

รายงานวิจัยฉบับสมบูรณ์

โครงการพัฒนาชีวิทยาศาสตร์ที่มีพื้นที่ผิวและเสถียรภาพสูงเพื่อใช้ประโยชน์
ในเชลล์เชื่อเพลิงแบบออกแบบชีว์แจ้ง

โดย ดร.วีรวรรณ สุทธิศรีปก คณะ

เมษายน 2550

บทคัดย่อ

ในงานวิจัยนี้สารประกอบชีวเริมออกไซด์สามารถถูกเตรียมขึ้นได้จากการบวนการ 3 กระบวนการหลักๆ คือ Precipitation, Templating และ Surfactant assisted approach ซึ่งจากการวิเคราะห์พบว่าสารประกอบชีวเริมออกไซด์ที่เตรียมขึ้นโดยกระบวนการ Cationic surfactant assisted method จะมีขนาดของอนุภาคที่เล็กที่สุด และมีพื้นที่ผิวสูงที่สุด จากการทดสอบคุณสมบัติรีดออกซ์ (Redox Property) ของสารประกอบชีวเริมออกไซด์ถูกเตรียมขึ้นจากการบวนการต่างๆ ซึ่งคุณสมบัติรีดออกซ์สามารถทำการศึกษาได้จากการบวนการ Temperature Programmed Reduction (TPR) และกระบวนการ Temperature Programmed Oxidation (TPO) พบว่าคุณสมบัติ Redox (ปริมาณออกซิเจนที่ผิวที่สามารถใช้ไประหว่างกระบวนการ Reduction และสามารถ recover กลับมาได้อีกครั้งด้วยกระบวนการ Oxidation) จะแปรผันตามค่าพื้นที่ผิวของสาร โดยสารประกอบชีวเริมออกไซด์ซึ่งถูกเตรียมขึ้นได้จากการบวนการ Surfactant assisted approach จะมีปริมาณออกซิเจนที่ผิว 2084 mmol/g ในขณะที่สารประกอบชีวเริมออกไซด์ที่ถูกเตรียมขึ้นได้จากการบวนการ Precipitation และ Templating จะมีปริมาณออกซิเจนที่ผิวเพียง 781 และ 1724 mmol/g ตามลำดับ

จากการทดสอบศักยภาพของสารประกอบชีวเริมออกไซด์ที่เตรียมด้วยวิธีการต่างๆ กันต่อกระบวนการรีฟอร์มมีของแข็งมีเทนด้วยน้ำสรุปได้ว่าสารประกอบชีวเริมออกไซด์ที่มีอนุภาคที่เล็กที่สุด และมีพื้นที่ผิวที่สูงที่สุดจะมีศักยภาพในการเป็นตัวเร่งปฏิกิริยาต่อกระบวนการรีฟอร์มมีของแข็งด้วยน้ำสูงที่สุด นั้นแสดงว่าศักยภาพต่อกระบวนการรีฟอร์มมีของแข็งแปรผันโดยตรงกับปริมาณพื้นที่ผิวของตัวเร่งปฏิกิริยานั้นเอง จากการศึกษาศักยภาพในการต้านทานต่อการเกิดคาร์บอนที่ผิวของตัวเร่งปฏิกิริยาชีวเริมออกไซด์ที่เตรียมขึ้นด้วยกระบวนการต่างๆ ซึ่งกระบวนการที่ใช้ในการศึกษาคือ Temperature Programmed Oxidation (TPO) โดยการป้อนออกซิเจนเข้าสู่ระบบหลังกระบวนการรีฟอร์มมีของแข็ง พบร่วมกับชีวเริมออกไซด์ที่เตรียมโดยวิธี Surfactant assisted method มีศักยภาพในการต้านทานการเกิดคาร์บอนที่ผิวสูงที่สุด เช่นกัน

อีกนึ่งการเติม ZrO_2 เพื่อสังเคราะห์ Ce-ZrO₂ จะช่วยเพิ่มพื้นที่ผิวของสารได้ อีกทั้งเสถียรภาพต่อความร้อนยังดีขึ้นอีกด้วย โดยจากผลการศึกษาศักยภาพของตัวเร่งปฏิกิริยา Ce-ZrO₂ ต่อกระบวนการรีฟอร์มมีของแข็งเทียบกับตัวเร่งปฏิกิริยา CeO₂ และ Ni/Al₂O₃ พบร่วมกับตัวเร่งปฏิกิริยา Ce-ZrO₂ มีศักยภาพต่อกระบวนการรีฟอร์มมีของแข็งสูงมากกว่าอย่างชัดเจน

Keywords: ชีวเริมออกไซด์; คุณสมบัติรีดออกซ์; กระบวนการรีฟอร์มมีของแข็งด้วยน้ำ

Abstract

In the present work, cerium oxide (ceria) was prepared by 3 different methods, precipitation, templating, and surfactant-assisted methods. After calcination at 900°C, ceria prepared by Surfactant-assisted method (SF) was observed from the present work to have significantly higher surface area than those prepared by Templating (TP) and Precipitation (PP) methods. It was found from the work that the specific surface area of ceria presents an important role on the oxygen storage capacity (OSC), the reactivity toward methane steam reforming, and the resistance toward carbon formation of this material. Ceria prepared by Surfactant-assisted method (SF) showed strong OSC and good reforming reactivity in terms of thermal stability and resistance toward carbon formation compared to others. In detail, the degree of OSC was measured by the number of hydrogen uptake from the temperature programmed reduction (TPR-1). It was found that the value of hydrogen uptake from the TPR-1 of ceria prepared by SF was 2084 mmol/g, whereas those of ceria prepared by TP and PP were 1724 and 781 mmol/g, respectively.

According to the reactivity toward methane steam reforming, after purging in 3 kPa methane and 9 kPa steam at 900°C for 8h, the methane conversion at steady state of ceria prepared by SF was approximately 38% with very low amount of carbon formed on the surface (0.16 mmol/g), whereas those of ceria prepared by TP and PP were 22% (with the amount of carbon formation of 0.30 mmol/g) and 13% (with the amount of carbon formation of 0.33 mmol/g), respectively.

It should be noted that the doping of Zr on the surface of ceria, forming Ce-ZrO₂, can increase the specific surface area of the material. In addition, according to the reforming testing, the reactivity toward steam reforming of Ce-ZrO₂ is significantly higher than that over ceria and Ni/Al₂O₃.

Keywords: cerium oxide, redox property, methane steam reforming

หน้าสรุปโครงการ (Executive Summary)

ทุนเพิ่มขีดความสามารถด้านการวิจัยของอาจารย์รุ่นใหม่ (MRG4780144)

1. ชื่อโครงการ (ภาษาไทย) การพัฒนาซีเรียมออกไซด์ที่มีพื้นที่ผิวและเสถียรภาพสูงเพื่อใช้ประโยชน์ในเซลล์เชื้อเพลิงแบบออกไซด์แข็ง

(ภาษาอังกฤษ) DEVELOPMENT OF HIGH SURFACE AREA AND HIGH STABILITY CERIA-BASED MATERIALS FOR APPLICATION IN SOFC

2. หัวหน้าโครงการ วีรวรรณ สุทธิศรีปก (Weerawan Sutthisripok)

คุณวุฒิ ปริญญาเอก (Ph.D.)

ตำแหน่ง อาจารย์

หน่วยงานที่สังกัด ภาควิชาวิศวกรรมเหมืองแร่และวัสดุ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยสงขลานครินทร์

โทรศัพท์ (074)-287319

Email weerawan.s@psu.ac.th

3. หลักการและเหตุผลของงานวิจัย

ตัวเร่งปฏิกิริยาจำพวกซีเรียมออกไซด์ถูกใช้กันอย่างแพร่หลายในอุตสาหกรรมปิโตรเคมีในปัจจุบัน ซึ่งเรียบเรียกมีคุณสมบัติเดอค็อกซ์ (Redox) ซึ่งสามารถเก็บและถ่ายเท้ออกซิเจนได้ โดยตัวเร่งปฏิกิริยาชนิดนี้จะสามารถเก็บออกซิเจนไว้ในตัวเองได้ในสภาวะที่ถูกออกซิไดซ์ ในทางกลับกัน มันสามารถปลดปล่อยอออกซิเจนออกจากตัวของมันเองได้เมื่อออยู่ในสภาวะที่ถูกเรียกว่า ตัวอย่างการใช้งานหลักๆ ของซีเรียมออกไซด์ในปัจจุบันนี้ เช่น การใช้ในอุตสาหกรรมการกำจัดพิษสารอินทรีย์ในน้ำเสีย หรือการใช้สารนี้เป็นตัว additive สำหรับตัวเร่งปฏิกิริยาการเผาไหม้เป็นต้น นอกจากนี้ยังมีความพยายามในการนำสารประเภทนี้ไปใช้ในอุตสาหกรรมจำพวก FCC, TWCs และ ethylbenzene dehydrogenation ซึ่งมีการศึกษา และทำวิจัยในปัจจุบันอย่างแพร่หลาย

อิกตัวอย่างหนึ่งสำหรับการใช้งานของชีวเริมออกไซด์ซึ่งได้มีการทำวิจัยอย่างแพร่หลายในปัจจุบันและเป็นจุดมุ่งหมายสำคัญสำหรับโครงการนี้ คือใช้ชีวเริมออกไซด์เป็นตัวเร่งปฏิกิริยาในการผลิตไฮโดรเจนสำหรับเชลล์เชื่อเพลิงแบบออกไซด์แข็ง (Solid Oxide Fuel Cell) เชลล์เชื่อเพลิงชนิดนี้สามารถผลิตกระแสไฟฟ้าโดยใช้ไฮโดรเจนซึ่งไม่มีองค์ประกอบของคาร์บอนอยู่เป็นเชื่อเพลิง และประสิทธิภาพการใช้งานสามารถเพิ่มขึ้นได้สูงถึง 65% มีการติดตั้งเพลิงในวารสารนานาชาติ ว่าชีวเริมออกไซด์เป็นตัวเร่งปฏิกิริยาที่ดีสำหรับเชลล์เชื่อเพลิงแบบออกไซด์แข็งซึ่งมีกระบวนการปฏิรูปน้ำเพื่อผลิตไฮโดรเจนอยู่ภายใน (Internal Reforming) เนื่องจากตัวเร่งปฏิกิริยานิดมีความต้านทานการเกิดคาร์บอนที่ผิว (Carbon formation) สูงมาก แต่ปัญหาใหญ่ของการชีวเริมออกไซด์เป็นตัวเร่งปฏิกิริยา คือความต้องการกระบวนการปฏิรูปน้ำ (Steam Reforming) ต่ำเกินไป และส่งผลให้สารไฮโดรคาร์บอน เช่น มีเทนที่เหลือจากปฏิกิริยาหลุดเข้าไปยังส่วนหลักของเชลล์เชื่อเพลิงและส่งผลให้ประสิทธิภาพการทำงานของเชลล์เชื่อเพลิงต่ำลง สาเหตุที่ความต้องการของชีวเริมออกไซด์ต่อกระบวนการปฏิรูปน้ำ (Steam Reforming) ต่ำเกินไปได้มีรายงานว่าเนื่องมาจากการที่มีพื้นที่ผิว (Specific Surface Area) ของสารชนิดนี้ต่ำมากเมื่อเทียบกับตัวเร่งปฏิกิริยาทั่วไป โดยชีวเริมออกไซด์ซึ่งเตรียมโดยวิธี co-precipitation ธรรมดายังมีพื้นที่ผิว (Specific Surface Area) หลังทำการ calcinations ที่ 1173 K ประมาณ $2.6 \text{ m}^2/\text{g}$ เท่านั้น ดังนั้นเพื่อการพัฒนาเทคโนโลยีเชลล์เชื่อเพลิงแบบออกไซด์แข็ง (Solid Oxide Fuel Cell) ในอนาคต และเพื่อสามารถใช้ประโยชน์จากชีวเริมออกไซด์ในภาคอุตสาหกรรมได้มากขึ้นกว่าในปัจจุบัน การพัฒนาชีวเริมออกไซด์ที่มีพื้นที่ผิว (Specific Surface Area) และเสถียรภาพสูงขึ้นจึงเป็นสิ่งที่จำเป็นที่ควรทำการวิจัย

เนื้อหางานวิจัย

บทนำ

งานวิจัยที่ดำเนินการเกี่ยวข้องกับการพัฒนาตัวเร่งปฏิกิริยาจำพวกซีเรียมออกไซด์ซึ่งถูกใช้กันอย่างแพร่หลายในอุตสาหกรรมปิโตรเคมีในปัจจุบัน ซึ่งเรียมออกไซด์หรือซีเรียมมีคุณสมบัติเดียวกัน (Redox) ซึ่งสามารถเก็บและถ่ายเทอออกซิเจนได้ โดยตัวเร่งปฏิกิริยาชนิดนี้จะสามารถเก็บออกซิเจนไว้ในตัวเองได้ในสภาวะที่ถูกออกซิไดซ์ ในทางกลับกัน มันสามารถปลดปล่อยอออกซิเจนออกจากตัวของมันเองได้เมื่อยุ่งในสภาวะที่ถูกกรีดิวซ์ ตัวอย่างการใช้งานหลักๆ ของซีเรียมออกไซด์ในปัจจุบันนี้ เช่น การใช้ในอุตสาหกรรมการกำจัดพิษสารอินทรีย์ในน้ำเสีย หรือการใช้สารนี้เป็นตัว additive สำหรับตัวเร่งปฏิกิริยาการเผาไหม้เป็นต้น นอกจากนี้ยังมีความพยายามในการนำสารประเภทนี้ไปใช้ในอุตสาหกรรมจำพวก FCC, TWCs และ ethylbenzene dehydrogenation ซึ่งมีการศึกษา และทำวิจัยในปัจจุบันอย่างแพร่หลาย อีกด้วย หนึ่งในสิ่งที่สำคัญที่สุดของการใช้ซีเรียมออกไซด์คือการที่มีการทำวิจัยอย่างแพร่หลายในปัจจุบันและเป็นจุดมุ่งหมายสำคัญสำหรับโครงการนี้ คือใช้ซีเรียมออกไซด์เป็นตัวเร่งปฏิกิริยาในการผลิตไอโอดรเจนสำหรับเซลล์เชือกเพลิงแบบออกไซด์แจ็ง (Solid Oxide Fuel Cell) โดยมีการตีพิมพ์เผยแพร่ผลงานในวารสารนานาชาติว่าซีเรียมออกไซด์เป็นตัวเร่งปฏิกิริยาที่ดีสำหรับเซลล์เชือกเพลิงแบบออกไซด์แจ็งซึ่งมีกระบวนการปฏิรูปน้ำเพื่อผลิตไอโอดรเจนอยู่ภายใน (Internal Reforming) เนื่องจากตัวเร่งปฏิกิริยาชนิดมีความต้านทานการเกิดคาร์บอนที่ผิว (Carbon formation) สูงมาก แต่ปัญหาใหญ่ของการซีเรียมออกไซด์เป็นตัวเร่งปฏิกิริยาคือความว่องไวต่อกระบวนการปฏิรูปน้ำ (Steam Reforming) ต่ำเกินไป ซึ่งมีสาเหตุเนื่องมาจากการพื้นที่ผิว (Specific Surface Area) ของสารชนิดนี้ต่ำมากเมื่อเทียบกับตัวเร่งปฏิกิริยาทั่วๆ ไป โดยซีเรียมออกไซด์ซึ่งเตรียมโดยวิธี co-precipitation ธรรมดามีพื้นที่ผิว (Specific Surface Area) หลังทำการ calcinations ที่ 1173 K ประมาณ 2.6 m²/g เท่านั้น ดังนั้นเพื่อการพัฒนาเทคโนโลยีเซลล์เชือกเพลิงแบบออกไซด์แจ็ง (Solid Oxide Fuel Cell) ในอนาคต และเพื่อสามารถใช้ประโยชน์จากซีเรียมออกไซด์ในภาคอุตสาหกรรมได้มากขึ้นกว่าในปัจจุบัน งานวิจัยนี้จึงดำเนินการเพื่อพัฒนาซีเรียมออกไซด์ให้มีพื้นที่ผิว (Specific Surface Area) และเสถียรภาพสูง

การดำเนินงานวิจัยในช่วง 2 ปีที่ผ่านมาได้ทำการศึกษาถึงกระบวนการที่มีความเป็นไปได้ในการการสังเคราะห์ซีเรียมออกไซด์และสารประกอบซีเรียมออกไซด์ที่มีพื้นที่ผิว และเสถียรภาพสูง ซึ่งจากการศึกษาพบว่ากระบวนการ Surfactant-assisted procedure สามารถสังเคราะห์สารหรือผลึกขนาดเล็ก (Nanocomposite material) ได้ ดังนั้นจึงดำเนินการใช้กระบวนการการดังกล่าวสังเคราะห์สารประกอบซีเรียมออกไซด์ขึ้นมา และทำการเปรียบเทียบกับการเตรียมโดยวิธีปกติ ซึ่งวิธีปกติคือการเตรียมสารดังกล่าวขึ้นโดยใช้กระบวนการ Co-precipitation ซึ่งเป็นกระบวนการที่นิยมใช้ในการเตรียมสารอย่างแพร่หลายในปัจจุบัน สารที่เตรียมได้นี้จะใช้เป็นตัวอ้างอิง (Reference) ให้กับสารที่เตรียมโดยใช้วิธีอื่นๆ

ซึ่งเมื่อสังเคราะห์สารขึ้นมาได้จึงดำเนินการวิเคราะห์คุณสมบัติทางกายภาพและเคมีโดยใช้เครื่อง XRD ในการดูองค์ประกอบและเฟสของสารที่เตรียมได้, BET ในการหาพื้นที่ผิวของสารและ SEM เพื่อดูพื้นผิวของสารที่สังเคราะห์ได้ รวมถึงวิเคราะห์คุณสมบัติทางกายภาพและเคมีของสารที่สังเคราะห์ได้หลังผ่านกระบวนการให้ความร้อน (Calcination) เพื่อศึกษาความมีเสถียรภาพ (Stability) ที่อุณหภูมิสูง ในส่วนของการสังเคราะห์ซีเรียมออกไซด์โดยกระบวนการ Surfactant-assisted procedure นั้นจะมีการใส่สาร Additive ตัวอื่นลงไป ซึ่งรายละเอียดย่อของงานวิจัยที่ได้ดำเนินการไปมีดังนี้

- ศึกษากระบวนการเตรียมซีเรียมออกไซด์ที่มีประสิทธิภาพมากที่สุด เพื่อให้ได้สารที่มีพื้นที่ผิว (Specific Surface Area) และเสถียรภาพสูง
- หาสภาวะที่เหมาะสมที่สุดของกระบวนการเตรียม เช่น อุณหภูมิ และความเข้มข้นของตัวทำละลายเป็นต้น
- วิเคราะห์คุณสมบัติทางกายภาพและเคมีเพื่อศึกษาถึงคุณสมบัติของซีเรียมออกไซด์ที่สังเคราะห์โดยกระบวนการเตรียมที่ต่างกัน
- ศึกษาผลของการเติม Zr เข้าไปในสารซีเรียมออกไซด์ต่อคุณสมบัติทางกายภาพและเคมี
- ศึกษาคุณสมบัติของซีเรียมออกไซด์ที่เตรียมได้ในการเป็นตัวเร่งปฏิกิริยาต่อกระบวนการทางเคมีต่างๆ เช่น กระบวนการปฏิรูปน้ำ (Steam Reforming) ด้วยมีเทน และเมทานอล
- ศึกษาความต้านทานการเกิดการบ่อนที่ผิวของซีเรียมออกไซด์ที่สังเคราะห์โดยกระบวนการเตรียมที่ต่างกัน

จากการดำเนินงานวิจัยพบว่าสารซีเรียมออกไซด์ที่ได้รับจากการกระบวนการ Surfactant-assisted procedure มีพื้นที่ผิวต่ำน้ำหนักสูงกว่าสารซีเรียมออกไซด์ที่เตรียมจากการกระบวนการ Precipitation ถึง 2-3 เท่า นอกจากนั้นยังพบว่าสารดังกล่าวมีเสถียรภาพสูงกว่ามาก โดยอัตราการลดลงของพื้นที่ผิวเมื่อทำการ Calcination ที่อุณหภูมิสูงมีค่าต่ำกว่าสารซีเรียมออกไซด์ที่เตรียมจากการกระบวนการ Precipitation มาก ผลที่ได้จากการทดลองในช่วง 2 ปีได้ดำเนินการส่งตีพิมพ์ในวารสารระดับนานาชาติ (International Journal) 2 ฉบับ (อยู่ระหว่างการรอตีพิมพ์) และถูกเผยแพร่ในการประชุมระดับนานาชาติ (International Conference) 1 ฉบับ ดังแสดงรายละเอียดในตอนท้ายของรายงาน

อนึ่งเนื้อหางานวิจัยที่จะนำเสนอประกอบด้วยการรวมข้อมูลด้านงานวิจัยในอดีตที่มีความเกี่ยวข้องกับตัวเร่งปฏิกิริยาโดยเฉพาะสารประกอบซีเรียมออกไซด์ หลังจากนั้นจึงนำเสนอขั้นตอนและวิธีการดำเนินการวิจัยอันประกอบด้วยการสังเคราะห์ตัวเร่งปฏิกิริยาและสร้างระบบที่ใช้ในการทดสอบตัวเร่งปฏิกิริยา (Reforming Catalyst) เพื่อรีฟอร์มสารไฮโดรคาร์บอน จากนั้นจึงนำเสนอผลที่ได้จากการทดลองซึ่งมุ่งเน้นการทดสอบคุณสมบัติ Redox Properties ของสารประกอบซีเรียมออกไซด์ที่เตรียมได้จากการกระบวนการต่างๆ การเสนอผลการทดลองเกี่ยวกับศักยภาพของตัวเร่งปฏิกิริยาซีเรียมออกไซด์ที่

เตรียมได้ต่อกระบวนการรีฟอร์มมิ่งของมีเทนด้วยน้ำ
คาร์บอนที่ผิวของตัวเร่งปฏิกิริยา การนำเสนอการเต
การผสม Zr ในสารซีเรียมออกไซด์ระหว่างการเตรียม¹
กระบวนการรีฟอร์มมิ่งของเมทานอลด้วยน้ำ

รวมถึงศักยภาพในการด้านทานต่อการเกิด
เร่งปฏิกิริยา Ce-ZrO₂ ชี๊ดสังเคราะห์ได้จาก
การศึกษาศักยภาพของสาร Ce-ZrO₂ ต่อ

บทที่ 1

อีกตัวอย่างหนึ่งสำหรับการใช้งานของซีเรียมออกไซด์ซึ่งได้มีการทำวิจัยอย่างแพร่หลายในปัจจุบันและเป็นจุดมุ่งหมายสำคัญสำหรับโครงการนี้คือการใช้ซีเรียมออกไซด์เป็นตัวเร่งปฏิกิริยาในกระบวนการผลิตไฮโดรเจนสำหรับเซลล์เชื้อเพลิงแบบออกไซด์แข็ง (Solid oxide fuel cell) โดยเซลล์เชื้อเพลิงชนิดนี้กำลังได้รับความสนใจอย่างแพร่หลายในปัจจุบันเพื่อใช้ในการผลิตพลังงานไฟฟ้าเนื่องจากประสิทธิภาพที่ดีในการผลิตพลังงานของเซลล์เชื้อเพลิงชนิดนี้โดยเซลล์เชื้อเพลิงแบบออกไซด์แข็งมีประสิทธิภาพในการผลิตพลังงานสูงถึง 65% ซีเรียมออกไซด์นั้นสามารถจะเป็นตัวเร่งปฏิกิริยาสำคัญสำหรับกระบวนการรีฟอร์มมิ่ง และกระบวนการออกซิเดชันของไฮโดรคาร์บอน (เช่น เร่งการเผาไหม้ในรถยนต์) โดยสารนี้มีศักยภาพในการกักเก็บและปลดปล่อยออกซิเจนภายใต้สูงมาก (High local sources or sinks for oxygen) อนึ่งในปัจจุบันมีแนวคิดที่จะนำซีเรียมมาใช้ในเซลล์เชื้อเพลิงแบบออกไซด์แข็ง(SOFCs) โดยใช้เป็นตัวเร่งปฏิกิริยาเริฟอร์มมิ่งภายใต้ (in-stack หรือ indirect internal) เพื่อเริฟอร์มมีเทนเป็นไฮโดรเจน โดย Laosiri pojana (2005) [9] รายงานว่าถึงข้อดีของการใช้ซีเรียมเมื่อเปรียบเทียบกับตัวเร่งปฏิกิริยาทั่วไป (จำพวกนิเกิล) ว่าการใช้ตัวเร่งปฏิกิริยาจำพวกนิเกิลเป็นตัวเร่งปฏิกิริยาในกระบวนการรีฟอร์มมิ่งภายใต้ (Internal reforming) จะทำให้อุณหภูมิของระบบกิดการเปลี่ยนแปลงอย่างมากโดยเฉพาะอย่างยิ่งบริเวณทางเข้าของตัวรีฟอร์มเมอร์ ซึ่ง pragakgar ดังกล่าวอาจเป็นสาเหตุที่จะทำให้สัดส่วนที่ใช้ทำเซลล์เชื้อเพลิงเกิดการเสียหายได้ ในทางกลับกันการใช้ซีเรียมเป็นตัวเร่งปฏิกิริยาแทนจะลดปัญหาดังกล่าวได้ เนื่องจากกระบวนการรีฟอร์มมิ่งบนตัวเร่งปฏิกิริยาซีเรียมเกิดขึ้นแบบค่อยเป็นค่อยไปทำให้อุณหภูมิภายใต้ของเซลล์เชื้อเพลิงมีการเปลี่ยนแปลงน้อยกว่า

ด้วยเหตุผลดังกล่าวในปัจจุบันจึงมีงานวิจัยที่เกี่ยวข้องกับการทดสอบศักยภาพของชีวเริมต่อกระบวนการรีฟอร์มมีงอย่างแพร่หลาย โดยกระบวนการรีฟอร์มมีงที่มีการศึกษา กันประกอบด้วยกระบวนการ dry reforming หรือ Carbon dioxide reforming และกระบวนการ steam reforming

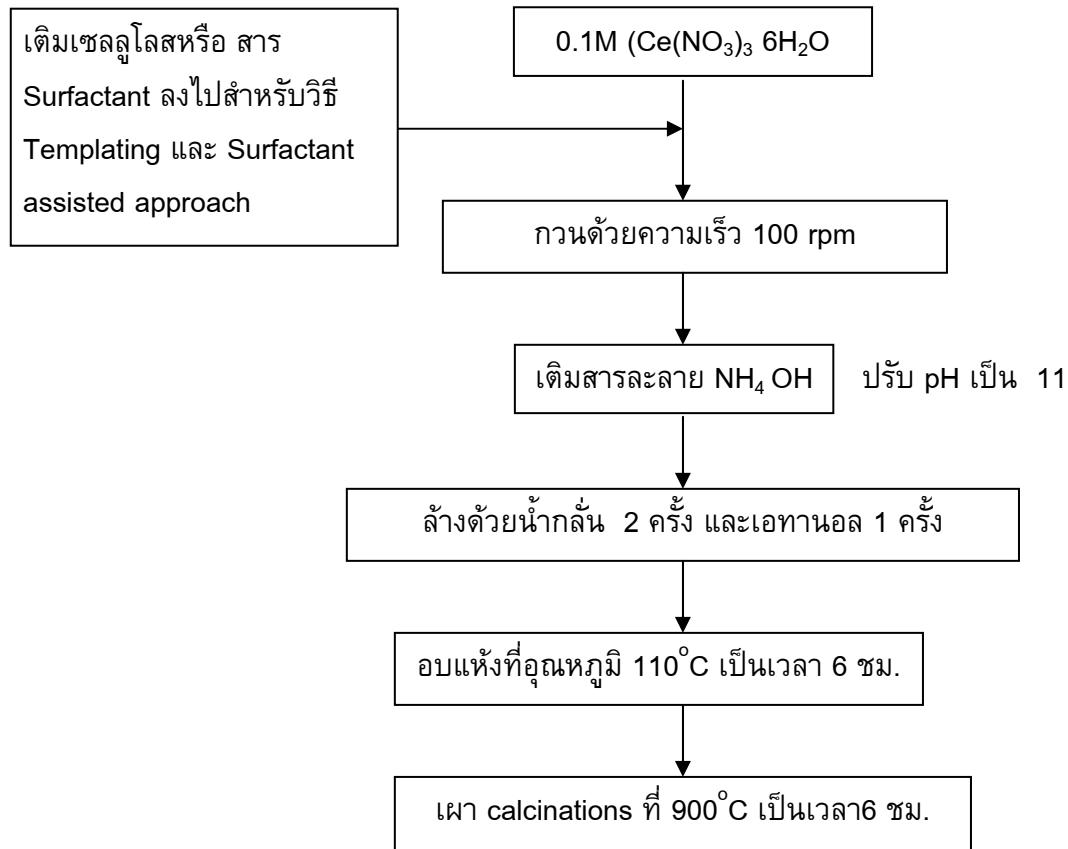
ข้อดีอีกประการของตัวเริ่งปฏิกิริยาจำพวกชีวเริมออกไซด์คือ มีความต้านทานการเกิดการรับอน (Carbon formation) ที่สูงมาก แต่ปัญหาใหญ่ของการใช้ชีวเริมออกไซด์เป็นตัวเริ่งปฏิกิริยาคือ ความว่องไวต่อกระบวนการรีฟอร์มมีง (Reforming) ของตัวเริ่งปฏิกิริยาประเภทนี้ ต่ำเกินไปซึ่งส่งผลให้ประสิทธิภาพการทำงานของเซลล์เชื้อเพลิงต่ำลง สาเหตุที่ความว่องไวของชีวเริมออกไซด์ต่อกระบวนการรีฟอร์มมีงต่ำเกินไปก็เนื่องมาจากพื้นที่ผิว (Specific Surface Area) ของสารจำพวกชีวเริมออกไซด์ต่ำมาก เมื่อเทียบกับตัวเริ่งปฏิกิริยาทั่วๆไป โดยชีวเริมออกไซด์ที่เตรียมได้โดยกระบวนการ Co-precipitation จะมีพื้นที่ผิวหลังการเผา (Calcination) ที่ 1173 K ประมาณ $2.6 \text{ m}^2/\text{g}$ เท่านั้นซึ่งเมื่อเปรียบเทียบกับ ZrO_2 หรือ Al_2O_3 แล้วถือว่ามีพื้นที่ผิวต่ำมาก Chadwick (2003) [10] ได้สังเคราะห์ชีวเริมโดยวิธี precipitation ได้พื้นที่ผิวหลังเผาที่ 900°C เป็น $2.6 \text{ m}^2/\text{g}$

อนึ่ง Graham (2001) [11] ได้ศึกษาพบว่าออกไซด์ผสมของ Ce-Zr ถูกเตรียมโดยวิธี Cellulose templating approach เพื่อให้มีพื้นที่ผิวสูงซึ่งมีพื้นที่ผิวประมาณ $90-130 \text{ m}^2/\text{g}$ หลังจาก Calcinations ที่ 800°C เป็นเวลา 2 ชม. , $21-30 \text{ m}^2/\text{g}$ หลังจาก 12 ชม. ที่ 1050°C และ La-stabilized alumina พื้นที่ผิวประมาณ $275-320 \text{ m}^2/\text{g}$ หลังจาก Calcinations ที่ 800°C เป็นเวลา 2 ชม. , $88-141 \text{ m}^2/\text{g}$ หลังจาก 12 ชม. ที่ 1050°C เพียงแต่เติมสารตัวเติมจำพวก Cellulose microcrystalline powder ($\sim 20 \mu\text{m}$) ลงไปด้วย เช่น Filter paper , Chromatography paper , Xerox paper และ Weighing paper เป็นต้น Terribile (1998) [12] ได้ศึกษาว่าออกไซด์ผสมของ Ce-Zr ถูกเตรียมโดยวิธี Surfactant-assisted approach เพื่อให้มีพื้นที่ผิวสูงซึ่งมีพื้นที่ผิวประมาณ $230 \text{ m}^2/\text{g}$ หลังจาก Calcinations ที่ 723°C วิธี Surfactant-assisted approach

ดังนั้นเพื่อการพัฒนาเทคโนโลยีเซลล์เชื้อเพลิงแบบออกไซด์แข็งให้มีประสิทธิภาพและพัฒนาสารประกอบจำพวกชีวเริมออกไซด์ให้มีพื้นที่ผิวสูงขึ้นจึงเป็นสิ่งจำเป็น ดังนั้นการเตรียมชีวเริมออกไซด์ในงานวิจัยนี้ได้สังเคราะห์ชีวเริมเพื่อให้ได้ขนาดอนุภาครที่มีขนาดเล็กมาก ๆ และทำให้พื้นที่ผิวของชีวเริมออกไซด์สูงด้วยกัน 3 วิธีได้แก่ precipitation, surfactant-assisted approach และ วิธี cellulose templating approach

บทที่ 2

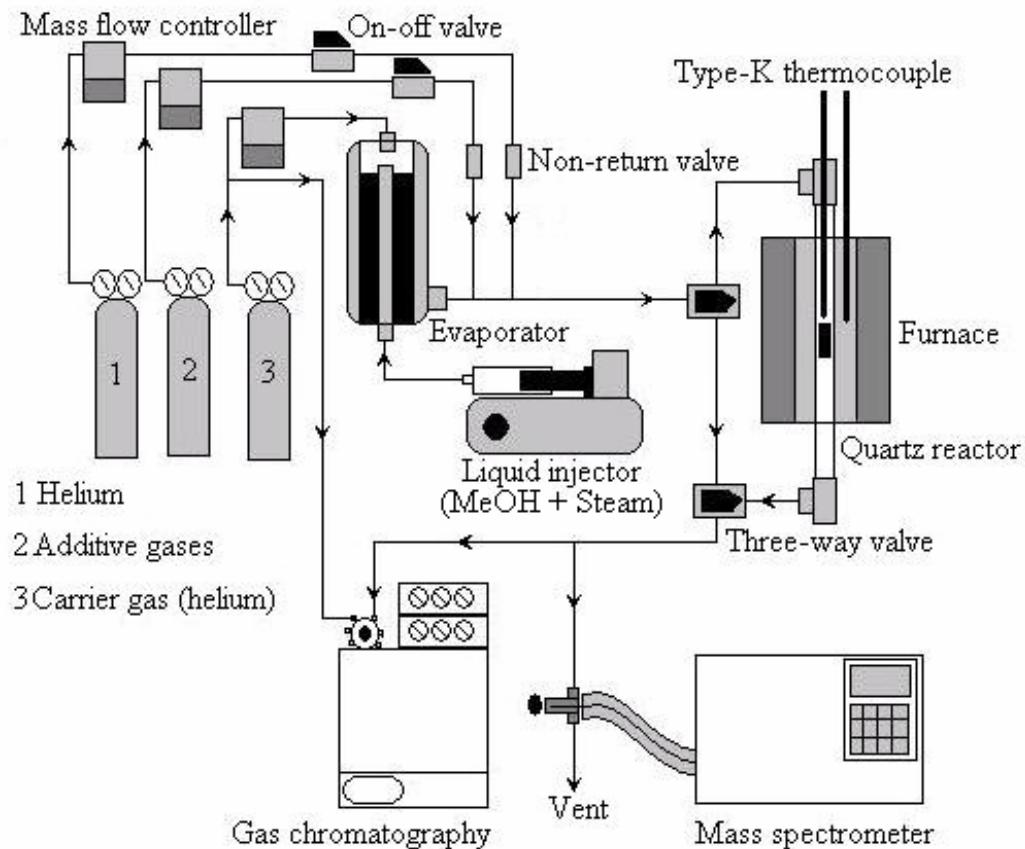
ขั้นตอนการทดลอง


2.1. การเตรียม CeO_2

สำหรับวิธี precipitation กระบวนการสังเคราะห์จะเริ่มจากการนำชีวเรียนในเตรต $(\text{Ce}(\text{NO}_3)_3 \cdot 6\text{H}_2\text{O}$ 99.0% มาทำให้เจือจางเป็น 0.1 M กวนด้วยความเร็ว 100 rpm ด้วย magnetic stirrer ที่อุณหภูมิห้องเติมสารละลายน้ำมันเนยมไฮดรอกไซด์ที่มีความเข้มข้น 0.4 M ลงไประหว่างที่กวนปรับค่า pH เป็น 11 กวนต่อไป 3 ชม. เพื่อให้แน่ใจว่าปฏิกิริยาเกิดสมบูรณ์จะได้ตากองของ ชีวเรียนไฮดรอกไซด์ $(\text{Ce}(\text{OH})_4)$ ลังตากองด้วยน้ำกัลล์ 2 ครั้ง จากนั้นลังตากองด้วยเอทานอล 1 ครั้งนำตากองที่ได้ไปอบให้แห้งที่อุณหภูมิ 110°C เป็นเวลา 6 ชม. หลังจากได้ตากองที่แห้งแล้วนำตากองที่ได้ไปบดด้วยครกให้ละเอียดจะได้ผงของสารและนำไปเผา calcinations ที่ 900°C เป็นเวลา 6 ชม. อัตราการให้ความร้อน $10^\circ\text{C}/\text{นาที}$ ในอากาศทำให้ตากองชีวเรียนไฮดรอกไซด์ $(\text{Ce}(\text{OH})_4)$ จะเปลี่ยนแปลงไปเป็นชีวเรียนออกไซด์ (CeO_2)

ส่วนวิธี templating จะคล้ายกับวิธี precipitation เพียงแต่เติมเซลลูลอลஸลงไปในสารละลายน้ำชีวเรียนในเตรตโดยให้เซลลูลอลஸเป็นตัวแทรกระหว่างอนุภาคนองของโครงสร้างชีวเรียนออกไซด์มีผลทำให้ไปเพิ่มพื้นที่ผิวให้สูงขึ้น (High Surface Area)

ส่วนวิธี Surfactant assisted approach จะคล้ายกับวิธี precipitation และ templating เช่นกัน เพียงแต่เติมสาร surfactant ซึ่งมี 2 ชนิด ได้แก่ Anionic Surfactant (โซเดียมเออกซ์เมต้าฟอสเฟส (NaPO_2) และ Cationic Surfactant (Cetyltrimethylammonium bromide solution, CTAB)


สารประกอบชีวเรียนออกไซด์ที่ได้จะถูกนำไปวิเคราะห์สมบัติทางกายภาพด้วยเครื่อง XRD เพื่อวิเคราะห์หาสูตรโครงสร้างของสารประกอบชีวเรียนออกไซด์ที่เตรียมได้จากการวนการต่างๆ และด้วยเครื่อง SEM เพื่อวิเคราะห์ลักษณะพื้นที่ผิวของสารประกอบชีวเรียนออกไซด์ที่เตรียมได้ และด้วยเครื่อง BET เพื่อหาพื้นที่ผิวโดยรวมของสารประกอบชีวเรียนออกไซด์ที่เตรียมได้

รูปที่ 1 แผนภาพขั้นตอนการเตรียมชีวเรียนพื้นที่ผิวสูงของหั้ง 3 วิธี

2.2 ระบบที่ใช้ในการทดสอบศักยภาพของตัวเร่งปฏิกิริยาที่เตรียมได้

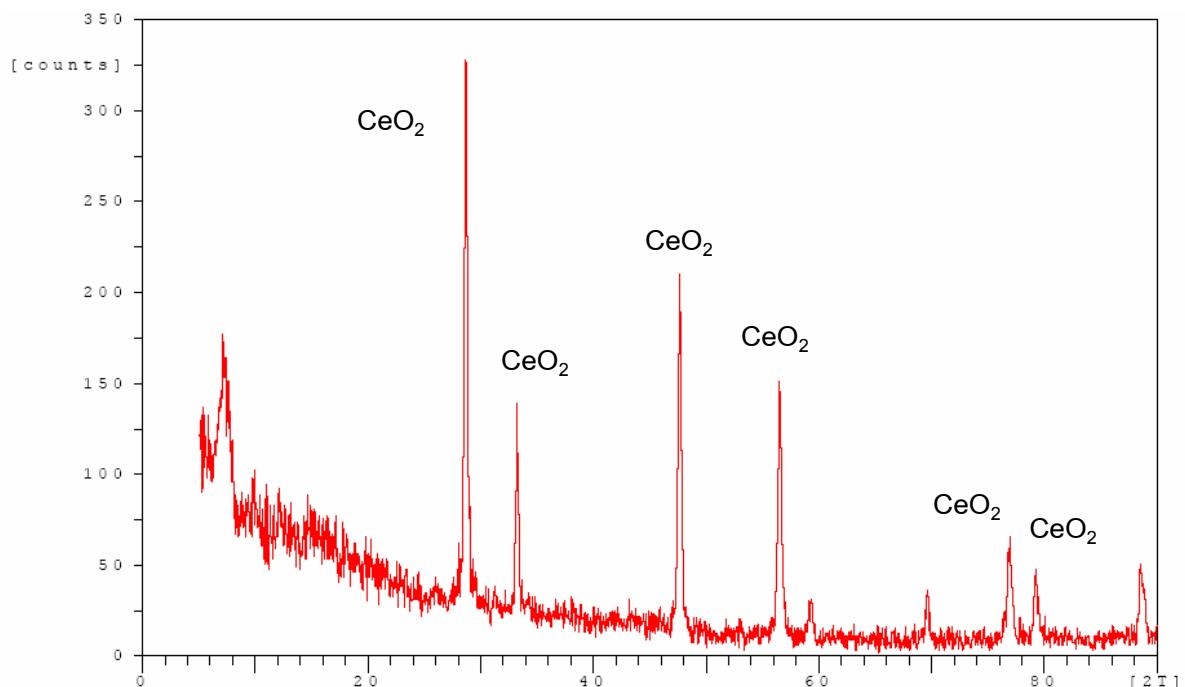
นอกจากการดำเนินการเพื่อสังเคราะห์ชีวเรียนออกไซด์ที่มีพื้นที่ผิวสูงแล้ว ทางผู้ดำเนินงานวิจัยได้ทำการสร้างระบบเพื่อทดลองศักยภาพของชีวเรียนออกไซด์ที่ได้จากหั้งสองกระบวนการต่อปฏิกิริยาเคมีด้วย โดยปฏิกิริยาเคมีที่เลือกใช้คือกระบวนการรีฟอร์มมิ่งของมีเทนด้วยน้ำ (Methane Steam Reforming) กระบวนการสลายตัวของเมทานอลด้วยน้ำ (Methanol Decomposition) เพื่อผลิตไฮโดรเจน สาเหตุที่เลือกปฏิกิริยาดังกล่าวขึ้นมาทดสอบเนื่องจากเป็นปฏิกิริยาที่กำลังได้รับความสนใจในการผลิตไฮโดรเจนในปัจจุบัน รูปที่ 2 แสดงถึงระบบที่ถูกออกแบบ และสร้างขึ้นเพื่อทดสอบปฏิกิริยาดังกล่าว

รูปที่ 2 ระบบที่ออกแบบ และสร้างขึ้นเพื่อทดสอบชีวีเรียมออกไซด์ที่สังเคราะห์ได้

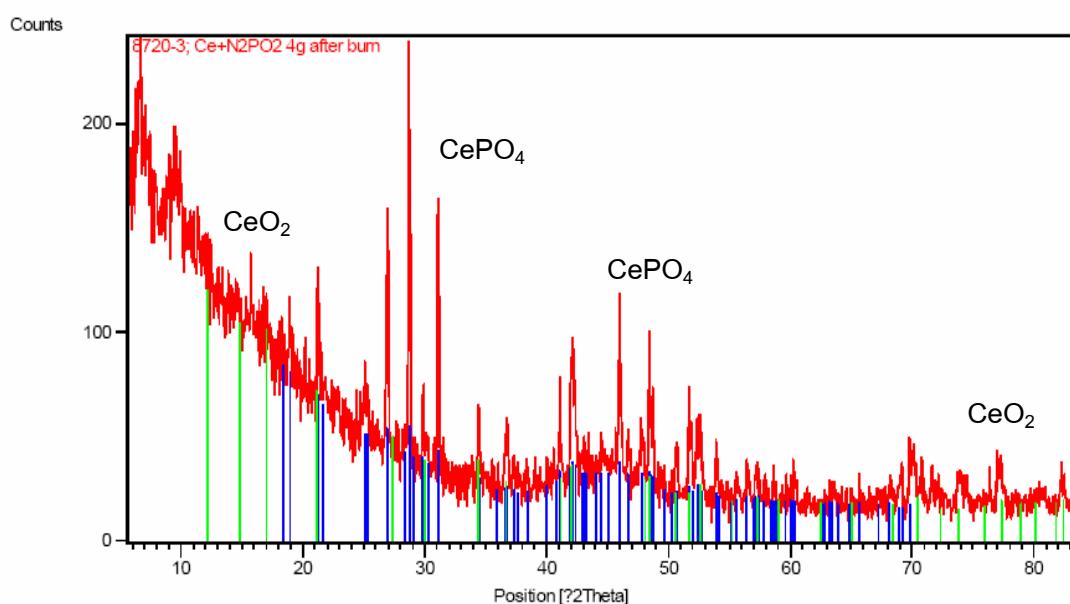
บทที่ 3

คุณสมบัติของสารประกอบชีวเริยมออกไซด์ที่เตรียมได้จากการบวบต่าง ๆ

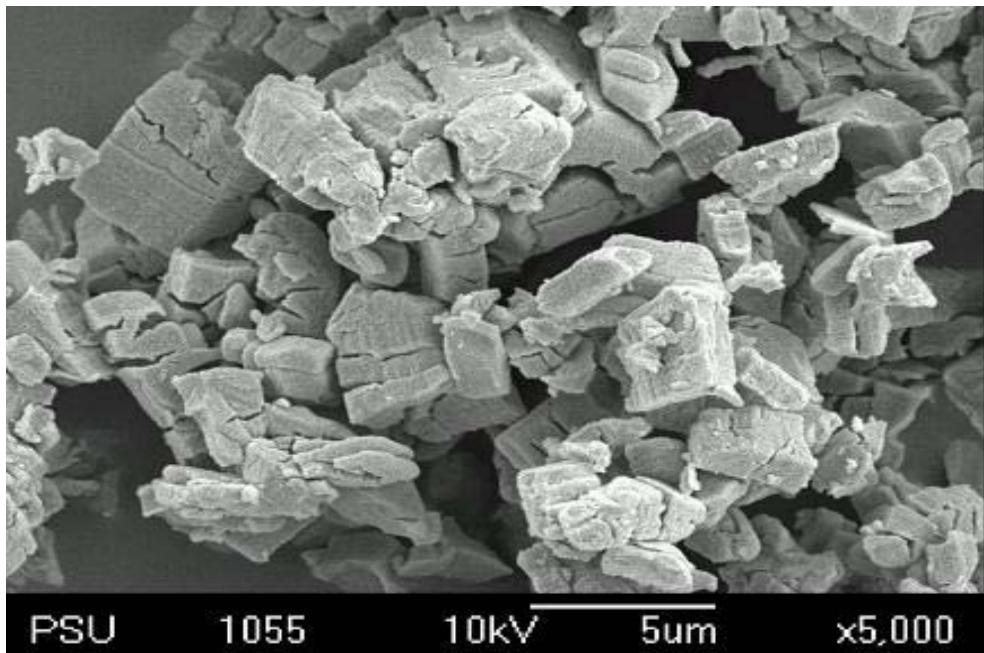
3.1 คุณสมบัติทางกายภาพ (Physical Characterization) ของสารประกอบชีวเริยมออกไซด์

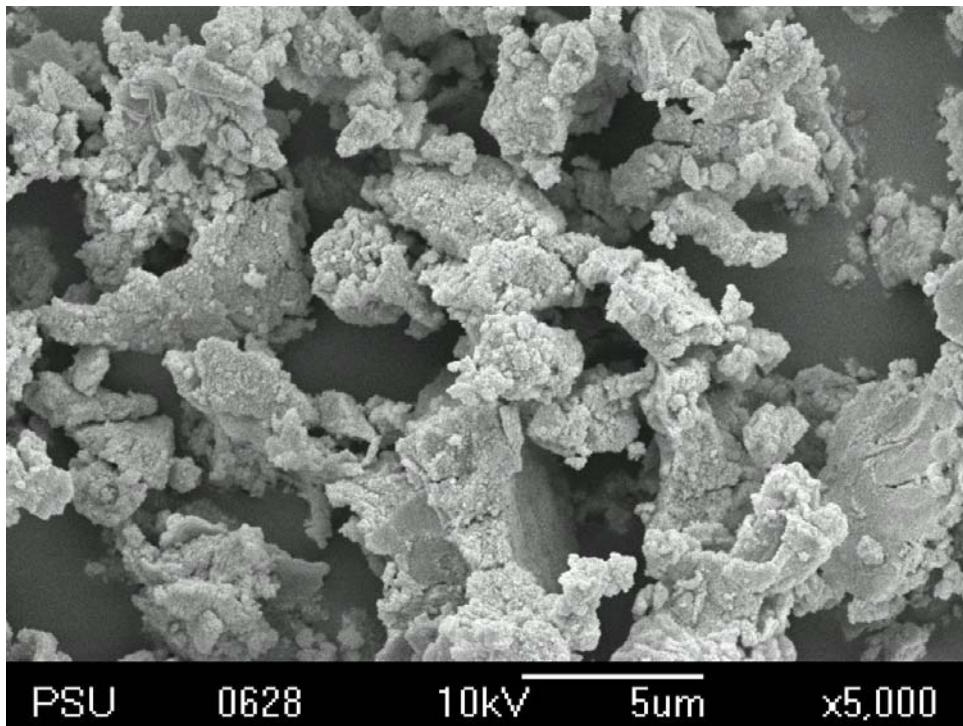

ดังที่ได้กล่าวมาแล้วข้างต้น สารประกอบชีวเริยมออกไซด์สามารถถูกเตรียมขึ้นได้จากกระบวนการ 3 กระบวนการหลักๆ คือ Precipitation, Templating และ Surfactant assisted approach ซึ่งกระบวนการ Surfactant assisted method ยังสามารถแบ่งการเตรียมออกได้อีก 2 แบบคือ Cationic Surfactant และ Anionic Surfactant ดังที่ได้กล่าวไว้ในบทที่ 2 ซึ่งสารประกอบชีวเริยมออกไซด์ที่ได้จากกระบวนการเตรียมทั้ง 4 ประเภทได้ถูกนำไปวิเคราะห์สมบัติทางกายภาพด้วยเครื่อง XRD, SEM และ BET ซึ่งผลการวิเคราะห์มีดังนี้

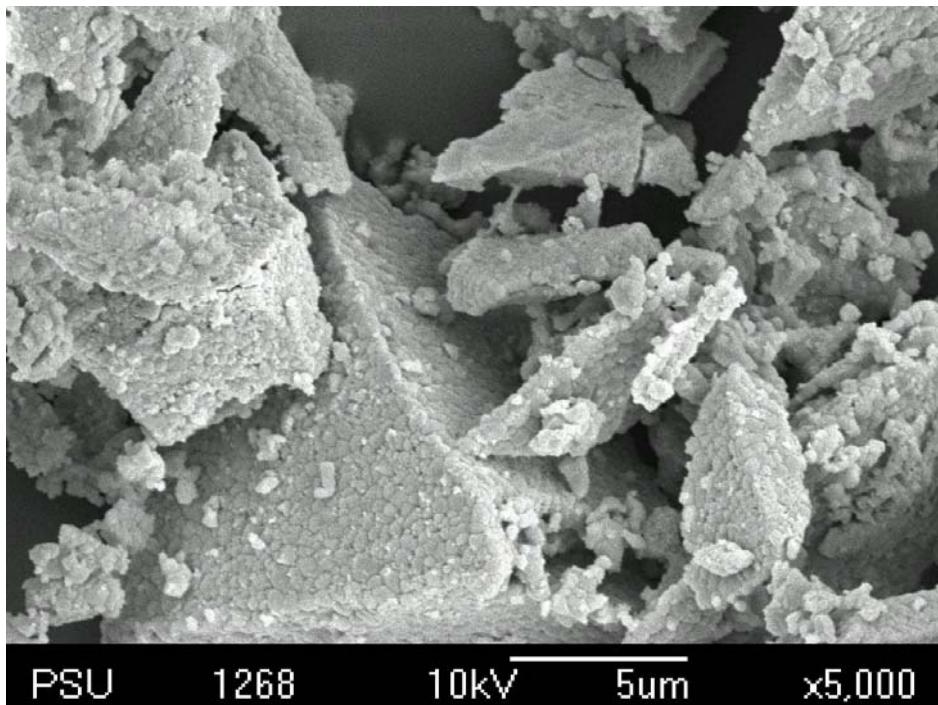
การวิเคราะห์ด้วยเครื่อง XRD

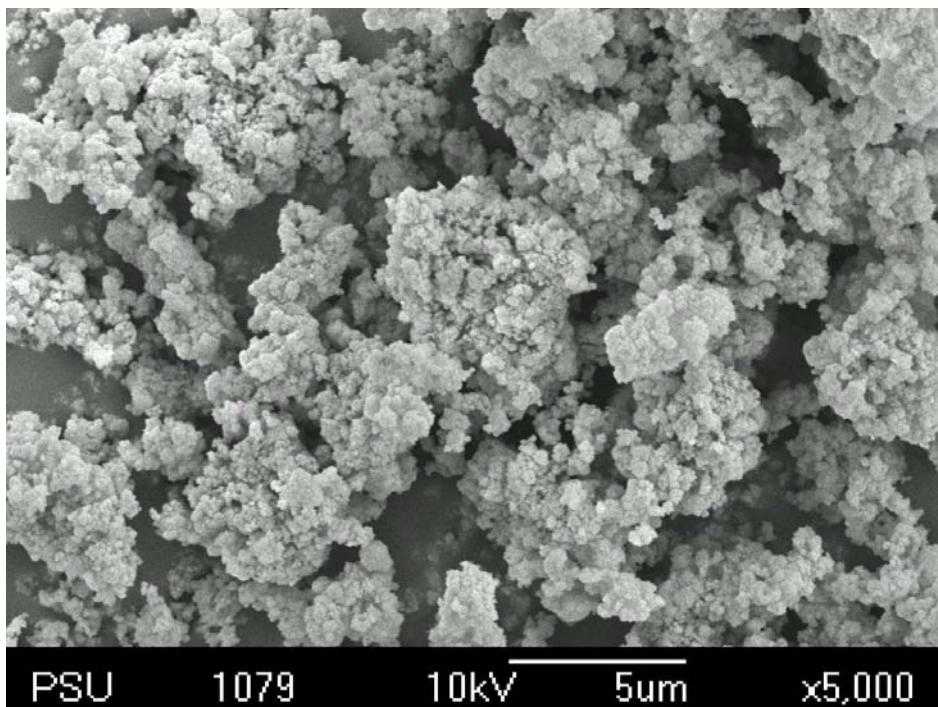

ผลการวิเคราะห์สูตรโครงสร้างของสารประกอบชีวเริยมออกไซด์ที่สังเคราะห์โดยวิธี Precipitation และ Templating แสดงในรูปที่ 3 ส่วนสารประกอบชีวเริยมออกไซด์ที่สังเคราะห์โดยวิธี Surfactant assisted approach ดังแสดงในรูปที่ 4 ซึ่งผลจากการวิเคราะห์หั้งหมดสามารถสรุปได้ว่าสารประกอบชีวเริยมออกไซด์ที่เตรียมได้จากการบวนการต่างๆ กันนั้นหลังจากการ Calcination ที่อุณหภูมิสูงแล้ว จะได้สารที่มีสูตรโครงสร้างชนิดเดียวกันคือ CeO_2 และมีสาร Surfactant หลงเหลืออยู่บ้างในกรณีที่สังเคราะห์โดยวิธี Surfactant assisted approach

การวิเคราะห์ด้วยเครื่อง SEM


ผลจากการวิเคราะห์ลักษณะของพื้นผิวของสารประกอบชีวเริยมออกไซด์ ที่เตรียมจากทั้ง 4 กระบวนการพบว่าสารประกอบชีวเริยมออกไซด์ที่เตรียมขึ้นโดยกระบวนการ Cationic surfactant assisted method จะมีขนาดของอนุภาคที่เล็กที่สุด ส่วนการเตรียมชีวเริยมออกไซด์ด้วยวิธี Anionic surfactant assisted จะให้สารประกอบชีวเริยมออกไซด์ที่มีขนาดของอนุภาคใหญ่ที่สุด (รูปที่ 5-8)


รูปที่ 3 ผลการวิเคราะห์ XRD ซีเรียมออกไซด์ที่สังเคราะห์โดย วิธี Precipitation และ Templating


รูปที่ 4 ผลการวิเคราะห์ XRD ซีเรียมออกไซด์ที่สังเคราะห์โดยวิธี Surfactant assisted approach


รูปที่ 5 SEM Micrograph ของสารประกอบชีวีเรียนออกไซด์ที่เตรียมด้วยกระบวนการ Precipitation

รูปที่ 6 SEM Micrograph ของสารประกอบชีวีเรียนออกไซด์ที่เตรียมด้วยกระบวนการ Templating

รูปที่ 7 SEM Micrograph ของสารประกอบชีวเรียนออกไซด์ที่เตรียมด้วยกระบวนการ Anionic surfactant assisted method

รูปที่ 8 SEM Micrograph ของสารประกอบชีวเรียนออกไซด์ที่เตรียมด้วยกระบวนการ Cationic surfactant assisted method

การวิเคราะห์ด้วยเครื่อง BET

ผลการวิเคราะห์พื้นที่ผิวของสารประกอบซีเรียมออกไซด์ซึ่งเตรียมได้จากการกระบวนการต่างๆ ให้ผลไปในทิศทางเดียวกันกับผลที่ได้จาก SEM นั่นคือ สารประกอบซีเรียมออกไซด์ที่เตรียมขึ้นโดยกระบวนการ Cationic surfactant assisted method จะมีพื้นที่ผิวสูงที่สุด ส่วนการเตรียมซีเรียมออกไซด์ด้วยวิธี Anionic surfactant assisted จะให้สารประกอบซีเรียมออกไซด์ที่มีพื้นที่ผิวต่ำที่สุด (ตารางที่ 1)

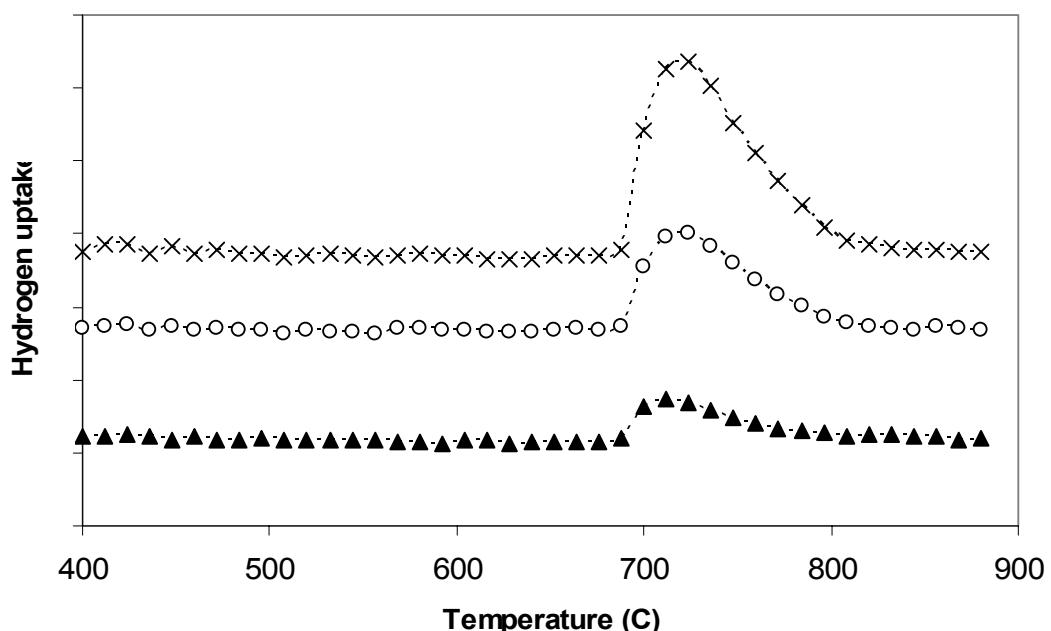
ตารางที่ 1 BET surface area of ceria sample prepared by different preparation process.

Catalysts	After drying at 110°C		After calcination at 900°C	
	BET (m ² g ⁻¹)	Pore size (nm)	BET (m ² g ⁻¹)	Pore size (nm)
CeO ₂ (PP)	96.7	9.86	5.31	12.9
CeO ₂ (CSF)	248.3	5.00	17.8	13.6
CeO ₂ (TP)	197.4	4.18	9.12	13.1
CeO ₂ (ASF)	86.2	8.47	4.76	13.0

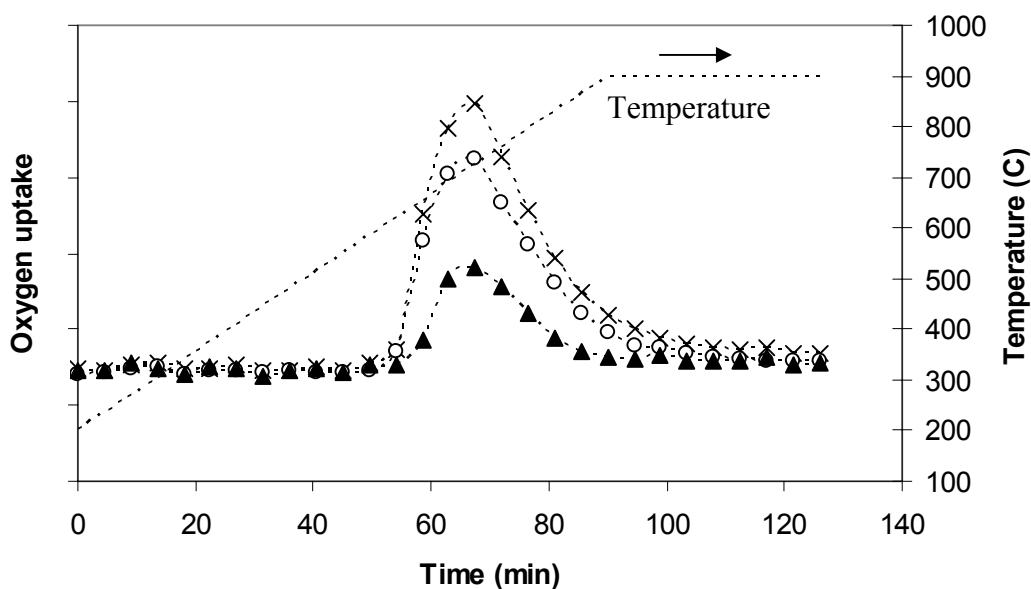
PP = Precipitation Method ;

CSF = Cationic Surfactant Assisted Method;

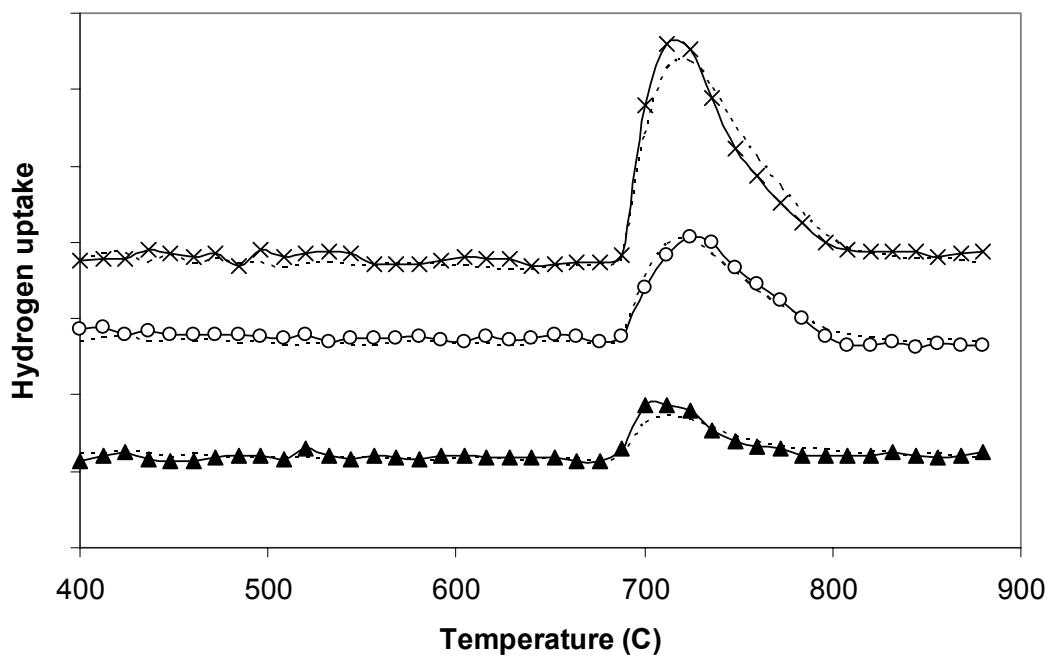
TP = Templating Method;


ASF = Anionic Surfactant Assisted Method

3.2 สมบัติรีด็อกซ์ (Redox Property) ของสารประกอบซีเรียมออกไซด์


ขั้นตอนถัดมาของการทดลองคือการทดสอบสมบัติรีด็อกซ์ (Redox Property) ของสารประกอบซีเรียมออกไซด์สามารถถูกเตรียมขึ้นได้จากการกระบวนการ 3 กระบวนการคือ Precipitation, Templating และ Cationic Surfactant assisted approach ว่าสมบัติดังกล่าวมีความสัมพันธ์กับพื้นที่ผิวของตัวเร่งปฏิกิริยาหรือไม่ ซึ่งสมบัติรีด็อกซ์สามารถทำการศึกษาได้จากการกระบวนการ Temperature Programmed Reduction (TPR) โดยการป้อนไฮโดรเจนเข้าสู่ระบบที่มีสารประกอบซีเรียมออกไซด์บรรจุอยู่และทำการเพิ่มอุณหภูมิจากอุณหภูมิห้องขึ้นไปจนถึง 1000 องศาเซลเซียส เพื่อศึกษาหาปริมาณออกซิเจนที่อยู่ภายในสารประกอบซีเรียมออกไซด์ โดยออกซิเจนที่อยู่ภายในสารซีเรียมออกไซด์จะถูกทำปฏิกิริยาโดยไฮโดรเจนเกิดกลไยเป็นน้ำขึ้น และปริมาณไฮโดรเจนที่ถูกใช้ไป หรือปริมาณน้ำที่เกิดขึ้นจะเป็นตัวบ่งชี้ถึงปริมาณออกซิเจนที่มีอยู่ในสารประกอบซีเรียมออกไซด์ (Oxygen Storage Capacity; OSC) ซึ่งค่า OSC ดังกล่าวจะมีความสัมพันธ์โดยตรงกับสมบัติ Redox ของสารนั้นๆ

หลังจากการกระบวนการ TPR และจะมีการดำเนินกระบวนการ Temperature Programmed Oxidation (TPO) ต่อในทันทีโดยการป้อนออกซิเจนเข้าสู่ระบบแทนที่ไฮโดรเจนเพื่อศึกษาว่าออกซิเจนที่


ถูกใช้ไปจากการกระบวนการและการสามารถ recover กลับมาได้หรือไม่ ซึ่งผลการทดลองทั้งสองดังแสดงในรูปที่ 9-11 และตารางที่ 2 ซึ่งสรุปผลรวมของการศึกษา ซึ่งผลจากการศึกษาสามารถสรุปได้ว่าสารประกอบชีวเรียนออกไซด์ที่เตรียมขึ้นโดยกระบวนการ Cationic surfactant assisted method มีสมบัติ Redox สูงที่สุดหรืออีกนัยหนึ่งคือมีปริมาณออกซิเจนที่ผิวสูงที่สุด และหลังจากออกซิเจนที่พื้นผิวถูกใช้ไประหว่างกระบวนการ Reduction แล้วออกซิเจนดังกล่าวสามารถ recover กลับมาได้อีกครั้งด้วยกระบวนการ Oxidation

รูปที่ 9 Temperature Programmed Reduction (TPR-1) of ceria prepared by cationic surfactant assisted method (X), ceria prepared by templating pathway (O), and ceria prepared by precipitation method (▲).

รูปที่ 10 Temperature Programmed Oxidation (TPO) of ceria prepared by cationic surfactant assisted method (x), ceria prepared by templating pathway (o), and ceria prepared by precipitation method (▲).

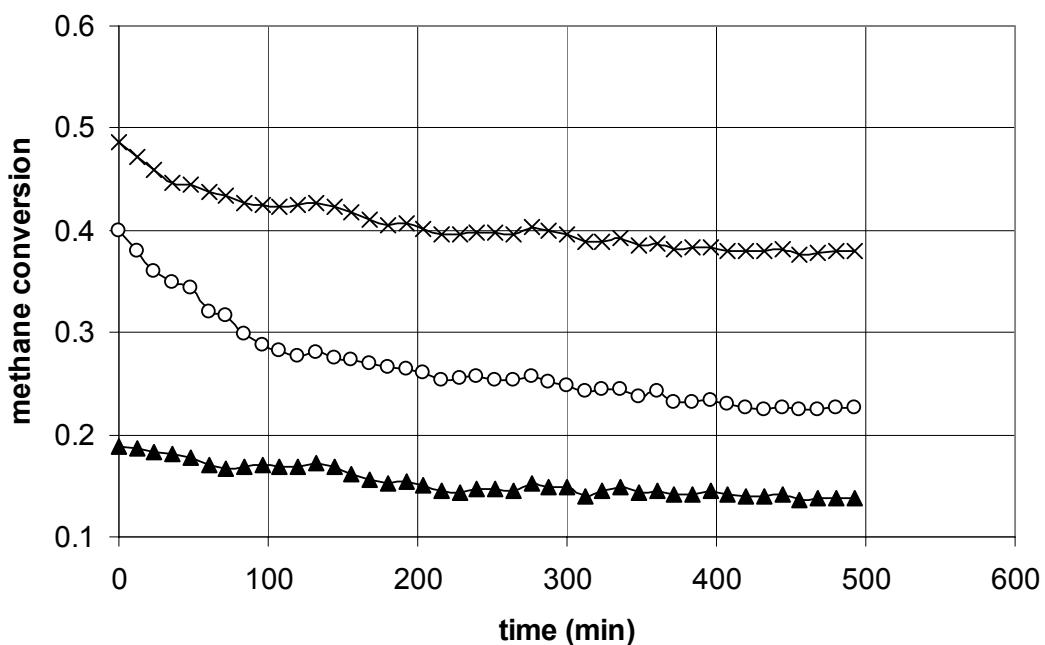
รูปที่ 11 Second time Temperature Programmed Reduction (solid lines) of ceria prepared by cationic surfactant assisted method (x), ceria prepared by templating pathway (o), and ceria prepared by precipitation method (▲) compared to the first time Temperature Programmed Reduction (dot lines).

ตารางที่ 2 Results of TPR(1), TPO, TPR(2) analyses of all CeO₂

Catalyst	Total H ₂ Uptake from TPR(1) ^a (μmol/g _{cat})	Total O ₂ Uptake from TPO ^b (μmol/g _{cat})	Total H ₂ Uptake from TPR(2) ^c (μmol/g _{cat})
CeO ₂ (PP)	781	395	773
CeO ₂ (TP)	1724	874	1721
CeO ₂ (SF)	2084	991	2071

^a Temperature Programmed Reduction of the reduced catalysts

^b Temperature Programmed Oxidation after TPR (1)

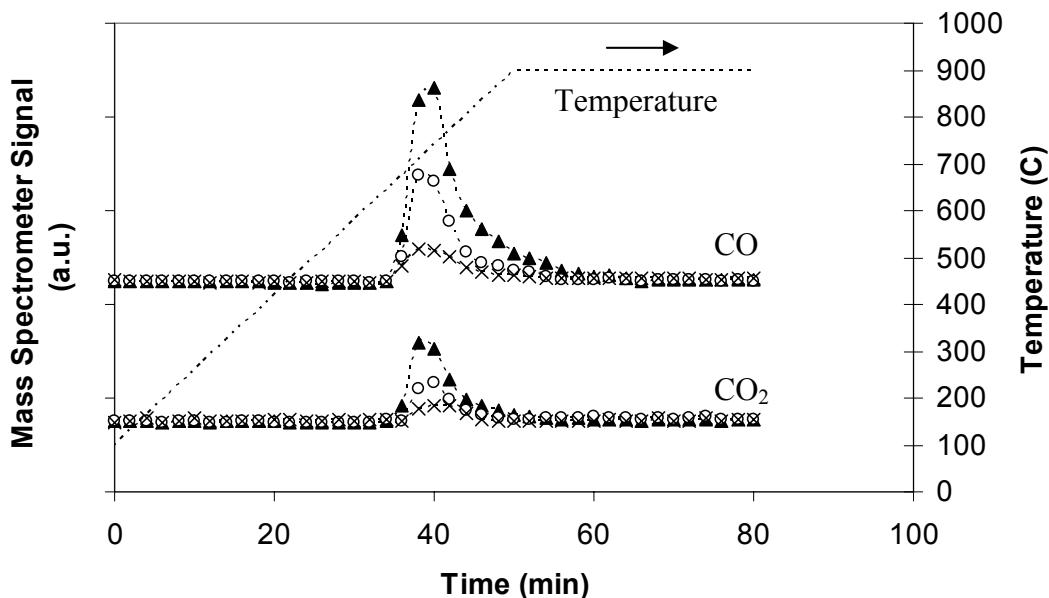

^c Re-Temperature Programmed Reduction after TPO

บทที่ 4

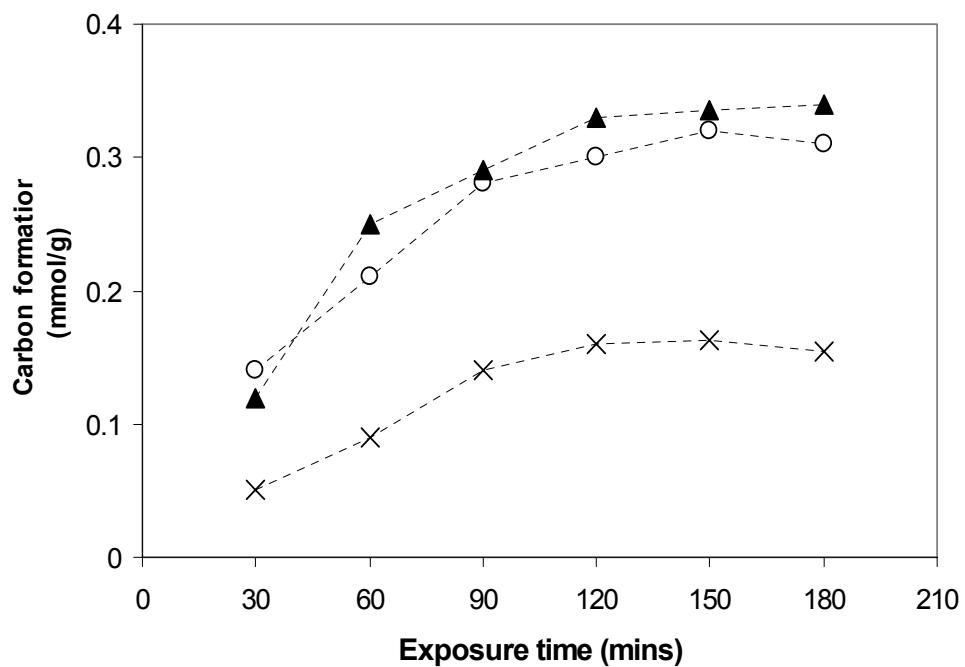
ศักยภาพของสารประกอบชีวเริมออกไซด์ต่อกระบวนการรีฟอร์มมิ่ง

4.1 ศักยภาพของสารประกอบชีวเริมออกไซด์ต่อกระบวนการรีฟอร์มมิ่งของมีเทนด้วยห้าม

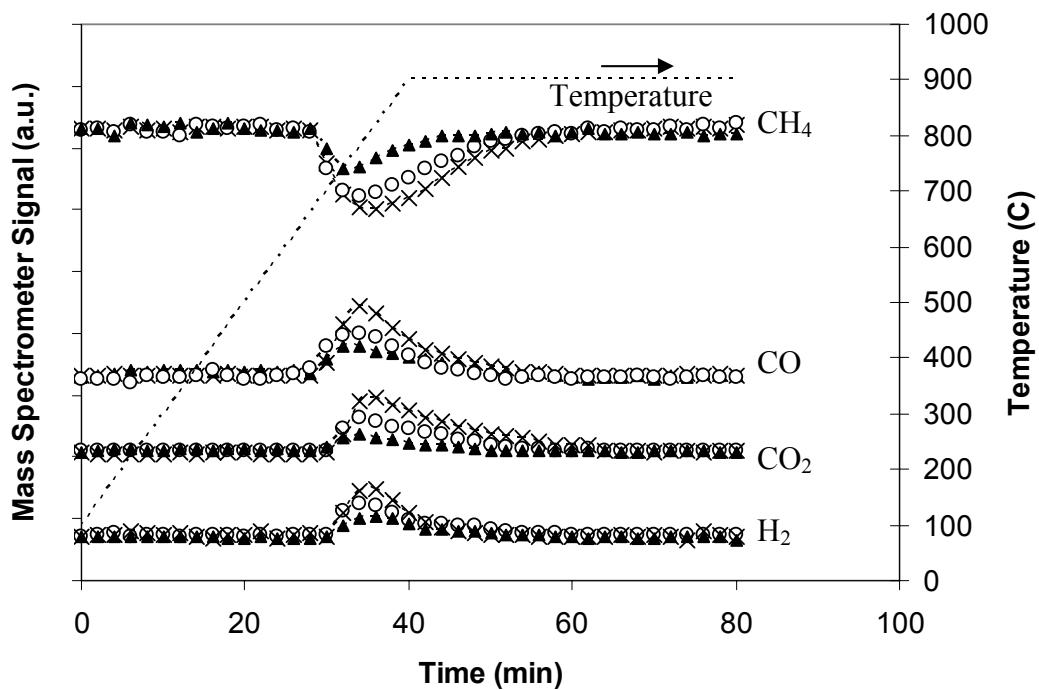
รูปที่ 12 แสดงถึงศักยภาพของสารประกอบชีวเริมออกไซด์ที่เตรียมด้วยวิธีการต่างๆ กันต่อศักยภาพของกระบวนการรีฟอร์มมิ่งของมีเทนด้วยห้ามเพื่อศึกษาว่าขนาดของอนุภาคที่ต่างกัน และพื้นที่ผิวของสารที่ต่างกันมีผลต่อศักยภาพของสารประกอบชีวเริมออกไซด์ในการเป็นตัวเร่งปฏิกิริยาหรือไม่ ซึ่งจากรูปดังกล่าวสามารถสรุปได้ว่าสารประกอบชีวเริมออกไซด์ที่เตรียมขึ้นโดยกระบวนการ Cationic Surfactant Assisted Method ซึ่งมีอนุภาคที่เล็กที่สุด และมีพื้นที่ผิวที่สูงที่สุดจะมีศักยภาพในการเป็นตัวเร่งปฏิกิริยาต่อกระบวนการรีฟอร์มมิ่งของมีเทนด้วยห้ามสูงที่สุด นั่นแสดงว่าศักยภาพต่อกระบวนการรีฟอร์มมิ่งแปรผันโดยตรงกับปริมาณพื้นที่ผิวของตัวเร่งปฏิกิริยานั่นเอง ตารางที่ 3 แสดงค่าการเสื่อมสภาพ (Deactivation) ที่เกิดขึ้นของตัวเร่งปฏิกิริยาชีวเริมออกไซด์ที่เตรียมขึ้นจากแต่ละกระบวนการ รวมถึงแสดงค่าการเกิด Sintering บนพื้นของตัวเร่งปฏิกิริยาด้วย

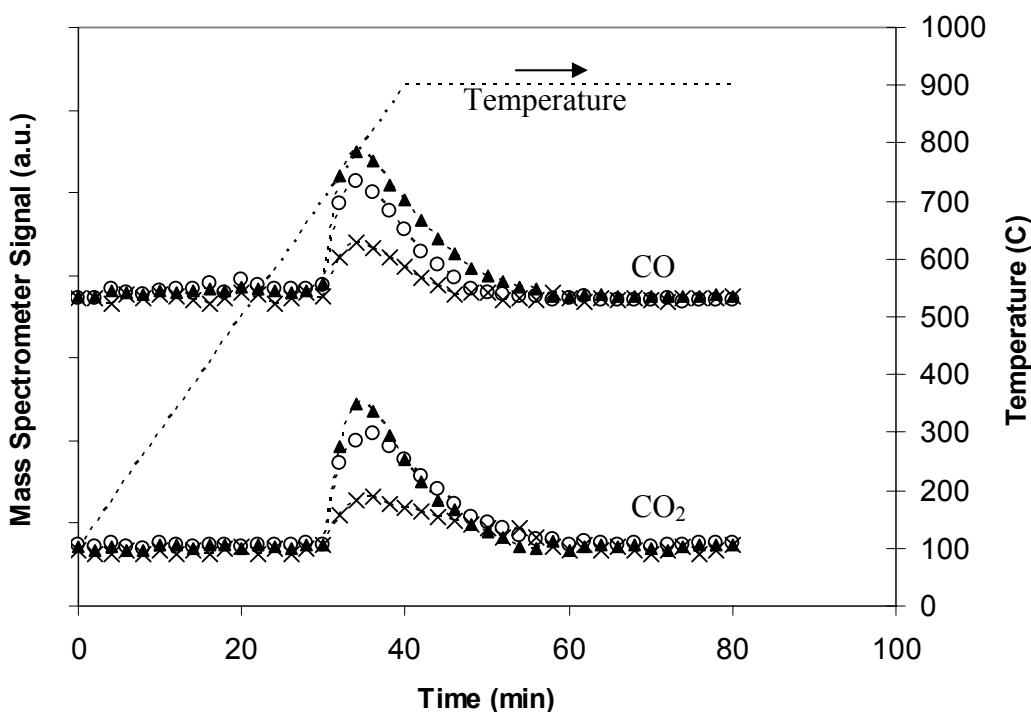

รูปที่ 12 Methane conversion at 900°C of methane steam reforming in He over ceria prepared by cationic surfactant assisted method (x), ceria prepared by templating pathway (o), and ceria prepared by precipitation method (▲).

ตารางที่ 3 Deactivation toward methane steam reforming after 8 h operation at 900°C of various preparation methods ceria-based catalyst


Catalyst	Deactivation (%)	BET before reaction (m ² /g)	BET after reaction (m ² /g)
CeO ₂ (SF)	21.74	17.8	14.1
CeO ₂ (TP)	43.53	9.12	5.42
CeO ₂ (PP)	26.55	5.31	4.00

นอกจากนั้นยังได้ทำการศึกษาศักยภาพในการต้านทานต่อการเกิดคาร์บอนที่ผิวของตัวเร่งปฏิกิริยาซีเรียมออกไซด์ที่เตรียมขึ้นด้วยกระบวนการต่างๆ ซึ่งกระบวนการที่ใช้ในการศึกษาคือ Temperature Programmed Oxidation (TPO) โดยการป้อนออกซิเจนเข้าสู่ระบบหลังกระบวนการรีฟอร์มมิ่งด้วยทีเกน ซึ่งผลของกระบวนการ TPO ดังแสดงในรูปที่ 13 พบว่าซีเรียมออกไซด์ที่เตรียมโดยวิธี Cationic Surfactant assisted method มีศักยภาพในการต้านทานการเกิดคาร์บอนที่ผิวสูงที่สุด


อนึ่งในรูปที่ 14, 15 และ 16 เป็นการศึกษาศักยภาพในการต้านทานต่อการเกิดคาร์บอนโดยละเอียด ซึ่งเริ่มจากการ Temperature Programmed Methane Adsorption (TPMA) แล้วตามด้วยกระบวนการ Temperature Programmed Oxidation (TPO) ซึ่งผลจากการศึกษาจะให้ผลไปในทิศทางเดียวกันกับผลที่ได้รับดังแสดงในรูปที่ 13 ส่วนตารางที่ 4 แสดงปริมาณคาร์บอนที่ผิวของตัวเร่งปฏิกิริยาในหน่วย monolayer


รูปที่ 13 TPO of ceria prepared by cationic surfactant assisted method (X), ceria prepared by templating pathway (O), and ceria prepared by precipitation method (▲) after exposure in methane steam reforming at 900°C for 8 h.

รูปที่ 14 Amount of carbon formation over ceria prepared by cationic surfactant assisted method (×), ceria prepared by templating pathway (○), and ceria prepared by precipitation method (▲) after exposure in methane at different times.

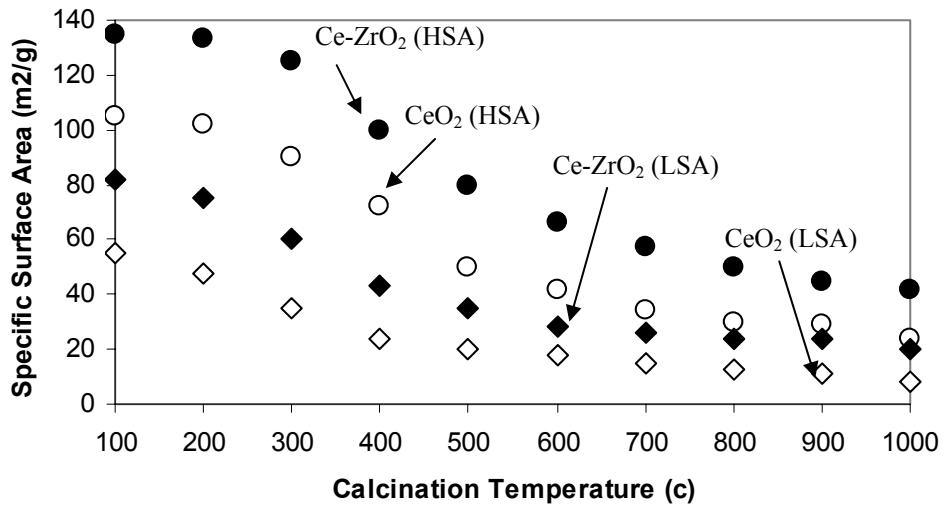
รูปที่ 15 TPMA of ceria prepared by cationic surfactant assisted method (×), ceria prepared by templating pathway (○), and ceria prepared by precipitation method (▲).

รูปที่ 16 TPO after TPMA of ceria prepared by cationic surfactant assisted method (X), ceria prepared by templating pathway (O), and ceria prepared by precipitation method (▲).

ตารางที่ 4 Amount of carbon formation on the surface of CeO_2 from TPO testing

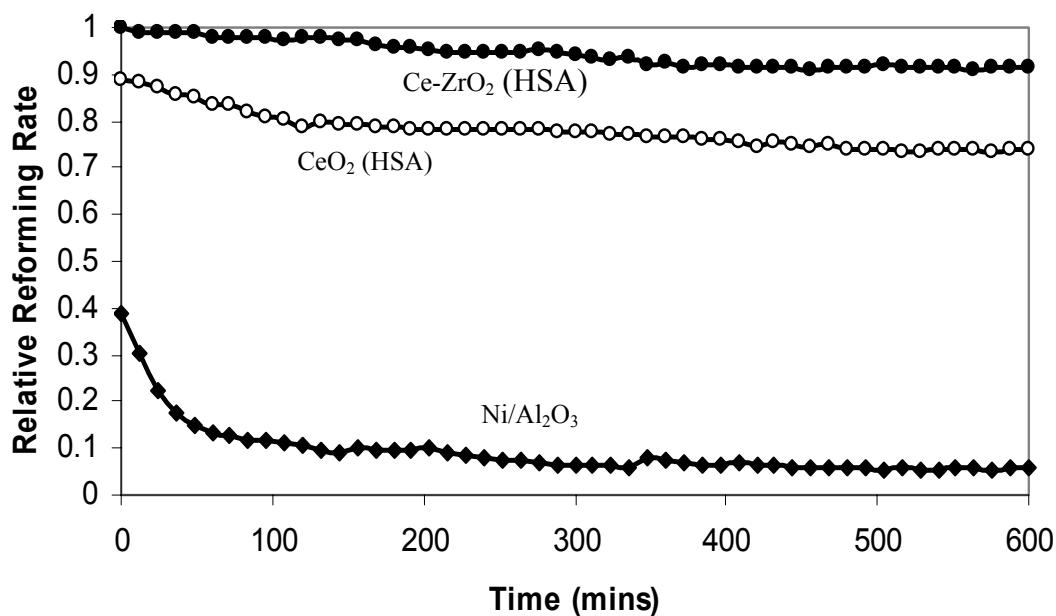
Catalyst	Amount of carbon formation (mmol/g)
CeO_2 (SF)	0.16
CeO_2 (TP)	0.30
CeO_2 (PP)	0.33

บทที่ 5


การสังเคราะห์และศักยภาพของ Ce-ZrO_2 ต่อกระบวนการรีฟอร์มมิ่ง

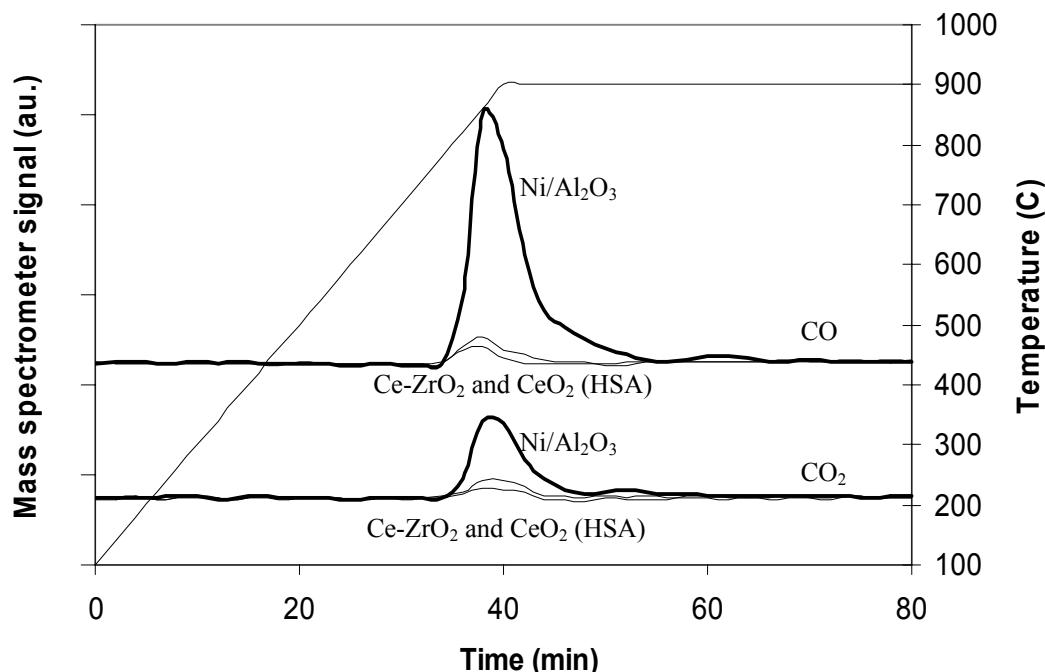
5.1 ผลของการเติม ZrO_2 บนตัวเร่งปฏิกิริยา CeO_2 ต่อศักยภาพในกระบวนการรีฟอร์มมิ่ง

ผลของการเติม ZrO_2 บางส่วนเพื่อสังเคราะห์ Ce-ZrO_2 นั้นจะช่วยเพิ่มพื้นที่ผิวของสารได้ อีกทั้งเสถียรภาพต่อความร้อนยังดีขึ้นอีกด้วยดังแสดงในรูปที่ 17 และตารางที่ 5 ด้านล่าง โดยการเติม ZrO_2 จะทำการเติมระหว่างการเตรียมตัวเร่งปฏิกิริยา 2 กระบวนการคือกระบวนการ Precipitation และกระบวนการ Cationic Surfactant assisted method โดยตัวเร่งปฏิกิริยาที่เกิดจากการเตรียมโดยกระบวนการ Precipitation จะถูกเรียกว่า Low surface area (LSA) ส่วนตัวเร่งปฏิกิริยาที่เกิดจากการกระบวนการเตรียมแบบ Cationic Surfactant assisted method จะถูกเรียกว่า High surface area (HSA)


ตารางที่ 5 ผลของการเติม ZrO_2 ในอัตราส่วนต่างๆ ต่อพื้นที่ผิวต่อน้ำหนักของสารที่เตรียม

Catalysts	Surface area after drying ($\text{m}^2 \text{ g}^{-1}$)	Surface area after calcination at 900°C ($\text{m}^2 \text{ g}^{-1}$)	Surface area after calcination at 1000°C ($\text{m}^2 \text{ g}^{-1}$)
CeO_2 (HSA)	105	29	24
Ce-ZrO_2 (HSA) (Ce/Zr=1/3)	135	45	42
Ce-ZrO_2 (HSA) (Ce/Zr=1/1)	120	45	41
Ce-ZrO_2 (HSA) (Ce/Zr=3/1)	115	44	40
CeO_2 (LSA)	55	11	8.5
Ce-ZrO_2 (LSA) (Ce/Zr=1/3)	82	24	20
Ce-ZrO_2 (LSA) (Ce/Zr=1/1)	74	24	18
Ce-ZrO_2 (LSA) (Ce/Zr=3/1)	70	22	19

รูปที่ 17 อัตราการลดลงของพื้นที่ผิวต่อน้ำหนักของตัวเร่งปฏิกิริยาที่อุณหภูมิการ Calcination ต่าง ๆ กัน


รูปที่ 18 แสดงศักยภาพของตัวเร่งปฏิกิริยา Ce-ZrO₂ ต่อกระบวนการรีฟอร์มมิ่งเมื่อเปรียบเทียบกับตัวเร่งปฏิกิริยา CeO₂ และ Ni/Al₂O₃ ซึ่งจากการทดลองพบว่าตัวเร่งปฏิกิริยา Ce-ZrO₂ มีศักยภาพต่อกระบวนการรีฟอร์มมิ่งสูงมากกว่า โดยเมื่อพิจารณาการเสื่อมสภาพดังแสดงในตารางที่ 6 แล้วพบว่า Ce-ZrO₂ มีอัตราการเสื่อมสภาพต่ำกว่าตัวเร่งปฏิกิริยาอีก 2 ชนิดอย่างเห็นได้ชัด ซึ่งนั่นเป็นผลมาจากการต้านทานต่อการเกิดการบ่อนที่ผิวของ Ce-ZrO₂ ที่สูงนั่นเอง ดังแสดงผลการทดลอง TPO ในรูปที่ 19 และตารางที่ 7 ตามลำดับ

รูปที่ 18 ศักยภาพต่อกระบวนการรีฟอร์มมิ่งของ Ce-ZrO₂, CeO₂, และ Ni/Al₂O₃

ตารางที่ 6 Catalyst deactivation and surface area reduction of the catalysts after running the reaction at 900°C for 10 h.

Catalyst Type	Deactivation (%)	Specific Surface Area before and after reaction (m ² g ⁻¹)	Surface Area Reduction (%)
CeO ₂ (HSA)	16.7	24 and 20	16%
Ce-ZrO ₂ (HSA)	8.5	42 and 39	7%
Ni/Al ₂ O ₃	85	40 and 40	~ 0

รูปที่ 19 The temperature-programmed oxidation after exposure with 5% methanol in helium

ตารางที่ 7 Amount of carbon remaining on catalyst surface after the exposure in methanol at 900°C

Catalysts	Amount of carbon deposition (monolayers)
CeO ₂ (HSA)	0.19
Ce-ZrO ₂ (HSA)	0.08
Ni/Al ₂ O ₃	2.47

บทที่ 6

สรุปผลที่ได้จากการวิจัย

ในงานวิจัยนี้สารประกอบชีวเรียนออกไซด์สามารถถูกเตรียมขึ้นได้จากการกระบวนการ 3 กระบวนการหลักๆ คือ Precipitation, Templating และ Surfactant assisted approach ซึ่งกระบวนการ Surfactant assisted method ยังสามารถแบ่งการเตรียมออกได้อีก 2 แบบคือ Cationic Surfactant และ Anionic Surfactant ซึ่งผลการวิเคราะห์สูตรโครงสร้างของสารประกอบชีวเรียนออกไซด์ที่สังเคราะห์โดยวิธีต่างๆ สามารถสรุปได้ว่าสารประกอบชีวเรียนออกไซด์ที่เตรียมได้จากการกระบวนการต่างๆ กันนั้น หลังจากผ่านการ Calcination ที่อุณหภูมิสูงแล้วจะได้สารที่มีสูตรโครงสร้างชนิดเดียวกันคือ CeO_2 ส่วนผลจากการวิเคราะห์ลักษณะของพื้นผิวของสารประกอบชีวเรียนออกไซด์ ที่เตรียมจากทั้ง 4 กระบวนการพบว่าสารประกอบชีวเรียนออกไซด์ที่เตรียมขึ้นโดยกระบวนการ Cationic surfactant assisted method จะมีขนาดของอนุภาคที่เล็กที่สุด ส่วนการเตรียมชีวเรียนออกไซด์ด้วยวิธี Anionic surfactant assisted จะให้สารประกอบชีวเรียนออกไซด์ที่มีขนาดของอนุภาคใหญ่ที่สุด และผลการวิเคราะห์พื้นที่ผิวของสารประกอบชีวเรียนออกไซด์ซึ่งเตรียมได้จากการกระบวนการต่างๆ ให้ผลไปในทิศทางเดียวกันกับผลที่ได้จากเครื่อง SEM นั่นคือ สารประกอบชีวเรียนออกไซด์ที่เตรียมขึ้นโดยกระบวนการ Cationic surfactant assisted method จะมีพื้นที่ผิวสูงที่สุด ส่วนการเตรียมชีวเรียนออกไซด์ด้วยวิธี Anionic surfactant assisted จะให้สารประกอบชีวเรียนออกไซด์ที่มีพื้นที่ผิวต่ำที่สุด

คุณสมบัติทางเคมีแรกที่ทำการทดสอบคือ สมบัติรีด็อกซ์ (Redox Property) ของสารประกอบชีวเรียนออกไซด์สามารถถูกเตรียมขึ้นได้จากการกระบวนการ 3 กระบวนการคือ Precipitation, Templating และ Cationic Surfactant assisted approach ซึ่งสมบัติรีด็อกซ์สามารถทำการศึกษาได้จากการกระบวนการ Temperature Programmed Reduction (TPR) และกระบวนการ Temperature Programmed Oxidation (TPO) ซึ่งผลการทดลองสรุปได้ว่าสารประกอบชีวเรียนออกไซด์ที่เตรียมขึ้นโดยกระบวนการ Cationic surfactant assisted method มีสมบัติ Redox สูงที่สุดหรืออีกนัยหนึ่งคือมีปริมาณออกซิเจนที่ผิวสูงที่สุด และหลังจากออกซิเจนที่พื้นผิวถูกใช้ไประหว่างกระบวนการ Reduction แล้วออกซิเจนดังกล่าวสามารถ recover กลับมาได้อีกรึด้วยกระบวนการ Oxidation

ในส่วนของศักยภาพของสารประกอบชีวเรียนออกไซด์ที่เตรียมด้วยวิธีการต่างๆ กันต่อกระบวนการรีฟอร์มมีของมีเทนด้วยน้ำสารปูได้ว่าสารประกอบชีวเรียนออกไซด์ที่เตรียมขึ้นโดยกระบวนการ Surfactant Assisted Method ซึ่งมีอนุภาคที่เล็กที่สุด และมีพื้นที่ผิวที่สูงที่สุดจะมีศักยภาพในการเป็นตัวเร่งปฏิกิริยาต่อกระบวนการรีฟอร์มมีของมีเทนด้วยน้ำสูงที่สุด นั่นแสดงว่าศักยภาพต่อกระบวนการรีฟอร์มมีของมีเทนโดยตรงกับปริมาณพื้นที่ผิวของตัวเร่งปฏิกิริยานั้นเอง อนึ่งจากการศึกษา

ศักยภาพในการต้านทานต่อการเกิดcarbонที่ผิวของตัวเร่งปฏิกิริยาชีเรียที่เตรียมขึ้นด้วยกระบวนการต่างๆ ซึ่งกระบวนการที่ใช้ในการศึกษาคือ Temperature Programmed Oxidation (TPO) โดยการป้อนออกซิเจนเข้าสู่ระบบหลังกระบวนการรีฟอร์มมิ่งด้วยมีเทน พบว่าสารประกอบชีเรียมออกไซด์ที่เตรียมโดยวิธี Surfactant assisted method มีศักยภาพในการต้านทานการเกิดcarbонที่ผิวสูงที่สุด

งานวิจัยในส่วนสุดท้ายคือการศึกษาผลของการเติม ZrO_2 บางส่วนเพื่อสังเคราะห์ Ce-ZrO₂ ซึ่งจะช่วยเพิ่มพื้นที่ผิวของสารได้ อีกทั้งเสถียรภาพต่อความร้อนยังดีขึ้นอีกด้วย โดยจากการศึกษาศักยภาพของตัวเร่งปฏิกิริยา Ce-ZrO₂ ต่อกระบวนการรีฟอร์มมิ่งเมื่อเปรียบเทียบกับตัวเร่งปฏิกิริยา CeO₂ และ Ni/Al₂O₃ พบว่าตัวเร่งปฏิกิริยา Ce-ZrO₂ มีศักยภาพต่อกระบวนการรีฟอร์มมิ่งสูงมากกว่า และมีอัตราการเสื่อมสภาพต่ำกว่าตัวเร่งปฏิกิริยาอีก 2 ชนิดอย่างเห็นได้ชัด ซึ่งนั้นเป็นผลมาจากการต้านทานต่อการเกิดcarbонที่ผิวของ Ce-ZrO₂ ที่สูงนั่นเอง

เอกสารอ้างอิง

- [1] R.W. McCabe and J.M.Kisenyi.,Chem. Ind, Vol. 15, (1995), pp. 605.
- [2] K. Otsuka, M. Hatano and A. Morikawa., J. Catal, Vol.79, (1983), pp.493.
- [3] H.S. Gandhi and M. Shelef., Stud. Surf. Sci. Catal, Vol.30, (1987), pp. 199.
- [4] R.K. Herz and J.A. Sell., J. Catal, Vol.94, (1985), pp. 199.
- [5] G.B. Fisher, J.R. Theis, M.V. Casarella, S.T. Mahan, SAE Paper 931034, (1993)
- [6] J.G. Nunan, H.J. Robota, M.J. Cohn and S.A. Bradley., J. Catal, vol.133, (1992), pp.309.
- [7] M. Shelef and G.W. Graham., Catal. Rev.-Sci. Eng, vol.36, (1994), pp. 433.[8] A. Trovarelli., Catal. Rev.-Sci. Eng, Vol.38, (1996), pp.439.
- [9] N. Laosiripojana and S. Assabumrungrat : Applied Catalysis B: Environmental, Vol.20 , Feb 2005, pp. 109-118.
- [10] E. Ramirez-Cabrera, A. Atkinson, D.Chadwick and N. Laosiripojana: Catalysis Today, Vol. 78 (2003), pp. 433-438.
- [11] A.N. Shigopov , G.W. Graham , R.W. McCabe and H.K. Plummer Jr :Applied Catalysis A: General, Vol. 210 , Sep. 2000, pp. 287-300.
- [12] D.Terribile , A.Trovarelli , J.Llorca , C.Leitenburg , G.Dolcetti :Catalysis Today, Vol. 43 (1998), pp. 79-88.

สิ่งที่ได้รับ (Output) จากโครงการ

วารสารระดับนานาชาติที่มี Impact Factor (International Journal with impact factor)

- 1) W. Sutthisripok, S. Sattayanurak and L. Sikong, Effect of specific surface area on oxygen storage capacity (OSC) and methane steam reforming reactivity of CeO_2 , accepted to be published in Journal of Porous Materials (Impact factor = 0.698)
- 2) W. Sutthisripok, N. Laosiripojana and L. Sikong, Effect of specific surface area and Zr doping content on oxygen storage capacity (OSC) and methane steam reforming reactivity of $\text{CeO}_2\text{-ZrO}_2$, accepted to be published in ECS Transactions – Solid Oxide Fuel Cells: Volume 7

International Conference

- 1) W. Sutthisripok, N. Laosiripojana, L. Sikong, Methanol Steam Reforming over High Surface Area Ceria and Ceria-Zirconia at SOFC Temperature, Regional Symposium on Chemical Engineering (RSCE 2004), December 2004.

ภาคผนวก ก. จดหมายตอบรับการตีพิมพ์ในวารสารวิชาการ ระดับนานาชาติ 2 ฉบับ

From: "Journal of Porous Materials" <linda.singer@springer.com>
Subject: Decision on your manuscript #JOPO103R1
Date: Tue, April 3, 2007 1:43 am
To: weerawan.s@psu.ac.th

Dear Asst.Prof.Dr. WEERAWAN SUTTHISRIPOK:

We are pleased to inform you that your manuscript, "Effect of specific surface area on oxygen storage capacity (OSC) and methane steam reforming reactivity of CeO₂" has been accepted for publication in Journal of Porous Materials.

If you haven't already sent the signed Copyright Transfer Form, we will need to receive it. You can locate the form on the journal's Welcome Page at:

<http://jopo.edmgr.com/>

Please print the form, sign it, and return it to us by fax at 781-878-0449. Thank you. Your manuscript cannot be published until we receive the signed form.

Best regards,

The Editorial Office
Journal of Porous Materials

P.S.: If you would like to have your accepted article published with open access in our Open Choice program, please access the following web site:
<http://www.springer.com/openchoice>.

From: ecst@electrochem.org
Subject: ECS Transactions: MS #SOFC-002 Decision Letter
Date: Fri, January 12, 2007 12:02 am
To: weerawan.s@psu.ac.th

Dear Dr. Sutthisripok,

I am pleased to inform you that your manuscript, "Effect of specific surface area and Zr doping content on oxygen storage capacity (OSC) and methane steam reforming reactivity of CeO₂-ZrO₂", has been reviewed and accepted for publication in "ECS Transactions - Solid Oxide Fuel Cells" Volume 7, from the Organizing Committee of SOFC-X. This issue is scheduled to be published in June 2007.

Thank you for your participation in ECST. If you have any questions or comments, please feel free to contact the ECST staff by e-mail at ecst@electrochem.org.

Sincerely,

Koichi Eguchi
Editor, "ECS Transactions - Solid Oxide Fuel Cells", Volume 7

Further Editor Comments (if any):

--
This message has been scanned for viruses and dangerous content by MailScanner, and is believed to be clean.

ภาคผนวก ข. Manuscript วารสารวิชาการ ระดับนานาชาติ 2 ฉบับ

Submitted to Journal of Porous Materials (Revised Manuscript)

Type of Contribution: Research Paper

**Effect of specific surface area on oxygen storage capacity (OSC) and methane steam
reforming reactivity of CeO₂**

W. Sutthisripok ^{*}, S.Sattayanurak and L. Sikong

Department of Mining and Materials Engineering, Faculty of Engineering, Prince of
Songkla University, Songkhla, Thailand

^{*} Corresponding author (weerawan.s@psu.ac.th)

Abstract

It was found from the work that the specific surface area of ceria presents an important role on the oxygen storage capacity (OSC), the reactivity toward methane steam reforming, and the resistance toward carbon formation of this material. After calcination at 900°C, ceria prepared by surfactant-assisted method (SF) was observed from the present work to have significantly higher surface area than those prepared by templating (TP) and precipitation (PP) methods; this material showed strong OSC with good reforming reactivity in terms of thermal stability and resistance toward carbon formation compared to others.

In detail, the degree of OSC was measured by the number of hydrogen uptake from the temperature programmed reduction (TPR). It was found that the value of hydrogen uptake from the TPR-1 of ceria prepared by SF was 2084 mmol g⁻¹, whereas those of ceria prepared by TP and PP were 1724 and 781 mmol g⁻¹, respectively. In addition, it was also proven in the present work that the OSC of these materials are reversible, according to the temperature programmed oxidation (TPO) and the second time temperature programmed reduction (TPR-2) results.

According to the reactivity toward methane steam reforming, after purging in 3 kPa methane and 9 kPa steam at 900°C for 8h, the methane conversion at steady state of ceria prepared by SF was approximately 38% with very low amount of carbon formed on the surface (0.16 mmol g⁻¹), whereas those of ceria prepared by TP and PP were 22% (with the amount of carbon formation of 0.30 mmol g⁻¹) and 13% (with the amount of carbon formation of 0.33 mmol g⁻¹), respectively.

Keywords: ceria, oxygen storage capacity, methane steam reforming

1. Introduction

Ceria have attracted much attention due to their unique redox properties and high oxygen storage capacity (OSC) [1-7]. This type of material contains high concentration of mobile oxygen vacancies; this catalyst therefore acts as a local source or sinks for oxygen involved in reactions taking place on its surface or on other catalytic materials supported. It can store oxygen under oxidising conditions and releases that oxygen under reducing conditions in order to continue the oxidation of hydrocarbons. According to the work from Imperial College on oxide catalysts for the oxidation of methane (partial oxidation and oxidative coupling), the results supported what is now a generally accepted fact that oxide ion conductivity from ceria could influence the catalytic activity and selectivity in hydrocarbon oxidation [8-10]. Furthermore, ceria was reported to be potentially more resistant toward carbon formation and toward the reaction with sulphur-bearing species than the general metallic catalyst [8]. Previously, this material has been widely used in **Solid Oxide Fuel Cell (SOFC)** applications either as supports for metal catalysts or as the anode (all-oxide anode). A small amount of ceria added to Ni-YSZ cermet was reported to improve the catalyst resistance to carbon formation [11, 12]. Ni supported by a CeO₂/CeO₂-ZrO₂ mixture was also reported for application as the anode material [13].

Ceria-based materials are also applied as catalyst in a wide variety of reactions involving the oxidation, and partial oxidation of hydrocarbons. In addition, this type of catalyst is applied as an automotive catalyst, which is used to oxidise unburnt hydrocarbons, convert CO to CO₂, and reduce NO_x. There is now increasing interest in applying ceria in more reducing conditions such as in methane reforming at the anodes (direct reforming) of Solid Oxide Fuel Cell (SOFC), where the potential for deactivation by carbon formation is much greater [8]. Importantly, this material has been reported to have the reactivity toward the methane steam reforming reaction with excellent resistance toward carbon deposition at

such a high temperature (800-1000°C) [9,10]. Unfortunately, the main weakness of ceria is its low specific surface area and high deactivation due to thermal sintering when operated at high temperature. It was reported that after exposure in methane steam reforming conditions at 900°C for 18 hours, the reforming reactivity over CeO_2 deactivated 30% and the steady state methane conversion was less than 10% [10].

The use of high surface area CeO_2 (CeO_2 (HSA)) would be a good alternative method to minimize the sintering impact and consequently improve the stability and steady state activity. Several methods have recently been described for the preparation of high surface area CeO_2 solid solution. Most interest is focused on the preparation via templating pathways [14-16]. Moreover, Terribile et al. [17] synthesized CeO_2 (HSA) with improved textural, structural and chemical properties for environmental applications by using a surfactant-assisted approach. The materials with good homogeneity and stability especially after thermal treatments were achieved.

In the present work, CeO_2 was synthesized by several methods i.e. precipitation, templating, and the surfactant-assisted approach. The oxygen storage capacity (OSC) of these synthesized materials was studied in terms of redox properties and redox reversibility. Furthermore, the methane steam reforming reactivity over these synthesized materials was carried out in order to determine the effect of specific surface area on the reactivity toward this reaction. The resistance toward carbon formation for each material was then studied.

2. Experimental

2.1. Material preparation and characterizations

Firstly, conventional CeO_2 (CeO_2 (PP)) was prepared by precipitation of cerium nitrate from Aldrich. The starting solution was prepared by mixing 0.1 M of metal salt

solutions with 0.4 M of ammonia at a 2 to 1 volumetric ratio. This solution was stirred by magnetic stirring (100 rpm) for 3 h. The precipitate was filtered and washed with deionised water and acetone to remove the free surfactant. It was dried overnight in an oven at 110°C, and then calcined in air at 900°C for 6 h.

For the next step, CeO₂ was then prepared by the templating, and surfactant-assisted methods (CeO₂ (TP) and CeO₂ (SF), respectively). According to the surfactant-assisted method, an aqueous solution of an appropriate cationic surfactant and 0.1 M cetyltrimethylammonium bromide solution from Aldrich were added to 0.1 M aqueous solution [17]. The molar ratio of ([Ce])/[cetyltrimethylammonium bromide] was kept constant at 0.8. The mixture was stirred and then aqueous ammonia was slowly added with vigorous stirring. The mixture was continually stirred for 3 h. After that, the mixture was cooled and the resulting precipitate was filtered and washed repeatedly with water and acetone. The filtered powder was dried in the oven at 110°C for one day and then calcined in air at 900°C for 6 h. According to the templating method, the preparation procedures are almost the same as surfactant-assisted method, but cellulose acetate was used as the additive precursor instead of cetyltrimethylammonium bromide.

After preparation, the catalyst specific surface areas were obtained from BET measurement. In addition, as described in the introduction section, the advantage of CeO₂ is related to its high redox properties, therefore, the redox properties and redox reversibilities of synthesized all CeO₂ were also determined by the temperature programmed reduction (TPR) and the temperature programmed oxidation (TPO). Regarding these experiments, 5% H₂/He and 10% O₂/He were used for the TPR and TPO respectively, while the temperature of the system increased from room temperature to 900°C for both experiments. Finally, the reactivity toward methane steam reforming and the resistance toward carbon formation over selected materials were then carried out.

2.2. *Experimental Set-up*

In order to study the methane steam reforming reaction, the experimental reactor system was set up. This system consists of three main sections: feed, reaction, and analysis sections. The main obligation of the feed section is to supply the components of interest such as CH₄, H₂O, and H₂ to the reaction section, where an 8-mm internal diameter and 40-cm length quartz reactor was mounted vertically inside a furnace. The catalyst was loaded in the quartz reactor, which was already packed with a small amount of quartz wool to prevent the catalyst from moving. The residence time was kept constant at 5×10^{-4} g min cm⁻³. The weight of catalyst loading was 100 mg, while a typical range of total gas flow was 100 cm³ min⁻¹. The gas mixture was flowed through the catalyst bed in the quartz reactor. A type-K thermocouple was inserted into the annular space between the reactor and the furnace. The thermocouple was mounted on the reactor in close contact with the catalyst bed to minimize the temperature difference between the catalyst bed and the thermocouple. After the reactions, the exit gas was transferred via trace-heated lines to the analysis section, which consists of a Porapak Q column Shimadzu 14B gas chromatography (GC) and a mass spectrometer (MS). The gas chromatography was applied in order to investigate the steady state condition experiments, whereas the mass spectrometer was used for the carbon formation experiments. In the present work, the outlet of the GC column was directly connected to a thermal conductivity detector (TCD). In order to satisfactorily separate CH₄, CO, CO₂, and H₂O, the temperature setting inside the GC column was programmed varying with time. In the first 3 min, the column temperature was constant at 60°C. Then, it was increased steadily by the rate of 15°C per min until 120°C. Finally, the temperature was decreased to 60°C. The analytical method applied is an internal standardization. The peak area is related to the molar concentration through the response factor (RF).

In order to study the amount of carbon formation deposited on catalyst surface, the transient exit gas from the catalytic reactor was analyzed using the mass spectrometer. Sampling of the exit gas was done by a quartz capillary and differential pumping. The calibrations of CO and CO₂ were performed by injecting a known amount of these calibration gases from a loop in an injection valve in the bypass line. The response factors were obtained by dividing the number of moles for each component over the respective areas under peaks. This process was performed before each experiment to achieve maximum accuracy in the quantitative carbon analysis.

2.3. Investigation of carbon formation by Temperature programmed techniques

In the present work, temperature programmed technique (TP) was applied for studying carbon formation. Temperature Programmed Methane Adsorption (TPMA) was done in order to investigate the reaction of methane with the surface of catalyst. 5% Methane in helium with the total flow rate of 100 cm³ min⁻¹ was introduced into the system, while the operating temperature increased from room temperature to 900°C at the rate of 10°C min⁻¹. Then, the system was cooled down to room temperature under helium flow. After the TPMA experiment, the carbon deposited on the catalyst was investigated by the temperature programmed oxidation (TPO). 10% Oxygen in helium with the total flow rate of 100 cm³ min⁻¹ was introduced into the system, after a He purge. Similar to TPMA, the temperature was increased from room temperature to 900°C at the rate of 10°C min⁻¹.

3. Results and Discussion

3.1 Physicochemical properties of the synthesized catalysts

The BET measurements of CeO₂ (PP, TP, and SF) were carried out before and after the calcinations at different temperatures in order to determine the specific surface area. The

results are presented in **Table 1**. After drying in oven, the specific surface area of CeO₂ prepared by templating and surfactant assisted methods are in the same range and significantly higher than those prepared by precipitation method. As expected, the surface area dramatically decreased at high calcination temperatures particularly those prepared by templating. However, the values for CeO₂ (TP, and SF) are still appreciable after calcination at 900°C. By using the surfactant-assisted method, CeO₂ (SF) with surface area of 17.8 m² g⁻¹ was obtained after calcination at 900°C, which is three times higher than CeO₂ (PP). This is in good agreement with the SEM result, in which the particle size of CeO₂ (SF) is significantly smaller than that of CeO₂ (PP), **Fig. 1** and **2**.

3.2 Redox properties and redox reversibility of the synthesized catalysts

The oxygen storage capacities (OSC) and the degree of redox properties for all samples were investigated using temperature programmed reduction (TPR-1), which was performed by heating [the calcined catalysts](#) up to 900°C in 5%H₂ in He. As shown in **Fig. 3** (dot lines), hydrogen uptakes are detected at the temperature above 700°C. The amount of hydrogen uptake over CeO₂ (SF) is significantly higher than that over other CeO₂, suggesting the OSC strongly depends on the specific surface area of CeO₂. After being purged with helium, the redox reversibilities for CeO₂ were then determined by applying temperature programmed oxidation (TPO) following with the second time temperature programmed reduction (TPR-2). The TPO was carried out by heating the catalyst up to 900°C in 10%O₂ in helium; the amount of oxygen chemisorbed was then measured and the results are shown in **Fig. 4** and **Table 2**. Regarding the TPR-2 results as shown in **Fig. 3** (solid lines) and **Table 2**, the amount of hydrogen uptakes for CeO₂ were approximately similar to those from TPR-1, indicating the redox reversibility for these materials. [It should be noted that the increase of the oxygen storage capacity \(or redox properties\) with the specific surface area of ceria could](#)

be due to higher resistance toward thermal sintering and thermal reducibility of the high surface area ceria compared with the low surface area one.

3.3 Stability and activity toward methane steam reforming

In order to study the methane steam reforming activity of CeO₂, these materials were tested by introducing CH₄/H₂O in helium with the inlet ratio of 1.0/3.0 at 900°C. The main products from the reactions over these catalysts were H₂ and CO with some CO₂, indicating a contribution from the water-gas shift at this high temperature. The steam reforming rate was measured as a function of time in order to indicate the stability and the deactivation rate. The variations in relative reforming activity with time for different catalysts are shown in **Fig. 6**. At steady state, CeO₂ (SF) presented significant higher activity toward the methane steam reforming than CeO₂ (TP) and CeO₂ (PP).

The steam reforming activities of CeO₂ (TP) and CeO₂ (PP) significantly declined with time before reaching a new steady-state rate at a much lower value, while the activity of CeO₂ (SF) declined slightly. Catalyst stabilities expressed as a deactivation percentage are given in **Table 3**. In order to investigate the reason of the catalyst deactivation, the post-reaction temperature-programmed oxidation (TPO) experiments were then carried out. TPO experiments detected slight carbon formation on the surface of ceria, particularly CeO₂ (SF), **Fig. 7**. More investigations on the resistance toward carbon formation are presented in Section 3.4.

The BET measurement, as presented in **Table 3**, suggested that the deactivations of all CeO₂ were mainly due to the reduction of surface area. However, the reduction percentage of CeO₂ (SF) is lower than other ceria, indicating the high stability of CeO₂ (SF) toward thermal sintering.

3.4 Resistance toward carbon formation

The resistances of all ceria toward the formation of carbon species were investigated by the Temperature programmed techniques; i.e., TPMA and TPO. The former is to determine the reaction between methane and the catalyst surface while the latter is to determine the amount of carbon deposited on the catalyst.

In order to provide the suitable conditions for testing and obtain the actual resistance toward carbon formation, the influence of exposure time after TPMA on the amount of carbon formation were firstly determined. After reached the isothermal condition (900°C), 5% methane in helium was remains purged to the catalyst bed for several exposure times (30, 60, 90, 120, 150, and 180 min). The carbon formation profiles are shown in **Fig. 8**. Clearly, the quantity of carbon adsorbed on the catalyst surface increased with increasing methane exposure time, and reached steady state after 120 min for all samples. **Fig. 9** presents the TPMA results for all catalysts, while **Fig. 10** presents the TPO results.

As seen in **Fig. 9**, carbon monoxide and carbon dioxide were also produced together with hydrogen for all ceria due to the gas-solid reaction of CH_4 on Ce^{4+} . Due to the high surface area of CeO_2 (SF), the gas-solid reactions of methane on ceria surface were significantly higher than others. The amount of carbon formation on the surface of each catalyst was then determined by measuring the CO and CO_2 yield obtained from the TPO results, **Table 4**. Clearly, CeO_2 (SF) provided higher resistance toward carbon formation than other ceria.

4. Discussion

It has been widely reported that the gas-solid reaction between ceria and CH_4 can generate CO and H_2 at high temperature [8-10]. In addition, the reduced state, CeO_{2-n} , can react with steam to produce more H_2 as follows:

Carbon formation is one major problem for the reforming of methane. Regarding to the possible carbon formation during the reforming processes, the following reactions are theoretically the most probable reactions that could lead to carbon formation:

At low temperature, reactions (5–6) are favorable, while reaction (3) is thermodynamically unfavored [18]. The Boudouard reaction (Eq. 3) and the decomposition of methane (Eq. 4) are the major pathways for carbon formation at such a high temperature as they show the largest change in Gibbs energy [19]. According to the range of temperature in this study, carbon formation would be formed via the decomposition of methane and Boudouard reactions.

The high resistance toward carbon deposition for ceria, which has been widely reported by several researchers [8-10], is mainly due to the high oxygen storage capacity (OSC) of this material. By applying CeO_2 , both reactions (Eqs. 3 and 4) could be inhibited by the redox reactions between methane and carbon monoxide with the lattice oxygen (O_x) at CeO_2 surface (Eqs. 7 and 8) forming hydrogen and carbon dioxide, which is thermodynamically unfavored to form carbon species in this range of conditions.

From Eqs. 7 and 8, the lattice oxygen (O_x) can then be recovered by the oxidation of steam from the outlet feed ($\text{O}_{x-1} + \text{H}_2\text{O} \rightarrow \text{O}_x + \text{H}_2$). Although ceria provides great advantages as described above, the nature low specific surface area of ceria leads to the high size reduction due to the thermal sintering impact, resulting in its low redox property and consequently low reforming reactivity. It was found in the present work that the redox property and reactivity toward methane steam reforming of ceria is linearly correlated to its specific surface area, and the use of high surface area ceria could minimize the above problems. Ceria synthesized by surfactant assisted method (CeO_2 (SF)) has the specific surface area after calcination at 900°C almost three times higher than the conventional one. Moreover, the size reduction percentage for CeO_2 (SF) was significantly lower. These enhancements were also reported by Terrible *et al* [17] that the achievement of high surface area material by the surfactant-assisted procedure is mainly due to the interaction of hydrous oxide with cationic surfactants under basic conditions during the preparation. At high pH value, conducting the precipitation of hydrous oxide in the presence of cationic surfactant allows the cation exchange process between H^+ and the surfactant, resulting in a developed pore structure with an increase in surface area [17]. Regarding the thermal stability at high temperature, Terrible *et al* [17] explained that the incorporation of surfactants during preparation can reduce the interfacial energy and eventually decrease the surface tension of water contained in the pores. This could reduce the shrinkage and collapse of the catalyst during heating up, which consequently helps the catalyst maintaining high surface area after calcination.

5. Conclusions

The specific surface area of CeO₂ plays an important role on the oxygen storage capacity (OSC), the reforming reactivity, and the resistance toward carbon deposition of this material. CeO₂ synthesized by surfactant assisted method was found to be a good candidate catalyst for the steam reforming of methane at such a high temperature (900°C) due to its significant higher steam reforming activity and its excellent resistances toward the thermal sintering and the carbon formation compared to other preparation methods i.e. conventional precipitation and templating methods.

Acknowledgement

The financial support from The Thailand Research Fund (TRF) throughout this project is gratefully acknowledged.

References

- [1] P. Fornasiero, G. Balducci, R.D. Monte, J. Kaspar, V. Sergo, G. Gubitosa, A. Ferrero and M. Graziani. *J. Catal.* 164 (1996), p. 173.
- [2] T. Miki, T. Ogawa, M. Haneda, N. Kakuta, A. Ueno, S. Tateishi, S. Matsuura and M. Sato, *J. Phys. Chem.* 94 (1990), p. 339.
- [3] C. Padeste, N.W. Cant and D.L. Trimm, *Catal. Lett.* 18 (1993), p. 305.
- [4] S. Kacimi, J. Barbier Jr., R. Taha and D. Duperz, *Catal. Lett.* 22 (1993), p. 343.
- [5] G.S. Zafiris and R.J. Gorte, *J. Catal.* 143 (1993), p. 86.
- [6] G.S. Zafiris and R.J. Gorte, *J. Catal.* 139 (1993), p. 561.
- [7] S. Imamura, M. Shono, N. Okamoto, R. Hamada and S. Ishida, *Appl. Catal. A* 142 (1996), p. 279.

[8] E. Ramírez-Cabrera, A. Atkinson and D. Chadwick, *Applied Catalysis B*, 47 (2004), p. 127-131

[9] E. Ramírez-Cabrera, N. Laosiripojana, A. Atkinson and D. Chadwick, *Catalysis Today*, 78 (2003), p. 433-438

[10] N. Laosiripojana and S. Assabumrungrat, *Chem. Eng. Sci.*, 61(8), 2540

[11] P. Singh, J. Ruka, and R.A. George, US Patent No. 4894297, Jan. 16, (1990)

[12] Y. Matsuzaki and M. Hishinuma, *Abstracts of the 1996 Fuel cell Seminar*, Orlando, FL, (1996), 119

[13] Mitsubishi Heavy Industries, Patent JKT-121 964, Apr. 22, (1992)

[14] C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli and J.S. Beck, *Nature*, 359 (1992) 710.

[15] Q. Huo, D.I. Margolese, U. Ciesla, P. Feng, T.E. Gier, P. Sieger, R. Leon, P.M. Petroff, B. Schüth and G.D. Stucky, *Nature* 368 (1994) 317.

[16] P.T. Tanev and T.J. Pinnavaia, *Science* 267 (1995) 865.

[17] D. Terribile, A. Trovarelli, J. Llorca, C. Leitenburg and G. Dolcetti, *Catal. Today* 43 (1998) 79-88.

[18] Y. Lwin, W.R.W. Daud, A.B. Mohamad and Z. Yaakob, *Int. J. Hydrogen Energy* 25(1) (2000) 47-53.

[19] J.N. Amor, *Appl. Catal. A* 176 (1999) 159-176.

List of Figures

Fig. 1 SEM micrograph of CeO₂ (PP) after calcined at 900°C.

Fig. 2 SEM micrograph of CeO₂ (SF) after calcined at 900°C.

Fig. 3 Temperature Programmed Reduction (TPR-1) of ceria prepared by cationic surfactant assisted method (×), ceria prepared by templating pathway (○), and ceria prepared by precipitation method (▲).

Fig. 4 Temperature Programmed Oxidation (TPO) of ceria prepared by cationic surfactant assisted method (×), ceria prepared by templating pathway (○), and ceria prepared by precipitation method (▲).

Fig. 5 Second time Temperature Programmed Reduction (solid lines) of ceria prepared by cationic surfactant assisted method (×), ceria prepared by templating pathway (○), and ceria prepared by precipitation method (▲) compared to the first time Temperature Programmed Reduction (dot lines).

Fig. 6 Methane conversion at 900°C of methane steam reforming in He over ceria prepared by cationic surfactant assisted method (×), ceria prepared by templating pathway (○), and ceria prepared by precipitation method (▲).

Fig. 7 TPO of ceria prepared by cationic surfactant assisted method (×), ceria prepared by templating pathway (○), and ceria prepared by precipitation method (▲) after exposure in methane steam reforming at 900°C for 8 h.

Fig. 8 Amount of carbon formation over ceria prepared by cationic surfactant assisted method (×), ceria prepared by templating pathway (○), and ceria prepared by precipitation method (▲) after exposure in methane at different times.

Fig. 9 TPMA of ceria prepared by cationic surfactant assisted method (×), ceria prepared by templating pathway (○), and ceria prepared by precipitation method (▲).

Fig. 10 TPO after TPMA of ceria prepared by cationic surfactant assisted method (X), ceria prepared by templating pathway (O), and ceria prepared by precipitation method (▲).

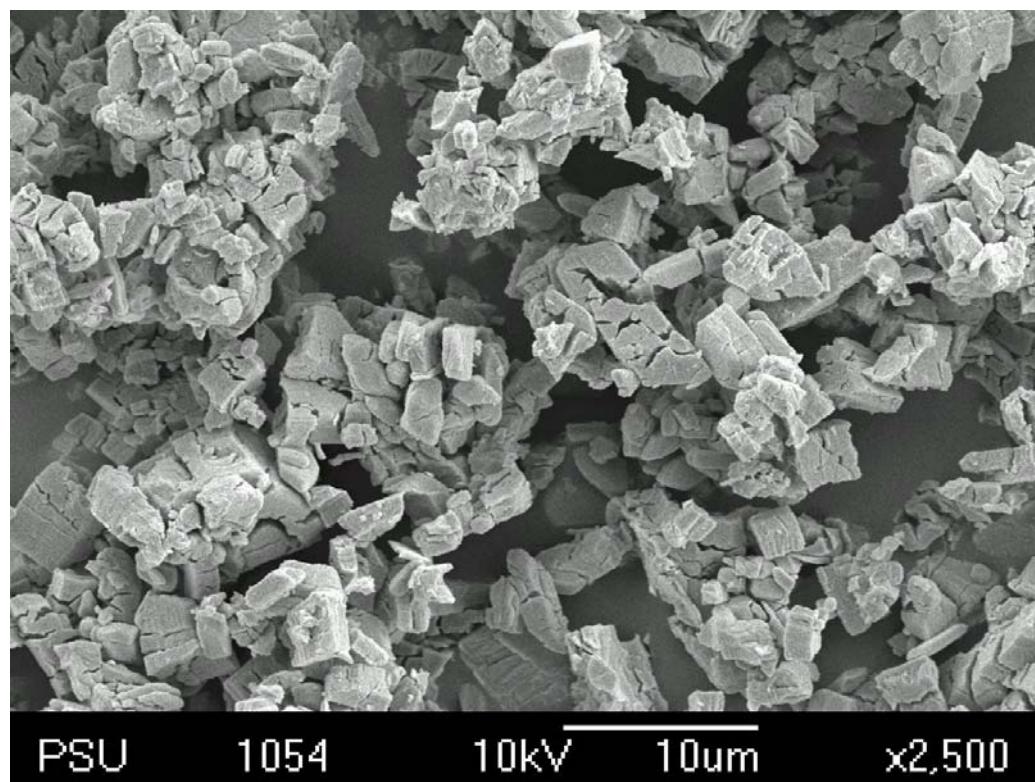

List of Tables

Table 1 BET surface area of ceria sample prepared by different preparation process.

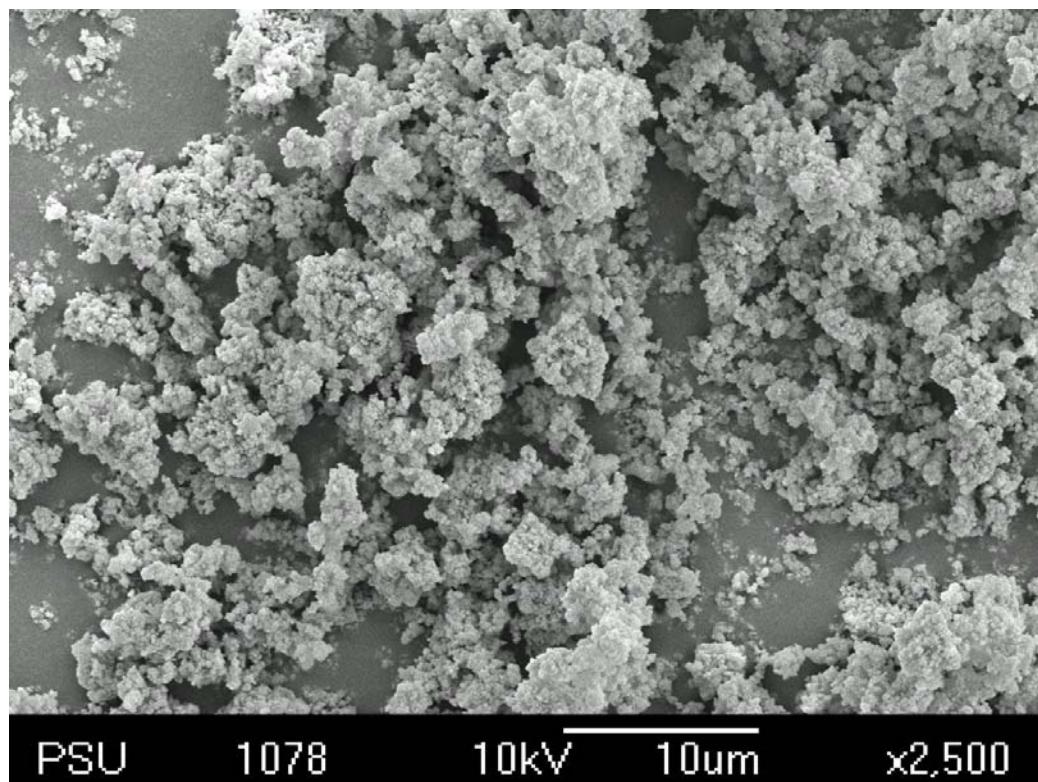
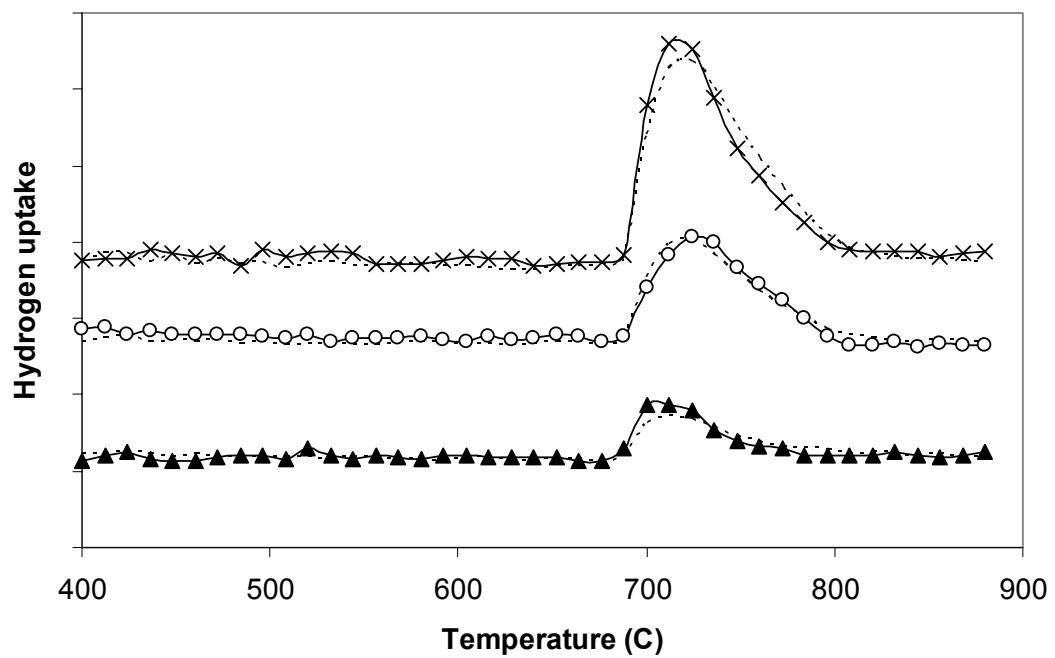
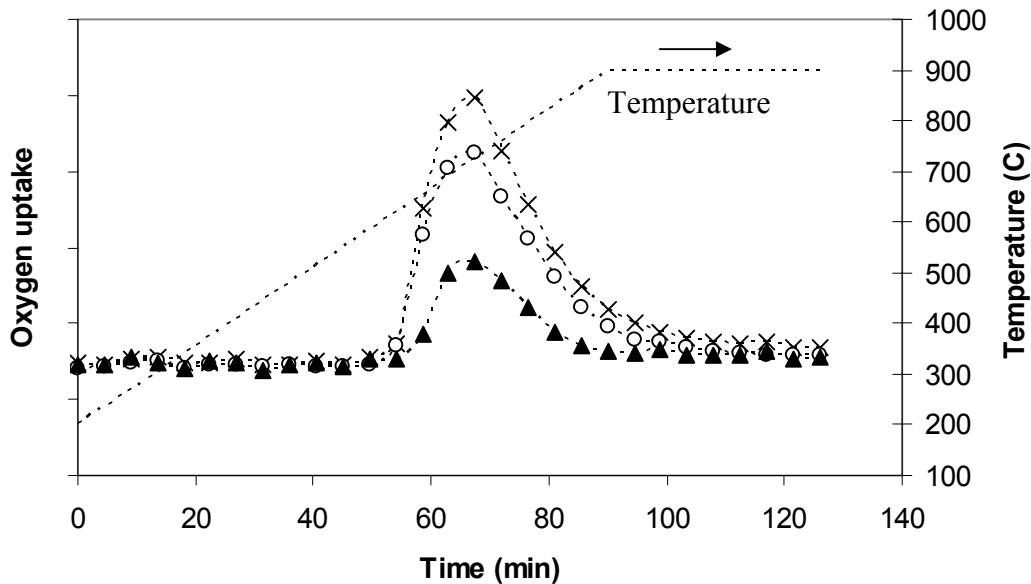
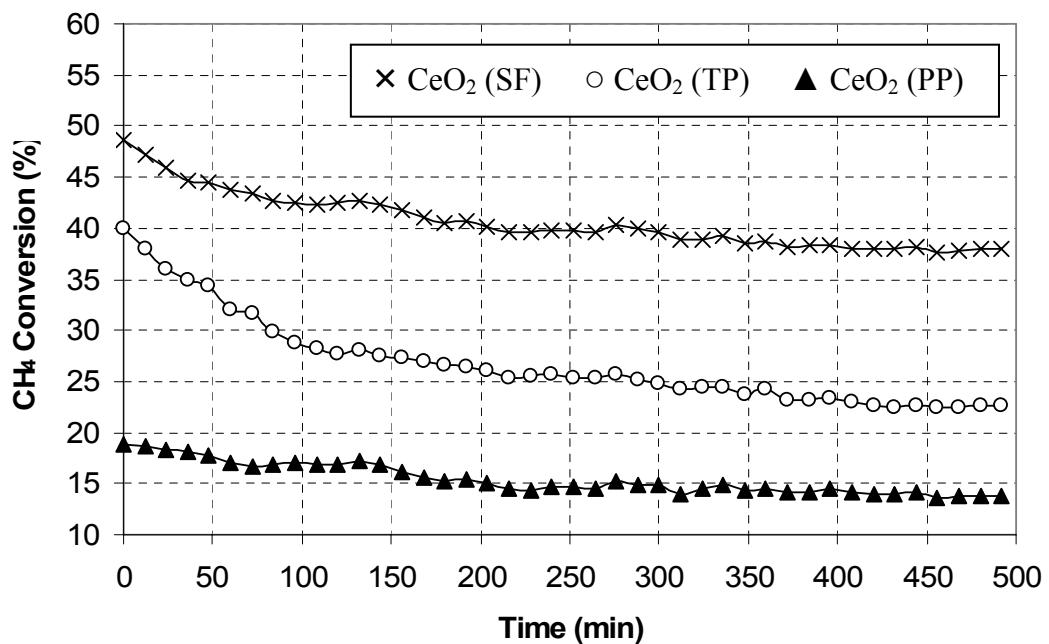
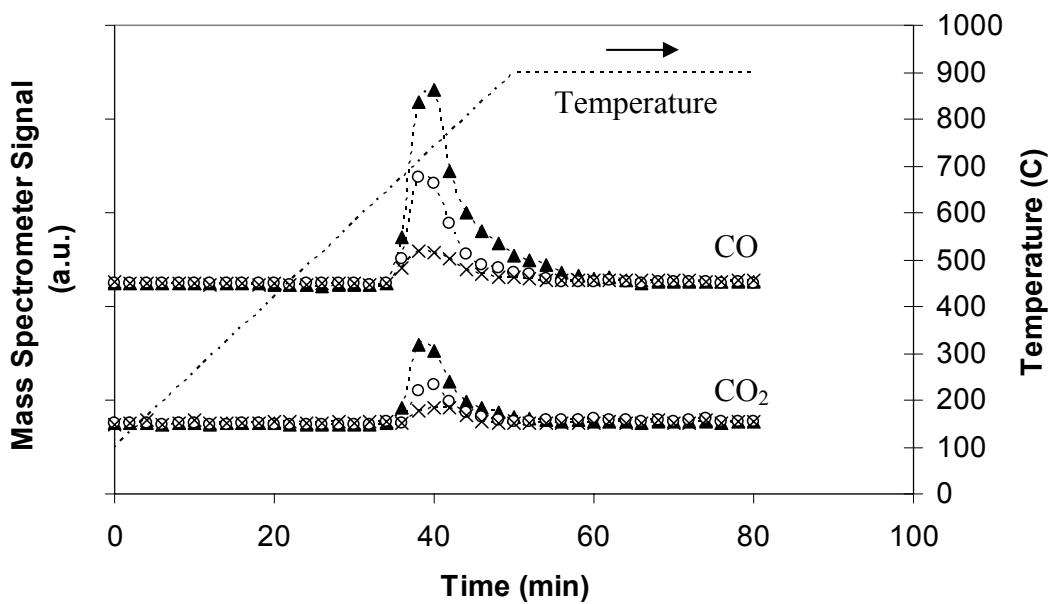

Table 2 Results of TPR(1), TPO, TPR(2) analyses of all CeO₂

Table 3 Deactivation toward methane steam reforming after 8 h operation at 900°C of various preparation methods ceria-based catalyst


Table 4 Amount of carbon formation on the surface of CeO₂ from TPO testing


Fig. 1 SEM micrograph of CeO₂ (PP) after calcined at 900°C.


Fig. 2 SEM micrograph of CeO₂ (SF) after calcined at 900°C.


Fig. 3 First time Temperature Programmed Reduction (TPR-1; dot lines) of ceria prepared by cationic surfactant assisted method (X), ceria prepared by templating pathway (O), and ceria prepared by precipitation method (▲) compared to Second time Temperature Programmed Reduction (TPR-2; solid lines).

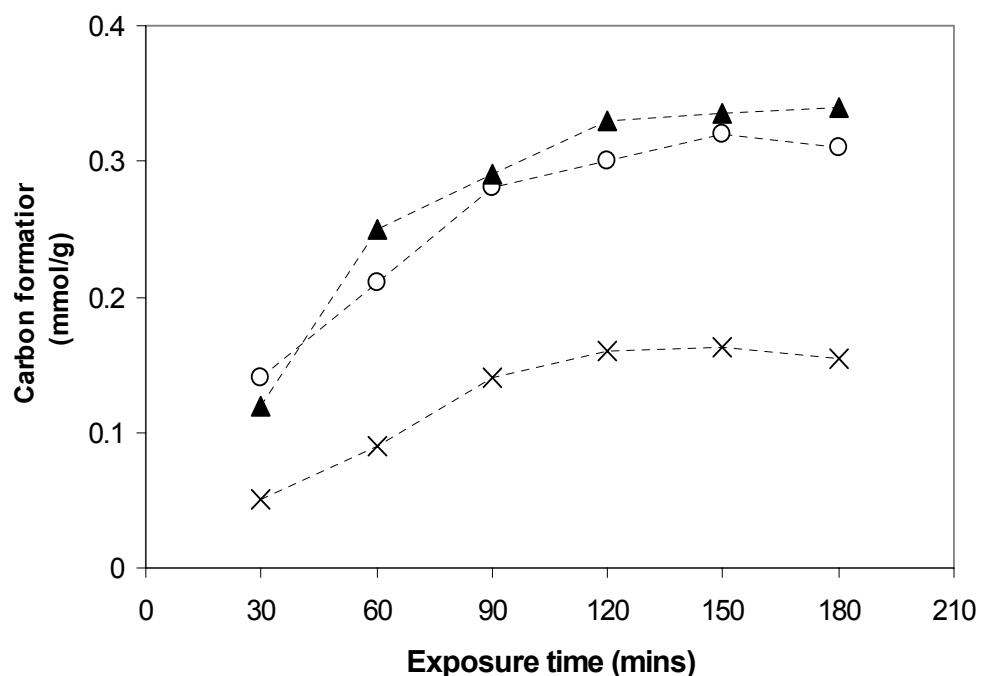

Fig. 4 Temperature Programmed Oxidation (TPO) of ceria prepared by cationic surfactant assisted method (x), ceria prepared by templating pathway (o), and ceria prepared by precipitation method (▲).

Fig. 6 Methane conversion (%) at 900°C of methane steam reforming in He over ceria prepared by cationic surfactant assisted method (x), ceria prepared by templating pathway (o), and ceria prepared by precipitation method (▲).

Fig. 7 TPO of ceria prepared by cationic surfactant assisted method (×), ceria prepared by templating pathway (○), and ceria prepared by precipitation method (▲). after exposure in methane steam reforming at 900°C for 8 h.

Fig. 8 Amount of carbon formation over ceria prepared by cationic surfactant assisted method (×), ceria prepared by templating pathway (○), and ceria prepared by precipitation method (▲) after exposure in methane at different times.

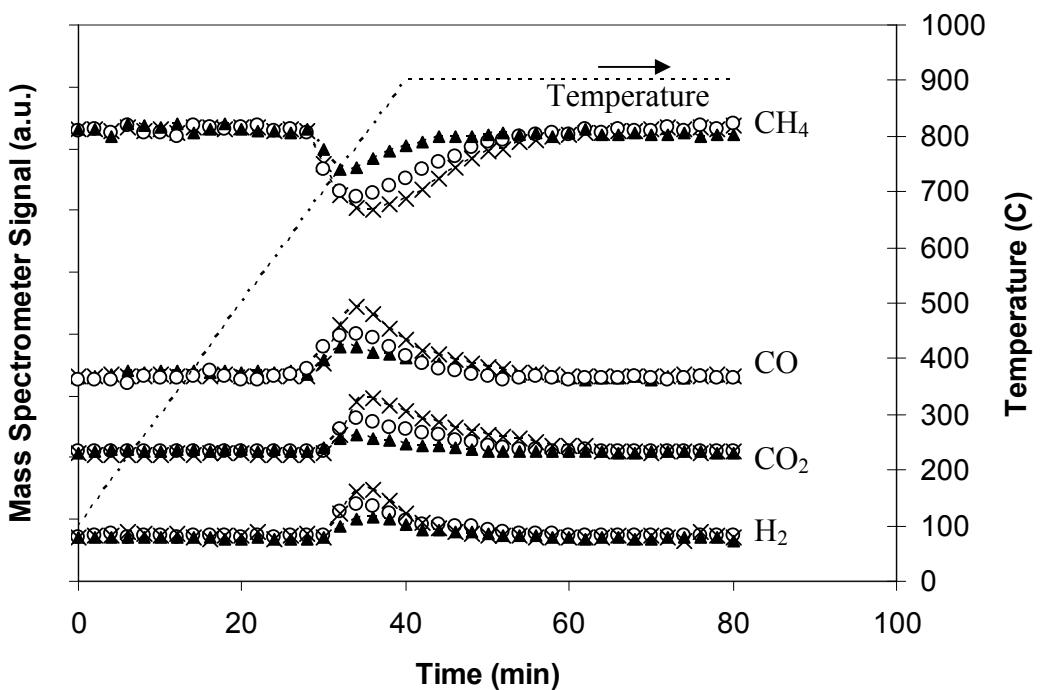


Fig. 9

TPMA of ceria prepared by cationic surfactant assisted method (x), ceria prepared by templating pathway (o), and ceria prepared by precipitation method (▲).

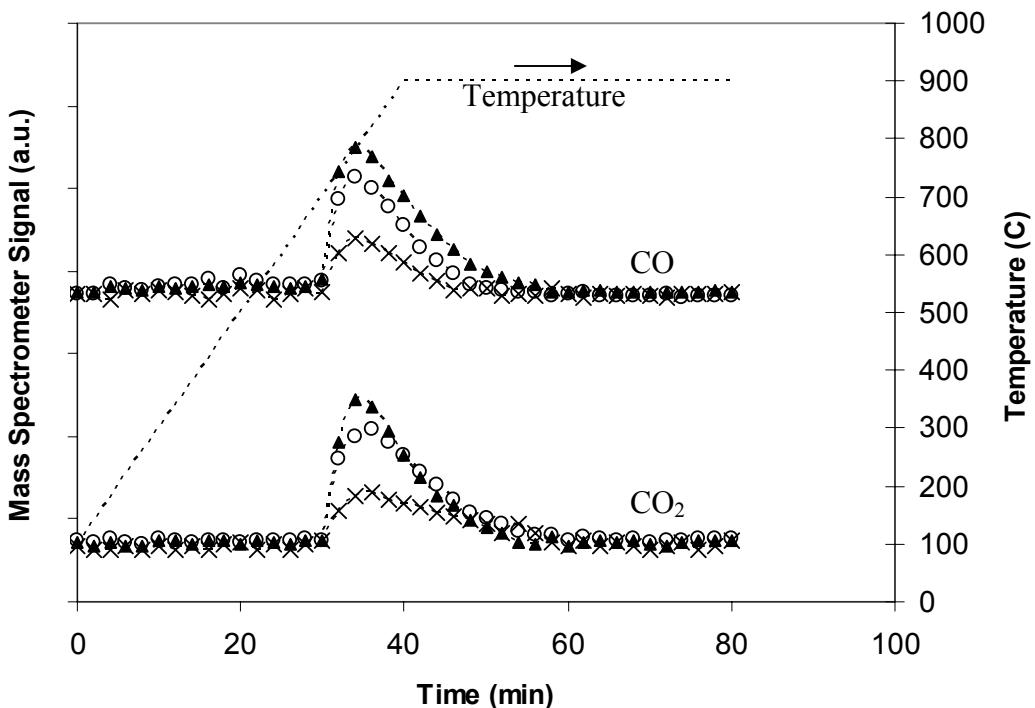


Fig. 10 TPO after TPMA of ceria prepared by cationic surfactant assisted method (x), ceria prepared by templating pathway (o), and ceria prepared by precipitation method (▲).

Table 1 BET surface area of ceria sample prepared by different preparation process.

Catalysts	After drying at 110°C		After calcination at 900°C	
	BET (m ² g ⁻¹)	Pore size (nm)	BET (m ² g ⁻¹)	Pore size (nm)
CeO ₂ (PP)	96.7	9.86	5.31	12.9
CeO ₂ (SF)	248.3	5.00	17.8	13.6
CeO ₂ (TP)	197.4	4.18	9.12	13.1

PP = Precipitation Method ; SF = Surfactant Assisted Method; TP = Templating Method

Table 2 Results of TPR(1), TPO, TPR(2) analyses of all CeO₂

Catalyst	Total H ₂ Uptake from TPR(1) ^a (μmol g _{cat} ⁻¹)	Total O ₂ Uptake from TPO ^b (μmol g _{cat} ⁻¹)	Total H ₂ Uptake from TPR(2) ^c (μmol g _{cat} ⁻¹)
CeO ₂ (PP)	781	395	773
CeO ₂ (TP)	1724	874	1721
CeO ₂ (SF)	2084	991	2071

^a Temperature Programmed Reduction of the reduced catalysts

^b Temperature Programmed Oxidation after TPR (1)

^c Re-Temperature Programmed Reduction after TPO

Table 3 Deactivation toward methane steam reforming after 8 h operation at 900°C of

Catalyst	Deactivation (%)	BET before reaction ($\text{m}^2 \text{ g}^{-1}$)	BET after reaction ($\text{m}^2 \text{ g}^{-1}$)	various preparation metho
CeO ₂ (SF)	21.74	17.8	14.1	
CeO ₂ (TP)	43.53	9.12	5.42	
CeO ₂ (PP)	26.55	5.31	4.00	

ds ceria-based catalyst

Table 4 Amount of carbon formation on the surface of CeO₂ from TPO testing

Catalyst	Amount of carbon formation (mmol g^{-1})
CeO ₂ (SF)	0.16
CeO ₂ (TP)	0.30
CeO ₂ (PP)	0.33

Effect of specific surface area and Zr doping content on oxygen storage capacity (OSC) and methane steam reforming reactivity of CeO₂-ZrO₂

W. Sutthisripok^{a,†}, N. Laosiripojana^b and L. Srikong^a

^a Department of Mining and Materials Engineering,
Faculty of Engineering, Prince of Songkla University, Songkla, Thailand
^b The Joint Graduate School of Energy and Environment,
King Mongkut's University of Technology Thonburi, Thailand

([†] Corresponding authors: weerawan.s@psu.ac.th)

This paper investigated the effect of specific surface area and Zr doping content on oxygen storage capacity (OSC) and methane steam reforming reactivity of CeO₂ and Ce-ZrO₂. It was found that the specific surface area of ceria and the doping of Zr present important role on the oxygen storage capacity (OSC) and the reactivity toward methane steam reforming. After calcination at 900°C, ceria prepared by Surfactant-assisted method (SF) was observed from the present work to have significantly higher surface area than those prepared by Templating (TP) and Precipitation (PP) methods; this material showed strong OSC and better reforming reactivity compared to others. In detail, the degree of OSC was measured by the number of hydrogen uptake from the temperature programmed reduction (TPR). It was found that the value of hydrogen uptake from the TPR of ceria prepared by SF was 2084 mmol/g, whereas those of ceria prepared by TP and PP were 1724 and 781 mmol/g, respectively. According to the reactivity toward methane steam reforming, after purging in 3 kPa methane at 900°C for 8h, the methane conversion for ceria prepared by SF was approximately 38%, whereas those of ceria prepared by TP and PP were 22%.

Introduction

Cerium oxide (or ceria) based material is an important catalyst for a variety of reactions involving oxidation of hydrocarbons. It is also being used as a promoter or support in several industrial processes and as a key component in the formulation of catalysts for controlling noxious emissions from transportation section. Ceria have attracted much attention due to their unique redox properties and high oxygen storage capacity (OSC) (1-2). This type of material contains high concentration of mobile oxygen vacancies; this catalyst therefore acts as a local source or sinks for oxygen involved in reactions taking place on its surface or on other catalytic materials supported. It can store oxygen under oxidising conditions and releases that oxygen under reducing conditions in order to continue the oxidation of hydrocarbons.

Ceria-based materials are also applied as catalyst in a wide variety of reactions involving the oxidation, and partial oxidation of hydrocarbons. In addition, this type of catalyst is

applied as an automotive catalyst, which is used to oxidise unburnt hydrocarbons, convert CO to CO₂, and reduce NO_x. There is now increasing interest in applying ceria in more reducing conditions such as in methane reforming at the anodes (direct reforming) of Solid Oxide Fuel Cell (SOFC), where the potential for deactivation by carbon formation is much greater. Importantly, this material has been reported to have the reactivity toward the methane steam reforming reaction with excellent resistance toward carbon deposition at such a high temperature (800-1000°C) (3-4). It has been well established that the gas-solid reaction between CeO₂ and CH₄ produces synthesis gas with H₂/CO ratio of two, according to the following reaction (5):

O_x⁰ is the lattice oxygen on ceria surface, VO^{••} denotes as an oxygen vacancy with an effective charge 2⁺, and e' is an electron which can either be more or less localized on a cerium ion or delocalized in a conduction band. It was also demonstrated that the reactions of the reduced ceria with co-reactants i.e. CO₂ and H₂O produced CO and H₂ and regenerated the CeO₂ surface (6-7):

The great benefit of ceria-based catalysts for the cracking and reforming reactions is their high resistance toward carbon deposition compared to the conventional metal catalysts i.e. Ni (3-4); however, the main weaknesses of the materials are their low specific surface area and high deactivation due to the thermal sintering particularly when operated at such a high temperature. The use of high surface area CeO₂ would be a good alternative method to minimize the sintering impact and consequently improve the stability and steady state activity. Recently, Terribile et al. (8) synthesized CeO₂ (HSA) with improved textural, structural and chemical properties for environmental applications by using a surfactant-assisted approach. The materials with good homogeneity and stability especially after thermal treatments were achieved. Apart from the investigation on preparation method, the addition of zirconium oxide (ZrO₂) has also been reported to improve the specific surface area, oxygen storage capacity, redox property, thermal stability and catalytic activity of ceria (9-10). These benefits were associated with enhanced reducibility of cerium (IV) in Ce-ZrO₂, which is a consequence of high O₂⁻ mobility inside the fluorite lattice. The reason for the increasing mobility might be related to the lattice strain, which is generated by the introduction of a smaller isovalent Zr cation into the CeO₂ lattice (Zr⁴⁺ has a crystal ionic radius of 0.84 Å, which is smaller than 0.97 Å for Ce⁴⁺ in the same co-ordination environment).

In the present work, CeO₂ and Ce-ZrO₂ were synthesized by several methods i.e. precipitation, templating, and the surfactant-assisted approach. The oxygen storage capacity (OSC) of these synthesized materials was studied in terms of redox properties and redox reversibility. Furthermore, the methane steam reforming reactivity over these synthesized materials was carried out in order to determine the effect of specific surface area and the doping of Zr on the reactivity toward this reaction.

Experimental

Material preparation and characterizations

Conventional CeO_2 (CeO_2 (PP)) was prepared by co-precipitation of cerium nitrate from Aldrich. The starting solution was prepared by mixing 0.1 M of metal salt solutions with 0.4 M of ammonia at a 2 to 1 volumetric ratio. This solution was stirred by magnetic stirring (100 rpm) for 3 h. The precipitate was filtered and washed with deionised water and acetone to remove the free surfactant. It was dried overnight in an oven at 110°C, and then calcined in air at 900°C for 6 h.

CeO_2 was then prepared by the templating, and surfactant-assisted methods (CeO_2 (TP) and CeO_2 (SF), respectively). According to the surfactant-assisted method, an aqueous solution of an appropriate cationic surfactant and 0.1 M cetyltrimethylammonium bromide solution from Aldrich were added to an 0.1 M aqueous solution. The molar ratio of ((Ce))/(cetyltrimethylammonium bromide) was kept constant at 0.8. The mixture was stirred and then aqueous ammonia was slowly added with vigorous stirring. The mixture was continually stirred for 3 h. After that, the mixture was cooled and the resulting precipitate was filtered and washed repeatedly with water and acetone. The filtered powder was dried in the oven at 110°C for one day and then calcined in air at 900°C for 6 h. According to the templating method, the preparation procedures are almost the same as surfactant-assisted method, but cellulose acetate was used as the additive precursor instead of cetyltrimethylammonium bromide.

$\text{Ce}_{1-x}\text{Zr}_x\text{O}_2$ (or Ce-ZrO_2) with different Ce/Zr molar ratios were then prepared by either co-precipitation, templating, or surfactant-assisted methods of cerium nitrate ($\text{Ce}(\text{NO}_3)_3 \cdot \text{H}_2\text{O}$), and zirconium oxychloride ($\text{ZrOCl}_2 \cdot \text{H}_2\text{O}$) (from Aldrich). The ratio between each metal salt was altered to achieve nominal Ce/Zr molar ratios: $\text{Ce}_{1-x}\text{Zr}_x\text{O}_2$, where $x = 0.25, 0.50$, and 0.75 respectively. After preparation, the catalyst specific surface areas were obtained from BET measurement. In addition, as described in the introduction section, the advantage of ceria-based materials is related to its high redox properties, therefore, the degree of oxygen storage capacity (OSC) of all synthesized CeO_2 and Ce-ZrO_2 were determined by the temperature programmed reduction (TPR). Regarding the experiment, 5% H_2/Ar was used, while the temperature of the system increased from room temperature to 900°C. Finally, the reactivity toward methane steam reforming and the resistance toward carbon formation over selected materials were then carried out.

Experimental Set-up

In order to study the methane steam reforming reaction, the experimental reactor system was set up, as shown in Figure 1. This system consists of three main sections: feed, reaction, and analysis sections. The main obligation of the feed section is to supply the components of interest such as CH_4 , and H_2O to the reaction section, where an 8-mm internal diameter and 40-cm length quartz reactor was mounted vertically inside a furnace. The catalyst was loaded in the quartz reactor, which was already packed with a small amount of quartz wool to prevent the catalyst from moving. The residence time was kept constant at $5 \times 10^{-4} \text{ g min cm}^{-3}$. The weight of catalyst loading was 100 mg, while a typical range of total gas flow was $100 \text{ cm}^3 \text{ min}^{-1}$. The gas mixture was flowed through the catalyst bed in the quartz reactor. A type-K thermocouple was inserted into the annular space between the reactor and the furnace. The thermocouple was mounted on the reactor in close contact with the catalyst bed to minimize the temperature difference between the catalyst bed and the thermocouple. After the reactions, the exit gas was transferred via trace-heated lines to the analysis section, which consists of a Porapak Q column Shimadzu 14B gas chromatography (GC) and a mass spectrometer (MS). The gas chromatography was applied in order to investigate the steady state condition

experiments, whereas the mass spectrometer was used for the carbon formation experiments. In the present work, the outlet of the GC column was directly connected to a thermal conductivity detector (TCD).

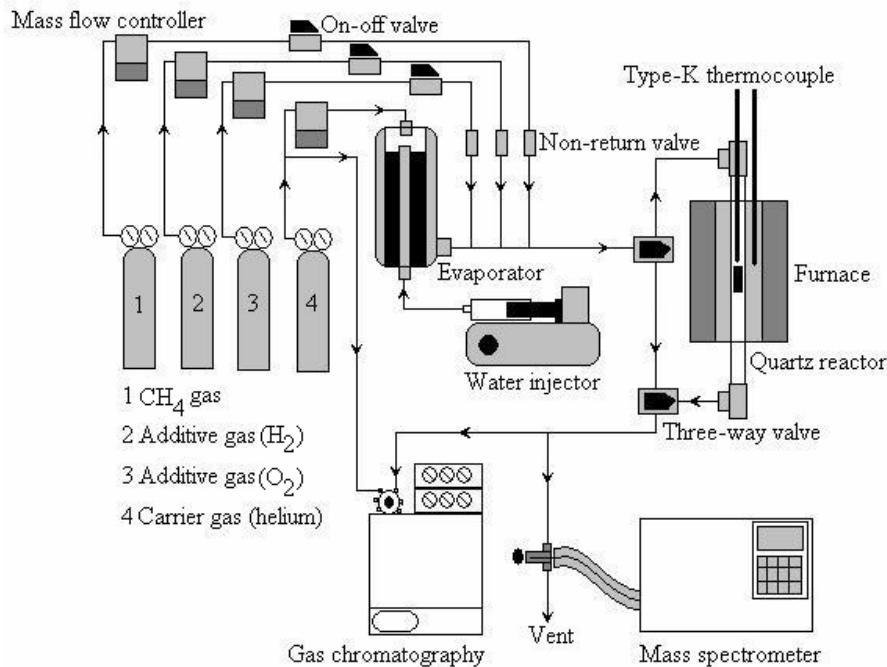


Figure 1 Schematic diagram of the experimental set-up

Results and Discussion

Physicochemical properties of the synthesized catalysts

The BET measurements of CeO_2 (PP, TP, and SF) were carried out before and after the calcinations at different temperatures in order to determine the specific surface area. The values are presented in Table 1. After drying in oven, the specific surface area of CeO_2 prepared by templating and surfactant assisted methods are in the same range and significantly higher than those prepared by precipitation method. As expected, the surface area dramatically decreased at high calcination temperatures particularly those prepared by templating. However, the values for CeO_2 (TP, and SF) are still appreciable after calcination at 900°C . By using the surfactant-assisted method, CeO_2 with surface area of $17.8 \text{ m}^2 \text{ g}^{-1}$ were obtained after calcination at 900°C . They are 3 times higher than CeO_2 (PP). It was also proven by the SEM experiments that the particle size of CeO_2 (SF) is significantly smaller than that of CeO_2 (PP), Figure 2 (a and b).

Table 1 BET surface area of ceria sample prepared by different preparation process.

Catalysts	After drying at 110°C	After calcination at 900°C
	BET ($\text{m}^2 \text{ g}^{-1}$)	BET ($\text{m}^2 \text{ g}^{-1}$)
CeO_2 (PP)	46.3	5.31
CeO_2 (SF)	98.1	17.8
CeO_2 (TP)	95.4	9.12
Ce-ZrO ₂ (SF) (Ce/Zr=1/3)	135	49

Ce-ZrO ₂ (SF) (Ce/Zr=1/1)	120	47
Ce-ZrO ₂ (SF) (Ce/Zr=3/1)	115	46.5
Ce-ZrO ₂ (PP) (Ce/Zr=1/3)	82	22
Ce-ZrO ₂ (PP) (Ce/Zr=1/1)	74	20.5
Ce-ZrO ₂ (PP) (Ce/Zr=3/1)	70	20

PP = Precipitation Method; SF = Surfactant Assisted Method; TP = Templating Method

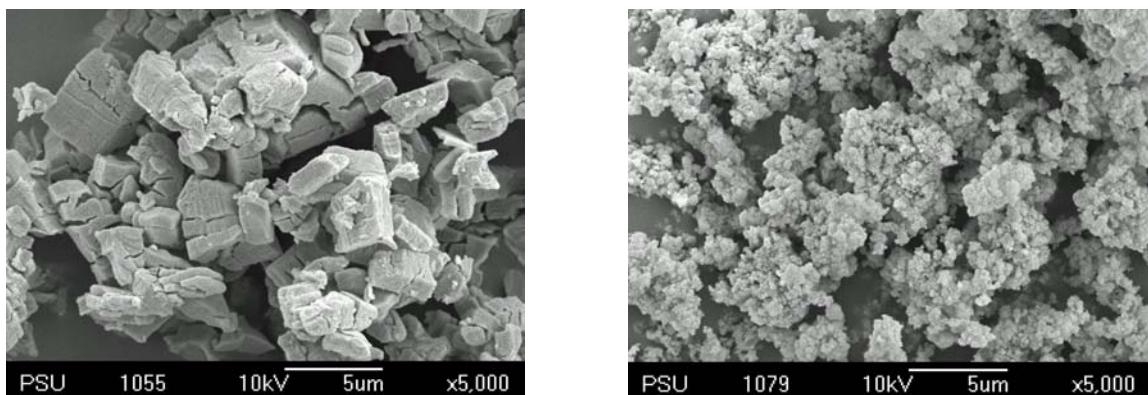


Figure 2 (a) SEM micrograph of CeO₂ (PP) after calcined at 900°C (b) SEM micrograph of CeO₂ (SF) after calcined at 900°C.

Oxygen Storage Capacity (OSC) of the synthesized catalysts

The oxygen storage capacities (OSC) and the degree of redox properties for all ceria-based materials were investigated using temperature programmed reduction (TPR), which was performed by heating the reduced catalysts up to 900°C in 5%H₂ in argon. As shown in Figure 3, hydrogen uptakes are detected from CeO₂ at the temperature above 700°C. The amount of hydrogen uptake over CeO₂ (SF) is significantly higher than that over other CeO₂, suggesting the OSC strongly depends on the specific surface area of CeO₂.

The amount of hydrogen uptake is correlated to the amount of oxygen stored in the catalysts. As presented in Table 2, the amount of hydrogen uptakes over Ce-ZrO₂ and CeO₂ (SF) are significantly higher than that observed over other cerias, suggesting the improvement of OSC and redox properties by the doping of Zr and the increasing of catalyst specific surface area. The benefit of OSC on the reforming reaction will be later presented in the next section.

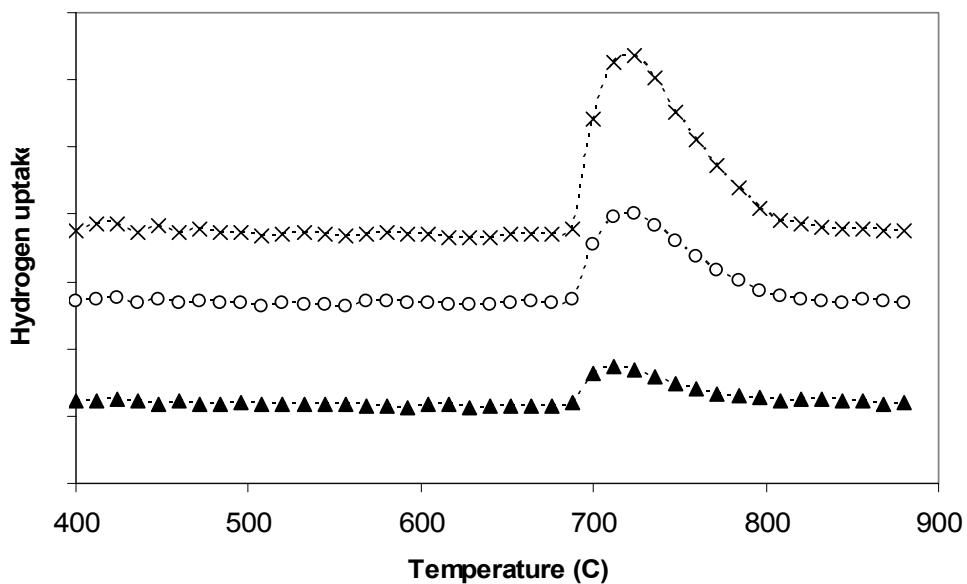


Figure 3 Temperature Programmed Reduction (TPR) of ceria prepared by cationic surfactant assisted method (\times), ceria prepared by templating pathway (\circ), and ceria prepared by precipitation method (\blacktriangle).

Table 2 Results of TPR of ceria-based materials after calcination.

Catalyst	Total H ₂ Uptake from TPR ($\mu\text{mol/g}_{\text{cat}}$)
CeO ₂ (SF)	4105
CeO ₂ (PP)	1794
CeO ₂ (TP)	1724
Ce-ZrO ₂ (SF) (Ce/Zr=1/3)	3701
Ce-ZrO ₂ (SF) (Ce/Zr=1/1)	5247
Ce-ZrO ₂ (SF) (Ce/Zr=3/1)	1794
Ce-ZrO ₂ (PP) (Ce/Zr=1/3)	1097
Ce-ZrO ₂ (PP) (Ce/Zr=1/1)	1745
Ce-ZrO ₂ (PP) (Ce/Zr=3/1)	2649

Stability and activity toward methane steam reforming

Firstly, the methane steam reforming reactivities over all CeO₂ were tested by introducing CH₄/H₂O in helium with the inlet ratio of 1.0/3.0 at 900°C. The main products from the reactions over these catalysts were H₂ and CO with some CO₂, indicating a contribution from the water-gas shift, and the reverse methanation at this high temperature. The steam reforming rate was measured as a function of time in order to indicate the stability and the deactivation rate. The variations in relative reforming activity with time for different catalysts are shown in Figure 4. At steady state, CeO₂ (SF) presented significant higher reactivity toward the methane steam reforming than CeO₂ (TP), and CeO₂ (PP).

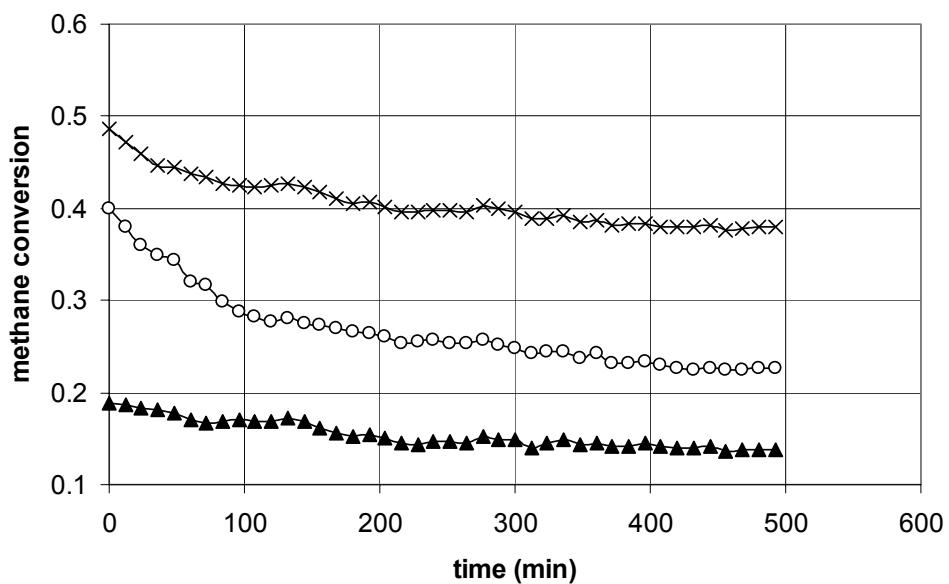


Figure 4 Methane conversion at 900°C of methane steam reforming in He over ceria prepared by cationic surfactant assisted method (x), ceria prepared by templating pathway (o), and ceria prepared by precipitation method (▲).

The steam reforming activities of CeO_2 (TP) and CeO_2 (PP) significantly declined with time before reaching a new steady-state rate at a much lower value, while the activity of CeO_2 (SF) declined slightly. Catalyst stabilities expressed as a deactivation percentage are given in Table 3. In order to investigate the reason of the catalyst deactivation, the post-reaction temperature-programmed oxidation (TPO) experiments were then carried out. TPO experiments detected slight carbon formation on the surface of ceria, particularly CeO_2 (SF), Figure 5.

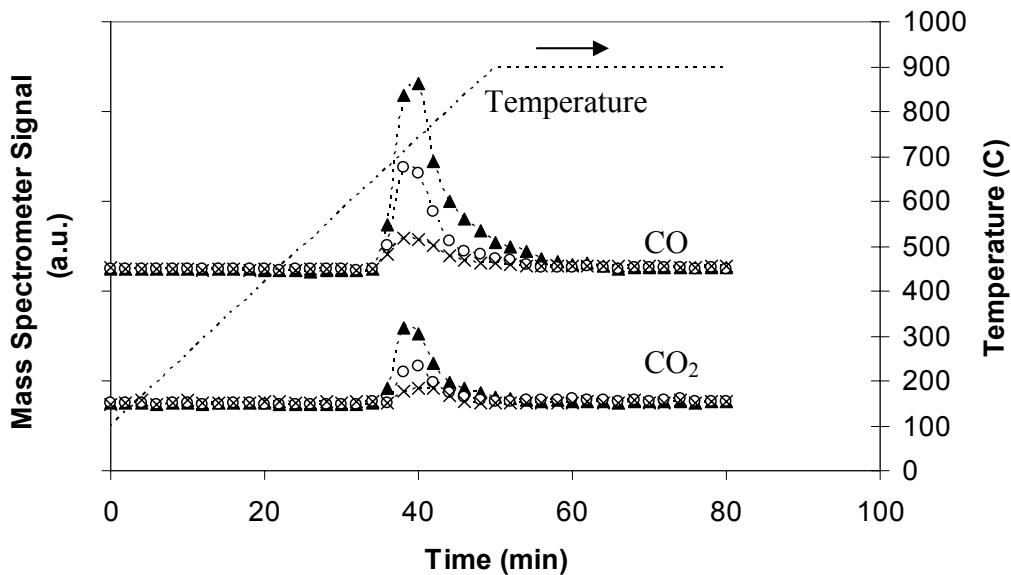


Figure 5 TPO of ceria prepared by cationic surfactant assisted method (x), ceria prepared by templating pathway (o), and ceria prepared by precipitation method (▲).

The methane steam reforming over Ce-ZrO₂ with different Ce/Zr ratios were then tested at the same conditions. The results revealed that Ce-ZrO₂ with Ce/Zr ratio of 3/1 shows the best performance in terms of stability and activity with no carbon deposition observed, according to the TPO experiment, Table 3.

Table 3 CH₄ reaction rate, rate constant and activation energies for CH₄ reactions on ceria-based materials (1048 K, 10 kPa CH₄ balance in He).

Catalysts	Methane conversion (%)	Amount of carbon formation (mmol/g _{cat})
CeO ₂ (SF)	39.1	~0
CeO ₂ (PP)	13.4	0.21
CeO ₂ (TP)	22.3	0.19
Ce-ZrO ₂ (SF) (Ce/Zr=1/3)	35.2	0.06
Ce-ZrO ₂ (SF) (Ce/Zr=1/1)	49.8	0.08
Ce-ZrO ₂ (SF) (Ce/Zr=3/1)	17.1	~0
Ce-ZrO ₂ (PP) (Ce/Zr=1/3)	10.6	0.16
Ce-ZrO ₂ (PP) (Ce/Zr=1/1)	16.7	0.18
Ce-ZrO ₂ (PP) (Ce/Zr=3/1)	25.6	0.14

The good resistance toward carbon deposition for ceria-based materials, which has been widely reported by previous researchers, is mainly due to their sufficient oxygen storage capacity (OSC). It should be noted that we observed high amount of carbon formation on the surface of Ni catalysts after exposure in the same reforming conditions as ceria-based materials. Regarding the possible carbon formation during the reforming processes, the following reactions are theoretically the most probable reactions that could lead to carbon formation:

At low temperature, reactions (6)–(7) are favorable, while reaction (4) is thermodynamically unflavored (11). The Boudouard reaction (Eq. 4) and the decomposition of CH₄ (Eq. 5) are the major pathways for carbon formation at such a high temperature as they show the largest change in Gibbs energy (12). According to the range of temperature in this study, carbon formation would be formed via the decomposition of CH₄ and Boudouard reactions especially at high inlet CH₄/steam ratio. By applying CeO₂, both reactions (Eqs. 4 and 5) could be inhibited by the redox reaction between the surface carbon (C) forming via the adsorptions of CH₄ and CO (produced during the reforming process) with the lattice oxygen (O^{O_x}) at CeO₂ surface (Eq. 8).

The greater resistance toward carbon deposition for high surface area ceria-based catalyst particularly Ce-ZrO₂ (HSA) is due to the significant higher amount of lattice oxygen (O^{O_x}) on their surfaces

Conclusion

The specific surface area of ceria-based materials and the doping of Zr play an important role on the oxygen storage capacity (OSC), the reforming reactivity, and the resistance toward carbon deposition of this material. CeO_2 and Ce-ZrO_2 synthesized by surfactant assisted method was found to be a good candidate catalyst for the steam reforming of methane at such a high temperature (900°C) due to its significant higher steam reforming activity and its excellent resistances toward the thermal sintering and the carbon formation compared to other preparation methods i.e. conventional precipitation and templating methods.

Acknowledgments

The supports from the Thailand Research Fund (TRF) and National Metal and Materials Technology Center (MTEC) are gratefully acknowledged.

References

1. P. Fornasiero, G. Balducci, R.D. Monte, J. Kaspar, V. Sergo, G. Gubitosa, A. Ferrero and M. Graziani, *J. Catal.* **164**, 173 (1996).
2. T. Miki, T. Ogawa, M. Haneda, N. Kakuta, A. Ueno, S. Tateishi, S. Matsuura and M. Sato, *J. Phys. Chem.* **94**, 339 (1990).
3. E. Ramírez-Cabrera, A. Atkinson and D. Chadwick, *Appl. Catal. B* **36**, 193 (2002).
4. E. Ramírez-Cabrera, N. Laosiripojana, A. Atkinson and D. Chadwick, *Catal. Today* **78**, 433 (2003).
5. K. Otsuka, M. Hatano and A. Morikawa, *J. Catal.* **79**, 493 (1983).
6. K. Otsuka, M. Hatano and A. Morikawa, *Inorganica Chimica Acta* **109**, 193 (1985).
7. P.J. Gellings and H.J.M. Bouwmeester, *Catal. Today* **58**, 1 (2000).
8. D. Terribile, A. Trovarelli, J. Llorca, C. Leitenburg and G. Dolcetti, *J. Catal.* **178**, 299 (1998).
9. M. Ozawa, M. Kimura, A. Isogai, *J. Alloys Comp.* **193**, 73 (1993).
10. G. Vlaic, P. Fornasiero, S. Geremia, J. Kaspar, M. Graziani, *J. Catal.* **168**, 386 (1997).
11. Y. Lwin, W.R.W. Daud, A.B. Mohamad and Z. Yaakob, *Int. J. Hydrogen Energy* **25**, 47 (2000).
12. J.N. Amor, *Appl. Catal. A* **176**, 159 (1999).