MRG4780168 He. a7 Ums udniumi

oe mm’%ﬁ’mﬁuamugrﬁ

lassmysiuayunssenuuyszupl fiemsiaansaens

u,a:‘it'wz;;uyl@'\’é’w‘[mas'wg%aé’nwmz

Tag Q’*’ﬁmmaﬂﬁmsﬁ @310 LwAun

nINGIAN 2549

ﬁﬂmuﬁﬂaﬁuauugtﬁ

lavsmssiuayunmssanuuusruudjuanmshsmansnueng

u,azﬁemsg’u"lﬁﬁw‘[mﬁwﬁﬁaé’nﬁm:

Taip) ;j’ﬁwma@mmsﬁ 5. UMD Luawnit

nINZIAY 2549

Fynianfl MRGA780168

lasansattuayuniseenuuuszuul uensfiaaninses
uazanguldeanlasshadeansme

Q"aﬁmaﬂﬁmiﬁ A3.UmT At
IWVINEAENTINN
amIngegasussnalulad

medTIngmsesliiaes

GATST! ﬁi&u‘[ﬂ QNG BEATE m:m‘mm‘im'sqmﬁn 1

LRZEIUNITWN amuaf{ua%umﬁiﬂ

(mwmﬁu'lmwnUﬁLﬂumao:ﬁﬁn ana. waz am. hisudusaaiudsirualy)

neansIndszne

PANTIUVALWIZA D AAZ IV INTEWY ﬁlﬁ’m’];Ja%gm%ﬁuauﬁuﬁwﬁahlﬁﬁaaﬂ
Dl nss‘mg’imgmﬂnﬁﬁmﬁ’mm 4 ﬂLLazqﬂiﬁuﬂ%'n awlinusivuanataliite: AR IME
wasymewnsslunminuiseiuilvansadedasen 2 Plunmnased UBVDLUNTZA D,
Tapiannz aaas191589n15398 (Research Professor) Tzilla Elrad WAIRONLY Ilfinois Institute of
Technology, Ilinois, U.S.A. finasldanugmwia Wawusihnmsduiiunsidouazanagay
uwmwﬁﬁuﬁmULtwﬂumsﬂi:’gumﬂmmsmmmc‘?l ARBAIUVBVDUNTEAMRIUNIY
ﬂm:mwm‘smiqﬂuﬁnmua:ﬁﬁﬁnmunaaquaﬁuamgun'}ﬁé’uﬁlﬁn’]mﬁfuamgunu’?é’ylu
Tasam7a3uit FANIYBVO LN TEA MUIMTAMINEITUNTANN ﬁ‘lﬁ’mmaqmﬂ:ﬁaﬁuwu
L‘%'ammmsﬁﬁﬁnLLazﬁ'ﬂ’ﬁ’ahu'lumnﬁumﬂﬂtauaNamumﬁﬁ’miaﬁﬂﬁz-gnmﬁ'mm‘sﬁgﬂu

Ysnauaz eIl Isnanaaau

NE. AT UMT LuATuNI
30 A.9. 2549

unAaLa

WAlATINYS MRG4780168
Holasams msaﬁnm&umsaanunm:wﬂﬁiﬁzmiﬁmmmmmU
uazBandulddilasshadeanmus .
Fown3se HE0MansaTd avUds udiund
URVINBINBNTANNW
E-mail Address: paniti.n@bu.ac.th

stanaalAsINs 1 NINGIAY 2547 - 30 TauInu 2549

Tumswamszuuzerwr’ wu szuvdfidns nefivfisodudimdsznavdn 9 Mk
fdudanunn wazgailudesnaldmahnavanlt msUiueiszur arpaIuRTIIRBUNT
senuunuszanugnastasruniiinludoanumndinn draldanudasmslng g fazifa
aslluszurldeansonimuissmsasnuuuszuulndnue uenudnlefinfiimainguan
15 asdiuudsszuy @taamumwaaumsaaﬂLL‘uuuazmmgnﬁawaﬁzuuﬁ?ﬂ&iémﬂu L
gaTzuudasgnaanuuvlifianumansnlagawznmaingunls avume uaens
Yiuusa asj'wa"l,iﬁmun'ﬁaﬁfnagu'lw:%ao@Tana‘ntﬂm”%aamnﬁmmmﬁﬂﬁ’ﬁwﬁﬂﬂmLﬂ:’ﬁ
wanmyvean ndisulusunsufelag (Object-Oriented Programming) — misidoulysunsaunds
las3ne (Aspect-Oriented Programming) Lﬂuazhmﬁaff'iLauai"juw,ﬁa;jaﬁmmzmahuﬂi:nau
LAZAN BT E1Y 9 Tumanuafsananiusudniaiuduse9InesnuuuTs WL Sus N
sudmbznouuasanEnzag WhdsiuluuasuresmsdiivmIae uanantuns
douliunsudalassisaivauunisuonlantiodn 9 lududsneuvassenurilaathaiu
FITUTG LtﬁnszfuﬁﬁﬁﬂaﬂiiumawLnﬂﬂﬂi’woL’Tms‘fnHmzmmmgnaﬁuagﬂﬁtﬂuarha‘ﬁmn
ﬁs:uuﬂﬁﬁ’ams'?'igna?wa%uuuﬁugmmmmsaamwm‘?mé’num: Tassnyidviluaasldifn
anuinlUldlumslslasshadaanvazsislimsenuuuszuuaunsadilalding 1iie
mivauulunseanuuussfrignsfimunsadendguuazansld Tasshadednwuslingn
mulidlunsesnuuy Ysznaudrodiuwlsznavtiey (component) AMANWIAT (aspect) oL
S2RUTw (layer) s‘fmn‘s:mumiﬁmmmaﬁfum&umﬁﬁmé’um‘[.i maluuss warnsbandu

yilild]

ARAN ﬁﬂm‘iu‘lﬂ” agnyld Tarasa Tmo‘hm%oé’nwm‘; Janssvaanua’

Abstract

Project Code: MRG4780168
Project Title: Supporting the Design of Extensible and Adaptable Operating System Using
Aspect-Oriented Framework .
Investigator: Assistant Professor Dr.Paniti Netinant
Bangkok University
E-mail Address: paniti.n@bu.ac.th
Project Period: 1 July 2004 — 30 June 2006

With software systems such as operating systems, the interaction of their components
becomes more complex. This interaction may limit reusability, adaptability, and make it difficuit
to validate the design and correctness of the system. As a result, re-engineering of these
systems might be inevitable to meet future requirements. There is a general feeling that OOP
promotes reuse and expandability by its very nature. This is a misconception as none of these
issues is enforced. Rather, system software must be specifically designed for reuse,
expandability, and adaptability. However, such support is difficult to accomplish using object-
oriented programming (OOP). Aspect-Oriented Programming (AOP) is a paradigm proposal that
aims at separating components and aspects from the. early stages of the software life cycle,
and combines them together at the implementation phase. Besides, Aspect- Oriented
Programming promotes the separation of the different aspects of components in the system into
their natural form. However, Aspect-Oriented software engineering can be supported well if
there is an operating system, which is built based on an aspect- oriented design. This research
will show an Aspect-Oriented Framework which simplifies system design by expressing its
design at a higher level of abstraction, for supporting the design of adaptable and extensible
operating systems. Aspect-Oriented Framework is based on a three-dimensional design that-
consists of components, aspects, and layers. This approach can support reusability,

adaptability, and extensibility.

Keywords: Adaptability, Extensibility, Framework, Aspect Orientation, Software Engineering

1.

HRANS (Output) Tmamiﬁvlﬁ%'nnumn qND. WA &N,

HRIUANLN 15813 INTWIRITE

E]Q;'lm:ﬂ’hamiﬁﬁnimwad International Journal of Software Engineering and

Knowledge Engineering. Skokie, USA. “

2.

myimanwidnllsyslonmt

A TIEDIT I

msslauanumnlalusdumuimd Imstasslasnshadalunsinddsdes
N | ﬁlﬁﬂ?ﬁa'ﬂi:ﬁ“jqﬂ Bangkok University Was&011W lllinois Institute of Technology,
Concurrent Programming research Group ﬂi:mﬂavﬁgam‘%m

BTN

Tiugyldidulrungelumadeamadnnewnmnnd o Ysinaanizowsn
%8 Aspect-Orientation Lﬁatﬁauﬁqmuu 2549 uanmnﬁuﬁﬂ@i’mmmj ANB Uae
nam 335 lalulFlunsSuunsaeudn Operating Systems THALSNAN ¥ TEdU
Baaed sndodinsimsaauiuaas
unmmﬁ‘lﬁ%’umiﬁﬁuﬁmyLLwi"lumiﬂ-s:'gumﬁmmimmmﬁﬁ‘hmu 6 UNAIY

n

| Paniti Netinant and Tzilla Elrad. "A Framework for Extensible and Adaptable System Software
in Proceedings of the International Conference on Programming Languages and Compifers (PLC
2005), tas Vegas, Nevada, USA, June 2005. '

® Paniti Netinant. “Component + Aspect = an Extensible and Adaptable System Software” in
Proceedings of the International Conference on Software Engineering Research and
Practices(SERP 2005), Las Vegas, Nevada, U_SA, June 2005.

® Paniti Netinant. “Extensibility Aspect-Oriented Framework to Build Agent-Based System
Software” in Proceedings of the 15" International Conference on Software Engineering and Data
Engineering (SEDE 2006), Los Angeles, California, USA, July 2006,

® Paniti Netinant. “Extensible and Adaptable System Software” in Proceedings of the International

Conference on Programming Languages and Compilers (PLC 2006), Las Vegas, Nevada, USA,

June 2006.

B Paniti Netinant. “Supporting Separation of Concerns o Automation of Code Generation™ in
Proceedings of the International Conference on Software Engineering Research and Practices
(SERP 2006), Las Vegas, Nevada, USA, June 2006.

® Paniti Netinant. “Building Agent-Based System Software Using Aspect-Criented Framework” in
Proceedings of the 2006 Electrical Engineering/Electronics, Computer, Telfecommunication, and

Information Technology (ECTI} international Conference, Thailand, May 2006.

TABLE OF CONTENTS

Page

LIST OF FIGURES ...ttt ettt e s s e b e e e e e em e e e e saneernean 111
LIST OF ABBREVIATIONS.......o ettt et e iy

Chapter

L INTRODUCTION. . ..ottt ettt e 1
Separation Of CONCEINS..........c.vvviiriereee ettt et et st s aesen e 1
Criteria for DecomPOSIHION.......c.uiiiiirieirccere et b s 2
Cohesion and COUuPlDE.......ccocoeicieeiiiireiee ettt e st sttt reneeenesnnes 3
Advanced Separation of CONCEINS......ccocveitiiiirieriiiic et 3
Organmization TheoTYcov it r e e e e e 4
ReSEArCh ODJECTIVES. ...viviiiirieiie ettt e sttt 5
OULINE. ... oottt ettt e ettt st s et s e e e en et enee 6

IL BACKGROUND.........ooooocovveer oo cenencenns s S 7
Reflection and Metaobjects.o oot e 7
Procedural Reflection.......c.ooiiiiiiiiie et 7
MEtA0DIECES. ..ottt e e e e 9
Advanced Separation of Concerns......ccooeevvveereenne. ettt e e 11

A Survey of Some Concerns and Their Separation..........ccccoovovivenciiniinnie e 11
Problems with Scattered Code.........ooooriiiiniiie e 15
Aspect-Oriented PTOZramming..........ccccveceieimeerirerniiee e see e seesie e s eneas 17
Other Work in Aspect-Oriented Software Development (AOSD).cniiiieeieee 22
Generative PTOZIAMIMING.......coovuiiirice ettt e s 27
Intention PrOgramiming. .. oo veeieiieiieeti et st eseac st se e st s e eebeste srn s vas e eensese s 30
FramEWOTKS. .c.veovieeerie ettt ettt s e et e mees e 31
SUIMINATY ettt ettt s e st a e s s e mee e at b e e sn b nmeess b s et bt as e e rabeea nraas 32

III. THE FRAMEWORK ..ottt e 33
Architecture of the moderator pattern...........coovie i 33
Extensibility and Adaptability.........cooovvieeiinicee s 34
Design HIeTArChYooiiiiiieii et et e 35
Composition Of ASPECES......cooiiiiiie it e 36
Example: The Conference Room Reservation System........oc.ooiveiiineicnieiivnccnccennen 37
Relation between Moderator and Open Implementation.............cocooevvivnecciininene, 39
Comparison With other WOTK.......cccooiiiiieieiir st be e 39
SUIMINIATY ettt e et et e et s e e e e e e e mees s ae e saaana e sbraetnanae s a e meeeneees 40

IV. REVISITED FRAMEWORK ..ottt et 41
An Aspect-Oriented Framework for Operating Systems........coccccoeviiivnievine e, 42

Strength of This Research..........occoceimiimnceiecreee e
Comprehensibility.ooviiiii e e e
Adaptability ... s
Scalability and Expansibility......c..ccooooiimirecinirie e

ReUSabIItY . oottt e e e s

REFERENCES . . i e

APPENDICES

B. READERS/WRITERS PROBLEM USING OBJECT-ORIENTATION........

C. READERS/WRITERS PROBLEM USING THE ASPECT-ORIENTED

REPRINT 6 PAPERS PUBLISHED IN INTERNATIONAL CONFERENCES

47

................... 47
................... 48
................... 48
................... 48

49

.............. 50

64

.................. 71

79

Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4
Figure 2.5:
Figure 2.6:
Figure 2.7:
Figure 2.8:
Figure 2.9:
Figure 3.1.
Figure 3.2.
Figure 3.3.
Figure 3.4.
Figure 3.5.
Figure 3.6.
Figure 3.7.
Figure 3.8.
Figure 4.1.
Figure 4.2.
Figure 4.3.
Figure 4.4.

LIST OF FIGURES

A Trigger for Logging Salary Increases................coiiiiiiiiiniiiiiiiaeen, 12
A Cascading Style sheet Example..............c.o i 13
Separation of Concerns in WEB. ... i, 14
Crosscutting CONCEIMS.ouur ittt e enaas 16
A Pictorial Representation of Crosscutting.............oooviiiiinniiiiiiininieninn, 16
The Weaving ProCess.o e 22
A Simple UML Tool Model Specification...............cooeiiiiiiiiiiiiiiecieii 24
Traversal/Visitor Specifications..........c..ooiiviiiiiiiiiii e 24
Architecture for Event-based Dispatching..........................o 32
The Aspect Moderator.o.oouviuiiiii e e 35
Design Hierarchy. ..o e 36
The Moderator Interface. ... 37
Implementation of the Aspect bank.............c.ooiiiiiiiiiii i 37
Implementation of the room reservation system class.......................oee 38
Implementation of pre-activation.............coooiiiiiiiiiiiii e, 38
Extensibility Aspect bank...........ooi i 39
Comparison of the Framework..............oo 39
INtra-Dependencyo 41
Inter-Dependencyo 41
PointCut Defines Inter-dependency...........coooiiiiiiiiiiiiiii e 43
PointCut Defines Intra-dependency..............oooiiiiiiiiiiiii e 43

il

LIST OF ABBREVIATIONS

ACS - Adaptive Computing Systems

AO — Aspect Oriented

AOD — Aspect-Oriented Design

AODSM - Aspect-Oriented Domain-Specific Modeling
AOP — Aspect-Oriented Programming

AOSD - Aspect-Oriented Software Development
AP — Adaptive Programming

API — Application Program Interface

ASDL - Abstract Syntax Description Language
ASOC — Advanced Separation of Concerns

AST — Abstract Syntax Tree

ATR - Automatic Target Recognition

C31 — Command, Control, Communication, and Information
CCM - CORBA Component Model

CDL - Contract Description Langnage

CF — Composition Filters

CLOS —Common Lisp Object System

CORBA - Common Object Request Broker Architecture
CSS — Cascading Style Sheet

DLL —Dynamic Link Library

DOC - Distributed Object Computing

DOM - Document Object Model

DSL — Domain-Specific Language

DSM - Domain-Specific Modeling

DSVL — Domain-Specific Visual Language

DTD - Document Type Definition

ECBS - Engineering of Computer-Based Systems
ECL. - Embedded Constraint Language

ECOOP - European Conference on Object-Oriented Programming
GME - Generic Model Editor

GP — Generative Programming

GUI — Graphical User Interface

ICSE - International Conference on Software Engineering
IDE — Integrated Development Environment

P — Intentional programming

ISIS — Institute for Software Integrated Systems

JSP — JavaServer Pages

JTS — Jakarta Tool Suite

KWIC -Key Word in Context

MCL —Multigraph Constraint Language

MDA —Model-Driven Architecture

MDSOC - Multi-Dimensional Separation of Concerns

MIC - Model-Integrated Computing

MOBIES ~ Model-Based Integration of Embedded Software
MOP - Metaobject Protocol

NC1 — National Compiler Infrastructure

OCL - Object Constraint Language

OMG - Object Management Group

00 - Object Oriented

OOP — Object-Oriented Programming

OOPSLA - Object-Oriented Programming, Systems, Languages, and Applications
PCCTS -~ Purdue Compiler Construction Tool

PCES —Program Composition for Embedded Systems

QoS — Quality of Service

SOP — Subject-Oriented Programming

StratGen - Strategy Code Generator

SUIF — Stanford University Intermediate Format

UAV —Unmanned Aerial Vehicle

UML — Unified Modeling Language

WCET - Worst Case Execution Time

XML —Extensible Markup Language

XSLT - Extensible Stylesheet Transformations
YACC - Yet Another Compiler-Compiler

CHAPTER 1

INTRODUCTION

In any engineering endeavor, a key requirement is the ability to compose large
structures from a set of primitive elements. This is true for children who are constructing toy,
models of bridges and buildings using Lego" or Erector” sets. This is true, on a larger scale,
for civil engineers who design and supervise the construction of skyscrapers.

This is especially true for software engineers who compose increasingly complex
systems from components, classes, and methods. An important difference between the
engineering of software, and the other undertakings enumerated above, is the recognition that
the set of available core elements for software construction is often significantly larger. The
composition of these elements can be specified at a much finer level of granularity. As a
contrast, the bricks used to build Lego" houses, or the steel beams used in the construction of
a bridge, come in but a few different shapes and sizes, and are composed using a simple
standard interface (e.g., the prong and receptacle parts of a Lego" block have been unchanged
since 1932 [Lego, 2002]; likewise, since around 1850, the standard dimensions for an air cell
masonry brick in the United States has been 2.5 x 3.75 x 8 inches [Chrysler and Escobar,
2000]).

Separation of Concerns

Furthermore, the compositional permutations and dynamic interactions that are
possible with software elements are several orders of magnitude richer than those found in
other engineering activities. For example, a generic function can be parameterized with a
seemingly unlimited number of other elements (e.g., a template function that can sort any
data type using numerous factors). Parametric polymorphism is but one factor that
contributes to the exponential state explosion problem that makes the composition of
software so difficult. A reason for this complexity is that the essence of software elements 1s
expressed as logical abstractions, as opposed to physical materials, which results in the
generation of an enormous state-space that must be tested. In fact, the core of Brooks No
Silver Bullet essay is a commentary that the molding of complex conceptual entities is the
essence of software construction [Brooks, 1995].

It has been a longstanding understanding among software engineering researchers that
the proverbial Gordian knot has appeared as a consequence of the exponential complexities
involved in composing a set of software building blocks, or modules. Separation of concerns
has emerged at the center of many helpful techniques for loosening the grip of this knot.
Separation of concerns is ot a new idea. In fact, over the past quarter-century, issues related
to concern separation have been at the heart of the intersection of software engineering and
programming language design research. A concern is generally defined as some piece of a
problem whose isolation as a unique conceptual unit results in a desirable property. Concerns
arise as intentional artifacts of a system. They are the primary stimulus for structuring
software into localized modules.

The IEEE Recommended Practice for Architectural Description of Software-Intensive
Systems defines a concern as, those interests that pertain to the systems development, its
operation or any other aspects that are critical or otherwise important to one or more
stakeholders. Concerns include system considerations such as performance, reliability,
security, distribution, and evolvability [IEEE 1471, 2000]. Other researchers have defined a
concern to be, any matter of interest in a software system [Sutton and Rouvellou, 2001}, and

a slice through the problem domain that addresses a single issue [Nelson et al., 2001).
Concerns are a central point of interest at any stage of the development cycle. A criterion for
decomposition abstraction is doing just what our small minds need: making it possible for us
to think about important properties of our program its behavior without having to think about
the entirety of the machinations [Kiczales, 1992].

Modularity, abstraction, information hiding, and variability are important topics in
software engineering that are associated with separation of concerns [Schach, 2002]. A clean
separation of concerns provides a system developer with more coherent and manageable
modules. From the structured paradigm of the 1960s and 1970s, to the Object-Oriented (00O)
paradigm of the past few decades, there has always been an interest in creating new
abstraction mechanisms that provide improved separation of concerns. There are several new
paradigms on the horizon, as will be discussed in the next subsection (Advanced Separation
of Concerns), to assist in further separation.

The most influential paper related to the study of modularization, and perhaps even in
all of software engineering, is David Parnas on the Criteria to Be Used in Decomposing
Systems into Modules [Parnas, 1972]. Parnas criterta aid a designer in achieving module
independence. Parnas recognized that the decomposition of a system into its constituent parts
must be performed with several specific goals in mind. To illustrate the consequences and
tradeoffs from different design decisions, Parnas introduced a simple indexing program called
KWIC (Key Word in Context). From a comparison of two separate modularizations for
KWIC, Parnas suggested that modules be composed with the following objectives:
changeability, independent development, and comprehensibility. The criterion of information
hiding was shown by Parnas to be important n all three of these objectives.

Criteria for Decomposition

Changeability is the way to evaluate a modular decomposition, particularly one that
claims to rest on information hiding, is to ask what changes it accommodates [Hoffman and
Weiss, 2001].

A change to a module should not necessitate numerous invasive changes to many
other modules. Parnas work has revealed that the structure of a system has a direct effect on
the cost of change and maintenance. The potential that a module will undergo change should
always be kept in mind when considering several different possibilities for modularization.
Those implementation decisions that have the possibility of being changed, or those decisions
that offer the most degree of flexibility in adaptation, should be hidden from the client of that
module. This observation was a key toward the discovery of the properties of encapsulation
and information hiding, where abstraction is the principal idea for delimiting what from the
how. Designs that are created with the principle of information hiding permit the substitution
of different implementations for the same abstraction. This improves the capacity to make
changes based upon different desiderata (e.g., the typical time versus space arguments in data
structure implementation).

Modularity is about separation: When we worry about a small set of related things, we
locate them in the same place. This 1s how thousands of programmers can work on the same
source code and make progress [Gabriel and Goldman, 2000].

As the complexity and size of software system soars, the ability of developers to
independently work on separate modules becomes increasingly important. This is a vital
attribute of the open-source community, where multiple developers work independently on a
common collection of source code. The task of modularization, then, turns out to be a type of
work assignment for each developer. The details of the design decisions and responsibilities
of each developer should be hidden behind an exposed abstract interface. The interface

supplies the only means of access to the services offered by the module.

Comprehensibility in many pieces of code the problem of disorientation is acute.
People have no idea what each component of the code is for and they experience considerable
mental stress as a result [Gabriel, 1995}. When Microsoft first began conducting usability
studies in the late 1980s to figure out how to make their products easier to use, their
researchers found that 6 to 8 out of 10 users couldn’t understand the user interface and get to
most of the features [Maguire, 1994]. .

Comprehensibility can be negatively affected, within any context, by a poorly
designed interface. Comprehensibility is a major goal of modular reasoning; that is, it should
be possible for a developer to study one module at a time without being overwhelmed with
the details of extraneous implementation information defined outside of the module context.
Several popular ideas in software engineering (e.g., Dijkstra’s Go To Statement Considered
Harmful [Dijkstra, 1968], and Wulf and Shaws Global Variables Considered Harmful [Wulf
and Shaw, 1973]), were in fact arguments made from the perspective of comprehensibility.
An early result of object-oriented research demonstrated a strong link between
comprehensibility and low coupling [Lieberherr and Holland, 1989].

Cohesion and Coupling

Cohesion and coupling are an obvious connection exists between highly cohesive and
lowly coupled modules, and the objectives identified by Pamas. The seminal definitions of
cohesion and coupling were provided within the context of structured design [Stevens et al.,
1974]. A measure of cohesion and coupling can often provide an assessment of the quality of
a design. Cohesion represents the degree of functional correlation between the individual
pieces of a module (i.e., the extent to which a module is concentrated on a specific, well-
defined concept). A method that exhibits low cohesion often contains code to perform several
tasks that are conceptually different (e.g., a stack class where the push method also computes
a square root). In a highly cohesive module, the various relationships within the module can
be easily discerned because of the distinct focus of the module. This is a great attribute for
supporting independent development.

Coupling can be described as the extent to which modules are connected with each
other, Highly coupled modules are very brittle because a change to one module often requires
the modification of a number of other modules. This also negatively affects independent
development because highly coupled modules will often reveal their underlying internal
implementation details to other modules. The comprehensibility of such modules is reduced,
too, because several different modules must be examined to understand the intent of a
module. Coupling is, to a large extent, the opposite of good modularity.

Advanced Separation of Concerns

Even though the general notion of separation of concerns is an old idea, one can
witness the nascence of a research area devoted to the investigation of new techniques to
support advanced separation of concerns. Recall that the opening paragraphs of this chapter
highlighted the importance of modular composition within several engineering activities. It
has been recognized by numerous researchers that the software modularization constructs
developed over the past quarter-century are sometimes inadequate for capturing certain types
of concerns. This has serious consequences with respect to modular composition.

Previously defined modulanization constructs are most beneficial at separating
concerns that are orthogonal [Tarr et al., 1999]. However, these constructs often fail to
capture the isolation of concerns that are non-orthogonal. Such concemns are said to be

L¥¥]

crosscutting, and their representation is scattered across the description of numerous other
concerns. Crosscutting concerns are denigrated to second-class citizens in most languages
(i.e., there is no explicit representation for modularization of crosscuiting concerns). As a
result, crosscutting concerns are difficult to compose and change without invasively
modifying the description of other concerns (i.e., crosscuts are highly coupled with other
concerns). The three objectives of changeability, independent development, and
comprehensibility are sacrificed in the presence of crosscutting concerns because of the lack
of support for modularization (see [Gudmundson and Kiczales, 2001] for an evaluation of
these objectives in the context of newly proposed modularization constructs). The latest
research efforts, under the general name of Aspect-Oriented Software Development (AOSD)
[AOSD, 2002], explore fundamentally new ways to carve a system into a set of elemental
parts in order to support crosscutting concerns. The goal is to capture crosscuts in a modular
way with new language constructs called aspects. A large portion of the second chapter
thoroughly explains the problem of crosscutting concerns and surveys solution techniques.
The next section is not about AOSD, but rather shows how crosscutting enters into other

areas of human life, as well.

Organization Theory

Thus my central theme is that complexity frequently takes the form of hierarchy and
that hierarchic systems have some common properties independent of their specific content
[Simon, 1996]. Various types of organizations encompass elaborate hierarchies. The subject
of organizational hierarchy has been studied for nearly a century. Within the disciplines of
management and administration sciences, there is a popular corpus known as
organization theory. Organization theory has a basis for comparison with software
organizational hierarchy has been studied for nearly a century. Within the disciplines of
management and administration sciences, there is a popular corpus known as
organization theory. Organization theory has a basis for comparison with sofiware
development whenever a hierarchic approach to software decomposition is adopted. It is
worth noting that some of the influential work in organization theory was conducted by a
Turing Award winner Herbert Simon who also received the Nobel Prize for his work on
decision-making in organizations. This section will offer a short assessment of organization
theory as it relates to software construction

Since Adam Smiths, The Wealth of Nations [Smith, 1776], the concept of division of
labor has been an important topic within the discourse of economics, and the study of
supporting institutions. A keen contribution by Smith was a quantifiable justification for the
benefits that division of labor and specialization garner vis-a-vis efficiency and productivity.
Division of labor is to a large extent correlated to the general objectives of separation of
concerns as it relates to information hiding and the independent development of modules.
Parnas actually gave a definition for the term module that would support such an assertion, as
he stated, in this context module is considered to be a responsibility assignment rather than a
subprogram [Parnas, 1972]. The responsibility assignment of a module to a programmer
relates to the specialization of effort that exists in division of labor. Interdependent
Organizations display degrees of internal interdependence. Changes in one component or
subpart of an organization frequently have repercussions for other parts the pieces are
interconnected [Daft et al., 1987]. After an organization is hierarchically constructed (as a
result of the specialization of labor division), it is almost assured that the boundaries of the
hierarchy will be broken as a result of interdependence among the different divisions. Large
organizations naturally have certain kinds of concerns that are non-orthogonal to the
hierarchic structure. Such facets of the organization increase the coupling of each division of

the organization and expose particular characteristics of the division specialization (an
example of this is provided in the next section, within the context of a student requesting a
transcript). These are the crosscutting concerns of the organization. Studies have been
conducted on the mechanisms by which organizations have the ability to adapt to feedback
[Daft et al., 1987]. These self-correcting behaviors are analogous to the reflective methods
that are surveyed in Chapter 2. Hierarchic decomposition is a tool for accomplishing goals
and objectives within an organization. It is normal for organizations to have multiple goalg,
some of which may be conflicting [Hall, 1998]. The multiple rules that are spread throughout
the hierarchy of an organization are the result, in many cases, of the implementation of some
policy, or protocol. A policy is a mechanism that coordinates specific objectives across a set
of dislocated organizational units. A policy, and the rules that implement it, could be
considered a type of crosscutting concern within the organization. The pejorative meaning of
red-tape 1s tied to the frustrations that result from bureaucratic rules of policy
implementation. In order for the policy to be realized, the specialization of many ditferent
organizational departments is needed. Intriguingly, the initial concept of bureaucracy, as
proposed by [Weber, 1946], was promoted as the best structure for dealing with a changing
environment today, it is mostly associated with a negative connotation. An interesting case
study is presented in [Perrow, 1986], where a formal process at the University of Wisconsin
was scrutinized. The policy that was examined corresponded to the process for a university
faculty member to make a formal suggestion, or complaint. It was discovered that a complete
review of the formal request would require that it pass through over fifteen levels of the
university hierarchy. This example is comparable to crosscutting concerns in software
implementations that execute a protocol across a large code base. As will be shown in a later
chapter (see Figure 9 through Figure 11), the communication path in a hierarchy can
introduce unnecessary overhead in both organizations and software. The concept of an
Independent Integrator has been advocated as a coordinator of the policies involving myriad
interdependent departments [Dessler, 1986]. An integrator is the closest entity within
organization theory that has a relation to techniques for advanced separation of concerns. The
role of an integrator is to step outside the hierarchical bounds and assist in the weaving of a
crosscutting policy throughout the organization.

Research Objectives

This research is about advanced separation of concerns at the system modeling level,
and the construction of support methodology for system software that facilitate the elevation
of crosscutting modeling concerns to first-class citizens (i.e., explicit constructs for the
representation of such concerns) where adaptability and extensibility can be achieved. The.
contributions described in this research can be summarized by two research objectives: Raise
Aspect-Oriented (AQO) concepts for supporting the design of adaptable and extensible system
software, such as operating systems, to a higher level of abstraction. An aspect orientation
can be beneficial at different stages of the software lifecycle and at various levels of
abstraction; that is, it also can be advantageous to apply aspect orientation at levels closer to
the problem space (e.g., analysis, design, and modeling), as opposed to the solution space
(e.g., implementation and coding). Whenever the description of a software artifact exhibits
crosscutting structure, the principles of modularnity espoused by aspect orientation offer a
powerful technology for supporting better separation of concerns, which is ease of reuse,
adaptability, extensibility, and comprehensibility. This has been found to be true also in the
area of domain-specific modeling [Gray et al., 2000]. Although there have been other efforts
that explore AO at the design and analysis levels (see Chapter 2 for more details), the work
described in [Gray et al., 2001a] represents the first occurrence in the literature of an actual

aspect-oriented weaver (see Figure 2.6 in Chapter 2) that is focused on system modeling
issues, rather than topics that are applicable to traditional programming languages.

The research assists in the creation of new weavers using a generative framework.
Because the syntax and semantics of each modeling domain are unique, a different weaver is
needed for each domain. These two objectives provide a contribution toward the synergy of
AQSD and Model-Integrated Computing (MIC) (see [Sztipanovits and Karsai, 1997] for an
overview of MIC). This union assists a modeler in capturing concerns that, heretofore, wege
very difficult, if not impossible, to modularize. A key benefit is the ability to explore
numerous scenarios by considering crosscutting modeling concerns as aspects that can be
rapidly inserted and removed from a model.

This research use the Aspect-Oriented Framework (AOF) developed by Netinant and
Elrad to design an operating system built on separation of aspectual system properties from
basic functionalities. We believe this is a solid break through and innovative approach to
advance understanding and capabilities of system software development and utilization in
operating system area. The project will investigate the potential of building Aspects and
Components-Oriented Operating Systems (ACOOS) with respect to the following demands.

1. The impact of the aspect-oriented framework called component, adaptability, and
layers (CAL) to support the design of operating systems on the extendibility and adaptability
of current and potential new systems features.

2. The impact of potential use of aspect orientation approach to operating system
design and implementation.

3. The impact of the design and implementation for the aspect and component-
oriented operating systems on the ease of implementation and extensibility.

4. The impact of the design and implementation for the aspect and component-

oriented operating systems on the ease of implementation and adaptability.
The goal of this two-year project is a development of an open architecture, a prototype of an
aspect and component-oriented operating system called ACOOS using aspect-oriented
frameworks (CAL) where both basic functional components and crosscutting system
properties are designed separately from each other in each layer. Their composition is
formally supported to ensure correctness. This separation of concerns allows for reusability
and enables the building of software systems that are comprehensible, adaptable, and
extendable.

Our research concentrates on the design of extensible and adaptable operating systems
using aspect-oriented frameworks. We need to address the following two issues: what should
be done in aspects and how it should be done. Based on the current state of the art using an
aspect-oriented design framework

Outline

A background survey of related literature can be found in Chapter 2. The chapter
reviews several techniques that have been used over the past decade to provide the variability
needed to support clean separation of concerns. That chapters overview begins by examining
topics such as reflection and metaprogramming. The Chapter 2 also provides the incentive
for, and summary of, the emerging research efforts in advanced separation of concerns.
Within the general context of generative programming, a cornucopia of topics is summarized
at the end of the second chapter. This encompasses a brief synopsis of the literature on
object-oriented frameworks, code generators, and domain-specific languages.

In Chapter 3, the framework is introduced. Chapter 4 is about concluding and remarks
of the framework. Finally, Chapter 5 is conclusion of this research. A comprehensive
bibliography is included at the end of this report.

CHAPTER I

BACKGROUND

This chapter contains a broad survey of many techniques that have been found useful
for supporting modularization of software (e.g., reflection and metaobjects, advanced
separation of concerns, generative programming, and frameworks). These techniques also are
effective at providing the capability needed for software compositions to adapt and change to
evolving requirements. The contributions of this research in Chapters 4 are extensions of
several of these ideas.

Reflection and Metaobjects

Industry increasingly demands that systems be adaptable and extensible. This demand
may be manifested in various forms, including:

= The malleability of an application with respect to a set of changing user requirements
(i.e., the degree of difficulty to affect change in an application’s source code
implementationy);

* The degree of adaptability within a system in the presence of a changing environment
(i.e., the capacity of an application to examine itself and modify its own internal state
during run-time).

Reflection and metaprogramming provide powerful techniques for extensibility by
separating the program’s computation (the base level) from the specifics of how the program
is interpreted (the metalevel). This separation permits the modification of the underlying
implementation semantics (through changes to the metalevel) at run-time. These techniques
have been shown to provide great flexibility in systems that must adapt to changing
environments {Robertson and Brady, 1999]. A philosophical definition of reflection has been
given as, “...the capacity to represent our ideas and to make them the object of our own
thoughts™ [Clavel, 2000]. As used in this sense, reflection was first introduced in logic as a
way to extend theories [Hoftstadter, 1979]. Reflection also has been an active research area
within the context of programming languages. Various forms of reflection are even appearing
in popular programming languages like Java.

Procedural Reflection

The work of Brian Cantwell Smith provided the seminal ideas for formally applying
reflection to programming languages [Smith, 1982]. Smith defined procedural reflection as
the concept of a program knowing about its implementation and the context in which it is
executed (later, Smith would prefer the term introspection in place of procedural reflection).
A reflective system is capable of reasoning about itself in the same way that it can reason
about the state of some part of the external world. Introspection offers the capability of
dynamically adjusting the way that programs are executed. A reflective system has a causally
connected self-representation [Smith, 1982]. Thus, a reflective system has access to the
structures that are used to represent it. Depending on the level of support for reflection, these
internal representations can be inspected and even manipulated. Here, the term “causally
connected” means that a manipulation of the internal representation structures directly affects
the observable external behavior.

Smith identified three conditions that must be satisfied in order for a system to be
considered introspective:

1. The systemn must be able to represent a description of its internal structure in such a
way that it can be inspected and modified by facilities within the system.

2. The self-representation must be causally connected to the structure and behavior of
the system. Each event and state in the system must be self-described and modifications to
the description must result in a change in structure or behavior.

3. The self-representation must be at the proper level of abstraction. It must be low
enough such that meaningful modifications can be made. Yet, it must not be so low-level that
a programmer gets bogged down in a morass of detail.

Metacircular Interpreters

Smith also described a language, called 3-Lisp that supported his model of reflection.
In 3-Lisp, the notion of a reflective tower of metacircular interpreters [Steele and Sussman,
1978] supports the incremental changes to layers of interpreters. A mefacircular interpreter is
a program that is written in the same language that it interprets [Abelsen and Sussman, 1996].
The reflective tower is an infinitely ascending stack of interpreters. All interpreters in this
tower are implemented in 3-Lisp. Each new layer in the tower is interpreted by the layer
above it. The interpreter at the very bottom of the layer is the traditional program that
processes user input. In 3-Lisp, as is typical of most Lisp or Scheme implementations, an
expression, an environment, and a continuation argument capture the state of an interpreter.
The layers in the tower are connected by reification and reflection. Reification is the inverse
of reflection — 1t is about the ability to consider an abstract concept as concrete. Sobel and

Friedman distinguish the two processes as, “...converting some component of the
interpreter’s state into a value that may be manipulated by the program is called reification;
the process of converting a programmatically expressed value into a component of the
interpreter’s state is called reflection” [Sobel and Friedman, 1996]

Object Reflection

The first effort to incorporate “Smithsonian” reflection into an object-oriented
language is described in [Maes, 1987]. Building on the foundation of procedural reflection,
an object-oriented reflective architecture divides the object part from the reflective part. The
object part describes and manipulates the application domain and the reflective part describes
and manipulates the object computation semantics.

The reflective operations provided by some object-oriented programming languages
are limited. For example, the model of reflection provided in Java is much weaker than that .
found in Smalltalk and the Common Lisp Object System (CLOS). The reflection mechanism
in Java does not permit the modification of the internal representation [Anderson and Hickey,
1999], [Sullivan, 2001]. It only provides a type of “read-only” examination facility that
allows run-time inspection of the internal representation of an object. A further limitation is
that the reflective methods in Java are marked final, which prohibits their extension.
Therefore, the reflective model provided in Java is not of the Smithsonian style because it
does not provide the adaptation needed for being causally connected. The definition of
introspection is presented slightly differently in [Bobrow et al., 1993]. They define
introspection as a program’s ability to observe and reason about its own state. They define
intercession as the more powerful capability of modifying the internal state to affect the
underlying semantics. Using these definitions, Java can be said to provide support for
introspection, but not intercession.

Metaobjects

Meta means that you step back from your own place. What you used to do is now
what you see. What you were is now what you act on. Verbs turn to nouns. What you used to
think of as a pattern is now treated as a thing to put in the slot of another pattern. A metafoo
is a foo into whose slots you can put parts of a foo [Steele, 1998]. As Steele observes, the
prefix meta is used to denote a description that is one level higher than the standard frame o‘t:
perception. Meta is also used to mean “about,” “between,” “over,” or “after.” Hence, a
metaprogram is usually defined as a program that modifies or generates other programs. A
compiler 1s an example of a metaprogram because it takes a program in one notation as input
and produces another program (usually object code) as output. Reflection is considered a
form of metaprogramming where the target of the modification is the metaprogram itseif.
Metaprogramming can be a complex activity sometimes because there can be a blur between
the base level and the metalevel.

Metaobject Protocols

Maes appears to be the first to introduce the notion of a metaobject [Maes, 1987]. In
an object reflection system, a metaobject is just like any other object during run-time. Every
object in the language has a corresponding metaobject and every metaobject has a pointer to
its corresponding implementation object [Maes, 1988]. The metaobject contains information
about its language object, such as details on its implementation and interpretation. During the
execution of a system, the language objects may request information about their state, and
even perform a modification on the internal representation. Metaobject Protocols (MOPs)
facilitate the modification of the semantics of the underlying implementation language
[Kiczales et al., 1991]. Manipulating the interfaces that the MOP provides can incrementally
modify the behavior and implementation of the underlying language. For example, CLOS has
a MOP that specifies a set of generic functions [Steele, 1990].

There are five categories of functions that represent the core elements of CLOS (i.e.,
classes, slots, methods, generic functions, and method combination). A metaobject represents
each of these core elements. Each metaobject has a metaclass. The metaclasses behave like
any other class such that the semantics of a metaobject can be adapted by modifying its
metaclass. A programmer can alter the semantics of CLOS by using standard object-oriented
techniques, like subclassing. The instance of each metaobject can be adapted at run-time. The
behavior of the system at any particular time is dependent on the configuration of the set of
metaobjects. The protocol, in this case, represents the interfaces of the metaclasses. Any
modification to the behavior of the systern must adhere to the interface definitions. MOPs
gain their adaptive power from a synergy of reflection and Object-Oriented Programming -
(OOP). As described in [Kiczales et al., 1991], there are three attributes of a metaobject
protocol:

1. The core programming elements of a language are represented as objects. For
example, the syntax and semantics for method calls, the rules for handling
multiple-inheritance, and the rules of method lookup are all represented as objects.

2. The behavior of the language is encoded in a protocol based on these objects. The
protocol is the interface of the metaclasses.

3. A default object is created for each kind of metaobject.

Concerning the first attribute from above, an example of the ability to modify multiple-
inheritance rules is shown in [Kiczales et al., 1991]. A generic function called compute-class-
precedence-list returns the rules that determine the resolution of conflicts due to multiple-

inheritance. The programmer can modify this list so that new rules of conflict resolution are
used. As another example, objects are created in CLOS by calling make-instance. The
implementation of this method can be redefined at runtime to perform specialized adaptations
during object creation. Although the majority of the literature on reflection and
metaprogramming is described in some dialect of Lisp, there have been efforts to apply these
techniques to other languages. For example, [Chiba and Masuda, 1993] describe a basic
metaobject protocol for a language called Open C++. A more detailed description of a MOP
for C++ is given in [Forman and Danforth, 1999]. While not analogous to MOPs, per se,
there has also been research in C++ on an idea called static metaprogramming. A variant of
this, which relies on C++ templates, provides a compile-time facility for generating code and
component configuration [Czamecki and Eisenecker, 2000].

Metaobjects also can be used in assisting in the separation of concerns in areas other
than programming languages. Research at IBM recognized that, within middleware, there is
an intermixing of application code and protocol code [Atsley et al., 2001]. The lack of
modularity affects the ability to maintain and customize the middleware. A metaobject
protocol cleanly separates the policy and protocol code from the underlying application.
Some example metaobjects that were defined to represent communication events are transmit
(what happens when a component sends a message), deliver (what happens when a message
is received by a component), and dispatch (the received message a component decides to
process). Nonfunctional system properties like security and persistence [Rashid, 2002] can be
cleanly separated from the base level program to improve reuse. This has been termed
implementational reflection in [Rao, 1991).

Within the scope of distributed object computing and middleware, the techmique of
CORBA interceptors is closely related to metaobject protocols. Interceptors are defined as,
“non-application components that can alter application behavior” [Narasimhan et al., 1999].
An interceptor can transparently modify the behavior of an application by attaching itself to
the invocation path of a client and server object. Interceptors have been shown to be useful in
enhancing CORBA by providing adaptability with respect to profiling, protocol adaptation,
scheduling, and fault tolerance [Narasimhan et al., 1999].

Evaluating MOPs

A detailed evaluation of the practical use of MOPs can be found in [Lee and Zachary,
1995]. In this study, a MOP was applied to a geometric CAD tool in order to add persistence
to the CLOS implementation objects. The project was described as being very ambitious and
a much more complicated application of MOPs than previously studied. Much of the
evaluation was positive. Because the majority of the effort to extend CLOS related to objects,
the metaobject protocol provided a useful resource. However, the effort had several-
difficulties. Although the CLOS MOP is very useful when extension is based on a property of
an object, the protocol is not helpful when there is a requirement to augment a feature that is
not captured as an object property. For example, in CLOS, arrays and several other composite
values are native to Common Lisp and are not available for extension in the MOP. Another
difficulty was found with respect to performance. In several experiments, it was found that
object creation was sixteen times slower than the prior implementation that did not use a
MOP. Similarly, write access using the MOP was found to be about seven times slower.
Performance has always been a problem for reflective approaches. Consider the following
observation, with respect to Java-based reflection, “As of release 1.4, reflective method
invocation was forty times slower on my machine than normal method invocation. Reflection
was re-architected in release 5 for greatly improved performance, but is still twice as slow as
normal access, and the gap is unlikely to narrow” [Bloch, 2001]. The performance penalty

resulting from many dynamic calls in a reflective implementation will often rule-out
reflection as an implementation alternative in some contexts.

Open Implementations

Traditionally, black-box abstraction states that a software module should expose its
interface, but hide its implementation details. This is a corollary to [Parnas, 1972}, and is
similar to the Open-Closed Principle, described in [Meyer, 1997], which states that a modufe
should be open for extension, yet closed for modification. However, the idea of an open
implementation disagrees with this principle when applied fundamentally. Research in the
area of open implementations has found that, in some cases, software can be more reusable
when a client is allowed to control a module’s implementation strategy [Kiczales, 1996].
Open implementation proponents agree that the base level should remain closed like a black-
box. It is the metapart that they advocate opening to extension [Kiczales, 1992]. In fact, the
initial motivation behind MOPs was a desire to open the language in such a way that better
control could be exerted over the selection of the implementation with respect to certain
performance concerns [Kiczales et al., 1993].

Advanced Separation of Concerns

In Chapter 1, the importance of separation of concerns was motivated. During the
latter part of the 1990s, research in this area increased with an invigorated interest. This was
due, in part, to the recognition that the languages and tools used to develop software
hampered the proper isolation of specific categories of concerns. The inadequacies of modern
programming languages (with respect to separating certain concerns) prompted many
researchers to take a fresh look at modularization constructs and extensions/complements to
current languages. The focus of the problem can be discerned from the observation that
programming languages are ofien used in a linear process. However, the things that we want
to express in a language, and our conceptualization of key abstractions as a supporting
mechanism, are certainly not linear. This section provides the initial motivation and problems
that are being solved by a new area of research entitled Advanced Separation of Concerns
(ASOC).

A Survey of Some Concerns and Their Separation Before initiating the impetus
behind advanced separation of concerns at the implementation level, it may be beneficial to
first notice the various methods that have been suggested for managing concerns in other
contexts. The examples in this section represent concerns that are typically identified outside
of the milteu of traditional programming language research.

Database Triggers

Assume that the following business rule is to be consistently enforced within a
database: “Every time an employee’s salary is increased by 25%, log the employee’s social-
security number, previous salary, and new salary into an audit table.” The implementation of
this business rule requires that some action be taken every time that an update to the salary
column occurs. This business rule is an archetype for a crosscutting concern. Without
triggers, the realization of this rule would require that the concern be placed in all of the
stored procedures that update the employee’s salary. That is, the delta of a salary increase
must be computed for each update and checked against the specified 25% rate increase. This
could result in the insertion of redundant code throughout all stored procedures that are
affected by this business rule. The problem is compounded when the salary update occurs

within embedded SQL in a base programming language. In that case, the check must be made
outside of the database in every location of the base program that implements this business
rule. Fortunately, a trigger mechanism facilitates a cleaner solution. A trigger-based solution,
like that found in Figure 1, would provide a single location from which changes could be
made to the semantics of the concern. The trigger solutton does not need access to metalevel
control in order to capture the intent of the concern (i.e., it is not necessary to redefine the
underlying semantics of the table update definition). As will be shown later, this is similar to
the way that Aspect] captures a concern without resorting to metaprogramming techniques
(i.c., aspects and non-aspects are all at base-level code — there is no reference to the metalevel
within Aspect)). This is an important point in differentiating triggers, and even aspect
languages, from pure metaprogramming techniques. Later in this chapter, the constitutive
parts of an aspect language will be described. A preview of these is now given in a
comparison of aspect languages and triggers.

CREATE OR REPLACE TRIGGER salary_audit

AFTER UPDATE OF salary ON employee

FOR EACH ROW

WHEN (new.salary > 1.25 * old.salary)

CALL log salary audit(:new.ssn, :old.salary, :new.salary);

Figure 2.1: A Trigger for Logging Salary Increases

On the second line of Figure 1, the “AFTER UPDATE” statement indicates the point
of execution when the trigger statement is applied. Using BEFORE/AFTER, an Oracle
database trigger is able to influence the dynamic execution of a database server whenever
certain operations (DELETE, INSERT, UPDATE) are executed on a database table. There
are six different variations that can be given, resulting from the permutation of {BEFORE,
AFTER} x {DELETE, INSERT, UPDATE}. Also, on the second line, the “OF salary ON
employee” is similar to the pointcut idea in aspect languages. This construct identifies a
particular point in the database table (e.g., a row and a table) that is affected by the trigger.
The “when condition™ syntactical construct on line 4 has some likeness to the “if” pointcut
designator in Aspect]. The executable statement that is associated with the trigger (this is the
action that occurs when the trigger is fired), found on the last line of Figure 1, is akin to the
concept of “advice” in Aspect]. The definition of these aspect-oriented terms will be clarified
in a subsequent section. Even though the database trigger mechanism permits the capture of
crosscutting business rules within a database, it has several weaknesses when compared to
pure aspect languages. The most evident limitation is the lack of the ability to create
compositions of triggers. The trigger approach allows only the naming of a single table. It
does not permit the logical composition of table property descriptions. That is, the type of
pointcut model used within triggers is not composable in the same way as Aspect]. Triggers
also do not support the concept of wildcards within the naming of a pointcut. For example,
the second line from above could not be written as “OF sal* ON emp*” in order to designate
multiple columns and tables that are affected by the trigger.

Mail Merge

Mail merge is an office automation tool that supports the separation of the form of a
document from a data source of merge fields. By this separation, the insertion of each
instance throughout the document can be better managed (see Figure 2). Consider the task of
a lawyer who specializes in commercial foreclosures. He, or she, will typically need to
process fifteen different documents in order to execute a foreclosure (according to

12

information obtained from a personal conversation with a Nashville attorney). Furthermore,
five or more different parties (with separate contact information) are typically involved. Their
contact addresses, and other pertinent information, are diffused across the space of the
various legal documents. By separating the instance from the form, the author of the
document is spared from the tedious task of visiting multiple locations in the document in
order to make each change. Although the mail merge tool assists in a specific type of concern
separation, it requires the document designer imitially to visit every instantiation point 1n
order to insert a field designator (because of this, the process is somewhat similar to the
LaTeX macro command).

Style Sheets

Within the context of web publishing, style sheets are a useful technique for
separating the content of a document from its presentation style [Meyer, 2000]. Such a
separation provides a method for making seamless global changes to the appearance of a
document without the need for visiting numerous individual locations in the document. In a
Cascading Style Sheet (CSS), a rendering engine visits each node of a document. As the
traversal proceeds over the document’s hierarchy, the rendered attempts to match the current
element with a pattern specified as a CSS rule. A CSS rule consists of two parts: a selector,
which names the type of the element to which the style will be applied, and a declaration,
which represents the type of style to be applied.

XML Text

<xmi version="1.0" encoding="ut{-§" 7>
<?xml-stylesheet href="stylel.css" type="text/css" 7>

3CWL M 0H 48 MHISRSINIPTHIZEA AT 1D, o T R

<FOO> Lll Feortls lack Ly
<BAR>bbb</BAR1> Qew - 13 2 B s Pyrewan
<BAR2>ccc Z;:gfp.w—fm“wm"ﬁ"@”; * Qe
<BAR3>ddd</BAR3> .
</BAR2> e
</FOO>
o T T T T T e

CSS Stylesheet {stylel.css)

BAR! {color:red}
BAR2 {color:blue}
BAR3 {color:green}

Figure 2.2: A Cascading Stylesheet Example

An illustration of the application of a CSS rule is shown in Figure 2. The top-left of
the figure contains the content of a document as represented in the Extensible Markup
Language (XML). The information regarding the name of the specific style that is to be
applied (in this case, the style sheet named stylel.css} is located within the preamble of this
document. The specification of stylel.css is listed in the bottom-left of the figure. As can be
seen, this style sheet has a rule asserting that all elements of type BAR1 are to be rendered in
the color red. In this example, it should be understood that the rendering engine resides
within the browser.

13

Literate Programming and WEB

Let us change our traditional attitude to the construction of programs: Instead of
imagimng that our main task is to instruct a computer what to do, let us concentrate rather on
explaining to human beings what we want a computer to do [Knuth, 1984]. The idea of
literate programming was initially described by Donald Knuth and implemented with a tool
called WEB [Knuth, 1984]. In WEB, a single program is a combination of source code,
documentation text, and WEB commands. Literate programming assists a programmer it
assembling programs that are more easily read by a human. This 1s done by treating the
construction of documentation and source code as a simultaneous activity. The aim is to
make the construction of programs more like the creation of a literary work. The formal
expression of a concern is so closely tied to the informal description that tools are needed to
separate the two representations so that they are consumable by different parties (e.g., a
compiler and a human). In WEB, source code is produced from the TANGLE tool, and
documentation is formed by the WEAVE tool (see Figure 3). It is interesting to note that the
structure of the process for creating WEB programs is almost opposite to that seen in Figure 1
and Figure 2. In those contexts, the concept of weaving a document entailed the notion of
bringing separated entities together as one (where the separation provided some desirable
property that assisted in change maintenance and comprehensibility). In literate
programming, however, the concept of weaving represents the task of separating concerns of
interest (e.g., the visual presentation of documentation) from an existing tightly coupled
document.

TANGLE Foo.pas
Foo.w WEAVE
Foo.tex

Figure 2.3: Separation of Concerns in WEB

The preceding subsections provided several examples of concern separation. Two of
the four examples were in contexts not associated with software development (e.g., mail-
merge and stylesheets). A common topic in each of these examples was the existence of an
integration tool for assisting in the conceptual separation. In the following sections, the
problems associated with crosscutting concerns are motivated, along with the need for a new
type of software integration tool — a weaver.

Problems with Scattered Code

It is organization which gives birth to the dominion of the elected over the electors, of
the mandataries over the mandators, of the delegates over the delegators. Who says
organization, says oligarchy [Michels, 1915]. Non-orthogonal concerns can be descnbed as
crosscutting, because such concerns tend to be scattered across the traditional
modularity boundaries provided by a development paradigm. In programming
languages, two concerns crosscut when the modularity constructs of a language allow one
concern to be captured separately, but only to the detriment of another concern that must be
captured in a way that is not cleanly localized. This has been referred to as the “tyranny of the
dominant decomposition™ [Tarret al., 1999]. The “Iron Law of Oligarchy,” quoted above
from Michels, suggests that bureaucratic hierarchy tends to result in oligarchy; that is, those
at the top of an organization are those that rule. In Chapter 1, an allusion was made to this
tyranny under the Organization Theory section that described Interdependence. With respect
to the dominant decomposition, this also seems to be true with traditional methods for
software modularization. Crosscutting has the potential to destroy modulanty. The
crosscutting phenomenon can occur in structured programming, where the procedure,
function, and module delimit the modularity boundaries. It is also prevalent in object-oriented
programming, where classes, methods, and inheritance define the boundaries of
encapsulation.

Crosscutting concerns provide difficulties for a programmer because the
implementation of the concern is scattered throughout the code; the concern is not localized
in a single module. This can be a source of potential error when modifications are required.
Comprehensibility is negatively affected in two ways [Tarr et al., 1999]:

s The scattering problem: The ability to reason about the effect of a concern is
decreased because a programmer must visit numerous modular units in order to
understand the intent of a single concern. The problem is that a concern often
touches many different pieces of code.

* The tangling problem: Within a module, the tangling of numerous concerns
decreases cohesion, and raises coupling. This reduces a programmer’s ability to
understand the core intent of a particular module. The problem is that many
concerns may touch a single piece of code.

Persistence

Programmers are often forced to keep track of crosscutting concerns in their heads.
This is an error-prone activity, because even medium-sized programs can have hundreds of
different crosscutting issues [Tristram, 2001]. Another problem of crosscutting concerns 1s
maintenance. It is often the case that the global spreading of a concern, and the ramifications
of its modifications, are not intuitive to those who inherit the code for maintenance. -
Maintenance becomes more of an archaeological metaphor, where a programmer must search
through rubble in order to uncover a useful artifact [Hunt and Thomas, 2002]. The Parnasian
objectives, found in Chapter 1, are usually sacrificed in the presence of non-orthogonal
concerns.

Figure 4 provides an illustration of scattering and tangling. The three individual units
(Unit A, B, and C) would be considered highly cohesive, if it were not for the tangling of the
three concerns of logging, synchronization, and persistence. Furthermore, the scattering of
these concerns would make it difficult to change their behavior, especially if the example
were scaled to a much larger problem with thousands of units.

Synchronization Persistence
Unit A Unit B Unit C

e
Jirs
il
i I
[

[l
F
Il |
4
s
&

il

1.1
Pl L
i
Jil]
1
i L]
|
il |
|
i Ii
[It
Il I
§
1NN
|
|

Figure 2.5: A Pictorial Representation of Crosscutting

This figure represents a piece of the Apache Tomcat code. Tomcat is an
implementation of the Java Serviet and JavaServer Pages (JSP) specifications. Tomcat can .
run as a standalone, or it can be integrated into the Apache Web Server. The white vertical
boxes represent a few of the classes in a subset of the Tomcat implementation. The
highlighted lines designate the lines of code related to the concern of logging. Notice that the
implementation of the logging corncern is spread across the various classes. It is not located in
a single spot. In fact, it is not even located in a small number of places. As reported in
[Robillard and Murphy, 2002], a modification to the logging concern, “would require the
developer to consider 47 of the 148 (32%) Java source files comprising the core of Tomcat.”
In this example, if the type of information to be logged is changed, then a developer mnay be
required to make modifications to each of these 47 individual source files. From a software
engineering viewpoint, this 1s not desirable. There is no cohesive module for representing the
concept of logging — that concept is coupled among all of the other concerns. To highlight the
importance of this, forget for a moment that the highlighted code in Figure 5 represents

logging. Assume, instead, that it represents all of the code for implementing the concemns of
an employee in a payroll application (i.e., the implementation of employee features is
scattered across multiple source files, in different modules). In that situation, it is easy to see
that the basic principles of cohesion and coupling are being violated. The same can be said,
then, when the highlighted concern is understood to be logging.

The problem just described is not the fault of a programmer who is guilty of poor
design [Simonyi, 2001]. There is simply no traditional programming language construct that
would permit a better localization of the concern — it is, “a lack of expressibility in th¢
technology avatlable to the original designer to express interacting or overlapping concerns”
[Robillard and Murphy, 2002]. Gregor Kiczales has commented that, “Many people, when
they first see AOP, suggest that concerns...could be modularized in other ways, including the
use of patterns, reflection, or ‘careful coding.” But the proposed alternatives nearly always
fail to localize the crosscutting concern. They tend to involve some code that remains in the
base structure” [Kiczales, 2001]. These alternatives require that the code related to the
concern be placed in numerous locations.

Aspect-Oriented Programming

Programming language support for separation of concemns has long been a core aid
toward managing the complexity of large software projects. Support for the modularization
and decomposition of certain dimensions of a system has improved comprehensibility and
evolvability during software development. For example, objects support the decomposition of
a system according to the dimensions of data abstraction and generalization (via inheritance),
and structured programming techniques focus on a functional decomposition. Other
dimensions of concern often concentrate on features that are crosscutting (e.g., persistence is
a crosscutting feature) [Tarr et al., 1999]. Most modularization constructs, however, provide
for the separation of concerns along only one dimension. The dominant form of
decomposition forces other dimensions of the system to be scattered across other modules.
When non-orthogonal concerns are spread out across multiple modules, the system becomes
more difficult to develop, maintain, and understand. Moreover, reusability of such concerns is
not possible due to the crosspollination of one concemn into many modules; there is no
localized container to capture the concern. As implied in the first section of this chapter,
reflection and metaprogramming were an early attempt at resolving crosscutting. These
techniques were somewhat low-level, but provided a lot of expressive power. With MOPs,
for instance, there is a blurred distinction between language user and language designer.
Therefore, a more practical use of the techniques by less experienced programmers would
require modularization constructs that offered more disciplined control over this power. As
these techniques evolve, a new breed of programming languages is emerging to assist in the .
modularization of crosscutting concerns.

Aspect-Oriented Programming (AOP) provides a strategy for dealing with emergent
entities that crosscut modularity [Kiczales et al., 1997]. AOP recognizes that crosscuts are
inherent in most systems and are generally not random. The goal of AOP is to provide new
language constructs that allow a better separation of concerns for these aspects. An aspect,
therefore, is a piece of code that describes a recurring property of a program that crosscuts the
software application (i.e., aspects capture crosscutting concerns). AOP supports the
programmer in cleanly separating components and aspects from each other by providing
mechanisms that make it possible to abstract and compose them to produce an overall system.

Gregor Kiczales and his colleagues at Xerox PARC developed the seminal ideas
behind AOP in the mid-1990s. In MIT Technology Review, AOP was featured as one of the
top 10 “Emerging Technologies That Will Change the World” [Tristram, 2001]| and has been

the subject of a special issue of Communications of the ACM [Elrad et al., 2001]. Notably,
object-oriented guru Grady Booch labeled AOP as, “something deeper, something that’s truly
beyond objects...a disruptive technology on the horizon” [Booch, 2001].

Aspects — A Complement to Traditional Paradigms

In the structured paradigm, modular block structures were used to provide scope for
separating the boundaries of concerns. The “go-to” statements that often resulted in tangled
and scattered concerns were replaced with procedure calls [Dijkstra, 1968]. This improved
the control flow of a program and enhanced its modularization. The Object-Oriented (00)
paradigm represents the generation that followed the structured paradigm. In OO, the key
modularization technique focused on hierarchical structuring through classes and inheritance.
Another key feature of OO, a polymorphism permits variation of behavior within a class
hierarchy.

Each new generation of modularity technology builds upon the previous generation.
AOP should be evaluated within the context of being another technology for supporting
separation of concerns. The ideas of AOP should be viewed as a counterpart to procedures,
packages, objects, and methods to the extent that they all support different ways of
modularizing certain kinds of concerns. In this sense, AOP can be regarded as a complement
to both the structured and OO paradigm, or any other paradigm for software construction
(e.g., logic programming [De Volder and D’Hondt, 1999]). In AOP, the focus is on capturing,
in a modular way, the crosscutting concerns of a system. The crosscuts will still exist, but the
problems of scattered and tangled code are removed by encapsulating the crosscut in a single
module. To quote a personal communication with Gregor Kiczales, “O0 made inheritance
explicit in language. AO makes crosscutting explicit in language. OO makes its bet on
hierarchical structures, but AOP makes its bet on crosscutting structures.”

AOP has been defined in terms of its ability to provide quantification and
obliviousness. Quantification is the notion that a programmer can write single, separated
statements that introduce effects across numerous locations in the source code. Thus,
quantification would provide the capability for saying the following: “In programs P,
whenever condition C arises, perform action A” [Filman, 2001]. This can be stated more
formally as: C [A], where the crosscutting nature is captured in the universal quantifier and
the action to be performed within the concern is the parameterized action. The property of
obliviousness holds when the quantified locations do not require modification in order to
incorporate the effects of the quantification. As stated by the authors of this definition, “AOP
can be understood as the desire to make quantified statements about the behavior of
programs, and to have these quantifications hold over programs written by oblivious
programmers” [Filman and Friedman, 2000]. :

The idea of quantification does suggest a special property of aspect languages, but
quantification also exists within pure metaprogramming techniques. Even though
metaprogramming is one way to capture crosscutting concerns, and AOP has its roots in
metaprogramming, it should be understood that there are some important differences. Perhaps
a better characterization of aspect languages, in order to avoid confusion, would be those
languages that provide constructs for quantification, yet do not refer to metalevel concepts.

In a first exposure to AOP, many compare it to macro expansion. However, this
comparison is far from accurate. Although there are similarities with respect to code being
inserted or expanded, the AOP model is much more powerful. A limitation to the strength of
macros is the fact that the transformations that are performed are textually local [Kiczales et
al., 1992]. For instance, to use a macro, a programmer must visit numerous locations in the
source code and insert the name of the macro. If a change needs to be made, or the macro

18

needs to be removed from a specific context, then the programmer must visit all of these
points in the code. Macros do not exhibit quantification. Aspects, on the other hand, operate
under the property of reverse inheritance (also known as inversion of controlz). The behavior
of an aspect is specified outside of the context where it is applied. Aspects, and their
quantification, are described in one location — a programmer does not have to visit and insert
code in any other place. This makes the addition and removal of aspects effortless.

It should be noted that the same distinction that has been made between AOP and
macros could also be made in comparing AOP and mixins [Bracha and Cook, 1990]. A mixin
is a class that is not intended to be instantiated. It provides some desired behavior (e.g.,
persistence) that is imported into other classes via inheritance. Mixin-based inheritance does
not provide quantification and obliviousness. If a programmer wants to include mixin
behavior in a class, the mixin must be explicitly imported within the purview of the class’s
predecessors. Mixin based inheritance is also missing the reverse inheritance property that
can be provided through the kind of quantification available in aspect languages.

In comparing aspects to classes, there is almost an inverse relation between the way
inheritance works in OO and the way aspects work in AOP. As stated in [Viega and Voas,
2000], “With inheritance, classes choose what functionality they wish to subsume from other
objects. Aspects, on the other hand, get to choose what functionality other objects subsume.”

Examples of Commonly Recurring Crosscuts

There are several commonly recurring crosscutting concerns that have been identified
from a wide variety of different systems. For example, the software described in Figure 5
highlighted the fact that the common concern of logging is often scattered across the code
base.

The study of operating systems code is ripe for the mining and understanding of
crosscutting concerns. As pointed out in [Coady et al., 2001b}, many of the key elements of
operating systems crosscut. As an illustration, the prefetching activity that is performed in OS
code is often highly scattered and tangled. As Coady and colleagues discovered, the FreeBSD
v3.3 implementation of prefetching was spread across 260 lines of code in 10 clusters in 5
core functions from two subsystems. A refactoring of the prefetching implementation using
an aspect language demonstrated an increased comprehensibility of the code with respect to
independent development, as well as the ability to (un)plug different modes of prefetching
[Coady et al., 2001a]. Their future research focus is in the investigation of other crosscutting
concerns in FreeBSD; namely, scheduling, communication protocols, and the file system. It is
also often the case that the implementation of specific protocols lead to tangled code, as does
code that is introduced into the system to improve some performance optimization. This also
can be true in implementations that provide resource sharing among a set of objects. The
various policies, or protocols, contained within an operating system are typically
implemented in a crosscutting manner. This is similar to the observation made in Chapter 1
concerning policy implementations that have been studied in organization theory.

Perhaps the two most commonly observed crosscutting concerns are synchronization
and exception handling. Both of these are also evident in the case studies of Appendix A. A
detailed analysis has been performed on the ability of AOP to remove redundant code in
exception handling [Lippert and Lopes, 2000]. This study looked at the code for JIWAM, a
framework for interactive business applications, which is implemented in over 614 Java
classes in 44,000 lines of code. It was discovered that 11% of the overall code was focused
on the concern of exception handling. The core of their work involved a refactoring of the
exception handling code into Aspect]. The benefits of this refactorization are obvious. In
many types of exceptions, they were able to reduce the amount of redundant code by a factor

of 4. Of the top five types of exceptions in the JWAM application, over 90% of the number of
catch statements was removed. For example, the number of catches of the generic Exception
type went from 77 in the original code to only 7 catches in the refactored Aspect] code.
Similarly, the number of catches of the SQLException type went from 46 catches in the
original code to only 2 in the aspectized code. Because the JWAM application was written
using Design by Contract [Meyer, 1997], there are many assertions that test the pre- and post-
conditions for a particular method. Lippert and Lopes found that over 375 post-conditions
contained an assertion of “result != null” — this redundant assertion represented 56% of all
post-conditions (here, redundancy referes to the replication of a single statement at the end of
multiple methods). There were also 1,510 pre-conditions that contained the assertion of “arg
1= null”; using AspectJ, that number was cut down to 10. That is, the 1,510 pre-conditions
were separated into 10 aspects, where each aspect contained a concise specification of the
methods that were to contain the assertion.

The idea of superimposition, which is related to the “diffusing computation” concept
initially proposed in [Dijkstra and Scholten, 1980}, has recently been compared to aspect-
orientation. A superimposition has been found helpful in distributed systems for maintaining
and changing the global properties related to a distributed computation (e.g., deadlock
detection, or the snapshot algorithm in [Chandy and Lamport, 1985]).Typically, the
implementation that manages each globally distributed property is scattered in two ways: it is
scattered across the processes that perform the distributed computation, and it is scattered
across the source code implementation that is charged with the task of maintaining the global
property. It has been noted that, “Algorithms which were intentionally designed to
superimpose additional functionality on a basic program have a long history in distributed
systems research, probably starting with algorithms to detect termination of basic algorithms”
[Katz and Gil, 1999]. Like aspect orientation, superimpositions impose additional
functionality to a base program through quantification.

Enforcing Programmer Discipline

Aspects can be used to enforce certain properties of a system that would typically be
left to programmer discipline. To understand this point, reconsider the trigger example from
Figure 1. Rather than using a trigger, a database administrator could have written a stored
procedure, called UpdateSalary, which provides a single point of control for updating the
salary field of the employee table. The UpdateSalary stored procedure could then contain, in
one location, the semantics for implementing the business rule.

This solution, however, does not provide any guarantee that others will obey the rule
for using only this stored procedure. There is nothing to prevent a user or developer from
updating the table through means other than the stored procedure. The reliance on .
programmer discipline is unfeasible in large systems, and it is quite likely that certain system
properties are violated when there is no direct way to enforce the concern. Aspects can be
helpful in enforcing that a particular policy, or protocol, is observed in a way that does not
rely on the programmer remembering to conform to a large set of unverifiable rules.

AspectJ

Early aspect languages, like COOL and RIDL [Lopes, 1997}, dealt with specific types
of concerns (e.g., synchronization and distribution). The most mature language, however, is a
general aspect language (called Aspect])) that is an extension to Java. It is described as being
general because it is not tied to capturing a particular kind of concern; instead, it provides
general constructs that allow a programmer to capture a wide variety of different kinds of

20

concerns. The language definition has undergone many changes since the first description in
[Kiczales et al., 1997] to the most recent implementation, as documented in [Kiczales et al.,
2001a] and [Kiczales et al., 2001a]. This section highlights some of the key characteristics of
Aspect]. Aspect] is being used in commercial development. CheckFree.com, which provides
financial services for e-commerce, uses Aspect} [Miller, 2001]. An interesting anecdote is
reported from this effort. A senior engineer at CheckFree stated that Aspect] allowed his
team to implement a crosscutting feature in four programmer-hours. The same feature
implemented in a previous version of the application in C++, is reported to have taken two
programmer-weeks [Tristram, 2001]. It has been proposed that there are three critical parts to
an aspect composition language: a join point model, 2 way of denoting joins points, and the
ability to specify behavior at those join points [Kiczales et al., 2001b].

Join Points and Pointcuts

In AOP languages like Aspect), a join point denotes the location in the program that is
affected by a particular crosscutting concern. This location can be either the static location of
a specific line of source code, or it can represent a dynamic point during the execution of the
program. There are many potential join points in a program. A pointcut specifies a collection
of join points. The AOP literature does not provide the etymology of this term. Perhaps the
intent of the terminology comes from graph theory, where the notion of a cutpoint represents
a vertex in a graph whose removal would leave the graph in a disconnected state. It is a point
of separation between nodes in a graph. Analogously, a pointcut is a place of potential
separation for non-orthogonal concerns. A pointcut designator is declarative and permits the
composition of join points using logical operators. There are many different types of pointcut
designators. Several designators that will be used in a later example are:

» this(T): all join points where the currently executing object is an instance of class T
= target('1): all join points where the target object of a call is an instance of class T
= call(S): all join points (in a calling object) that are matched by a call specified by

signature S
» cflow(C): this powerful designator selects all join points within the control flow of
pointeut C
Advice

Whereas a join point represents a location where an aspect adds behavior, advice
represents the behavior to add (Note: The name “advice” was chosen because it is similar to
the advice feature in early Lisp machines). Advice represents a type of method that can be
attached to pointcuts. The definition of an advice relates a pointcut with specific code, -
contained in the advice body, which takes care of the crosscutting concern. The body of the
advice is normal Java code. There are three different designators for specifying the point of
execution for advice: before, after, and around. The choice of these names appears to have
been borrowed from CLOS [Steele, 1990]. In before advice, the advice body is executed prior
to the execution of the join point’s computation. The opposite is true with after advice; the
advice runs after the join point computation. There are even three different kinds of after
advice:

= After the successful execution of the join point (after returning);
» After an error was encountered during the execution of the join point (after throwing),
» Either of the above two cases (after).

21

Separation of concerns often necessitates subsequent integration. Whereas AOP provides
the capability of separating numercus concerns during development, the effects of the
crosscuts must be integrated back into the target code. The goal of the separation is to
improve the conceptual ability of programmers during development — the end result at run-
time, however, will certainly have crosscutting concerns that are transparent. As David Weiss
states, in his introductory comments to one of Parnas’ papers, “At run-time, one might not be
able to distinguish what criteria were used to decompose the system into modules” [Hoffman
and Weiss, 2001]. In AOP, a {ranslator called a weaver 15 responsible for taking code
specified in a traditional programming language, and additional code specified in an aspect
language, and merging the two together. Because the aspect code describes numerous
behaviors that crosscut a system, the concerns must eventually be integrated into the base
code. This 1s the purpose of a weaver — it integrates aspects into the base code. In Figure 2.6,
the weaving process is depicted using the previous example in Figure 2.4,

Logging

Synchronization

Persistence

I
-
T

Figure 2.6: The Weaving Process
Other Work in Aspect-Oriented Software Development (AOSD)

Several researchers arc working in the area of AOSD to provide new language
constructs to support crosscutting concerns [Tarr et al, 1999]. Aside from AOP, other
examples of specific research in this area are Subject-Oriented Programming (SOP) [Osher et
al., 1996], variants of Adaptive Programming (AP) [Lieberherr et al., 2001], and Composition
Filters (CT") [Bergmans and Aksit, 2001]. A hybrid approach to applying these techniques has
been suggested in [Rashid, 2001]. Several of these research areas can be considered a part of
generative programming, the topic of the next section.

22

Multi-Dimensional Separation of Concerns (MDSOC)

Another successful approach for dealing with crosscutting concerns is Subject-
Oriented Programming (SOP), a research effort at IBM Research. In this approach, it is
recognized that objects have different roles that they represent. These different roles can be
composed into system features [Ossher et al., 1996], [Ossher and Tarr, 2001]. For example, in
an Employee class, an employee object plays different roles depending on whether the\
Employee is being sent to the payroll subsystem (where salary and tax information are
pertinent) versus the same Employee being sent to the human resources, or personnel,
subsystem (where years of service and address are appropriate). The separation of these roles
into isolated views is referred to as a “hyperslice” [Tarr et al.,, 1999]. Hyperslices assist a
team of programmers in independently developing different concerns that may apply to a
single class. Note that this capability was one of the Parnas’ criteria described in the first
chapter {Parnas, 1972].

Earlier work on subdivided procedures provided a basis for the approach adopted in
SOP [Harrison and Ossher, 1990]. Subdivided procedures promote extensible programming
by separating the multiple cases of procedure bodies. A procedure that dispatches from a
large case statement would be an example application of subdivided procedures. In such
instances, the individual cases that comprise the procedure are somewhat related to the notion
of a hyperslice. An interesting comparison can be made between AOP and SOP. With AOP,
the focus has always been on crosscutting concerns that are spread across multiple modules.
A focus of SOP, however, has been the ability to capture several views of a single class. The
separation of these views, it is argued, permits a better understanding of the implementation
of each view in isolation so that the views do not become tangled. In the SOP literature, a
translator called a compositor has numerous similarities to a weaver in AOP. A programmer
creates composition rules that direct the output of the compositor [Ossher et al., 1996]. A tool
called Hyper/J has been developed to support the idea of hyperslices in Java.

Adaptive Programming

The structure of objects within a class hierarchy has been found to be a type of
crosscutting concern. In Adaptive Programming (AP), a key focus is the separation of
behavior from structure. To aid in the modularization of this concern, visitor and traversal
strategies are used [Lieberherr, 1996|. This modularization prevents the knowledge of the
program’s class structure from being tangled throughout the code, a desirable property that is
called “structure shyness.” Traversal strategies can be viewed as a specification of the class
graph that does not require the hardwiring of the class structure throughout the code
[Lieberherr et al., 2001]. An example of a traversal/visitor language for supporting such -
modularization is described in [Ovlinger and Wand, 1999]. The AP community considers
their research as a special case of AOP. The motivation for AP came from the earlier work on
the Law of Demeter, which offered a set of heuristics for improving the cohesion and
coupling of object-oriented programs (the motto of this work was the anti-social message of
“Talk only to your immediate friends™) [Lieberherr and Holland, 1989]. In previous work at
ISIS, an adaptive programming approach was used to solve a tool integration problem for a
large aerospace firm [Karsai and Gray, 2000]. The domain for the integration focused on
fault-analysis tools, where each tool persistently stored a model in either a database or a
textual format (e.g., either comma-separated values, or a proprietary format). In that work, a
model from one tool was translated into the representation of another tool. To accomplish
this, semantic translators were used to traverse the graph of an internal representation of a

model. In a semantic translator, the specification of the traversal, and the actions to be
performed at each traversed node, are separated.

components
L,
- Entit _1
entity ! Component
I
*
entity 2
Entity_2 -
subComponents

Figure 2.7: A Simple UML Tool Model Specification

The illustration in Figure 2.7 represents a simple model that is specified in the Unified
Modeling Language [Booch et al., 1998]. A domain-specific language (DSL) for textually
representing this diagram is presented in [Karsai and Gray, 2000]. Another DSL is shown in
Figure 2.8, which demonstrates the traversal/visitor specifications that appear within a
translator. During a translation, the process begins with the top model and follows along the
traversal specifications. At visitor nodes, a specific action is performed that executes the

visitor Visitor visitor Visitor
{ {
at Component]... K ' at Component[...]
<< > <<, >
traversel[...], traversef...];
at Entity 1[...] at Entity 1[...]
<<, B> <<, >
at Entity 2[...] at Entity 2f...]
<<, B> <L,
at Rel[...] at Rel[...]
<<, > <<, B>
traverse[...]; traverse[...];
J 3

Figure 2.8: Traversal/Visitor Specifications

required translation (these are elided inside of the inline code, which is denoted as
<<,..>>). In Figure 2.8, the first two steps in the model translation are shown by two arrows.
The remaining traversal/visitor sequence would follow similarly.

24

Composition Filters

An earlier effort at isolating crosscutting concerns is the composition filters approach.
With this technique, explicit message-level filters are added to objects and the messages that
they receive [Aksit et al, 1992], [Bergmans and Aksit, 2001]. The motivation for
composition filters came from the recognition that conventional object models lack the
required support for separating functionality from message coordination code. As objects
send messages to each other, the messages must pass through a layer of filters. Each filter has’
the possibility of transparently redirecting a message to other objects. Different types of
filters have been found to be effective at isolating constraints and error checking [Aksit et al.,
1994]. The CF approach can be very useful in executing actions before and after the
interception of a method call. A related technique, proposed in [Filman et al, 2002],
intercepts communication among functional components and injects behavior to support
various additional capabilities (e.g., reliability, security). CORBA interceptors [Narasimhan
et al., 1999] have some similarities with composition filters because they also can intercept
messages. There are many exciting things on the horizon for research in aspect-oriented
software development. The remainder of this section surveys some of these other research
areas.

Weaver Development and Tool Support

Some of the earliest aspect languages and weavers were focused on specific concerns
like synchronization and distribution. Examples of these particular aspect languages include
COOL and RIDL, as defined in the dissertation of Cristina Lopes [Lopes, 1997]. More recent
work, like Aspect], has focused on generic aspect languages. Aside from Java and Aspect],
other languages are being explored with respect to AOP. The use of AspectC was cited earlier
in the discussion of prefetching [Coady et al., 2001]. Although there are many difficulties in
writing a C++ parser, initial efforts at providing an AspectC++ weaver (in support of real-
time systems) are reported in [Gal et al., 2002], [Mahrenholz, 2002]. AspectS is an approach
to general-purpose AOP in the Squeak environment [Hirschfield, 2001]. Apostle is an aspect
weaver for Smalltalk [de Alwis, 2001]. A simple weaver even exists for Ruby |Bryant and
Feldt, 2001]. Additionally, there has been work on making the CORBA IDL aspect-oriented
[Hunleth et al., 2001], as well as efforts for bringing AOP into the realm of Microsoft .NET
[Shukla et al., 2002], [Lam, 2002]. All of the weavers mentioned above are typically much
more immature than the capabilities offered in Aspect), yet they provide the major impetus
for taking the ideas of AOP to other languages. In addition to weaver development, there are
several other development tools that are being created to support AOP. A debugger for
Aspect], with GUI support, is available. There also has been effort to support Aspect] within -
several Integrated Development Environments (IDEs). Another related interesting research
area is the application of AOP to compilers. As observed in [Tsay et al., 2000], “The code to
do one coherent operation is spread over all node classes, making the code difficult to
maintain and debug.” The advantages of using AOP techniques for a weaver can be found in
[de Moor et al., 1999]. In their work, the descriptions of the effects on attribute grammars are
separated from the grammar productions. The benefit of this was also recognized in
[VanWyk, 2000].

Debugging Aspect Code

Many aspect weavers are preprocessors that target their output code in another
traditional programming language. Given the obfuscation created by the mangled names, and

25

the numerous indirections present in the generated code, it seems that there is a mismatch
between the implementation space and the execution space. That is to say, how does a
programmer write code using a particular conceptualization, and then debug the generated
code that is void of that conceptualization? This question is not peculiar to AOP — the
problem can be found in almost any implementation of a domain-specific language [Faith et
al., 1997], [van Deursen and Knit, 1997]. To answer the question concerning the debugging
of aspect code, it should be recognized that AOP is still in its early infancy. Although tool
support 1s being developed, such as an aspect debugger, the technology is still immature. Yet,
it 1s reasonable to expect future tools will be developed that will make the underlying
execution transparent to the paradigm. In fact, the path that AspectJ is taking is not unlike the
development of the earliest C++ compilers. The initial C++ compilers were merely
preprocessors that generated C code. The resulting C code was void of any semblance of true
object-oriented concepts — the C++ representation was merely simulated in a language that
had more mature compilers. The same can be said of Aspect] and other languages concerning
the incubation period needed for growth and stabilization. Perhaps a future solution to this
problem will be found in an adaptation to the work in [Faith, 1997], which describes a
tracking engine that interacts with a debugger and maps nodes from syntax trees.

Analysis and Design with Aspects

A study of the history of software development paradigms reveals that a new
paradigm often has its genesis in programming languages and then moves out to design and
analysis, or even other research areas (see [Rashid and Pulvermueller, 2000] for a description
of aspects applied to databases). This same pattern also can be observed with respect to
aspect-orientation. Most of the existing work on advanced separation of concerns has been
heavily concentrated on issues at the coding phase of the software lifecycle. There have been,
however, efforts that have focused on applying advanced separation of concerns in earlier
phases of the software lifecycle. One of the first examples of this type of work can be found
in [Clarke et al., 1999], where the principles of SOP were applied at the design level.
Similarly, [Herrero et al., 2000] have investigated the benefits of aspects at the design level.
Extensions to the UML have been proposed in order to support composition patterns as a
facility for handling crosscutting requirements [Clarke and Walker, 2001], [Clarke, 2002]. A
set of generic design principles for aspect-oriented software development is the focus of
[Chavez and de Lucena, 2001]. An analysis of design patterns, and the aspect oriented
techniques that can improve their specification and implementation, are the subject of
[Nordberg, 2001]. There has been an increased interest in the need for formal verification of
systems designed with support for crosscutting concerns. The most mature effort in this area

can be found in [Nelson et al., 2001], where two formal languages are presented that assist in -

the verification of concerns focused on concurrent processes.
Aspect Mining

There 1s an overwhelming amount of legacy code that has been written in languages
that do not support the clean separation of crosscutting concerns. To convert legacy code into
languages that support AOSD, it is necessary to refactor the original program. A correct
refactoring into a cleaner separation of concerns requires the examination of the original code
with an eye toward aspect mining (i.e., the identification and isolation of aspects). An aspect
mining tool offers assistance in this process. The Aspect Browser tool, presented in
[Griswold et al., 2001], is such an example. The tool has been applied to a case study that

26

contained 500,000 lines of source code in FORTRAN and C. Another tool for aspect mining
is described in [Hannemann and Kiczales, 2001].

AOQOP Validation Research

Case studies that transform legacy applications into Aspect], like [Lippert and Lopes,
2000] and [Kersten and Murphy, 1999], provide practitioners with heuristics for adopting
AQP. Both a case study and an experimental method were used in [Walker et al., 1999] to
assess AOP. In an experiment that studied the ease of debugging, three synchronization errors
were introduced into a Java program. A separate program that duplicated the errors was also
written in Aspect]. Several teams of programmers were given the task of tracking down the
errors in each of the implementations. The results of this experiment show that Aspect}
provided a clear benefit to increasing localized reasoning, but no benefit when the solution
required non-localized reasoning. Here, localized reasoning refers to whether or not a
programmer needs to leave the context of the module (in this study, the file) that contains the
error. Overall, the program teams that used AspectJ isolated and fixed the errors quicker than
those who used pure Java. There are case studies that have compared the various different
mechanisms for supporting advanced separation of concerns [Murphy et al, 2001].
Obviously, as AOP matures, additional studies will be needed to determine the benefits of
these new approaches.

Aspect Reuse

As a large collection of different types of aspects is assembled, the idea of aspect
reuse will become an interesting research topic. AOP presents new issues for reuse
researchers [Grundy, 2000]. In order to be successful at aspect reuse, developers will need to
begin writing their aspects in a more generic style than is currently prevalent. To see why this
is so, consider the code fragments that are provided. The pointcuts of these aspects are
concretized and bound specifically to the methods called DisplayError and Handle. This
assumption is too strong. It may often be the case that others will want to reuse this aspect,
but their code does not conform to these concrete names. To remedy this problem, a style of
pointcut designation is needed such that the pointcuts of the reusable aspects are abstract. In
this case, those who would wish to use and extend an abstract aspect must concretize it. In
fact, Aspect] permits such designations, but its use is very infrequent in the current aspect
code that is being developed. Some of the issues in support of aspect reuse and composition
have been initially explored in the work on aspectual components [Lieberherr et al., 1999].

Another research issue occurs in the reuse of orthogonal aspects that apply to the
same join point. This issue is important because the ordering of the generated code may be
essential. For example, given the two previous aspects of locking and logging, it is often the
case that, when applied to the same join point, the mutex code should appear before the
logging instructions. Aspect) provides the dominates construct to allow the specification of
priority between two different aspects. It is unclear, however, whether this construct alone is
able to allay all of the possible problems in composing several aspects within the same join
point.

Generative Programming
The first FORTRAN compiler took 18 programmer-years to complete [Backus et al.,

1957]. One could argue that the time that it would take today to write an equivalent compiler
would be on the order of programmer-months, not programmer-years. Of course, much of the

27

decreased development time would be related to the experience that has been collected on the
topic of compiler construction. Most would agree, however, that the principal reason for the
decreased development time would be that we have moved beyond the manual handcrafting
of “one-of-a~kind” solutions to an approach that resembles an automated assembly line. To be
specific, in the case of implementing a simplistic version of a FORTRAN compiler, a
programmer today would use parser generators, specialized components, and perhaps even
object-oriented frameworks. In implementing a compiler using modern techniques, the
reduction in development time is the result of a paradigm shift toward the engineering o

families of systems, as proposed in [Parnas, 1976]. The idea of a family of systems is best
categorized as a domain-specific product-line architecture, where a set of different products
can be created from adaptations that are made from a set of varying features [Clements and
Northrop, 2001]. An excellent example of this idea is found in [Delisle and Garlan, 1990],
which describes development at Tektronix on a family of oscilloscopes. An additional
contributing factor to the relative ease in constructing a modern-day FORTRAN compiler is
in the recognition that many of the arduous implementation details of software construction
can be handed off to a generator. This paradigm shift has led toward a research area that has
been dubbed Generative Programming (GP). Generative programming is accomplished by
transforming higher-level representations of programs into a lower-level equivalent
representation. This section surveys several of the promising research areas that are being
associated with the GP movement. More detailed coverage of GP can be found in [Czarnecki
and Eisenecker, 2000].

Domain-Specific Languages

A Domain-Specific Language (DSL) is a, “programming language or executable
specification language that offers, through appropriate notations and abstractions, expressive
power focused on, and usually restricted to, a particular problem domain” [van Deursen et al.,
2000]. DSLs assist in the creation of programs that are more concise than an equivalent
program written in a traditional programming language. An upward shift in abstraction often
leads to a boost in productivity. It has been observed that a few lines of code written in a DSL
can generate a hundred lines of code in a traditional programming language [Herndon and
Berzins, 1988]. A key advantage is that a DSL is perspicuous to the domain expert using the
language. A DSL is typically more concise because much of the intentionality of the domain
1s built into the generator. To use a connotation borrowed from Polya, the intent of a DSL is
“pregnant with meaning” [Polya, 1957]. A DSL can assist in isolating programmers from
lower-level details, such as making the decisions about specific data structures to be used in
an implementation. Instead, a programmer uses idioms that are closer to the abstractions
found in the problem domain. This has several advantages:

= The tedious and mundane parts of writing a program are automated in the translation
from the DSL to a traditional programming language.

= Repetitive code sequences are generated automatically instead of the error-prone
manual cut-and-paste method. The generation of error-prone code also has advantages
during the maintenance phase of a project’s lifecycle. Programs written in a DSL are
usually easier to understand and modify because the intention of the program is closer
to the domain.

» Solutions can be constructed quickly because the programmer can more easily focus
on the key abstractions.

The size and scope of a DSL is much smaller than that of a traditional programming
language. In fact, DSLs are often called “little languages” [Bentley, 1986], [van Deursen and

28

Knit, 1997], [Aycock, 1998]. Another common characteristic is the declarative nature of
these languages. In some cases, a DSL can be viewed as a type of specification language in
addition to a general purpose programming language. A DSL can be declarative because the
domain provides a particular underlying interpretation. The notations and abstractions of the
domain are built into the generator that synthesizes a program written in a DSL. A DSL
transiator can be implemented using the standard approaches for constructing a compiler or
interpreter [Aho et al., 1986]. However, the majority of the literature implements DSLs with a
preprocessor. Although this approach can be simpler than writing a complete compiler, it has®
several disadvantages. The main disadvantage is that the generated code is converted to a
base programming language. This means that type checking and other compile-time tests are
done outside of the domain. It also means that feedback from run-time errors are couched in
terms of the base language, not the domain. A solution to this problem (previously cited in
the section on “Debugging Aspect Code”) is suggested in [Faith, 1997]. There are other
disadvantages in using a DSL that often arise later in the development cycle. As observed in
[van Deursen and Knit, 1997], the use of a DSL introduces new maintenance issues. For
instance, the generators that process the programs in a DSL may often need maintenance.

Example Domains

There are numerous domains where DSLs have been applied. Some of the example
domains are telecommunications [Bonachea et al., 1999], operating systems [Puet al., 1997],
typesetting and drawing [Bentley, 1986], web services [Fernandez et al., 1999}, caching
policies [Barnes and Pandey, 1999], [Gulwanti et al., 2001], and databases [Horowitz et al.,
1985]. The concept of a domain-specific metalangauge has also been put forth as a technique
for assisting in the domain of language translators [Van Wyk, 2000]. An extensive annotated
bibliography of research in this area can be found in [van Deursen et al., 2000]. Domain-
specific modeling has been successfully applied in several different domains, including
automotive manufacturing [Long et al., 1998], digital signal processing [Sztipanovits et al.,
1998], and electrical utilities [Moore et al., 2000].

Compilers for DSLs have often been called application generators [Horowitz et al.,
1985], [Cleaveland, 1988], [Smaragdakis and Batory, 2000]. A generator is a tool — a type of
translator or compiler — that takes as input a domain-specific language and produces as output
source code that can be compiled as a traditional programming language. The internal
architecture of a generator is very similar to a compiler. A generator requires: a front-end to
parse a source language into an intermediate representation, a translation engine to perform
transformations and optimizations, and a back-end to produce the target code. In [Hunt and
Thomas, 2000], a distinction is made between passive code generators and active code
generators. In a passive code generator, the generator is executed just once to produce a -
result. After the output of a passive generator is obtained, the result becomes freestanding.
The origin of the file is forgotten. An example of this type of generator would be a design
wizard, like that described in [Batory et al., 2000]. With a wizard, a user enters various
configuration data as a response to interacting with a dialog window. Based upon this
configuration information, the wizard can then generate code that would have been tedious to
create by hand. The code produced from an active code generator, though, frequently hanges
such that 1t is advantageous to invoke the generator on variations of the input. There is some
evidence that generators improve productivity and reliability. A comparative experiment for a
Command, Control, Communication, and Information (Csl) system is described in [Kieburtz
et al., 1996]. This expertment compared the use of generators with a previously developed
Ada template-based approach for implementing message translation and validation. The
results of this experiment show that the teams that used the generator approach were three

29

times more productive than those who performed the same task using templates. The
generator approach also realized improvements in reliability, with under half as many test run
failures.

GenVoca

GenVoca permits hierarchical construction of software through the assembly of
interchangeable/reusable components [Batory and Geraci, 1997]. The GenVoca model ig
based upon stacked layers of abstraction that can be composed. A realm is a library of plug-
compatible components. It can be thought of as a catalog of problem solutions that are
represented as pluggable components that can be used to build applications in the catalog
domain. Each realm exposes a common interface that all components in that realm must
satisfy. This provides the ability to have many alternative implementations for the same
interface. The layered decomposition of implementations offers component composition that
is similar to the stacking of layers in a hierarchical system. Each realm in the hierarchy is
denoted by a GenVoca grammar. This grammar describes all of the legal compositions that
may occur within the realm. The composition of components in GenVoca is performed by
writing parameterized type expressions. These expressions are checked against the grammar
to preserve validity.

A comparison between GenVoca and AOP is made in [Cardone, 1999]. Both aspect
languages and GenVoca type equations guide the transformation of programs. The AOP
weaver and the GenVoca generator are the preprocessors that implement such
transformations. GenVoca has the capability of validating the correctness of component
compositions. This is an issue that has not recetved much focus within the AOP research
community. As mentioned in an earlier section, control over the order in which a weaver
applies multiple aspects on the same join point is very limited. GenVoca, though, provides
control over the ordering of component composition.

Intentional Programming

Intentional programming (IP) provides a software development environment that is
not tied to a specific programming language. The power of 1P is the ability to create new
abstractions for languages. It allows the tailorability of a specific language to a new domain.
As Charles Simonyi states, “Under 1P, domain experts write models/specs/programs in
domain terms” [Simonyi, 2001}. The IP system provides the functionality for defining the
manner in which these new abstractions interact with the environment’s text editor, as well as
syntactic and semantic constructs for translating these extensions to the abstractions already
supported in the IP system {Simonyi, 1996]. Thus, IP allows a programmer to write ordinary
programs and domain transformations. The nodes of an Abstract Syntax Tree (AST) typically
represent the semantic constructs of a language (e.g., a while-loop or if-statement). In IP,
these nodes are called infentions. Many intentions are common across a wide variety of
programming languages. The IP environment provides the capability to modify the semantics
of an intention for a particular language, as well as introduce new intentions peculiar to that
language. New intentions introduce their own syntax in addition to prescribing the effects of
interactions with the programmer through an editor. The IP concept of an enzyme represents a
transformation that 1s performed on an AST. An enzyme assists in the creation of new
intentions that are built on top of existing intentions.

Parser Generators, Language Extenders, and Analysis Tools

Parser generators, like the Purdue Compiler Construction Tool (PCCTS) and YACC
(Yet Another Compiler-Compiler), are programs that help in the creation of other programs
that perform transformations on source code [Parr, 1993]. In the area of parser generators, an
example of an extensible framework for building compilers in Python is described in
[Aycock, 1998]. A framework that creates ASTs and associated tree-walker classes, based on
the Visitor pattern [Gamma et al., 1995], is described in [Gagnon, 1998]. Other compile'f
frameworks, like Zephyr [Wang et al., 1997] and SUIF [SUIF2, 2000], provide an extensible
framework to support collaborative experimental research. A primary goal of these efforts is
to provide an infrastructure to benchmark different techniques that are used in compilers.

The Jakarta Tool Suite (JTS) contains the basic tools to support the addition of new
programming features to the Java language [Batory et al., 1998]. It assists in the construction
of new preprocessors for DSLs that are transformed into a host language. The supported host
language in JTS is called Jak. Jak is described as a superset of Java that supports
metaprogramming. It seems likely that JTS could be used to create a weaver for new aspect
languages to support Java. The JTS environment builds upon the ideas of GenVoca. Each
new extension to Java represents a new realm. Within the context of the Ptolemy project, a
code generator for transforming Java programs is available [Tsay et al., 2000]. This generator
is situated within an infrastructure that can parse Java programs and perform transformations
on the AST using the Visitor pattern [Gamma et al., 1995].

Frameworks

A framework can be defined as a skeleton of an application that can be extended to
produce a customized program [Fayad et al.,, 1999]. This type of framework is usually
defined as a collection of classes that together help support a domain-specific architecture. A
framework architecture must define the objects that are to participate in the framework as
well as the interaction patterns among all objects. In this architecture, there is a distinction
between those who create the framework and core objects (the framework developer) and the
programmer who extends the framework by plugging in their own application objects (the
application programmer). Frameworks typically cost more to develop than a single
application, although their cost can be amortized over each instantiation [Johnson, 1997].

Adaptability in frameworks is provided by factoring out component objects that
implement the core functionality in the application domain from those objects that vary with
each instantiation of the framework. A framework instantiation is defined as the insertion of
instance-specific classes into the framework architecture. The locations of variability within a

framework are referred to as the hot spots of the framework [Lewis, 1995]. The instance- -

specific classes must conform to a predefined interface in order to properly interact with the
core objects. The specification of the hot spots is needed for users of the framework because
frameworks exhibit the property of inversion of control. In typical software development, the
components that are written contain the locus of control in the application and selectively
pass control onto other library components or lower-level calls to an Application Program
Interface (API). In a framework, however, the locus of control resides in the framework,
rather than the application objects. The flow of control traverses through the objects of the
framework until a hot spot is reached, at which time the application object is dispatched.
Event-based infrastructures also demonstrate the principle of inversion control
[Gianpaolo et al., 1998]. In an event-based approach, there is a distinction in the architecture
between suppliers, consumers, and the event dispatcher. Suppliers submit events to a
mediating dispatcher that forwards events to all consumer objects that have subscribed to the

event (suppliers may also be consumers of other events). The asynchronous nature of the
consumers suggests a type of control inversion that provides a high degree of dynamic
reconfigurability within distributed object computing. A popular example of this architecture
is present in the CORBA event service {Harrison et al., 1997].

Frameworks have been developed in practically every domain that supports variability
among a family of products [Fayad et al., 1999], [Fayad, 2000]. One particular interesting
research area combines the topic of a previous section (AOP) with a framework for a
concurrent object system [Constantinides et at., 2000].

Consumer
Supplier
Event
Push Dispatcher Pull
Supplier
Consumer
Figure 2.9: Architecture for Event-based Dispatching
Summary

This chapter provided a synopsis of the techniques that are useful in the development
of software that must adapt to changing requirements. The first half of the chapter presented
an overview of the literature on reflection, metaprogramming, and AOSD. The research in
these areas has produced new ideas and methods for improving adaptability, and extensibility
for separating crosscutting concerns. This separation provides an advantage for realizing the
three objectives presented by Parnas (see “Criteria for Decomposition™ in the Chapter 1). The
second half of the chapter surveyed research that can be classified under the general area of .
Generative Programming. A generative approach captures the intent of the problem space at a
higher level of abstraction. Generators map the higher abstractions to the lower-level details
in the solution space. In the next two chapters, these techniques (e.g., reflection and
metamodeling, advanced separation of concerns, and generative programming) will be
extended to support aspect-oriented domain-specific modeling.

32

CHAPTER HI
THE FRAMEWORK

In Aspect-Oriented Programming we decompose a problem into a number of
functional components as well as a number of aspects and then we compose these
components and aspects to obtain system implementations. The goal is to achieve an
improved separation of concerns in both design, and implementation. Qur work concentrates
on the aspectual decomposition of concurrent object-oriented systems. Following the
component hierarchy within the object-oriented programming paradigm we categorized
aspects as intra-method, intra-object and intra-package according to their hierarchical level of
cross-cutting. We achieve composition of concerns; through the use of an object we call the
moderator that coordinates the interaction of components and aspects while preserving the
semantics of the overall system. Since aspects can crosscut components at every level, we
view the moderator is a recurring pattern from intra-method to intra-package. Our design
framework provides an adaptable model and a component hierarchy using a design pattern.
The moderator pattern is an architecture that allows for an open language where new aspects
(specifications) can be added and their semantics can be delivered to the compiler through the
moderator. In essence the moderator is a program that extends the language itself. Our goal is
to achieve separation of concerns and retain this separation without having to produce an
intermingled source code.

Regarding how aspects are defined and merged to provide the overall system, we
believe that neither the use of aspect languages nor a weaver tool provides a necessity in
order to achieve separation of concerns. We shift the weavers responsibility to a class, which
we call the moderator class that would coordinate aspects and components together (figure 1).
The moderator class should be extensible in order to make the overall system adaptable to
addition of new aspects. We also believe that the use of a moderator class provides the
flexibility, adaptability, and extensibility to the programmer to retain the definition of aspects
by current programming languages. It also provides the basis for a design framework that
would make use of patterns. The importance of design patterns within the AO technology
was addressed in [Lorenz 98]. The moderator class defines the semantic interaction between
the components and the aspects. Further, the semantics of the model define the order of
activation of the aspects. We view a concurrent (shared) object as being decomposed into a
set of abstractions that form a cluster of cooperating objects: a functional behavior,
synchronization, and scheduling. The behavior of a concurrent object can be reused, or
extended. There are other issues that might also be involved, such as security and fault
tolerance. We focus on the relationships between these abstractions within the cluster. We
propose an aspect-oriented design pattern that we call the aspect moderator pattern. This -
pattern makes use of a class, which acts as a proxy to the functional component, and would
moderate the functional behavior together with different aspects of concern, by handling their
interdependencies. We stress the fact that the activation order of the aspects is the most
important part in order to verify the semantics of the system. Synchronization has to be
verified before scheduling. A possible reverse in the order of activation may violate the
semantics. If security is introduced to a shared object, we first need to verify the identity of
the caller and therefore we first have to handie security before synchronization.

Architecture of the moderator pattern

A sequential object is comprised by functionality control and shared data. Access to
this shared data 1is controlled by synchronization and scheduling abstractions.

33

Synchronization controls enable or disable method invocations for selection. The
synchronization abstraction is composed of guards and post-actions. During the precondition
phase, guards will validate the synchronization conditions. In the post-condition phase, post-
actions will update the synchronization variables. The scheduling abstraction allows the
specification of scheduling restrictions and terminate actions. At the pre-condition phase,
scheduling restrictions use scheduling counters to form the scheduling condition for each
method. At the post-condition phase, terminate actions update the scheduling counters. The
moderator class is derived from the functionality class. During the pre-condition phase, the'
synchronization constraints of the invoked method are evalvated. If the current
synchronization condition evaluates to TRUE, a RESUME value is returned to the caller, and
the scheduling constraints are evaluated; otherwise a BLOCKED value 1s returned. The
evaluation of the scheduling restrictions will also return RESUME or BLOCKED. After
executing the precondition phase, the moderator will activate the method in the sequential
object. During post-condition, synchronization variables and scheduling counters are updated
upon method completion. This section addresses four issues: 1) non-orthogonality of aspects,
2) the provision of an adaptable model, 3) the provision of a design and implementation
hierarchy and 4) composition of aspects.

Non-orthogonal aspects

The moderator can handle the issue of non-orthogonal aspects by expressing the
semantics of the dependencies between two non-orthogonal aspects. For example, during the
pre-condition phase of the security aspect, the moderator can include variables from any non-
orthogonal aspect to security.

Extensibility and Adaptability

System software undergoes two types of evolution: functional evolution, when the
problem domain changes, and adaptation, when the characteristics of the solution change.
The latter is also called non-functional evolution, and it is often related to the technological
changes in the applications environment. The object-oriented approach was originally
developed to simplify software evolution. Unfortunately, objects are only concerned with
functional evolution; they have serious problems coping with the majority of non-functional
concerns, which are usually scattered in many classes, in obscure ways. Experience shows
that extensibility is not a directly addressed by object-orientation: using objects does not
guarantee that the software will be easily modifiable. Objects are not, therefore, the
composition units we are seeking for an extensible architecture. Currently, new paradigms
have emerged to deal with the intrinsic problems of objects. In particular, we have aspect- -
oriented programming (AOP) and component models. In aspect oriented programming, an
application is built as the integration of aspects which are different solutions to different
concerns. Each concern represents Aspects can be replaced, or extended. One of the
advantages of this approach is that if a new aspect of concern would have to be added to the
system, we do not need to modify the moderator. We can simply create a new class to inherit
and re-define it, and reuse it for a new behavior. The inherited class can handle all previous
aspects, together with the newly added aspect. Much like one can weave aspects on demand,
such as tracing aspects [Béllert, 1998], our framework provides this option by easily adding
or ignoring an aspect of a component within a cluster.

34

Object

Aspect Functionality
Aspect A Method A
%,
Moderator
Aspect B , Method B
) i

Figure 3.1. The Aspect Moderator.

Adaptability is also applied to components. This design framework addresses the
complexity issue in the case where new aspects are introduced and would have to be added.
The aspect-moderator pattern does not require some new syntactic structure for the
representation of new aspects, but simply a new class for the new aspect. Adaptability
includes cases where an existing aspect will have to be modified, or even removed from the
overall system. The only composition mechanism 1s the functional connection, which permits
to substitute different implementations of the same functionality, but is not sufficient to
support unexpected evolution of the problem domain. Therefore, using components as
evolution units is not completely satisfactory. We want to build apphications by composition
of high-level elements. Those elements are neither objects nor components, and the extension
mechanism is not the simply the connection of well-defined interfaces. In itself, this goal 1s
not new, and 1in the recent years interesting work has been performed to reach this objective,
through different means. The following presents, in a general way, how we have reached that
extensibility goal. '

Design Hierarchy

Aspect Moderator seems natural to choose classes (objects) as components in the
OOP paradigm. We take this argument further and propose a hierarchy of components
according to the component hierarchy within the OOP paradigm. At the lowest level we have
a method. Methods are combined into objects where each object belongs to a class, and
several classes can belong to a package. We can apply the moderator pattern to all levels of
this hierarchy since aspects can cut across every member of this component hierarchy. One or
more aspects can cut across invocations within a single method. We call these aspects, intra-
method (or inter-invocation). Aspects can also cut across methods within a single object. We
refer to these as intra-object aspects (or inter-method). Aspects can also cut across objects
within the same package. We refer to these as intra-package aspects (or inter-object). The
programmer has to identify the aspects at each level and address them independently. Since

35

aspects can cut across components at every level, the moderator is a recurring pattern from
intra-method to intra-package. Our design framework will be based on this hierarchy since
we believe that it provides a better aspectual analysis and design of a system. Our approach
follows a component design and implementation hierarchy.

According to our classification of aspects, the moderator at the lowest level can
therefore be referred to as intra-method. At the next level the moderator is referred to as intra-
object, and at the highest level it is referred to as intra-package moderator. .

Composition of Aspects

At each level of the hierarchy we can maintain an aspect bank, where the moderator of a
cluster may initially need to collect all the required aspects from. The aspect bank is a
hierarchical 3-Dimensional composition of the system in terms of aspects and components. The
moderator will initially consult the aspect bank in order to collect the required aspects.

Object

Functional Behaviors

Method A
Aspect
Aspect |
Method B

Intra-Object
Moderator

Invocation
__+

Invocation

Figure 3.2. Design Hierarchy.

Example: The Conference Room Reservation System

To illustrate the rational behind the design principles of the Moderator, we present the
Conference Room reservation system; an extended version of the room reservation system
that presented in [Vogel and Duddy, 1998]. In this system we have components that represent
rooms and employees. If a meeting organizer is interested in reserving a conference room for
a meeting on a certain date and time, then the meeting organizer must check the availability,
of the conference room on that date and time (Figure 3.1-3.4). A new requirement states that a
conference room is reserved based on the security requirements that only employee at the
level of technical managers or above may reserve conference rooms. To codify this
requirement, we only need to add the security aspect to the aspect bank and extend the
moderator to evaluate the security aspects without the need to modify the functionality of the
participating components (Figure 3.5). It is the moderator that evaluates the security code
during the pre-activation phase. Therefore the moderator must be extended in order to register
this new aspect for evaluation.

public interface Moderatorll" {

synchronized public int preactivation{int MethodlD, Object object);
synchronized public int postactivation(int MethodID, Object object);
public int RegisterAspect(int MethodID, int AspectKind, AspectObject aspectObject);

Figure 3.3. The moderator interface.

public class AspectBank
AspectFactorylF §{
/! Each method has its own aspect objects.
// The moderator evaluates the cross-cutting aspects for the involved components.
public AspectObject create (MethodID id, AspectKind aspect, Object Component) {
if (id == RESERVEROOM) {
if (aspect == SYNC)
return new ReserveRoomSync (Component);

return(0);

Figure 3.4. Implementation of the aspect bank.

public class ConferenceRoomReservation {

// Constructor

ConferenceRoomReservation(Moderator moderator, AspectBank aspectBank) {
i/ register all aspects for each method with the moderator

moderator. RegisterAspect (SYNC, ReserveRoom,
aspectBank.create(ReserveRoom, SYNC, this));

;

public void ReserveRoom(int Roomld, int Date, int StartTime, int TimeWindow,
object MeetingOrganizer) {

/{ PREACTIVATION PHASE : call preactivation

// Evaluate the aspects for this method

if(moderator.preactivation(ReserveRoom, this)) == ABORT)
return ABORT;

/I ACTIVATION PHASE : execute the guarded code
room|Roomld].reserver{Date,startTime, Time Window);
MeetingOrganizer.Update(PersonalCalendar, Date, StartTime, TimeWindow);

I POSTACTIVATION PHASE : call postactivation
moderator.postactivation (ReserveRoom, this);

}

}

Figure 3.5. Implementation of the room reservation system class.

synchronized public State preactivation(int MethodID, Object object) {
int AspectIndex, Componentlndex;

/ evaluate each aspect for each of the participants.

for(AspectIndex=0}; Aspectlndex <NoOfAspects; AspectIndex ++)

for(ComponentIndex =0; Componentlndex < NoOfComponents; ComponentIndex++) {
if (EvaluateAspect(AspectIndex, MethodID, ComponentIndex) == ABORT)

return ABORT;

}

// ARl aspects evaluated to true for all participating components.
return(RESUME);

}

Figure 3.6. Implementation of pre-activation.

Relation between moderator and open implementation

The moderator pattern is an architecture that allows for an open language where new
aspects (specifications) can be added and their semantics can be delivered to the compiler
through the moderator. In essence the moderator is a program that extends the language itself.

public class AspectBank?2 extends AspectBank { "

public AspectObject create(MethodID id, AspectKind aspect, Object Component){
if (id == RESERVEROOM) {
if (aspect == SECURITY)
return new ReserveRoomSecurity(Component);
}
/f the aspect may be defined in the base class
return (super. create(id, aspect, Component));

Figure 3.7. Extensibility aspect bank.

Comparison with other work

This section compares our proposal for a design framework using the moderator
pattern, and current approaches that rely on the use of a weaver. Both the weaver and the
moderator approaches provide the elegance of the original clean code during the analysis and
design of the system. The differences between using a weaver and using the moderator
pattern are summarized by the following table:

Weaver

Moderator

Combines two kinds of code (aspect and component
code) into one intermingled source code.

Output of the weaver is the equivalent of traditional
approach.

Coordinates two kinds of code, retaining the
separation of concerns (aspect and component code).
Avoid having to produce an intermingled source code.

One weaver combines all aspects and components
together. There is no design hierarchy.

Moderator is a recurring design pattern. It provides an
overall system hierarchy, addressing intra-method,
intra-object, and intra-package aspects in a systematic

way.

Adding new aspect(s) will require either new aspect
language(s) or new construct(s) within current aspect
languages

Adding new aspect(s} is done by inheritance, and by
adding new pre-condition and post-condition.

Must gather contact points of emerging entities.

A design pattern hooks aspects and components: the
moderator class defines the semantic interaction
between components and aspects

Two phases of compilation (weaving, compiling).

One compilation phase.

Figure 3.8. Comparison of the Framework.

Summary

In AOP, the weaver combines components (functional behavior) and aspects into one
unit, which is the overall behavior of the system. In our design framework the overall
behavior is made up of 1) the functional behavior, 2) the aspects, and 3) a moderator class
that coordinates the interaction between aspects and components while observing the overall
semantics. The Moderator approach partitions systems into a collection of cooperatingq
classes. The collaboration among the participants may have few aspects. Addressing these
aspects that cut-across the participating objects may produce tightly coupled classes which
may reduce reusability. The moderator approach attempts to separate these aspects from the
functional components in order to promote code reusability and make it easier to validate the
design and correctness of these systems. This framework can address non-orthogonal aspects,
and provide for an adaptable model with ease of modification. It further provides a
component hierarchy, where the moderator is a recurring pattern. This design principle
manages to achieve separation of concerns. There is no difference in the way we separate the
concerns. We still have to think about them from the early stages of the software life cycle.

40

CHAPTER 1V
REVISITED FRAMEWORK

System aspectual properties are, for instances, mutual exclusion, scheduling,
synchronization, fault tolerance, logging, tracing, security, load balancing, performance
measurement, testing, verifications and etc. They are all expressed in such a way that tends to,
crosscut groups of functional components or services. This tangling design and
implementation code of system aspectual properties results increasing of code dependencies
between functional components and aspectual properties of the system. It makes their source
code difficult to understand, reuse, adapt, and maintain. One current attempt to resolve this
issue 1s the Aspect-Oriented System (AOS). AOS aims at language and architecture
independence, where functional components and aspectual properties are separately
decomposed in both design and implementation. These properties can be captured in the
design and implementation, reused, and adapted in the application software later. Finally,
functional components and system aspectual properties are combined together at run-time.
We distinguish between functional components and aspects in the design of systems. System
aspectual properties are defined as properties of the system that do not necessarily align with
functional components or services but tend to crosscut groups of functional components,
increasing either infer-dependency or intra-dependency, and thus affecting the quality of the
software. Intra-dependency defines as a system aspectual property that crosscuts between
many services (functionalities or methods) in the same components, as illustrated in Figure 1.
Inter-dependency defines as a system aspectual property that crosscuts between many
components or services, as illustrated in the below figure.

N o Ty
Method Method
One One w One
COMPONENT E COMPONENT COMPONENT
Method Method
Two Two Two
- o
Figure 4.1. Intra-Dependency Figure 4.2. Inter-Dependency

Although not bound to OOP, Aspect-Oriented Software Development (AOSD) is a
paradigm proposal that retains the advantages of OOP and aims at achieving a better
separation of concerns. AOSD suggests that from the early stages of the software life cycle
aspects should be addressed relatively separately from the components. As a result, aspectual
decomposition manages to achieve a better design and implementation for both operating
system and application. At the implementation phase, aspectual properties and functional
components are combined together, forming the overall system.

In this research we have shown the system design and implementation based on
system aspectual decomposition in the context of the aspectual decomposition for the design
and implementation of operating systems. Our approach is an aspect-oriented framework.
Compared with what has so far been able to be supported by traditional approaches, our goals
are to provide a better modularity for the design and implementation of operating systems,

41

Chetter flexibility, higher reusability, extensibility and adaptability, as well as to provide a
eehinique that would be practical.

An Aspect-Oriented Framework for Operating Systems

Our observation suggests that an Aspect-Oriented Systems (AOS) that uses Aspect-
Oriented Framework could support designers and programmers in cleanly separating,
emponents and system aspectual properties from each other. Our framework is based on
Aspect-Oriented techniques and layered approach. We argue that system aspectual properties
Al tlhe operating system should be excluded from the system components or services if there
34 possibility to often change it, and it should not be treated as a single monolithic aspect.

One way of structuring system software 1s to decompose 1t into layers. Each layer is
decomposed into its components. This decomposition of the system design horizontally and
vertically helps to deal with the complexity and reusability of system software. The layered
anhitectural design decomposes a system into a set of horizontal layers where each layer
provides an additional level of abstraction over it’s the next lower layer and provides an
iplerface for using the abstraction it represents to a higher-level layer. Every layer is
decomposed into system components and system aspectual properties. System components
and system aspectual properties are separated from each other.

Changing either system components or system aspectual properties does not affect the
other. The advantage of this decomposition is that system software tends to be easy to
understand and maintain. Each layer can be understood and maintained individually without
affecting other layers. However, it may be bad for traceability because of using lower layer
components.

The framework expresses a fundamental paradigm for structuring system software, a
vertical composition of each layer where system components and system aspectual properties
are composed into an abstraction of the layer. The framework uses a client-server model in
which the server components (Functional Components and System Aspectual Components)
are composcd by the Aspect Moderator and make their services available to clients. Clients
access the server component services by sending requests to the Proxy component. The Proxy
gomponent intercepts a requesting message from clients and forwards the message to Aspect
Moderator component. The Aspect Moderator compeonent locates and instantiates the
composition rules defined by pointcut(s) — where consist of join points between functional
tomponents and system aspectual components.

The aspect-oriented framework supports both vertical and horizontal compositions.
Functional and aspectual property components in the framework can be composed vertically
or horizontally. In vertical composition, the upper layer can use the lower functional or
gspectual property components from the lower layer. In horizontal composition, functional
anl aspectual property components in the particular layer only use to be composed.

The framework is based on system aspectual decomposition of crosscutting concerns in
gperating system design and implementation.

The framework consists of two frameworks: The Based Layer and The Application
Layer Framework. A system aspectual property is implemented in the SystemAspect class,
while a component of the system is implemented as a Component class. Alike Aspect}, our
framework uses PointCut, Precondition, and Advice. The framework uses PointCut,
Precondition, and Advice. The AspectModerator class, where the point cut is defined,
ombines both system aspectual propertics and components together at runtime. Pointcuts are
defined collections of join points, where system aspectual properties will be altered and
gxecuted in the program flow. Every aspectual property can identify and implement
preconditions. A precondition is defined a set of conditions or requirements that must hold in

42

order that an aspect may be executed. Advice is a defined collection of methods for each
aspectual property that should be executed at join points. Advice can be either before or after
advice. Before advice can be implemented as blocking or non-blocking. Before advice 1s
gxecuted when the join point is reached, before the component is executed, if the
precondition holds. After advice is executed after the component at the join point is executed.
Every aspectual property will define advice methods. Figure 4.3 and 4.4 illustrated the
gxecution model of a pointcut in the framework based on inter-dependency and intra- _

dependency.

(Clien Object

N

(G Otjct

F’ ’Snd)eﬁlzaﬁon J

Figure 4.4. PointCut Defines Intra-dependency

QOur proposed framework (CAL) 1s based on system aspectual decomposition of
Wscutting concerns in operating system design and implementation. ACL framework
Misists of two frameworks: Based Layer and Application Layer Framework. In this paper,
Weshow how producers/consumers problem can be implement in the based layer framework.
Aiystem aspectual property is implemented in SystemAspect class, while a component of the
witem 1s implemented as Component class. AspectModerator object, where the point cut is
lifined, combines both system aspectual properties and components together at run-time. A “
Winicut is defined collections of join points, where system aspectual properties will be
flered and executed in the program flow. Every aspectual property could identify and
mpiement precondition. Precondition is defined a set of conditions or requirements that must
¢ hold in order to be executed an aspect. Advice is defined collections of methods for each
Wuectual property that should be executed at join points. Advice could be either before or
fier. Before advice could be implemented as blocking or non-blocking. Before advice
‘Bietutes when join point is reached, before the component executed, and if the precondition
Bhold. After advice executes after the component at the join point executes.

Amplementing Aspect-Oriented Framework

The framework consists of four components comprising the architecture of the

Semework.

' Each functional object (component) provides its services (methods) stripped of any
aspectual properties (for example, no synchronization is included in Buffer objects).

* A proxy object intercepts called methods and transfers the calls to the
AspectModerator.

* An AspectModerator object consists of the rules and strategies needed to bind aspects
at runtime. Aspects are selected from the AspectBank. The AspectModerator orders
the execution of aspects. The order of execution can be static or dynainic. Then, each
precondition will be checked whether it is satisfied or not.

* An AspectBank object consists of aspect objects that implement different policies of a
variety of aspects.

This section presents the design and development of aspect-oriented framework. The
model is presented to demonstrate horizontal composition of the framework. The system
grvice must be implemented as a Component class. The system aspectual property
ystemAspect class) must be derived from the SystemAbstractAspect interface to implement
e required behavior of a system aspectual property. A SystemAspectFactory consists of
many system aspectual properties such as synchronization, tracing, logging, and reliability.
The System AspectFactory, derived from the SystemAbstract.
AspectFactory interface, is known as an aspect bank. During runtime, each
swstem A spectFactory will be associated with one SystemAspect. The AspectModerator class
must be derived from the AspectModerator interface to implement the required behavior.
The following points are important about the aspect-oriented framework:
* A base layer framework is an implementation of an underlying system.
* An application layer framework is an implementation of application software over the
| system software represented by a base layer framework.
. * Aclient object requests a service through a ProxyObject object of a framework.
= A functional component is implemented as a Component class without any aspectual
property.
= A SystemAspectFactory object consists of various SystemAspect objects. A
SystemAspect object is controlled by a SystemAspectlactory object.

44

+

» Each system aspectual property must be implemented as a SystemAspect object.
* Each crosscutting between Component object and an SystemAspect object must be
defined in AspectModerator object as joinpoints in a Pointcut method.
' A client requests a service by sending a message to a ProxyObject object. The
' ProxyObject object changes the request to a specific pointcut method, and forwards 1t
to the AspectModerator object.

The Proxy class is responsible for intercepting and forwarding the message sent from
__ﬂient object to request a service. The Proxy class must implement the behavior of
Wercepting a service request. A client object of an aspect-oriented framework must request a
e by calling the call() method. A call() method consists of at least two parameters:
¢t name provided a service and a service requested to serve. The first parameter is of type
fing, and the second is type of string as well. The ProxyObject class will forward a request
‘the AspectModerator object by calling a PointCut(} method. A PointCut() method must
Sve the same number parameters and the same parameter type as the call() method The
SistemAspectFactor class must be derived from the SystemAspectFactoryAbstract interface
plement the required behavior.
The AspectModerator class is responsible for composing the functional components
ud the system aspectual property into a service request. The AspectModerator class acts like
coordinator between functional components and system aspectual properties, when and
Wlere system aspectual properties will be composed into a functional component. The
wmposition of system aspectual properties and functional components must be guided and
Wlined as PointCut() method. Each PointCut() method must have at least two parameters:
imponent name and service name (methods of the component) that will be composed. The
S8l parameter is of type string, and the second is type of string as well.
The SystemAspectFactor class must be derived from the
SstemAspectFactoryAbstract interface to implement the required behavior. The
SystemAspectFactory class provides a dynamic binding of variety system aspectual
Sroperties. It focuses on the interface of the system aspectual property. Each system aspectual
Moperty must be derived from the SystemAspectAbstract interface to implement the required
Mhavior. Implementation of a system aspectual property is implemented in the SystemAspect
Jass. Each system aspectual property can define before(), after(), and precondition() methods
ending on its needs. Figure 10 demonstrates the system aspectual property (SystemAspect
dlass) declaration determined from the base class SystemAspectAbstract.
The AspectModerator class operates composition between system aspectual properties
d functional components using a composition rule defined by join points of a pointcut. The
[WpectModerator class performs composition rules by sending AspectFactory messages.
ssages sending causes polymorphism. The implementation of AspectFactory uses bridge
Jalierns. A message finds the correct member object of the AspectFactory, and invokes that
ject. With polymorphism calls, AspectModerator requires less information about each
ystemAspect, so the AspectModerator only needs to have the right SystemAspect interface.
The abstract aspectual class defines a SystemAbstractAspect interface that controls
implementation of an aspectual property class. This class is implemented using the
werete classes of aspectual properties, which implement the virtual functions before() and
(). The AspectModerator creates instances of an aspectual property, which requires
posing a requested service. If an aspectual property crosscuts more than one method in
same component, it must have a parameter ServiceName identifying what it should be
for each method. If an aspectual property crosscuts more than one component, it must
ive two parameters: ServiceName and ComponeniName identifies what it should be done
reach method of each component.

45

N

Summary

In this research, we stressed the importance of the better separation of concerns within
the context of an Aspect-Oriented Framework. We discussed how this technique provide an
alternative to operating system design and implementation, and show how our approach can
be achieved separation of crosscutting concerns in the design and implementation of
operating systems. Our work concentrates on the decomposition of system aspectual
properties crosscutting functional components in the system and our goal is to achieve a
better design and implementation of operating systems while supporting separation the
crosscutting concerns in every layer. Our design framework provides an adaptable model that
allows for open languages and architectures where new aspects and components can be easily
manageable and added without invasive changes or modifications. In application, system
aspectual properties could be reused and redefined from the system layer preventing the re-
engineering of all aspects and components. The framework approach is promising, as it
seems to be able to address a large number of system and application aspects and
components. The advantage of decomposing of functional components and aspects makes the
design and implementation of operating systems better modularity as well as is to promote
comprehension, reusability, adaptability, manageability, and extensibility of both components
and aspects in the system.

46

CHAPTER V

CONCLUSION

The object-oriented approach was originally developed to simplify software
wlition. Unfortunately, objects are only concerned with functional evolution; they have
Wis problems coping with the majority of non-functional concerns, which are usually
sliered in many classes, in obscure ways. Experience shows that extensibility is. not a
utly addressed by object-orientation: using objects does not guarantee that the software
Mlbe casily modifiable. Objects are not, therefore, the composition units we are seeking for
Silensible architecture. Currently, new paradigms have emerged to deal with the intrinsic
ems of objects. In particular, we have aspect-oriented programming (AOP) and
mponent models. Each concern represents a problem facet. The basic idea is to define,

gh structure) or adaptability is hardly handled. The only composition mechanism is the
lional connection, which permits to substitute different implementations of the same
divnality, but 1s not sufficient to support unexpected evolution of the problem domain.
Bitfore, using components as evolution units is not completely satisfactory,
AOP approach has several advantages but 1t poorly supports evolution because the
wing is performed directly on the language structures that can evolve. The application and
wpects arc too closely related. The underlying problem is that in the AQP architecture
fire no composition elements, but only a mechanism for code weaving. For this reason,
il not consider that AOP proposes an extensible architecture.
We have identified important issues in the design of adaptable and extensible
ating systems, the complexity of system comprehension, development, reusability,
msibility and adaptability. Functional components and system aspectual properties, such
mulual exclusion, synchronization, fault tolerance, and tracing aspects, are not well
aled using current operating system design. This prevents the designer and developer
understanding, modifying, extending, adapting, and reusing the components of the

To solve these issues, we developed an aspect-oriented framework for the design of
fsible and adaptable operating systems. The framework is designed based on the concept

pect-Oriented Software Development. It allows designers and programmers to separate
glional components and system aspectual properties from each other in every component.
We have shown implementation of classical problems using an aspect-oriented
mework. An aspect-oriented design framework simplifies system design by expressing it at
ther level of abstraction.

h of This Research

As with the architecture of a building, the excellence of a software structure or design
B easy to measure. Many researchers and developers use the attribute comprehension,

47

Comprehensibility

Comprehension is a measure of how easy 1t is for a designer and a programmer to
understand the design and implementation of the system. System aspectual properties
crosscut basic functional components of the system. With consistency of the design and
implementation, system aspectual properties can be captured in both the system design and
implementation. We believe that an aspect-oriented framework supports the designers and
programmers in cleanly separating functional components and system aspectual components
from each other, by providing a mechanism that makes it possible to abstract and compose
both functional components and system aspectual components to produce the overall system.
Both functional components and system aspectual components can be easily understood.

We believe that the framework provides a better separation of concerns in the design
of operating systems. The framework promotes better modulanty and quality in the design of
the system. The design of operating systems should not be seen as a two-dimensional model
with a single monolithic aspectual property. In this research we stress the importance of the
complete separation of concerns as proposed by Aspect-Oriented Software Development and
we discuss how this methodology can provide an alternative approach to operating system
design. Our approach simplifies system design by expressing it at a higher level of
abstraction using a three-dimensional model. It further supports the designers and
programmers in cleanly separating functional components and system aspectual components
from each other in different layers.

Adaptability

Adaptability is a measure of how flexible, modifiable, and easily extensible it is for a
designer and a programmer to adapt the existing system. With better separation of concerns,
adaptability or refinement of either functional components or system aspectual components
of the system can further be achieved easily.

Adding or changing functional components does not affect system aspectual
components at all. On the other hand, adding or changing system aspectual components does
not affect functional components either. Only Pointcuts, defined in the AspectModerator
component, are modified; thus, system aspectual properties that crosscut functional
components will not be affected.

Applicability

Applicability refers to the utility of the framework for its intended use. The
framework is primarily designed to be an alternative for the design of the adaptable operating
systems with better separation of concerns, reuse, and adaptability. Indeed, the design that is
good for one software package or application may be poor for others, and conversely. The
framework solves complexity of both adaptability of functional components and system
aspectual components.

Scalability and Expansibility
Expansibility is a measure of how easy it is for a designer or a programmer to increase

or scale the capability of functional components and system aspectual components. The
framework supports horizontal and vertical scalability and expansibility. From experimental

48

studies, the framework allows a designer and a programmer to use a wide range of functional
components and system aspectual components in the Aspect Moderator component.

Horizontal extension was identified as a way to extend the process functionalities by
addijtional and specialized features. We realized that handling extensibility at a pretty high
level of abstraction was possible, and was bringing in many very interesting possibilities.

Vertical extension, in contrasts, is in charge of bridging the gap between the abstract
level and the real tools and services used to implement the high level functions. The,
experience gained showed us that these two very different mechanisms are complementary
and both needed to build complex systems. The approach was used to realize experiences
addressing other issues related with process technology. These experiments proved to be
surprisingly successful.

With horizontal scalability and expansibility, designers or programmers can achieve
scalability and expansibility of functional components or system aspectual components in a
variety of ways: They can only increase or drop functional components, they can only
increase or drop system aspectual components, or they can increase or drop both components.
With vertical scalability and expansibility, designers and programmers can achieve scalability
and expansibility of layers.

Reusability

Reusability refers to reuse of prefabricated and standard components for increasing
productivity, standard, cost, and time. It also provides easier maintenance and consistency
when the implementation changes, but the interface is still the same. With reusability, the
developers can reduce complexity.

Because software design is complex and costly, reusing the design framework can be
applied as a blue print for the design of adaptable operating systems. Using the framework, as
a development foundation means that we do not have to start from scratch each time we
design and develop the system. Frameworks provide a way to reuse the design and
implementation. Reusing an abstraction is always easier than inventing one. A programmer
can reuse reusable and extensible functional and system aspectual components from the lower
layer that may be utilized by other programmers. The abstraction of an aspect component in
the lower level provides transparency. The upper aspectual components or functional
components can use the lower aspect components or functional components without knowing
the internal details of how the lower aspect components or functional components are
implemented. Information hiding promotes either functional or aspectual component
modifiability, and simplifies the perception of the upper level. The upper level components or
applications can use the abstraction of aspectual and functional components in the lower level
without knowing the internal details of how the lower level aspect is constructed. If a lower
aspect 1s changed (to improve performance or to add new features, for example), provided the
aspect interface (intermediate level) remains constant, the upper level aspect need not change.
This approach may result in better modifiability of the system.

49

REFERENCES

[Aho et al., 1986] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman, Compilers. Principles,
Techniques, and Tools, Addison-Wesley, 1986.

[Aksit et al., 1992] Mehmet Aksit, Lodewijk Bergmans, and S. Vural, “An Object-Oriented
Language-Database Integration Model: The Composition Filters Approach,”
European Conference on Object-Oriented Programming (ECOOP), LNCS 615,
Springer-Verlag, Utrecht, The Netherlands, June/July 1992, pp. 372-395.

[Aksit et al., 1994] Mehmet Aksit, Jan Bosch, William van der Sterren, and Lodewijk
Bergmans, “Real-Time Specification Inheritance Anomalies and Real-Time Filters,”
European Conference on Object-Oriented Programming (ECOOP), LNCS 821,
Springer-Verlag, Bologna, Italy, July 1994, pp. 386-407.

[Anderson and Hickey, 1999] Kenneth R. Anderson and Timothy J. Hickey, “Reflecting Java
into Scheme,” Proceedings of Reflection '99: Metalevel Architectures and Reflection,
LNCS 1616, Springer-Verlag, Saint-Malo, France, July 1999, pp. 154-174.

[AOSD, 2002] http://aosd.net

[Aycock, 1998] John Aycock, “Compiling Little Languages in Python,” Proceedings of the
7th International Python Conference, Houston, Texas, November 1998, pp. 69-77.184

[Backus et al., 1957] J. W. Backus, R. J. Beeber, S. Best, R. Goldberg, L. M. Haibt, H. L.
Herrick, R. A. Nelson, D. Sayre, P. B. Sheridan, H. Stern, I. Ziller, R. A. Hughes, and
R. Nutt, “The FORTRAN Automatic Coding System,” WesternJoint Computer
Conference, 1957, pp. 188-198.

[Barnes and Pandey, 1999] J. Fritz Barnes and Raju Pandey, “CacheL: Language Support for
Customizable Caching Policies,” Proceedings of the Fourth International Web
Caching

Workshop, San Diego, California, March 1999.

[Batory and Geraci, 1997] Don Batory and Bart J. Geraci, “Composition Validation and
Subjectivity in GenVoca Generators,” IEEE Transactions on Sofiware Engineering,
February 1997, pp. 67-82.

[Batory et al., 1998] Don Batory, Bernie Lofaso, and Yannis Smaragdakis, “JTS: Tools for
Implementing Domain-Specific Languages,” Fifth International Conference on
Software Reuse, Victoria, Canada, June 1998, pp. 143-153.

[Batory et al., 2000} Don Batory, Gang Chen, Eric Robertson, and Tao Wang, “Design

Wizards and Visual Programming Environments for GenVoca Generators,” IEEE
Transactions on Software Engineering, May 2000, pp. 441-452.

50

[Bergmans and Aksit, 2001] Lodewijk Bergmans and Mehmet Aksit, “Composing
Crosscutting Concerns using Composition Filters,” Communications of the ACM,
October 2001, pp. 51-57.

[Bentley, 1986} Jon Bentley, “Programming Pearls: Little Languages,” Communications of
the ACM, August 1986, pp. 711-721.

[Bloch, 2001] Joshua Bloch, Effective Java Programming Language Guide, Addison~Wesley,\
2001.

[Bonachea et al., 1999] Dan Bonachea, Kathleen Fisher, Anne Rogers, and Frederick Smith,
“Hancock: A Language for Processing Very Large-Scale Data,” USENIX Conference
on Domain-Specific Languages, Austin, Texas, October 1999, pp. 163-176.

[Booch et al., 1998] Grady Booch, Ivar Jacobson, James Rumbaugh, The Unified Modeling
Language User Guide, Addison-Wesley, 1998.

[Booch, 2001} Grady Booch, “Through the Looking Glass,” Software Development
Magazine, July 2001, pp. 49-51.

[Bobrow et al., 1993] Daniel G. Bobrow, Richard Gabriel, and Jon L. White, “CLOS in
Context: The Shape of the Design Space, 7 A. Paepcke, editor, Object-Oriented
Programming: The CLOS Perspective, 1993, pp. 29-61.

[Bracha and Cook, 1990] Gilad Bracha and William Cook, “Mixin-based Inheritance,”
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA),
Ottawa,

Canada, October 1990, pp. 308-311.

[Brooks, 1995] Fred Brooks, The Mythical Man-Month, Addison-Wesley, 1995.

{Bryant and Feldt, 2001] Avi Bryant and Robert Feldt, “AspectR — Simple Aspect-Oriented
Programming in Ruby,” http://aspectr.sourceforge.net

[Cardone, 1999] Richard Cardone, “On the Relationship of Aspect-Oriented Programming
and GenVoca,” Workshop on Institutionalizing Software Reuse, Austin, Texas,
January 1999.

[Chandy and Lamport, 1985] K. Mani Chandy and Leslie Lamport, “Distributed Snapshots:
Determining Global States of Distributed Systems,” ACM Transactions on Computer
Systems, February 1985, pp. 63-75.

[Chavez and de Lucena, 2001] Christina von Flach G. Chavez and Carlos J. P. de Lucena,
“Design-leve]l Support for Aspect-Oriented Software Development,” OOPSLA
Workshop on Advanced Separation of Concerns, Minneapolis, Minnesota, October
2001.

51

[Chiba and Masuda, 1993] Shigeru Chiba and Takashi Masuda, “Designing an Extensible
Distributed Language with a Metalevel Architecture,” European Conference on
Object-Oriented Programming (ECOOP), LNCS 707, Springer-Verlag,
Kaiserslautern, Germany, July 1993, pp. 482-501.

[Chryster and Escobar, 2000] John Chrysler and Thomas Escobar, 2000 Masonry Codes and
Specifications, CRC Press, 2000. .

[Clarke, 2002] Siobhan Clarke, “Extending Standard UML with Model Composition
Semantics,” Science of Computer Programming, May 2002.

[Clarke and Walker, 2001] Siobhan Clarke and Robert J. Walker, “Composition Patterns: An
Approach to Designing Reusable Aspects,” International Conference on Software
Engineering (ICSE), Toronto, Ontario, Canada, May 2001, pp. 5-14.

[Clavel, 2000] Manuel Clavel, Reflection in Rewriting Logic: Metalogical Foundations and
Metaprogramming Applications, CSLI Publications, 2000.

[Cleaveland, 1988} J. Craig Cleaveland, “Building Application Generators,” IEEE Software,
July 1988, pp. 25-33.

[Clements and Northrop, 2001] Paul Clements and Linda Northrop, Software Product Lines:
Practices and Patterns, Addison-Wesley, 2001.

[Coady et al., 2001a] Yvonne Coady, Gregor Kiczales, Mike Feeley, and Greg Smolyn,
“Using AspectC to Improve the Modularity of Path-Specific Customization in
Operating System Code,” Proceedings of the Joint European Software Engineering
Conference (ESEC) and 9 ACM SIGSOFT International Symposium on the
Foundations of Software Engineering (FSE-9), Vienna, Austria, September 2001, pp.
78-88.

[Coady et al., 2001b] Yvonne Coady, Gregor Kiczales, Mike Feeley, Norm Hutchinson, and
Joon Suan Ong, “Structuring Operating System Aspects,” Communications of the
ACM, October 2001, pp. 79-82,

[Constantinides et al., 2000] Constantinos Constantinides, Atef Bader, Tzilla Elrad, P.
Netinant, and Mohamed Fayad, “Designing an Aspect-Oriented Framework in an
Object-Orniented Environment,” ACM Computing Surveys, March 2000.

[Czarnecki and Eisenecker, 2000] Krzysztof Czarnecki and Ulrich Eiseneker, Generative
Programming: Methods, Tools, and Applications, Addison-Wesley, 2000,

[de Alwis, 2001] Brian de Alwis, “Apostle: Aspect Programming in Smalltalk,”
http://www.cs.ubc.ca/~bsd/apostle/

{De Volder and D’Hondt, 1999] Kris De Volder and Theo D’Hondt, “Aspect-Oriented
Logic Meta Programming,” Proceedings of Reflection’99: Metalevel Architectures and
Reflection, LNCS 1616, Springer-Verlag, Saint-Malo, France, July 1999, pp. 250-272.

[Daft et al., 1987] Richard Daft, Kristen Skivington, and Mark Sharfman, Cases and
Applications: Organizational Theory, West Wadsworth, 1987.

[Date, 1999] C.J. Date, An Introduction to Database Systems, Addison-Wesley, 1999.

[Delisle and Garlan, 1990] Norman Delisle and David Garlan, “Applying Formal
Specification to Industrial Problems: A Specification of an Oscilloscope,” IEEE
Software, September 1990, pp.29-36.

[Dessler, 1986] Gary Dessler, Organization Theory: Integrating Structure and Behavior,
Prentice-Hall, 1986.

[Dijkstra, 1968] Edsger Dijkstra, “Go To Statement Considered Harmful,” letter to the editor,
Communications of the ACM, March 1968, pp. 147-148.

{Dykstra, 1976] Edsger Dijkstra, A Discipline of Programming, Prentice-Hall, 1976.

[Dijkstra and Scholten, 1980] Edsger Dijkstra and C.S. Scholten, “Termination Detection for
Diffusing Computations,” Information Processing Letters, August 1980, pp. 1-4.

[Elrad et al., 2001] Tzilla Elrad, Mehmet Aksit, Gregor Kiczales, Karl Lieberherr, and Harold
Ossher, “Discussing Aspects of AOP,” Communications of the ACM, October 2001,
pp. 33-38.

[Faith, 1997] Rickard Edward Faith, Debugging Programs After Structure-Changing
Transformations, Ph.D. Dissertation, Department of Computer Science, The
University of North Carolina at Chapel Hill, 1997.

[Faith et al., 1997] Rickard E. Faith, Lars S. Nyland, and Jan F. Prins, “Khepera: A System
for Rapid Implementation of Domain-Specific Languages,” USENIX Conference on
Domain-Specific Languages, Santa Barbara, California, October 1997, pp. 243-255.

[Fayad et al., 1999] Mohamed Fayad, Douglas Schmidt, and Ralph Johnson, Building
Application Frameworks: Object-Oriented Foundations of Framework Design, John
Wiley and Sons, 1999.

|Fayad, 2000] Mohamed Fayad, “Introduction to the Computing Surveys’ Electronic
Symposium on Object-Oriented Application Frameworks,” ACM Computing Surveys,
March 2000.

[Fernandez et al., 1999] Mary Fernandez, Dan Suciu, and Igor Tatarinov, “Declarative
Specification of Data-intensive Web Sites,” USENIX Conference on Domain-Specific
Languages, Austin, Texas, October 1999, pp. 135-148.

[FFilman and Friedman, 2000] Robert Filman and Dan Friedman, “Aspect-Oriented

Programming is Quantification and Obliviousness,” OOPSLA Workshop on Advanced
Separation of Concerns, Minneapolis, Minnesota, October 2000.

53

[Filman, 2001] Robert Filman, “What is Aspect-Oriented Programming, Revisited,” JCSE
Workshop on Advanced Separation of Concerns, Toronto, Ontario, Canada, May
2001.

[Filman et al., 2002] Robert Fillman, Stuart Barrett, Diana Lee, and Ted Linden, “Inserting
Iiities by Controlling Communications,” Communications of the ACM, January 2002,
pp- 116-122.

[Forman and Danforth, 1999] Ira R. Forman and Scott H. Danforth, Purting Metaclasses to
Work, Addison-Wesley, 1999,

[Gabriel, 1995] Richard P. Gabriel, “The Column Without a Name: Software Development as
Science, Art and Engineering,” C++ Report, July/August 1995.

[Gabriel and Goldman, 2000] Richard P. Gabriel and Ron Goldman, “Mob Software: The
Erotic Life of Code,” Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), Keynote Address, Minneapolhis, Minnesota, October 19,
2000.

[Gagnon, 1998] Etienne Gagnon, “SableCC: An Object-Oriented Compiler Framework,”
Master’s Thesis, School of Computer Science, McGill University, Montreal, March
1998.

[Gal et al., 2002] Andreas Gal, Wolfgang Schrider-Preikschat, and Olaf Spinczyk, “On
Aspect-Orientation in Distributed Real-Time Dependable Systems,” IEEE
International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS
2002), San Diego, Califorinia, January 2002.

[Gamma et al., 1995] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides,
Design Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley,
1995.

[Gianpaolo et al., 1998] Gianpaolo Cugola, Elisabetta Di Nitto, and Alfonso Fuggetta,
“Exploiting an Event-Based Infrastructure to Develop Complex Distributed Systems,”
International Conference on Software Engineering (ICSE), Kyoto, Japan, April 1998,
pp. 261-270.

[Gray et al., 2000] Jeff Gray, Ted Bapty, and Sandeep Neema, “Aspectifying Constraints in
Model-Integrated Computing,” OOPSLA Workshop on Advanced Separation of
Concerns, Minneapolis, Minnesota, October 2000.

|Gray, 2001a] Jeff Gray, “Using Software Component Generators to Construct a Metaweaver
Framework,” International Conference on Software Engineering (ICSE), Toronto,
Ontario, Canada, May 2001, pp. 789-790.

[Gray, 2001b] Jeff Gray, “A Framework for Creating Aspect Weavers,” Doctoral
Symposium: OOPSLA "01 Companion to Proceedings, Tampa, Florida, October 2001.

54

[Gray et al., 2001a] Jeff Gray, Ted Bapty, Sandeep Neema, and James Tuck, “Handling
Crosscutting Constraints in Domain-Specific Modeling,” Communications of the
ACM, October 2001, pp. 87-93.

[Gray et al., 2001b] Jeff Gray, Ted Bapty, and Sandeep Neema, “An Example of Constraint
Weaving in Domain-Specific Modeling,” OOPSLA Workshop on Domain-Specific
Visual Languages, Tampa, Florida, October 2001, pp. 49-56.

[Griswold et al., 2001] William G. Griswold, Jimmy J. Yuan, and Yoshikiyo Kato,
“Exploiting the Map Metaphor in a Tool for Software Evolution,” International
Conference on Software Engineering (ICSE), Toronto, Ontario, Canada, May 2001,
pp. 265-274.

[Grundy, 2000] John Grundy, “Multi-Perspective Specification, Design and Implementation
of Software Components Using Aspects,” Infernational Journal of Software and
Knowledge Engineering, December 2000, pp. 713-734.

[Gudmundson and Kiczales, 2001] Stephan Gudmundson and Gregor Kiczales, “Addressing
Practical Software Development Issues in Aspect) with a Pointcut Interface,” ECOOP
Workshop on Advanced Separation of Concerns, Budapest, Hungary, June 2001.

[Gulwani et al., 2001] Sumit Gulwani, Aasha Tarachandani, Deepak Gupta, Dheeraj Sanghi,
Luciano Barreto, Gilles Muller, and Charles Consel, “WebCalL - A Domain-Specific
Language for Web Caching,” Computer Communications, February 2001, pp. 191-
201

[Hall, 1998] Richard Hall, Organizations: Structure, Process, and Qutcomes, Prentice-Hall,
1998.

[Hannemann and Kiczales, 2001] Jan Hannemann and Gregor Kiczales, “Overcoming the
Prevalent Decomposition in Legacy Code,” ICSE Workshop on Advanced Separation
of Concerns, Toronto, Ontario, Canada, May 2001.

[Harrison and Ossher, 1990] William Harrison and Harold Ossher, “Subdivided Procedures:
A Language Extension Supporting Extensible Programming,” International
Conference on)

Computer Languages, New Orleans, Louisiana, March 1990, pp. 190-197.

{Harrison et al., 1997] Timothy Harrison, David Levine, and Douglas C.Schmidt, “The
Design and Performance of a Real-Time CORBA Event Service,” Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), Atlanta, Georgia,
October 1997, pp. 184-200.

[Herndon and Berzins, 1988] Robert M. Herndon and Valdis Berzins, “The Realizable

Benefits of a Language Prototyping Language,” ITEEE Transactions on Software
Engineering, June 1988, pp. 803-809.

55

[Herrero et al., 2000] Jose Herrero, Fernando Sanchez, Fabiola Lucio, and Migeul Torro,
“Introducing Separation of Aspects at Design Time, " ECOOP Workshop on Aspects
and Dimensions of Concerns, Cannes, France, June 2000.

[Hirschfield, 2001] Robert Hirschfield, “AspectS — AOP with Squeak,” OOPSLA Workshop
on Advanced Separation of Concerns, Tampa, Florida, October 2001.

[Hoffman and Weiss, 2001] Dantel Hoffman and David Weiss, editors, Software
Fundamentals — Collected Papers by David L. Parnas, Addison-Wesley, 2001.

[Hoftstadter, 1979] Douglas R. Hofstadter, Gadel, Escher, Bach, Random House, 1979.

[Horowitz et al., 1985] Ellis Horowitz, Alfons Kemper, and Balaji Narasimhan, “A Survey of
Application Generators,” IEEE Software, January 1985, pp. 40-54.

[Hunleth et al., 2001} Frank Hunleth, Ron Cytron, and Chris Gill, “Building Customized
Middleware Using Aspect-Oriented Programming,” OOPSLA Workshop on Advanced
Separation of Concerns, Tampa, Florida, October 2001.

[Hunt and Thomas, 2000] Andrew Hunt and David Thomas, The Pragmatic Programmer,
Addison-Wesley, 2000.

[Hunt and Thomas, 2002] Andy Hunt and Dave Thomas, “Software Archaeology,” IEEE
Software, March/April 2002, pp. 20-22.

(EEE 1471, 2000] IEEE Standard 1471-2000: Recommended Practice for
Architectural Description of Software-Intensive

Systems, The Institute for Electrical and Electronics

Engineers, Inc., October 2000.

[Johnson, 1997] Ralph E. Johnson, “Frameworks = (Components + Patterns),”
Communications of the ACM, October 1997, pp. 39-42.

[Karr et al., 2001] David Karr, Craig Rodrigues, Joseph Loyall, Richard Schantz, Yamuna
Krishnamurthy, Irfan Pyarali, and Douglas Schmidt, “Application of the QuO
Quality-of-Service Framework to a Distributed Video Application,” International
Symposium on Distributed Objects and Applications, Rome, Italy, September 2001.

[Karsai and Gray, 2000] Gabor Karsai and Jeff Gray, “Component Generation Technology
for Semantic Tool Integration,” ITEEE Aerospace Conference, Big Sky, Montana,
March 2000.

[Katz and Gil, 1999] Shmuel Katz and Joseph Gil, “Aspects and Superimpositions,” FCOOP
Workshop on Aspect-Oriented Programming, Lisbon, Portugal, June 1999,

[Kersten and Murphy, 1999] Mik Kersten and Gail C. Murphy, “Atlas: A Case Study in
Building a Web-based Learning Environment Using Aspect-Oriented Programming,”
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA),
Denver,Colorado, November 1999, pp.340-352.

56

[Kiczales et al., 1991] Gregor Kiczales, Jim des Riviéres, and Daniel G. Bobrow, The Art of
the Metaobject Protocol, MIT Press, 1991.

[Kiczales, 1992] Gregor Kiczales, “Towards a New Model of Abstraction in the Engineering
of Software,” Proceedings of the International Workshop on New Models for
Software Architectures (IMSA). Reflection and Metalevel Architecture, Tokyo, Japan,
November 1992, pp. 1-11. .

[Kiczales et al., 1992] Gregor Kiczales, John Lamping, Luis H. Rodriguez Jr., and Erik Ruf,
“Macros that Reach Out and Touch Somewhere,” Internal Technical Report,
Embedded Computation Area, Xerox PARC, 1992,

[Kiczales et al., 1993] Gregor Kiczales, J. Michael Ashley, Luis Rodriguez, Amin Vahdat,
and Daniel G. Bobrow, “Metaobject Protocols: Why We Want Them and What Else
Can They Do?” A. Paepcke, editor, Object-Oriented Programming: The CLOS
Perspective, 1993, pp. 101-108.

[Kiczales, 1996] Gregor Kiczales, “Beyond the Black Box: Open Implementation,” IEEE
Software, January 1996, pp. 8-11.

[Kiczales et al., 1997] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin, “Aspect-Oriented
Programming,” Furopean Conference on Object-Oriented Programming (ECOOP),
LNCS 1241, Springer-Verlag, Jyvaskyld, Finland, June 1997, pp.220-242.

[Kiczales, 2001] Gregor Kiczales, “Aspect-Oriented Programming: The Fun Has Just
Begun,” Software Design and Productivity Coordinating Group — Workshop on New
Visions for Software Design and Productivity: Research and Applications, Nashville,
Tennessee, December 2001.

[Kiczales et al., 2001a] Gregor Kiczales, Eric Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm, and William Griswold, “An Overview of Aspect],” European Conference on
Object-Oriented Programming (ECOOP), LNCS 2072, Springer-Verlag, Budapest,
Hungary, June 2001, pp.327-353.

[Kiczales et al., 2001b] Gregor Kiczales, Eric Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm, and William Griswold, “Getting Started with Aspect],” Communications of the
ACM, October 2001, pp. 59-65.

[Kieburtz et al., 1996] Richard B. Kieburtz, Laura McKinney, Jeffrey M. Bell, James Hook,
Alex Kotov, Jeffrey Lewis, Dino P. Oliva, Tim Sheard, Ira Smith, and Lisa Walton,
“A Software Engineering Experiment in Software Component Generation,”
International Conference on Software Engineering (ICSE), Berlin, Germany, March
1996, pp.542-552.

[Knuth, 1984] Donald Knuth, “Literate Programming,” The Computer Journal, May 1984,
pp. 97-111. .

57

[Lam, 2002] John Lam, “Cross-Language Load-Time Aspect Weaving on Microsoft’s
Common Language Runtime,” Demonstration, First International Conference on
Aspect-Oriented Sofiware Development, Enschede, The Netherlands, April 2002.

[Lee and Zachary, 1995] Arthur H. Lee and Joseph L. Zachary, “Reflections on
Metaprogramming,” IEEE Transactions on Software Engineering, November 1995,
pp. 883-893.

[Lego, 2002] http://www.lego.com/eng/info/profile.asp

[Lewis, 1995] Ted Lewis, ed., Object-Oriented Application Frameworks, Manning
Publications, 1995,

[Lieberherr and Holland, 1989] Karl Lieberherr and lan Holland, “Assuring Good Style
for Object-Oriented Programs,” IEEE Software, September 1989, pp. 38-48.

[Lieberherr, 1996] Karl Lieberherr, Adaptive Object-Oriented Software, International
Thomson Publishing, 1996.

[Lieberherr et al., 1999] Karl Lieberherr, David Lorenz, and Mira Mezini, “Programming
with Aspectual Components,” NU-CCS-99-01, College of Computer Science,
Northeastern University, March 1999.

[Lieberherr et al., 2001] Karl Lieberherr, Doug Orleans, and Johan Ovlinger, “Aspect-
Oriented Programming with Adaptive Methods,” Communications of the ACM,
October 2001, pp. 39-41.

[Lieberman, 1986] Henry Lieberman, “Using Prototypical Objects to Implement Shared
Behavior in Object-Oriented Systems,” Object-Oriented Programming Systems,
Languages and Applications (OOPSLA), Portland, Oregon, November 1986, pp. 214-
223.

[Lippert and Lopes, 2000] Martin Lippert and Cristina V. Lopes, “A Study on Exception
Detection and Handling Using Aspect-Oriented Programming,” /nternational
Conference on Software Engineering (ICSE), Limmerick, Ireland, June 2000, pp. 418-
427.

[Long et al., 1998] Earl Long, Amit MiSI’E-l, and Janos Sztipanovits, “Increasing Productivity
at Saturn,” JEEE Computer,August 1998, pp. 35-43.

[Lopes, 1997] Cristina Lopes, D: A Language Framework forDistributed Programming,
Ph.D. Dissertation, College of Computer Science, Northeastern University, November
1997,

[Loyall et al., 2001] Joseph Loyall, Richard Schantz, John Zinky, Partha Pal, Richard
Shapiro, Craig Rodrigues, Michael Atighetchi, David Karr, Jeanna Gossett, and
Christopher Gill, “Comparing and Contrasting Adaptive Middleware Support in
Wide-Area and Embedded Distributed Object Applications,” IEEE International
Conference on Distributed Computing Systems (ICDCS-21), Phoenix, Arizona, April
2001.

58

[Maes, 1987] Pattie Maes, “Concepts and Experiments in Computational Reflection,” Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA), Orlando,
Florida, December 1987, pp. 147-155.

[Maes, 1988] Pattie Maes, “Issues In Computational Reflection,” P.Maes and D. Nardi,
editors, Metalevel Architectures and Reflection, Elsevier Science, 1988, pp. 21-35.

[Maguire, 1994] Steve Maguire, Debugging the Development Process, Microsoft Press, 1994.

[Mahrenholz, 2002] Daniel Mahrenholz, Olaf Spinczyk, and Wolfgang Schroder-Preikschat,
“Program Instrumentation for Debugging and Monitoring with AspectC++,” [EEE
International Symposium on Object-Oriented Real-Time Distributed Computing,
Washington, DC, April 2002.

[Maroti et al., 2002] Miklos Maroti, Akos Lédeczi, Arpad Bakay, Jeff Gray, and Gabor
Karsai, “Type Hierarchies in Modeling and Metamodeling Languages,” in
preparation, 2002.

[Meyer, 1997} Bertrand Meyer, Object-Oriented Software Construction, Prentice-Hall, New
Jersey, 1997.

[Meyer, 2000] Erica Meyer, Cascading Style Sheets: The Definitive Guide, O'Reilly &
Associates, 2000.

[Michels, 1915] Robert Michels, Political Parties: The Sociological Study of the Oligarchical
Tendencies of Modern Democracy, translated by Eden and Cedar Paul, Batoche
Books, 1915,

[Miller, 2001] Sandra Kay Miller, “Aspect-Oriented Programming Takes Aim at Software
Complexity,” IEEE Computer, April 2001, pp. 18-21.

[Moore et al., 2000] Michael Moore, Saeced Monemi, and Jianfeng Wang, “Integrating
Information Systems In Electric Utilities,” IEEE International Conference on
Systems, Man, and Cybernetics, Nashville, Tennessee, October 2000.

[Murphy et al., 1999] Gail C. Murphy, Robert J. Walker, and Elisa L.A. Baniassad,
“Evaluating Emerging Software Development Technologies: Lessons Learned from
Assessing Aspect-Oriented Programming,” IEEE Transactions on Software
Engineering, July/August 1999, pp. 438-455.

[Murphy et al., 2001} Gail C. Murphy, Albert Lai, Robert J. Walker, and Martin P. Robillard,
“Separating Features in Source Code: An Exploratory Study,” International
Conference on Software Engineering (ICSE), Toronto, Ontario, Canada, May 2001,
pp. 275-284.

[Narasimhan et al., 1999] Priya Narastimhan, Louise Moser, and P.M. Melliar-Smith, “Using
Interceptors to Enhance CORBA,” IEEE Computer, July 1999, pp. 62-68.

59

[Nelson et al., 2001] Torsten Nelson, Donald Cowan, and Paulo Alencar, “*Supporting Formal
Verification of Crosscutting Concerns,” Reflection 2001: The Third International
Conference on Metalevel Architectures and Separation of Crosscutting Concerns,
LNCS 2192, Springer-Verlag, Kyoto, Japan, September 2001, pp. 153-169.

[Nordberg, 2001] Martin Nordberg, “Aspect-Oriented Dependency Inversion,” OOPSLA
Workshop on Advanced Separation of Concerns, Tampa, Florida, October 2001.

AN

[Ossher et al., 1996] Harold Ossher, Matthew Kaplan, A. Katz, William Harrison, and
Vincent Kruskal, “Specifying Subject-Oriented Composition,” Theory and Practice of
Object Systems, vol. 2(3), 1996, pp. 179-202.

[Ossher and Tarr, 2001] Harold Ossher and Pen Tarr, “Using Multidimensional Separation of
Concerns to (Re)Shape Evolving Software,” Communications of the ACM, October
2001, pp. 43-50.

[Ovlinger and Wand, 1999] Johan Ovlinger and Mitchell Wand, “A Language for Specifying
Recursive Traversals of Object Structures,” Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), Denver, Colorado, November 1999, pp. 70-
81.

[Parnas, 1972] David Parnas, “On the Criteria To Be Used in Decomposing Systems into
Modules,” Communications of the ACM, December 1972, pp. 1053-1058.

[Parnas, 1976] David Parnas, “On the Design and Development of Program Families,” IEEE
Transactions on SoftwareEngineering, January 1976, pp. 1-9.

[Parnas, 1999] Nancy Eickelman, “ACM Fellow: David Lorge Parnas,” ACM Software
Engineering Notes, May 1999, pp. 10-14.

[Parr, 1993] Terrence J. Parr, Language Translation Using PCCTS and C++, Automata
Publishing Company, 1993.

[Perrow, 1986] Charles Perrow, Complex Organizations: A Critical Essay, McGraw-Hill,
1986.

[Polya, 1957] George Polya, How to Solve It, Princeton University Press, 1957.

[Rao, 1991] Ramana Rao, “Implementational Reflection in Silica,” European Conference on
Object-Oriented Programming (ECOOP), LNCS 512, Springer-Verlag, Geneva,
Switzerland, July 1991, pp. 251-266.

{Rashid and Pulvermueller, 2000] Awais Rashid and Elke Pulvermueller, “From Object-
Oriented to Aspect-Oriented Databases,” Proceedings of the 11w International

Conference on Database and Expert Systems Applications, September 2000, London,
UK, pp. 125-134.

60

[Rashid, 2001] Awais Rashid, “A Hybrid Approach to Separation of Concerns: The Story of
SADES,” Reflection 2001: The Third International Conference on Metalevel
Architectures and Separation of Crosscutting Concerns, LNCS 2192, Springer-
Verlag, Kyoto, Japan, September 2001, pp. 231-249.

[Rashid, 2002] Awais Rashid, “Weaving Aspects in a Persistent Environment,” 4CM
SIGPLAN Notices, February 2002, pp. 36-44.

[Robertson and Brady, 1999] Paul Robertson and J. Michael Brady, “Adaptive Image
Analysis for Aerial Surveillance,” IEEE Intelligent Systems, May/June 1999, pp. 30-
36.

[Robillard and Murphy, 2002] Martin Robillard and Gail Murphy, “Concern Graphs: Finding
and Describing Concerns Using Structural Program Dependencies,” International
Conference on Software Engineering (ICSE), Buenos Aires, Argentina, May 2002.

[Schach, 2002] Stephen R. Schach, Object-Oriented and Classical Software Engineering, St
ed., McGraw-Hill, 2002.

[Schmidt et al., 2000] Doug Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann,
Pattern-Oriented Software Architecture: Patterns for Concurrent and Networked
Objects, Wiley and Sons, 2000.

[Shukla et al., 2002] Dharma Shukla, Simon Fell, and Chris Sells, “Aspect-Oriented
Programming Enables Better Code Encapsulation and Reuse,” MSDN Magazine,
March 2002, pp. 60-68.

[Siegel, 2000] Jon Siegel, CORBA 3 Fundamentals and Programming, John Wiley & Sons,
2000.

[Simon, 1996] Herbert Simon, The Sciences of the Artificial, The MIT Press, 1996.

[Simonyi, 1996] Charles Simonyi, “Intentional Programming: Innovation in the Legacy
Age,” Presented at /FIP WG 2.1, June 1996.

[Simonyi, 2001] Charles Simonyi, “Intentional Programming: Asymptotic Fun?” Soffware
Design and Productivity Coordinating Group — Workshop on New Visions for
Software Design and Productivity: Research and Applications, Nashville, Tennessee,
December 2001.

[Smaragdakis and Batory, 2000] Yannis Smaragdakis and Don Batory, “Application
Generators,” J. Webster (ed.), Encyclopedia of Flectrical and Electronics
Engineering, John Wiley and Sons, 2000.

[Smith, 1776] Adam Smith, An Inquiry into the Nature and Causes of the Wealth of Nations,

republished in Edwin Cannan’s annotated edition, 1904, Methuen and Co.; first
edition, 1776.

61

[Smith, 1982] Brian Smith, “Reflection and Semantics in Procedural Languages,” Technical
Report 272, Massachusetts Institute of Technology, Laboratory for Computer Science,
1982.

[Sobel and Friedman, 1996] Jonathan M. Sobel and Daniel P. Friedman, “An Introduction to
Reflection-Oriented Programming,” Reflection ‘96, San Francisco, California, April
1996.

[Sommerville and Sawyer, 1997] Ian Sommerville and Peter Sawyer, “Viewpoints:
Principles, Problems and a Practical Approach to Requirements Engineering,” Annals
of Software Engineering, March 1997, pp. 101-130.

[Steele and Sussman, 1978] Guy Lewis Steele, Jr., and Gerald Jay Sussman, “The Art of the
Interpreter, or the Modularity Complex (Parts Zero, One, and Two),” MIT Artificial
Intelligence Memo 453, May 1978.

[Steele, 1990] Guy L. Steele, Jr., Common Lisp: The Language, Digital Press, 1990.

[Steele, 1998] Guy Steele, “Growing a Language,” Object-Oriented Programming, Systems,
Languages, and Applications(OOPSLA), Keynote Address, Vancouver, British
Columbia, Canada, October 22, 1998,

[SUTF2, 2000] The SUIF 2 Compiler System, http://suif stanford.edu/suif/suif2/

[Sullivan, 2001] Gregory T. Sullivan, “Aspect-Oriented Programming using Reflection and
Metaobject Protocols,” Communications of the ACM, October 2001, pp. 95-97.

fSutton and Rouvellou, 2001} Stanley M. Sutton and Isabelle Rouvellou, “Issues in Design
and Implementation of a Concern-Space Modeling Schema,” ICSE Workshop on
Advanced Separation of Concerns, Toronto, Ontario, Canada, May 2001,

[Sztipanovits and Karsai, 1997] Janos Sztipanovits and Gabor Karsai, “Model-Integrated
Computing,” IEEE Computer, April 1997, pp. 10-12.

[Sztipanovits et al., 1998] anos Sztipanovits, Gabor Karsai, and Ted Bapty, “Self-Adaptive
Software for Signal Processing,” Comunications of the ACM, May 1998, pp. 66-73.

[Tarr et al., 1999] Peri Tarr, Harold Osshér, William Harrison, and Stanley Sutton, “N
Degrees of Separation: Multi-Dimensional Separation of Concerns,” International
Conference on Software Engineering (ICSE), Los Angeles, California, May 1999, pp.
107-119.

[Tekinerdogan, 2000] Bedir Tekinerdogan, Synthesis-Based Software Architecture Design,
Ph.D. Dissertation, Department of Computer Science, University of Twente, 2000.

[Tidwell, 2001] Doug Tidwell, XSL7, O’Reilly and Associates, 2001,

[Tristram, 2001] Claire Tristram, “The Technology Review Ten: Untangling Code,” MIT
Technology Review, January 2001.

62

[Tsay et al., 2000] Jeff Tsay, Christopher Highlands, and Edward Lee, “A Code Generation
Framework for Java Component-Based Designs,” International Conference on
Compilers, Architectures, and Synthesis for Embedded Systems, San Jose, California,
November 2000.

[van Deursen and Knit, 1997] Arie van Deursen and Paul Klint, “Little Languages: Little
Maintenance?” First ACM SIGPLAN Workshop on Domain-Specific Languages,
Paris, France, January 1997, pp. 109-127.

[van Deursen et al., 2000] Arie van Deursen, Paul Klint, and Joost Visser, “Domain-Specific
Languages: An AnnotatedBibliography,” ACM SIGPLAN Notices, June 2000, pp. 26-
36.

[Van Wyk, 2000} Eric Van Wyk, “Domain-Specific Meta Languages,” ACM Symposium on
Applied Computing, Como, Italy, March 2000, pp. 799-803.

[Viega and Voas, 2000] John Viega and Jeffrey Voas, “Can Aspect-Oriented Programming
Lead to More Reliable Software?” /EEFE Software, November/December 2000, pp.
19-21.

[Walker et al., 1999] Robert J. Walker, Elisa L..A. Baniassad, and Gail C Murphy, “An Initial
Assessment of Aspect-Oriented Programming,” International Conference on Software
Engineering (ICSE), Los Angeles, California, May 1999, pp. 120-130.

[Wang et al., 1997] Daniel Wang, Andrew Appel, Jeff Korn, and Chris Serra, “The Zephyr
Abstract Syntax Description Language,” USENIX Conference on Domain-Specific
Languages, Santa Barbara, California, October 1997, pp. 213-228.

[Weber, 1946] Max Weber, “Bureaucracy,” in Hans Gerth and C. Wright Mills, eds., From
Max Weber, Oxford University Press, 1946.

[Wegner, 1976] Peter Wegner, “Programming Languages - The First 25 Years,” IEEE
Transactions on Computers, December 1976, pp. 1207-1225.

[Wulf and Shaw, 1973] William Wulf and Mary Shaw, “Global Variables Considered
Harmful,” ACM SIGPLAN Notices, February 1973, pp. 28-34.

APPENDIX A

FRAMEWORK TEMPLATE

64

o) -.‘,
ProxyObject *proxyObj;
ype ClientObject::MethodName()

something useful ...

lsquest a service
=fF,

iyObj->Call{Component_Name, Service_Name , Return_Data);

m ReturnType;

de <string.h>
‘AspeciModerator.h”

fiConstructor ProxyObject
.meyObject(){ K

HiService call interceptor

‘bool Cali(const char *, const char*)

IfCreate AspectModerater Object
AspectModerator amObject;

tyObject::Call (const char * Component_Name, const char * Serive_Name,
flForward a request {0 AspectModerator object

amObject.PointCut (Component_Name, Service_Name, h
return TRUE;

65

omponentObject

mponentObject::componentCbject()

:;. mponentObject::.operationOne(....)

gomponentObject:.operationTwo(....)

temAbstractAspect.h

g2 SystemAbstractAspect {

virtual void before{const char * ServiceName, H Y
virtual void after(const char * ServiceName, ... HE
virtual bool precaondition{const char * ServiceName, 1=0;

stemAbstractFactory.h

tude <string.h>

53 SystemAbstractAspectFactory {

virtual void precondition() = O;

66

HemAspectFactory.h

lude “SystemAspectAbstractFactory.h”
de "SystemAspect.h"
de "AspectOne h"
temAspectFactory : public SystemAbstractAspectFactory {
SystemAspectFactory();
void attachimp){SystemAbstractAspect *);
virtual void precondition({const char * ServiceName, ¥

virtual void before{const char * ServiceName,);
virtual void after(const char * ServiceName,};

SystemAbstractAspect *pr_;

AspectFactory::SystemAspectFactory()

pr_=0;

ystemAspecttactory: attachimpl(SystemAbstractAspect *pr)

pr_=pr.

pr_->precondition(ServiceName, ...};
ystemAspectFactory:before(const char * ServiceName, ...)

pr_->before(ServiceName, ...},

temAspectFactory::after(const char * ServiceNarne,)

pr_->after(ServiceName, ...},

temAspectFactory::precondition(const char * ServiceName,

67

imeAspect - public SystemAbstractAspect {
AspectOne();

f' al void before(const char * ServiceName,);
irtual void after(const char * ServiceName,);

ne::AspectOne()

sturn ...

spectOne:before{const char * ServiceName,)

'_ ciOne::after{const char * ServiceName,))

vitual bool precondition(const char * ServiceName,);

One:precondition(const char * ServiceName, ...)

68

' I ..- "SystemFactory.nh”
ude “Sync1.h"
ide “AspectOne.h"
3 AspectModerator {
{Constructor
AspectModerator() { //Attached aspectual properties to AspectFactory
sysAspectFactoryObj[0].attachlmpl (&r);
sysAspectFactoryObj[1]).attachimpi (&r1);
h

bool PeintCut (const char ™, const char *,);
il liDeclare AspeciFactory
SystemAspeciFactory sysAspectFactoryObjf2];

l{Decalre Funcational Components
cempoenent functionalObject;

HDecalre Aspeciual Properties

AspectOne 1;
AspeciTwo r1;

AspectModerator::PointCut{const char * CoponentName, const char * ServiceName,)

fif Funcational Component = FileBuffer
if { stremp(ComponentName, "FileBuffery == 0) {

ifif ServiceName = WriteFile
if { stremp{ServiceName, "WriteFile") == 0) {

HCompose Sychronization aspect before executing the service of a functional component
sysAspectFactoryQbj[0]. before(ServiceName, obj);

HExecute Service of Functional Component
functionalObject WriteFile{obj);

#{Compose Sychronization aspect after executing the service of a functional
sysAspectFactoryObj[0] after{ServiceName, obj);
/ICompase Tracing aspect after executing the service of a functional component
sysAspectFactoryObj[1].after(ServiceName, obj};

}

else

ifif ServiceName = WriteFile
if (stremp{sFuncName,"ReadFile”) == Q) {

{{Compose Sychronization aspect before executing the service of a functional component
sysAspectFactoryObj[0].before(sFuncName, obj);

H{Execute Service of Functional Component
functionalObject.ReadFile(obj);

fiCompose Sychronization aspect after executing the service of a functionat

sysAspectFacioryObj[0] after{sFuncName, obj);

69

urn 0

pect after executing the service ofaf

lICompose Tracing as
’(oryObjU].aﬂer(sFuncName, obi)

sysAspectFac

}

unctional component

70

APPENDIX B

READERS/WRITERS PROBLEM USING OBJECT-ORIENTATION

I

ude “buffer.h”
ne WIN32_LEAN_AND_MEAN

funsigned (WINAPI *PBEGINTHREADEX_THREADFUNC)(
ICID ipThreadParameter

jlmsigned *PBEGINTHREADEX_THREADID;

3 ThreadObject is created by a thread
wants 10 start another thread. All

i member functions except ThreadFunc()
d by that original thread. The

Ial lunction ThreadMemberFunc{) is

e start of the new thread.

3 riterObject

WriterObject();
id Start Thread(BufferObject &),
id WaitF orE xit();

atic DWORD WINAPI WriterFunc(LPVOID paramy;

jiected:
uzl DWORD WriterMemberFunc();
CWORD getThreadld{) {return m_Threadid; };

ANDLE m_hThread;
DWORD m_Threadld;
BufferObject *bufferObj;

lerObject: WriterObject()

m_hThread = NULL;
n_Threadid = 0;
BufferObject *bufferObj = new BufferObject(};

WriterObject::Start Thread(BufferObject & obj}

bufferObj = &obj;)
m_hThread = (HANDLE)_beginthreadex(NULL,
0,
(PBEGINTHREADEX_THREADFUNC) WriterObject::WriterFunc,
(LPVQID)this,

0

(PBEGINTHREADEX_THREADID) &m_Threadld):

if (m_hThread) {
cout << "Thread WRITER Id: " << getThreadld() << " launched" << endl;

Joid WriterObject: WaitF orExit()

I WaitForSingleObject(m_hThread, INFINITE);
DWORD threadExitCode;

GetExitCodeThread{m_hThread, &threadExitCode);
cout << "Thread WRITER td: * << getThreadld()

<< " Exit Code = " << threadExitCode << endl;
fandle(m_hThread);

WINAPI WriterObject: WriterFunc(LPVOID param)

param as the address of the cbject
ect” pto = (WriterObject*)param;

he member function. Since we have a
g1 cbject pointer, even virtual functions
bie called properly.
I plo->WriterMemberFunc(};

ove function ThreadObject:: ThreadF unc()
unction after the thread starts up.

WriterObject::\WriterMemberFunc()

sormething useful ...
bufferObj->WriteFile(m_Threadld);

S WING2_LEAN_AND_MEAN

unsigned (WINAPI *PBEGINTHREADEX_THREADFUNC)(
ID IpThreadParameter

i#f unsigned *PBEGINTHREADEX_THREADID;

HreadObject is created by a thread
wants to start another thread. All

ic member functions except ThreadFunc()
zalied by that original thread. The

al function ThreadMemberFunc() is

5ta of the new thread.
teaderObject
Object();
- ariThread(BufferObject &);
'."~ aitForExit();
& DWORD WINAPI ReaderFunc(LPVOID param);
ual DWORD ReaderMemberFunc();
DWORD getThreadld() { return m_Threadld; };
ANDLE m_hThread:

_= D m_Threadld;
BuﬁerObJect *bufferObj;

erObject::ReaderObject()

: BufferObJect *hufferQObj = new BufferObject();

eaderObject.:StartThread(BufferObject & obyj)

bufferObj = &obj; _
iThread = (HANDLE)_beginthreadex(NULL,

PBEGINTHREADEX_THREADFUNC) ReaderObject::ReaderFunc,
PVOID)this,
3EGINTHREADEX_THREADID) &m_Thread|d);

hThread) {
out << "Thread READER Id: " << getThreadid() << " launched" << endi;

aderObject: \WaitForExit{)
orSingleObject(m_hThread, INFINITE);

DWORD threadExitCode;

74

GetExitCodeThread{m_hThread, &threadExitCode);

out << "Thread READER Id: " << getThreadid()

<< " Exit Code = " << threadExitCode << endl:
andle(m_hThread);

a static member function. Unlike
nctions, you only place the static
on the function declaration in the

fiot on its implementation.

member functions have no "this” pointer,
have access rights.

WINAPI ReaderObject:: ReaderFunc(LPVOID param)

the param as the address of the object
erObject* pto = (ReaderObject*)param;
lithe member function. Since we have a
oper object pointer, even virtual functions
be called properly.
mpto->ReaderMemberFunc();

iabove function ThreadObject::ThreadFunc()
3 this function after the thread starts up.

RD ReaderObject::ReaderMemberFunc()
U0 something useful ...

bufferObj->ReadFile(m_Threadld);
0;

*
huffer h
i

Mefine WIN32_LEAN_AND_MEAN

typedef unsigned (WINAPI *PBEGINTHREADEX_THREADFUNC)(
LPVOID IpThreadParameter

¥
fipedef unsigned *PBEGINTHREADEX_THREADID;

L]

W This ThreadObject is created by a thread

Wlihat wants to start another thread. All

Juublic member functions except ThreadFunc()
Ware called by that original thread. The

lvitual function ThreadMemberFunc() is

Ihe start of the new thread.

tlass BufferObject
{
gablic:
BufferObject();
void StariThread();
yoid WaitForExit();
int ReadFile{const DWQORD &),
| int WriteFile(const DWORD &);
| static DWORD WINAPI BufferFunc{LPVCID param);

|
‘pielected:
yitual DWORD BufferMemberFunc(};
DWORD getThreadld() { return m_Threadld; };

HANDLE m_hThread,;
HANDLE hSemaphore;
HANDLE rSemaphore;
HANDLE hMutex;

DWORD m_Threadld,
int iReader,;
int Writer;

i
HutferObject: BufferObject()

m_hThread = NULL,;
m_Threadld = Q;
iReader = 0;
Writer = 0;
hMutex = CreateMutex(NULL, FALSE, NULL);
if (hMutex == NULL) {
cout << "BUFFER Thread - error calling CreateMutex(}" << endl;
exit (0); ‘
}
hSemaphore = CreateSemaphore(NULL,1, 1, NULL);

if (hSemaphore == NULL) {

cout << "BUFFER Thread - error calling CreateThreadSemaphore()” << endl;

exit (0);

%
joid BufferObject::StartThread(}

76

I hTiread = (HANDLE) beginthreadex(NULL,

PBEGINTHREADEX_THREADFUNC) BufferObject::BufferFunc,
PYOID)this,

' (FBEGINTHREADEX_THREADID) &m_Threadld);

Im_kThread) {
out << "Thread BUFFER Id: " << getThreadld() << " l[aunched" << endl;

BufferObject::WaitF orExit()

WaitForSingleObject(m_hThread, INFINITE);
DWORD threadExitCode;

GelExitCodeThread(m_hThread, &threadExitCode);
cout << "Thread BUFFER Id: " << getThread!d{)

<< " Exit Code =" << threadExitCode << endl;
JloseHandle(hSemaphore);
CloseHandle(hMutex);
CloseHandle(m_hThread);

BufferObject::ReadFile{const DWORD &dwThreadld)

DWORD dwSemaphore;
DWORD dwMutex;

dwMutex = WaitFerSingteObject(hMutex, INFINITE};
cout << "Get Acquired the mutex: " << dwThreadld << end};
iReader++;
if (iIReader == 1) {
dwSemaphore = WaitForSingleObject(hSemaphore, INFINITE},
cout << "Get Acquire the Semaphore: " << dwThreadld << end!;
}
cout << "Released the mutex: " << dwThreadld << end|;
ReleaseMutex(hMutex);

cout << "Thread Id; " << dwThreadld << " reading file..." << endl;
Sleep(1000);

WaitF orSingleObject(hMutex, INFINITE);
cout << "Get Acquired the mutex: " << dwThreadld << endl;
iReader—;
if (iReader == Q} {

cout << "Release the Semaphore: " << dwThreadld << endl;
(ReleaseSemaphore(hSemaphore, 1, NULL};
iout << "Released the mutex: " << dwThreadld << end;
RefeaseMutex(hMutex);

return O;

1l BufferObject: WriteFile(const DWORD &dwThread|d)

DWORD dwResult = WaitForSingleObject(hSemaphore, INFINITE);

if (dwResult == WAIT_QBJECT_D) {
cout << "Get Acquired the Semaphore: " << dwThreadld << end];
cout << "Thread Id: " << dwThreadld << " writing file..." << endl;

77

Sleep(1000});
cout << "Released the Semaphore: " << dwThreadld << endl;
ReleaseSemaphore{hSemaphere, 1, NULLY);

cout << "Error calling WaitForSingleObject()" << endt;
return O;

5 a static member function. Unlike

ic functions, you only place the static
laration on the function declaration in the
5, not on its implementation.

iember functions have no "this" pointer,
have access rights.

D WINAPI BufferObject::BufferFunc{LPVOID param)

g2 the param as the address of the gbject
ferObject” pto = (BufferObject*)param;

he member function. Since we have a
ioper object pointer, even virtual functions
il be called properly.

im pto->BufferMemberFunc();

i# above function ThreadCbject::ThreadFunc(}
is function after the thread starts up.

RD BufferObject::BufferMemberFunc()

0 something useful ...
return 0;

APPENDIX C

READERS/WRITERS PROBLEM USING THE ASPECT-ORIENTED

FRAMEWORK

79

’
rgader.h

)
fidefine WIN32_LEAN_AND_MEAN

typedef unsigned (WINAPI *PBEGINTHREADEX_THREADFUNCY
LPVOID IpThreadParameter
3

iypedef unsigned *PBEGINTHREADEX_THREADID;

i
IfThis ThreadObject is created by a thread
ifthat wants to start ancther thread. All
 public member functions except ThreadFunc()
il &g called by that original thread. The
itual function ThreadMemberFunc() is
itihe start of the new thread.
i
tlass ReaderOhject
{
public:

ReaderObject();

void StartThread(ProxyObject &),

void WaitF orExit{);

slatic DWORD WINAP! ReaderFunc{LPVOID paramy);

protected:
virtual DWORD ReaderMemberFunc();
DWORD getThreadld{) { retum m_Threadld; };

HANDLE m_hThread;
DWORD m_Threadld;
ProxyObject *proxyQbj;
k

ReaderObject::ReaderObject()
{
m_hThread = NULL,
m_Threadld = 0;

}
yoid ReaderObject::StartThread{ProxyObject & obj)

i
proxyObj = &obj;
m_hThread = (HANDLE)_beginthreadex(NULL,
0.
PBEGINTHREADEX_THREADFUNC) ReaderObject::ReaderFunc,
(LPVOID)this,
0,
(PBEGINTHREADEX_THREADID) &m_Threadid);
if {m_hThread) {
cout << "Thread READER 1d: " << getThreadld() << " launched” << endI;
)
}

80

aderObject: WaitForExit()
feitForSingle Object{im_hThread, INFINITE):
'DWORD threadExitCode;

GetExitCodeThread{m_hThread, &threadExitCode);
couf << "Thread READER Id: " << getThreadld(}

seHandle(m_hThread);

is a static member function. Unlike
functions, you only place the static
arafion on the function declaration in the
5, not on its implementation.

alic member functions have no "this” pointer,
0 have access rights.

JRD WINAP| ReaderObject::ReaderFunc{LPVOID param)

lse the param as the address of the object
rObject* pto = (ReaderObject*)param;
the member function. Since we have a
pioper object pointer, even virtual functions
will be called properly.

im pto->ReaderMemberFunc();

iis above function ThreadObject: ThreadFuncy{)
lIs this function afier the thread starts up.

ORD ReaderObject::ReaderMemberFunc()

Do something useful ...

Steep(rand());

proxyObj->Call("FileBuffer’, "ReadFile", m_Threadid):
0;

<< " Exit Code =" << threadExitCode << endl;

81

BWWIN32_LEAN_AND_MEAN

ID IpThreadParameter

unsigned *PBEGINTHREADEX_THREADID;
ThreadObject is created by a thread

[wants to start another thread. All

& member functions except ThreadFunc(})
called by that original thread. The

il lunction ThreadMemberFunc(} is

art of the new thread.

WiiterObject

jal DWORD WriterMemberFunc();
~ DWORD getThreadld() {return m_Threadld; };

MDLE m_hThread;

DWORD m_Threadld;
ProxyObject *proxyObj;

srObject: WriterObject()

NriterObject::StartThread{ProxyObject & obj)
proxyObj = &obj;

m_hThread = (HANDLE)_beginthreadex(NULL,
(LPVOID)this,

FEEGINTHREADEX_THREADID) &m_Threadld);
if (m_hThread) {

WriterObject::WaitForExit()

WaitForSingleObject(m_hThread, INFINITE);
DWORD threadExitCode;

funsigned (WINAP! *PBEGINTHREADEX_THREADFUNC)

GINTHREADEX_THREADFUNC) WriterObject::WriterFunc,

out << "Thread WRITER Id: " << getThreadid() << " launched" << endl;

GetExitCodeThread(m_hThread, &threadExitCode);

cout << “Thread WRITER Id: " << getThread|d()
] << " Exit Code =" << threadExitCode << endl,
gHandle(m_hThread);

% 3 static member function. Unlike

fit functions, you only place the static
&iidlion on the function deciaration in the

5 not on its implementation.

member functions have no "this” pointer,
jo fiave access rights.

WINAPI WriterObject: WriterFune(LPVOID param)

2 the param as the address of the object
ject* pto = (WriterObject*)param;
the member function. Since we have a
object pointer, even virtual functions
it be cailed properly.

um pto->WriterMemberFunc{);

JRD WriterObject::WriterMemberFunc()
0 something useful ...
Sleep(10);

proxyObj->Call("FileBuffer", "WriteFile", m_Threadld);
urn 0;

lide <string.h>
lde "AspectModerator.h”
5 ProxyObject {

ProxyObject(}{ };
BOOL Call{const char *, const char *, const DWORD &),

~ AspeciModerator amObject;

ProxyObject::Call(const char * sFuncObject, const char * sFuncName, const DWORD &obj)

amObject.PointCut(sFuncOhject ,sFuncName, abj);
return TRUE;

uer() { };
it ReadFile(const DWORD &);
e(const DWORD &);

D getThreadld() { return m_Threadld; };
D m_Thread!d;

uffer::ReadFile(const DWORD &dwThread\d)

Sleep(2000);
‘cout << "Thread |d: " << dwThreadld << " reading file.." << endl;

uffer;: WriteFite(const DWORD &dwThread|d)

Sleep(2000);
out << "Thread Id: " << dwThreadld << " writing file..." << endl,
return O,

84

nAbstractAspect.h

ystemAbstractAspect {

virtual void before(const char * sFuncName, const DWORD &obj) { };
virtual void after(const char * sFuncName, const DWORD &obj) { };

virtual BOOL precondition(const char * sFuncName) = 0,

de <string.h>
Y
 SystemAbstractAspectFactory {

' \virtual void precondition() = O:

HemAspectFaclory.h

SystemAspectFactory.h"

e "SystemAspect.h”

"Synchronization.h"

'_:emAspectFactory . public SystemAbstractAspectFactory {
SystemAspectFactory(),;

void attachimpl(SystemAbstractAspect *);

virtual void precondition();

vitual void before(const char * | const DWORD &);
vitual void after(const char * , const DWORD &);

SystemAbstractAspect *pr_;

emAspectFactory::SystemAspectFactory()

pr_=0

| SystemAspectFactory::attachimpl(SystemAbstractAspect *pr)

pr_=pr;

1 SystemAspeciFactory:precondition()
pr_->precondition();
SystemAspectFactory::before(const char * sFuncName, const DWORD &obj)

pi_->before(sFuncName, obj);

ystemAspectFactary::after(const char * sFuncName, const DWORD &obj)

pr_->after(sFuncName, obj);

acingAspect : public SystemAbstractAspect {
racingAspect();

virtual void before{const char * | const DWORD &);
virtual void after{const char * , const DWORD &),

DWORD dwMutex;

virtual BOOL precondition{const char* sFuncName);
JAspect: TracingAspect()

acingAspect::precondition{ const char * sFuncName})

return TRUE;
ingAspect::before{const char * sFuncName, const DWORD &m_Threadld})
cout << "Executing " << sFuncName << end|;

racingAspect:.after(const char * sFuncName, const DWQORD &m_Thread!d)

cout << "Exitting " << sFuncName << end|;

*SystemAbstractAspect.h"

inchronizationAspect : public SystemAbstractAspect {
SynchronizationAspect();

virlual void before(const char *, const DWORD &);
irtual void after(const char * , const DWORD &);

HANDLE hSemaphore;
HANDLE wSemaphore;
HANDLE hMutex;

DWORD dwMutex;

int iReader;
ind

Writer;
int i
int iReaderaiting;

virtual BOOL precondition(const char * sFuncName);
onizationAspect::SynchronizationAspect()

iReader = Q;
Writer = 0;
iReaderWaiting = 0;

hMutex = CreateMutex(NULL, FALSE, NULL);

if {hMutex == NULL) {
cout << "Func Thread - error calling CreateMutex{()" << end|;
exit (O);

}

wSemaphore = CreateSemaphore(NULL,1, 1, NULL);

if (wSemaphore == NULL) {
cout << "Func Thread - error calling CreateThreadSemaphore(}" << endl;
exit (0},

}

hSemaphore = CreateSemaphore{NULL,1, 3, NULL);

if (hnSemaphore == NULL) {
cout << "Func Thread - error calling CreateThreadSermaphore(}" << endl,
exit (0),

)L SynchronizationAspect::precondition(const char * sFuncName)

if ((char *) sFuncName == "ReadFile") {
return (Writer == 0);

}
if ({(char *) sFuncName == "WriteFile") {
return TRUE;

}

else retumn FALSE;

SynchronizationAspect::before(const char * sFuncName, const DWORD &m_ThreadId)

87

BOOL bBlock = FALSE;

if ((char *} sFuncName == "ReadFile") {

cout << "READER before cross cutin";

dwMutex = WaitF orSingleObject(hMutex, INFINITE);

cout << "Reader Acquired the mutex: " << m_Threadld << endl;

switch (precondition(sFuncName)) {
case FALSE: cout << "Reader Released the mutex: " << m_Threadld << end);
iReaderWaiting++;
ReleaseMutex{(hMutex);
WaitForSingleObject(hSemaphore, INFINITE);
WaitF orSingle Object{hMutex, INFINITE);
iReader++;
cout << "READER Released the mutex: " << m_Thread|d << endl;
ReleaseMutex(hMutex);
break;
case TRUE: iReader++;
if (iReader == 1} {
cout << "READER Get Acquired the Semaphore: " << m_Threadld << endl;
WaitForSingleObject(hSemaphore, INFINITE};

cout << "READER Released the mutex: " << m_Threadld << endl;
ReleaseMutex(hMutex);
break;

}
}

else if ((char *) sFuncName == "WriteFile"} {

cout << "WRITER before cross cut\n™;

dwMutex = WaitF orSingleCbject(hMutex, INFINITE);

cout << "WRITER Get Acquired the mutex: " << m_Threadld << end,
ivWriter++;

cout << "WRITER released the mutex: " << m_Threadld << endl;
ReleaseMutex{hMutex);

cout << "WRITER Get Acquired the Semaphore; " << m_Threadld << end};
WaitForSingleObject(hSemaphore, INFINITE);
WaitForSingleObject{wSemaphore, INFINITE);

}
}

void SynchronizationAspect::after(const char * sFuncName, const DWORD &m_Threadld)

{

if ((char *) sFuncName == "ReadFile"} {

cout << "READER after cross cut” << endl;
WaitForSingleObject(hMutex, INFINITE};

cout << "READER Get Acquired the mutex: " << m_Threadld << end|;
iReader--;

if (iIReader == 0) {

cout << "READER Released the Semaphore; " << m_Threadld << end);
ReleaseSemaphore(hSemaphore, 1, NULL};

cout << "READER Released the mutex: " << m_Threadld << end;
ReleaseMutex(hMutex);

}

else

if {((char *) sFuncName == "WriteFile") {
cout << "WRITER after cross cut\in”;
dwMutex = WaitForSingleObject{hMutex, INFINITE);
cout << "WRITER Get Acquired the mutex: " << m_Threadld << endi;
iWriter--;

cout << "WRITER released the Semaphore: " << m_Threadld << endl;
ReleaseSemaphore{wSemaphore, 1, NULL});
/! ReteaseSemaphorethSemaphore, 1, NULL)
if (iReaderWaiting > 0} {
cout << "WRITER released the Semaphore: READERW";
for (i = 0; i < IReaderWaiting; i++)
ReleaseSemaphore(hSemaphore, 1, NULL);
iReaderWaiting = 0;
f/ReleaseSemaphore(hSemaphore, iReaderWaiting, NULL);

else ReleaseSemaphcre{hSemaphore, 1, NULL);
cout << "WRITER released the mutex: " << m_Threadld << endl;
ReleaseMutex(hMutex);

89

clude "SystemFactory.h"
de "Synci.h"
tlude "Tracing.h”

AspectModerator() { };
BOOL PointCut({const char *, const char * |, const DWORD &);

SystemAspectFactory sysAspectFactoryObj[2];
FileBuffer functionalObject;
SynchronizationAspectOne r,

TracingAspect r1;

ispectModerator;::PointCut(const char * sFuncObject, const char * sFuncName, const DWORD &obj)
if {strcmp(sFuncObject, "FileBuffer")==0) {
if (strcmp(sFuncName,"WriteFile") == Q) {

sysAspectFactoryObj[0].attachimpl(&1);
sysAspectFactoryObjj0].before(sFuncName, obj);
functionalObject WriteFile(obj);
sysAspectFactoryObj[0].attachimpl{&r);
sysAspectFactory(Obi[0].after(sFuncName, obj);
sysAspectFactoryObj[0].attachimpl{&rt);
sysAspectFactoryObj[0].after{sFuncName, obj)),

}

else
if (strcmp{sFuncName,"ReadFile") == 0) {

sysAspectFactoryObj[0].attachimpl{&r);
sysAspectFactoryObj{0].before(sFuncName, ohj);
functionalObject. ReadFile(obj);
sysAspectFactoryObj[0] attachimpl(&r);
sysAspectFactoryObj[0].after(sFuncName, obj);

}

return O;

90

i <windows h>
& <process.h>

“reader.h”
"wiiter.h"
de "buffer.h”

NUM_READER 20
 WRITER 5

Object readerfNUM_READERY];
WriterObject writer{NUM_WRITERY;
oxyObject fileBuffer;

writerfi]. WaitF orExit();

for (i=0; i< NUM_READER,; i++) {
reader[i].WaitForExit();

AMAHWIN

Reprint Ta3una1afi Lesun1sf Ui ﬂLLwﬂum‘sUs:'J“mmﬁ’ﬁ’m’m‘hmu 6 UNAI

1.

Paniti Netinant and Tzilla Elrad. "A Framework for Extensibie and Adaptable System Software” in
Proceedings of the International Conference on Programming Languages and Compilers (PLC 2005},
Las Vegas, Nevada, USA, June 2005. -
Paniti Netinant. "Component + Aspect = an Extensible and Adaptable System Software” in
Proceedings of the International Conference on Software Engineering Research and Practices{SERP
2005), Las Vegas, Nevada, USA, June 2005.

Paniti Netinant. “Extensibility Aspect-Oriented Framework to Buiid Agent-Based System Software” in
Proceedings of the 1 5" International Conference on Software Engineering and Data Engineering
(SEDE 2006), Los Angeles, California, USA, July 2006,

Paniti Netinant. “Extensible and Adaptable System Software” in Proceedings of the International
Conference on Programming Languages and Compilers (PL.C 2006), Las Vegas, Nevada, USA, June
2006.

Paniti Netinant. “Supporting Separation of Concerns to Automation of Code Generation” in
Proceedings of the International Conference on Software Engineering Research and Practices (SERP
2006), L.as Vegas, Nevada, USA, June 2006.

Panitt Netinant. “Building Agent-Based System Software Using Aspect-Oriented Framework” in
Proceedings of the 2006 Electrical Engineering/Electronics, Computer, Telecommunication, and

Information Technology (ECTI) International Conference, Thailand, May 2006,

92

PROCEEDINGS OF THE 2005 INTERNATIONAL
CONFERENCE ON PROGRAMMING LANGUAGES AND
COMPILERS

PLC'05

Editor
Hamid R. Arabnia

Associate Editors

Weichang Du
Christian, Heinlein
Hassan Reza

Las Vegas, Nevada, USA
June 27-30, 2005
®CSREA Press

ume contains papers presented at The 2005 International Conference on Programming
ges and Compilers (PLC'05). Their inclusion in this publication does not necessarily
ute endorsements by editors or by the publisher.

Copyright and Repfint Permission

g without a fee is permitted provided that the copies are not made or distributed for direct
rcial advantage, and credit to source is given. Abstracting is permitted with credit to the
. Please contact publisher, for other copying, reprint, or republication permission.

Copyright © 2005 CSREA Press
ISBN: 1-932415-75-0
Printed in the United States of America

CSREA _Press
U.S. A,

Foreword

It gives us great pleasure to introduce this collection of papers to be presented at the 2005
International Conference on Programming Languages and Compilers (PLC'05), June 27 through
30, 2005, at Monte Carlo Resort, Las Vegas, Nevada, USA. The PLC'05 conference is co-
sponsored and organized by CSREA; Intemational Technology Institute (ITI); World Academy
of Science for Information Technology (WAS-IT); as well as a number of institutions, computer
science book publishers, users groups, newsgroups and a number of media co-sponsors
(HPCwire, GRIDtoday, ...)

The program committee would like to thank all those who submitted papers for consideration.
About 60% of the submissions were from outside the United States. Each submission was
evalnated by two referees (except for papers that were submitted to chairs of sessions who were
responsible for the evaluation of these papers.) The overall paper acceptance rate was about 37%.

We are very grateful to the many colleagues who helped in organizing the conference. In
particular, we would like to thank the members of the PLC'05 Program Committee who we hope
will offer their help again in organizing the next year's conference (PLC'06). The PLC'05
Program Commiitee members are:

Prof. Hamid Abachi, Monash University, Australia (SERP, PLC)

Prof. Hamid R. Arabnia (General Chair), University of Georgia, USA (SERF, PLC)
Prof. Nadim Asif, Nat. Col. of Bus. Adm, & Ec. (NCBA& E), Pakistan (SERP)

Dr. Punam Bedt, University of Delhi, Delhi, India (SERP)

Dr. William Cheng-Chung Chu, TungHai University, Taiwan (SERP)

Dr. Lawrence Chung, University of Texas at Dallas, USA (SERP)

Dr. Constantines Constantinides, Concordia University, Quebec, Canada (SERP)

Dr. Heitor Augustus Xavier Costa, Universidade Federal de Lavras, Brazil (SERP)
Dr. Juan J. Cuadrado-Gallego, University of Alcala, Madrid, Spain (SERF)

Prof. Kevin Daimi, University of Detroit Mercy, Detroit, Michigan, USA (SERP)

Dr. Sergiu Dascalu, University of Nevada, Reno, Nevada, USA (SERP)

Dr. Charmaine DeLisser, University of Technology, Jamaica (SERP)

Dr. Jing Dong, University of Texas at Dallas, Richardson, Texas, USA (SERP)

Prof. Weichang Du, University of New Brunswick, New Brunswick, Canada (PLC)
Dr. Emanuel Grant, University of North Dakota, USA (SERP)

Dr. George A. Gravvanis, Democritus University of Thrace, Greece (SERP)

Dr. Volker Gruhn, University of Leipzig, Germany (SERP)

Dr. Jiang Guo, California State University Los Angeles, CA, UJSA (SERP)

Dr. Fredrick C. Harris, Jr., University of Nevada Reno, Nevada, USA (SERP)

Dr. Christian Heinlein, University of Ulm, Ulm, Germany (PLC)

Dr. Mike Hinchey, NASA Goddard Space Flight Center, Greenbelt, MD, USA (SERF)
Dr. Sumam Mary Idicula, Cochin University of Science & Technology, India (SERP)
Dr. Carlos Juiz, Universitat de les Illes Balears, Spain (SERP)

Dr. Osman Kandara, Southern University, Baton Roueg, Louisiana, USA (SERP)
Prof. Hatsuhiko Kato, Shonan Institute of Technology, Japan (SERF, PLC)

Prof. Fereydoun Kazemian, Rochester Institute of Technology, New York, USA (SERP)
Dr. Anil Khatri, Johns Hopkins University, Maryland, USA (SERP)

Dr. Dae-Kyoo Kim, Oakland University, Michigan, USA (SERP)

* @ & & 9 & 2 B & O 5 & ¢ 8 P 0

Deborah Kobza, Director/CIO, Florida Inf. Tech. Center of Excellence, FL, USA (SERP)
Dr. Cyril S. Ku, William Paterson University, New Jersey, USA (SERP) '

Dr. Kuan-Ching Li, Providence University, Shalu, Taichung, Taiwan (SERP)

Prof. Prabhat K. Mahanti, University of New Brunswick, Canada (SERP)

Dr. Johannes Mayer, University of Ulm, Germany {SERP)

Dr. Marco T. Morazan, Seton Hall University, South Orange, New Jersey, USA (PLC)
Prof. Youngsong Mun, Soongsil University, Korea (SERP)

Dr. Panitt Netinant, Bangkok University, Bangkok, Thailand (SERP)

Dr. Monica Nicolescu, University of Nevada, Reno, Nevada, USA (SERP)

Prof. Michael Oudshoomn, Montana State University, Montana, USA (SERP, P1.C)

Dr. Jun Pang, INRIA, France (SERP)

Dr. Lee Pike, NASA Langley Research Center, Hampton, Virginia, USA (SERP)

Dr. Raghu Reddy, Colorado State University, Colorado, USA (SERP) ,

Dr. Hassan Reza (Program Chair), University of North Dakota, ND, USA. (SERP)

Dr. Abdelhak Djamel Seriai, Ecole des Mines de Douai, Douai, France (SERP)

Dr. H. Shrikumar, CTO of Ipsil Inc, USA (PLC)

Dr. Roy Sterritt, University of Ulster at Jordanstown, Northern Ireland (SERP)

Dr. Nary Subramanian, Hofstra University, Hempstead, New York, USA (SERP)

Prof. Shantaram Vasikarla, American InterContinental University, LA, CA, USA (SERP)
Brian Westphal (Student Member), University of Nevada, Reno, USA (SERP)

Dr. Jon Whittle, NASA Ames Research Center, Moffett Fields, CA, USA (SERP)
Prof. Baowen Xu, Southeast University, Nanjing, P. R. China (SERP)

Dr. Haiping Xu, University of Massachusetts Dartmouth, Massachusetts, USA (SERP)
Dr. Lu Yan, Turku Centre for Computer Science (TUCS), Turku, Finland (SERP)

Dr. Wei Zhang, Southern Illinois University Carbondale, Illinois, USA (PL.C)

Dr. Mohammad Zulkerning, Queen's University, Ontario, Canada (SERP)

$ & @ @ ¢ 9 & » 9 & © " " 2

We would also like to thank the followings: UCMSS (Universal Conference Management
Systems & Support, San Diego, California, USA) for managing all aspects of the conference; Dr.
Tim Field of APC for managing the printing of the proceedings; and the staff of Monte Carlo
Resort in Las Vegas for the professional service they provided.

Last but not least, we would like to thank PL.C'05 Associate Editors, Drs, Weichang Du, Christian
Heinlein, and Hassan Reza.

We present the proceedings of PLC'05.

Hamid R. Arabnia
PLC’05 Program Committee

Contents

SESSION: INTENSIONAL LANGUAGES, SYSTEMS & APPLICATIONS

‘The Lazy Evaluation of Infinitesimal Logic Expressmns 3
Ruchi Agarwal, William W. Wadge ' '

GIPSY - A Platform for the Investigation on Intensmnal Programmmg Languages 8
Joey Paquet, Aihua Wu

Toward JLucid, Lucid with Embedded Java Functions in the GIPSY 15
Peter Grogono, Serguei Mokhov, Joey Paquet

Objective Lucid - First Step in Object-Oriented Intensional Programming in the 22
GIPSY

Serguei Mokhov, Joey Paquez

A Generic Framework for Migrating Demands in the GIPSY Demand-Driven 29
Execution Engine

Emil Vassev, Joey Paquet

General Imperative Compiler Framework within the GIPSY 36
Serguei Mokhov, Joey Paquet

Object—Oriented Intensional Programming in the GIPSY: Preliminary Investigations 43
Aihua Wu, Joey Paquet

Luex: Lucid Enriched with Context 48
Kaiyu Wan, Vasu Alagar, Joey Paquet

v

SESSION: LANGUAGE & COMPILERS FOR FUNCTIONAL

PROGRAMMING
Towards Closureless Functional Languages 57
Marco, T Morazan
SequenceL — An Overview of a Simple Language 64

Daniel E. Cooke, J. Nelson Rushton

Toward Functionality Oriented Programming 71
Chengpu Wang

Components of Meta-Programming, Computer Analogies and Metaphors 78
David Dodds

SESSION: TECHNIQUES FOR MOBILE CODE, DISTRIBUTED
SYSTEMS, & 00 SYSTEMS

A Characterization of Traces in Java Programs | 87
Borys Bradel, Tarek Abdelrahman

Cuckoo: a Language for Imf:lementing Memory— ‘and Thread-safe System Services 94
Richard West, Gary, T. Wong

Adding States into Object Types 101
Haitong Xu, Sheng Yu

A Programming System for Peer—to-Peer Computing _ | 108
Weichang Du, Qian Jia

SESSION: PROGRAM ANALYSIS & COMPOSITION TECHNIQUES

AND TOOL SUPPORTS
Improved Passive Splitting 115
Keith Cooper, Jason Eckhardt
Null Values in Programming Languages 123
Christian Heinlein ' :
Exploiting Syntactic Analysis for Lambda Lifting 130

Barbara Mucha, Marco, T Morazan

An Exceptional Programrhing Language . : , _ 137
Mike Zastre, John Aycock

Towards Program Composing Assistants 142
Zorica Suvajdzin, Miroslav Hajdukovic

SESSION: LANGUAGE SUPPORT: SECURITY, SAFETY,
EXCEPTIONAL HANDLING + GARBAGE COLLECTION

Inferring Java Security Policies Through Pynamic Sandboxing 151

Hajime Inoue

New Programming Language Concepts for Confidentiality 158

Christian Hummert, Gisela Menger

Exception Handling with Resumption: Design and Implementation in Java
Alexander Gruler, Christian Heinlein

Container Types for Automatic Garbage Collection in Hard Real-Time Computing
Kevin M Cleereman

Garbage Collection With a Large Address Space for Server Applications
Sergiy Kyrylkov, Darko Stefanovic

SESSION: EFFECTIVE TECHNIQUES FOR ADVANCED
LLANGUAGES FEATURES + LOOP OPTIMIZATIONS

Compilation Scheduling for the Java Virtual Machine
Robert Chun, Azeem, S Jiva

TUBE ~ Structure-QOrientation in a Prototype-Based Programming Environment
Patrick Renner, Axel Rauschmayer

Micky: Methods With Implicit Calls
Bryan Crawley, Raphael Finkel

A Framework for Extensible and Adaptable System Software
Paniti Netinant, Tzilla Elrad

A Comparison of Z and UML: Two Case Studies
Bing Dong LI, M. H. Samadzadeh

SESSION: SUPPORT FOR UNANTICIPATED SOFTWARE
EVOLUTION

Object and Access Evolution in Jarrah
Mark Evered

Component State Mapping for Runtime Evolution
Yves Vandewoude, Yolande Berbers

Targeting System Evolution by Explicit Modeling of Control Flows Using UML 2
Activity Charts

Stefan Sarstedt, Jens Kohlmeyer, Alexander Raschke, Matthias Schneiderhan

165

172

179

187

194

201

207

214

223

230

237

on Frog. Lang. & Compilers (PLC'05)

207

A Framework for Extensible and Adaptable System
Software

Papiti Netinant'* and Tzilla Elrad®

'Computer Science Department

Bangkok University
Bangkok, Thailand
paniti.n@bu.ac.th

Abstract

*orfz‘ng separation of concerns in the design of op-
\Wing systems can provide a number of benefits such
“wmmnability, extensibility and reconfigurability. How-
N, in order to maximize these benefits, such a support
Mﬁicrrli to accomplish. Some aspects in operating
such as synchronization, scheduling, and fault

g
Wrance cut across the basic functionalities of the sys-
e In every layer these aspects might need to be medi-
W4 By separafing the different aspects of operating
Wiem in every layer, we can provide a better generic
E model of operating systems. Aspect-Oriented
amming is a paradigm proposal that aims at sepa-
Wiz components and aspecis from the early stages of
'|.ﬁmfﬁmre life cycle, and combining them together at
W implementation phase. However, aspect-oriented
%;cre engineering can be better supported if the un-
wing operating system is built based on this ap-
'm:h as well. Treating aspects, components, and lay-
W5 it a two dimensional model is not adeguate. Two-
Wmetssional models lead to inflexibility, limit the possi-
Witles for reuse, and make it hard to understand and
Wodify. In this paper we discuss a language-neutral
Wpect-oriented design framework that can simplify sys-
W ciesign by expressing it at a higher level of abstrac-
W Our work concentrates on how to maximize sepa-
Witign of aspects, components, and layers from each
Whar, Our goal is to achieve a better design model for
gming systems in ferms of extensibility and adapta-

Keywords—— Adaptability, Aspect-Orientation,
Bmmework, Extensibility, Syster Software.

I.System Software Design Issues

The commercialization of cperating systems has
glied in their design gaining more importance.
hzemtiﬂg systems are constantly extended for im-

F—__ ——

*Computer Science Department
Illinois Instifute of Technology
Chicago, I, USA.
elrad@iit.edu

provements as well as to support new features and
hardware. In order to support this, reusability and
adaptability [8] of system software during design is
crucial. Extensibility provides the capability to ei-
ther change current features or support new fea-
tures. Reliability is the ability of the system to pro-
viding the correct service over a period of time.
Stability is the capability of the system maintainiog
the correct service in every same state

Operating system design issues can be divided
into hardware-oriented and ‘software-oriented.
Hardware—oriented issues include physical net-
works and communications protecol design, bard-
ware measures, physical clock synchronization,
storage, and system components. On the other
hand, software-oriented issues include distributed
algorithms, naming, resource allocation, distributed
operating systems, system integration, reliability,
tools and languages, real-time systems and per-
formance measurement. The decisions involved in
the design and irmaplementation of operating sys-
tems address such issues as stability, reusability,
adaptability, and reconfigurability.

2. Separation of Concerns

The principle of separation of concerns lies at
the heart of software development as it introduces a
mumber of benefits, originally addressed by [19, 7].
These include better understanding, modifiability,
extensibility, debugging of the system, and better
reuse of the concerns. Although these benefits have
been well established, there s still no universally
accepted methodology mn order to guide a pro-
grammer to achieve'it. The system designer has to
consider how a number of aspects in the system
can be captured, and how a separation of concems
[19, 12] will be addressed.

208

Functional decomposition has so far been
achieved along one dimension, based on the under-
lying paradigm. In OOP, this dimension is a com-
ponent hierarchy that includes methods, objects
and classes. Current programming languages and
techniques have been supportive to functional de-
composition. Further, operating system design has
also been based aligned with traditional functional
decomposition techniques. However, no functional
decomposition technigue has yet managed to ad-
dress a complete separation of concerns. Object
Oriented Programming (OOP) seems to work well
only if the problem can be described with relatively
simple interface among objects. Unfortunately, this
is not the case when we move from sequential pro-
gramming to concurrent and distributed program-
ming.

As distributed systems become larger, the inter-
action of their components is becoming more com-
plex. This interaction may limit reuse and make it
difficult to validate the design and correctness of
software systems as well as force reengineering of
these systems in order to meet future requirements.
For complex software systems a solution to
achieve separation of concerns without violating
the benefits of OOP is still debatable and it consti-
tutes a major research area. Certain properties of
the systems do not localize well. Rather, they tend
to cut across groups of functional components,
making the system difficult to understand. The core
complexity is that concurrent and distributed sys-
temns manifest over more than one dimension. Fea-
tures such as scheduling, synchronization, fault
tolerance, security, testing and verifications are all
expressed in such a way that they tend to cut across
groups of objects. This tangling of concerns [13]
results in an increase of the dependencies between
functional components that makes their source
code difficult to understand, develop, and maintain.
As a result, simple object interfaces are violated
and the traditional OOP benefits no longer hold.

One current attempt to resolve this issue is the
Aspect Oriented Software Architecture. To address
this multi-dimensional structure of concurrent sys-
tems we distinguish between components and as-
pects. Aspects are defined as properties of a system
that do not necessarily align with the system's func-
tional components but tend to cut across groups of
functional components, increasing their interde-
pendencies, and thus affecting ‘the quality of the
software. Although not bound to OOP, Aspect-
Oriented Programming (AOP) [10, 11, 13] is a

Conf. on Prog. Lang. & Compilers (PLC'05)

paradigm proposal that retains the advantages of
OOP and aims at achieving a better separation of
concerns, AQP suggests that from the early stages
of the software life cycle aspects should be ad-
dressed relatively separately from the functional
components. As a result, aspectual decomposition
manages 1o achieve a two-dimensional sepagation
of concerns. At the implementation phase, aspects
and components should be combined together,
forming the overall system.

In this paper we address a number of operating
system design issues based on a two-dimensional
decomposition and in the context of the support

~ provided by aspect-oriented frameworks [4, 5]. Our

goals are to provide a cleaner separation of design
concerns compared with what has so far been able
to be supported by traditional approaches, better
flexibility and higher reusability; as well as to pro-
vide a technique that would be. practical to imple-
ment. Moreover, we want to demonstrate that the
framework, based on an aspectual system decom-
position, can be used effectively in this area as an
alternative design approach that is also language
independent.

3. System Components

The design of operating systems has been tradi-
tionally based either on the collective kernel struc-
ture (functional decomposition) or on the object-
oriented model [22]. Examples of collective kernel
structures include Mach [2] and Chorus [21]. Ex-
amples of object-oriented operating systems in-
clude Amoeba [23, 24] and Choice [3]. To our
knowledge, there has so far been no proposal to
address operating system design based on an as-

" pect-oriented approach.

3.1 The Fault-Tolerance Cross-Cutting

As illustrating in figure 1 represents fault tolerance
that cuts across the file system, the communica-
tions, and the time system.

File * Process

System Marapement Communication

Fault Tolance

Figure 1. Fault tolerance and scheduling aspects
cut across basic functional systems such as file sys-

W Prog. Lang. & Compilers (PLC'05)

JiGeess management, and communication, An

ifion of this is given in Figure 2 where fault-
it code is spread throughout the dataManager
fnin a programming language such as SR.

wre Marager

=)
st ToCommit()
flhnager(...)

il statusTable

siitor (s5) send faillfandler)

tfor op; read/write, prepareToCommit. .

iller0)
oy myrescurce()

W lindler

e {itatusTable, sizeoffstatusTable), statusTable);
1 lasager. dulUp{dmld);

&l
Sionager

e 2. Fault-tolerant distributed software writ-
Ii programming language such as SR [1].
Sled from [20])

| Distributed Computing Environment (DCE)

Wlifeats aspects in a monolithic manner residing
phiect management layer. Further, object-
ted based systems like Amoeba [23, 16] and
Mt [3] treat aspects moonolithically residing in
simanagement as well.

in Aspect-Oriented Framework

114, 15] AOP is viewed as a general frame-
i for separating the concems in the system.
Wi introduced the layered approach for the
gn and implementation of operating systems
3 the THE operating system [6] and the
105 system [I18]. The layered approach,
misleit of layers and components, has showed all
Alvantages of the modular design. Our observa-
Suevests that an aspect-oriented software ar-
mre (AOSA) that uses aspect-oriented
eworks could support designers and program-
in tleanly separating components and aspects
sch other in different layers. AOSA can pro-
¥4 mechanism that would make it possible to
uct and compose components .and aspects -to
lice the overall system such as Aspect Modera-
Famework [4]. We argue that a cross-cutting

¥
Kl
I

209

property of the system should not be seen within a
two-dimensional model, and it should not be
treated as a single monolithic aspect. Instead we
propose the vispalization of a three-dimensional
model for system design. By adding the aspect di-
mension, we can capture aspects in the design.
Three-dimensional model can simplify system de-
sign by expressing it at a higher level of abstraction

Our proposed framework is based on a fhree-
dimensional systern design that consists of compo-
nents, aspects, and layers: 1) Components consist
of the basic functionality modules of the system
such as the file system, communication, and proc-
ess management etc., 2) Aspects are cross-cutting
entities, and they include fault tolerance, synchro-
nization, scheduling, naming etc., 3) Layers consist
of the components and aspects decomposed into a
number of more manageable sub-problems. In gen-

“eral, lower layers deal with a far shorter time scale.

The lower the layer, the closer the hardware is. The
higher layer deals with interaction with the user.
By separating the different aspects of each com-
ponent, we can separate components, aspects, and
layers from each other (components from each
other, aspects from each other, layers from each
other, components from aspects, components in
each layer, and aspects in each layer). It would thus
be possible to abstract and compose them to pro-
duce the overall system. This would result in the
clarification of interaction and increased under-
standing aspects of each component in the sysfem.
High-level of abstraction is easier to understand.
Further, the reusability achieved by the higher level
can use the lower level of the implemedtation not
only to promote extensibility and refinement, but

. also to reduce cost and time in system develop-

ment. A change in the implementation at a Jower
level would not result in a change at the higher
level if the interface level has not been changed.
Thus the design can achieve stability, consistency,
and separation of concerns. An aspect might have
multiple domains. Some aspect (scheduling, syn-
chronization, naming, and fault tolerance e.g.) 1is
scaftered among many components in the system
with varying policies, different mechanism, and
possibly under different application.

To reduce the tangling of aspects in an operat-
ing system, each aspect should be considered and
analyzed separately from the main functionality.
For example, the aspect of scheduling in the file
system can be considered in different domains in
each layer. It would separate a policy from an as-

Wl each layer. Aspects would represent the
enil specifications needed to provide the ab-
giion. Further, a policy can be added or modi-
in each layer to a specific domain. This ap-
itlican support a high degree of reusability.

fhe proposed aspect-oriented framework for
Seting systems (Figure 3) is an extended model
{ihe Aspect Moderator Framework [4, 5].
ibe overall framework architecture 1s divided
b two frameworks based on two layers: a base
Mimework on the low layer and an application
Ssework on the upper layer. The Base Frame-
Wik corresponds to the system layer. On the upper
fer we may have more than one application
Smeworks.
be framework uses design pat‘terns [9]. In this
Wmework, aspects are created using the Abstract
and the Bridge patterns. The Abstract Fac-

dhuses because the factory encapsulates the re-
monsibility and the process of creating aspect ob-
5. The class of concrete aspect appears only

‘Sudified. The Bridge pattern avoids a permanent
imding between an abstraction and its implementa-
W An example where this would be beneficial is
fen an implementation concern rnust be selected
sswitched at run-time. This way, different aspect
AiEtractions and implementations can be combined
od extended independently. This implementation
4still useful when a change in the implementation
3 tlass must not affect its existing components.
aresult, a class need not be recompiled, but just
linked. This approach supports polymorphism,
ad manages to avoid proliferation. Changing the
mplementation of an aspect abstraction should
e no impact on functionality either. A smart-
biection proxy controls access to the aspects and
llows addifional housekeeping tasks when an as-
st is accessed.
~ In the application framework, the Adapter pat-
allows the aspect factory to either convert the
erface of an existing aspect (Super aspect or as-
¢s in the lower layers) into another interface
tionality expect or to create a new aspect. Ide-
. a new aspect should reuse an existing aspect
uicate new. aspects, when it could be used. The
gper layer can redefine existing aspects and over-

Conf. on Prog. Lang. & Compilers (PLC'05)

ride them.

Application ——»>
Frameworks

> Bage

Framework

Figure 3. Aspect-Oriented Framework.,
4.2 Base Framework

In this section we describe the execution flow in
our design. We first describe the initialization and
execution phases of the base framework. The ap-
plication framework is discussed in a similar man-
ner in the next section. We then discuss the adapta-
bility issue of our framework. When the- request
arrives at the system, the smart-protection proxy
will forward it to the AspectModerator object in
order to identify whether this is a request to create

an aspect or to invoke a method.

4,2.1 Initialization Phase

If there is an aspect creation request, the proxy
will have to verify that this aspect does not already
exist, Verification is achieved with communication
with the AspectModerator object. Once verification
is successful, the proxy will call the Aspectfactory
to create the interface definition and the class defi-
nition of that aspect. The proxy will then register
both defipitions with the AspectModerator.

4.2.2 Invocation Phase

When a method is requested, the system evaluates
some property constraints of that method, such as
synchronization constraints. These constraints lie
in an aspect object. The invocation of the con-
straints of the aspect will be-executed by the As-
pectModerator. Once this is completed, the As-
pectModerator will return control to the proxy to .
resume the execution of the method of the main
functionality whose invocation was requested by a
client. This 15 done in a similar manner in both
frameworks.

Once a request is identified a method invoca-
tion, the proxy.will check whether an aspect that
describes the method’s constraints is already regis-
tered with the AspectModerator object. After a suc-
cessful checking of the reference of the aspect, the
AspectModerator will validate the constrains of the

W0 Prog. Lang. & Compilers (PLC'05)

Sigalion method. Then, the AspectModerator
I activate the method of the aspect object and
im control to the proxy.

4 .'iipplication Framework

wi:h the base level, the applicatlon frame-

i aspect creation, or a method invocation. The
sey will check the aspect moderator if there is an
et registered in the AspectModerator, and
“lich aspects in the lower layer are included in the
'&]iﬂitmn layer. If a registration entry of the as-
et does not exist, the proxy will call the Aspect-
Hl' Mlory to create the interface and the clasg of that
et The proxy will then register both defini-
W with the AspectModerator. The new aspect
on be included the lower layer aspect to build a
ww aspect. Then the proxy will register the refer-
e of that aspect in the AspectModerator.

-IH.Z Invocation Phase

LDlm'ng method invecation, the proxy will look
the register at the AspectModerator of that layer
5o whether a lower-layer reference exists for
aspect. If there is no reference to that aspect,
ﬁ;ﬂ}\y will look up the lower layer. Should the
fed aspect has not been registered in neither
, the AspectMoederator will retum an error to
. After a successful checking of the reference
fhe aspect, the AspectModerator will validate
i constrains of the method that is invoked. The
gpc!Moderator will then activate the method,
sl return control to the proxy.

.
#4 Adaptability of Framework

The general architecture of the framework pro-
fities reusability (the upper layer can reuse aspects
hm the lower layer), extensibility, and ensures
ﬁptablhty of aspects and compeonents because
bh are designed and implemented relatively sepa-
Fely from each other. Aspects in the application
Mmework can be extended and redefined by as-
fils provided by the layer to meet new require-

211

ments. A new aspect can be added in both system
layer and application layer without interfering with
aspects or components in other layer. The Aspect-
Moderator in both frameworks need not be modi-
fied when a new aspect is introduced.

5. Discussion .

The Aspect-Ortented Design Framework is a
three-dimensional model that consists of a collec-
tion of aspects, and which can provide an abstrac-
tion in the operating system to support a number of
components in the upper levels. Components form
the main functionality of the operating system.
Layers can be divided into lower, intermediate, and
upper level. The Jower level represents the operat-
ing systern that provides reusable primitives for the
intermediate and upper levels. The intermediate
level corresponds to the system programming or
interface defimtion. The upper level corresponds to
application and programming level, '

5.1 Reusability, Stability and Consistency

The abstraction of an aspect in the lower level
provides transparency. The upper aspects or com-
ponents can use the lower aspects or components
without knowing the internal details of how the
lower aspects or compoenents are implemented. In-
formation hiding promotes either component or
aspect modifiability and simplifies the perception
of the upper level. The upper level component or
application can iise the abstraction of aspect and
component in the lower level without knowing the
internal details of how the lower level aspect is
constructed. If the lower aspect is changed (to im-
prove performance or to add new features, for ex-
ample), provided the aspect interface (intermediate
level) remains constant, the upper level aspect need
not change. This approach could result in better
modifiability of the system,

5.2 Extensibility

Software reusability not only can save time in
prograr development, but it can also avoid unnec-
essary proliferation of fupctions. By reusing of
proven and debugged high quality software, it will
reduce "problems after a system becomes opera-
tional. Polymorphism enables us to provide a gen-
erality of aspect to handle a wide variety of poli-
cies. It also makes it easy to add new capabilities to

212

an aspect. It will help to deal with complexity and
redundancy in the system, and could be particularly
effective for implementing layered software sys-
tems. When fundamental aspects of the system
sich as scheduling, synchronization, and fault tol-
grance are created, we can define them as a super-
aipect. When creating a new aspect (to change or
add a policy for example) we can designate that a
new aspect is to either inherit from or override its
super-aspect rather than being re-written, This new
aspect is referced to as a sub-aspect.

5.3 Adaptability

An aspect abstract is a super-aspect provided by
the system and it can be reused and redefined by
sub-aspects in the upper levels. The sole purpose of
an abstract aspect is to provide an appropriate su-
per-aspect from which other aspects could inherit,
override or redefiné implementation. Process man-
agement can redefine scheduling by round robin.
Communication component might need FCFS. The
file systermn would then need to use the same policy
as process management, For example, a database
application does & scan of one portion of its mem-
ory, while doing random access to another peortion.
A scheduling of a file system implementation using
LRU replacement policy will perform poorly on
the scanned memory. A scheduling of a file system
should be capable to reconfigure to an appropniate
policy for a better performance.

5.4 Architectural Independence

An aspect provides an independent architecture
becaunse each aspect is not a modular unit such as a
procedures or an object. System design should be-
gin by focusing attention on the problem to be
solved, postponing considerations of architecture
and language constructs. At the implementation
level, aspects can be modeled in abstractions like
classes in Object-Oriented Programming or aspects
in Aspect-Oriented Programming.

6. Conclusion

Operating system design should not be seen as a
two-dimensiopal model of layers and components
that includes single monolithic aspects. In this pa-
per, we stressed the importance of the complete
separation .of concerns within the context of an as-
pect-oniented framework and we discussed how

Conf. on Prog. Lang. & Compilers (PLC'05)

this technique could provide an alternative to oper-
ating system design and implementation. In this
paper we described an aspect-oriented framework
where both functional components and aspects are
designed relatively separately from each other.
This separation of concems allows for reusability
and adaptability. Our work concentrates on the de-
composition of aspects and components in software
systems and our goal is to achieve an improved
separation of concemns in both the design and the
implementation. Qur design framework provides
an adaptable model that allows for an open lan-
guage where new aspects can be manageable and
added in both applications and operating systems
easier. The. interaction of newly added aspects is
specified by a contract that binds a new aspect to
the rest of the system rather than having to re-
engineer the whole system. The framework ap-
proach is promising, ag it scems to be able to ad-
dress a large number of system aspects and appli-
cations. The advantage of decomposing of func-
tional ‘components and aspect in every layer is to
promote reusability, adaptability and manageability
of both components and aspects in operating sys-
tems easier. Refinement of aspects of the system
can further be achieved by polymorphism.

7. References

(1] Andrew, G., Olsson, R., The SR Programming
Language:Concurrency in Practice, Benja-
min/Cumining, 1993.

[2] Acefta, M., Barron R., Bolosky W., Golub G,
Rashid R., Tevaman A and Young M. Mach:
A New KemeI Foundation for UNIX Devel-
opment, Proceedings of the Summer USENIX
Conference, p.93-113, June 1986.

f3] Campbell, R. H., G. N. Johnston, P, W. Ma-
dany, and V. F. Russo. Principles of Object-
Oriented Operating System Design, Technical ,
Report R89-1510, University of Illinois, April
1989,

[4] Constantinos Constantinides, Atef Bader, Tzilla
Elrad. A Framework to Adress a Two-
Dimensional Separation of Concens, OOPSLA
Workshop on Multidimentional Separation of
Concerns, 1999.

[5] Constantinos A. Constantinides, Atef Bader,
Tzilla Elrad, Mohamed E. Fayad, Paniti Neti-
nant. Designing am Aspect-Oriented Frame-
work in an Object-Oriented Environment,
ACM Computing Surveys, March 2000.

PROCEEDINGS OF THE 2005 INTERNATIONAL
CONFERENCE ON SOFTWARE ENGINEERING
RESEARCH AND PRACTICE

Volume 1

Editors

Hamid R. Arabnia
Hassan Reza

Associate Editors

Lawrence Chung, Juan J. Cuadrado-Gallego
Sergiu Dascalu, Emanuel Grant,
Frederick C. Harris Jr., Michael Hinchey
Deborah Kobza, Youngsong Mun, Roy Sterritt
Nary Subramanian

Las Vegas, Nevada, USA
June 27-29, 2005
®CSREA Press

This volume contains papers presented at The 2005 International Conference on Software
Engineering Research and Practice (SERP'05). Their inclusion in this publication does not
necessarily constitute endorsements by editors or by the publisher.

Copyright and Reprint Permission

Copying without a fee is permitted provided that the copies are not made or distributed for direct
commercial advantage, and credit to source is given. Abstracting is permitted with credit to the
source. Please contact publisher, for other copying, reprint, or republication permission.

Copyright © 2005 CSREA Press
ISBN: 1-932415-49-1, 1-932415-50-5 (1-932415-51-3)
Printed in the United States of America

CSREA Press:
U.S. A,

Foreword

It gives us great pleasure to introduce this collection of papers to be presented at the 2005
International Conference on Software Engineering Research and Practice (SERP'05), June 27
through 30, 2005, at Monte Carlo Resort, Las Vegas, Nevada, USA. The SERP'05 conference is
co-sponsored and organized by CSREA; International Technology Institute (ITI); World
Academy of Science for Information Technology (WAS-IT); as well as a number of institutions,

computer science book publishers, users groups, newsgroups and a number of media co-sponsors
(HPCwire, GRIDtoday, ...)

The program committee would like to thank all those who submitted papers for consideration.
About 50% of the submissions were from outside the United States. Each submission was
evaluated by two referees (except for papers that were submitted to chairs of sessions who were
responsible for the evalnation of these papers.) The overall paper acceptance rate was about 36%.

We are very grateful to the many colleagues who helped in organizing the conference. In
particular, we would like to thank the members of the SERP'05 Program Committee who we hope

will offer their help again in organizing the next year's conference (SERP'06). The SERP'05
Program Committee members are: '

e Prof. Hamid Abachi, Monash University, Australia (SERP, PLC)
Prof. Hamid R. Arabnia (General Chair), University of Georgia, USA (SERP, PLC)
Prof. Nadim Asif, Nat. Col. of Bus. Adm. & Ec. INCBA& E), Pakistan (SERP)
Dr. Punam Bedi, University of Delhi, Delhi, India (SERP)
Dr. William Cheng-Chung Chu, TungHai University, Taiwan (SERP)
Dr. Lawrence Chung, University of Texas at Dallas, USA (SERP)
Dr. Constantinos Constantinides, Concordia University, Quebec, Canada (SERP)
Dr. Heitor Augustus Xavier Costa, Universidade Federal de Lavras, Brazil (SERP)
Dr. Juan J. Cuadrado-Gallego, University of Alcala, Madrid, Spain (SERP)
Prof. Kevin Daimi, University of Detroit Mercy, Detroit, Michigan, USA (SERP)
- Dr. Sergin Dascalu, University of Nevada, Reno, Nevada, USA (SERP)
Dr. Charmaine DeLisser, University of Technology, Jamaica (SERP)
Dr. Jing Dong, University of Texas at Dallas, Richardson, Texas, USA (SERP)
Prof. Weichang Du, University of New Brunswick, New Brunswick, Canada (PLC)
Dr. Emanuel Grant, University of North Dakota, USA (SERP)
Dr. George A. Gravvanis, Democritus University of Thrace, Greece (SERP)
Dr. Volker Gruhn, Untiversity of Leipzig, Germany (SERP)
Dr. Jiang Guo, California State University Los Angeles, CA, USA (SERP)
Dr. Fredrick C. Harris, Jr., University of Nevada Reno, Nevada, USA (SERP)
Dr. Christian Heinlein, University of Ulm, Ulm, Germany (PLC)
Dr. Mike Hinchey, NASA Goddard Space Flight Center, Greenbelt, MD, USA (SERP)
Dr. Sumam Mary Idicula, Cochin University of Science & Technology, India (SERP)
e Dr. Carlos Juiz, Universitat de les Illes Balears, Spain (SERP)
+ Dr. Osman Kandara, Southern University, Baton Roueg, Louisiana, USA (SERP)
» Prof. Hatsuhiko Kato, Shonan Institute of Technology, Japan (SERP, PLC)
o Prof. Fereydoun Kazemian, Rochester Institute of Technology, New York, USA (SERP)
¢ Dr. Anil Khatri, Johns Hopkins University, Maryland, USA (SERP)
e Dr. Dae-Kyoo Kim, Oakland University, Michigan, USA (SERP)

e & & 9 & o ¢

e Deborah Kobza, Director/CIO, Florida Inf. Tech. Center of Excellence, FL, USA (SERP)
* * Dr. Cyril S. Ku, William Paterson University, New Jersey, USA (SERP)

e Dr. Kuan-Ching Li, Providence University, Shalu, Taichung, Taiwan (SERP)

» Prof. Prabhat K. Mahanti, University of New Brunswick, Canada (SERP)

* Dr. Johannes Mayer, University of Ulm, Germany (SERP)

e Dr. Marco T. Morazan, Seton Hall University, South Orange, New Jersey, USA (PLC)
» Prof. Youngsong Mun, Soongsil University, Korea (SERP)

e Dr. Paniti Netinant, Bangkok University, Bangkok, Thailand (SERP)

» Dr. Monica Nicolescu, University of Nevada, Reno, Nevada, USA (SERP)

» Prof. Michael Oudshoorn, Montana State University, Montana, USA (SERP, PLC)

¢ Dr. Jun Pang, INRIA, France (SERP)

e Dr. Lee Pike, NASA Langley Research Center, Hampton, Virginia, USA (SERP)

s Dr. Raghu Reddy, Colorado State University, Colorado, USA (SERP)

s Dr. Hassan Reza (Program Chair), University of North Dakota, ND, USA (SERP)

» Dr. Abdelhak Djamel Seriat, Ecole des Mines de Douai, Douai, France (SERP)

¢ Dr. H. Shrikumar, CTO of Ipsil Inc, USA (PLC)

o Dr. Roy Sterritt, University of Ulster at Jordanstown, Northern Ireland (SERP)

e Dr. Nary Subramanian, Hofstra University, Hempstead, New York, USA (SERP)

e Prof. Shantaram Vasikarla, American InterContinental University, LA, CA, USA (SERP)
» Brian Westphal (Student Member), University of Nevada, Reno, USA (SERP)

Dr. Jon Whittle, NASA Ames Research Center, Moffett Fields, CA, USA (SERP)
Prof. Baowen Xu, Southeast University, Nanjing, P. R. China (SERP)

Dr. Haiping Xu, University of Massachusetts Dartmouth, Massachusetts, USA (SERP)
Dr. Lu Yan, Turku Centre for Computer Science (TUCS), Turku, Finland (SERP)

Dr. Wei Zhang, Southern Iilinois University Carbondale, Illinois, USA (PLC)

Dr. Mohammad Zulkemnine, Queen's University, Ontario, Canada (SERP)

We would also like to thank the followings: UCMSS (Universal Conference Management
Systems & Support, San Diego, California, USA) for managing all aspects of the conference; Dr.
Tim Field of APC for managing the printing of the proceedings; and the staff of Monte Carlo
Resort in Las Vegas for the professional service they provided.

Last but not least, we would like to thank SERP'05 Associate Editors, Drs, Lawrence Chung, Juan
J. Cuadrado-Gallego, Sergiu Dascalu, Emanuel Grant, Frederick C. Harris, Jr., Michael Hinchey,
Deborah Kobza, Youngsong Mun, Roy Sterritt, and Nary Subramanian.

We present the proceedings of SERP'05.

Hamid R. Arabnia and Hassan Reza
SERP’05 Program Committee

Contents

SESSION: AUTONOMIC & AUTONOMOUS SPACE EXPLORATION
SYSTEMS — A & A-SES'05

SPAACE :: Self- Properties for an Autonomous &Autonomic Computing Environment 3

8 Sterritt, Mike Hinchey

Progressive Autonomy — An Incremental Agent—based Approach 9
Wikt Truszkowski, Christopher Rouff, Sidney Bailin, Mike Rilee

Specification and Implementation of Autonomic Large~Scale System Behaviors Using 16
Domain Specific Modeling Language Tools
Shikha Ahuja, Shweita Shetty, Sandeep Neema, Di Yao, Steve Nordstrom, Ted Bapty

fxperimenting with an Evolving Ground/Space—based Software Architecture to Enable 23
Sensor Webs
Yaniel Mandl, Stuart Frye

.L._-. odel-Based Approach to Controlling the ST-5 Constellation Lights—QOut Using the 29
WMSEC Message Bus and Simulink
fuion Stanley, Robert Shendock, Kenneth J. Witt, Daniel Mandl

Autonomous and Autenomic Swarms 36

Hichael Hinchey, James Rash, Walter Truszikowski, Christopher Rouff, Roy Sterritt

SESSION: INT'L WORKSHOP ON SYSTEM/SOFTWARE
ARCHITECTURES - IWSSA'05

ferformance Assessment of Architectural Options on Intelligent Distributed Systems 45
Carlos Juiz, Joachim Zottl, GAYnter Haring, Ramon Puigjaner

‘A Framework for Reuse and Parallelization of Large—Scale Scientific Simulation Code 52
Manolo Sherrill, Roberto Mancini, Frederick Harris, Sergiu Dascalu

ASoftware Architecture Intended to Design High Quality Groupware Applications 59
¢ Luis Garrido, Patricia Paderewski, Maria Luisa Rodriguez, Miguel J. Hornos, Manuel
\ogiera

Self*— Properties in NASA Mission . 60
Roy Sterritt, Christopher Rouff, James Rash, Walter Truszkowski, Michael Hinchey

Y~FIRE: Virtual Fire in Realistic Environments 73

Frederick Harris, Michael Penick, Grant Kelly, Juan Quiroz, Sergiu Dascalu, Brian Westphal

Scope Equivalence of Concurrent Systems Based on Bipartite Directed Acyclic Graph 80
Masaki Murakami

Interface Descriptions for Enterprise Architecture 87
Aditya Garg, Rick Kazman

Detection of Anomalies in a Software Architectural Style with Connectors: Position 94
Paper

Michael Shin, Yan Xu

Specification and Performance Metrics for Parallel Programs 101
Brian d'Auriol, Juan Ulloa

Supporting the Development of Adaptable and Secare Software Systems: An NFR 108
Approach

Nary Subramanian, Lawrence Chung

Evaluating Off-The—Shelf Architectural Components : 115
Kendra Cooper, Lawrence Chung, Weimin Ma

Privacy Aware Identity Information Sharing Protocol , 122
Taesung Kim, Jong hyuk Roh, Seung—Hyun Kim

Giving Feedback on MASCQOTime Simulation Results 126
Pere P. Sancho, Carlos Juiz, Ramon Puigjaner

SESSION: SOFTWARE DESIGN

Using Semantic Metrics to Assess Consistency between Design and Implementation of 135
Software)

Cara E. Stein

The Effect of Object—Oriented Data Structure Design and Implementation on 142
Lifecycle Effort: A Case Study

Jack K. Horner

Implementing Multiple Priorities in a Publish—Subscribe System for Netcentric 149
Applicatiens

Margaret McMahon

Applying Design Patterns in Distributing a Genetic Algorithm Application 154

Nick Burns, Mike Bradley, Mei—Ling Liu

UMUL-based Beowulf Cluster Availability Modeling

161

Hertong Song, Chokchai Leangsuksun, Raja Nassar, Yudan Liu, Christian Engelmann, Stephen

Scott

Meta—Model Search: Using XPath to Search Domain-Specific Models
" Rajesh Sudarsan, Jeff Gray

UML 2.0 Consistency Rules Identification
Jean—Pierre Seuma Vidal, Hugues Malgouyres, Gilles Motet

Executable Visual Softﬁrare Modeling —~ The ZOOM Approach
Xiaoping Jia, Adam Steele, Lizhang Qin, Hongming Liu, Chris Jones

Metainterfaces Support Structural and Object—Oriented Software Composition
Enn Tyugu

168

175

182

189

SESSION: SOFTWARE RELIABILITY, ASSURANCE, SECURITY &

PROJECT MANAGEMENT

A Survey of Software Reliability Models and an Application of the Bayesian Belief
Networks Model

Qiaolan Wan, Mansur H. Samadzadeh

Discrete Time Modelling In Software Reliability ~ A Unified Approach
Nazar Sarhan, Omar Shatnawi

Novel Obfuscation Algorithms for Seftware Security
Suma Venkatesh, Levent Ertaul

An Attack Packet Simulator for Performance Test of Information Security Systems
Wooyoung Soh, Junsang Jeon, Younseo Jeong

Strengthening Software Integrity through Privacy and Security Requirements
Modelling

Matthew Nicolas Kreeger

Electronic Voting Systems Security Requirements Engineering
Clarence Wilson, Kevin Daimi

SESSION: FORMAL METHODS

GUI State—based Accessibility Control in Hierarchical State Machines
Mingtian Ni, Stephen, E Reichenbach

195

202

209

216

223

230

239

Towards Arguing the Cost—effectiveness of Coloured Petri Nets
Jens Beek Jgrgensen

Graph Theory in the Control Flow Analysis of the Large Time Critical Applications

Sergej Alekseev, Giinther Stiege

Generation of OCL. Constraints from B Abstract Machines
Jean—Christophe Voisinet, Bruno Tatibouet, Isabelle Jacques

Verification of Workflow Authorization Reasonability
Ouyangyu Yu, Liu Yu-shu

On a GUI based Editor for the Z Notation
Hiroshi Ishikawa

SESSION: SOFTWARE TESTING

Pseudo—Random System Testing: Coverage Estimation and Enhancement
Ali, Y Duale, Theodore, J Bohizic, Dennis, W Wittig

A Complete Automation of Unit Testing for Java Programs
Yaonsik Cheon, Myoung Kim, Ashaveena Perumandla

Analysis of Open Source Defect Tracking Tools for Use in Defect Estimation
Dileep Potnuri, Catherine V. Stringfellow

A Low Budget Approach to Distributed Automated Black—Box Testing
Andreas Boklund, Christer Selvefors

A Process Model for Development and Utilization of Reusable Test Assets
Annukka Mdntyniemi, Pekka Miki—Asiala, Matti Kérki

Meta—-Modeling Approach to Tool Support for Model Transformation to Validate
Dynamic Behavior of Systems '

Michael Shin, Marta Calderon

GUI Test Case Generation from UML
Yachai Limpiyakorn, Petnamkang Wongsuttipakorn

Using Architectural Modeling for Integration Testing
Hassan Reza, Emanuel Grant

Test Case Prioritization for GUI Testing
Yachai Limpiyakorn, Pisak Kurusathian

246
253
260 |
267

273

283
290
206
302
309

316

323
330

338

SESSION: SOFTWARE ARCHITECTURE & UML/MDA 1

Modeling QoS through Architectural Reflection 347
Francesca Arcelli, Claudia Raibulet, Francesco Tisato

Model Rease in MDA 354
Bouzitouna Salim, Gervais Marie—Pierre, Blanc Xavier

A Transformation Approach for Modeling and Analysis of Complex UML Statecharts: 361
A Case Study

Zhaoxia Hu, Sol Shatz

Software Architecture Evolution: Description and Management Process 368
Nassima Sadou, Mourad Oussalah, Dalila Tamzalit

Maturity of the MDA Tool-assisted Development Process using Business Archetypes: a 375
Case Study

Eric Lefebvre, Blanca Gil

JfelX: A Dynamic Model Driven Architecture 382
Abhiram Gandhe, Puneet Agarwal, Gautam Shroff

A Domain Compeosition Approach 389
Jacky Estublier, Anca Daniela Fonita, German Vega

A New Approach to Combine Models and Code in Model Driven Development 396
Stefan Sarstedt, Jens Kohimeyer, Alexander Raschke, Matthias Schneiderhan

SESSION: SOFTWARE REUSE & ASPECT-ORIENTED

Component + Aspect = an Extensible and Adaptable System Software 403
Paniti Netinant '

Integration of Wrapper Preprocessor into C/C++ IDE for Iimplementing Reusable 408
Components -

Walter Fortner, Hisham Haddad
SESSION: SOFTWARE EDUCATION

A Cultural Shift in Teaching CS Programming Courses and Improving Software 417
Quality ' '

Mohammed Gomaa, Akram Salah, Syed Rahman

hJ”L "’, ‘Af Rra Cienires Movs

- The Vlews of Quahty fof the Requlrements Document 427
'Bemard Wong Cnrr T T

'Software Reqmrements Phase for a Resource Utilization and Schedulmg Tool 435
Jayathz Raghavan, Massood Towhidnejad

Research on Sofiware Requirement Analysis Method Based on Five-Key Elements 442
Arrange.

Wei Fu, Guogiang Caz, Limm Jia, Yangdong Ye, Ye Zhang

A Fuzzy Logic—based Approach for Requirements Elicitation Technigunes Selection 448
Yirsaw Ayalew, Semahegn Abebe

SESSION: ADVANCED MODELS IN SOFTWARE PROJECTS
DEVELOPMENT

Evaluation of the Legal Certainty in the IT 457
Ricardo J. Rejas—~Muslera, José A, Gutierrez—de—Mesa

A Study of the Relationship between Usability and Test Cases Precedence Basedona 462
Formal Model for Activity Diagrams

Pedro J. Lara Bercial, Juan José Escribano Otero, Luis Ferndndez Sanz, José Ramdn Hilera
Gonzalez

Effort Estimation in Agile Software Development: A Method and a Case Study 470
Fernando Machado, Luis Joyanes

Optimizing Software Construction 476
Dario Paciarelli, Marco Pranzo, Juan J. Cuadrado—Gallego, Marfa D. Rodriguez—Moreno

On the Sizing of Knowledge Management Activities and its Relationship to Supporting 483
Technology

Miltiadis Lytras, Miguel—Angel Sicilia, Danai Tsotra
SESSION: PROGRAM ANALYSIS & EXTREME PROGRAMMING

Analyzing Static Structure of Large Software Systems 491
James W. Fawcett, Murat K. Gungor, Arun V. Iyer

JavaContexts: A Java Based Programming Language for the Development of Highly 497
Reusable Software Applications

Waldemar Wieczerzycki

Meta Code Pattern and Its Refinement
Jian Lin, Farokh Bastani, I-Ling Yen

Specifying and Checking Method Call Sequences in JML
Yoonsik Cheon, Ashaveena Perumandia

An Approach to Transforming Parallel Function Specification into Java Program
Framework

Tong Li, Hongji Yang, Baowen Xu, Ligng Shi

Metrics for Multithreaded Java Program Verification
Ahmed Salem, Varun Sharam

Experiments on Mutual Dependence between Class Analysis and Exception Analysis
Jang—Wu Jo, Keehang Kwon

TXP (Traditionally Extreme Programming)
Tarek Alameldm thal Saberwal

SESSION USABILITY & WEB ENGINEER]NG

Reconfigurable Interfaces: A Proposal for Universal Usability Interfaces
Mohammed Gomaa, Akram Salah, Syed Rahman

Version Control in Online Software Repos:tones
"E. Rowland Watkins; Denis A. Nicole

Modeling Services and Web Services: Application of ModelBus
Xavier Blanc, Prawee Sriplakich, Marie—Pierre Gervais

Software Engineering Methodology for E-Commerce Estimation
A. Hameed Al-Elaiwi '

[

Prioritizing Web Usability Attributes Using Intultlomstlc Fuzzy Sets
Punam Bedi, Hema Banan

SESSION: EMPIRICAL/CASE STUDIES & TOOLS

Application of Software Engineering Fundamentals: A Hands on Experience
Cikan Varol, Coskzm Bayrak Robert Ludwzg .

R T T e I S S TN S S A
.‘u.."‘..-r"g« HJ“",»:—;.‘ RN e

Implementation of Network Event'Audit Module Usmg Data Mlmng Method
Wooyoung Soh, Seakjae Han, Wankyoung Kim, Suksoo Ki im, Namsun Choi ‘

504

511

517

524

529

534

543

550
557
564

570

579

' 584

-

Apollo 11 Revisited — An Example of Problem-Based Learning 590
Josepr, R. Bumblis

Introducing Contract—-Based Programming in Industry - a Case Study 596
Martin Blom, Eivind Nordby, Anna Brunstrom

Advanced ISOIEC 12207 for SOC . . 602
Kyunghee Lee, Hyemin Kim, In—Sup Paik, Minkoo Kim

The Kaburobo Contest ' - ' 606
Nachi Ueno, Motohiro Shamoto, Koichi Kato, Yoichi- Muraoka

A Co-Work Tool for Visual Programs 611
Yong—Yun Cho, Chae—Woo Yoo

Updating Scientific Legacy Systems to Bridge the D:gltal Divide: A Case Study 618
H. Keith Edwards, Robert Puckett, Don Thomas . ;

SESSION: PERFORMANCE MODELING ANALYSIS & RISK
- - " ASSESSMENTS T :

Modeling the performance of the Web service platform using Layered Queueing 627
Networks

Soﬁe Van Hoecke, Tom Verdickt, Filip De Turck Bart Dhoedt Pret Demeester

.g

Dynamlc Informational System for Control and Monitoring the Tritlum R_emoval Pilot 634
Plant with Data Transfer and Process Analyses -

Carmen Maria Retevol, Iuliang Stefan, Ovidui Balteanu, Liviu Stefan . -

Software Development Risk Model | R | 640
James W. Fawcett, Murat K. Gungor .

. SESSION: SOFTWARE COST ESTIMATION

A Software Cost Estimation Model for Product Line Ehgineering: SoCoEMo—PLE 649

Sana Ben Abdallah Ben Lamine, Laniia Lubed Jilani, Henda Hajjami Ben Ghezala

A Reguirement-Based Project Esti—matiAon Approach) | 656

Ching—Pao Chang, Ching—seh Wu, Chih—Ping Chu, Jia—Lyn Lv

A Software Complexnty Measurement Techmque for ObJect—Orlented Reverse 663
» Engineering. . : sy P :

Jongwan Kink; Cliong -Sin Hv

Demonic Fixed Point of Sernantics Function 17670
Fairouz Tchier

SESSION: SOFTWARE MAINTENANCE & UNDERSTANDING

Managing Fine—grained Changes in Software Document Relationships 681
Tien Nguyen

Defects in Open Source Software Maintenance — Two Case Stﬁdiesf Apache and 688
Mozilla

Virpi, E Hotti, Timo, P Koponen

Eliciting a Model of Emergency Corrective Maintenance at SAS 694
Mira Kajko-Mattsson, Per Wim‘hgr, Brl'an Vang, Anne Petersen

SESSION: SOFTWARE PROCESS

Towards A Better Understanding Of Process Patterns 703
Hanh Nhi Tran, Bernard Coulette, Bich Thuy Dong .

Goal-Driven Measurement Frhmewﬁvfk for Sbft'\‘;:"ire fﬁnovéﬁon Processes 710
Sybhas Misra, Vinod Kumar, Uma Kumar

A Personal Software Process Tool for Eclipse Environment ' ' 717
Xiaohong Yuan, Percy Vega, Huiming Yu, Yaohang Li

QFD Applied to Software Developmiént " S ' 724
Lelis Tetsuo Murakami, Edison Spain, Jose—Sidnei Martini ; '

Introducing Personal Software Process in A Small Computer Science Program 731
Xiaohong Wang o ' ,

SESSION: PROCESS ANALYSIS + SOFTWARE AGENTS

Improving Prediction Accuracies Using Data Imputation 741
Sumanth Yenduri, Sitharama I'yengar, Louise Perkins

Legacy System Reengineering: Essential Process Steps 748
Gregory C. Arnold, Theresa Jefferson

Framework For Separation of Performance Concerns and Improved Modularity in 754
Multi Agent Systems Using Aspects

Tarig Mehmood, Naveed Ashraf, Khalid Rasheed

-

Understanding Scalability Issues for a Distributed Simulation Environment Using 758
Intelligent Coordinated Entities

April Crockett, Rodger Maarfi, Srini Ramaswamy, Eric Brown, Mike Rogers

A Fuzzy Agént System that Mékes'Autbn(}mous i)eéisions éccordihg tn Sfaté - 764
Transitions on Car Drlvmg N

Chun Kyu Lim, Hyoun Goun Han Byung Ug Kang

SESSION: REVERSE ENGINEERING

Wire-Tapped Intelligence; Machine Recognition Of Specific Phrases To Nab A | 773
Suspect o

J. 8. Mirza, S. A. Hayat

SESSION: IT INTEGRITY

N LR

IT Integfity e : - .
Deborah Kobza

SESSION: SOFTWARE PROJECTS: DEVELOPMENT ASPECTS
. &EXPERIENCE REPORTS

SAI—BOTS: Scripted Artificial Intelligent Basic Online Tank Sirﬁulétor | 793

William Brandstetter, Michael Dye, Jesse Phillips, Jason Porterfield, Frederick Harris, Brian
Westphal

Speclt' ication of AutomN: An Automatic Protem Sequence to Protem—Protem 800
‘Interactmn Software System ‘

Inna Williams, Nicholas Lyle, Sergiu Dascalu Brian Beck Kanwal Brar

DlRT Dust in Real—-tlme The Speclficatlon Process ' ' o807
Marcos Bagmy, Ryan Romero Brett Sulprizio, Hiroko Uda, Joseph Jaquish, F. redenck Harrzs
Thraxion: Three-Dimensional Action Simulator - 314
Justin Gerthoffer, Jon Studebaker, David Cplborne, Jeff Stuart, F. rederick Harris

'Department of Computer Science
Bangkok University
Bangkok, Thailand

netipan@iit.edu

ABSTRACT

lenefils associated with separation of con-
W are well established. Aspect-Or fentation is a
Widology that aims mf sepamrmg componenis
Sispects from the ear!y stages of the software
e, and using techniques (o combmmo them
wler at the nﬂplemenrauon phase. Component-
4 programming systems have shown them-
Ws fo be a natural way of constructing ex-
ble software. Well-defined znterfaces encap-
om, late binding and polymorphism pro-
W extensibility, yel despite this synergy,
atents have not been widely employed at
W swstems level. This is primarily due lo the
e of existing component rechnologres fo
wife the proteclaon and performance re-
Wl of systems software. In this poper we
the requirements for a component sys-
g support extensions, and describe an exten-
Wiy and adaprabrlf!y in the design of system

Ware. e discuss an aspect-or zenrea’ framework
W ean simplify system design by expressing it at
Weher level of abstrac(:on Our ‘work concen-

f’ ots, components, and layers from each other.
W goal is 1o achieve g better design model for
am software in terms of extensibility, reuse and

Sptability.

ework, Extensibility, System Software.
stem Software Design Issues

- . ' ol e - o M

tommercialization of system software] such as

lling" systems,” has resulteéd in'- their design

Software Eng. Research & Practice (SERP'05)

403

System Softwére

Paniti Netinant"?

“Concurrent Programming Research Group

Computer Science Department %
1linois Institute of Technology
Chicago, IL, U.S.A.
elrad@iit.edu

gaining more importance. Operating systems are
constantly extended for improvements : as well as to
support new features and hardware.. Dunng desxgn
of system soﬁware ceﬂam decisions such as reus-
ablhty and adaptab:llty [5] are crucial. Extens;b;]—
ity prov;des the capability to either change current
features or to support new features. Ava11ab111ty is
the ablhty of the system to prowdmg the service
over a penod of time. Stability, is the capability of
the system malntammg the correct serwce in every
same state ' '

System software design 1ssues include distrib-
uted algonthms naming, resource allocatlon dis-
tr 1buted operating systems, system mtegrat]on re-
habll]ty, tools and languages real time _systems
and performance measurement

.....

2. Separatlon of Concerns

The prmmple of separatlon of concerns lies at the
heart of software development as it introduces a
number of benefits, originally addressed by [4, 14]
These include better understanding, extensibility,
debugging of the system, and better reuse of the
concerns. Although these benefits have been well
established, there is still no universally accepted

methodology in order to guide a programmer how '
to best achieve it. The system designer has to con-
sider how a number of aspects in the system can be
captured, and how a separation of concerns [14, 9]
will be addressed both in the design and implemen-
tation of the system software,

..Functional decomposition, has:;so . far. been
achxeved along one-diniension, based on the under-
lying paradigm. In Object-Oriented Programming
(OOP), this dimension is a component hierarchy
that includes methods, objects and classes. Current
programming languages and techniques have been

wiive to functional decomposition. Further,
ing systern design has also been aligned with

Sier, no functional decomposition technique
i managed to address a complete separation
wacerns. OOP seems to work well only if the
m can be described with relatively simple
Wifiees among objects. Unfortunately, this is not
s when we move from sequential program-
Mg to concurrent and distributed programming.
A tystem software becomes larger, the interac-
L uf their components is becoming more com-
0. The interaction may limit reuse, comprehen-
, and make the system software difficult to
Niate the design and correctness.

Cerlain properties of the systemns do not localize
. Rather, they tend to cut across groups of
Stional compenents, making the system difficult
Wanderstand and evolve. Features such as sched-
wng, synchronization, fault tolerance, security,
Sl halancing, performance measurement, testing
o werifications are all expressed in such a way
St they tend to cut across groups of objects. This
meting of concerns [10] results in an increase of
A dependencies between functional components
Bt makes their source code difficult to under-
Wi, evolve, and maintain. As a result, simple
Wect interfaces are violated and the traditional
0P benefits no longer hold.

One current attempt to resolve this issue is the
apeet-Oriented Software Architecture. We distin-
sk between components and aspects in the de-
W of system software. Aspect-Oriented Pro-
Jmming (AOP) [7, 8, 10] is a methodology that
Waoests a separation of components and aspects
fum the early stages of the software life cycle as-

p’.tx should be addressed relatively separately '

#jn'n the functional components. At the implemen-

Miion phase, different AOP technologies use
hanisms to combine aspects and components
ether.

In this paper we address a number of system
®iign issues based on an aspectual decomposition
¥ in the context of the support provided by As-
@et-Oriented Frameworks [1, 2, 13, 14]. Our goals
fre to provide a better design for system software
ﬁmpared with what has so far been able to be sup-
furted by traditional approaches, better flexibility
fd higher reusability, as well as to provide a tech-
figue that would be practical to implement.

Conf. on Software Eng. Research & Practice (SERP'05),

3. An Aspect-Oriented Frameworks

In [1}, 12] AOP is viewed as a general frame-
work for separating the concerns in the system
software. Dijkstra infroduced the layered approach
for the -design and implementation of operating
systems [3]. The layered approach, consisted of
layers and components, has showed all the advan-
tages of the modular design. Our approach™ad-
dresses the separation of components and aspects
from the early stages of design, and uses a frame-
work to capture the creation of system aspects as
well as the coordination of components and aspects
(as well as inter-aspect coordination} during run-
time.

Our proposed framework is based on decompo-
sition of aspects in system design that consists of
components, aspects, and layers. On top of compo-
nents and aspects, a layer consists of a collection of
components and aspects. In general, lower layer's
deal with system sofiware. The higher layers deal
with application software. The higher layer, the
closer the specification and requirement are of the
application software.

Operaling Syslems

Fiie Process Cormmunication Memory
Management Management managemen!
(Fault Tolerance”)

edufin:

== Synchonizaion | 1)

Aspects Components

Figure 1. Fault tolerance and scheduling aspects
cut across components in the operating systéms
such as file system, process management, and
comununication.

By separating the different aspects of each
component, we can separate components, aspects,
and layers from each other. It would thus be possi-
ble to abstract and compose them to produce the
overall system. This would result in the clarifica-
tion of interaction and increased understanding
aspects of each component in the system design
and implementation. High-level of abstraction is
easier to understand. Further, the reusability
achieved by the higher level can use the lower
level of the implementation not only to promote
extensibility and refinement, but also to reduce cost
and time in system development. A change in the
implementation at a lower Jevel would not result in

yihenge at the higher level if the interface level
hs not been changed. Thus the design can achieve
ihl!lty, consistency, and separation of concerns.
__ll aspect might have multiple domains. Some as-
%el (scheduling, synchronization, naming, and
Wilt tolerance e.g.) is scattered among many com-
wients in the system with varying policies, differ-
Wt mechanism, and possibly under different appli-
ilons Therefore, an aspect can be redefined to
St the specific requirement.

31 Example

The proposed Aspect-Oriented Frameworks for
witem software [13, 14, 15] is an extended model
Wihe Aspect Moderator Framework [1, 2.

The overall framework architecture is divided
ity two frameworks based on two layers: a base
mmework on the lowest layer and an application
mmework on the upper layers. The Base Frame-
wirk corresponds to the system layer. On the upper
Byer(s) we may have more than one application
fameworks.

" The framework uses design patterns [6]. In this
fimework, aspects are created using the Abstract
'glory and the Bridge patterns. The Abstract Fac-
iry would isolate aspects from implementation
lasses because the factory encapsulates the re-
spunsibility and the process of creating aspect ob-

5. The class of concrete aspect appears only
nee in a functionality, where it’s instantiated, The

amework promotes consistency when an aspect is
modified. The Bridge pattern avoids a permanent
Binding between an abstraction and its implementa-
Jtien. An example where this would be beneficial is

When an implementation concern must be selected

@ switched at run-time. This way, different aspect
ibstractions and implementations can be combined
‘nd extended independently. This implementation
i still useful when a change in the implementation
1of a class must not affect its existing components.
As aresult, a class need not be recompiled, but just
re-linked. This approach supports polymorphism,
and manages to avoid proliferation. Changing the
m‘rplementahon of an aspect abstraction should
have no impact on functionality either. A smart-
protection proxy controls access to the aspects and
allows additional housekeepmg tasks when an as-
pect is accessed.

~ In the appllcatzon framework the Adapfer pat-
‘ern allows the aspect factory to either convert the

F. on Soffware Eng. Research & Practice (SERP'05)
|

405

interface of an existing aspect (super aspect or as-
pects in the lower layers) into another interface
functionality expect or to create a new aspect, Ide-
ally, a new aspect should reuse an existing aspect
to create new aspects, when it could be used. The
upper layer can redefine existing aspects and over-
ride them.

Application —
Frameworks

—

Base
Framework

Figure 2. Aspect-Oriented Framework.
3.2 Adaptability of Framework

The general architecture of the framework pro-
motes reusability (the upper layer can reuse aspects
from the lower layer), extensibility, and ensures
adaptability of aspects and components because
both are designed and implemented relatively sepa-
rately from each other. Aspects in the application
framework can be extended and redefined by as-
pects provided by the layer to meet new require-
ments. A new aspect can be added in both system
layer and application layer without interfering with
aspects or components in other layer. The Aspect-
Moderator in both frameworks need not be modi-
fied when a new aspect is introduced. ‘

4, Discussion

The Aspect-Oriented Design Framework is a
three-dimensional model (ACL) that consists of a
collection of aspects, components, and layers. As-
pects can provide the cross-cutting abstractions.
Components form the main functionality of the
system. Layers can be divided into lower, interme-
diate, and upper level. The lower Jevel represents
the operating system providing reusable primitives
for the intermediate and upper levels. The inferme-
diate level corresponds to the system programiming .
or interface definition. The upper level corresponds
to application and programming level.

4.1 Reusability, Stability and Consistency’
The abstraction of an aspect in the lower level

provides transparency. The upper aspects or com-
ponents can use the lower aspects or componerits

Wl knowing the internal details of how the
B aspects or compornents are implemented. In-
jon hiding promotes either component or
%l modifiability and simplifies the perception
W2 upper level. The upper level component or
tion can use the abstraction of aspect and
Migdnent in the lower level without knowing the
giel details of how the lower level aspects are
imcted. If the lower aspects are changed (to
mve performance or to add new features, for
ample), provided the aspect interface (intermedi-
Hlevel) remains ‘constant, the upper level aspect
st change. This approach could result in bet-

Software reusability not only can save time in

am development, but it can also avoid unnec-
proliferation -of fanctions., By reusing of
Wit and debugged high quality software, it will
[Wice problems after- a, system becomes opera-
ml. Polymorphism enables us to provide a gen-
mlity of aspect to handle a2 wide variety of poli-
= I also makes it easy to add new. capabilities to
aspect or to improve performance of compo-
s, It w11[help to deal with complexity and re-

for 1mplement1ng ,layered software Sys-
#s. When fundamental aspects of the system
uh as scheduling, synchronization, and fault tol-

i 2 pol;cy for example) we can designate that a
_' aspect s to e1ther mherlt from or ovemde its

gh-aspects in the upper levels. The sole purpose of

libstract aspect is to provide an appropriate su-
raspect from which other aspects could inherit,
fide or redefine implementation. Process man-
gement in the operating. systems can redefine
_ u]mg by round robin. Communication com-
Buent mlght need FCFS The:file, . system would
e need to nse, the 9ame pohcy as’ pzocess man—
| _nt F01 uample a database nppllcqtlon does

Conf. on Software Eng. Research & Practice (SERP'05)

a scan of one portion of its memory, while doing
random access to another portion. A scheduling of
a file system implementation using LRU replace-
ment policy will. perform poorly on the scanned
memory. A scheduling of a file system should be
capable to reconfigure to an appropriate policy for
a better performance.. :

4.4 Archi.t‘ectura] and Language Indep‘tnd—
ence

The framework provides an independent archi-
tecture and language because each framework is
not a modular unit such as a procedures or an ob-
ject. System design should begin by focusing atten-
tion on patterns that can be used to solve the simi-
lar problem, postponing considerations of architec-
ture and language constructs. At the implementa-
tion level, Aspect-Oriented. Framework can -be
modeled in abstractions like classes in Object-
Oriented Programming or aspects in Aspeci-
Oriented Programming. ..

5. Cpnclusion.

System software design should not be seen as a
two-dimensional model consisting of layers and
components that includes single monolithic as-
pects. In this paper, we stressed the importance of
the better separation of concerns within the context
of an- Aspect-Oriented Framework and we dis-
cussed how this technique could provide an alter-
native to system software such as operating system
design and implementation. Our work concentrates
on the decomposition of aspécts and coinponents in
software systéms and our goal is to achieve a better

“design and implementation of system and applica-

tion software. Our design framework provides an
adaptable model that allows for an open language
where new aspects can be manageable and added
in both application and system software easier. The
interaction of newly added aspects is specified by a
contract that binds a new aspect to the rest of the
system rathér than having to re-engineer the whole
system. The framework approach is promising, as
it seemns to be able to address a large number of
systém“and apphcataon aspects? The* advintage' of
decomposmg of fiinctional éomporients and aspects
in‘every layer is that it promotes -comprehénsion,
reusability, adaptability and manageability of both

iBoftware Eng. Research & Practice (SERP'05) 407

jents and aspects in system and application Springer Verlag, 1998.

i [11) Lorenz H., David, Visitor Beans; An Aspect-
Oriented Pattern ECOOP Workshop on As-
pect-Oriented Programming, np., 1998.

"[12] Mens K., L. Cristina, T. Badir, and G. Kicza-

gantinides C. A., A. Bader, T. Elrad.” A les: Aspect-Oriented Programming. ECOOP
mework to Address a Two-Dimehsional Workshop report on Aspect-Oriented Pro-

gtion of Concerns. Position paper to - gramming, np., 1997.

WSLA Workshop on Multidimensional (13] Netinant P., and T. Elrad. Improving Coneur-

imaration of Concerns, np., Denver, CO, No- rent Object Interact_;ons Using Aspect Orienta-

tber 1999, . tion. Proceedings of the International Confer-

ntln]des C. A., A. Bader, T Elrad M.E. - ence on Sofiware Engineering Research and
d, and P. Netinant. ‘Designing an Aspect- Practice (SERP 2004), Las Vegas, Nevada,

benled Framework in an Qbject-Oriented USA, June 2004.

wironment, ACM Computing Surveys, Vol. (14] Pamas D.; On the Criteria to be Used inDe-
No. lés,-Article No. 41, March 2000, . - €OMposing Systems into Modules. Communi- =
lksira B.-W. The Structure of THE Multi. - cations of ACM, Vol. 15, No. 12, pp. 1053-
geramming System. ' Communications of]058 December 1972. :
(M, pp. 341-346, May 1968,

fstra E. 'W. A4 Discipline of Programming.

glandwood Cliff, NJ: Prentice-Hall, 1976.

ad' M. E., M. Cline. Aspeit of Software

Wintability. Communications of ACM, Vol

\No. 10, pp: 58-59, 1996.

mma E., R. Helm, R. Johnson, and J. Vlis-

gs. Design Pattern: Elements of Reusable

'tOrrenfed Sofnvare Reading, MA: Ad-

son-Wesley, 1993,

Sezales G., J. Lampmg, A. Mendhekar, C.

faeda, C Lopes 1.-M. Lomgtler and J. Irwin.

dspect-Oriented Programmmg ACM Comput-

i Surveys, Vol. 28, No. des, Articles No.

3, np., Decemberl996

les G., J. Lamping, A.. Mendhekar C.

fiteda, C. V. Lopes,' J.-M: Loingtier, and J.

Wwin, Aspeci-Oriented Programming. In M. .

it and S. Matsuoka, editors. Proceedings.of

e 1lth Ewropean Conference on Object-

Wiented Programming, number 1241 in Lec-

ite Notes in Computer Science, pp. 220-242, ')
faland, June 9-13 1997, ECCOP 97, Sprmger

‘erlag, Berlin,

gpes C. V. and W. L. Hursch. Separation of

ancerns. College of Computer Science,

uriheastern University, Bosion, Febmary

pes C., B. Tekinerdogan, W. de Menter,
md G. Ktczales Aspect-Oriented Piogalam—
g In. M. Aksat and | SMatmoka .editors,
geedings of the]2th Furopean Conference
Object-Oriented Programming ECCOP*98,

Proceedings of the ISCA
15" International Conference on

SOFTWARE ENGINEERING

AND DATA ENGINEERING

Los Angeles, California, USA
July 6 - 8, 2006

Editors: W. Dosch and W. Perrizo

A Publication of
The International Society for
Computers and Their Applications - ISCA

ISBN: 978-1-880843-59-5

#Proceedings of the ISCA 15" International Conference on Software Engineering and Data
peering (SEDE-20086), held in Los Angeles, California, USA, July 6-8, 2006.

BINSOR: The International Society for Computers and Their Applications — ISCA

weral Chair: Narayan Debnath, Winona State University, USA
1:-:' am Chairs:

Software Engineering: Walter Dosch, University of Libeck, Germany
Data Engineering: William Perrizo, North Dakota State University, USA

pgram Co-Chairs:

‘Software Engineering: Annette Stompel, University of Libeck, Germany
Data Engineering: Imad Rahal, College of St Benedict | St. John's University, USA

INTERNATIONAL PROGRAM COMMITTEE

maR. Abachi, Monash U., Australia Stephen Krebsbach, Daketa State U., USA
im Al-Mubaid, U. of Houston, USA Gordon Lee, San Diego State U, UUSA

Wk Eurgin, UCLA, USA Eda Marchetti, U. of Pisa, Italy
b Canton, Skipanon Inc., USA Merik Meriste, Tartu U., Estonia
pice Cohen, U. of California, USA Pascale Minet, INRIA, France
gto Cuzzocrea, U. of Calabria, Italy Pornsiri Muenchaisri, Chulalongkorn U., Thailand
m Dascalu, U. of Nevada-Reno, USA Mara Nikolaidou, U. of Athens, Greece
%= Denton, North Dakota State U., USA M. Mehdi Owrang O., American U., USA
m Ding, Jiangsu Telecomm. Inc., China Fei Pan, U. of Southern California, USA
W ling, Penn. St. U, Harrisburg , USA Jaan Penjam, Tallinn Technical U., Estonia
=njing Feng, Trent U., Canada David Pheanis, Arizona State U., LJSA
tene Fouchal, U. of Antilles-Guyane, France Dongmei Ren, IBM Inc., USA
:sein Hakimzadeh, U. of Indiana, $ Bend, USA Daniel Riesco, U. Nacional de San Luis, Argentina
arge Hamer, South Dakota State U,, USA Kirk Scott, U. of Alaska, USA
3mzi Haraty, Lebanese American U., Lebanon Howard Sholl, U. of Connecticut, USA
snazhu Hu, Central Michigan U., USA Annette Stiimpel, U. of Labeck, Germany
i Hudson, U. of California, USA Elizabeth Wang, Waynesburg College, USA
Jockheck, Northern State U., USA Lok Yeung, Lingnan U., Hong Kong
a Kapus, U. of Maribor, Slovenia Qinghua Zou, Microsoft Research, USA
Kempa, sd&m, Germany Zhili Zhang, Tibco, USA
& Kranzmiiiler, U. of Linz, Austria

ADDITIONAL REVIEWERS:

&msak Buntha, U. of Nevada, Reno, USA) German Montejano, U. Nacional de San Luis, Argentina
Gros-Désormeaux, U. des Antilles et de Ando Saabas, Tallinn U. of Technology, Estonia
Guyane, France Abbas Tarhini,U. des Antilles et de Guyane, France

PMcMahon, Jr., U, of Nevada, Reno, USA
|
I

L All published papers have been peer reviewed.
l"l This publication is abstracted and indexed in INSPEC and DBLP.

ISCA, 975 Walnut Street, Suite 132, Cary, NC 27511 Ph: {919) 467-5559 - Fax: (919) 467-3430
E-mail: isca@ipass.net VWWW site: hitp://www.isca-hq.org
: right © 2006 by the International Society for Computers and Their Applications (ISCA). All rights reserved.
duction in any form without the written consent of ISCA is prohibited.

eddine Belkhatir, U. of Grenaoble, France Sonke Magnussen, Lufthansa Revenue Services, Germany

Preface

The 15" International Conference on Software Engineering and Data Engineering (SEDE-2006)
Jovides an international forum for scientists throughout the world to present research results jn the
s of software engineering and data engineering. The conference particularly welcomes
sontributions at the junction between theory and practice with immediate impact on applications.

fhis year's SEDE conference is located in Los Angeles, the second largest city in the USA
snginally founded under the name “El Pueblo de Nuestra Senora la Reina de Jos Angeles”. Today
Los Angeles forms a large metropolitan area offering attractive beaches along the Pacific shore and

Hollywood, the historic home of the movie studios.

SEDE-2006 features two invited talks by prominent scientists and 53 contributed papers including a
special session. The conference covers a broad range of topics including theory, methods,
Jpplications and tools. The conference runs — apart from the plenary sessions - in two parallel
iacks. The software engineering track includes sessions about software project management, re-
sagineering and software analysis, software quality, software architectures, aspect oriented design,
Witware metrics, verification and real time systems. The data engineering track comprises sessions
shout data mining, XML and applications, data base design and data warehouses. Two special
sessions on applications in software engineering complement the conference program.

Scientists from more than 20 countries submitted 77 papers to the conference. Each contribution
was evaluated by at least two, mostly three members of the international program commitlee and
ulditional referees judging the originality, significance, technical contents, application contents and
presentation style. We used the START conference system installed at the Liibeck site to automate
the work flow for submission and refereeing.

We gratefully acknowledge the professional work of the international program committee and the
sub-reviewers contributing 225 referee reports. We appreciate the dedication of the invited speakers
Prof. Michael A. Arbib, University of Southern California at Los Angeles, and Prof. Wesley W.
Chu, University of California at Los Angeles, for their contributions. We owe great thanks to Mary
Ann Sullivan for the well-organized conference management.

We also want to thank all presenters and attendees for actively contributing to the success of SEDE-
006. We are looking forward to excellent presentations and interesting discussions, which will
broaden our professional horizons. All participants are invited to make new fniends within the ISCA

family.
Welcome to Los Angeles - welcome to SEDE-2006!

Narayan Debnath
Winona State University, USA
Conference Chair

Walter Dosch William Perrizo

University of Liibeck, Germany North Dakota State University, USA
SE Program Chair DE Program Chair

Annette Stiimpel Imad Rabhal

University of Liibeck, Germany College of St. Benedict | St. John’s University
SE Program Co-chair DE Program Co-chair

INTERNATIONAL SOCIETY FOR COMPUTERS
AND THEIR APPLICATIONS

15™ International Conference on .
Software Engineering and Data Engineering
(SEDE-2006)

July 6 - 8, 2006
Omni Los Angeles Hotel at California Plaza
Los Angeles, California USA

TECHNICAL PAPER INDEX

SOFTWARE ENGINEERING

Traceability for Managing Evolutionary Change
Patrick Maeder, Matthias Riebisch and llka Philippow (Technical University of imenau, Germany} 1

Mercury: A Process Management System based on the Agent Technology
Seung Yong Choi and Hee Yong Youn (Sungkyunkwan University, Korea) and Jeong Ah Kim
(Kwandong University, KOT@a)ccoivvir e et e e e ettt 9

Management Support of Interorganizational Cocperative Software Development
Processes based on Dynamic Process Views
Markus Heller and René Wérzberger (RWTH Aachen University, Germany)..................c..ccccvviviioneeeeeeei 15

Agile Plan Refactoring
David Serr and Stephen Clyde (Utah State University, USA) .. e e 22

Extending Reverse Inheritance
David Serr (Utah State Universify, USA} o a e e s 29

A Strategy to Integrate Legacy Systems
Alfredo Espinosa Reza, José Alfredo Sanchez Ldpez, José Marfa Suarez Jurado, Agustin Quintero '

Reyes (Instituto de Investigaciones EIEGIHCAS, MEXICO)ovviiiiiiveer e, 35
A Prototype Decompiler for 32-bit x86 Executables

Hao Liu and Feodor Vainstein {Georgia Institute of Technology, USA} ..o 41
Debugging with Software Visualization and Contract Discovery

S. Kanat Bolazar and James W. Fawcett (Syracuse University, USA)cooo oo 47
A Method to improve Software Testability

Yuanping Li, Jianmin Wang and Liang Zhao {Tsinghua University, China) ..., 51

Alternative Approach to Utilize Software Defect Reports
Rattikorn Hewetft and Aniruddha Kufkarni {Texas Tech University, USA) .. i 57

Estimating Software Reliability with Static Analysis Techniques

Walter W. Schilling, Jr. and Mansoor Alam (The University of Toledo, USA)ccoiiiieiiiiie i 63

Software Defect Fractal Description

Kai Zhang (Zhongnan University of Economics and Law, CRiNa)ccccoiciciiio i e 69
A

Operational and Program Schemas
M. Burgin (University of California, Los Angeles, USA)oee e i e 74

ASMADE: Automated Schema MApping for Documents Exchange
Alcha-Nabila Benharkat (LIRIS-INSA de Lyon, France), Rami Rifaieh (University of California,
San Diego, USA), Youssef Amghar, Herzi Khaled (LIRIS-INSA de Lyon, France) 79

A Detailed UML Design of a Software Testing Tool
Narayan C. Debnath, Jesse R. Haakenson (Winona State University, USA) Mark Burgin (University of
California, Los Angeles, USA) and Joyali Debnath (Winona State University, USA}covvevvvvvvvennrnnrinnon 86

A Framework for Requirements Elicitation Techniques Selection
Yirsaw Ayalew (University of Botswana, BOISWANE)ccvvveiiiieeeiir e e et e, 92

Using UML in a Non-Software Design Task: Creating an Electronic Software

Engineering Handbook

Sergiu Dascalu (University of Nevada, Reno, USA), Marcel Karam (American University in Beirut,

Lebanon), Muhanna Muhanna and Salyer Reed (University of Nevada, Reno, USA)c.cccoiiiciiiii. o8

The Effects of Requirements and Task Uncertainty on Software Product Quality
Ayad Aldaijy (Royal Saudi Air Force, Saudi Arabia) and Khalid A. Buragga (King Faisal University,
SAUATATADIA) oo e e e e et et e e e e as e e bd et banaaes 104

Correctness as a Relative Gradual Software Property
M. Burgin (University of California, Los Angeles, USA) and N. Debnath (Wincna State University, USA) ... 112

Remote Sensing and Prompting for Early Stage Dementia Patients
Donna L Hudson, Maurice E. Cohen (Universily of California, San Francisco, USA) 116

A High Population, Fault Tolerant Parallel Raytracer
James Skorupski, Ben Weber, and Mei-Ling L. Liu (Cal Poly State University, USA)cccccco i, 122

A Context-Aware Architecture for Railway System
Chia Hung Kac, Hewijin Christine Jiau and Ku Chen Wu (National Cheng Kung University,

FE: 1L A a1 @ U O T TSR URUTSTR 128
JDOSecure: A Security Architecture for the Java Data Objects-Specification
Matthias Merz (University of Mannheim, GermMany) ...c..e.ov oo e ae s 134

Model Checking for Synchronous Java '
Duc-Duy VO and Claude Petitpierre (Swiss Federal Institute of Technology at Lausanne, Switzerland) ... 141

A Formal Approach to Requirement Verification
Divya K. Nair, Stéphane S. Somé (Universily of Ottawa, Canada)ccocooiiiiii i 148

Application of Al Planning Technigue in Software Engineering
Sung Kim (North Dakota State University, USA) ... e e et e e s 154

Establishing a Common Modeling Framework using UML to Effectively Support
Faster-Than-Real-Time Simulation

Mara Nikolaidou, Vassilis Dalakas (Harokopio University of Athens, Greece) Dimosthenis

Anagnostopoulos and George-Dimnitrios Kapos (University of Athens, Greece)c.ccccccei e 158

Design Patterns for Real-time Distributed System
Yigin Xu, Daisy F. Sang (Cal Poly Pomona, USA) and Chang-Shyh Peng (California Lutheran
URIVEISIEY, USA) ettt r et e e e e e e e ee et ean et et ne e e e e e aan 164

Extending the Rapide ADL to Specify Aspect Oriented Software Architectures
Karen Palma ,Yadran Eterovic {(Ponftificia Universidad Catdlica de Chile, Chife) and .
Juan Manuel Murillo (Universidad de Extremadura, Spain)ooei oot 170

Extensibility Aspect-Oriented Framework to Build Agent-Based System Software
Paniti Netinant (Bangkok University, Thailand and Illinois Institute of Technology, USA) ... 177

An Empirical Research of the Software Project Measures Model
Yeonshick Ahn (Kyungwon College, KOTEa) eeeeviiiiiieiie ittt ae e s e et 183

Identification of Suitable Metrics for Reuse Oriented Software Products using the
Methods of Attribute Relevance Analysis
Jasmine K.S (R. V. Colfege of Engineening, INAid)oo.corriruriiiiiriiee et vre e ae e e e 189

DATA ENGINEERING

Biological, Intelligent Text-Based Ranking of Genes

Imad Rahal (College of St. Benedict | St. John's University, USA), Walid Saeed, Arun Srivastava,

Pratap Kotala, Ranapratap Syamala, William Perrizo, and Cesar Carvalho (North Dakota State

UMIVEISIEY, USA) et ettt sttt e e e e e e e et e e e v e e s r ettt e e e e e e e e s rar e e r s 193

Fault Tolerant Control Using a Generalized ANFIS Structure and Evolutionary Tuning
in Soo Lee {Sangju National University, Korea) and Gordon K. Lee (San Diego State University, lJSA) 199

BioFacets: Integrating Biological Databases using Facetted Classification
M. Mahoui, Z. B. Miled, A. Godse, H. Kulkarni, and N. Li (IlUPUIL USA) .cooooiiiiiiriie e 205

A Hierarchical Approach for Clusters in Different Densities
Baoying Wang (Waynesburg College, USA} and William Perrizo (North Dakota State University, USA) 211

Integrating Statically Typechecked XML Data Technologies into Pure Java

Henrike Schuhart, Beda C. Hammerschmidt, and Volker Linnemann (University of Libeck, Germany) 217
Translating XSLT into XQuery

Albin Laga, Praveen Madiraju, Darrel A. Mazzari and Gowri Dara (Marquette University, USA) 223
XINDEX - XPATH Indexing Specification for XML

Kevin Ricords and Qin Ding (Pennsylvania Sfafe University - Harrisburg, USA)iiiiviiiiiiiie . 228

Representation of Accounting Standards : Creating an Ontology for Financial Reporting
Pierre Teller (University of NICE, FranCe)coocivieiiiii i 234

Real Time Self-Maintenable Update to Aggregate Information for Data Warehouse
Clemente Garcia (Instituto Tecnologico de Culiacdn, Mexico} and Matilde Celma (Universidad
Politécnica de Valentia, SPAIN) ...coeeiooi et e e 240

SlidingCubes- Mining for Bigger Dense Regions in Sparse Data Cubes
Shahzad Majeed Tiwana (University of Southern California, USA) ... 246

it

A Predicate-based Incremental Refresh Method for a Data Warehouse
Dongmei Ren, Guogen Zhang (IBM Silicon Valley Lab, USA) and William Perrizo (North Dakota
StAtE UNIVETSIEY, USA) ..ot ettt ae e e vttt e e et e e e e e e e e e e 253

Query Optimization for Distributed Data Streams
Ying Liu and Beth Plale (Indiana University, USA) ..o et e « 259

The P-list for Orthogonal Range Search
Bradford G. Nickerson and Qingxiu Shi (New Brunswick University, Canada)ccccociiviivineenn.n. 265

Design Patterns Across Software Engineering and Relational Databases
Cyrif S. Ku (William Paterson Universily, USA), Thomas J. Marowe (Seton Hall University, USA) and
Nathan M. Mantell (William Paterson University, USA}o et aa s e 271

DNA Sequence Encoding for Relational Storage and SQL Query
Qinghua Zou (Microsoft Corporation, USA) and Raymond K. Pon (University of California,
LOS ANGEIES, USA) oo e e et ——— e e e a et e e 275

Automating Technical Indicators in the Financial Market
Harshpreet S. Walia and James W. Hearne (Western Washington University, USA)} ..oceeiviien i, 281

A Projected Clustering Algorithm in High Dimensional Space
Ping Deng, Weili Wu, Yaochun Huang, Zhongnan Zhang (The University of Texas at Dalfas, USA)............ 286

Chi-Squared Statistical Steganalysis of Database Tables
George Hamer (South Dakota State University, USA) and William Perrizo (North Dakota State
UVEESilY, UG A) oo e e e a e e e e e e e 292

SkiPeR: A Family of Distributed Range Addressing Spaces for Peer-to-Peer Systems
Antonios Daskos, Shahram Ghandeharizadeh, Ramin Shahriari (University of Southemn
L= et T B Y < PO T 298

RFID Systems: An Overview and Open Research Issues
C. Parikh, A. Zeid and S. Kamarthi (Northeastern University, USA) ...t 304

Time-based Workflow Mining
Deniz Canfurk (STM Savunma Teknolojiferi Miihendislik ve Tic. A.S., Turkey) and Nihan Kesim Cicekli
{Middfe East Technical University, TUTKEY)coooi oot e e eer et aaenen eraaes 310

Extensibility Aspect-Oriented Framework to Build Agent-Based
System Software*

Paniti Netinant'*

'Computer Science Department
Bangkok University
Bangkok, Thailand

panitin@bu.ac.th

Abstract

Concurrent real-time software systems are vulnerable
to performance saturation and reliability concerns due
to environmental influences. Building intelligent
concurrent systems that are able to adapt to
environmental changes and reconfigure themselves is the
key to avoiding performance degradation of concurrent
real-time software systems and ensuring the levelness
property of such systems, [n this paper we present a
machine learning-based approach that addresses the
design of agent-based intelligent concurrent software
systems in order to ensure the vreliability and
performance properties for such systems. Although
reliability and performance are conflicting requirements
in most cases, we will show how fo use an aspect-
oriented technology by which these requirements can be
designed, implemented, reused, and replaced in isolation
from each other. The performance and reliability of the
software system can be reasoned about by intelligent
agents who can direct the system to reconfigure itself in
order lo adapt to the environment changes. The agents
rely on the data-mining techniques to discover patterns
of performance degradation or imminent signals of
reliability violation and to predict policies that cope best
with the environmental fluctuations.

Keywords: Framework, Agents, Reusability.

1. Introduction

Concurrent real-time systems are designed mainly in
order 1o ensure performance and the stringent reliability
requirements, sometimes referred to as quality
properties. Until recently, the design and development of
these systems have inter-mixed the quality code with the
functionality code for such systems; the quality
properties cut across the functional components. This
crosscutting phenomenon {1, 2, 5 and 6] generally breaks
the component model, and makes it hard to design, and
reuse, especially when the functional and non-functional
requirements change. Generally requirement changes
force reengineering for these systems. Generally, the

*Computer Science Department
Hlinots Institute of Technology
Chicago, 1L, USA.

functional components for these systems are stable. On
the other hand, the quality requirements are volatile and
reactive to the environment changes. Another issue that
necessitates engineering reconfigurability when
designing these systems is the make It possible to build
these systems so that and real-time properties can be
replaced while the systems are running, in order to adapt
to environmental changes.

Building intelligent software systems that have open
architectures, which support reconfigurability, is
essential for concurrent real-time applications by which
their well-being and performance are heavily dependent
on their capability to cope with the environment
fluctuations. The Mars pathfinder problem [9 and 11] is
a classical example of such systems where conflict of
interest between performance and liveness properties has
forced system reset that was due to a priority inversion
problem. The Mars Pathfinder spacecraft’s engincers
were aware of the priority inheritance solution for such
problems but they preferred not to use, since it may
cause performance degradation for the spacecrafl. The
lack of software adaptability hooks is the main reason
that NASA system engineers chose not to deploy priority
inheritance mechanism in order to avoid the system
resetting.

Aspect-Oriented Programming (AOP) [4 and 6] is a
new programming paradigm that attempts to separate the
functional components from the interaction components
(aspects). Aspects are defined as properties that cut
across groups of functional components. While these
aspects can be thought about and analyzed relatively
separately from the basic funclionality, at the
implementation level they must be combined together.
Programming concerns manually into the system’s
functionality using current component-oriented
languages results in aspects being tangle throughout the
code. This code tangling makes the source code difficult
to develop, understand and evolve because it destroys
modularity and reduces software quality [8]. In this
paper we show how to deploy aspect-oriented
technology, which provides an architectural support for
the design and development of intelligent concurrent
systems. We show how the aspect code can be isolated
from the functional components that otherwise would be

* * This research has been supported by Thailand Research Funding (TRF) orgarization and Bangkok University. The contract is MRGA7B0168.

177

intermingled with the code of the functional components.
Isolating the functional components from the non-
functional components, the aspect code, has many
attractive benefits: first and foremost it promotes
reusability for the functional classes and the aspect
classes. It also simplifies the design of complex systems,
since the interaction code is separated from the
functional code, Our approach is a step toward building
reconfigurable intelligent systems and improves the
software quality as it complements the object-oriented
and component-oriented technologies with a set of
design principles in order to engineer adaptability into
software systems.

In our approach, assembling the intelligent
concurrent systems from both functional and non-
functional components through the use of aspect-oriented
technology supports both static and dynamic adaptability
when building the intelligent concurrent systems.

Recent advances in information technology have
demonstrated that there are numerous issues that may
affect the quality of service for software systems and that
the only way to improve the quality of these services is
by using software agents that monitor, advise, and react
based on the environment changes. A software agent is
an autonomous software component that can react to and
interact with its environment. An agent is autonomous,
since it runs in its own thread of control, and reactive,
because of its capability to respond to incoming
messages.

The agent-based approach is still in its infancy,

although it is getting more popular as more IT
applications are using this approach. Enterprise
applications, B2B applications, Personal Agents,

Information filtering, Information monitoring, and
Interface agents / personal assistants just to name a few.
For example, in information monitoring, activities are
dependent on the timely notification of changes in the
environment or in the data sources. Agents are very
useful for menitoring different data sources for specific
data. Agents can be dispatched to remote locations to
monitor data sources. An interface agent is a program
that is able to operate within a user interface and actively
assist the wuser in operating the interface and
manipulating the underlying system. MS-Office
assistants are an example of this category.

Our experience shows that agent-based approaches
are a key component in building an intelligent concurrent
system. They complement the aspect-oriented and
object-oriented technologies, while an aspect-oriented
solution complements object-oriented technology to
solve the code-tangling phenomenon and improve code
reusability. The agent-based approach complements
these technologies in order to support dynamic
adaptability and ensure quality of services. Frameworks
capture design decisions that are common to applications
in certain domains. Generally, frameworks emphasize
design reuse over code reuse, although a framework may

178

have concrete subclasses that can be used immediately.
In this paper we present a framework that can be used to
build intelligent concurrent systems. The key
contribution of this work is to show how to deploy
aspect-orientation in the design of these systems so that
system requirements that may have an impact on
performance, reliability, and security are isolated from
the functional components, and intelligent agents are
deployed to watch each one of these aspects. As we will
be described in the subsequent sections, aspect-
orientation within our framework helps to engineer
reconfigurability into the intelligent systems such that
policies can be altered, reused, or replaced without
halting the running system. We will also show how to
design the intelligent agents based on data mining
techniques in order to audit and guide the real-time
system from its own training data and to update its
knowledge base in real-time.

2. Agents for Aspect-Oriented Concurrent
Systems

Concurrent object-oriented open software systems are
composed of functional requirements and concurrency
requirements. Mixing the functional code and
concurrency may impede code reuse; this has been
documented in the literature as the inheritance anomaly
problem. Solutions for the inheritance anomaly problem
vary from domain specific languages (ABCL) to
framework based solutions [6 and 7]. Framework
solutions are preferred over domain specific languages,
since these frameworks are based on common object-
oriented languages and require less time to learn and
deploy. Despite the success of the framework based
approaches, support of static and dynamic adaptability
for concurrent software systems has not been addressed
in a formal way.

Recent aspect-oriented approaches [4, 5, 6, and 7}
have provided an elegant sclution to support the static
adaptability aspect for concurrent software systems,
though the dynamic adaptability aspect has been left un-
addressed. Aspect-oriented technology complements the
object-oriented technology in order to aveid so-called
code-tangling phenomena and support static adaptability
for concurrent open software systems; Adaptability [3] is
an important factor that enables software systems to
evolve in order to meet future requirements. Reflective
approaches (8 and 9] offer solutions to support the
dynamic adaptability aspect for open software systems,
though reflection-based sclutions have hard-coded
decision processes that react and adapt to environment
changes in an intelligent way.

Agent-oriented technology is gefting more popular
as more industrial applications start to deploy this
approach. Agents are needed mainly to deal with
uncertainty and react to environment changes and they
are very useful to monitor systems resources and notify

the interested parties to change their behavior to cope
with the environment changes. Methods 1o engineer
intelligence and machine learning within agents vary
from data mining technigues to g-learning {10 and 11].
In [[1], the authors presented an approach based on the
data-mining technique to discover palterns of behavior
and network intrusion detection. And in [12] the authors
have demonstrated how g-routing algorithms can be used
to discover best routes in a highly congested network.

Our approach integrales agent-oriented technology
and aspect-criented technelogy to build intelligent
concurrent software systems [6]; systems that run within
an uncertain environment and require the capability of
altering their components and policies during run time.
Figure 1 shows our integrated view of these
technologics. Qur approach delivers a framework
solution for building these systems. The agents are
necded to assist in the decision making process for
reconfiguring the software system during run time.
Aspect-orientation techniques are used since they isolate
the functionpal components from the aspectual
components like performance and reliability.

Figure 1. A concurrent object as a cluster of
compenents and aspects within the aspect moderator
framework.

The aspect-oriented approach [4] has demonstrated its
effectiveness in building concurrent object-oriented
systems, where the concurrency aspects, - like
synchronization constraints and scheduling policies, are
isolated from the functional components. This approach
helps in building a stable software system that can easily
adapt 10 meet future requirements and react o
environment changes.

The approach stated in [4] did resofve the static
adaptability problem, but did not address the dynamic
adaptability aspect for building intelligent concurrent
software systems. Our research has revealed the need to
have intelligent components, agents that can aid the
concurrent software system in the decision-making
process to reconfigure itself in order to adapt to
environmental changes. The agents in our approach

179

deploy the data mining technique and the Bayesian
algerithm to monitor system resources and predicate
patterns of performance degradation or imminent signals
of reliability violation, and offer advice to react to these
changes. Dealing with environmental uncertainty is
the key chalienge for concurrent real-time systems‘.'
Environmental uncertaiply may have an impact on
performance, reliability, throughput, or quality of service
guarantees. One way to monitor system resources and
environment concept drifis is by gathering data about
usage of systems resources. In our framework we apply
Bayesian algorithms and online learning techniques to
predict environment changes and adapt to these changes.
For example, when a buffer is more than half-full, and
the ratio of the number of waiting puts to the number of
waiting gets is | to 10, we may still prefer put over get, if
though the immediate preference shall be given to get,
the historical data demonstrates that whenever the buffer
is more than half full, the number of waiting gets was
substantially greater than waiting puts. This distinction
between immediate preferences and desires and long-
term well-being objectives has been fully discussed and
advocated in the artificial intelligence discipline. Our
rescarch has revealed that such distinction is extremely
important in butlding open scftware systems that operate
in volatile environments, where system resources can go
through over utilized and underutilized cycles.

Through the support of agents, our framework can be
used to build concurrent open software systems that can
dynamically adapt to environmental changes and deal
with uncertainty. Agents are used te monitor certain
aspects of the software systems; scheduling is an
example of such aspects. Agents have a knowledge base
that they consult to predict the system behavior, and
update their knowledge base to kecep pace with current
environment settings

3. Avrchitecture Of The Framework

Our cobservation suggests that an Aspect-Oriented
Systems (AOS) that uses Aspect-Oriented Framework
could support designers and programmers in cleanly
separating components and system aspectual properties
from each other. Our framework is based on Aspect-
Oriented techniques and layered approach [1]. We argue
that system aspectual properties of the operating system
should be excluded from the system components or
services if there is a possibility 1o often change it, and it
should not be treated as a single monolithic aspect. Our
proposed framework (CAL}) is based on system aspectual
decomposition of crossculting concerns in operating
system design and implementation. CAL framework
consists of two f{rameworks: Based Layer and
Application Layer Framework.

The aspect-oriented framework supports both vertical
and horizontal compositions. Functional and aspectual
property components in the framework can be composed

vertically or horizontaily. In vertical composition, the
upper layer can use the lower functional or aspectual
property components from the lower layer. In horizontal
composition, functional and aspeciual property
components in the particular layer only use to be
composed.

The framework is based on system aspectual
decomposition of crosscutting concerns in operating
system design and implementation. The framework
consists of two frameworks: The Based Layer and The
Application Layer Framework. A system aspectual
property is implemented in the SystemAspect class,
while a2 component of the system is implemented as a
Component class. Alike Aspect] [11], our framework
uses PointCut, Precondition, and Advice. The framework

uses PointCut, Precondition, and Advice. The
AspectModerator class, where the point cut is defined,
combines both system aspectual properties and

components together at runtime. Pointcuts are defined
collections of join points, where system aspectual
properties will be altered and executed in the program
flow. Every aspectual property can identify and
implement preconditions. A precondition is defined a set
of conditions or requirements that must hold in order that
an aspect may be executed. Advice is a defined
collection of methods for each aspectual property that
should be executed at join points. Advice can be either
before or after advice. Before advice can be
implemented as dlocking or non-blocking. Before advice
is executed when the join point is reached, before the
component is executed, if the precondition holds. After
advice is executed after the component at the join point
is executed. Every aspectual property will define advice
methods. Figure 2 and 3 illustrated the execution model
of a pointcut in the framework based on inter-
dependency and intra-dependency.

In this paper, we show how producers/consumers
problem can be implemented in the based layer
framework. A system aspectual property is implemented
in SystemAspect class, while a component of the system
is implemented as Component class. Alike Aspect] [9],
our framework uses PointCut, Precondition, and Advice.
AspectModerator object, where the point cut is defined,
combines both system aspectual properties | and
components together at run-time.

Pointcut is defined collections of join points, where
system aspectual properties will be altered and executed
in the program flow. Every aspectual property could
identify and implement precondition. Precondition is
defined a set of conditions or requirements that must be
hold in order to be executed an aspect. Advice is defined
collections of metheds for each aspectual property that
should be executed at join points. Advice could be either
before or after. Before advice could be implemented as
blocking or non-blocking. Before advice executes when
join point is reached, before the component executed,
and if the precondition is hold. After advice executes

180

Figure 3. PointCut Defines Intra-dependency

after the component at the join point executes. Every
aspectual property will define advice methods. Figure 3
and 4 are illustrated the execution model of a pointcut in
the CAL framework based on inter-dependency and
intra-dependency.

Our proposed framework (CAL) is based on system
aspectual decomposition of crosscutting concerns in
operating system design and implementation. CAL
framework consists of two frameworks: Based Layer and
Application Layer Framework. In this paper, we show
how producers/consumers problem can be implemented
in the based layer framework. A system aspectual
property is implemented in SystemAspect class, while a
component of the system is implemented as Component
class. AspectModerator object, where the point cut is
defined, combines both system aspectual properties and
components together at run-time. A Pointcut is defined
collections of join points, where system aspectual
properties will be altered and executed in the program
flow. Every aspectual property could identify and
implement precondition. Precondition is defined a set of
conditions or requirements that must be hold in order to
be executed an aspect. Advice is defined collections of
methods for each aspectual property that should be
executed at join points. Advice could be either before or
after. Before advice could be implemented as blocking or
non-blocking. Before advice executes when join point is
reached, before the component executed, and if the

precondition is hold. After advice executes after the
component at the join point executes

4. Implementing The Framework

The framework consists of four components
comprising the architecture of the framework.
= Each functional object {component} provides its
services (methods) stripped of any aspectual
properties (for example, no synchronization is
included in Buffer objects).
= A proxy object intercepts called methods and
transfers the calls to the AspectModerator.
= An AspectModerator object consists of the rules and
strategies needed to bind aspects at runtime. Aspects
are sclected from the AspectBank. The
AspectModerator orders the execution of aspects.
The order of execution can be static or dynamic.
Then, each precondition will be checked whether it
is satisfied or not.
= An AspectBank object consists of aspect objects that
implement different policies of a variety of aspects.
This section presents the design and development of
aspect-oriented framework. The model is presented to
demonstrate horizontal composition of the framework.
The system service must be implemented as a
Component class. The system aspectual property
(SystemAspect class) must be derived from the
SystemAbstractAspect interface to implement the
required behavior of a system aspectual property. A
SystemAspectFactory consists of many system aspectual
properties such as synchronization, tracing, logging, and
reliability. The SystemAspectFactory, derived from the
SystemAbstract AspectFactory interface, is known as an

aspect bank.
During runtime, each SystemAspectFactory will be
associated with one SystemAspect. The

AspectModerator class must be derived from the

AspectModerator interface to implement the required

behavior. The following points are important about the

aspect-oriented framework:

= A base layer framework is an implementation of an
underlying system.

®» An application layer framework is- an
implementation of application software over the
system software represented by a base layer
framework.

= A client object requests a service through a
ProxyObject object of a framework.

» A functional component is implemented as a
Component class without any aspectual property.

» A SystemAspectFactory object consists of various
SystemAspect objects. A SystemAspect object is
controlled by a SystemAspectFactory object.

= Each system aspectual property must
implemented as a SystemAspect object.

be

181

* Each crossculting between Component object and a

SystemAspect object must be defined in
AspectModerator object as joinpoints in a Pointcut
method.

® A client requests a service by sending a message to a
ProxyObject object. The ProxyObject objeck
changes the request to a specific pointcut method,
and forwards it to the AspectModerator object.

The Proxy class is responsible for intercepting and
forwarding the message sent from Client object to
request a service. The Proxy class must implement the
behavior of intercepting a service request. A client object
of an aspect-oriented framework must request a service
by calling the call() method. A call{) method consists of
at least two parameters: object name provided a service
and a service requested to serve. The first parameter is of
type string, and the second is type of string as well. The
ProxyObject class will forward a request to the
AspectModerator object by calling a PointCut() method.
A PomtCut() method must have the same number
parameters and the same parameter type as the call()
method.

The SystemAspectFactor class must be derived from
the SystemAspectFactory Abstract interface to implement
the required behavior. The AspectModerator class is
responsible for composing the functional components
and the system aspectual property into a service request.
The AspectModerator class acts like a coordinator
between functional components and system aspectual
properties, when and where system aspectual properties
will be composed into a functional component. The
composition of system aspectual properties and
functional components must be guided and defined as
PointCut() method. Each PointCut() method must have at
least two parameters: component name and service name
(methods of the component) that will be composed. The
first parameter is of type string, and the second is type of
string as well.

The AspectModerator class will create the
SystemAspectFactory object. The SystemAspectFactory
object can support either static or dynamic aspects at
runtime. The attachImple() method is used to associate a
system aspectual property of a SystemAspectFactory
object. The AspectModerator class will be associated
with functional components and system aspectual
properties that will be composed. The PointCut() method
will define join points between functional components
and system aspectual property. Currently, the PointCut()
method uses if...then...else... statements to define
joinpoints. The synchronization aspect property crosscuts
both read and write services. It crosscuts the before and
after execution of read and write services. A tracing
property crosscuts both read and write services. It only
crosscuts the after execution of read and write services.

The SystemAspectFactor class must be derived from
the SystemAspectFactoryAbstract interface {o implement

the required behavior. The SystemAspectFactory class
provides a dynamic binding of variety system aspectual
properties. It focuses on the interface of the system
aspectual property. Each system aspectual property must
be derived from the SystemAspectAbstract interface to
implement the required behavior. Implementation of a
system aspectual property is implemented in the
SystemAspect class. Each system aspectual property can
define before(), after(), and precondition(}) methods
depending on its needs.

The AspectModerator class operates composition
between system aspectual properties and functional
components using a composition rule defined by join
points of a pointcut. The AspectModerator class
performs composition rules by sending AspectFactory
messages. Messages sending causes polymorphism. The
implementation of AspectFactory uses bridge patterns. A
message finds the correct member object of the
AspectFactory, and invokes that object. With
polymorphism calls, AspectModerator requires less
information about each SystemAspect, so the
AspectModerator only needs to have the right
SystemAspect interface.

5. Conclusion

Agent-based software systems are the next wave in
the software engineering discipline. Recent advances in
software technology have stressed the need to build
intelligent open software systems in order to build
dynamically reconfigurable software systems that can
deal with environment uncertainty and predict usage
patterns for system resources. A key factor for building
highly reconfigurable software systems is to identify and
isolate the aspectual code from the functional code in
order to maximize reusability and facilitate
reconfigurability. Aspect-oriented programming is an
emerging programming technique that makes it possible
to engineer the reconfigurability of software systems. We
use software agents in our framework in order to support
the decision-making processes for such systems. Our
framework based approach integrates aspect-oriented
technology and agent-orientation in order to support the
dynamic adaptability aspect for intelligent concurrent
software systems, where agents can be asked to monitor
system properties and react to undesirable events by
reconfiguring the software without halting the running
system. The Mars Pathfinder resetting problem was due
to hard-coded decisions. The Pathfinder software system
was not able to reason about the environment and itself.
We can build intelligent software systems based on
agents and aspect-orientation, such that the decision
making process that copes with the environment
fluctuations is isolated from the core functional
components. Agents can be used to alter the bias of the
system, whenever conflicts arise; between performance
and reliability.

182

6. Reference

[1}1Dijkstra, Edsger W. The Structure of THE
Multiprogramming System. Communications of ACM,
Vol. 26, No. 1, pp.49-52, January 1983. «
[2] Dijkstra, Edsger W. A Discipline of Programming.
Englandwood CIiff, NJ: Prentice-Hall, 1976.

[3] Fayad, M. E.,, M. Cline. Aspect of Software
Adaptabil-ity. Communications of ACM, Vol. 39, No.
10, pp.58-59, 1996.

[4] Kiczales G., J. Lamping, A. Mendhekar, C. Maeda,
C. V. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-
Oriented Programming. In M. Aksit and S. Matsucka,
editors. Proceedings of the 11th European Conference on
Object-Oriented Programming, number 1241 in Lecture
Notes in Computer Science, pp.220-242, Finland, June
9-13 1997. ECCOP’97, Springer Verlag, Berlin.

{5] Kubat, M. (1998), “4 Machine Learning-Based
Approach to Load Balancing in Computer Networks,”
Cybermetics and Systems Journal, 23, 1992, pp. 389-
400.

[6] Lopes C., B. Tekinerdogan, W. de Meuter, and G.
Kic-zales. Aspect-Oriented Programming. In M. Aksit
and S.Matsucka, editors, Proceedings of the 12th
European Conference on Object-Oriented Programming
EC-COP’98, Springer Verlag, 1998.

[7} Netinant P., C. A. Constantinides, T. Elrad, M, E.
Fayad. Supporting Aspectual Decomposition in the
Design of Adaptable Operating Systems Using Aspect-
Oriented Frameworks. Proceedings of 3rd Workshop on
Object-Orientation and Operating Systems ECOOP-
O00OWS 2000, pp.36-46, Sophia Antipolis, France, June
2000.

[8] Netinant P., C. A, Constantinides, T. Elrad, and M. E.
Fayad., Supporting the Design of Adaptable Operating
Systems Using Aspect-Oriented Frameworks.
Proceedings of the International Conference of Parallel
and Distributed Processing Techniques and Applications
{(PDPTA), pp.271-278, Las Vegas, NV, June 2000.
[9}Parnas, D., On the Criteria to be Used “in
Decomposing Systems into Modules. Communications
of ACM, Vol. 15, No. 12, pp.1053-1058, December
1972.

[10] Sha, L., Rajkumar, R., and Lehoczky, J.P.(1990).
Priority Inheritance Protocols: An Approach to Real-
Time Synchronization. fn [FEE Transactions on
Compulers, vol, 39, pp. 1175-1185.

[11] The Aspect] Primer, in WebPages at
http://www.aspectj.org, The Aspect] Team.

[12] Wilner, D. (1997). “ The Path Finder Invited Talk,”
The I8th IEEE Real-Time Systems Symposium, San
Francisco, December, 1997,

PROCEEDINGS OF
THE 2006 INTERNATIONAL CONFERENCE ON SOFTWARE
ENGINEERING RESEARCH & PRACTICE

& .
CONFERENCE ON PROGRAMMING LANGUAGES & COMPILERS

ERP'06

‘Volume I1

Editors

Hamid R. Arabnia
Hassan Reza

Associate Editors

Nadim Asif, Lawrence Chung, Emanuel Grant
Ray Hashemi, Ashu M. G. Solo
Nary Subramanian

Las Vegas, Nevada, USA
June 26-29, 2006
©CSREA Press

This set of volumes contain papers presented at The 2006 Intemational Conference on Software
Engineering Research & Practice (SERP'06) and Conference on Programming Languages &

Compilers (PLC'06). Their inclusion in this publication does not necessarily constitute

endorsements by editors or by the publisher. .

Copyright and Reprint Permission

Copying without a fee is permitted provided that the copies are not made or distributed for direct
commercial advantage, and credit to source is given. Abstracting is permitted with credit to the
source. Please contact the publisher for other copying, reprint, or republication permission.

) ©
Copyright 2006 CSREA Press
ISBN: 1-932415-90-4, 1-932415-91-2 (1-932415-92-0)
Printed in the United States of America

CSREA Press
U. 8. A.

Foreword

It gives us great pleasure to introduce this collection of papers to be presented at the 2006
International Conference on Software Engineering Research & Practice (SERP'06) and
Programming Languages & Compilers (PLC'06), June 26 through 29, 2006, at Monte Carlo
Resort, Las Vegas, Nevada, USA.

The Academic Co-sponsors of this year’s event include: Massachusetts Institute of Technology’s
(MIT) Media Lab (http://www.media.mit.edu/); Texas Advanced Computer Center (TACC) of
University of Texas at Austin (http:/fwww tacc.utexas.edw/); Institute for Informatics Problems of
Russian Academy of Sciences, Moscow, Russia (The IIP of Russian Academy of Sciences is co-
sponsoring the ILINTEC Workshop and MLMT A Conference only -
http://www.ipiran.re/english/main.asp); and The Ohio Supercomputer Center (OSC is co-
sponsoring the CIC Conference only - http://www.osc.edu).

Organizers and Co-sponsors at-large include: A number of university faculty members and
their staff (names appear on the cover of proceedings); World Academy of Science
(http:/lwww.world-academy-of-science.org/worldcomp06/ws/index_html); and Computer
Science Research, Education, & Apphcatlons Press.

Media Co-Sponsors include: HPC wire (http://www.hpcwire.com/); GRID today

(http:/iwww. gridtoday.com/); H2CM Hodges' Health (http://www.p-jones.demon.co.uk/); and
Charter Cable Internet Access (http://www.ezisp.info/high-speed/cable-intermet html).

Other Co-Sponsors include: One Laptop Per Child Association (OLPC; http://www.laptop.org/);
and International Technology Institute (http://www itiworld.org/).

In addition to the above, several publishers of computer science and computer engineering

books and journals, chapters and/or task forces of computer science associations/organizations
from 12 countries, and developers of high-performance machines and systems have provided
significant help in organizing the conference.

The program committee would like to thank all those who submitted papers for consideration.
About 47% of the submissions were from outside the United States. Each submission was
evaluated by two referees (except for papers that were submitted to chairs of sessions who were
responsible for the evaluation of these papers.) The overall paper acceptance rate was about 34%
(as of April 30, 2006).

We are very grateful to the many colleagues who helped in organizing the conference. In
particular, we would like to thank the members of the SERP’ 06 and PLC 06 Program Commiftee
who we hope will offer their help again in organizing the next year's conference (SERP’07). The
SERP'06 and PLC’ 06 Program Committee members are:

Prof. Hamid R. Arabnia (Coordinator/Co-Chair), University of Georgia, USA (SERP/PLC)

Prof. Nadim Asif (Track Chair), University of Lahore, Lahore, Pakistan (SERP)

Rajesh K. Bhatia, Thapar Inst. of Engg. & Tech. (Deemed Univ.), Punjab, India (SERP)

Prof. William Cheng-Chung Chu, TungHai University, Taiwan (SERP)

Dr. Yoonsik Cheon, University of Texas at El Paso, El Paso, Texas, USA (SERF/PLC)

Prof. Lawrence Chung (Track Chair), Univ. of Texas at Dallas, Richardson, TX, USA (SERP)

Dr. Joseph Cote (Track Chair), CIO, Enterprise Architecture and Standards Division,
Treasury Board of Canada, Ottawa, Canada (SERP)

Prof. Alfredo Cuzzocrea, University of Calabria, Cosenza, Italy (SERP)

Prof. Kevin Daimi, University of Deiroit Mercy, Detroit, Michigan, USA (SERP)

Prof. Sergiu Dascalu, University of Nevada, Reno, Nevada, USA (SERP)

Prof. Virginia de Paula, Long Island University, Brooklyn Campus, New York, USA (SERP)
Dr. Jing Dong, University of Texas at Dallas, Richardson, Texas, USA (SERP)
Prof. Robert B. France, Colorado State University, Fort Collins, Colorado, USA (SERP)
Prof. Emanuel Grant (Track Chair), University of North Dakota, Grand Forks, ND, USA (SERP)
Dr. George A. Gravvanis, Democritus University of Thrace, Xanthz Greece (.S’ERP)
Dr. Volker Gruhn, University of Leipzig, Germany (SER_P)
Dr. Zonghua Gu, Hong Kong University of Science & T echnology Kowloon Hong Kong (SERF)
Dr. Jiang Guo, California State University Los Angeles, USA (SERP)
Dr. Timothy J. Harvey, Rice University, Houston, Texas, USA (PLC)
Prof. Ray Hashami, Arinstrong Atlantic State University, Georgia, USA (SERP)
Dr. Hassan Hosseini, Cisco Systems, Otiawa, Ontario, Canada (SERP)
Drs Marc-Philippe Huget, University of Savoie, ESIA, Annecy, France (SERF)
Dr. Guohua Jin, Rice University, Houston, Texas, USA (PLC)
Dr. Carlos Juiz, Universitat de les Illes Balears, Despatx, Spain (SERP/PLC)
Dr. Osman Kandara, Southern University, Baton Rouge, Louisiana, USA (SERP)
Prof. Fereydoun Kazemian, Rochester Institute of Technology, New York, USA (SERP)
Dr. Anil Khatri, Bowie State University, Bowie, Maryland, USA (SERP)
Matthew Nicolas Kreeger, University of St. Andrews, UK and
nCipher Corporation Limited, Cambridge, England, UK (SERP)
Dr. Cyril 5. Ku, William Paterson University, Wayne, New Jersey, USA (SERP)
Dr. Yan Luo, MEL, NIST, USA (SERP}
Sam Malek (PhD Student Member), University of Southern California, USA (SERP)
Dr. Johannes Mayer, University of Ulm, Ulm, Germany (SERP)
Subhas C. Misra (PhD Student Member), Carleton University, Canada (SERP/PLC)
Saeed Abbasi Moghaddam, Rayneel Corporation, Tehran, Iran (SERF)
Dr. Paniti Netinant, Bangkok University, Bangkok, Thailand (SERP)
Prof. Hassan Reza (Program Chair), Univ. of North Dakota, Grand Forks, USA (SERP/PLC)
Dr. Won W. Ro, California State University, Northridge, California, USA (PLC)
Ashu M. G. Solo, Maverick Technologies America Inc., Wilmington, Delaware, USA (SERP/PLC)
Dr. Ritu Soni, Guru Nanak Girls College and Kurukshertra University, India (SERP/PLC)
Dr. Omar Shatnawi, Al al-Bayt University, Mafraq, Jordan (SERF)
Dr. Nary Subramanian (Track Chair), University of Texas af Tyler, Tyler, Texas, USA (SERFP)
Dr. Jiancun Wang, MonMouth University, USA (SERP)
Dr. Lingfeng Wang, Texas A&M University, College Station, Texas, USA (SERP)
Lizhe Wang, French National Research Inst. for CS & Control (INRIA), France (PLC)
Prof. Cong-Cong Xing (Track Chair), Nicholls State University, Louisiana, USA (PLC})
Dr. Sumanth Yenduri, University of Southern Mississippi, Gulfport, MS, USA (SERP/PLC)
Members of Task Force of FECS (Computer Science Curriculum Development)

We would also like to thank the followings: UCMSS (Universal Conference Management)
Systems & Support, San Diego, California, USA) for managing all aspects of the conference; Dr.
Tim Field of APC for managing the printing-of the proceedings; and the staff of Monte Carlo
Resort in Las Vegas for the professional service they provided.

Last but not least, we would like to thank SERP'06 and PL.C’06 Associate Editors, Drs. Nadim
Asif, Lawrence Chung, Emanuel Grant, Ray Hashemi, Ashu M. G. Solo, and Nary Subramanian.

We present the proceedings of SERFP/PLC’ 06.

Hamid R. Arabnia (General Chair) and Hassan Reza (Program Chair)

Contents

SESSION: SOFTWARE TESTING AND QUALITY ASSURANCE

A Framework for Automatic Testing of Industrial Controller Code
Dag Kristiansen, Karl—Petter Lindegaard

Agile Test=based Modeling
Bernhard Rumpe

Statistical Analysis and Enhancement of Random Testing Methods also under
Constrained Resources

Johannes Mayer, Christoph Schneckenburger

DPTModel: The Defect Prevention and Traceability — Driven Model for Software
Engineering
Jay Xiong, Jonathan Xiong

Selecting Effective Test Messages
Len Gebase, Roch Bertucat, Robert Snelick

Distributed Tool for Performance Testing
nenad stankovic

Test—bed for Verification and Validation Activities in Developing an Operations
Support System _ :
Dae—Woo Kim, Hyun—Min Lim, Sang—Kon Lee

Generation of Test Scenarios from Use Cases
Stephane Some

Restricted Adaptive Random Testing by Random Partitioning
Johannes Mayer ’

DPTMethodology: The Defect Prevention and Traceability — Driven Methodology for

Software Engineering
Jay Xiong, Jonathan Xiong

The DPTSystem: The Defect Prevention and Traceability ~ Driven System for Software

Engineering
Jay Xiong, Jonathan Xiong

Dynamically Generating Conformance Tests for Messaging Systems

10

16

24

31

38

45

52

59

80

Robert Snelick, Len Gebase, Sydney Henrard

Adapting Structural Testing to Functional Programming
Manfred Widera

Critical Systems and Software Risk to Public Safety: Issues and Research Directions
Shreedevi Inamdar, Hisham Haddad ' '

Software Quality and Testing
Hassan Pournaghshband, Asaleh Sharifi, Shahriar Movafaghi

A Method for Generating a Minimal Functional Set of Test—Cases for
Software—Intensive Systems

Joerg Gericke, Matthias Wiemann

Looking at Comparisons of Regression and Analogy-based Software Project Cost
Prediction

Carolyn Mair, Martin Shepperd

An Efficient Slicing Approach for Test Case Generation
Durvasula V I N Somayajulu, Ajay Kumar Bothra, Prashant Kumar, Pratyush Pratyush

Impact of Using Test—Driven Development: A Case Study
Sumanth Yenduri, Louise Perkins

Multi Dimension Quality Model of MAS
Punam Bedi, Vibha Gaur

SESSION: SOFTWARE REUSE

Reusing Families Design
Virginia de Paula

‘

Reuse and Component Based Development {CBD)
Rizwan Jameel

Retrieval of Most Relevant Reusable Component Using Genetic Algorithms
Rafesh Bhatia, Mayank Dave, RC Joshi

A Reuse—Oriented Process Component Representation Framework
Xiaohong Yang, Jing Lu, Ruzhi Xu, Guangfeng Pan, Jin Liu

Effective Reuse Procedure for Open Source Software
Doo Yeon Kim, Jong Bae Kim, Sung Yul Rhew

86

93

100

106

113

119

126

130

139

146

151

156

163

Analysis of Object-Oriented Numerical Libraries 253
Kostas Zotos, George Stephanides

SESSION: SOFTWARE REQUIREMENT ANALY SIS

Requirements Engineering for E-Voting Systems 7 R 259
Kevin Daimi, Katherine Snyder, Robert James

Automatic Comprehension of Textnal User Requirements and their Static and 266
Dynamic Modeling

Olga Ormandjieva, Magda llieva

A Mulii~Role Collaborative Method and Platform for Developing Software 274
Requirements

Chin-Yi Tsai, Chué—Huang Huang

A Course Design and Implementation Experience on Agile Software Development 281
Methodologies

Hongxing Lu, Xiaohong (Sophie) Wang

Software Development with Automatic Code Generation: Obs.ér\;ations from Novice 289
Developer Yiewpoint

Farahzad Behi, Andrew Kornecki

The Factors of Software Systems that Contribute to Requirements Elicitation 296
Allison Scogin

SESSION: SOFTWARE ARCHITECTURE, DESIGN PATTERNS, AND

FRAMEWORKS
EJB Performance Measurement Framework ' 303
Denis Gefter, Robert Chun
Analyzing Communication Patterns in Software Engineering Projects 310

H. Keith Edwards, Robert R, Puckett, Art Jolly

A 50A-Based IA Asset Management Architecture Using XML in E—~Government 316
Namho Yoo, Hyeong-Ah Choi) '

OSGi Service Layer Enhancements ' 323
Nico Goeminne, Gregory De Jans, Jan Hollez, Bart Dhoed!, Filip De Turck, Frank Gielen.

Using Webservice Choreography and Orchestration Perspectives to Modeland 329
Evaluate B2B Interactions . .

Andreas Schinberger, Guido Wirtz

Upﬂating Software Architectures: A Style~Based Approach
Dalila Tamzalit, Mourad Oussalah, Olivier Le Goaer, Abdelhak—Djamel Serial

Towards a Layered Architectural Design of a Persistence Framework
Sai Peck Lee, Tong Ming Lim, Ho—Jin Choi

Pattern—Oriented Design for Multi-Agent System: A Process Framework
Radziah Mohamad, Safaai Deris, Hany Ammar

The Role of Model-Oriented Software Architecture in Safety Engineering
Hassan Reza,AEmanuel Grant

SESSION: DISTRIBUTED AND REAL TIME SYSTEMS

336

343

350

357

Application Platforms for Embedded Systems: Suitability of JZME and .NET Compact 367

Framework
Koen Victor, Yves Vandewoude, Yolande Berbers

Practical Technologies for Implementing Distributed Applications as Evolvable
Software Systems (ESS)

Kendall Conrad, Vincent Schmid:

Comparison of Object Oriented Technology Automatic Codes Generating Tools for

Safety Critical Real-time Software
Farahzad Behi, Daniel Penny IiI

Experiences in Distributed Software Developiment with Wiki
Khalid Al-asmari, Liguo Yu

Interlocutor System
Edson Barros, Roseli Lopes

Compositional Abstraction for Concurrent Programs
Junyan Qian, Baowen Xu

Transformation of the Ravenscar Profile Based Ada Real-time Application to the
Verification—ready Statecharts : Reverse Engineering and Statemate approach
Chang Jin Kim, Jin—Young Choi

SESSION: SOFTWARE MAINTENANCE

An Effort Estimation by UML Points in Early Stage of Software Development

375

332

389

394

BREC

405

415

SangEun Kim, William Lively, Dick Simmons

" Predicting Error Probability in the Eclipse Project _ 422
Raed Shatnawi, Wei Li, Huaming Zhang

- Are the Changes Induced by the Defect Reports in the Open Source Software’ 429
Maintenance?
Timo Koponen, Heli Lintula «
A Mode] of Maintainability — Suggestior for Fufure Research 436

Mira Kajko—Mattsson, Gerardo Canfora, Dan Chiorean, Arie van Deursen, Tuomas IThme, Meir
M Lehman, Rupert Reiger, T orsten Engel, Josef Wernke

An Entropy-Based Approach to Assessing Object—Oriented Software Maintainability 442
and Degradation -~ A Method and Case Study

Hector Olague, Letha Etzkorn, Glenn Cox

A Software Traceability Validation For Change Impact Analysis of Object Oriented 453
Software

Suhaimi Ibrahim, Norbik Idris, Malcolm Munro, Azzz Deraman

A Comparison of the Efficiencies of Code Inspections in Software Development and 460
Maintenance

Liguo Yu, Robert Batzinger, Srini Ramaswany

SESSION: SOFTWARE METRICS, CONFIGURATION AND PROJECT

MANAGEMENT
Yirus Removal Cost (VRC) Metric 469
Kuangnan Chang, Bobby Adkins
Towards an Extendable Software System for Information Integration 474

Paul Whitney, Christian Posse, Xingye Lei

A Workbench for Learning Enterfrrise _Paﬁems 482
Paulo Sousa
Web Metrics: The way of improvemient of quality of Non web—based systems . 489

Shazia Arshad, Muhammad Shoaib, Abad Shah

Effect of Human Behavior in SDLC 495
Ashmeet Kaur, Ritu Soni ‘

On the Role of Software Metrics in Applying Design ;Pétte,rns PUO o Larow 0 Leanl 503

Niloofar Khedri, Masoud Rahgozar, Mahmoud Reza Hashemi

A.Qualitative Study on PATT — A Project Assessment and Tracking Tool E10
Fabio Marzullo, Geraldo Xexéo

Computations with Large Numbers 517
Weihu Hong, Mingshen Wu ‘ ‘

SESSION: UML, MDA, ...

On the Effectiveness of Source Code Transformations for Binary Obfuscation 527

Matias Madou, Bertrand Anckaert, Bruno De Bus, Koen De Bosschere, Jan Cappaert, Bart
Preneel

Model Driven Development with Interactive Use Cases and UML Models 534
Paul Nguyen, Robert Chun

Medical Informatics and Medical Databases Approach in Modeling Healthcare 541
Education System with Unified Modeling Language (UML)

Anil Khatri, Azene Zenebe, David Anyiwo

Mode] Transfermation Based on Meta Templates ‘ 547
Hongming Liu, Lizhang Qin, Xiaoping Jia, Adam Steele

Using UML to Develop Verifiable Reactive Systems 554
S. Fatemeh Alavizadeh, Marjan Sirjani o

Developing Medical Information System with MDA and Web Services 562
Simone A. B. Melo, Denivaldo Lopes, Zair Abdelouahab

UML Analysis Using State Diagrams ' 569
Mohammad Alanazi, Jason Belt, David Gustafson

SESSION: COMPONENT ORIENTED SOFTWARE DEVELOPMENT

Plugin—Based Systems with Self-Organized Hierarchical Presentation 577
Boto Bako, Andreas Borchert, Norbert I—{eidenbluth, Johannes Mayer

Algorithms for Optimally Tracing Time Critical Programs 585
Sergej Alekseev
Assessment of Component-Based Systems with Distributed Object Technologies 592

Jiang Guo, Yuehong Liao, Xichun Pei

A Java Instrumentation—based Analysis Approach for the Dynamic Behaviors of J2EE 599
Applications

Yuehong Liao, Jiang Guo, Xichun Pei

SoCoEMo—COTS: A Software Economic Model for Commercial Off-the—shelf 606
(COTS) Based Software Development

Sana Ben Abdallah Ben Lamine, Lamia Labed Jilani, Henda Hajjami Ben Ghezala

A
Conceptual Model for Integration of COTS Components 613
James Tollerson, Hisham Haddad

Process Component Phig—in Approach 620
Jin Myung Choi, Sung Yul Rhew

SESSION: FORMAL METHODS AND SPECIFICATION
- LANGUAGES, AND LANGUAGE DESIGN

Inspection of Concurrent Systems: Combining Tables, Theorem Provmg and Model 629
Checking

Vera Pantelic, Xiao—Hui Jin, Mark Lawford, David Parnas

On a GUl-based Editor for Z Specifications. and its Applications 636
Hiroshi Ishikawa
A Formally Verified Geometric Modelling Core : 643

Catherine Dubois, Jean—Marc Mota

Formal Verification of a Simple Automated Negotiation Protocol 650
George Dimitoglou, Gkan Duzyol, Lawrence Owusu

Re—-Engineering BLUE Financial System Using Round—Trip Engineering and Java 657
Language Conversion Assistant

Salem Al-Agtash, Tamer Al—Dwa:ry, Adnan EL-—Nasan, Bruce Mull, Mamdouh Barakat, Anas
Shqair

A Base for Achieving Semantics for Prolog with Cut for Correct Observables 664
Lingzhong Zhao, Tianlong Gu, Junyan Qian, Guayong Cai

Comparison of the Modeling Languages Alloy and UML 671
Yujing He
Supporting Separation of Concerns to Automation of Code Generation . - . 678

Paniti Netinant

A Software Specification Langnage for RNA Pseudoknots 684
Keum-Young Sung

The Intelligent C Language Debugger 688
Ming Wang, Robert Chun

SESSION: CASE STUDY, USABILITY ENGINEERING, AND
EDUCATION '

Integrating User Centered Design in 3 Product Development Lifecycle Process: A Case 695
Study

Karsten Nebe, Lennart Groeizbach, Ronald Hartwig

Learner—centered Technical Review in Programming Courses 702
Hongxing Lu, Xiaokong (Sophie) Wang

Development of an Ant Script Builder with Thought to Usability and Best Practices 710
Kalyana Gundamaraju, Michael Wainer '

Service Learning, Software Engineering, and Hurricane Katrina — A Case Study 717
Donald Schwartz, Jonathan Spencer, Adam Huffman

Podcasts: Changing the Face of e—Learning 721
Saby Tavales, Sotirios Skevoulis

SESSION: SOFTWARE RELIABILITY MODELS AND RISK

ANALYSIS
Sﬁpporting Software Fault Tree Analysis Using a Key Node Metric 727
Donald Needheam, Sean Jones
Metrics in Risk Determination for Large—Scale Distributed Systems Maintenance 734

Maureen Raley, Letha Etzkorn

SESSION: 5TH INTERNATIONAL WORKSHOP ON
SYSTEM/SOFTWARE ARCRITECTURES, IWSSA'06

Ontology—Driven Middléware for Next—Generation Train Backbones 743

Stijn Verstichel, Sofie Van Hoecke, Matthias Strobbe, Steven Van den Berghe, Filip De Turck,
Frederik Vermeulen, Piet Demeester

System Modeling for Systeimnatic Development of Groupware Applicatibns 750

Manuel Noguera, Miguel Gonzdlez, José Luis Garrido, Marta Visitacién Hurtado, Marta Luisa |
Rodriguez

Organization Modelling to Support Access Control for Collaborative Systems 757
Francisco Luis Gutierrez, Jose Luis Isla, Patricia Paderewski, Miguel Sanchez

An NFR-Based Framework for Aligning Software Architectures with System 764
Architectures

Nary Subramanian, Lawrence Chung

Architecture—Centric Program Transformation for Distributed Systems 771
Chung—Horng Lung, Jianning Liu, Xiaoli Ling, Dan Jiang

Component-Aware System Architecting: A Software Interoperability 778
Weimin Ma, Kendra Cooper, Lawrence Chung

Position Paper: From Enterprise Architectures to Software Architectures using 785
Requirements Engineering

Matthias Galster, Armin Eberlein, Mahmood Moussavi

Helping to Meet the Security Needs of Enterprises: Using FDAF to Build RBAC into 790
Software Architectures

Lirong Dai, Kendra Cooper

Medeling of Evolution to Secure Application System: from Requirements Model to 797
Software Architecture

Michael Shin

An Enterprise Architecture Process Model 804
Frangois Coallier, Roger Champagne

A Model of Access Control for Data Materials Based on Ambient Calculus 811
Masaki Murakami

SESSION: PROCEEDINGS OF PLC'06 — ‘DATA—FLOW ANALY SIS

A Fine—Grained Analysis of the Performance and Power Benefits of Compiler 821
Optimizations for Embedded Devices :

Jason W.A. Selby, Mark Giesbrecht

Complexity of Data Flow Analysis for Non—-Separable Frameworks 828
Bageskrt Sathe, Uday Khedker

SESSION: PROCEEDINGS OF PLC'06 — CODE OPTIMIZATION AND
COMPILER GENERATION TECHN IQUES

Experience in Testin'g Compiler Optimizers Using Comparison Checking v 837

Masataka Sassa, Daijiro Sudo

Déterministically Executing Concurrent Programs for Testing and Debugging 844
Steve MacDonald, Jun Chen, Diego Novillo

Compiler Generator for Creating MOF—compliant Source Code Models 851
Zoltdn Ldszla, Tibor Sulydn

An Embedded Haskell Subset Implementation 858
Ian Lewis

User—Friendly Methodology for Automatic Exploration of Compiler Options: A Case 866
Study on the Intel XScale Microarchitecture

Haiping Wu, Eunjung Park, Long Chen, Juan del Cuvillo, Guang R. Gao

A User-Friendly Methodology for Antomatic Exploration of Compiler Options 873
Haiping Wu, Long Chen, Joseph Manzano, Guang R. Gao

SESSION: PROCEEDINGS OF PLC'06 — LOGIC, FUNCTIONAL,
MODELING, NEW PROGRAMMING PARADIGMS

Implementation of Tag Representation in Prolog Virtual Machine 883
Guillaume Autran, Xining Li

XML Markup Languages Framework for Programming in 2Ist Century towards 890
Managed Software Engineering

Khubaib Ahmed Qureshi, M Zeeshan Ali Ansari

Improved Graph—Based Lambda Lifting ' 896
Marco T. Morazan, Barbara Mucha

On Petri Nets and Predicate-Transition Nets , 9203
Andrea Rock, Ray Kresman)

IncH: An Incremental Compiler for a Functional Language 910
James Gil de Lamadrid, Jill Zimmerman '

Extensible and Adaptable System Software 916
Paniti Netinant

SESSION: PROCEEDINGS OF PLC'06 —~ REGISTER ALLOCATION,
MEMORY MANAGEMENT, AND OO TECHNIQUES

Efficient and General On—Stack Replacement for Aggressive Program Specialization 925

Sunil Soman, Chandra Krintz

Java Virtual Machine: the key for accurated memory prefetching
Yolanda Becerra, Jordi Garcia, Toni Cortes, Nacho Navarro

Evaluation Issues in Generic Programming with Inheritance and Templates in C++
Emil Vassev, Joey Paguet

String Concatenation Optimization on Java Bytecode
Ye Henry Tian

Aspects of Memory Management in Java and C++
Emil Vassev, Joey Paquet

933

940

945

952

Conf. on Software Eng. Research & Practice | SERP06 + PLC'06 |

Supportmg Separation of Concerns to Automation of
Code Generation*"

Paniti Netinant
Computer Science Department
Bangkok University
Bangkok, Thailand
paniti.n@bu.ac.th

Abstraét

Aspecr-oriented framework is a new paradigm that complements the aspect-oriented technology. The premise of
aspect-oriented technology is the separation of concerns, where functional components are designed relatively in
isolation of the non-functional components in order to avoid the code-tangling phenomena. In this paper we present
a formal methodology that supports the aspectual behavioral modeling for concurrent software systems in order o
aid the system designers in validating the design of a concurrent software system against its requirements and
auiomating the implementation of these sysiems from their constructed models.

Keyword: Aspect Orientation, Code Automation, Framework, CASE

1. Introduction

Recent advances in the software technology have reaffirmed the need for building component-ortented software
systems. Object-oriented technology has delivered sound results regard supporting code reuse, and design patterns
have demonstrated that large-scale software systems can benefit the most from the best documented design struc-
fures.

Despite the tremendous success of object-oriented technology and design patterns to support code reusability and
design reusability, litfle has been said regard the separation of concerns within the contest of these technologies.
Recent research [18, 19] in the separation of concerns has demonstrated the need for the separation of the functional
requirements from the non-functional requirements in order to maximize code reuse and design reuse; non-
functional requirements tend to cut-across the functional components. Till now aspect-oriented technology has of-
fered very little to support the system engineer with a formal modeling technique in order to verify and validate the
system design against its requirements. Modeling the behavior of concurrent software system based on aspect-
orientation is an area of research that is in its infancy stages. The Unified Modeling Language, UML[1,2], has four
major elements, use cases, class diagrams, sequence diagrams, and statecharts, that evolved over time in order to aid
designers in the specification and modeling of object-oriented systems. Though use-cases are generally used as
black-box behavioral specification, the other three elements are used as white-box behavioral specification. Uses
cases are used mainly to describe the interaction between the systems and entities that may exist within its environ-
ment, i.e., Actors. Object-oriented technology generally uses class-diagram to show the relationship between classes
and the interaction that occur between classes, collaboration diagrams show the sequence in which the interactions
between classes occur, and statechart diagram to model the class’s behavior as a state machine; sequence diagrams
describe the inter-object interactions and statecharts describes the intra-object interactions.

Our research is bout bringing a fonnal methodology to automate the implementation and validation of concurrent
software systerns based on aspect-crientation. An important element of a sound behavioral modeling approach is a
rigorous methodology that ensures the semantics of the constructed model based on requirements. These models can
be used to generate code and discover conflicting requirements. Concurrent software systems are composed of func-
tional requirernents and concurrency requirements, like synchronization constraints, and scheduling policies. As-
pect-oriented technology is an ideal solution for modeling such systems, since the distinguishing between aspects
and functional requirements is at the heart of such technology. Since system requirements may describe the interac-
tious between classes or the sequence of interactions between classes, a formal notation is required to model such

* This research bas been supported by Thailand Research Funding (T RF) oroamzaUOn and Bangkok Umvcrsny The
contract is MRG4780168.

on Software £ng. Research & Practice | SERP'06 + PLC'06 | 679

requirements and UML’s class diagram and sequence diagrams is an example of such notation. UML uses the use
cases ip order to cross-reference requirements and the sequence diagrams that triggeér the use cases. What motivated
our work 15 the need for a complete end-to-end requirement modeling technigue that will guide the designer in the
design of concurrent software systems and automate their implementations. Behavioral modeling based on require-
ments is the first step toward formal design methodology based on aspect-crientation.

2. System Software and Separation of Concerns

Modeling concurrent software systems with sequence diagrams and class diagrams will not be enough to achievg
a full implementation of the system behavior [7]. Sequence diagrams will describe the inter object behavior, it will
belp in describing scenarios for the system, how objects will interact with each other, but will not allow zooming
into the object itself to describe its behavior, for that we need Statecharts. It has been argued in [7] that MSC and
UML’s sequence diagrams can be used to specify requirements and the desired behavior for a system under devel-
opment, but they can’t be used to implement the desired behavior for a system under development. Statecharts, on
the other hand provide the behavior of a particular object including various states that an object can enter into over
its life cycle. As stated in [Harel] Statecharts are mainly used to describe intra-object behavior versus inter object
behavior which can be specified using MSCs or Sequence Diagrams. Avery distinguishable characteristic of State-
charts from MSCs or Sequence Diagrams is the fact that Statecharts are part of the system model, which means they
can be used to generate code.

State charts [8, 9, 10, and 11] show the states of an object within a given context, the events that causes an object
to go from one state to another, and the actions that can occur as a result of a state trapsition. Events could be
guarded by conditions, which must evaluate to true before a transition takes place. During the object’s life cycle an
object move from omne state to another, and produce some actions as a result of this transition, this is how the behav-
ior of an object should be described and Statecharts does that Modeling concurrent systems based on aspect-
orientation 15 a new approach that has many benefits: rensability, verification and validation, and automate imple-
mentation. UML/Statecharts are used mainly to model the internal behavior of concurrent objects; though this for-
malism of modeling doesn’t support aspect orientation directly. To support aspeci-oriented modeling within the
scope of Statecharts, we extend the Statecharts in order to allow the explicit representation of aspect within the sys-
tem models. Within concurrent objects, state transitions may occur if a method is invoked or a timer expired. Asso-
ciating aspects that are evaluated when an object method is invoked is a troublesome for system modeler and devel-
oper, since the specification and constrains of these aspects are state dependents. For example, in the case where we
have a bounded buffer with certain capacity and two methods put and get, we shall allow only put method to pro-
ceed when the buffer is an empty state and allow either put or get when we are in a partial state. Synchromzation
constraints and Scheduling specifications are the main aspects that influence the execution of the invoked methods
based on object states, Being able to express the concurrent object behavior as StateChart and augment that by nota-
tion that allows the modeler to express aspects explicitly within the models is a step forward to automate the imple-
mentation and ease the ease the verification of such objects.

3. Aspect Orientation Approach

Figure 1 shows the model that captures the dynamic beh:;vior for a bounded buffer, where there are two methods:
put and get and three states where the concurrent object could be in. As we stated earlier current specification of
stats charts doesn’t support aspect-oriented modeling. To support aspect-orientation within the context of state
charts, we need to provide a mechanism by which the modeler can express these aspects. In state charts, state transi-
tion may occur as a result of events, method invocation, or timer expiration. Therefore support to aspect modeling
shall take into consideration that aspecis are associated with methods, transitions, but not with states. Though as we

-will see shordly, automating the process of mapping the model into workable implementation will be state driven.

Figure 2 shows the aspects that are associated with the method invocations in the different states. Although as-
pects will have the same names that are associated with their perspective methods in the different states, their im-
plementation may differ and the distinction between the different aspect implementation will be identified based on
object states.

4. Aspect-Oriented Framework

The framework consists of four components comprising the architecture of the framework.

- Conf. on Software Eng. Research & Practice | SERP'06 + PLC'06 }

* Each functional object {component) provides its services (methods) stripped of any aspectual properties (for
example, no synchronization is included in Buffer objects).
* A'proxy object intercepts called methods and transfers the calls to the AspectModerator.

Buffer

Partial -

put

put

Figure 1: StateChart i'epresentaﬁon for the Bounded Buffer Concurrent Object Model

CrossRelerence = <Requirment-129>

= i -
CrossReference = <Reguirment-115> Aspectisched). precondition =

Aspect(synch).precondition =

i i = i — " return RESUME
if(Active{get) == 0 && Active(put) ==0) Aspect(sched), posteondition =

return RESUME Al ESUME
clse retern WAITF - Notify All; return

Aspect{synch). postcondition = .
++ootiems; retam Resume - CrossReference = <Requirment-116>
' Aspect(synch).precondition =

if{ Active(get) == 0 && Active(put) ==0)
return RESUME
else return WAIT
Aspect(synch).postcondition =
~-notiems; return Resume

=

getlaspect={ synch,

" Buffer .
. -'Partial - .

get ‘

pit

CrossReference = <Requirment-130>
get Aspect{sched).precondition = *
. return RESUME
Aspect(sched).postcondition =
NotifyAll; retern RESUME

_ Buffer
Ful

put

Figﬁre 2: Bounded Buffer Behavioral Model

mf. on Software Eng. Research & Practice | SERP'06 + PLC'06 | 681

* An AspectModerator object consists of the rules and strategies needed to bind agpects at runtime. Aspects are
.selected from the AspeciBank. The AspectModerator orders the execution of aspects. The order of execntion
can be static or dynamic. Then, each precondition will be checked whether it is satisfied or not.
» An AspectBank object consists of aspect objects that implement different policies of a variely of aspects.
This section presents the design and development of aspect-oriented framework. The model is presented to
demonstrate horizontal composition of the framework. The gystem service must be implemented as a Compo-
pent class. The system aspectual property (SystemAspect class) must be derived from the SystemAbstractAs-
pect interface to implement the required behavior of a system aspectual property. A SystemAspectFactory con-
sists of many system aspectual properties such as synchronization, tracing, logging, and reliability. The Sysie-
mAspectPactory, derived from the SystemAbstractAspectFactory interface, is known as an agpect bank.
During runtime, each SystemAspectFactory will be associated with one SystemAspect. The AspectModerator
class must be derived from the AspectModerator interface to implement the required behavior. The following
points are important about the aspect-oriented framework:
= A base layer framework is an implementation of an underlying system.
= Anp application layer framework is an implementation of application software over the systein software repre-
sented by a base layer framework.
= A client object requests a service through & ProxyObject object of a framework.
» A functional component is implemented as a Component class without any aspectual prop-
erty.
s A SystemAspectFactory object consists of various SystemAspect objects. A SystemAspect object is controlled
by a SystemAspectFactory object.
= Each system aspectual property must be implemented as a SystemAspect object.
» Each crosscutling between Component object and a SystemAspect object must be defined in AspectModerator
object as joinpoints in a Pointcut method. ‘
» A client requests a service by sending a message to a ProxyObJect object. The ProxyObject object chanoes the
request to a specific pointcut method, and forwards it to the AspectModerator object.

The Proxy class is responsible for intercepting and forwarding the message sent from Client object to request a
service. The Proxy class must imaplement the behavior of intercepting a service request, A client object of an aspect-
oriented framework must request a service by calling the call(} method. A call{) method consists of at least two pa-
rameters: object name provided a service and a service requested to serve. The first parameter is of type string, and
the second is type of sting as well. The ProxyObject class will forward a request to the AspectModerator object by
calling a PointCut() method. A PointCut() method must have the same number parameters and the same paramcter
type as the call() method.

The SystemAspeciFactor class must be derived from the SystemA spectFactoryAbsiract interface to implement
the required behavior. The AspectModerator class is responsible for composing the functional components and the
system aspectual property into a service request. The AspectModerator class acts like a coordinator between fuac-
tional compenents and system aspectual properties, when and where system aspectual properties will be composed
into a functional component. The composition of system aspectual properties and functional components must be
gnided and defired as PomntCut() method. Each PointCut() method must bave at least two parameters: component
name and service name {methods of the component) that wﬂl be composed The first parameter is of type sttmg, and
the second is type of string as well.

The AspectModerator class will create the SystemAspectFactory object. The SystemAspectFactory ob_lect can
support either static or dypamic aspects at runtime. The attachImple() method is used to associate a system aspectual
property of a SystemAspectFactory object. The AspectModerator class will be associated with functional compo-
nents and system aspectual properties that will be composed. The PointCut() method will define join points between
functional components and system aspectual property. Curently, the PointCul() method uses if...then...else...
statemnents to define joinpoints. The siynchronization aspect property crosscuts both read and write services. It cross-
cuts the before and after execution of read and write services. A tracing property crosscuts both read and write ser-
vices. It only crosscuts the after execution of read and write services.

The SystemAspectFactor class must be derived from the SystemAspectFactoryAbstract interface to implement
the required behavior. The SystemAspectFactory class provides a dypnamic binding of variety system aspectual
properties. It focuses on the interface of the system aspectual property. Each system aspectual property must be de-
rived from the SystemAspectAbstracl interface to implement the required behavior. Implementation of a system
aspectual property is implemented in the SystemAspect class Each system aspectual property can define before(),
after(), and precondition() methods depending on its needs.

The AspectModerator class operates composition between system aspectoal properties and functional compo-
nents nsing a composition nile defined by join points of a pointcut. The AspectModerator class performs composi-

- Conf. on Software Eng. Research & Practice | SERP'06 + PLC'06 |

tion rules by sending AspectFactory messages. Messages sending causes polymorphism. The implementation of
AspectlPactory uses bridge patterns. A message finds the comect member object of the AspectFactory, and invokes
that object. With polymorphism calls, AspectModerator requires less information about each SystemAspect, so the
AspectModerator only needs to have the right SystemAspect interface.

The abstract aspectual class defines a SystemAbstractAspect interface that controls the implementation of an as-
pectual property class. This class is implemented using the concrete classes of aspectual properties, which imple-
ment the virtval functions before(} and after(). The AspectModerator creates instances of an aspcctual property,
“which requires composing a requested service. ¥ an aspectual property crosscuts more than ope method in the same
component, it must have a parameter ServiceName identifying what it should be done for each method. If an aspec-
tual property crosscuts more than one component, it must have two parameters: ServiceName and CompoucntName
identify what it should be done for each method of each component.

. . Private class ptSynchAspect implements Aspect
5. Automating Code Generation from putsynelispect imp pect{

Models precondition() {

if(state = Empty)

. . . if(Active(get) == 0 && Active(put) ==0)
For each aspect associated with operation, the retum RESUME

tool will generate a class for that aspect. Figure 3 else retirn WAIT

shows the code that will be generated to represent ifcstate == Partiah

!]19: synch.romz.al:og aspect class for put mctho_d. It if(Active(get) == 0 && Active(put) ==0)
is important to notice that aspects are can be listed return RESUME

next to each methed invocation in each of the speci- else return WAIT

fied object states. The aspects are linked to template
that the modeler will fill out whenever the aspect is
created, though in figure 3 the aspect callouts are
shown for illustration purposes. An important fea- 3
ture in our approach is the ability to trace require-
ments iato implementation. In our approach re-

if{state == Full)
return WAIT

postcondition() { .
if(state = empty) state = Partial;

quirements can be cross-referenced in the model if(state = empty)

itself, where requirement pumbers can be associ- if(noitems < bSize —2) state = Partial;
ated with transitions. The order of listing the as- clse state = FULL

pects with cach method invocation is relevant, since +rnotiems: ’

that the order that these aspects will be evalnated return Resume

upon method invocations. So iIn our example in }

figure 3, the synch aspect is evaluated before the
sched aspect. Unlike other approaches [Rahpsody] ¥
where the aspectual code is where aspectual code is :
inter-mixed with the functional code, our approach Private class putSchedAspect implements Aspect {
relies on aspect orientation to separate concerns and
by the same token generate clean classes that purely
represent the aspectual code.

precondition() {
H{state == Empty)
- if(Active(get) == 0 && Active(put) ==0)

retom RESUME
6. Related Work .) else return WAIT
Behavioral modeling is getting more attention postcondition() {
from researchers as well as practitioners since sys- state = Partial;
--noliems;

“tem engineers and designers describe the system
requirements based on the expected system behav-
ior. Needless to say that most testing is based
black-box testing.

Figure 3: The Generated Aspect Classes .

Modeling concurrent system behavior based on StateCharts [7] is the first to address the issue of verfication
and validation of concurrent ohject-oriented systems. Though the approach suffers from code-tangling phenomenon
where concurrency code is intermixed with the functionality code. UMLAUT is a recent approach based on aspect-
orented modeling that addresses the separation of concerns early in the design phase, though this approach didn’t
address the intra-object interactions, Our approach addresses aspect-oriented modeling for concurrent systems based
on extension to statecharts in order to automate the implementation for such systems.

#on Software Eng. Research & Practice | SERP'O6 + PLC'06 | 683

7. Conclusion

Aspect-oriented programming is the next wave of development for software systems. This paradigm stresses the
separation of the ascpetual code from the functionality code in order to maximize code reusability agd minimize
changes that are due to code-tangling. Behavioral modeling based on siatecharts are getting more popular since it
addresses modeling the system behavior early in the design stage and automate the implementation of such systems.
Our approach is an aspect-oriented modeling techaique that extends statecharts in order to allow the explicit repre-
sentation of aspects in the behavioral models, and antomate the implementation of these systems from their perspec-
tive models. Inheritance of aspects with the system models is an area that we believe require further research. <

8. References

{I] UML Summery V1.1, OMG, ad/97-08-03, www rational .com/UM]I..

[2] UML Syntax and Semantics Guide V1.1, OMG, ad/97-08-03, www rational.com/UML.

[3] Junichi Suzuki, Yoshikazn Yamamotio, “Extending UML with Aspects: Aspect support in the design phase”.
The 3™ AOP Workshop at ECOOP 1999.

[4] Siobhan Clarket, William Harison, Ossher, Tarr, “Separation Concerns throughout the Development lifecycle”.
The 3™ AOP Workshop at ECOOP 1999

I5] Siobban Clarket “Extending UML Metamodel for Design Composition”. The 3™ AOP Workshop at ECOOP
1999

[6] Juan, Papathomas, Murillo, Sanchez, “Coordinaling Concurrent Objects: How to deal with the coordipation
aspect?”. The 1% AOP Workshop at ECOOP 1997.

[7] David Harel “From Play-In Scenarios To Code: An Achievable Dream”. [EEE Compnuter, to appear. Prelimi-
nary version in Proc. Fundamental Approaches to Software Engineering (FASE), Lecture Notes in Computer
Science, Vol. 1783, Springer-Verlag, March 2000, pp. 22-34,

{8] W.Ho, F. Pennaneac'h,J. Jezequel, and N. Plouzeau, “Aspect-Oriented Design with the UML*",

[5] D Harel and M. Politi, “Modeling Reactive systems with StateCharts”. McGraw-Hill, New York, 1994.

{10] Bruce Powel Dpouglass, “UML Statecharts”. ESP Jan-1999. 1.Logix

{11]Harel, Daveid “Statecharts: a visual formalism for complex systems”, Science of Computer Programming. Vol.
8(1987)P.231

[12] Lodewijk Bergmans and Mehmet Aksit “Composing Software from Multiple Concerns: A Model and Compo-
siion Anomalies”. ICSE 2000 2nd Workshop on Multidimensional Separation of Concerns. '

[13]A.Bader, C. A. Constantinides, T. Elrad, T. Fuller, P. Netinant. “Building Reusable Concurrent Software Sys-
tems”. Internatiopal Conference on Parallel and Distributed Techniques and Applications (PDFTA2000) spe-
cial session on Distributed Objects in Computational Science. Fupe 26 - 29, 2000. Las Vegas, Nevada, USA.

[14]Constantinos A. Constantinides and Tzilla Elrad. “On the Requirements for Concurrent Software Architectures
to Support Advanced Separation of Concerns”. Object-Oriented Programming, Systems, Languages and Appli-
cations (OOPSLA 2000) Workshop on Advanced Separation of Concerns in Object-Oriented Systems. Minnea-
polis, Minnesota, USA. October 16, 2000.

[15]Copstantinos A. Constantinides, Atef Bader and Tzilla Flrad. “Separation of Concerns ia the Desi en of Con-
current Software Systems”. The 14th European Conference ‘on Object-Oriented Programming (ECOOP 2000)
Workshop on Aspects and Dimensions of Concerns. Sophia Antipolis and Canges, France, June 11-12, 2000.

{16)Gamma, E., Helm, R., Johnson, R. and Vlissides, I. “Design Patterns: Fements of Reusable Object-Oriented
Software”. Addison-Wesley, Reading, MA,1995.

[17]Ralph E. Yohnson. “Frameworks = (Components + Patterns)”. In Communications of the ACM. Vol. 40. No.
10. October 1997, pp. 39-42.

[18] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-Marc Loingtier, and
John Jrwin. “Aspect-Oriented Programming”. Proceedings of ECOQP '97. LNCS 1241. Springer-Verlag, pp.
220-242.

[19}Kim Mens, Cristina Lopes, Badir Tekinerdogan, and Gregor Kiczales. “Aspect-Oriented Programming”. Report
of the BCOOP *97 Workshop for Aspect-Oriented Programming.

[20]Sinan Si Alhir “Extending UML”

[21] Sivan St Alhir “What is UML”

{22) Sinan Si Alhir “UML Extension Mechanisms”

[23]Rbapsody from I-Logix www.ilogix.com, Rhapsody Guid.

- Conf. on Software Eng. Research & Practice | SERF'06 + PLC'06 |

EXTENSIBLE AND ADAPTABLE SYSTEM SOFTWARE"

Paniti Netinant
Coemputer Science Department
Bangkok University
Bangkok, Thailand
panitin@bu.ac.th

ABSTRACT

Concurrent real-time software systems are
vulnerable to performance saturation and reliability
concerns due to environmental influences. Building
intelligent concurrent systems that are able to adapt to
environmental changes and reconfigure themselves is
the key to avoiding performance degradation of
concurrent real-time software systems and ensuring the
liveness property of such systems. In this paper we
present a machine learning-based approach that
addresses the design of agent-based intelligent
concurrent sofiware systems in order to ensure the
reliability and performance properties Jfor such
systems. Although reliability and performance are
conflicting requirements in most cases, we will show
how o use an aspect-oriented technology by which
these requirements can be designed, implemented,
reused, and replaced in isolation from each other. The
performance and reliability of the software system can
be reasoned about by intelligent agents who can direct
the system to reconfigure itself in order to adupt to the
environment changes. The agents rely on the data-
mining techniques to discover patierns of performance
degradation or imminent signals of reliability violation
and to predict policies that cope best with the
environmental fluctuations.

KEYWORDS: Aspect-Oriented Framework,
Agents, Reusability, Extensibility, and System
Software

1. INTRODUCTION

Concurrent real-time systems are designed mainly
in order to ensure performance and the stringent
reliability requirements, sometimes referred to as
quality propertics. Until recently, the .design and
development of these systems have inter-mixed the
quality code with the functionality code for such
systems; the quality properties cut across the functional
components. This cut-across phenomenon [7, 12, I3,
and 14] generally breaks the component model, and

4,
makes it hard to design, and reuse, especially when the
functional and non-functional requirements change.
Generally requirement changes force reengineering for
these systems. Generally, the functional components
for these systems are stable. On the other hand, the
quality requirements are volatile and reactive to the
environment changes. Apother issue that necessitates
engineering reconfigurability when designing these

‘systems is the make It possible to build these systems

so that and real-time properties can be replaced while
the systems are rusning, in order to adapt to
environmental changes.

Building intelligent software systems that have open
architectures, which support reconfigurability, is
essential for concurrent real-time applications by which
their well-being and performance are heavily
dependent on their capability to cope with the
environment fluctuations. The Mars pathfinder
problem [19, 20} is a classical example of such systems
where conflict of interest between performance and
liveness properties has forced system reset that was due
to a priority inversion problem. The Mars Pathfinder
spacecraft’s engineers were aware of the priority
inheritance solution for such problems but they
preferred not to use it [27], since it may cause
performance degradation for the spacecraft. The lack of
software adaptability hooks is the main reason that
NASA system engineers chose not to deploy priority
inheritance mechanism in order to avoid the system
resetting.

Aspect-Oriented Programming (AOP) [1, 2, 7, 8,
aind 9] is a new programming paradigm that attempts to
scparate the functiopal components from the
interaction components (aspects). Aspects are defined
as properties that cut across groups of functional
components. While these aspects can be thought about
and analyzed relatively separately from the basic
functionality, at the implementation level they must be
combined together. Programming concemns manually
mto the system’s functionality using current
component-onented languages results in aspects being
tangle throughout the code. This code tangling makes
the source code difficult to develop, understand and
evolve because it destroys modularity and reduces

This research has been supported by Thailand Research Funding (I'RF} organization and Bangkok University. The contract

. MRG4780168.

nf. on Software Eng. Research & Practice | SERP'06 + PLC'06 |

software quality [8]. In this paper we show how to
deploy aspect-oriented technology, which provides an
architectural support for the deswn and development of
intelligent concurrent systems. We show how the
aspect code can be isolated from the functional
components that otherwise would be intermingled with

the code of the functional components. Isolating the’

functional components from the non-functional
components, the aspect code, has many attractive
benefits: first and foremost it promotes rensability for
the functional classes and the aspect classes. Tt also
simplifies the design of complex systems, since the
interaction code is separated from the functional code.
Our approach is a step toward building reconfigurable
intelligent systems and improves the software quality
as it complements the object-oriented and component-
oriented technologies with a set of design principles in
order to engineer adaptability into software systems.

In our approach, assembling the intelligent
concurrent systems from both functional and non-
functional components through the use of aspect-
oriented technology supports both static and dyparmic
adaptability when building the intelligent concurrent
systems.

Recent advances in information technology have
demonstrated that there are numerous issues that may
affect the quality of service for software systems and
that the only way to improve the quality of these
services is by using software agents that monitor,
advise, and react based on the environment changes. A
software agent is an automomous software component
that can react to and interact with its environwment. An
agent is autonpomous, since it runs in its own thread of
control, and reactive, becaunse of its capability to
respond to incoming messages.

" The agent-based approach is stll in its infancy,
although it is getting more popular as more IT
applications are using this approach. Enterprise
applications, B2B apphcauons, Personal Agents,
Information filtering, Information monitoring, and
Interface agents ! persona] assistants just to 'name a
few. For example, in information monitoring, activities
are dependent on the timely notification of changes in
the environment or in the data sources. Acents are
very useful for monitoring diffefent data sources for
specific data. Agents can be dlspatched to remote
locations to monitor data sovrces.’ An interface agent is
a program that is able to operate within a user intefface
and actively assist the user in operating the interface
and manipulating the underlying systém. MS.Office
assistants are an example of this category.

Qur experience shows that agent-based approaches
are a Key component in building -an :intelligent
concurrent system. They complergent . thc ~aspect-
oriented and object-oriented . tec]molomes, ,nvchlle an
aspect-oriented solution complements object—onented
technology to solve the code-tangfing phienomeron and

improve code reusability, The agent-based approach
complements these technologies in order to support
dynamic adaptability and ensure quality of services.

Frameworks capture design decisions that are
common to applications in certdin demains. Genperally,
frameworks emphasize design rense over code reuse,
although a framework may have concrete subclasses
that can be used immediately. In this paper we present
a framework that can be used to build intelligent
concurrent systems. The key contribution of this Work
is to show how to deploy aspect-orientation in the
design of these systems so that system requirements
that may have an impact on performance, reliability,
and secunty are isolated from the functional
components, and intelligent agents are deployed to
watch each one of these aspects, As we will be
described in the snbsequent sections, aspect-orientation
within our framework helps to engineer
reconfigurability into the intelligent systems such that
policies can be altered, reused, or replaced without
balting the running system. We will also show how to
design the intelligent agents based on data mining
technigques in order to audit and guide the real-time
systein from its own training data and to update its
knowledge base in real-time.

2. AGENTS FOR ASPECT-ORIENTED
CONCURRENT SYSTEMS

Concurrent object-criented open software systems
are composed of functiopal requirements and
concurrency requirements. Mixing the functional code
and concurrency may impede code reuse; this has been
documented in the literature as the jnheritance anomaly
problems. Solutions for “the ipheritance anomaly
problem vary from domain specific languages (ABCL)
to framework based solutions [4]. Framework solutions
are preferred over domain specific languages, since
these frameworks are based on common object-
oriented langnages and require less time to learn and
deploy. Desplte the success of the framework based
approaches, support of static and dynamic adaptability
for concurrent software systerns has not been addressed
in a formal way. '

Recent aspect-oriented approaches [4] have
provided an clegant solution to support the static
adaptability aspect for concurrent software systems,
though the dynamic adaptability aspect has been left
un-addressed. Aspect-oriented technology
complements the object-oriented technology in order to
avoid so-called code-tangling phenomena and support
static adaptability for concurrent open software
systems; Adaptability :[5] is- an’ importait factor that
enables ‘software systems to' evolve in order to meet
future reqmremcnts ‘Reflective approaches [8, 9] offer
solutions to support the dynamic adaptability aspect for
opén ‘software ‘systems, though reflection-based

917

Conf. on Software Eng. Research & Praciice | SERF'06 + PLC'08 |

solutions have hard-coded decision processes that react
and adapt to environment changes in an intelligent
way,

Agent-oriented technolocry is geiling more popular
as more industrial applications start to deploy this
approach. Agents are needed mainly to deal with
gncertainty and react to environment changes and they
are very useful to monitor systems resources and notify
the interested parties to change their bebavior to cope
with the enviromment changes. Methods to engineer
intelligence and machine learning within agents vary
from data mining [17] techniques to q-learning [10). In
[£7], the authors presented an approach based on the
data-mining technique to discover patterns of behavior
and network intrusion detection. And in [10, 11] the
authors have demonstrated how g-routing algorithms
can be used to discover best routes in a Iuahly
congested network.

Our approach integrates agent-oriented technology
and aspect-oriented techgology to buwld intelligent
concurrent software systems [3,6]; systems that rug
within an uncertain environment and require the
capability of altering their components and policies
during run time. Figure 1 shows our integrated view of
these technologies. Our approach delivers a framework
solution for building these systems. The agenls are
needed to assist in the decision making process fer
reconfiguring the software system during run time.
Aspect-onientation techniques are used since they
isolate the functional components from the aspectual
components like performance and reliability.

Figure 1. -A concwrrent object as a cluster of
components and aspects wilhin the aspect moderator
framework.

The aspeci-oriented approach [4] has demonstrated
its effectiveness in building concurrent object-oriented
systens, where the copcurrency .. aspects, like
synchronization constraints and scheduling policies,

are isolated from the functional components. This
approach helps in building a stable software system
that can easily adapt to meet future requirements and
react to environment changes.

The approach stated in [4] did resolve the static
adaptability problem, but did not address the dynamic
adaptability aspect for buildiog intelligent concurrent
software systems. Our research has revealed the need
10 have intelligent compopents, agents that can aid the
concwrent software system in the decision-making
process to reconfigure itself in order to adapt to
environmental changes. The agents in our approach
deploy the data mining technique and the Bayesian
algorithm to monitor system resources and predicate
patterns of performance degradation or imminent
signals of reliability violation, and offer advice to react
to these changes. Dealing with environmental
uncertainty is the key challenge for concurrent real-
time systems. Environmental uncertainty may have an
impact on performance, reliability, throughput, er
quality of service gnarantees. Ope way to monitor
system resources and environment concept drifts is by
gathering data about usage of systems resources. In our

" framework we apply Bayesian algorithms and online

learning techniques to predict environment changes
and adapt to these changes. For example, when a buffer
is more than half-full, and the ratio of the number of
waiting puts to the number of waiting gets is 1 to 10,
we may stll prefer put over get, if though the
immediate preference shall be given to get, the
historical data demonstrates that whenever the buffer is
more than half full, the number of waiting gets was
substantially greater than waiting puts. This distinction
between immediate preferences and desires and long-
term well-being objectives has been fully discussed and
advocated in the artificial intelligence disciplive. Qur
research has revealed that such distinction is extremely
important in building open software systems that
operate in volatile enviromments, where system
resources can go through over utilized and
underutilized cycles.

" Through the support of agents, our framework can
be used to build concurrent open software systems that
can dynamically adapt to environmental changes and
deal with uncertainty. Agents are used to monitor
certain aspects of the software systems; scheduling is
an examnple of such aspects. Agents have a knowledge
base that they consult to predict the system bebavior,
and update their knowledge base to Leep pace with
current environment settings

3. ASPECT-ORIENTED FRAMEWORK

A seguéntial ‘object is comprised of functionality
control and shared data. Access to this shared data is
controlled by synchronization and ~ scheduling
abstrachions. Syanchronization controls enable or

disable method invocations for selection. The
synchronization abstraction is composed of guards and
post-actions. During the Precondition phase, guards
will validate the synchronmization conditions. In the
Notification phase, post-actions will update the
synchronization variables. The' scheduling abstraction
allows the specification of scheduling restrictions and
terminate-actions. At the Precondiion phase,
scheduling restrictions use scheduling counters to form
the scheduling condition for each method. At the
Notification phase, terminate actions update the
scheduling counters. During the Precondition phase,
the synchronization constraints of the invoked method
are evaluated. If the current synchronization condition
evaluates to RESUME the scheduling copsiraints are
then evaluated. After executing the Precondition phase,
the moderator will activate the method in the sequential
object. During Notification, synchronization variables
and scheduling counters are updated upon method
completion. The aspect moderator object coordinates
functional and aspectual behavior, by handling their
interdependencies. We stress the fact that the activation
order of the aspects is the most important part in order
to verify the semantics of the system. Synchronization
has to be venified before scheduling. A possible reverse
in the order of activation may violate the semantics.
There are other issues that might also be invoived. If
aunthentication is introduced to a shared object for
example, it must be handling before synchronization.

A major component of quality in software is
reliability: a system’s ability to perform its job
according to the specification (correctness} and to
handle abnormal situations ‘(robustmess). In [24]
introduces the concept of “design by contract” in the
context of the FEiffel programming language [25].
Under this theory, a software system is viewed as a set
of communicating components whose interaction is
based on precisely defined specifications of the mutual
obligations known as contracts. These contracts govern
the interaction of the elefnent with the rest of the world.
The importance of assertions is also stressed in [14]
where it is described bow the absence of specifications
caused the disaster associated with thé Furopean
Ariane 5 launcher. The aspect moderator framework
adopts this approach in a different context: defining
assertions (preconditions and postconditions) as a set of
design principles. " Meyer argues’’ that assertion
monitoring yields to a productive approach to
debugging, testing and quality assurance, in which the
search for errors 15 not blind but based on consistency
conditions provided by the developers themselves. Asa
result, reliability should be a built-in component in
software development, not an afterthotight.- None -of
Java, Ada [DoDB0) or CORBA™ [OMG98] has any
built-in support for design by’ contract.’: ‘

In [14] the authors argue that: Withouf pecﬂmahon)

itis probably safer to redo rather’ than to reus€ - Ansihér

. on Software Eng. Research & Practice | SERP'06 + PLC'06 |

important issue is the one of the venfication of
components and aspects in isolation from each other.
One must be able to test the functionality of a
component as well as being able to test that an aspect
will align nicely with the functional component.
Otherwise, there can be no guarantee that components
and aspects will co-operate. In other ‘words, one must
test and verify the collaboration of components and
aspects. This would constitute an important phase mn
the design process.)

3.1 ADAPTABILITY

There is a general feeling that OOP promotes reuse
and expandsbility by its very nature, We argue that this
is a misconception as none of these issues is enforced.
Rather, a software system must be specifically
designed for reuse and expandability. Adaptability is
an important guality factor in software systems and the
issue of it being explicitly engineered into a system 1s
stressed in [12]. Incremental adaptability means coping
with changing reguirements withont modifying
previously defined software components. The
conventional object-oriented model supports
adaptability through composition, encapsulation,
message passing and inheritance mechanisms. In
general, lack of support of dynamic adaptability might
lead to re-engincering the whole goftware system. In
[307 it is argued that concurrent OO langnages do not
provide ‘encugh support for the development of true
adaptable software either because aspects are mixed in
the functional components, or because once
components are woven the resulting piece of software
is too rigid to be adapted or reconfigured at rmun-time.

The general architecture of the framework allows
reusability and ensures adaptability of components and
aspects as both are designed relatively separately from
each other. The aspect moderator is a design pattern
that hooks components and aspects together, defining
their semantic interaction. The use of design patteins in
order to provide axes of adaptability is suggested in
[12]. One of the advantages of the aspect moderator
framework is that if a new aspect of concern would
have to be added to the system, we do not need to
modify the moderator class. We can simply create a
new class to inherit and re-define it, and reuse it for a
new behavior. The inherited class can handle all
previous aspects, together with the newly added aspect.
Adaptability is also applied to components. The aspect-
moderator framework does not reguire some new
syatactic stracture for the representation of new
aspects, but simply a new class for the new aspect. This
technique makes -it :easy-for. an:existing aspect to be
removed from the overall. system. In this framework,
the moderator:object has the capability to aclivate or
drop” ‘aspects on the fly. Further, the semantic
interaction between components and aspects in the

919

- | Conf. on Software Eng. Research & Practice | SERP'06 + PLC'06 |

framework is defined by a set of principles. Part of this
semantic interaction 1s the order of activation of the
aspects thus providing a criterion for aspect ordering.
The order of execution can also be altered on the fly.
This concept is not feasible with automatic weaver
technologies. In this framework, components and
aspects are designed relatively separately and they
remain separate entities that may access each other
freely without code transformation. In fact, functiopal
components do not need to know about the aspect
components in advance (before run-time) but only after
an aspect has been created and registered by the
moderator class. As a result, components and aspects
discover each other at run-time if necessary. The
interaction of newly added aspects with the rest of the
systemm is handling in a similar manner as the
implementer must specify the contract that binds a new
aspect to the rest of the system rather than having to re-
engineer the whole system. On the other hand,
antomatic weavers must rely on langnage constructs
that are bard coded into aspect code to provide the
contact (join) points.

In [22] the authors stressed the importance of aspect
manifestation in every stage of development The issue
that in some cases aspects should remain run-time
entities was also discussed in [5, 15] also stressed this
issne by arguing that much like conditional
compilation, aspects must be woven to the program on-
demand. In technologies that rely on antomatic
weaving, aspects manifest in the model and in the
program code, but neither in object code (byte code in
the case of Java) nor in executable (binary) code. [7]
argues that with static weaving it might be impossible
to adapting or replacing aspects dynamically. The
framework manages to achieve the manifestation of
aspects at run-time. We argue that is important that in
order to achieve maximum flexibility a framework
must provide for dynamic aspect evolution and ideally
support both static and dynamjc behavior. As an
example, an aspect such as synchronization can be
statically dealt with.

3.2 COMPOSITION OF ASPECTS

In ESP [8] and the Adaptive Arepa [1] the
functional part of a system is separated from the
synchronization code, but it still remains in the same
class. The separation of functional and aspectual code
in the aspect moderator framework results in program
code that is more modular. Furthermore, the framework
follows a general-purpose approach in order to achieve
composition of concems. This way, it is not confined to
certain aspects but can address a number of aspects. It
is also language neutral. With the exception of Aspect],
current technologies are confined in domain:specific
languages. We introduce the concept of an aspect bank,
where the moderator .of a cluster initially needs to

collect and register all the required aspects from. The
aspect bank provides a hierarchical two-dimensional
composition of the system in terms of aspects and
components. ‘

3.3 RELATED WORK

There are quite a few approaches that attempt to
build intelligent systems. But what 1s of interest for us
are the approaches that allow us to build an intefligent
concurrent real-ime system in such a way that
reconfigurability and reusability of the software system
are supported. JAM [16] is an agent-based approach for
detecting network intrusion. JAM is implemented by
the JAVA langoage and it deploys the data mining
techniques in the rule classifications. JAM has been
designed mainly to address the security aspects of
software systems; other aspects like performance and
reliability are hard to reason about. Q-routing [17, 18]
is another recent example that addresses routing in a
highly congested network. This approack is faster in
general than approaches that rely on the data mining
techniques, but it suffers from the fact that history data
is not fully used on the decision making process. The
work presented in [15] is an approach for load
balancing a network of computers, this approach is
mainly based on classification rules, but it does not
consider reconfigurability and reusability in the design
and development of concwrrent real-time systems.

4. CONCLUSION

Agent-based software systems are the next wave in
the software engineering discipline.. Recent advances
in software technology have stressed the need to build
intelligent open software systems in order to build
dynamically reconfigurable software systems that can
deal with environment wncertainty and predict usage
patterns for system resources. A key factor for building
highly reconfigurable software systems is to identify

_and isolate the aspectual code from the functional code

in order . to maximize rensability and facilitate
reconfigurability. Aspect-oriented programming is an
emerging programming technique that makes it
possible to engineer the reconfigurability of software
systems. We use software agents in our framework jn
order to support the decision-making processes for
such systems. Our framework based approach
integrates aspect-oriented technology and agent-
orientation in order to support the dynamic adaptability
aspect for intelligent concurrent software systems,
where agents can be asked to monitor system
properties and react, to wundesirable events by
reconfiguring the software without halting the running
system. The Mars Pathfinder reseting problem was
due to hard-coded decisions. The Pathfinder software
system was not able to reason about the environment

onf, on Software Eng. Research & Practice | SERP'06 + PLC'06 |

and itself. We can build intelligent software systems
based on agents and aspect-orientation, such that the
decision making process that copes with the
environment fluctuations is isolated from the core
functional components. Agents can be used to alter the
bias of the system, whenever conflicts arise; between
performance and reliability,

5. REFERENCES

[1] Bardou, D. (1998). Roles, Subjects, and Aspects.
How Do They Relate? Position paper, ECOOP '98
Workshop on Aspect-Oriented Programming , pp.55-
59.

2] Berger 1., Dery M. and Fomanno M. (1998).
Interactions Between Objects: An Aspect of Object-
Oriented Languages. Position paper, ECOOFP 98
Workshop on Aspect-Oriented Prograrming.

(3] Callsen, C. I, and Agha, G. A. (1994). Open
Heterogeneous Computing in Actor Space. Journal of
Farallel and Distributed Computing, 1994, pp. 289--
300.

[4} Constantinides C., Bader A., Elrad T. (1999}, A
Framework to Address a Two-dimensional
Composition of Concerns Position paper, Object-
Oriented Frogramming: Systems Longuages and
Applications (OOFSLA ’99) First Workshop on
Multidimensional Separation of Concerns im Object-

Oriented Systems. Denver, Colorado (USA)
November 1, 1999.
(5] Fayad, M., and Cline, M. (1996). Aspects of

Software Adaptability, Communications of the ACM,
39(10), 1996, 58-59.

[6] Kiczales, G., Lamping J., Mendhekar, A.,
Maeda,C, Lopes C., Loingtier J-M, and brwin J. (1997).
Aspect-Oriented Programwming. In Proceedings of
ECOOP °97. LNCS 1241. Springer-Verlag, pp. 220-
242,

[7] Lopes, C. and Kiczales, G. (1998). Recent
Developments in Aspect. Position paper ECOOP '98
Warkshop on Aspect-Oriented Programuming.

[8] Pryor, J.aud Bastin, N. (1999). A Reflective
Architecture for the Support of Aspect-Oriented
Programming in Smalltalk. Position paper, ECOOP’'99
Workshop on Aspect-Oriented Programming.

[9] Bershad, B. Savage, S. Pardyak, P. Sirer, G.
Fiuczynski, M. Becker, D. Eggers, S. and Chamber,
C.1999: Extensibility, Safety, and performance in the
SPIN Operating System ECOOP’98.

[10] Boyan J. and Littman M.(1995). A Distrbuted
Reinforcement Leaming Scheme for Network Routing,
Technical Report CMU=CS-93-165,

[11] Kiczales, G. Lamping, J., Mendhekar, A. Maeda,
C. Lopes, C. Loingtier, J-M., and Irwin] (1997).
“Aspect-Oriented Programming”. 'PARC - Technical
Repor1, SPLY7-008P9710042 pp 69-71,

[12] Kiczales, G., Lamping, J., Mendhekar, A. Maeda,
C., Lopes, C., Loingtier J-M., and Irwin, J.(1998). “
Aspect-Oriented Programming”. In M.Askit and S.
Matsuoka, editors, Proceedings of the 12™ European
Conference on Object-Oriented Programming,.
ECCOP’98, Springer Verlag, Berlin pp 88-95.

[13] [Kiczales, - G. (1996), Aspect-Oriented
Programming: A Position Paper from the Xerox

PARC Aspect-Oriented Programming Project, Xerox

PARC, Palo, Alto, CA.

[14] Kubat, M. (1998), “A Machine Learning-Based
Approach to Load Balancing in Computer Networks,”
Cybermetics and Systems Joumal, 23, 1992, pp. 389-
400.

[15] Stolfo, 8., Fan, W, Lee, W. Prodromidis, A., and
Chan, P. Proc. DARPA Information Survivability
Conference and Exposition, IEEE Computer Press, p.
11 130-144, 2000.

[16] Boyan, J. A., and Littman, M. L. (1994). Packet
routing in dynamically changing networks: A
reinforcement learning approach. In Cowan, J. D.;
Tesauwro, G.; and Alspector, 1., eds., Advances In
Neural Information Processing Systems 6. Morgan
Kaufmann Publishers.

[17] Boyan, J. A., and Littman, M. L. (1994). FPacket
Routing in Dinamically Changing Networks: A
reinforcement learning approach, In Advances in
Neuvral Infornation Processing Systems 6 (NIPS6),
1994, 671 —678.

[18] Diekmann, R., Frommer, A., and Monien, B.
(1999). Efficient Schemes for Nearest Neighbor Load
Balancing, Technical report, Dept. Maths. Comp. Sci.,
Univ. Paderborn, Furstenallee 11, D-33102 Paderbom,
Germany.

[19] Sha, 1., Rajiumar, R., and Lehoczky, J.P.(1950).
Priornity Inheritance Protocols: An Approach to Real-

Time Synchronization. In IEEE Transactions on .

Computers, vol. 39, pp. 1175-1185.

[20] Wilner, D. (1997). “ The Path Finder Invited
Talk,” The 18:h IEEFE Real-Time Systems Symposiun:,
San Francisco, December, 1997,

921

PO

ECTIL-CON 2006

Proceedmgs of the 2006 Electrical Engineering/Electronics,
Computer, Telecommumcatr,ons and Information
VTechnology (ECTI) Interrpqtmnal Conferjen_ce

Wednesday May 10 - Saturday May 13, 2006‘

Ubonburi Hotel, Ubon Ratchathani, THAILAND

& Organized by &

Electrical Engineering/Electronics, Computer,
Telecommunications, and Information Technology (ECTI)
Association

P Do

ECTI-CON 2006

Proceedings of the 2006 Electrical Engineering/ Electronics, Compuler,
Telecommunications and Information Technology (ECTI)
Internatwnal Conference

Wednesday May 10~ Saturday May 13, 2006

Ubonburi Hotel, Ubon Ratchathani, THAILAND

o Organized by -5

Electrzcal Engmeermg/Electromcs, Computer, Telecommumcatwns and
. Informatwn Technology (EC’TI) Assoczatmn

Steering Committee

Pansak Siriruchatapong (NECTEC), Chair
Wanlop Surakampontorn (KMITL)
Sawasd Tantaratana (SIIT)

Sawat Tantiphanwadi (NSTDA)

Akachai Sang-in (CMU)

Sinchai Kamolphiwong (PSU)

Weerapant Musigasarn (PSU)

Chidchanok Lursinsap (CU)

Kobchai Dejhan (KMITL)

Somchai Chatratana (KMITNB)

Somsak Choomchuay (KMITL), Secretary

International Advisory Committee

Akinori Nishihara, (Tokye Tech., Japan)
Hara Shinji (U. of Tolkyo, Japan)

Luigi Benedicenti, (U. of Regina, Canada)
Rolf H. Jansen {Aachen 1., Germany)
Yong-Hwan Lee (SNU, Korea)

Narong Yoothanom (SPU)

Organizing Committee

General Chair
Wanlop Surakampontorn (KMITL)

Vice chairs

Monai Krairiksh (KMITL)

International coordination chair
Saykhong Saynasine (NUOL,Laos)
Hang Chan (RUPP,Cambodia)
Nicholas Shuley (UQ,Australia)
Pung Keng (NUS, Smgapnre)

Technical Pro“ram Co-Clr airs
Athikom Roeksabity (MUT)
Chaiwut Chat-uthai (KMITL)
Bundit Thipakorn (MUTT)
Jun-ichi Takada (TIT,Japan)
Prabhas Chongsatitwattana (CU)
Vutipong Areekul (K1)

Waree Kongprawechnon (SIIT)
Jitkasem Ngamnil (4UT)

Special Session Chairs

Kazushi Nakano (UEC,Japan)

Prayoot Akkaraekthalin JCMITNB)
Chuwong Phongcharoenpanich (KMITL)

Local Arrangement Chairs
Werachet Khan-ngenn (EMITL)
Mongkol Pasuyatanont (UBU)
Rungrangsee Vibulchai (UNC)
Surajate On-rit (UBRU)

Apirat Siritaratiwai (KKU)
Phaophak Sirisulkk MUT)
Yingrak Auttawaitknl (RTU)
Prasit Surasil (UV0) -

_Publication Chairs

Apirat Siritaratiwai (KKL)
Raungrong Suleesathira (KMUTT)
Danai Torrungrueng (AUST)

Publicity Chairs
Pinit Kumhom (KMUTT)
Anantawat Kunalkorn (JOMITL)

Exhibition Chair

Keattisak Sripimanwat (NECTEC)
Sdhabhon Bhokha (UBU)
Petmanee Viriyasudphong (UNC)
Supachate Innet (UTCO)

Denchai Worasawate (KU)
Supaporn Buphaprohm (UVC)

Finance Chairs
Banlne Srisuchinwong (SIIT)
Vutipeng Areekul (KU)

Genereal Secrelary

E_C}Ja.he Charoenlarpnoﬁparut (SIIT) _
" Apinunt Thanachayanont (KMITL)

'Co-Sponsered by

National Electronics and Computer Technology Center (NECTEC)
National Science and Technology Development Agency (NSTDA)

Technical collaboration with

1EEE Communications Society, Thailand Chapter

IEEE Circuits and Systems Society, Thailand Chapter
IEEE MTT/AP/ED, Thailand Chapter

IEEE Laser and Flectro-Optics Saciety, Thailand Chapter

& Table of Contents -

Welcome Message from Steering Committee Chair i
Welcome Message from General Chair i
Welcome Message from Technical Program Chair 1ii
List of Reviewers iv
S'ymposium Schedule at a Glance v
ECTI-CON 2006 Sessiont Schedule vi
Keynote Speech: Thursday, May 11, 2006 ‘ viii
Technical Program Contents XXix

Technical Papers: Thursday, May 11, 2006 1

Author Index A-1

Message
from

Chairman of Steering Committee

= ITLN
The third ECTI-CON is organized as international conference at Ubonburi Hotel in
Ubon Ratchathani province Thailand on May 10- 18, 2006. The steering committee of
ECTI-CON has determined Ubon Ratchathani province as the venue for the third
ECTI-CON in the beginning of 2005, since we have a policy to expand opportunity for

researchers not only in nationwide of Thailand, but also neighboring countries in
Indo- Chma regwn such as Cambodia, Laocs, and Vietnam.

Ubon Ratchatham is an anc1ent town with 4 000 year-cld culture located on the
Maekhong river bank in the center of triangle among Laos, Cambodia, and Thailand.
It has the biggest popwlation and area in the south of north eastern part of Thailand,
and can be counted as center of this region. This is the main reason that the
committee decided to move venue to this province in 2006. Hopefully, the third ECTI-
CON 2008 works as research gateway to this region, and many researchers in this
region become more active, especially in the ECTI-CON in the future.

In the next ECTI-CON in 2007, the steering committee has'a concept to move the
venue back to the center of Thailand nearby Bangkok and go to remote region again
in 2008.

On behalf ‘of the steermg committee of BECTI-CON, I would like to show my
apprematlomsvjagamst the excellent organizing works performed by all of ECTI-CON
2006 organizing committee members and staff, and also excellent résearch results
presented by researchers ‘around thé world. Hopsfully, the participarts of ECTI-CON
2006 will enjoy presentatlon discussion, banquet, local food, local culture, and tour.
Finally, 1 lock forward to meeting you agam at the ECTI-CON 2007 next year.

Pansak sirivuchatapong
Chairman of ECTI-CON Steering Committee

ECTI-CON 2006
The 2006 ECT) International Conference

<

"Message
- from
- General Committee:Chair .

o %

1t is indeed my ‘great honor to cordially welcome ‘all the participants to the 2006
Electrical/Electronics, Computer, Telecommunications, and Information Technology
Conference (ECTI 2006), held on May 10-13 2006, in Ubonburi Hétel and Resort,

"Ubon Ratchathani province] Thailand. This is the third annual conference in the

" series, where thé first ECTI Conf kicks off in the year 2004 as one'of the major
activities of the ECTI Association. It should bé noticed that this is the first time that
we extend the conference to the place that is not in the popular places hke Pataya,
Chamgmal and Phuket However we strll got a very good response '

" The ob}ectwe of ‘the’ conference is to annually bring together researchers from
' Thaﬂand as well as other parts of the world to discuss and exchange experlences with
~the aim to stimulate and enhance the reseach and development in ‘the areas that are
~ related to Electmca.l/Electromcs Communications and Information Technologles Tt is
also to provide a forum for the discussion of original works, new ideas and new Tecent
~advances in the areas. . |

In the capacity of the Organizing Committee Chair, I ‘would like to express sincere

appreciation to the significant contributions and efforts by organizing committee

.. members, especially the General Secretary: Assoc. Prof. Dr. Kosin Chamnongthai, the
.Technical Program. Chair: Assoc Prof. Dr. Athlkom Roeksabutr and the Local
.;Arrangement Chair, Assoc Prof Dr Werachet Khan ngenn whlch make,’ th1s

.,'that submrtted techmcal papers for rewew attendees techmcal program comnnttee
members, speakers and session chairs are gratefully acknowle dged. We do hope that,
you participate in the conference with pleasure and find a good opportunity to meet,
to exchange ideas and to make research contacts and collaboration.

Wanlop Surakampontorn
General Committee Chair ECTI-CON 2006 . .-

ECTI-CON 2006
The* 2006 ECTI International Conference

" Message -
from

Technical Program Chair

AL e =
Welcome to ECTI-CON 2006 - the third annual international conference organized by
Electrical Engineering/Electronics, Computer, Telecommunications and Information
(ECTL) Technology association of Thailand. This happens to be the first international
conference in Ubon Ratchathani Province, an ancient town with 4000 year old culture
on the Maekhong river bank.

This year conference offers an outstanding program in 47 sessions for about 192
contributed papers, being accepted from 230 submitted papers from more 8 countries.
The reviewers, who are the experts in the partxcular fields, were workmg very hard in
voluntary to seléct those quality contributed papers In addition, 28 mwted papers are
also inchided in spec1al sessions, whose area is currently in the hot issue.

“Technology for Life” is the theme for ECTI-CON 2006. I believe that you w1ll ﬁnd
it true after attending technical sessions through the conference.

All keynote speakers have been honorably invited to give speech on thée topics that
should encourage research community in Theuland as well as illustrate the research
scenery of Thai ne1ghbors : - -

I would like to thank keynote speakers, and all the technical program committee
members and chairs who voluntarily invest their own time inviting speakers,
selecting papers, and arranging such the impressive conference. Of course, sincere
thanks must finally go. to all authors, without whom the conference would not occur,
who make contribution of their papers to the conference. -

Thank for your part1c1pat1on in ECTI- CON 2006 I strongly believe this is a good
opportunity to share knowledge and experiences among participants. Please have a
great fime and use this opportunity to meet more people and make yourself Lnown by
exchanging expenences and both technical and non-technical mformatlon ‘

Athikom Roeksabutr
Technical Program Chair of ECT1-CON 2006

ECTI-CON 2006
The 2006 ELCTI International Conference

I1I

@ List of Reviewers -

We would like to express special thanks to the following individual and anonymous
reviewers for their effort in the review process of ECTI-CON 2006:

Akinori Nishihara Kasin Vichienchom Santi Asawasripongtorn %
Amorntep Jirattitichareon Kazushi Nakano Sanya Mitaim
Anantawat Kunakorn .o Kitti Attakitmongeol i Sawasd Tantaratana
Andrew Davison - - - Kittipong Tonmitr - Sawat Tantiphanwadi
Anuwat Jangwanitlert - Kohji Higuchi T Siripun Thongchai
Apichai Bhatranand - ' Komsak Meksamoot Siriroj Sirisukprasert
Apichan Kanjanavapastit Kosin Chamnongthai Somboon SangwongWénich
Apinunt Thanachayanont Knangkrau Sooksood Somchat Jiriwibhakorn
Aplrat Slrltaramwat . _ Lunchakorn Wutt151tt1ku1k1] ‘ Sompob Polmai
Aplsak Worapishet S - Mltcha.l Chongcheawchamnan - Somporn Slrlsumrannukul.
Ath1kom Roeksabutr ' o Monai Kra1r1ksh o 4 ’ 'Somymg Thamlmlt
Atsushi Takahashi . ‘ Namkhun Srlsamt - _' L - Songsak Chusanaplpat
Bongkarn Homnan Narumol Kiatwarin ' Stanislav Makhanov
Boonserm Kijsirikud . . - Nimit Chomnawang . Surapan Awp_ha_lboon e
Bundhit Eua-arpérn ..~ Nipapon Siripon - , ~ Tanee Demeechai
Bundit Thipakorn Nipon Theera-Umpon Tawan Phurat
Chaiwut Chat-Uthai : .. Nongluk Covavisaruch - . Taweedej Sirithanapipat
Chalie Charoenlarpnopparut . Nontawat Chuladaycha - Taworn-B
Chanchai Laohapengsang Pakorn Kaewtrakulpong Techaumnat Boonchai -
Chanin Bunlaksananusorn Panumas Khumsat Teerasit Kasetkasem
Chanjira Sinthanayothin - . Panuthat Boonpramuk- - ‘ “Thanatchai Kulworawanichpong
Chaodit Aswakul Parnjit Danirongkulkamjorn Thawatchai Meeteevarunyoo :
Chiranut Sa‘ngiamsak ~_ Pathomthat Chirddeja =~ ' Thumrongrat Amornraksa
Chokchai Sangdso = Peerapol Yuvapdositanon - Tiparatana Wongcharoen
Chutham Sawigun Peng Hin Lide ' - © ' Toshiaki Kondo
Chuwong Phongcharoenp anich Phalphoom 'Boon‘yanant Toshihisa Tanaka
Danai Torrungrueng - - Phaophak Sirisuk o Vé';'akorn Katemguwan
Daranee Hormdee | Plchal Aree) l_ ' " ~ Vutipong Areékul ‘ |
David Ban]ercipongchal ' ' Pinit Thepsatorn : . Wahiob Surékai:upontorn \
Denchai Worasawate Piyasawat Navaratana Na Ayudhy Warakorn Charoensuk
Ekachai Leelarasmee Prabhas Chongsatitwattana Waree Kongprawechnon
Hiroshi Tamura Prajuab Pawaranglkoon Wichian Chutimaskul
Issarachai Ngamroo Prawit Chumchu Worapong Tangérirat
Itsda Boonyaroonate Prayoot Akkaraekthalin Yongyuth Per mpoontanala.rp
Jatuporn Chinrungrueng Saliltip Sinthusonthishat Yoshikazu l\/hyanava
Jitkasame Ngarmnil Sanpachai Huvanandana
Jun-ichi Takada Sansanee Auephanwiriyakul

G

ECTI-CON 2006
The 2006 ECT| International Conference

Cvo

o

Symposium Schedule at a Glance -~

Wednesday, May 10, 2006

16:00-18:30
- 18:00-21:00

Registration

Welcome Party

Thursday, May 11', 2006

08:00-08:45

08:45-09:00 -
- 09:00-09:40

o 09:{10-10:20

10:20-10:30
10:30-11:00

'11:00-11:30

11:30-12:00

12:10-13:00
13:00-14-40

14:40-15:00

15:00-17:00

18:00-21:00
Friday, May 12, 2006

08:30»10:10 :

10:10-10:30
10:30-12:10
12:10-13:00
13:00-14:40
14:40-15:00
15:00-16:40
17:00-18:00

. Registration

Opening ceremony

Keynote speech: “Trend of HDD Research in Thailand” by
Mr. Brent L.. Bargmann, Executive Vice President,
Seagate Technology (Thailand)

Keynote speech: “A Review of Uncooperative Target
ldentification Usmg UWB Resonance Based Radar
Techniques” by Prof. Dr. Nicholas Shuley, Umversﬂ:y of
Queensland, Austraha :

. Coffee Break

Keymote speech: “Status and Trend of ICT in Lao PDR”
by Dr. Saykhong Saynasme Natlonal Umversﬂ:y of Laos,

- - Laos

Keynote speech: “ICT in Cambodia” . by
Mr. Hang Chan Thon, Royal University .of Phnom Penh,
Russmn Federation Blvd, Phnom Penh, Cambodia

. Keynote speech: “The’' Power Development Plan of

Thailand” by ‘Dr, Suthep ChlmKlay (EGAT) 1EEE
Thailand | - o

| ; Lunch Break .
~Technical Sessions

Coffee Break
Technical Sessmns

,_-Conference Banquet

Technical Sessions
Coffee Break -

- Technical Sessions

Lunch Break
Technical Sessions
Coffee Break
Technical Sessions
Closing Ceremony

30

ECTI-CON 2006

The 2006 ECT! International Conference

ferbuny sauatey 3] m.oo,.mj
FEEKAL . = SPENdL FEINdL E GEFdL . $TENAL LT 0kel |
SEENAL GLENAL S-HEldl STENL b FPENAL SEENRAL STENdL STENdL OF21-(E:01
FEENAL PiElNdL FIThdL PGiRdL PPENdL PEGNL F FZENAL iRl 02-91-0091
RN L TNAL SOTAL £CEHdL EPEHdL SHTNdL SEENIL ETENdL 00-91-GrS [
EEidl GLaNdL Z-5gNdL EEHAL §rENAL EEENdL STNdl IENAL
T#ENdL 1-0THdL T-98HdL IGgNd) THeidl TEgdl TEENdL TIEndL 02510061
q.:,.w.,,m.ﬁ:.?a..ﬁ (Lmnp u_H.&EE.,‘.sQ D _E_._w__ﬂe_ﬁ.um.,.sﬁ qEEu. - (D8LOEN) ; g . . o s.ms.mzv . (DD FesTmdy-eg yoowem A
W A Je1d sy ﬁ wiome] “Jeld 485y Suonnys L Jerg sy QRABIURLY 1] “Jod] a0ssy EYMEAUTAL TG I | {emap BIUS g G ToA] 1SSy predygy wrnpey g0
Adojownjes [Em.m Ferdohd. =
TUMGYUY PUT SATAING | SURITLIU] PUR adlaa] (0rnie) By e B RS 1 smsqsds faavd pue Lisug 11 3uiss3o0ag poudig uegeming pue Jumppoly | pw preg premg Ay firy oL, SOND
10 1015525 [ERMG
GNEL, i SEINT LT ER RN L Wl LB RINALE B ik
OFGT-ORPT |
S IdL STl 9 TINdL 1AL SPTHdL SETHdL STTHdL STTRAL Ghb 10291
FEIdl b4 ML o T AL FrIddl FEINdL - FEINdL v UTHAL jea QA
SEiHdlL £LTNAL 1INl £5TNdL £ 1NdL B84l) EETHdL BT 1AL 00 HTOREL
o INdL S UTNL 7o INdL [y M . ¥ THdL TEINGL FETRAL 21 1HdL OFE1-05E1
TEINdL CLTHAL T TNdL 16 1NdL rTidL [EINdL TE T4l PIEAAL - CTET-00:81
ﬁmz.:sé uEEeEygy | (edep Gunang mmg) | (BYL0H Samspaey (LI eyomsrenany) (111} samddoudrenieateyy (030IR) {(1g) ssmresnegaan (erskuimy] st EpamDIng)

100601 § 30 ‘Joid “wssy RPEWE) noYf Jokg whodnypg ol 18y yedng] Jaa g pssy ELCTREN] [oeqrediuo wynre] 1 TBYOEY (], J0u] “D0sSY e I WS
SUOTDUNTIWG]) [ueneanddy fBeomppa], P —— Jus — suoyeddy o= E 3
pue &deojouyda | reondy pun 192y | Jerueyy SALADIIN, U0 10js53S JEI%edg . 1 U] S pue wasds Lenduta)) : B IsIA #0114
e T M RzEL N A Tt [LR L LU Loos = Aot

Teazg yom |

LA RO

pupe], R (LD} Sniamyg doying A A7 puR[ey I v Jusmdn(asg Jaa0 8], psands ajoudey

Q7RI-6s1L

CIPOQTIEY) "ifita] TWouY S ‘Pafg UoYRLPe | RISy 'Uad WOl j0 LIn19aTee) Tudey] oy usyp Bucy T £q RTpOqUIEy W 11, yosads 2nday]

08It 1

Sir] 50877 J0 L}isizaney) euowes) owseufeg Sunpydeg A £g 1 0er] UL 15 o pusdy FuB SMEIS, (seds ajouday) O0TT-08L
Yoo o GEOS1E
. TIEASRY pULsudeny) 10 Anstoaner] “Lomyg sejeyaly 10 7J02d &0 sanbuyee |, mepey paseq avuvuossy i) Tursf) ueneouuepy j025 | aaursadosour) o AsLay v, (ypavds svoudoy 05 BL-0ka0
(pureqrev) Bojouyoa] ojedieg ‘fuapisaly 501 20T WIBWATEY 1] Jadg T &4 ,pUR(iey], Ui YAressy (14 Jo pusl], ydasds aoulas] 0606050
Audmares Sutuadpy i GO60-53 40
uolzzysiey

003 TAE I AEpS It e) Aea

Sk80-00°80

£y] ornaofe -
TonEYsERY E i

R SR e e R Y

L8 v

CH

O[NPOYOS UOISSAS 9007 NOD-IIDH =

ECTI-CON 2006

The 2006 ECT] international Conference

DUIINUNY Jo puy 6oLl
- TEEMdd 7 Urg1-0E:91
F- B dd OEN A 2 F 1A dad 0F:61-00:9T
LGS £ENdd = £Y-eMdd 005 -GigT
eldd aSalNdd TP o Tshdd GT-0s 4T
1-L5ad T-5Edd T THdd T-1-Ehdd 1-00:91
(BLMAD (LU wad -ty

HERTYY I Jold 5EY

uimgSuny] joqSuey 1g

19IETA A 1] O D05TY

(00 mopssy Sucdoan, g

(L115) Fuosamyonsug onpreg g

vossadoEy)

srpdpewny pum udtsa] Bwueuy

[1 uoneaRddy
e Doy] (anuer)

' Aymanedimen sneudemorsa| g

11 Auisgacarg adenr|

L1 S04 P sTTRa) Soprary

ECTI-CON 2006

LoaWE O R b T e e N =N
Heaag OmeY-OF-FL
TR N 9-0-TNd4 e tdA W1 dd 4 9g-TNdd OG5 T
e 1lidd 5T dd bo T e T e Tdd eI dd ST JETT 00T
e iNda S-L-TINdd PR 5 IWdd e+ 1NJ] EE-TINdd E-g-11dd ET-1Ndd DO T-URET
B8 IPdA L 14 dd 0TI G INdL ZH1Wdd ST d TN e 1 TdS OFET-06 BT
18 idd L1 dd 131 dd T iwdd T4-1ia3d T-£-1dad T&HdA Tt 05 EI-00ET
i (LLAKDL) FousmIULNESSY (L - o -) - . a . s
(D) sameduy wpdny, ag EEER, LI USRTRO] TV T | e wevdory g Jorg assy | V) SPTRA S=mmEN 30 BumsaEsioys sedosg 4q (1) veaesaagy Suoduany g sepprpy eieg g uogladiTeys
suoyuanddy Hoowysey, g MpLRATUE Y
LLE Te 1 .
PUE L1081 1, WGLSUTATME,) TN A pue f2ng TATUYUY o UDTESES [eroadg BENFE Ao [Aumssceag sfei 2T TEPERTY DE ST T 1N pue simany Jofesry
= . 4 suoneanpg uprsudug
LN PR el 1 L SN s e I 5 ok UNdas B L s T teog €1, o o = L2 v ;
. yaumq COEL-QTRT
G3-LlN W S LRIV A OBV 9 9CINYA SRY A LGNV TT-THYY QR (-09:11T
P8IV L3NV S FOENYA PRIV A PRV A SR CHYA FLANYL GO0 1T
£EENvYE 4 EINY A E0gW VA S ENY R 2 EHYH E2-lVa E1-aWYd DEIT-0T-11
oF) iV 3 &5 EINV g 92V A TFEWVA TEEINVY & EN VA DL.IT-02 0T
L6 v LBV LISV T-¢-2IWVd 1ZilYal BTNV T T-cYd OFOL-02:61
fredep ‘L0 (LI ooy (wedop (LArnD neuoen dussy {ENUW (LLNWTT drepeueiuoodmnng | { eisdee)y fmaeals) yueop) (LoD 1susdue, womsoEes
L AR IR TR AR 1INy I J0g ISSY TR OUENTN NSUUY AL TP A jeig EsY midedung urmws], Iq RLE- L] Ay mag seT 4 Fuodblogy A Jaig ‘sessy o
SUOLPIRMIIMIT Y SIMUIODTYIIP PUE SOOI R0 sucgesnddy URIESTUTSIL L], PUE
PUTRRLALESN SUSREIUTTMAT SSIATM 1 183UGG UG Uowsas (Lredg AnropuTiuy 1amog usparozg weisg oMo Bojounaz, cipammamy SERR0RATY IR | 1Nf4 pue symang eeuy
[A0 L £ e RNV o A e SR Y IV il I S L e LIV o Rl =
0L.eT+0T01
L TRV TITHVL S-2- v 2TV 4 SEiNyd TRV PRV CLOT-0%:60
Fe-TH YA Ll ot g TIAVA 1AV S e Iva £E TN £ -1 Yd Q%G0-0E 60
RV [T La-1vd EG-iNvY £V EEIWYY 5T TNV AR OEIB0-QE GO
e TIEY T TiNYd Z9-TI V] G 1NVY.3 -1V SE- 1YY 13- 1Y T TNYF 01.50-02:90
1-5-114Y4 -4 TRV T-#TIVA T-9-TNvVA --UAVa -8 THYA = - 09800880
(oD (110D Wl ey (LD TnnTeD (wedep ' Dsiean presai) N GLnpap
55 i s &
(o) svmaeseiop YO ((TLIIOD Monwmerg wedeieg [g ene sqoaegn xq | gowsmina 40 Jergsossy | snaveup i Jrg wessy oweg FRomo,, Toig reyopruRURY] oyddueg g | \mowamyy 1Ang Ig jead sy s
TSN ks J ' o anbuayoe L, £anin9p]
uopededo pue TuuHUy SUOOEOMUMIATION QDY sien 110 vo1ssas [elnadg 11 sthayeds daamod pure &y | wopemaut pue edeijos ydry pile Ja30eag Biemgag PR — SuTopoly, PUR $9MAR
(R S 1 U L) EC ek [S et N VA e s | by e ok | P o == 2 STV o =T
- = s Y| Ll 25 il w8005 TIZ AUy R eppa 27 [P Pl ale A A AL, Ty b Ty T S 2 e e R T

(pamuiuo))
o[npayo§ Uorssag 900¢ NOD-ILOHA

The 2006 ECTV international Conference

Keynote Speech
Trend of HDD Research in Thalland

Brent Bargmann
Vice President of Operations,
Seagate:Technology (Thailand) LTD.

Bargmann's carcer spans 20 years of hard disc drive engineering &
manufacturing experience with the majority of his career spent in the Asia Pacific
‘region. He joined Seagate in 1989 as part of the Imprimis/Contrel Data
‘acquisition, where he started his industrial career Bargmann assumed his
current position as Vice President of Operations, Séagate Technology Thailard, in
2000. In this position, his responsibilities include general management & overall
'opelations performance for all Seagate sites within Thailand. During his time in
.this position, Bargmann has been instrumental in leading the successful
implementation & dep]oyment of key manufacturmg strategies and the expansmn
of the Korat manufacturing eampus.

Other experience has mcluded senior engineering & operational management leadership roles within
Seagate Thailand. In 1997, he was appointed Vice President of BEngineering for Seagate Thailand. In this
role; he was responsible for all technical organjzations within Thailand. He transitioned to Viee
" President of Tepaurk‘IOperations in 1999, assuming the lead factory role for Seagate Thailand's largest
. _manufactm'ing site, prior to assuming his current position. ' '

Bargmann holds a Bachelor of Science degree in Electrlcal Enginesring from South Dakota State
Univer clt,y, Brookings, South Dakota.

He is Lhe Chairman of IDEMA, Asia-Pacific Thailand advisory committee and an active. member of IEEE
& the National Society of Professional Engineers.

ECTI-CON 2006
The 2006 ECT! International Conference

i

Abstract

Building inteiligent concurrent systems that are able to
MEpt to environmental changes and reconfigure
Wemselves is the key to avoiding performance
agradatlou of concurrent real-time software systems and
snsurmg the hveness property of such systems. In this
giger we present a machine ieaming-based approach that
sses the design of agent-based intelligent concurrent
sufiware systems in order to ensure the reliability and
| parformance properties for such systems. Although
| miighility and performance are conflicting requirements
nmost cases, we will show how to use an aspect-oriented
teghnology by which these requirements can be designed,
implemented, reused, and replaced in isolation from each
giher. The pérformance and reliability of the software
item can be reasoned about by intelligent agents who
uin direct the system to reconfigure itself in order to adapt
i the environment changes. The agents rely on the data-
mining techniques to discover patterns of performance
degradation or imminent signals of reliability violation
al to predict policies that cope best with the
gevironmental fluctuations.

KEYWORDS: Aspect-Oriented Framework, Agents,’

Rausability, Extensibility, and System Sofiware

. Introduction

Concurrent real-time systems are designed mainly in
oider to ensure performance and the stringent reliability
iguirements, sometimes referred to as quality properties.
Until recently, the design and development of these
systerns have inter-mixed the quality code with the
functionality code for such systems; the quality properties
eut across the functional components. This crosscutting
phenomenon [7, 12, 13, and 14] generally breaks the
component model, and makes it hard to design, and reuse,
especially when the functional and non-functional
requirements change. Generally requirement changes
force reengineering for these systems. Generally, the
functional components for these systems are stable. On
lhe other hand, the quality requirements are volatile and
:eactive to the environment chang‘es. Another 1ssue that

- Building Agent-Based System Software Using Aspect-Oriented Framework'
Paniti Netinant

‘Computer Science Department
Bangkok University
Bangkok, Thailand
_paniti.n@bu.ac.th

necessitates engineering reconfigurability whes designing
these systems is the make It possible to build these systems
so that and real-time properties can be replaced while the
systems are running, in order to adapt to environmenta)
changes.

Building iatelligent software systems that have open
architectures, which support reconfigurability, is essential
for concurrent real-time applications by which their well-
being and performance are heavily dependent on their
capability to cope with the environment fluctuations. The
Mars pathfinder problem [19, 20] is a classical example of
such systems where conflict of interest between
performance and liveness properties has forced system reset
that was due to a pricrity inversion problem. The Mars
Pathfinder spacecraft’s engineers were aware of the priority
inheritance solution for such problems but they preferred
not to use it [17], since it may cause performance
degradation for the spacecraft. The lack of software
adaptability hooks is the main reason that NASA system
engineers chose not to deploy priority inheritance
mechanism in order to avoid the gystem resetting.

Aspect-Oriented Programming (AOP) [1, 2, 7, 8, and 9]
is a new programming paradigm that attemptis to separate
the functional components from the interaction components
{aspects). -Aspects are defined as properties that cut across
groups of functional components. While these aspects can
be thought about and analyzed relatively separately from
the basic functionality, at the implementation level they
must be combined together. Programmming concems
manually into the system’s functionality using current
component-oriented languages results in aspects being

- tangle throughout the code. This code tangling makes the

source code difficult to develop, understand and evclve
because it destroys modularity and reduces software quatity
[8]. In this paper we show how to deploy aspect-oriented
technology, which provides an architectural support for the
design and development of intelligent concurrent systems.
We show how the aspect code can be isolated from the
functional components that otherwise would be
intermingled with the code of the functional components.
Isolating the functional compenents from the non-
functional components, the aspect code, has many attractive
benefits: first and foremost it promotes reusability for the
functional classes and the aspect classes. It also simplifies

! This research has been supported by Thmland Research Fundmg (TRF) orgamzaﬁon and Banqkok University. The contract

is MRG4780168.

ECTI-CON 2006
The 2006 ECTI International Conference

wign of complex systems, since the interaction code
amted from the functional code. Our approach is a
loward building reconfigurable intelligent systems
Winroves the software quality as it complements the
el oriented and component-oriented technologies with
AR f design principles in order to engineer adaptability
llware systems.

sur approach, assembling the intelligent concurrent
gz from both functional and non-functional
ponents through the use of aspect-oriented technology
puils both static and dynamic adaptability when
Jtz the intelligent concurrent systems.
peent advances in information technology have
monstrated that there are numerous issues that may
. Wl the quality of service for software systems and that
unly way to improve the quality of these services is by
Niig sofiware agents that monitor, advise, and react
‘hion the environment changes. A software agent is an
Somons software component that can react to and
Sict with its environment. An agent is antonomous,
22 it runs in jts own thread of control, and reactive,
Wasse of its capability to respond to incoming
B es.

The agent-based approach is still in its mfancy,
ngh it is getting more popular as more IT.
gh::atxons are using this appreach. Enterprise
Plications, B2B applications, Personal Agents,
Wumation filtering, Information monitoring, and
Werface agents / personal assistants just to name a few.
W example, in information monitoring, activities are
Ependent on the timely notification of changes in the
fiironment or in the data sources. Agents are very
Bl for monitoring different data sources for specific
M Apgents can be dispatched to remote locations to
jiitor data sources. An interface agent is a program that
dble to operate within a user interface and actively
fist the user in operating the interface and manipulating
¢ underlying system. MS-Office assistants are an
ginple of this category.)

Aspect-Oriented Systems for Agents

Concurrent object-oriented open scftware systems are

mposed of functional requirements and concurrency
mirements. Mixing the functional code and
wurrency may impede code reuse; this has been
mmented in the literature as the inheritance anomaly
blem. Sclutions for the inheritance anomaly problem
¥ from domain specific languages (ABCL) to
mework based solutions [4]. Framework solutions are
ferred over domain specific languages, since these
meworks are based on common object-oriented
puages and require less time to learn and .deploy.
spite the success of the framework based approaches,
port of static and dynamic adaptability for concurrent
tware systems has not been addressed in a formal way.
Recent aspect-orienied approaches [4] have provided
alegant solution to support the static adaptability aspect
concurrent software systerns, though the dynamic

adaptability aspect has been left un-addressed. Aspect-
oriented technology complements the object-criented
technology in order to avoid so-called code-tangling
phenomena and suppert static adaptability for concurrent
open software systems; Adaptability [5] is an imporiant
factor that enables software systems to evolve in order to
meet future requirements. Reflective approaches (8, 9] offer
solutions to support the dynamic adaptability aspect for
cpen soflware systems, though reflection-based solutions
have hard-coded decision precesses that react and adapt to
environment changes in an intellipent way. .
Agent-oriented technology is getting mare pepular as
mere industrial applications start to deploy this approach.
Agents 2re needed mainly to deal with uncertainty and react
to envirommnent changes and they are very useful to monitor
systermns resources and notify the interested parties to
change thelr behavior to cope with the environment

changes. Methods to engineer intelligence and machine

learning within agents vary from data mining [17]
techniques to g-learning [10}. In [17], the authors presented
an approach based on the data-mining technique to discover
patterns of behavior and network intrusion detection. And
in [10, 11] the authors have demonstrated how g-routing
algorithms can be used to discover best routes in a highly
congested network.

Qur approach integrates agent-oriented technology and
aspect-oriented technology to build intelligent concurrent
software systems [3, 6]; systems that mn within an
unceriain envirenment and require the capability of altering
their components ard policies during run time. Figure 1
shows our integrated view of these technologies. Our
approach delivers 2 framework sohation for building these
systems. The agents are needed to assist in the decision
making process for reconfiguring the software system
during run time. Aspect-orientation techniques are used
since they isolate the functional components from the
aspectual components like performance and reliability.

Figure 1. A concurrent object as a cluster of
components and aspects within the aspect moderator
framework.

The aspect-oriented approach [4] has demonstrated its
effectiveness in building concurrent

systems, where the concwrency aspects, like

synchronization constraints and scheduling policies, are &8

isolated from the functional componenis. This approach
helps in building a stable soflware system that can easily
adapt to meet future requirements and react to environment
changes. The approach stated in [4] did resolve the static

ECTI-CON 2006
The 2006 ECT! International Conference

object-oriented

P

B

i
1
1

pisbility problem, but did not address the dynamic
whility aspect for building intelligent concurrent
e systermns. Our research has revealed the need to
s intelligent components, agents that can aid the
airent software system In the decision-making
_ to reconfigure itself in order to adapt to
gmmental changes. The agents m our approach
loy the data mining technique and the Bayesian
nlom to monitor system resources and predicate
ders of performance degradation or imminent signals
wliability violstion, and offer advice to react to these
izes.

Aspect-Oriented Framework

A sequential object is comprised of functionality
itrol and shared data. Access to this shared data is
diclled by synchronization and scheduling
Sictions. Synchromization controls enable or disable
dhod invocations for selection. The synchronization
Semction is composed of gnards and post-actions.
irine the Precondition phase, guards will validate the
hronization conditions. In the Notification phase,
s-actions will update the synchronization variables.
% scheduling abstraction allows the specification of
Pheduling restrictions and terminate-actions. At the
Seeendition phase, scheduling restrictions use scheduling
wumiers to form the scheduling condition for each
Bhod. At the Notification phase, terminate actions
fadate the scheduling counters. During the Preconditicn
{lise, ihe synchronization constraints of the invoked
Bihod are evaluated. If the cwrent synchronization
fndition evaluates to resume the scheduling constraints
8 then evalnated. After executing the Precondition
ﬁuse, the moderator will activate the method in the
fjoential object. During Netification, synchronization
friables and scheduling counters are updated upon
:i.lhod completion. The aspect moderator object
Qurdinates functional and aspectual behavior, by
fudling their interdependencies. We stress the fact that
& activation order of the aspects is the most important
it in order to verify the semantics of the system.
dnchronization has to be verified before scheduling. A
fissible reverse in the order of activation may violate the
nantics. There are other issues that might also be
palved. If authentication is introduced to a shared object
irexample, it must be handling before synchronization.
A major component of quality in software is
liability: a system’s ability to perform its job according
i the specification (correctness} and to handle abnormal
luations {robustness). Under this theory, a software
stem is viewed as a set of communicating components
hose interaction is based on precisely defined
jpcifications of the mutnal obligations known as
intracts. These contracts govern the interaction of the
gment with the rest. of the world. The importance of
sertions is also stressed in [14] where it is described
nwv the absence of specifications caused the disaster
sociated with the Buropean Ariane 5 launcher. The

aspect moderator framework adopts this approach in 2
different context: defining sassertions (precondifions and
postconditions) as a set of design principles. Meyer argues
that assertion monitoring yields to a productive approach to
debugging, testing and quality assurance, in which the
search for errors is not blind but based on consistency
conditions provided by the developers themselves, As a
result, reliability should be a buiit-in component in sofiware
development, not an afterthought. None of Java, Ada or
CORBA has any built-in support for design by contract.

In [14] the authors argue that without specification it is
probably safer to redo rather than to rteuse. Another
important issue is the one of the venfication of components
and aspects in isclation from gach cther. One must be able
to test the functionality of a component as well as being
able to test that an aspect will align nicely with the
functional component. Otherwise,.there can be ne guarantee
that components and aspects will co-operate. In other
words, one must test and verify the collaboration of
components and aspects, This would constitute an
important phase in the design process.

In [11] the authors stressed the importance of aspect
manifestation in every stage of development. The issue that
in some cases aspects should remain run-fime entities was
also discussed in [5, 15] also stressed this issue by arguing
that much like conditional compilation, aspects must be
woven to the program on-demand. In technelogies that rely
on automatic weaving, aspects manifest in the model and in
the program code, but neither in object code (byte code in
the case of Java) nor in executable (binary) code. In [7]
argues that with static weaving it might be impossible to
adapting or replacing aspects dynamically. The framework
manages to achieve the manifestation of aspects at run-
time. We argue that Is important that in order to achieve
maximum flexibility a framework must provide for
dynamic aspect evolution and ideally support beth static
and dynamic behavior. As an example, an aspect such as
synchronization can be statically dealt with.

In ESP (8] and the Adaptive Arena [1] the functional
part of a system is separated from the synchronization code,
but it still remains in the same class, The separation of
functional and aspectual code in the aspect moderator
framework results in program code that is more modular.
Furthermore, the framewcrk. follows a general-purpose
approach in crder to achieve composition of concerns. This
way, it is not confined to certain aspects but can address a
number of aspects. It is also language neutral. With the
exception of Aspect], current technologies are confined in
domain specific languages. We introduce the concept of an
aspect bank, where the moderator of a cluster initially needs
to collect and register all the required aspects from. The
aspect bank provides a hierarchical two-dimensional
composition of the system in terms of aspects and
components. '

4, Concluston

Agent-based software systems are the next wave in the
software engineering discipline. Recent advances in

ECTI-CON 2006
The 2006 ECTI International Conference

ware “fechnology have stressed-the need:to -build
Wlligent - open software systems . in order to “build
mumically -reconfigurable software systems - that can
Wl with” environment. uncertainty and- predict- usage
aiis for system resounrces. A key factor for building
iy reconfigurable sofiware systems ig to identify and

e the aspectual.code from the functignal: code . in
'. “ito rmaximize - rensability -and - facilitate
il 1gmab111ty -Aspect-oriented .programming-is -an
_' tging programming technique that makes it possible
“sipgineer the reconfigurability of systemn software. We
W inftware- agents in our framework-in order to support
decision-making processes . for. such : systems:. Qur
s=work based on-approach integrated aspect-oriented
Suclogy and:agent-orientation inl order to support the
a ic. adaptability - aspect .for intelligent rcontcurrent
E:c systems, where.agents-can be asked to- monitor

Mem properties: and- react: to undesirable events by
mfiguring: the. software ‘without- halting the running

A BRI A L DS S LV

e{elences O T R

dou B (1998) Ro]cs Subjects and Aspects How
Dy They Relate?” Positioh’ -paper; " ECOOP 98
urkshop on- Aspect Onented Programmmg pp 55-

h
|

g rgcr HE Dcly M and Fomannc M. "(1998).
ractions Between Ob_]GCtS ‘An Aspect -of Ohject-
erited Langu’tges Position paper;” ECOOP 98
Wotkshop on Aspect:Oriented Progra.mrmng -
a.l!sen C.i 1, -and Agha, G. A (1994) :Open
iefogeneons Compufmg in Actar Space Jouirnal of
P Hel and Dwmbutea‘ Oompum 1994 pp 289-—
00 g

8 Lot tanhmdes C Bader Al Elrad Ts (1999)

n amework ‘ Address a - Two- dlmensmnal
Upmposition of Concerns Posmon paper ~Object-
m.ed Programming.- Systems ‘Langiages and
Amilications (OOPSLA - '99) * First - Workshop 'on
idimenisional Seéparation of Concéms’ m: Object-
od” Systemis. '-"Denirer Coiorado (USA)
mber 1, 1999: + - -

, M-, and Cline; M. (1996). Aspects of Software
ablllty, Commumcatmns of the ACM 39(]0)

[cs G., Lamping I Mendhekar ‘A Magda,C,
Wges C., Loingtier,]-M; and Trwin T2 (1997).
Ripect-Oriented” Programsing . fr ‘Proceedings of
i OP df LNCS 124] Spnnger—Verlag, pp. 220-

.'-1 C. and' Kiczales, G. (1998). Recent
Ueve opments in Aspectl.” Posiiion: ‘papér ECOOP
M Workshop on Aspect-Oriented Programming. -

Shor, Jand Bastdn, N, (1999) A" Refléctive
Architecture rcr the Support of Aspcct Oriehtéd

mmmg in Smal_ltalk Po.maon paper,
(P99, Wcrkshop .- Aspect-Oriented
Wingramming. E :-;.-.:t. Ge oL, SRR

ECTI-CON'2006
The 2006 ECTI International Conference

210

[9] Bershad, B. Savage, S. Pardyak, P. Sirer, G..Fiuczynsk/ 8
.M. Becker, D. Eggers,”S. and- Chamber, C.19998
Extensibility, Safety, and pe rfozmance in the SPIN
Operating System ECOOP'98. -
[10] Boyan -J. and Liftman- 1\4{1995) A Dlstrlbui
~Reinforcement Learning Scheme for Network Routlng
o Technical Report CMU=CS-93:163. s
[11] Kitzales, G. Lamping;. I, .Mendhekar, A! Maed
- Lopes, C. Loingtier, J-M, ‘and Irwin T (19973
¢ “Agpect-Oriented - Programmmg 'PARC Techmca
- Report, SPLY7-008P9710042 pp 69-71. = & ~ -
[12] Kiceales, G., Lamping, T., Mendhekar, A. Maeda," e
Lopes, C, Lomg;ucrIM and Irwin, J(1998). il
Aspect- Onentcd Programming’:: In. MAsth and>8’
Matsuoka, ethors Froceedings of the 12" Europea i
o Conference | on .- Object-Oriented | Proowammmg
ECCOP:98, Spnngcr Verlag,-Berlin pp 88-95. 4T
[13] Kiczales, G. (1996), Aspect-Oriented Programmzng il
- Position Paper from the Xerox PARC Aspect-Orienied
,P_mgmmmmg Project, Xerox PARC, Palg, Alto; CA:
[14] Kubat, M. (1998), -“4 Machine Learning- Bas
Approach to Load Baluncing in - Computer Networks &
Cybermetics and Systems- Joumal 23 1992, pp: 389
C 400, -)
[15] Stolfo S, Fan W, Lee W Prodromldis A
Chan, _P., Proceedmg.s' _of DARPA . Infmm
o Supvivability., Conference - and Exposition,
. Computer Press p- 11 130-144, 2000.
[16] Boyan, J. A., and Littman, M. L. (1994). P Ji
.- routing in dynamically . changing . networks
remfo:cemem learning approach In Cowan, .J :
. Tesaurg, G.; and Alspector, I,. eds.,. Advancesgl
_..'Neural Tnformatxon Proceqsmg Systems 6. Morga
- Kayfmann Publishers.. . i
[17] Boyan,:J. A, and- Littman, M L (]994) Pg
-Routing - in Dmazmcally_ Changing Networks
reinforcement learning approach, In .Advance
Neuyral- Information Processing Systcms 6 . (NII
, 1994, 671—678.
[1&] Diekmann, R., Frommer A and Momen B. (1
.- . Efficient Schemcs} -for.. ;Ne,&fes.'é.. -Neighbor |
.- ‘Balancing. Technical report, Dept. Maths. Comp:
. Univ. Paderborn, Furstenallee 11, D-33102 Pader
. Germmany., .. B
119] Sha, L., Ra]kuma:r R_ and Lehoczky, IP(I, i
-Priozity Inhentance ‘Protccols An Approach to Reig
. Time - .Synchrenization, . [EEE. .- Transactions
Computers, vol. 39, pp. 1175-1185. .
[20] Wilner, D. (1997). “ The Path Finder Invited .T
The 1&th IEEE Reql-Time Systems Svmposiunt, il
Francisco, December, 1997. fin

	MRG4780168_s01
	MRG4780168_s02
	MRG4780168_s03

