a, 9a, 10a Type of carbon CH ₃ -15" CH ₂ -1", 2", 3", 4", 5", 6", 7", 8", 9", 10", 11", 12", 13" CH-9	1209	-CH ₃ bending
The NMR spectroscopy (400 MHz) in CDCl ₃ Chemical shift (δ , ppm) Type of proton 1.19 3H, d (J = 6.2 Hz), CH ₃ -15" 1.21-1.70 26H, m , CH ₂ -1", 2", 3", 4", 5", 6", 7", 8", 9", 10", 11", 12", 13" 1.44, 2.41, 4.35 3H, ABX system (J = 13.1, 2.7, 2.6 Hz), Ha, Hb, Hx 2.85 1H, d (J = 5.5 Hz), Hc 3.59 3H, s , COOCH ₃ -7' 3.79 1H, m , CH-14" 4.33 1H, s , Hy 4.86 1H, m , Hd 7.05-7.35 8H, m , ArH-1, 2, 3, 4, 5, 6, 7, 8, 4a, 8a, 9a, 10a BC NMR spectroscopy (100 MHz) in CDCl ₃ Chemical shift (δ , ppm) Type of carbon 23.43 25.68, 25.72, 29.21, 29.26, 29.38, 29.50, 29.55, 29.59, 30.95, 39.30 43.70 CH-9	1179	C-O stretching of ester
Chemical shift (δ, ppm) Type of proton 1.19 3H, d (J = 6.2 Hz), CH ₃ -15" 1.21-1.70 26H, m , CH ₂ -1", 2", 3", 4", 5", 6", 7", 8", 9", 10", 11", 12", 13" 1.44, 2.41, 4.35 3H, ABX system (J = 13.1, 2.7, 2.6 Hz), Ha, Hb, Hx 2.85 1H, d (J = 5.5 Hz), Hc 3.59 3H, s, COOCH ₃ -7' 3.79 1H, m , CH-14" 4.33 1H, m , CH-14" 4.86 1H, m , ArH-1, 2, 3, 4, 5, 6, 7, 8, 4a, 8a, 9a, 10a 13°C NMR spectroscopy (100 MHz) in CDCl ₃ Chemical shift (δ , ppm) Type of carbon 23.43 CH ₃ -15" 25.68, 25.72, 29.21, 29.26, 29.38, 29.50, 29.55, 29.59, 30.95, 39.30 CH ₂ -1", 2", 3", 4", 5", 6", 7", 8", 9", 10", 11", 12", 13" 43.70 CH-9	1110	O-H stretching of 2° alcohol
1.19 1.21-1.70 26H, m, CH ₂ -1", 2", 3", 4", 5", 6", 7", 8", 9", 10", 11", 12", 13" 1.44, 2.41, 4.35 3H, ABX system (J = 13.1, 2.7, 2.6 Hz), H _a , H _b , H _x 2.85 1H, d (J = 5.5 Hz), H _c 3.59 3H, s, COOCH ₃ -7' 3.79 1H, m, CH-14" 4.33 1H, s, H _y 4.86 1H, m, H _d 7.05-7.35 8H, m, ArH-1, 2, 3, 4, 5, 6, 7, 8, 4a, 8a, 9a, 10a 13C NMR spectroscopy (100 MHz) in CDCl ₃ Chemical shift (δ, ppm) 23.43 Chemical shift (δ, ppm) Type of carbon 23.43 CH ₂ -1", 2", 3", 4", 5", 6", 7", 8", 9", 10", 11", 12", 13" CH-9	¹ H NMR spectroscopy (400 MHz) in CDCl ₃	
1.21-1.70	Chemical shift (δ , ppm)	Type of proton
9", 10", 11", 12", 13" 1.44, 2.41, 4.35 3H, ABX system ($J = 13.1$, 2.7, 2.6 Hz), H_a , H_b , H_x 2.85 1H, d ($J = 5.5$ Hz), H_c 3.59 3H, s, COOCH ₃ -7' 1H, m, CH-14" 4.33 1H, s, H _y 4.86 1H, m, H _d 7.05-7.35 8H, m, ArH-1, 2, 3, 4, 5, 6, 7, 8, 4a, 8a, 9a, 10a 13°C NMR spectroscopy (100 MHz) in CDCl ₃ Chemical shift (δ , ppm) Type of carbon 23.43 25.68, 25.72, 29.21, 29.26, 29.38, 29.50, 29.55, 29.59, 30.95, 39.30 43.70 CH-9	1.19	3H, d (J = 6.2 Hz), CH ₃ -15"
1.44, 2.41, 4.35 3H, ABX system ($J = 13.1, 2.7, 2.6$ Hz), H_a , H_b , H_x 1H, d ($J = 5.5$ Hz), H_c 3.59 3H, s , s	1.21-1.70	26H, m, CH ₂ -1", 2", 3", 4", 5", 6", 7", 8",
2.85 H_a , H_b , H_x H_b , H_x H_b , H_x H_b , H_x H_b , H_y H_b , H_z H_z ,		9", 10", 11", 12", 13"
2.85 1H, d (J = 5.5 Hz), H _c 3.59 3H, s, COOCH ₃ -7' 1H, m , CH-14" 4.33 1H, s, H _y 4.86 1H, m , ArH-1, 2, 3, 4, 5, 6, 7, 8, 4a, 8a, 9a, 10a Chemical shift (δ , ppm) Type of carbon 23.43 CH ₃ -15" CH ₃ -15" CH ₂ -1", 2", 3", 4", 5", 6", 7", 8", 9", 10", 29.55, 29.59, 30.95, 39.30 11", 12", 13" CH-9	1.44, 2.41, 4.35	3H, ABX system (J = 13.1, 2.7, 2.6 Hz),
3.59 3H, s, COOCH ₃ -7' 1H, m, CH-14" 4.33 4.86 1H, m, H _d 7.05-7.35 8H, m, ArH-1, 2, 3, 4, 5, 6, 7, 8, 4a, 8a, 9a, 10a **C NMR spectroscopy (100 MHz) in CDCl ₃ Chemical shift (δ, ppm) 23.43 CH ₃ -15" CH ₂ -1", 2", 3", 4", 5", 6", 7", 8", 9", 10", 11", 12", 13" 43.70 CH-9		H _a , H _b , H _x
3.79 4.33 1H, m, CH-14" 1H, s, H _y 4.86 1H, m, H _d 7.05-7.35 8H, m, ArH-1, 2, 3, 4, 5, 6, 7, 8, 4a, 8a, 9a, 10a (Chemical shift (δ, ppm) Type of carbon 23.43 25.68, 25.72, 29.21, 29.26, 29.38, 29.50, 29.55, 29.59, 30.95, 39.30 43.70 CH-9 (CH-9)	2.85	1H, d ($J = 5.5 \text{ Hz}$), H _c
4.33 4.86 1H, s, H _y 1H, m, H _d 7.05-7.35 8H, m, ArH-1, 2, 3, 4, 5, 6, 7, 8, 4a, 8a, 9a, 10a Chemical shift (δ, ppm) 23.43 CH ₃ -15" CH ₂ -1", 2", 3", 4", 5", 6", 7", 8", 9", 10", 29.55, 29.59, 30.95, 39.30 43.70 CH-9	3.59	3H, s, COOCH ₃ -7'
4.86 7.05-7.35 1H, m, H _d 8H, m, ArH-1, 2, 3, 4, 5, 6, 7, 8, 4a, 8a, 9a, 10a (C NMR spectroscopy (100 MHz) in CDCl ₃ Chemical shift (δ, ppm) 23.43 25.68, 25.72, 29.21, 29.26, 29.38, 29.50, 29.55, 29.59, 30.95, 39.30 43.70 1H, m, H _d 8H, m, ArH-1, 2, 3, 4, 5, 6, 7, 8, 4a, 8a, 9a, 10a (CH ₃ -10a (CH ₃ -15" (CH ₂ -1", 2", 3", 4", 5", 6", 7", 8", 9", 10", 11", 12", 13" (CH-9)	3.79	1H, <i>m</i> , CH-14"
7.05-7.35 8H, m, ArH-1, 2, 3, 4, 5, 6, 7, 8, 4a, 8a, 9a, 10a Type of carbon 23.43 25.68, 25.72, 29.21, 29.26, 29.38, 29.50, 29.55, 29.59, 30.95, 39.30 43.70 Rh, m, ArH-1, 2, 3, 4, 5, 6, 7, 8, 4a, 8a, 9a, 10a Type of carbon CH ₃ -15" CH ₂ -1", 2", 3", 4", 5", 6", 7", 8", 9", 10", 11", 12", 13" CH-9	4.33	1H, s, H _y
9a, 10a Type of carbon 23.43 25.68, 25.72, 29.21, 29.26, 29.38, 29.50, 29.55, 29.59, 30.95, 39.30 43.70 Pag. 10a Type of carbon CH ₃ -15" CH ₂ -1", 2", 3", 4", 5", 6", 7", 8", 9", 10", 11", 12", 13" CH-9	4.86	1H, <i>m</i> , H _d
C NMR spectroscopy (100 MHz) in CDCl ₃ Chemical shift (δ, ppm) Type of carbon 23.43 CH ₃ -15" 25.68, 25.72, 29.21, 29.26, 29.38, 29.50, 29.55, 29.59, 30.95, 39.30 CH ₂ -1", 2", 3", 4", 5", 6", 7", 8", 9", 10", 11", 12", 13" 43.70 CH-9	7.05-7.35	8H, m, ArH-1, 2, 3, 4, 5, 6, 7, 8, 4a, 8a,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		9a, 10a
23.43 CH ₃ -15" 25.68, 25.72, 29.21, 29.26, 29.38, 29.50, 29.55, 29.59, 30.95, 39.30 11", 12", 13" 43.70 CH ₃ -15" CH ₂ -1", 2", 3", 4", 5", 6", 7", 8", 9", 10", 11", 12", 13"	¹³ C NMR spectroscopy (100 MHz) in CDCI	3
25.68, 25.72, 29.21, 29.26, 29.38, 29.50, CH ₂ -1", 2", 3", 4", 5", 6", 7", 8", 9", 10", 29.55, 29.59, 30.95, 39.30 11", 12", 13" CH-9	Chemical shift (δ , ppm)	Type of carbon
29.55, 29.59, 30.95, 39.30	23.43	CH ₃ -15"
43.70 CH-9	25.68, 25.72, 29.21, 29.26, 29.38, 29.50,	CH ₂ -1", 2", 3", 4", 5", 6", 7", 8", 9", 10",
	29.55, 29.59, 30.95, 39.30	11", 12", 13"
46.80 CH-10	43.70	CH-9
	46.80	CH-10

Table 16 Data of compounds (11S)-(14"R)-66-i and (11S)-(14"S)-66-ii (continued)

¹³ C NMR spectroscopy (100 MHz) in CDCl ₃	
Chemical shift (δ , ppm)	Type of carbon
50.64	Cq-3'
51.65	CH ₃ -7'
58.19	CH-4'
68.15	CH-14"
76.41	CH-5'
122.32, 123.91, 124.28, 125.89, 126.13,	C aromatic-1, 2, 3, 4, 5, 6, 7, 8, 4a, 8a,
126.68, 127.36, 139.46, 140.77, 142.09,	9a, 10a
143.29	
170.34	C=O-6'
176.95	C=O-2'
Mass spectrometry (ESI-MS)	
Molecular weight	m/z
Calc. for C ₃₆ H ₄₈ O ₅	560.3502 (M ⁺)
Lock mass of C ₂₈ H ₃₇ N ₅ O ₇ Na	578.2591 (M+Na) ⁺
Calc. for C ₃₆ H ₄₈ O ₅ Na	583.3399 (M+Na) [†]
Found for C ₃₆ H ₄₈ O ₅ Na	583.3401 (M+Na) [†]

2.4.2 Tetrahydro-4'-carbomethoxy-5'-(14"-hydroxypentadecanyl) -2'furanone-3'-spiro-11-9,10-dihydro-9,10-ethanoanthracenes [(11S)-(14"R)-67-i and (11S)-(14"R)-67-ii]

To a solution mixture of the *cis*-adduct (11S)-(14"R)-**65**-*i* and (11S)-(14"S)-**65**-*ii* (0.2938 g, 0.52 mmol) in THF (50 ml): MeOH (10 ml) was added sodium methoxide

solution (0.52 mmol, 0.21 N in anhydrous MeOH, 2.5 ml,) at 0 °C and the reaction mixture was left stirring at room temperature for 7 days. The reaction mixture was quenched with saturated NH₄Cl solution and extracted several times with CH₂Cl₂. The combined organic layer was washed with H₂O, saturated NaCl solution, then dried over MgSO₄, filtered, and evaporated to dryness. The crude product was purified by preparative thin layer chromatography (PLC) using EtOAc: hexane = 2.0: 8.0 as developing solvent to provide the mixture of *trans*-isomer (11*S*)-(14"*R*)-67-i and (11*S*)-(14"*S*)-67-ii in 91% yield (0.1530 g), and 57% conversion from the starting material.

$$\begin{array}{c} R \stackrel{\text{H}}{\downarrow} d \\ H_{C} \stackrel{\text{for}}{\downarrow} 5 \stackrel{\text{for}}{\downarrow} 6 \stackrel{\text{for}}{\downarrow} 4 \stackrel{\text{for}}{\downarrow} 10^{\circ} 12^{\circ} 14^{\circ} \stackrel{\text{for}}{\downarrow} 15^{\circ} \\ H_{A} \stackrel{\text{for}}{\downarrow} 10 \stackrel{\text{for}}{\downarrow} 10 \stackrel{\text{for}}{\downarrow} 13^{\circ} \stackrel{\text{for}}{\downarrow} 11^{\circ} 11^$$

Table 17 Data of compounds (11S)-(14"R)-67-i and (11S)-(14"S)-67-ii

Physical properties: White crystals, m.p. 89.8-91.2 °C (EtOAc/Hexane)	
IR spectroscopy (evaporated thin film)	
Frequency (v, cm ⁻¹)	Type of vibration
3080-3752	O-H stretching
3025	C-H stretching
2849, 2926	-CH ₂ -, -CH ₃ stretching
1769	C=O stretching of ester
1467	C=C stretching of aromatic
1429	-CH ₂ -, -CH ₃ bending
1209	-CH ₃ bending
1158	C-O stretching of ester
1115	O-H stretching of 2° alcohol
¹ H NMR spectroscopy (400 MHz) in CDC	Dl ₃
Chemical shift (δ , ppm)	Type of proton
1.18	3H, d (J = 6.2 Hz), CH ₃ -15"
1.20-1.85	26H, m, CH ₂ -1", 2", 3", 4", 5", 6", 7", 8",
	9", 10", 11", 12", 13"
1.95, 2.55, 4.34	3H, <i>ABX</i> system (<i>J</i> = 13.0, 3.3, 2.2 Hz),
	H _a , H _b , H _x
2.90	1H, d ($J = 7.8 \text{ Hz}$), H _c
3.21	3H, s, COOCH ₃ -7'

Table 17 Data of compounds (11S)-(14"R)-67-i and (11S)-(14"S)-67-ii (continued)

¹ H NMR spectroscopy (400 MHz) in CDCl ₃	
Chemical shift (δ , ppm)	Type of proton
3.78	1H, m, CH-14"
4.26	1H, s, H _y
4.35	1H, <i>m</i> , H _d
7.07-7.36	8H, m, ArH-1, 2, 3, 4, 5, 6, 7, 8, 4a, 8a,
	9a, 10a
¹³ C NMR spectroscopy (100 MHz) in CDCl ₃	
Chemical shift (δ , ppm)	Type of carbon
23.45	CH ₃ -15"
25.29, 25.74, 29.22, 29.35, 29.43, 29.56,	CH ₂ -1", 2", 3", 4", 5", 6", 7", 8", 9", 10",
29.59, 34.94, 39.33	11", 12", 13"
35.06	CH ₂ -12
43.76	CH-9
51.29	Cq-3'
51.93	CH ₃ -7'
53.06	CH-10
56.73	CH-4'
68.17	CH-14"
78.68	CH-5'
122.56, 124.03, 125.60, 125.75, 126.24,	C aromatic-1, 2, 3, 4, 5, 6, 7, 8, 4a, 8a,
126.39, 126.84, 139.28, 139.42, 143.22,	9a, 10a
143.54	
170.65	C=O-6'
177.04	C=O-2'
Mass spectrometry (ESI-MS)	
Molecular weight	m/z
Calc. for C ₃₆ H ₄₈ O ₅	560.3502 (M ⁺)
Lock mass of C ₂₈ H ₃₇ N ₅ O ₇ Na	578.2591 (M+Na) [†]
Calc. for C ₃₆ H ₄₈ O ₅ Na	583.3399 (M+Na) ⁺
Found for C ₃₆ H ₄₈ O ₅ Na	583.3401 (M+Na) ⁺

2.4.3 Methyl tetrahydro-4-methylene-5-oxo-2-(14-hydroxypentadecanyl)-3-furancarboxylates [(14"R)-53-i and (14"S)-53-ii]

The mixture of (11S)-(14"R)-67-*i* and (11S)-(14"S)-67-*ii* (0.1404 g, 0.25 mmol) was placed in a 10 ml round-bottomed flask of the modified flash vacuum pyrolysis apparatus (sinter glass column, Figure 13 in Chapter 3) and the system was subjected to high vacuum. The mixture of (11S)-(14"R)-67-*i* and (11S)-(14"S)-67-*ii* was carefully pyrolyzed with free flame and the vapor was trapped in the sinter glass column. The crude product was digested with cooled hexane to precipitate out the mixture of anthracene and the adduct (11S)-(14"R)-67-*i* and (11S)-(14"S)-67-*ii*. The filtrate was evaporated and the residue was crystallized from cooled hexane to give the mixture of *trans*-isomer (14"R)-53-*i* and (14"S)-53-*ii* in 88% yield (0.0844 g), and 100% conversion from the starting material.

Table 18 Data of compounds (14"R)-53-i and (14"S)-53-ii

Physical properties: White crystals, m.p. 61.7-62.8 °C (Hexane)	
IR spectroscopy (evaporated thin film)	
Frequency (ν , cm ⁻¹)	Type of vibration
2992-3757	O-H stretching
2855, 2915	-CH ₂ -, -CH ₃ stretching
1736	C=O stretching of ester
1462	-CH ₂ -, -CH ₃ bending
1346	-CH ₃ bending

Table 18 Data of compounds (14"R)-53-i and (14"S)-53-ii (continued)

IR spectroscopy (evaporated thin film)	
Frequency (v, cm ⁻¹)	Type of vibration
1176	C-O stretching of ester
1121	O-H stretching of 2° alcohol
873	C=C bending of alkene
¹ H NMR spectroscopy (400 MHz) in CDCl ₃	
Chemical shift (δ , ppm)	Type of proton
1.18	3H, d (J = 6.2 Hz), CH ₃ -15'
1.21-1.79	26H, m, CH ₂ -1', 2', 3', 4', 5', 6', 7', 8', 9',
	10', 11', 12', 13'
3.57	1H, <i>m</i> , H _c
3.78	1H, <i>m</i> , CH-14'
3.80	3H, s, COOCH ₃ -7
4.80	1H, <i>m</i> , H _d
5.92	1H, d (J = 2.7 Hz), H _a
6.41	1H, d (J = 3.1 Hz), H _b
¹³ C NMR spectroscopy (100 MHz) in CDCl ₃	3
Chemical shift (δ , ppm)	Type of carbon
23.60	CH ₃ -15'
24.89, 25.90, 29.33, 29.54, 29.62, 29.74,	CH ₂ -1', 2', 3', 4', 5', 6', 7', 8', 9', 10', 11',
29.76, 30.74, 30.97, 35.94, 39.58	12', 13'
50.09	СН-3
53.26	CH₃-7
68.60	CH-14
79.50	CH-2
125.93	CH₂-8
133.83	C=C-4
169.33	C=O-5
170.74	C=O-6
Mass spectrometry (ESI-MS)	
Molecular weight	m/z
Calc. for C ₂₂ H ₃₈ O ₅	382.2719 (M ⁺)
Lock mass of C ₁₂ H ₁₄ N ₄ O ₄ SNa	333.0633 (M+Na) ⁺